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2 Radboud University, Nijmegen, the Netherlands 
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Abstract.  In this paper, we investigate the connection between how people un-

derstand speech and how speech is understood by a deep neural network. A naïve, 

general feed-forward deep neural network was trained for the task of vowel/con-

sonant classification. Subsequently, the representations of the speech signal in 

the different hidden layers of the DNN were visualized. The visualizations allow 

us to study the distance between the representations of different types of input 

frames and observe the clustering structures formed by these representations. In 

the different visualizations, the input frames were labeled with different linguistic 

categories: sounds in the same phoneme class, sounds with the same manner of 

articulation, and sounds with the same place of articulation. We investigate 

whether the DNN clusters speech representations in a way that corresponds to 

these linguistic categories and observe evidence that the DNN does indeed appear 

to learn structures that humans use to understand speech without being explicitly 

trained to do so. 

Keywords: Deep neural networks, Speech representations, Visualizations. 

1. Introduction  

 

Recently, Deep Neural Networks (DNNs) have achieved striking performance gains on 

multimedia analysis tasks involving processing of images [1], music [2], and video [3]. 

DNNs are inspired by the human brain, which the literature often suggests to be the 

source of their impressive abilities, e.g. [4]. Although DNNs resemble the brain at the 

level of neural connections, little is known about whether they actually solve specific 

tasks in the same way the brain does. In this paper, we focus on speech recognition, 

which was one of the first multimedia processing areas to see remarkable gains due to 

the introduction of neural networks. We investigate whether a generic DNN trained to 

distinguish high-level speech sounds (vowels and consonants) naturally learns the un-

derlying structures used by human listeners to understand speech. Speech is a uniquely 

useful area for such an investigation since decades of linguistic research in the area of 

phonetics provide us with a detailed and reliable inventory of the abstract categories of 

sounds with which human listeners conceptualize speech.  
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This paper is an exploratory study, and its contribution lies in the larger implications 

of its findings. Here, we mention two of these implications explicitly. First, insights 

into the extent to which neural networks learn human conceptual categories without 

being taught these categories may extend to other areas of multimedia, such as image 

or video, for which we lack the detailed structural characterization we have for speech. 

Second, insight into the ways in which neural networks fail to learn the same underlying 

categories used by humans could potentially point us to ways of improving speech 

recognition systems. Such insight is particularly valuable. Although today’s automatic 

speech recognition systems have achieved excellent performance, they still perform 

much worse than human listeners when listening conditions are more difficult, e.g., 

when background noise is present or when speakers are speaking with an accent (cf. 

[5]).  

The design of our investigation is straightforward. First, we train a naïve, generic 

feed-forward DNN on the task of vowel/consonant classification. We chose this task 

because it is a relatively simple and well understood task and will allow us to focus on 

what exactly a generic DNN learns when it is faced with the large variability of the 

speech sounds in the speech stream. Subsequently, we visualize the clusters of speech 

representations at the different hidden layers and observe the patterns that are formed. 

In analogy to visualization techniques used in the field of vision, e.g, [6],[7], we need 

to reduce the data to a lower dimension. We adopt the t-distributed neighbor embedding 

(t-SNE) algorithm in order to visualize the high-dimensional speech signal, typically 

two or three dimensions are used [8]. We choose t-SNE because of its previously shown 

usefulness for related tasks. For example, in [9], it has been successfully used to visu-

alize the similarities between Mel feature cepstral coefficient (MFCC) feature and fil-

terbank feature vectors created by deep belief neural networks (DBNs) to determine the 

most suitable feature vector as input representation for the DBN. The closest work to 

our own is [10], which visualizes how phoneme category representations in the hidden 

layers of a feed-forward network adapt to ambiguous speech. Our work is different in 

that we are not interested in individual phoneme categories, but rather train the network 

to distinguish vowels and consonants and observe the structures with which they 

emerge. They however visualize with principle component analysis (PCA) rather than 

t-SNE.  

The paper is structured as follows. Section 2 describes the experimental framework 

including the data, the DNN architecture, as well as our t-SNE visualization. Section 3 

presents the vowel/consonant classification results and the analysis of the speech rep-

resentations learned by the DNN. Finally, Section 4 provides a brief discussion and our 

conclusions. 

2. Experimental Framework 

2.1. Speech data and labels 

The DNN was trained using a selected subset of the Spoken Dutch Corpus (Corpus 

Gesproken Nederlands, CGN, [11]), which is a dataset containing nearly 9M words of 
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Dutch spoken in the Netherlands and in Flanders (Belgium) in 14 different speech 

styles. For the experiments reported here, we only used the read speech material from 

the Netherlands, and only the part from the so-called core corpus, which has a manual 

phonetic transcription of the speech signal. In total, our dataset contains 135,071 spo-

ken words. The speech signal was transformed into 24 dimensional Mel Filterbank 

acoustic features calculated for every 10 ms..  

The CGN uses 46 different phonemes for Dutch. Some phonemes only occur rarely 

in Dutch due to only being part of loan words. Since not enough training material is 

available for these phonemes, we mapped these rare phonemes onto similar Dutch pho-

nemes. Such a mapping is common practice in automatic speech recognition. Table 1 

lists all Dutch phonemes and their manner and place of articulation/tongue position. 

The phoneme label indicates the sound that is spoken.  

 
Table 1. The phonemes of Dutch in the CGN with their manner and place of articulation label. 

Multiple phonemes in one cell are all mapped onto the first phoneme of that cell. Consonants are 

on the left-side and vowels are on the right-side of the table. 

Phoneme 
Manner of ar-

ticulation 
Place of ar-

ticulation 
Phoneme 

Manner of 

articulation 
Tongue 

position 

p Plosive Bilabial I Short vowel Front 

b Plosive Bilabial E, E~ , E: Short vowel Front 

t Plosive Alveolar A, A~ Short vowel Central 

d Plosive Alveolar O, O~, O: Short vowel Back 

k Plosive Velar Y, Y~ , Y: Short vowel Front 

g Plosive Velar i Long vowel Front 

f Fricative Labiodental y Long vowel Central 

v Fricative Labiodental e Long vowel Front 

s Fricative Alveolar 2 Long vowel Central 

z, Z Fricative Alveolar a Long vowel Back 

S Fricative Palatal o Long vowel Back 

x Fricative Glottal u Long vowel Back 

G Fricative Glottal @ Long vowel Central 

h Fricative Glottal E+ Diphthong Front 

N Nasal Glottal Y+ Diphthong Central 

m Nasal Bilabial A+ Diphthong Back 

n Nasal Alveolar    

l Approximant Alveolar    

r Approximant Labiodental    

w Approximant Labiodental    

j, J Approximant Palatal    

 

The manner and place of articulation are acoustic/phonological descriptions of the 

articulations of the phoneme. Vowels and consonants differ in the way they are pro-

duced primarily by the absence and presence, respectively, of a constriction in the vocal 

tract. In consonants, this constriction can occur in various ways, such as, a full closure 
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of the vocal tract followed by an audible release in the case of plosives (e.g., the /p/ in 

pot), or a narrowing of the vocal tract which results in an audible frication noise (e.g., 

the /s/ in stop). The amount of closure of the vocal tract in consonants determines the 

manner of articulation. Vowels are produced without a constriction in the vocal tract. 

Since Dutch has both long and short vowels, as well as diphthongs, rather than having 

one vowel class, we specified three vowel classes. The place of articulation indicates 

the location of the constriction in consonants. Since vowels do not have a place of con-

striction, we use position of the tongue to specify place of articulation, or rather tongue 

position on the front-back plane.  

It is important to understand why we refer to manner and place of articulation as 

acoustic/phonological descriptions of speech sounds. They are acoustic in that manner 

and place of articulation do have a defining impact on the acoustic properties of the 

signal (i.e., its dominant frequencies). However, speech is highly variable, and acoustic 

properties are far from being unique to specific categories. Upon learning one’s first 

language, human listener learn to associate certain acoustic variability with certain con-

ceptual categories, in other words, phonological categories, e.g., an English native 

speaker will learn that the /ɛ/ (as in ‘bed’) and the /æ/ (as in ‘bad’) are different phono-

logical categories, while a Dutch person will map the acoustic signal associated with 

both these categories onto a single category, /ɛ/, as Dutch does not have the /æ/ cate-

gory. We expect a DNN to learn to leverage acoustics. The goal to our investigation is 

to start to understand whether a DNN also learns phonological categories similar to 

those used by human listeners. 

2.2. Deep Neural Networks 

The model used in the experiments is a feed-forward deep neural network, based on the 

architecture used in [12], but without the pre-training used in [12]. Another difference 

is that we used ReLU functions (following the rationale in [13]). The DNN consists of 

3 fully connected hidden layers, each containing 1024 units with ReLU. The network 

is trained to optimize a cross entropy loss function for 20 epochs with batches of size 

128 and an Adam optimizer with learning rate 0.0001. No dropout was applied.  

The input to the DNN is a frame of 10 ms duration in a context of its five preceding 

and succeeding frames. The output layer consists of two units (consonant and vowel) 

with soft-max activation functions. Our CGN dataset was randomly split into 80% 

training set and 20% test set. Training was carried out 5 times with different random 

splits of the training and test set. Classification results are reported in terms of percent-

age of correctly classified frames, the frame accuracy rate (%FAR). 

2.3. Visualizations 

For the visualizations, we use the t-distributed neighbor embedding (t-SNE) algorithm 

to reduce the high-dimensional into two dimensions [8]. T-SNE places data points that 

are highly similar close to one another while placing data points that are less similar 

further apart. In the input layer, the activations are directly related to the input features. 

We therefore expect any clusters in the input layer to be directly related to the input 
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features. In later (hidden) layers, we expect this relationship between input features and 

clustering to become less strong and rather more abstract. We hypothesize that these 

clusters, instead, relate to the linguistic categories, specifically, phonemes and manner 

and/or place of articulation categories, and that clusters of these categories can be ob-

served without the network having been specifically trained to recognize them.  

To implement the visualizations, we randomly selected 1024 frames from our test 

set. To create the t-SNE visualizations, a learning rate of 10 and a perplexity of 25 were 

used. The algorithm iterated until no further changes were observed. 

3. Results 

3.1. Frame accuracy rates 

The five trained networks had an average frame accuracy of 85.5% (SD = .003). The 

low SD shows that the randomly created training sets yield similar performance of the 

trained network. Looking at the two classes of the vowel/consonant classification task 

individually: 85.19% of the frames with the consonant label were classified correctly, 

and 86.69% of the frame with the vowel label. As automatic speech recognition systems 

typically recognize phonemes or words, we cannot directly compare our results to ex-

isting results. Nevertheless, we should note that these recognition rates are reasonable 

and as to be expected. The discussion that follows includes information on the reasons 

that certain errors occur. 

 
Table 2. The frame accuracy rates per phoneme label. 

Phoneme Accuracy (%) Phoneme Accuracy (%) Phoneme Accuracy (%) 

P 90.69 h 69.82 I 88.03 

B 93.00 N 81.02 i 87.81 

T 93.71 m 90.77 y 73.16 

D 86.66 n 84.07 e 95.24 

K 89.52 l 65.73 2 89.34 

G 78.10 r 59.52 a 93.20 

F 93.75 w 77.97 o 91.69 

V 92.19 j, J 53.84 u 78.00 

S 97.50 A, A~ 90.14 @ 75.34 

Z, Z 92.37 O, O~, O: 88.59 E+ 93.12 

S 89.52 Y, Y~, Y: 83.03 Y+ 90.39 

X 93.91 E, E~, E: 86.31 A+ 92.75 

G 89.38     

 

We then calculated the frame accuracies per phoneme label and per manner and 

place of articulation label by labelling all correctly and incorrectly classified frames 

with their appropriate phoneme, manner of articulation and place of articulation label. 
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Table 2 shows the results per phoneme label. Generally, all phonemes were well clas-

sified, with the exception of /j/ and /r/ and to a lesser extent /l/, although for these pho-

nemes classification performance was still well above chance. These sounds all belong 

to the manner of articulation category approximant. As Table 3 shows approximants 

are the manner of articulation category which have the lowest frame accuracy. This is 

not surprising as another word for approximants is half-vowels. The articulation, i.e., 

no clear constriction in the vocal tract, and consequently the spectral mark-up of ap-

proximants, or half-vowels, is very close to that of vowels. From a linguistic point of 

view, however, approximants cannot be the nucleus of syllables or stand-alone sylla-

bles where vowels can be, they are consonants. It is thus not surprising that approxi-

mants are relatively often misclassified as vowels.  

Regarding the place of articulation/tongue position categories, the frames with the 

palatal label are most often misclassified in the vowel/consonant classification task. 

Most likely this is explained by the fact that this category only consists of two pho-

nemes, one of which is the /j/ which, as we saw earlier, is not so well classified. Overall, 

the misclassifications in the vowel/consonant classification task seem to be fairly 

evenly distributed over the different phonemes and manner and place of articulation 

categories. 

 
Table 3. The frame accuracy rates per manner and place of articulation/tongue position label. 

Manner of articulation Accuracy (%) Place of articulation / 

Tongue position 
Accuracy (%) 

Plosive 91.00 Bilabial 91.11 

Fricative 92.06 Alveolar 84.19 

Nasal 85.67 Labiodental 87.96 

Approximant 63.82 Velar 90.29 

Short vowel 82.52 Glottal 69.82 

Long vowel 90.89 Palatal 58.38 

Diphthong 92.50 Front (vowel) 90.48 

  Central (vowel) 80.28 

  Back (vowel) 90.50 

3.2. Visualizations 

Vowel/consonant classification. We first investigated the clustering of the speech 

sounds in the input and the three hidden layers, and the relationship with the vowel and 

consonant labels, i.e., the task on which the DNN was trained. Fig. 1a. shows the rep-

resentation of the original input of the network, with the blue dots corresponding to 

frames with the vowel label and the orange dots corresponding to the frames with the 

consonant label. We can observe a slight clustering structure in the representation of 

the vowels and consonants, with most of the consonants on the left side of the figure 

and most of the vowels on the right side. The clusters are however not well separated. 

Fig. 1b.-d. visualize the representations at the first, second, and third hidden layers of 

the DNN, respectively. As expected, in later layers the clusters become more compact 
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and more distinct, reflecting that the model is learning to create representations of the 

speech signal which abstract away the high variability of the speech signal. This is 

especially evident in the third layer, with one fairly well-defined vowel cluster and two 

consonant clusters, one of which is highly homogeneous and far removed from the rest.  

Fig. 1. Representation of the input frames at different layers of the model: a) input 

layer; b) hidden layer 1; c) hidden layer 2; d) hidden layer 3.  

 

The intrusion of vowel labels in the consonant clusters and vice versa raise the ques-

tion whether some of these frames are incorrectly classified. Fig. 2 shows the third 

hidden layer of the model again but now the correctly and incorrectly classified frames 

are indicated. The results clearly show that few of the frames in the cluster in the top 

right corner of the figure are misclassified. More errors are observed for the vowel and 

consonant clusters in the bottom of the figure, where indeed a number of the vowel 

frames which appeared in the consonant cluster are misclassified as consonant and vice 

versa. 

  

a b 

c d 

vowels consonant 
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Fig. 2. Representation of the correctly and incorrectly classified vowel and consonant frames in 

the third layer of the model.  

 

 
Fig. 3. Representation of the input frames labeled with their phoneme labels in the third hidden 

layer of the model. 

correctly classified consonant 

incorrectly classified consonant 
correctly classified vowel 

incorrectly classified vowel 
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Phoneme classification. Fig. 3 shows the third hidden layer of the model with the 

frames labeled with their ground-truth phoneme identity. Inspection of this figure sheds 

light onto the question how the network is learning. Despite the fact that the model was 

trained on the task of vowel/consonant classification, the network is implicitly learning 

clusters that are related to the way in which humans conceptualize speech. Specifically, 

we see that the phonemes are not randomly distributed within a larger cluster, but rather 

frames with the same phoneme label are clustered together. The cluster in the top right 

corner mainly consists of /p, t, k, z, s/. However, also in the larger cluster at the bottom 

of the figure, smaller clusters can be observed, with more consonants on the right of the 

big cluster and more vowels on the left of the big cluster. Three of these vowel clusters 

are indicated in the figure.  

 
 

Fig. 4. Representation in the third hidden layer of the model of the input frames labeled with 

manner of articulation. Consonants are shown in a. and vowels in b. 

 

Manner of articulation. Fig. 4 shows a visualization of the representations of the con-

sonants (4a.) and vowels (4b.) at the third layer of the model. Each point represents a 

frame, and is color coded with the manner of articulation of that frame. Some of the 

frames are not correctly classified, but the numbers are relatively low (see Table 3), and 

we do not visualize the difference between correct and incorrectly classified frames in 

the figure. 

The global picture arising in Fig. 3 regarding the smaller clusters in the larger cluster 

is confirmed by the visualization of the activations in the third hidden layer in terms of 

manner of articulation. With regards to the consonants in Fig. 4a., the frames in the 

right cluster almost exclusively belong to the fricative and plosive categories. From a 

linguistic perspective, these categories are clearly distinct in their production from the 

manner of articulation categories of the frames in the left cluster. Interestingly, within 

the plosive-fricative cluster on the right, there is a clear separation between the plosive 

(blue) and fricative (red) frames. So, even though the task of the DNN was to classify 
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vowels and consonants, underlyingly it represented the speech signal in similar speech 

clusters. We note that approximants and nasals share some vowel-like properties, and 

it is not surprising that they are less well separated than the consonants. 

With regards to the vowels in Fig. 4b., we see that short and long vowels are not 

evenly distributed, but rather also have a tendency to group together. Diphthongs, how-

ever, show no particular pattern. Since diphthongs can be understood as a long vowel 

composed of a combination of two short vowels, their distribution is not surprising. 

 
 

Fig. 5. Representation in the third hidden layer of the model of the input frames labeled with 

place of articulation. Left (4a.) are consonants and right (4b.) are vowels. 

 

Place of articulation. Fig. 5 shows another visualization of the representations of the 

consonants (5a.) and vowels (5b.) at the third layer of the model. Each point represents 

a frame, and, this time, is color coded with the place of articulation of that frame.  Com-

pared to the labeling in terms of manner of articulation in Fig. 4a., fewer clear clusters 

can be observed for the consonants in Fig. 5a. This plot suggests that we cannot expect 

the DNN to learn all consonantal place distinctions that are relevant for human listeners. 

A human effortlessly distinguishes consonants that differ with respect to place of artic-

ulation. The DNN can achieve a relatively high classification rate for phonemes and 

place of articulation, while this is at the same time not well reflected in distinct cluster-

ing structure of the speech representations in the third hidden layer. In 5b. we see that 

the situation is different for vowels. Clusters corresponding to the back vowels (or-

ange), the front vowels (red), and the central vowels (blue) are visible. Taking the anal-

yses in terms of manner and place of articulation together, the visualizations seem to 

suggest that the model pays more attention to spectral information than to other infor-

mation. 
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4. Discussion and conclusion 

In this paper, we investigated whether a naïve, generic deep neural network-based ASR 

system can learn to capture the underlying speech representations by relating these 

speech representations to categories as defined in linguistics through the visualization 

of the activations of the hidden nodes. We trained a naïve feed-forward DNN on the 

task of vowel/consonant classification. Subsequently, we used different linguistic la-

bels to visualize and investigate the clusters or speech representations at the different 

hidden layers.  

There are two main findings. First, we established that our DNN was learning as we 

expected with the observation that the speech category representations became more 

abstract deeper into the model. So, like human listeners have been found to do [14], 

rather than storing all variation in the speech signal in the hidden layers, the variation 

was progressively abstracted away at subsequent higher hidden layers. Second, we 

moved beyond looking at categories which the DNN had been explicitly trained to rec-

ognize, to investigate whether the DNN would cluster the speech signal into linguisti-

cally-defined speech category representations (despite not explicitly been taught to do 

so) as are used during human speech processing. Indeed, underlyingly the model rep-

resented the speech signal in similar speech clusters, mostly grouping together conso-

nants that have the same manner of articulation, while for vowels place of articulation 

seemed to be a good descriptor or explicator of the clusters.  

A naïve DNN is thus not only able to deal with the large variability of the speech 

sounds in the speech stream but it does so by capturing the structure in the speech. In 

the future, we will move towards less naïve models to investigate whether these spon-

taneous emerging speech categories also emerge in other types of DNN architectures. 

If so, this would provide important insights into the optimal unit of representation of 

speech in automatic speech recognition. Specifically, we have seen that DNN models 

could possibly benefit from the incorporation of information on place of articulation 

for consonants, since this information does not seem to be implicitly learned during the 

training process. Moving forward, we expect that visualizations will continue to prove 

to be a useful tool in the investigation of how computers interpret multimedia signals 

and the connection between the ways in which computers learn to understand multime-

dia signals with the ways in which humans understand these signals. 
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