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 A B S T R A C T

The shift towards environmentally friendly and efficient electric bus transportation systems 
oftentimes raises unexpected operational issues. This study models the Electric Bus Charging 
Station Location Problem (EB-CSLP) to develop a more resilient charging infrastructure, focusing 
on time-related and energy consumption uncertainties, specifically inter-station travel time 
delays. The model accommodates various charger types and maintains time continuity in the 
charging of electric buses. Initially formulated as a mixed-integer nonlinear program (MINLP), 
our stochastic optimization model is reformulated into a mixed-integer linear program (MILP) 
which minimizes both deadheading times and queue waiting times at the charging locations. 
The stochastic optimization model is tested in a real-world case study in Athens, Greece, 
considering multiple scenarios with varying inter-station travel times and energy consumption. 
The results demonstrate its effectiveness as a potential decision-support tool for selecting the 
optimal charger types and charging station locations under travel time and energy-related 
uncertainties.

1. Introduction

Globally, road transport emissions threaten urban air quality and contribute to global warming, primarily through the release 
of carbon dioxide (CO2). The transport sector accounts for 24% of global air pollutants (International Energy Agency, 2024), 29% 
of U.S. greenhouse gas (GHG) emissions (U.S. Environmental Protection Agency, 2024), and 23.2% in the EU-28 (Eurostat, 2024), 
with carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) as the main pollutants (Shahid et al., 2014; Voigt et al., 2017). 
Reducing these emissions is vital for the sustainable development of transportation. The shift to electric buses is a key strategy, 
offering a cleaner public transport alternative (Lim et al., 2021; Shao et al., 2022). 

To mitigate GHG emissions and combat global warming, numerous countries have announced carbon reduction plans. China aims 
for carbon neutrality by 2060 (Cheshmehzangi and Chen, 2021), and France has set a legislative goal to reach net-zero emissions 
by 2050 (Plessmann and Blechinger, 2017). As the transportation sector accounts for nearly one fourth of the global air pollutants 
and conventional diesel buses (DBs) emit harmful pollutants (PM, COx, NOx), replacing them with electric buses (EBs) is crucial. In 
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response, many European cities have committed to fully electrify bus fleets by 2030 (Elavarasan et al., 2022; Thorne et al., 2021). 
The U.S. government invested $7.5 billion in electric bus development, targeting a full transition by 2045 (Horrox and Casale, 
2019), while Singapore and China have also made substantial progress with China maintaining over 90% of the global electric bus 
fleet (United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), 2024; Cheshmehzangi and Chen, 2021). 

The transition to electric buses requires new strategic planning (Teoh et al., 2017), especially in charging infrastructure 
development (Rigogiannis et al., 2023). Charging station placement is a strategic challenge (see the survey of Kchaou-Boujelben 
(2021)), preceding tactical-level decisions like frequency setting, timetabling, and vehicle scheduling (Gkiotsalitis, 2023; Gkiotsalitis 
et al., 2023b). Numerous studies have explored optimal charging infrastructure locations at depots (Uslu and Kaya, 2021; Hsu 
et al., 2021), en-route stops (Wu et al., 2021), and turnaround points (Randhahn and Knote, 2020), with the latter two enabling 
opportunity charging. While station-based static charging – typically conducted at bus depots and terminals – is cost-effective, 
opportunity charging at bus stops is a newly-adopted approach that can extend vehicle battery range and reduce deadhead mileage 
but may introduce charging conflicts and require costly fast-charging technologies (Wang et al., 2023). 

The adoption of battery electric buses (BEBs) also introduces operational challenges, necessitating the mitigation of potential 
disruptions to ensure consistent functionality, reduced deadheading times, and minimized queue waiting costs. In the remainder of 
this paper, the deadheading term refers to the time electric buses travel without passengers from their final stop to a charging station, 
while queue waiting time denotes the delay an EB may experience between its arrival at the charging station and the start of the 
charging process (Gkiotsalitis, 2021). To minimize bus deadheading times and queue waiting costs under operational uncertainties, 
we optimize charging station locations, select suitable charger types, and schedule charging, while considering variability in the 
inter-station travel time and the energy consumption per traveled distance from when a bus finishes its trip until it reaches the 
charging station. Our model considers both slow and fast charging stations and variations in inter-station travel times and energy 
consumption during an operation day, providing valuable insights to policymakers and transportation authorities for effective and
resilient strategic planning of the charging infrastructure’s development.

The remainder of this paper is organized as follows. Section 2 reviews relevant EB-CSLP literature, covering both deterministic 
and stochastic approaches. Deterministic methods address the EB-CSLP without considering uncertainties, whereas stochastic 
methods incorporate uncertainty into the solution process. Section 3 presents the mathematical formulation of our model and its 
reformulation into a mixed-integer linear program. Section 4 expands on the model’s formulation to include  bus  completion, 
deadheading and energy consumption uncertainties. Section 5 discusses experimental results and performance analysis based on a 
simplified transportation network using synthetic data as well as a real-world case study in the Athens metropolitan area. Finally, 
the concluding remarks section synthesizes the results and explores potential future research directions.

2. Literature review

This section offers a concise review of research focused on the optimal selection of charging stations, both deterministically and 
stochastically. It concludes by highlighting the existing knowledge gap that this study aims to address.

2.1. Electric bus charging station location problem without uncertainties

Traditional models for the Electric Bus Charging Station Location Problem (EB-CSLP) involve strategically placing charging 
infrastructure in bus networks to meet energy needs of electric buses while minimizing installation costs. Various mathematical 
models have been formulated to determine the best locations for charging stations across different configurations. Literature includes 
studies addressing the optimization of bus charging station locations with different goals.

Kunith et al. (2017) proposed a mixed-integer linear programming (MILP) optimization model to determine the minimum number 
and optimal layout of electric bus charging stations, as well as the appropriate battery capacity sizing, in order to minimize the total 
cost of ownership (TCO) and enable the feasible operation of buses in terms of energy consumption. Similarly, Lotfi et al. (2020) 
constructed a MILP model that can be applied to optimize the charging infrastructure configuration of various transport networks 
with different routes, electric bus models, and charger types, while minimizing the TCO. He et al. (2019) generated a MILP model 
for the optimal deployment of fast-charging stations in battery electric bus systems, taking into consideration the electricity demand 
of chargers and aiming to minimize the total cost of vehicle batteries, fast-charging stations, and energy storage systems. Uslu and 
Kaya (2021) developed a mixed-integer non-linear programming (MINLP) model to optimize the location and capacity of electric bus 
charging stations, minimizing waiting times and overall costs by placing charger at depots and terminals. Wu et al. (2021) introduced 
a model to optimize fast-charging station placement at established bus terminals, reducing system costs including infrastructure, 
energy, and bus waiting times.

In more recent years, Tzamakos et al. (2022) used an integer linear programming model to optimize fast wireless charger 
placement, minimizing investment costs and accounting bus queue delays with a M/M/1 queuing model. Meanwhile, Olsen and 
Kliewer (2022) integrated charging station placement with vehicle scheduling in public transport networks using a Variable 
Neighborhood Search metaheuristic solution method. Wang et al. (2023) focused on en-route fast charging infrastructure, optimizing 
placement and timing with MILP algorithms for efficient bus operations. He et al. (2023) developed a bi-objective integer linear 
model to create an optimal bus fleet transition plan. This plan includes selecting bus lines to add electric buses, the timing and type 
of battery electric buses to purchase, and deploying both en-route fast chargers and depot chargers. Finally, Basma et al. (2023) 
presented a two-step optimization algorithm that uses Dynamic Programming (DP) and GA to optimize battery sizing and charging 
strategies for electric bus fleets, specifically in Paris, improving the efficiency of the system and minimizing the TCO.
2 
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2.2. Electric bus charging station location and scheduling with uncertainties

In addition to deterministic charging station location problems, recent works have incorporated uncertainties into the decision-
making process. Over the past few years, the optimization of the EB-CSLP for battery electric buses under uncertain conditions has 
received increasing attention in the literature.

A key starting point in this research area is the work of Liu et al. (2018), who planned fast-charging stations under energy 
consumption uncertainty using robust optimization. Their findings indicated that higher energy consumption uncertainty let to more 
conservative charging station placements, improving coverage but raising costs. An (2020) proposed a stochastic integer program 
to jointly optimize large-scale charging station locations and bus fleet size, incorporating random charging demand influenced 
by weather, traffic conditions, and time-of-use electricity tariffs. Utilizing the Sample Average Approximation (SAA) method and 
Lagrangian relaxation, they demonstrated that accounting for demand uncertainty improves network resilience by prioritizing 
charger placement in accessible locations rather than high-traffic areas. Hu et al. (2022) optimized en-route fast charger placement 
at bus stops, developing a deterministic model that considers penalty costs, variable electricity prices, and overlaps, then extending 
it with robust optimization to address uncertainties in passenger activity and travel times. Their findings highlighted the trade-
off between bus delay minimization and energy sufficiency, favoring en-route fast charging in corridors with highly fluctuating 
passenger demand. 

Expanding on EB-CSLP, additional studies have delved into the uncertainties associated with electric bus charging infrastructure 
planning. Deb et al. (2022) proposed a robust two-stage model for charging station placement, employing a Bayesian Network 
(BN) and a hybrid chicken swarm optimization algorithm with teaching-learning-based optimization (CSO-TLPO) to address road 
traffic variability. Their study highlighted that ignoring traffic uncertainty leads to suboptimal charger placement. Liu et al. 
(2022) introduced robust charging strategies for electric bus fleets, using column-generation-based approach (CG) to handle energy 
consumption uncertainties. Their results showed that uncertainty-aware charging schedules reduce the risk of electric bus battery 
depletion, especially during peak travel periods.

Zhou et al. (2023) proposed a two-stage stochastic model to deploy charging stations under uncertain travel times and battery 
degradation, using reinforcement learning (RL) and surrogate-based optimization (SBO). Their adaptive approach helped reduce 
costs and alleviate station congestion in networks with unpredictable traffic patterns. Finally, Esmaeilnejad et al. (2023) studied 
the impact of weather on electric-bus performance with a linear deterministic optimization model and a two-stage stochastic 
programming (SP) method, optimizing charging station locations and duration, while focusing on operational costs and weather 
effects. Their analysis revealed that temperature fluctuations significantly affect energy efficiency, increasing charging frequency 
and influencing charging station location decisions. 

2.3. Study contribution

Several mathematical programming models have been developed for the EB-CSLP with and without uncertainties in recent years, 
varying in their decision variables and optimization objectives. While some have addressed specific uncertainties relevant to our 
research, such as inter-station travel time and energy-related parameters, their mathematical models were mainly solved using 
metaheuristics, potentially returning unstable and sub-optimal solutions that may vary across different model runs. Table  1 shows 
in detail the contribution of our study in relation to the state of the art, focusing on exact solution methodologies which return 
stable solutions.

In light of the past literature, our study addresses the EB-CSLP with multi-use charging stations located at existing bus depots, 
allowing for both slow and fast chargers rather than planning solely for fast chargers. As can be seen in Table  1, the majority 
of relevant models have not accounted for multi-use charging stations, as the charging infrastructure considered is primarily for 
en-route stations. Thus, the contributions of our work can be summarized as:

- development of a EB-CSLP model that accounts for multiple charger types (slow/fast), and its reformulation as an exact MILP, 
which can be solved to global optimality.

- incorporation of  electric bus completion,  deadheading time, and energy consumption uncertainties into the model’s 
formulation, resulting in solutions that perform better under unfavorable conditions.

- testing and demonstration of the EB-CSLP model in a realistic bus network (Athens, Greece), considering different levels of 
variability.

3. Formulation as a minimum deadheading and queue waiting time problem

3.1. Mathematical program

In formulating this problem, we make the following key assumptions:

1. Each electric bus is considered fully charged before starting its operations on the specific line it serves.
2. Each electric bus is charged up to a sufficient level once the charging process is complete. This level depends on the time of 
day when the  electric bus  finishes its shift and requires charging.

3. Electric buses can be freely assigned to any charging location and type, if this is feasible in terms of battery autonomy.
3 
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Table 1
EB-CSLP summary of the most relevant literature.
 Reference Charging 

Location
Scheduling 
Decision

Multiple 
Charger 
Types

Optimization 
Goal

Uncertainties Solution 
Approach

 

 Liu et al. 
(2018)

Terminals, 
stops

Charging 
times

Implementa-
tion costs

Energy 
consumption

MILP  

 An (2020) Depots, 
en-route

Charging 
times, bus 
fleet size

System costs Charging 
demand

SAA and 
Heuristic 
(Lagrangian 
relaxation)

 

 Uslu and 
Kaya 
(2021)

Terminals, 
depots, 
en-route

Charging 
stations 
capacity

Waiting times, 
overall costs

MINLP  

 Deb et al. 
(2022)

Terminal 
stops, 
depots

Charging 
scheduling

Costs, voltage 
stability, 
accessibility, 
waiting times

Road traffic BN and 
Metaheuris-
tic 
(CSO-TLPO)

 

 Hu et al. 
(2022)

Stops Charging 
scheduling

Infrastructure 
and penalty 
costs

Passengers’ 
boarding, 
alighting 
times

MILP  

 Liu et al. 
(2022)

Depots, 
en-route

Charging 
scheduling

✓ Costs, energy 
shortages

Energy 
consumption

CG  

 Olsen and 
Kliewer 
(2022)

En-route Charging, 
vehicle 
scheduling

Operational 
costs

Metaheuris-
tic (VNS)

 

 Basma 
et al. 
(2023)

En-route Charging 
strategies, 
battery 
sizing

TCO DP and 
Metaheuris-
tic (GA)

 

 Esmaeilne-
jad et al. 
(2023)

En-route Charging 
locations, 
durations

Passengers’ 
waiting time, 
capital costs

Weather 
conditions

Linear 
model and 
a two-stage 
SP model

 

 Zhou et al. 
(2023)

Terminals, 
depots

Chargers: 
number and 
type

✓ Total costs Travel times, 
battery 
degradation

Heuristic 
(RL and 
SBO)

 

 This study Depots, 
charging 
stations

Charging 
sta-
tions/types, 
vehicle 
assignment

✓ Deadheading 
and queue 
waiting time 
costs

Inter-station 
travel times 
and Energy 
consumption

MILP  

4. There is no possibility for two or more vehicles to charge at the same charger simultaneously (chargers do not have multiple 
ports).

5. All electric buses follow the shortest route to their potential charging locations.

In our model, the predefined set  represents the potential physical locations for constructing charging stations. These physical 
locations can host up to   types of chargers, with the exact number depending on the outcome of our optimization problem, which 
takes into consideration the charging demand and the cost of deploying the chargers. The set   is divided into two subsets; 1
(⊆  ), representing slow chargers, and 2 (⊆  ), representing fast chargers. Any location in  can accommodate either type of 
charger, meaning  ⊆  . Each charger 𝑗 ∈   can be used multiple times a day, as long as it serves only  one bus  at a time. In 
addition to the charger-related sets, a predetermined set  includes  all electric buses,  and from this, a subset  ⊆  indicates 
the  buses  requiring charging.

Taking into account the parameters of this problem, the state of charge for  electric bus 𝑘,  denoted as 𝑆𝑂𝐶𝑘, refers to the battery 
level of each  bus  after it has completed its operations and requires charging. It is generally assumed that 𝑆𝑂𝐶𝑘 must remain within 
the predefined charging level boundaries (𝑆𝑂𝐶min

𝑘 , 𝑆𝑂𝐶max
𝑘 ) and reach a sufficient charge level (𝑆𝑂𝐶𝑠𝑢𝑓𝑘 ) upon completion of the 

charging process. This level depends on the time of the day when charging is required and is expressed as a percentage of 𝑆𝑂𝐶max
𝑘 , 

denoted as 𝜔𝑘 (𝑆𝑂𝐶𝑠𝑢𝑓𝑘 = 𝜔𝑘𝑆𝑂𝐶max
𝑘 ). This percentage varies throughout the service day to minimize downtime and potential delays 

caused by charging, ensuring that  buses  can resume service in the shortest possible time.  The time at which  electric bus 𝑘  reaches 
its final stop is represented by 𝜏𝑘, while the deadheading time from the last stop of  bus 𝑘  to the potential charging location 𝑗 is 
denoted by 𝑡 . We note that each  electric bus 𝑘  follows the minimum travel distance 𝑑  between its final stop and the potential 
𝑘𝑗 𝑘𝑗

4 
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Table 2
Nomenclature.
 Sets
  set of all possible charging station physical locations  
  set of all possible installation options for chargers, where  ⊆  
 1 set of slow charger installation options  
 2 set of fast charger installation options  
  set of electric buses that need charging  
 Parameters
 𝑆𝑂𝐶𝑘 state of charge of electric bus 𝑘 after its completion at the final stop  
 𝑆𝑂𝐶min

𝑘 minimum allowed state of charge of electric bus 𝑘  
 𝑆𝑂𝐶max

𝑘 maximum allowed state of charge of electric bus 𝑘  
 𝑆𝑂𝐶𝑠𝑢𝑓

𝑘 sufficient state of charge of electric bus 𝑘  
 𝜔𝑘 percentage for the definition of the sufficient state of charge of electric bus 𝑘  
 𝜏𝑘 time when electric bus 𝑘 completes its shift at the last stop  
 𝑀 a very large positive number  
 𝑑𝑘𝑗 minimum travel distance between the final stop of electric bus 𝑘 and the potential 

charger location 𝑗
 

 𝑡𝑘𝑗 estimated deadheading time from the last stop of electric bus 𝑘 and the location of the 
potential charger 𝑗

 

 𝑒 battery consumption per traveled distance  
 𝑒min minimum battery consumption per traveled distance  
 𝑒max maximum battery consumption per traveled distance  
 𝑏𝑗 fixed cost of installing a charger 𝑗 ∈   
 𝑏𝑚𝑎𝑥 total amount of the installation budget  
 𝑎𝑘𝑗 indicator parameter that equals 1 if there exists a charger 𝑗 ∈  which is reachable 

from the last stop of electric bus 𝑘 given its minimum state of charge, and 0 otherwise
 

 𝑟1 slow charging rate  
 𝑟2 fast charging rate  
 𝜆1𝑣 maximum number of slow charging types at a charging station physical location 𝑣 ∈  
 𝜆2𝑣 maximum number of fast charging types at a charging station physical location 𝑣 ∈   
 𝑐𝑙 end time of charging for all chargers each day  
 𝛾 parameter indicating the weight of bus deadheading time in relation to queue waiting 

time for charging
 

 Variables
 𝐱 𝐱 = [𝑥1 ,… , 𝑥𝑗 ,… , 𝑥

|𝑁|

]⊺, where 𝑥𝑗 = 1 if we decide to construct the charger 𝑗 ∈  , and 
𝑥𝑗 = 0 if not

 

 𝑞𝑘𝑗 𝑞𝑘𝑗 ∈ {0, 1}, where 𝑞𝑘𝑗 = 1 if the trip 𝑘 ∈ 𝐾 is assigned to charger 𝑗, and 0 otherwise  
 𝑓𝑘𝑗 continuous variable, indicating the time when the bus 𝑘 starts charging at charger 𝑗  
 𝑙𝑘𝑗 continuous variable, indicating the time when the bus 𝑘 finishes charging at charger 𝑗  
 𝐲 𝐲 = [𝑦1 ,… , 𝑦𝑖 ,… , 𝑦

|𝐾|

]⊺ deadheading time of electric bus 𝑘 ∈   
 𝐰 𝐰 = [𝑤1 ,… , 𝑤𝑖 ,… , 𝑤

|𝐾|

]⊺ queue waiting time of electric bus 𝑘 ∈  from its arrival at 
the charger 𝑗 until the start time of its charging

 

charging location. The charging need of every electric bus occurs after the respective bus completes a number of trips, which deplete 
its battery.

The battery consumption per unit distance, denoted by 𝑒, belongs within the electric bus energy consumption range (𝑒min, 𝑒max), 
while the fixed cost of installing a charger 𝑗 ∈   is represented by 𝑏𝑗 . The total budget available for charging station installations 
is 𝑏𝑚𝑎𝑥. Some additional charger-related parameters are 𝑟1 and 𝑟2, which denote the charging power of slow and fast charger types, 
respectively. Parameters 𝜆1𝑣 and 𝜆2𝑣 represent the maximum number of slow and fast charging types, accordingly, that a charging 
station physical location 𝑣 ∈  can accommodate. We also considered that chargers are available for use at any time throughout 
an operational day. The only constraint is a parameter 𝑐𝑙, which defines the closing time of the charging stations and indicates the 
latest time by which all the charging operations must be completed. The notations used in formulating this problem are listed in 
Table  2.

Considering the presented nomenclature, the mathematical model of the charging station location problem is presented below.

(�̃�) ∶

min 𝛾
∑

𝑘∈
𝑦𝑘 +

∑

𝑘∈
𝑤𝑘 (1)

s.t.:

𝑦𝑘 =
∑

𝑗∈𝑁
𝑡𝑘𝑗𝑞𝑘𝑗 ∀𝑘 ∈ 𝐾 (2)

𝑤𝑘 =
∑

[𝑓𝑘𝑗 − (𝜏𝑘 + 𝑡𝑘𝑗 )]𝑞𝑘𝑗 ∀𝑘 ∈ 𝐾 (3)

𝑗∈𝑁

5 
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∑

𝑗∈
𝑎𝑘𝑗𝑥𝑗 ≥ 1 ∀𝑘 ∈  (4)

∑

𝑗∈
𝑞𝑘𝑗 = 1 ∀𝑘 ∈  (5)

𝑞𝑘𝑗 ≤ 𝑥𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  (6)

𝑞𝑘𝑗 ≤ 𝑎𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  (7)
∑

𝑘∈
𝑞𝑘𝑗 ≥ 𝑥𝑗 ∀𝑗 ∈  (8)

∑

𝑗∈1

𝑥𝑗 ≤ 𝜆1𝑣 ∀𝑣 ∈  (9)

∑

𝑗∈2

𝑥𝑗 ≤ 𝜆2𝑣 ∀𝑣 ∈  (10)

∑

𝑗∈
𝑥𝑗𝑏𝑗 ≤ 𝑏𝑚𝑎𝑥 (11)

𝑓𝑘𝑗 ≥ (𝜏𝑘 + 𝑡𝑘𝑗 )𝑞𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  (12)

𝑙𝑘𝑗 ≤ 𝑐𝑙𝑞𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  (13)

𝑙𝑘𝑗 = 𝑓𝑘𝑗 + 𝑞𝑘𝑗
𝜔𝑘𝑆𝑂𝐶max

𝑘 − (𝑆𝑂𝐶𝑘 − 𝑒𝑑𝑘𝑗 )
𝑟1

∀𝑘 ∈ ,∀𝑗 ∈ 1 (14)

𝑙𝑘𝑗 = 𝑓𝑘𝑗 + 𝑞𝑘𝑗
𝜔𝑘𝑆𝑂𝐶max

𝑘 − (𝑆𝑂𝐶𝑘 − 𝑒𝑑𝑘𝑗 )
𝑟2

∀𝑘 ∈ ,∀𝑗 ∈ 2 (15)

𝑆𝑂𝐶𝑘 − 𝑒𝑞𝑘𝑗𝑑𝑘𝑗 ≥ 𝑆𝑂𝐶min
𝑘 ∀𝑘 ∈ ,∀𝑗 ∈  (16)

𝑞𝑖𝑗 + 𝑞𝑘𝑗 ≤ 1 if 𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗 ∧ 𝑓𝑘𝑗 < 𝑙𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (17)

𝑥𝑗 ∈ {0, 1} ∀𝑘 ∈  (18)

𝑞𝑘𝑗 ∈ {0, 1} ∀𝑘 ∈ ,∀𝑗 ∈  (19)

𝑓𝑘𝑗 , 𝑙𝑘𝑗 ∈ R≥0 ∀𝑘 ∈ ,∀𝑗 ∈  (20)

𝑦𝑘 ∈ R≥0 ∀𝑘 ∈  (21)

𝑤𝑘 ∈ R≥0 ∀𝑘 ∈  (22)

The objective function (1) seeks to minimize the overall deadhead time and queue waiting time for charging. A weight 𝛾 is 
introduced in the objective function to emphasize the importance of minimizing the deadhead time for electric buses relative to the 
queue waiting time for charging. Minimizing deadheading time is critical because, during this period, the bus incurs high operational 
costs, including the driver’s wages and the consumption of battery energy as the bus travels to the charging station. While queue 
waiting time is also significant, it does not contribute to operational costs in the same way, as, oftentimes, neither driver activity 
nor energy consumption is involved during this period. Constraints (2) define the deadheading time (𝑡𝑘𝑗) of each  electric bus 𝑘 ∈ 
from its last stop to its charging location 𝑗 ∈  . Constraints (3) define the queue waiting time for each  bus 𝑘  at charger 𝑗 as the 
duration from its arrival at the charging location until the start time of its charging (𝑓𝑘𝑗). Constraints (4) ensure that each  bus 𝑘
has at least one charger 𝑗 within reach. The accessibility requirement is enforced through the binary indicator parameter 𝑎𝑘𝑗 , which 
equals 1 if the  electric bus’s  state of charge remains above the minimum threshold (𝑆𝑂𝐶min

𝑘 ) upon its arrival at the charger 𝑗, and 
0 otherwise.

Constraints (5) guarantee that each  bus 𝑘  is assigned to exactly one charging location (𝑞𝑘𝑗 = 1). Constraints (6) and (7) impose 
additional conditions, allowing a  bus 𝑘  to be assigned to charger 𝑗 only if the charger is constructed (𝑥𝑗 = 1) and if it is reachable 
(𝑎𝑘𝑗 = 1), respectively. Additionally, constraints (8) ensure that a charger 𝑗 will only be constructed only if at least one  bus 𝑘  is 
assigned to it (𝑞𝑘𝑗 = 1). Constraints (9) and (10) limit the number of charger types that each charging station location 𝑣 ∈  can 
accommodate, while constraints (11) ensure that the total installation cost of all chargers remain within the total budget, 𝑏𝑚𝑎𝑥. 
Constraints (12) regulate the charging sequence, ensuring that  bus 𝑘  starts charging at the assigned charger 𝑗 only after arriving at 
it. Constraints (13) ensure that  bus 𝑘  completes its charging process at charger 𝑗 (𝑙𝑘𝑗), if assigned to it, no later than the predefined 
charging end time 𝑐𝑙, which remains consistent across all chargers.

Constraints (14) and (15) calculate the time when  bus 𝑘  stops charging at charger j (𝑙𝑘𝑗), which equals the charging start time 
(𝑓𝑘𝑗) summed with the time needed to  sufficiently  charge the battery. Constraints (14) apply to  electric buses  assigned to a slow 
charging type (𝑗 ∈ 1), while constraints (15) apply to  bus  assigned to fast charging (𝑗 ∈ 2). The time required for  bus 𝑘  to 
charge up to a sufficient level is determined by the difference between the percentage of the maximum level of charge (𝜔𝑘𝑆𝑂𝐶max

𝑘 ) 
that can be reached and its remaining battery level upon arriving at charger 𝑗, divided by the charger’s charging rate (𝑟1 or 𝑟2). 
The remaining battery level of  bus 𝑘  equals its state of charge when it is finished (𝑆𝑂𝐶𝑘) minus the energy required to travel to 
charger 𝑗 (𝑒𝑑𝑘𝑗). In this model, the recharging duration is precisely calculated and depends on the  bus  remaining battery level and 
the charging rate of the assigned charger type (slow/fast). Constraints (16) ensure that the remaining battery level of  bus 𝑘  at the 
charger 𝑗, if assigned to it, remains above 𝑆𝑂𝐶min.
𝑘
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Charger 𝑗 ∈   can be used multiple times per day without predefined charging time slots. Consequently, the charging start time 
of each  bus 𝑘 ∈   at charger 𝑗 (𝑓𝑘𝑗) can take any positive continuous value at any charger. This flexibility raises the concern that 
the charging processes of multiple  electric buses  might overlap for a given charger. To prevent this, constraints (17) ensure that 
no charger can be used by more than one vehicle at the same time. In more detail, if  bus 𝑖 ∈  ⧵ {𝑘} is assigned to charger 𝑗
and starts charging before another  bus 𝑘  (𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗),  bus 𝑘  cannot be assigned to charger 𝑗 if the start time of its charging (𝑓𝑘𝑗) 
precedes the end time of the charging of  bus 𝑖 (𝑙𝑖𝑗). That is, 𝑞𝑖𝑗 + 𝑞𝑘𝑗 ≤ 1 if 𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗 and 𝑓𝑘𝑗 < 𝑙𝑖𝑗 .

In some of the aforementioned constraints, the big-𝑀 approach was utilized. This involved setting 𝑀 as a large positive number 
(𝑀 ⋙ 0), greater than the relevant terms in the constraints, to ensure their enforcement or relaxation as needed.

3.2. Linearizations

Mathematical program (�̃�) is non-convex because of the nonlinear constraints (3) and constraints (17), which contain a logical 
expression. In constraints (3), nonlinearity arises due to the multiplication of the variables 𝑓𝑘𝑗 and 𝑞𝑘𝑗 . To address this, we 
reformulate 𝑤𝑘 as follows (23) and we introduce the inequality constraints (24). Constraints (24) ensure that when the assignment 
of  bus 𝑘 ∈   to a potential charger 𝑗 ∈   does not take place (𝑞𝑘𝑗 = 0), the respective charging start time variable 𝑓𝑘𝑗 will 
automatically be set to 0.

𝑤𝑘 =
∑

𝑗∈
𝑓𝑘𝑗 − (𝜏𝑘 + 𝑡𝑘𝑗 )𝑞𝑘𝑗 ∀𝑘 ∈  (23)

𝑓𝑘𝑗 ≤𝑀𝑞𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  (24)

Considering constraints (17), we divided them into three distinct parts through constraints (25)–(30), introducing the binary 
variables 𝑑𝑘𝑖𝑗 , 𝑔𝑘𝑖𝑗 , ℎ𝑘𝑖𝑗 , and the very small positive number 𝜖.

Theorem 3.1.  Constraints (17): 𝑞𝑖𝑗 + 𝑞𝑘𝑗 ≤ 1 if 𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗 and 𝑓𝑘𝑗 < 𝑙𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈   and the following set of constraints 
are equisatisfiable:

𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗 +𝑀(1 − 𝑑𝑘𝑖𝑗 ) ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (25)

𝑓𝑖𝑗 ≥ 𝑓𝑘𝑗 + 𝜖 −𝑀𝑑𝑘𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (26)

𝑓𝑘𝑗 ≤ 𝑙𝑖𝑗 − 𝜖 +𝑀(1 − 𝑔𝑘𝑖𝑗 ) ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (27)

𝑓𝑘𝑗 ≥ 𝑙𝑖𝑗 −𝑀𝑔𝑘𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (28)

ℎ𝑘𝑖𝑗 = min(𝑑𝑘𝑖𝑗 , 𝑔𝑘𝑖𝑗 ) ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (29)

𝑞𝑖𝑗 + 𝑞𝑘𝑗 ≤ 1 +𝑀(1 − ℎ𝑘𝑖𝑗 ) ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (30)

Proof.  The first inequality part, 𝑓𝑖𝑗 ≤ 𝑓𝑘𝑗 , in the logical expression of constraints (17) is replaced by constraints (25)–(26). These 
constraints ensure that the binary variable 𝑑𝑘𝑖𝑗 equals 1 if  bus 𝑘  starts charging at the same time as, or immediately after, the start 
time of charging of  bus 𝑖 ∈  ⧵ {𝑘}  at the charger 𝑗, and 0 otherwise. The small positive 𝜖 number is used to replace the greater 
sign (>) with the greater than or equal sign (≥) in constraints (26). The second inequality part, 𝑓𝑘𝑗 < 𝑙𝑖𝑗 , in the logical expression 
of constraints (17) is replaced by constraints (27)–(28), which ensure that the binary variable 𝑔𝑘𝑖𝑗 equals 1 if  bus 𝑘  starts charging 
before  bus 𝑖  completes its charging at the charger 𝑗, and 0 otherwise. Note that the small positive 𝜖 value is used to interpret the 
less sign (<) of the second inequality part in the logical expression of constraints (17) with the less than or equal sign (≤) through 
the constraints (27). The final part of constraints (17), expressed through the inequality 𝑞𝑖𝑗 + 𝑞𝑘𝑗 ≤ 1, is replaced by constraints 
(29)–(30). Constraints (29) ensure that the binary variable ℎ𝑘𝑖𝑗 receives the minimum value of 𝑑𝑘𝑖𝑗 and 𝑔𝑘𝑖𝑗 , so that when it equals 
1,  electric buses 𝑘 and 𝑖  are not assigned to the same charger 𝑗 through constraints (30); otherwise it equals 0. ■

Finally, constraints (29) are also nonlinear. To address this, we introduce an additional binary variable 𝑧𝑘𝑖𝑗 to replace the 
nonlinear constraints (29) with the following linear (31)–(34).

ℎ𝑘𝑖𝑗 ≤ 𝑑𝑘𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (31)

ℎ𝑘𝑖𝑗 ≤ 𝑔𝑘𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (32)

ℎ𝑘𝑖𝑗 ≥ 𝑑𝑘𝑖𝑗 −𝑀𝑧𝑘𝑖𝑗 ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (33)

ℎ𝑘𝑖𝑗 ≥ 𝑔𝑘𝑖𝑗 +𝑀(𝑧𝑘𝑖𝑗 − 1) ∀𝑘 ∈ ,∀𝑖 ∈  ⧵ {𝑘},∀𝑗 ∈  (34)

Note that constraints (31)–(34) and (29) are equisatisfiable. Thus, we can formulate (�̃�) as the following mixed-integer linear 
program (�̂�):

(�̂�) ∶

min 𝛾
∑

𝑘∈
𝑦𝑘 +

∑

𝑘∈
𝑤𝑘 (35)

s.t.: Equations (2), (4)–(16), (18)–(28), (30)–(34). (36)
7 
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Theorem 3.2.  Given that the problem is feasible, the continuous relaxation of the mathematical program (�̂�) possesses a globally optimal 
solution.

Proof.  Mathematical program (�̂�) in Eqs. (2), (4)–(16), (18)–(28), (30)–(34) is a mixed-integer linear program. The continuous 
relaxation of this program generates a feasible region composed of affine equality and inequality functions, forming a polyhedron. 
Since the objective function is linear, the continuous relaxation of the problem is both convex and concave. As a result, any locally 
optimal solution for the continuously relaxed problem constitutes also a globally optimal solution. ■

It follows from Theorem  3.2 that one can solve the mixed-integer linear program (�̂�) to global optimality by using an exact 
method for mixed-integer linear programming, such as the Branch-and-Cut approach.

4. Charging station location selection problem under inter-station travel time and energy consumption uncertainties

During daily operations,  electric buses  can exhibit variability in their inter-station travel times and the time required to reach 
their assigned charging stations. Additionally, energy variability can also arise during the trip to the charging station, particularly in 
terms of battery consumption per unit of traveled distance. Numerous factors, such as traffic conditions and incidents, road works, 
extreme weather events, and in-vehicle passenger occupancy, can disrupt their operations. Therefore, it is crucial to incorporate the 
effects of these variabilities to our decision making. In the remainder of this section, we consider the following uncertainties for 
each  electric bus 𝑘 ∈  : (i) variability in the completion time, 𝜏𝑘, (ii) variability in the deadheading time from the last stop to the 
potential charger location 𝑗 ∈  , 𝑡𝑘𝑗 , and (iii) variability in the energy battery consumption per traveled distance, 𝑒, from the last 
stop to the potential charger 𝑗. To do so, parameters 𝜏𝑘, 𝑡𝑘𝑗 , and 𝑒 are now treated as uncertain - random parameters. A commonly 
used approach to handle uncertainties is to find a solution that optimizes the expected value of the objective function. Generally, 
this approach necessitates knowledge of the probability distributions of the random parameters (in our case:  bus  completion times, 
deadheading times, and energy battery consumption). Specifically, we aim to minimize the following objective function: 

E

[

𝛾
∑

𝑘∈
𝑦𝑘 +

∑

𝑘∈
𝑤𝑘

]

(37)

which can be equivalently written as: 
𝛾
∑

𝑘∈

∑

𝑗∈
E[𝑡𝑘𝑗 ]𝑞𝑘𝑗 +

∑

𝑘∈

∑

𝑗∈
𝑓𝑘𝑗 − E[(𝜏𝑘 + 𝑡𝑘𝑗 )]𝑞𝑘𝑗 (38)

where 𝜏𝑘 and 𝑡𝑘𝑗 are the uncertain parameters that are drawn from probability distributions. To solve this Stochastic Optimization 
Problem, we employ the Sample Average Approximation (SAA) method (Kim et al., 2015; Gkiotsalitis et al., 2022), which utilizes 
a random sample of the uncertain time parameters 𝜏1,𝑘, 𝜏2,𝑘,… , 𝜏

|𝑆|,𝑘 and 𝑡1,𝑘𝑗 , 𝑡2,𝑘𝑗 ,… , 𝑡
|𝑆|,𝑘𝑗 – where  is the set of travel times 

scenarios that are sampled from probability distributions of 𝜏𝑘 and 𝑡𝑘𝑗 , respectively. This approximates the value of the objective 
function expressed in (38), which can now be written as: 

1
||

⎡

⎢

⎢

⎣

𝛾
∑

𝑠∈

∑

𝑘∈

∑

𝑗∈
𝑡𝑠,𝑘𝑗𝑞𝑘𝑗 +

∑

𝑠∈

∑

𝑘∈

∑

𝑗∈
𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗

⎤

⎥

⎥

⎦

(39)

Incorporating the time and energy-uncertain parameters 𝜏𝑠,𝑘, 𝑡𝑠,𝑘𝑗 , and 𝑒𝑠 into the constraints of the optimization problem can 
lead to infeasibilities due to excessive completion times of  buses 𝑘 ∈   at their final stops, as well as excessive deadheading times 
and energy consumption per traveled distance from their final stops to the potential charging locations 𝑗 ∈  . This issue occurs 
from the time-related uncertainties, when the start time of charging for  bus 𝑘  at charger 𝑗 (𝑓𝑘𝑗) is required to accommodate its 
constraints across all possible scenarios, including the outlier ones with unexpected delays. Energy consumption-related uncertainties 
can similarly lead to infeasibility when the state of charge of each  bus 𝑘  upon arrival at the potential charging location, and the 
charging end time at charger 𝑗 (𝑙𝑘𝑗), must satisfy their constraints across all the scenarios, even in cases where battery energy 
consumption reaches high limits.

Therefore, constraints (12), which require the variable 𝑓𝑘𝑗 of  bus 𝑘 ∈   to the charger 𝑗 ∈   to be greater than or equal to the 
sum of 𝜏𝑘 and 𝑡𝑘𝑗 (𝑓𝑘𝑗 ≥ (𝜏𝑘 + 𝑡𝑘𝑗 )𝑞𝑘𝑗), can be relaxed to permit a small number of electric buses 𝑘 to remain uncharged in scenarios 
with unexpectedly late completion and deadheading times. Similarly, constraints (14) and (15), which define the charging end time 
variable 𝑙𝑘𝑗 of  bus 𝑘  at charger 𝑗 as the sum of its charging start time 𝑓𝑘𝑗 and the required charging duration for the sufficient 
charging of the  electric bus,  can be relaxed to allow a small number of electric buses 𝑘 to undergo an incomplete charging process 
in scenarios with unexpectedly high energy consumption. Likewise, constraints (16), which ensure that the remaining state of charge 
of  bus 𝑘  at charger 𝑗 stays above 𝑆𝑂𝐶min

𝑘 , can also be relaxed, allowing the state of charge of a limited number of  electric buses 
𝑘  to fall below the minimum energy threshold. With these considerations, our optimization model (�̂�), which incorporates the 
realizations of these uncertain elements, is formulated as follows: 

(�̂�) ∶

min 1
||

⎡

⎢

⎢

𝛾
∑ ∑ ∑

𝑡𝑠,𝑘𝑗𝑞𝑘𝑗 +
∑ ∑ ∑

𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗
⎤

⎥

⎥

(40)

⎣

𝑠∈ 𝑘∈ 𝑗∈ 𝑠∈ 𝑘∈ 𝑗∈
⎦
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s.t.: Equations (4)–(11), (13), (18)–(22), (24)–(28), (30)–(34) (41)

𝐶𝑠,𝑘𝑗 = 𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1, ...,} (42)
∑

𝑠∈
Pr

(

𝐶𝑠,𝑘𝑗 ≥ 0
)

≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (43)

𝐶1,𝑠,𝑘𝑗 = 𝑙𝑘𝑗 − 𝑓𝑘𝑗 − 𝑞𝑘𝑗
𝜔𝑘𝑆𝑂𝐶max

𝑘 − (𝑆𝑂𝐶𝑘 − 𝑒𝑠𝑑𝑘𝑗 )
𝑟1

∀𝑘 ∈ ,∀𝑗 ∈ 1,∀𝑠 ∈ {1, ...,} (44)

𝐶1,𝑠,𝑘𝑗 = 𝑙𝑘𝑗 − 𝑓𝑘𝑗 − 𝑞𝑘𝑗
𝜔𝑘𝑆𝑂𝐶max

𝑘 − (𝑆𝑂𝐶𝑘 − 𝑒𝑠𝑑𝑘𝑗 )
𝑟2

∀𝑘 ∈ ,∀𝑗 ∈ 2,∀𝑠 ∈ {1, ...,} (45)
∑

𝑠∈
Pr

(

𝐶1,𝑠,𝑘𝑗 ≥ 0
)

≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (46)

𝐶2,𝑠,𝑘𝑗 = 𝑆𝑂𝐶𝑘 − 𝑒𝑠𝑞𝑘𝑗𝑑𝑘𝑗 − 𝑆𝑂𝐶min
𝑘 ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1, ...,} (47)

∑

𝑠∈
Pr

(

𝐶2,𝑠,𝑘𝑗 ≥ 0
)

≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (48)

𝐶𝑠,𝑘𝑗 , 𝐶1,𝑠,𝑘𝑗 , 𝐶2,𝑠,𝑘𝑗 ∈ R ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1, ...,} (49)

𝛽 ∈ (0, 1] (50)

 where constraints (42)–(50) modify the problem’s formulation compared to its deterministic counterpart, substituting constraints 
(12) to account for inter-station travel time uncertainties and constraints (14)–(16) to address inter-station energy consumption 
variabilities. Constraints (42) introduce the variable 𝐶𝑠,𝑘𝑗 , which computes the difference between 𝑓𝑘𝑗 and (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗 for each 
electric bus-charging station combination (𝑘, 𝑗), and constraints (43) require the sum of the probabilities of 𝐶𝑠,𝑘𝑗 ≥ 0 across all 
scenarios 𝑠 ∈  to reach or exceed a percentage 𝛽 of the total number of uncertain scenarios ||. Similarly, constraints (44) and 
(45) introduce the variable 𝐶1,𝑠,𝑘𝑗 , which applies to both slow and fast chargers. This variable computes the difference between 𝑙𝑘𝑗
and 𝑓𝑘𝑗 , summed with the required charging duration for the sufficient charging of  the bus, 𝜔𝑘𝑆𝑂𝐶max

𝑘 , from its remaining battery 
level upon its arrival at the charging station. The remaining battery level of an  electric bus 𝑘 ∈   at charger 𝑗 ∈   is defined as 
the charge level after its shift completion, 𝑆𝑂𝐶𝑘, minus the energy consumed traveling to charger 𝑗, 𝑒𝑠𝑑𝑘𝑗 . Constraints (46) ensure 
that the sum of the probabilities of 𝐶1,𝑠,𝑘𝑗 ≥ 0 across all scenarios 𝑠 ∈  meets or exceeds the 𝛽(%) of the total number of uncertain 
scenarios ||. Constraints (47) introduce the variable 𝐶2,𝑠,𝑘𝑗 , which computes the difference between the remaining battery level of 
an electric bus upon reaching charging station 𝑗 and the 𝑆𝑂𝐶min

𝑘 . Like constraints (43) and (46), constraints (48) require the sum of 
probabilities of 𝐶2,𝑠,𝑘𝑗 ≥ 0 across all scenarios 𝑠 ∈  to reach or exceed 𝛽||. This percentage 𝛽 remains consistent across constraints 
(43), (46), and (48).

In more detail, constraints (43), (46), and (48) present the satisfaction probability of the stochastic expressions (𝐶𝑠,𝑘𝑗 ≥ 0, 
𝐶1,𝑠,𝑘𝑗 ≥ 0, 𝐶2,𝑠,𝑘𝑗 ≥ 0) holding true in no less than 𝛽(%) of all scenarios. When 𝛽 equals 1, constraints (43), (46), and (48) become
stochastic constraints, since they are forced to be satisfied in every scenario 𝑠 ∈ . This is because stochastic constraints demand 
a feasible decision to remain valid regardless of how uncertainty unfolds. Given the infeasibility that may arise from these strict 
requirements, an alternative approach is to relax the constraints, ensuring they hold true most of the time rather than always. In 
such a case, one tolerates the fact that for certain observed values of the uncertain parameters, the stochastic expressions 𝐶𝑠,𝑘𝑗 ≥ 0, 
𝐶1,𝑠,𝑘𝑗 ≥ 0, and 𝐶2,𝑠,𝑘𝑗 ≥ 0 may not hold, but expects them to hold for at least a portion 𝛽(%) of the total number of scenarios. In 
this way, constraints (43), (46), and (48) transform into chance constraints, which are frequently used for uncertain combinatorial 
problems and belong to the broader realm of Stochastic Constraint Satisfaction Problems (SCSPs) (Zghidi et al., 2018). In these 
problems, uncertainty is modeled using random parameters to represent unpredictable factors, which can be sampled from various 
distributions, each with an associated probability.

4.1. Reformulation of the satisfaction probabilities and the objective function

To apply the satisfaction probability functions (43), (46), and (48), we reformulated them through constraints (51)–(59), 
introducing the binary variables 𝑚𝑠,𝑘𝑗 , 𝑜𝑠,𝑘𝑗 and 𝜓𝑠,𝑘𝑗 . The variable 𝑚𝑠,𝑘𝑗 takes the value of 1 when 𝐶𝑠,𝑘𝑗 ≥ 0, and 0 otherwise, 
counting in how many scenarios this stochastic expression holds. Similarly, 𝑜𝑠,𝑘𝑗 and 𝜓𝑠,𝑘𝑗 equal 1 when 𝐶1,𝑠,𝑘𝑗 ≥ 0 and 𝐶2,𝑠,𝑘𝑗 ≥ 0, 
respectively, and 0 otherwise. 

𝐶𝑠,𝑘𝑗 ≥ −𝑀(1 − 𝑚𝑠,𝑘𝑗 ) ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (51)

𝐶𝑠,𝑘𝑗 ≤ −𝜖 +𝑀𝑚𝑠,𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (52)
∑

𝑠∈
𝑚𝑠,𝑘𝑗 ≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (53)

𝐶1,𝑠,𝑘𝑗 ≥ −𝑀(1 − 𝑜𝑠,𝑘𝑗 ) ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (54)

𝐶 ≤ −𝜖 +𝑀𝑜 ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (55)
1,𝑠,𝑘𝑗 𝑠,𝑘𝑗
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∑

𝑠∈
𝑜𝑠,𝑘𝑗 ≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (56)

𝐶2,𝑠,𝑘𝑗 ≥ −𝑀(1 − 𝜓𝑠,𝑘𝑗 ) ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (57)

𝐶2,𝑠,𝑘𝑗 ≤ −𝜖 +𝑀𝜓𝑠,𝑘𝑗 ∀𝑘 ∈ ,∀𝑗 ∈  ,∀𝑠 ∈ {1,… ,} (58)
∑

𝑠∈
𝜓𝑠,𝑘𝑗 ≥ 𝛽|| ∀𝑘 ∈ ,∀𝑗 ∈  (59)

Constraints (53), (56), and (59) count the number of times 𝐶𝑠,𝑘𝑗 , 𝐶1,𝑠,𝑘𝑗 , and 𝐶2,𝑠,𝑘𝑗 are greater than or equal to 0 and compare 
these counts to the number of scenarios 𝛽|| that allow them to take negative values. Additionally, when we apply the satisfaction 
probability function (43) with 𝛽 < 1, the variable 𝐶𝑠,𝑘𝑗 is allowed to fall below zero in a certain percentage of scenarios 𝑠 ∈ . 
Since 𝐶𝑠,𝑘𝑗 is also part of the objective function (40), we constrain the second part of the objective function – namely, the queue 
waiting time variable – to consider only non-negative values. The reformulated expression of the objective function can be written 
as follows:

(�̂�) ∶

min 1
||

⎡

⎢

⎢

⎣

𝛾
∑

𝑠∈

∑

𝑘∈

∑

𝑗∈
𝑡𝑠,𝑘𝑗𝑞𝑘𝑗 +

∑

𝑠∈

∑

𝑘∈

∑

𝑗∈
max

{

𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗 , 0
}

⎤

⎥

⎥

⎦

(60)

Note that the second part of the objective function is nonlinear because it includes a maximization term. This can be linearized 
by inserting the continuous variable �̃�𝑠,𝑘 ∈ R≥0 and using the following constraints (61)–(62).

�̃�𝑠,𝑘 =
∑

𝑗∈𝑁
𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗 ∀𝑘 ∈ 𝐾,∀𝑠 ∈ 𝑆 (61)

�̃�𝑠,𝑘 ≥ 0 ∀𝑘 ∈ 𝐾,∀𝑠 ∈ 𝑆 (62)

The newly inserted continuous variable �̃�𝑠,𝑘 replaces the nonlinear term
max

{

𝑓𝑘𝑗 − (𝜏𝑠,𝑘 + 𝑡𝑠,𝑘𝑗 )𝑞𝑘𝑗 , 0
}

in the objective function, resulting in a mixed-integer linear program. Thus, the charging station location selection problem, 
considering inter-station travel time and energy consumption uncertainties, is also formulated as a MILP that can be solved to 
global optimality. We recognize that solving the stochastic version of the problem requires a considerably larger number of binary 
variables compared to its deterministic counterpart (3×(|| × | | × ||) more binary variables). This results in exploring a larger 
solution space and creating larger rooted trees when utilizing Branch-and-Cut to solve the problem. As a result, addressing the 
stochastic version is computationally more complex than addressing the deterministic one.

5. Numerical experiments

5.1. Numerical experiments description

In the following we test the application of our model by means of two distinct cases. The first case utilizes a simplified network 
based on synthetic data from Athens, Greece. Subsequently, a practical case study is presented with real-world data from the Athens 
bus network, demonstrating the model’s effectiveness for a real transportation system. This study is particularly relevant as the 
public transport authority of Athens has received a fleet of 140 electric buses in 2024, and is in need of establishing its charging 
station network. The primary objective of this research is to determine the optimal locations for charging stations and the most 
suitable types of chargers for the  electric buses  that will require charging  during their operational day.

Across all model applications, several key considerations remain consistent. The main focus is the greater Athens metropolitan 
area, served by 280 bus lines. A subset of these bus lines, on which a total of  electric buses operate, is selected for the 
electrification. These bus lines primarily function between start and end stops within Athens Municipality and neighboring 
municipalities of its central administrative region, since the electric bus fleet will be confined to these areas. Each candidate charging 
station physical location 𝑣 ∈  can host multiple chargers – both slow (set 1) and fast (set 2) – with the number and type of 
chargers varying by analysis. Thus, our mathematical model flexibly accommodates different charger configurations to meet diverse 
charging needs. 

In addition to spatial and charging-related parameters, the mathematical model incorporates temporal and electricity-related 
inputs. Charging can occur at any time throughout the operational day, with all charging processes completed by midnight (𝑐𝑙 = 12
a.m.). This continuous time frame is not divided into discrete time slots; instead, charging can take place at any point during the 
day. Slow chargers operate at 𝑟1 = 30 kWh/h and fast chargers at 𝑟2 = 120 kWh/h. According to the specifications of the bus 
manufacturer (Abel, 2024), each bus 𝑘 ∈  has a minimum and maximum state of charge (𝑆𝑂𝐶min

𝑘 = 20 kWh, 𝑆𝑂𝐶max
𝑘 = 100 kWh). 

The sufficient level of charge 𝑆𝑂𝐶𝑠𝑢𝑓𝑘  that each bus 𝑘 can reach after completing the charging process is defined as a percentage 𝜔𝑘
of 𝑆𝑂𝐶max

𝑘 . In more detail, 𝜔𝑘 = 65% if charging occurs before 6 p.m., 50% from 6 p.m. to 9 p.m., and 35% from 9 p.m. to midnight. 
The decreasing percentage threshold towards the end of the day reflects an effort by the charging system to provide electric buses 
with sufficient energy to complete their final scheduled trips. It is assumed that all buses fully charge after midnight before the next 
operational day.
10 
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For the successful assignment of  electric buses  to the charging stations with respect to their arrival time and the overall trip 
schedules, several additional temporal parameters have to be taken into account. These parameters follow consistent rules across all 
model instances. Starting with the completion time parameter 𝜏𝑘, we have predefined these times to approximate the bus timetables 
of the respective lines, ensuring that the charging needs of  electric buses 𝑘 ∈   occur throughout the entire day. An average speed 
of 26 km/h was deemed most suitable for the case study examined in this paper based on velocity statistics from the Athens Urban 
Transportation Organization (OASA).

In the deterministic approach, each electric bus was considered to consume an average of 𝑒 = 0.84 kWh/km en route to the 
charging station, as specified by the electric bus manufacturer (Abel, 2024). This model of electric buses has been in operation in 
the Athens transportation network since May 2024. The state of charge (𝑆𝑂𝐶𝑘) of each  bus 𝑘 ∈   upon completion at the final stop 
was determined based on the series of trips assigned to each electric bus. Following consultations with the Athens Transportation 
Organization and based on their experience with integrating electric buses into Athens’ bus fleet, a weight of 𝛾 = 1.5 was deemed 
appropriate for the total deadheading time in the main objective function.

All the cases are represented using the mathematical model detailed in Sections 3 and 4. The model was programmed in Python 
3.12 and was solved using a Branch-and-Cut algorithm implemented by the commercial solver Gurobi 12.0.1. The experiments were 
conducted on a conventional computer machine with a 2.3 GHz processor and 32 GB of RAM.

5.2. Inter-station travel time and energy consumption scenarios

During the course of a day, electric buses may experience fluctuations in their inter-station travel times and the duration required 
to reach their designated charging locations, causing these times to significantly vary from day to day. These fluctuations can also 
be observed in the energy consumption of electric buses en route to the assigned charging location, potentially leading to rapid 
battery depletion and reduced energy efficiency. In the following, the methodology used to generate scenarios reflecting these time 
and energy-related uncertainties within our model cases is described. For the scenario generation, it is essential to sample the 
aforementioned uncertain inter-station travel time and energy parameters from a predefined distribution. Selecting the appropriate 
distribution type is a critical step in our sampling methodology, as the outputs should closely represent real-time bus travel and 
battery energy consumption conditions.

In past studies (El Faouzi and Maurin, 2007; Mazloumi et al., 2010; Wu et al., 2015; Qi et al., 2018; Rahman et al., 2018), 
electric bus travel times and battery energy consumption during their trips were best represented using either a normal or a log-
normal distribution, contingent upon the characteristics of the data and the nature of variability. While both distribution types are 
suitable for modeling time and energy segments of an electric bus, the log-normal distribution is typically more appropriate for 
representing travel times and energy consumption due to its inherent ability to positively restrict values and its better fit to reflect 
the skewed nature of the data (Wang et al., 2012; Liu and Liang, 2021). Therefore, a log-normal probability distribution is used to 
sample the deadheading travel times (𝑡𝑠,𝑘𝑗) and battery energy consumption (𝑒𝑠) of  electric buses  traveling to charging stations. In 
contrast, for the  completion time (𝜏𝑠,𝑘) of each bus 𝑘 ∈ ,  a normal probability distribution is selected (Singh et al., 2024).

For the energy consumption distribution, the energy consumed by  an electric bus  was sampled within the range of 𝑒min = 0.65
kWh/km and 𝑒max = 1.20 kWh/km. For both the toy network and the Athens case study, each uncertain parameter – 𝜏𝑠,𝑘, 𝑡𝑠,𝑘𝑗 , and 
𝑒𝑠 – was sampled across || = 1000 scenarios. Each model case with || scenarios was executed five times using different 𝛽(%)
values – 𝛽 = 100%, 𝛽 = 95%, 𝛽 = 80%, 𝛽 = 75%, 𝛽 = 60% – to assess the impact of varying level of strictness in satisfying all the 
constraints under worst-case scenarios. All 𝛽(%) values, except for 𝛽 = 100%, represent the implementation of chance constraints in 
(53), (56), and (59), requiring the expressions 𝐶𝑠,𝑘𝑗 ≥ 0, 𝐶1,𝑠,𝑘𝑗 ≥ 0, and 𝐶2,𝑠,𝑘𝑗 ≥ 0 to hold in at least 𝛽(%) of the || scenarios. In 
contrast, 𝛽 = 100% represents the implementation of stochastic constraints in (53), (56), and (59), enforcing the conditions 𝐶𝑠,𝑘𝑗 ≥ 0, 
𝐶1,𝑠,𝑘𝑗 ≥ 0, and 𝐶2,𝑠,𝑘𝑗 ≥ 0 to be satisfied across all || scenarios.

5.3. Demonstration of the toy network

5.3.1. Deterministic approach
To ensure the reproducibility of our model, we begin our experimentation by demonstrating its application for a small-scale 

scenario using synthetic data from the central area of Athens — see Fig.  1. In this study area, we consider four candidate charging 
station locations (|| = 4), two of which can accommodate up to one slow charger each (𝜆1𝑣 = 1), and the remaining two locations 
up to one fast charger each (𝜆2𝑣 = 1). Specifically, candidate chargers #1 and #2 are slow (set 1), and candidate chargers #3 and 
#4 are fast (set 2). Thus, subset 1 includes {1, 2} and subset 2 includes {3, 4}.

In Fig.  1, the final stops of each  electric bus 𝑘 ∈  that require charging are marked with brown color. In this small-scale 
(toy) network, we consider eleven bus lines operated by electric buses, each with one electric bus that requires charging during the 
day (|| = 11). The assignment of one electric bus requiring charging per line each day is based on the preliminary planning by 
the public transport authority, necessitating only one charging detour from the original schedule during operating hours. However, 
more electric buses per line can be accommodated without loss of generality. All eleven buses need charging after the completion 
of their shifts at their final stops. 

Before proceeding to the model solution and the determination of the optimal installation sites for slow and fast chargers, it 
is necessary to mention the state of charge of  each electric bus 𝑘  at the final stop (𝑆𝑂𝐶𝑘), presented in Table  3, as well as the 
deadheading time between the final stop and the potential charger 𝑗 (𝑡 ), presented in Table  4. Additionally, the synthetically 
𝑘𝑗
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Fig. 1. Toy bus network example. The final stops of the eleven  electric buses  are shown in brown, while the potential charging station physical locations are 
indicated in blue.

Table 3
State of Charge of each electric bus 𝑘 ∈  (𝑆𝑂𝐶𝑘) at the last stop (kWh).
 𝑘 1 2 3 4 5 6 7 8 9 10 11 
 𝑆𝑂𝐶𝑘 25 29 42 26 42 40 34 32 26 41 47 

Table 4
Estimated deadheading time 𝑡𝑘𝑗 (in minutes) between the final stop of each electric bus 𝑘 ∈  and the potential 
charging station 𝑗 ∈  .
 Line 𝑘 ∈  Charging station option 𝑗 ∈ 

 1 2 3 4

 1 22.80 23.10 10.22 5.96
 2 13.42 13.32 9.12 12.22
 3 25.85 21.27 6.98 11.85
 4 20.91 20.35 6.90 5.08
 5 24.02 18.28 10.12 16.62
 6 18.59 20.16 12.23 10.65
 7 18.06 11.20 14.39 21.68
 8 13.63 8.58 10.10 16.92
 9 16.41 17.13 9.75 10.23
 10 14.23 12.76 7.15 11.64
 11 27.66 22.59 9.63 14.30

generated temporal attributes of the toy network, which is the completion time when  a bus 𝑘  arrives at its final stop and requires 
charging (𝜏𝑘), are presented in Table  5.

Solving our MILP model with Branch-and-Cut, its optimal solution recommends the installation of charger #2 (slow charger), 
as well as chargers #3 and #4 (fast chargers) from the pool of   options. This solution results in a total deadheading time of 
94.70 min and zero queue waiting time for all eleven  electric buses . Table  6 presents the optimal assignment of  buses 𝑘 ∈ 
to chargers 𝑗 ∈   (𝑞𝑘𝑗) and the charging start (𝑓𝑘𝑗) and end times (𝑙𝑘𝑗) of each  bus 𝑘  to the assigned charging location 𝑗. Table  6 
also shows the arrival time of each  bus 𝑘  to the assigned charger 𝑗, which is the total of the completion time and the deadheading 
12 
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Table 5
Completion time 𝜏𝑘 of each electric bus 𝑘 ∈  at the last stop requiring charging (in minutes past midnight).
 𝑘 1 2 3 4 5 6 7 8 9 10 11  
 𝜏𝑘 799.4 734.7 886.1 866.5 977.8 902.2 875.5 1027.9 1008.3 1020.6 1173 

Table 6
Assignment of electric buses 𝑘 ∈  to chargers 𝑗 ∈  and the arrival (𝜏𝑘 + 𝑡𝑘𝑗 ), charging start (𝑓𝑘𝑗 ) and end 
(𝑙𝑘𝑗 ) time values of each bus 𝑘 at the assigned charging location 𝑗 (in minutes past midnight).
 𝑞𝑘𝑗 𝜏𝑘 + 𝑡𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗
 (1,4) 805.36 805.36 826.44
 (2,3) 743.82 743.82 763.48
 (3,3) 893.08 893.08 905.85
 (4,4) 871.58 871.58 892.01
 (5,3) 987.92 987.92 1001.26
 (6,4) 912.85 912.85 927.29
 (7,2) 886.70 886.70 956.86
 (8,2) 1036.48 1036.48 1108.73
 (9,4) 1018.53 1018.53 1039.89
 (10,3) 1027.75 1027.75 1041.05
 (11,3) 1182.63 1182.63 1185.88

 Objective Function Value: 142.05

duration (𝜏𝑘 + 𝑡𝑘𝑗). This illustrates that upon arrival at the charging location, charging begins immediately. Consequently, the total 
queue waiting time, calculated as the subtraction of (𝜏𝑘 + 𝑡𝑘𝑗) from 𝑓𝑘𝑗 , is zero for all  electric buses. 

Given the optimal solution and the corresponding allocation of each  electric bus 𝑘 ∈   to the charging location options 𝑗 ∈  , 
it is evident that, at the toy network implementation, model’s assignment aligns well with expectations: all  electric buses  are 
assigned to their nearest charging location – with one exception – and all  buses  charge immediately upon arrival at the respective 
charging site without any waiting time. The exception is bus line #9, which is not assigned to its nearest fast charging station #3, 
as indicated by its corresponding 𝑡𝑘𝑗 values – see Table  4 – and instead, it is assigned to its second nearest, the fast charger #4. 
This deviation can be explained by the fact that if  electric bus #9  had been assigned to its nearest charging option #3, it would 
have caused a delay in the charging start time of  bus #10,  which is also assigned to charger #3 – as can be seen in Table  6. 
Consequently,  bus #10  would incur a non-zero queue waiting time. By assigning  bus #9  to the second nearest charging location 
#4, this waiting time is avoided.

The initial demonstration showcases that our model does not assign two  electric buses  to the same charger simultaneously, and 
achieves its twofold objective: minimization of the overall deadheading costs and reduction of queue waiting times from the arrival 
of each  bus 𝑘  at the charger 𝑗 until the beginning of its charging process.

5.3.2. Modeling uncertainties with stochastic and chance constraint approaches
To incorporate time and energy-related uncertainties into the toy network, we first generate 1000 scenarios (||) for the  bus 

completion times (𝜏𝑠,𝑘),  deadheading duration (𝑡𝑠,𝑘𝑗), and energy consumption per traveled distance (𝑒𝑠) for  each electric bus-
charging location combination (𝑘, 𝑗).  After introducing these 1000 different values of 𝜏𝑘, 𝑡𝑘𝑗 , and 𝑒 parameters into our mathematical 
problem, we apply variations in the 𝛽(%) parameter to constraints (53), (56), and (59), as well as constraints (42), (44)–(45), (47), 
(49)–(52), (54)–(55), (57)–(58), (61)–(62), and the objective function (60).

All scenarios 𝑠 ∈  with each 𝛽(%) modification share the same normal distribution sampling of 𝜏𝑠,𝑘 and log-normal distribution 
of 𝑒𝑠 parameters — refer to Figs.  2 and 3. For clarity issues, the log-normal distribution sampling of the 𝑡𝑠,𝑘𝑗 parameter is depicted 
only for combinations of  buses 𝑘 ∈   and charging locations 𝑗 ∈   that are actually assigned to each other (𝑞𝑘𝑗 = 1) — refer to 
Fig.  4. Across all 𝛽(%) modifications, the optimal solution, derived by Gurobi’s Branch-and-Cut algorithm, remained consistent in 
terms of the charging station installation locations and the assignment of each  bus 𝑘  to charger 𝑗, matching the results from the 
deterministic approach of the toy network.

At the toy network level, the key differences between the outcomes of the deterministic and the stochastic-chance constrained 
approaches lie in the charging start 𝑓𝑘𝑗 and end times 𝑙𝑘𝑗 of each  electric bus 𝑘 ∈   to the assigned charging station 𝑗 ∈  , as 
shown in Table  7. It is important to note that all  buses 𝑘,  assigned to the same charger 𝑗, are scheduled sequentially based on their 
arrival times (𝜏𝑘 + 𝑡𝑘𝑗 ), ensuring that their charging processes do not overlap. The queue waiting times for all chance-constrained 
approaches, including the stochastic one (𝛽 = 100%), are all zero, similar to the corresponding deterministic case. None of the 𝑓𝑘𝑗
and subsequently the 𝑙𝑘𝑗 values of each  bus 𝑘  to the assigned charger 𝑗 approximate the corresponding deterministic values, except 
for the ones in the most-relaxed chance-constrained approach with 𝛽 = 60%. In particular, under the stochastic approach and in 
scenarios with chance constraints nearing to 𝛽 = 100%, all  electric buses  tend to start their charging process (𝑓𝑘𝑗) significantly 
later in their operation day compared to the deterministic method. This delay is generally anticipated due to the requirement of 
constraints (53), (56), and (59) to hold true for the vast majority of the 1000 scenarios.

Overall, the start time of charging of each trip 𝑘 ∈  to the assigned charging location 𝑗 ∈   (𝑓𝑘𝑗) across all 𝛽(%) variations 
(Table  7) is precisely equal to the maximum total of the completion and deadheading time (𝜏 + 𝑡 ) of the respective combination of 
𝑘 𝑘𝑗
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Fig. 2. Completion time 𝜏𝑘 (in minutes past midnight) of each  electric bus 𝑘 ∈   at the last stop requiring charging across all scenarios 𝑠 ∈  – Normal 
distribution in the toy network.

Fig. 3. Battery energy consumption per traveled distance 𝑒 (in kWh/km) between the final stop of each  electric bus 𝑘 ∈   and its assigned charging location 
𝑗 ∈  across all scenarios 𝑠 ∈  – Log-normal distribution in the toy network.

bus 𝑘  and charger 𝑗 across the scenarios ||, which is typically their arrival time. As the 𝛽 percentage value decreases towards 60%, 
relaxing the constraints (53), (56), and (59), the objective function value also decreases — see Table  7. Regarding the energy-related 
14 
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Fig. 4. Estimated deadheading time 𝑡𝑘𝑗 (in minutes) between the final stop of each  electric bus 𝑘 ∈   and its assigned charging station location 𝑗 ∈  across 
all scenarios 𝑠 ∈  – Log-normal distribution in the toy network.

Table 7
Charging start (𝑓𝑘𝑗 ) and end (𝑙𝑘𝑗 ) time values of each electric bus 𝑘 ∈  at the assigned charging location 𝑗 ∈  across all 𝛽 (%) variations (in minutes past 
midnight).
 𝑞𝑘𝑗 𝛽 % percentage variations
 100 (%) 95 (%) 80 (%) 75 (%) 60 (%)
 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗
 (1,4) 870.65 892.19 838.93 860.48 821.87 843.22 818.95 840.28 810.47 831.69
 (2,3) 808.03 828.40 778.58 798.95 762.23 782.29 758.84 778.82 750.40 770.23
 (3,3) 956.59 969.90 926.40 939.71 911.23 924.32 907.85 920.87 898.77 911.67
 (4,4) 936.58 957.41 904.98 925.80 888.83 909.48 885.50 906.32 876.47 897.19
 (5,3) 1053.59 1067.72 1020.99 1035.12 1007.54 1021.33 1004.25 1017.95 994.69 1008.22
 (6,4) 974.51 986.20 946.23 961.49 930.98 945.93 927.81 942.63 919.15 933.78
 (7,2) 959.01 1032.66 918.58 992.23 902.99 975.14 900.23 971.97 891.99 962.98
 (8,2) 1103.84 1148.76 1069.72 1144.64 1053.53 1127.30 1050.77 1124.23 1042.78 1115.67
 (9,4) 1091.47 1106.13 1052.91 1075.07 1036.43 1058.56 1032.32 1054.04 1024.33 1045.92
 (10,3) 1097.26 1103.62 1062.44 1076.30 1045.02 1058.87 1041.48 1055.03 1033.31 1046.75
 (11,3) 1249.59 1253.59 1218.06 1222.06 1200.29 1203.97 1197.13 1200.72 1188.79 1192.22

 Objective Function Value: 872.76 517.57 360.73 332.99 269.41

 Total Queue Waiting Time (min): 0 0 0 0 0

uncertainty part of all electric buses, Table  8 presents the remaining battery levels upon arrival at the assigned charging locations 
𝑗 across all 𝛽(%) variations. Even in the most stringent stochastic approach, where energy consumption reaches the upper limit of 
𝑒 = 1.2 kWh/km to ensure that constraints (59) are always satisfied, all battery levels remain above the 𝑆𝑂𝐶min

𝑘  threshold across all 
scenarios ||. Finally, the charging completion time of each  bus 𝑘  (𝑙𝑘𝑗) adheres to the designated time horizon, from the start of 
the operational day until 𝑐𝑙 = 12 a.m., as set in all experiments. This adherence is maintained despite the challenges introduced by 
the scenario generation within the model.
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Table 8
Remaining State of Charge of each electric bus 𝑘 ∈  upon their arrival at the charging location 𝑗 ∈  across 
all 𝛽 (%) variations (kWh).
 k 𝛽 % percentage variations
 100 (%) 95 (%) 80 (%) 75 (%) 60 (%) 
 1 21.90 21.90 22.30 22.34 22.58  
 2 24.26 24.26 24.87 25.03 25.34  
 3 38.37 38.37 38.84 38.96 39.20  
 4 23.36 23.36 23.70 23.36 23.55  
 5 36.73 36.73 37.41 37.60 37.93  
 6 34.46 34.46 35.11 35.37 35.72  
 7 28.17 28.17 28.93 29.13 29.50  
 8 27.54 27.54 28.11 28.27 28.55  
 9 20.68 20.68 20.72 21.55 21.82  
 10 37.28 37.28 37.30 37.89 38.13  
 11 41.99 41.99 42.64 42.81 43.13  

Table 9
Allocation of slow (set 1) and fast (set 2) charging types to 
the candidate charging station physical locations (set ).
  1 2 
 1 1,3 2  
 2 5 4,6 
 3 7 8  
 4 9 10  
 5 11 12  
 6 13 14  
 7 15 16  
 8 17 18  
 9 19 20  

5.4. Case study on the bus network of central Athens

5.4.1. Deterministic approach
In this real-world model application, we employed actual data from the central area of Athens. The experiments outlined below 

consider both deterministic and stochastic chance-constrained approaches. When a site is selected by the model, it may host either 
or both types of chargers. Consequently, set  is comprised of nine locations (|| = 9) and set   of twenty candidate charging 
options (| | = 20): ten slow chargers and ten fast chargers. Specifically, charging options #1, #3, #5, #7, #9, #11, #13, #15, 
#17, and #19 represent slow chargers (set 1), while options #2, #4, #6, #8, #10, #12, #14, #16, #18, and #20 correspond 
to fast chargers (set 2). Thus, 1 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} and 2 = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. The nine sites (set ) 
proposed for charger installations align with the actual bus depots in the Attica region, as Athens’ public transport authority plans 
to install electric bus charging infrastructure at some of these locations. It is acknowledged that some bus depots are located far 
from the borders of the municipality of Athens; however, it was deemed appropriate for our model’s candidate charging locations 
to include all potential options. Each candidate location can typically host up to two charging options (one slow, 𝜆1𝑣 = 1, and one 
fast charger, 𝜆2𝑣 = 1), except for locations #1 and #2, which can accommodate up to three charging options. Specifically, location 
#1 can host up to one fast charger (𝜆2𝑣 = 1) and two slow chargers (𝜆1𝑣 = 2), while location #2 can host up to one slow charger 
(𝜆1𝑣 = 1) and two fast chargers (𝜆2𝑣 = 2). Table  9 summarizes the allocation of the offered charging types to the physical locations 
of charging stations.

For the electric bus network, we have selected 10 distinct bus lines, each serviced by three electric buses, resulting in a total of 
30  electric buses (|| = 30).  These lines were chosen from Athens’ extensive network of 280 bus routes based on the geographical 
locations of their terminal stops, ensuring that they are situated within the boundaries of the Athens Municipality. In compliance 
with the Athens Urban Transport Organization (OASA) as of July 2024, some  electric buses  have shown no need for charging at 
the end of their operational day. To align with this data, the frequency of the charging requirements for each  bus  throughout the 
day has been determined accordingly, with each  bus  requiring a single charging session per operational day. Fig.  5 presents the 
detailed layout of the bus network utilized in this case study.

The state of charge for each of the thirty  electric buses 𝑘 ∈   at their final stops (𝑆𝑂𝐶𝑘) has been set as shown in Table  10, as 
well as the travel distance between the terminal stop of each  bus 𝑘  and the candidate charging station 𝑗 ∈   (𝑡𝑘𝑗) are presented 
in a 30 × 20 Table  A.17 in the Appendix. Additionally, the completion times of each  bus 𝑘  at their final stops requiring charging 
(𝜏𝑘) are shown in Table  11.

Based on these data, the model’s optimal solution (Table  12) indicates that chargers should be installed at two physical locations 
 = {1, 8} out of the nine available with five charging types — three slow chargers 1 = {1, 3, 17} and two fast chargers 2 = {2, 18}– 
distributed among these two locations. This solution was computed using Gurobi’s Branch-and-Cut solution method, similar to the 
approach used in the toy network, resulting in an optimal total deadheading time of 156.25 min and  a zero total queue waiting time 
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Fig. 5. Athens network of the electric bus lines, along with the proposed charging station physical locations.

Table 10
State of Charge of each electric bus 𝑘 ∈  (𝑆𝑂𝐶𝑘) at the last stop (kWh).
 𝑘 1 2 3 4 5 6 7 8 9 10 
 𝑆𝑂𝐶𝑘 32 33 28 30 28 35 28 32 29 25 
 𝑘 11 12 13 14 15 16 17 18 19 20 
 𝑆𝑂𝐶𝑘 31 33 35 26 27 35 29 26 30 33 
 𝑘 21 22 23 24 25 26 27 28 29 30 
 𝑆𝑂𝐶𝑘 31 33 35 28 29 29 34 32 33 31 

Table 11
Completion time 𝜏𝑘 of each electric bus 𝑘 ∈  at the last stop requiring charging (in minutes past midnight).
 𝑘 1 2 3 4 5 6 7 8 9 10  
 𝜏𝑘 712.3 736.7 795 848.3 862.7 680 871.3 820.7 788 917.3 
 𝑘 11 12 13 14 15 16 17 18 19 20  
 𝜏𝑘 804.7 911 799.3 867.7 807 818.3 832.7 1006 991.3 868.7 
 𝑘 21 22 23 24 25 26 27 28 29 30  
 𝜏𝑘 977 1068.3 961.7 1028 1118.3 953.7 1095 1029.3 1181.7 1112  

for all thirty buses across the ten examined distinct lines. Table  12 displays the charging start (𝑓𝑘𝑗) and charging end times (𝑙𝑘𝑗) of 
each  electric bus 𝑘 ∈   at the assigned charging location 𝑗 ∈  , along with the total of their completion time and deadheading 
time (𝜏𝑘 + 𝑡𝑘𝑗). From these totals, it is evident that the charging process for each  bus 𝑘  begins immediately upon arrival at the 
assigned charging location 𝑗. For a more comprehensive presentation of the solution, Table  13 presents the active service time, idle 
time due to deadheading and charging, and downtime of each  bus 𝑘,  with  bus #14  showing the highest downtime. Additionally, 
buses  assigned to slow charging types exhibit significant downtime values.

Given the optimal solution, two charging station locations are selected out of the nine available. Notably, approximately 53% 
of the  electric buses  are assigned to charging location #8, while the remaining  buses  – approximately 47% – are assigned to 
charging location #1. From a cost-efficiency perspective, the objective of minimizing installation costs is practically achieved, as 
all thirty  buses  are assigned to only two charging sites. Additionally, out of the thirty  buses,  only two are not assigned to their 
nearest charging location. Instead, these trips are assigned to the second closest charging site, which can be explained by the dual 
model’s objective of minimizing both deadheading time and queue waiting time. It is also noteworthy that the sequence in the 
charging process for  buses  assigned to the same charger is successfully achieved.
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Table 12
Assignment of electric buses 𝑘 ∈  (3 electric buses per bus line) to chargers 𝑗 ∈  and the 
arrival (𝜏𝑘 + 𝑡𝑘𝑗 ), charging start (𝑓𝑘𝑗 ) and end (𝑙𝑘𝑗 ) time values of each electric bus 𝑘 at the 
assigned charging location 𝑗 (in minutes past midnight).
 Lines 𝑞𝑘𝑗 𝜏𝑘 + 𝑡𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗
 (1,18) 715.81 715.81 732.94
 #1 (2,18) 740.21 740.21 756.84
 (3,18) 798.51 798.51 817.64

 (4,2) 854.55 854.55 873.19
 #2 (5,18) 867.82 867.82 887.25
 (6,18) 685.12 685.12 711.55

 (7,2) 873.76 873.76 892.71
 #3 (8,1) 823.16 823.16 890.95
 (9,3) 790.46 790.46 864.25

 (10,2) 917.55 917.55 937.60
 #4 (11,2) 804.95 804.95 822
 (12,1) 911.25 911.25 975.44

 (13,17) 810.29 810.29 878.28
 #5 (14,17) 878.69 878.69 964.68
 (15,18) 817.99 817.99 838.98

 (16,2) 834.02 834.02 851.88
 #6 (17,18) 843.98 843.95 864.03
 (18,17) 1017.28 1017.28 1103.49

 (19,2) 995.74 995.74 1014.05
 #7 (20,3) 873.14 873.14 940.37
 (21,3) 981.44 981.44 1052.67

 (22,2) 1072.80 1072.80 1089.62
 #8 (23,2) 966.20 966.20 982.02
 (24,1) 1032.50 1032.50 1109.77

 (25,17) 1120.86 1120.86 1164.73
 #9 (26,18) 956.26 956.26 974.73
 (27,18) 1097.56 1097.56 1106.03

 (28,18) 1034.42 1034.42 1051.85
 #10 (29,17) 1186.82 1186.82 1224.55
 (30,18) 1117.12 1117.12 1127.55

 Objective Function Value: 234.38
 Total Queue Waiting Time (min): 0
 Computation Time (min): 3.62

Overall, this case study on the Athens city network demonstrated that the model successfully assigned 30  electric buses 𝑘 ∈ 
to 20 potential charging options 𝑗 ∈   across the nine candidate physical locations, requiring to use only two of them.

5.4.2. Modeling uncertainties with stochastic and chance constraint approaches
To incorporate time and energy-related uncertainties into the Athens bus network case study, we follow the same procedure as 

in the toy network. We first generate scenarios (||) for the  electric bus completion times (𝜏𝑠,𝑘),  deadheading times (𝑡𝑠,𝑘𝑗), and 
energy consumption per traveled distance (𝑒𝑠) for each combination of  buses 𝑘 ∈   and chargers 𝑗 ∈  . Then, we apply the 
𝛽(%) variations to the constraints (53), (56), and (59). All scenarios within each 𝛽 percentage modification share the same normal 
distribution sampling for the 𝜏𝑠,𝑘 parameter and the same log-normal distribution for the 𝑒𝑠 parameter.

Tables  14 and 15 present the optimal locations and types of chargers for charging station installations and the assignment of 
each  bus 𝑘 ∈   to charger 𝑗 ∈   (𝑞𝑘𝑗) across all 𝛽(%) variations. Evidently, these solutions differ from each other. A commonality 
among the deterministic, stochastic, and chance-constrained approaches, as observed in Table  14, is that most solutions recommend 
installing chargers at two specific physical locations  = {1, 8} out of the nine available.  Complementary to charging locations 
#1 and #8, the stochastic approach and several chance-constrained approaches suggest installing chargers at  = {3, 7}. Table  14 
also shows that both the stochastic approach and the chance constrained approach with 𝛽 = 75% recommend installing a total 
of eight chargers, while the chance-constrained approach with 𝛽 = 95% a total of six chargers. It is also worth mentioning that 
the chance-constrained approaches with 𝛽 = 60% and 𝛽 = 80% recommend the same five chargers at the same locations as the 
deterministic approach. 

The assignment of each  bus 𝑘 ∈   to charger 𝑗 ∈  , which is presented in Table  15, varies significantly across these approaches. 
In the deterministic approach and the chance-constrained approaches with 𝛽 = 60% and 𝛽 = 80%, all buses 𝑘 are assigned to the 
charging station physical locations  = {1, 8}. For the remaining chance-constrained approaches, the percentage of buses allocated 
to stations #1 and #8 is as follows: 90% in the stochastic approach, ≃ 93% in the chance-constrained approach with 𝛽 = 95%, and 
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Table 13
Active service time, idle time due to deadheading and charging, and downtime (%) for each electric bus 𝑘 ∈  (3 electric buses per bus line) (in minutes) – 
Athens case study network.
 Lines Electric Buses Active service

time
Idle time due to
deadheading

Idle time due to
charging

Bus downtime (%) 

 1 402.30 8.51 17.14 5.99%  
 #1 2 406.70 8.51 16.64 5.82%  
 3 445 8.51 19.14 5.85%  
 4 498.30 6.25 18.64 4.76%  
 #2 5 497.70 5.12 19.43 4.70%  
 6 350 5.12 15.93 5.67%  
 7 656.30 7.46 18.95 3.87%  
 #3 8 455.70 7.46 67.79 14.17%  
 9 458 7.46 73.79 15.07%  
 10 537.30 5.25 20.05 4.50%  
 #4 11 489.70 5.25 17.05 4.35%  
 12 566 5.25 64.18 10.93%  
 13 434.30 10.99 68.00 15.39%  
 #5 14 412.70 10.99 86.00 19.03%  
 15 397 10.99 21.00 7.46%  
 16 478.30 15.72 17.86 6.56%  
 #6 17 462.70 11.28 20.05 6.34%  
 18 611 11.28 86.21 13.76%  
 19 661.30 5.44 18.31 3.47%  
 #7 20 568.70 5.44 67.23 11.33%  
 21 662 5.44 71.23 10.38%  
 22 633.30 6.50 16.82 3.55%  
 #8 23 556.70 6.50 15.82 3.85%  
 24 608 6.50 77.27 12.11%  
 25 743.30 8.56 43.87 6.59%  
 #9 26 638.70 8.56 18.47 4.06%  
 27 750 8.56 8.47 2.22%  
 28 669.30 5.12 17.43 3.26%  
 #10 29 761.70 5.12 37.73 5.33%  
 30 722 5.12 10.43 2.11%  

Table 14
Optimal charging station physical locations (), and charging types ( = 1 ∪2) across all 𝛽(%) variation approaches.
 𝛽(%) percentage variations
 100 (%) 95 (%) 80 (%) 75 (%) 60 (%)
  1 2  1 2  1  𝟐   𝟏  𝟐   𝟏  𝟐  
 1 1,3 2 1 1,3 2 1 1,3 2 1 1,3 2 1 1,3 2  
 3 7 8 7 16 8 17 18 3 8 8 17 18  
 7 16 8 17 18 7 15 16  
 8 17 18 8 17 18  
 Total number: 4 𝑁1 +𝑁2 = 8 3 𝑁1 +𝑁2 = 6 2 𝑁1 +𝑁2 = 5 4 𝑁1 +𝑁2 = 8 2 𝑁1 +𝑁2 = 5

≃ 87% in the chance-constrained approach with 𝛽 = 75%.  Despite the cost-inefficiency of installing additional charging sites for a 
small percentage of bus charging demands, the stochastic and chance-constrained approaches allow this to happen.

All solutions, presented in Tables  14 and 15, determined using Branch-and-Cut, resulted in higher objective function values 
compared to the deterministic approach, though these values diminish as the chance-constrained 𝛽(%) value decreases.  Regarding 
the total queue waiting time for all thirty buses, it is negligible in most approaches, except for the chance-constrained approach 
with 𝛽 = 95%, where it reaches 23.49 min — see Table  15. However, even in this case, where the total queue waiting time is the 
highest, the maximum delay an electric bus experiences before commencing its charging process is approximately ten minutes. This 
duration is considered acceptable given the various uncertainties that are taken into consideration at these case studies. 

Table  15 also indicates the number of buses that are not assigned to their nearest charging station, with the minimum of three 
occurring in the chance-constrained approaches with 𝛽 = 60% and 𝛽 = 80%, and, as expected, the maximum of eight in the stochastic 
approach (𝛽 = 100%).  Across all approaches,  electric buses  that are not assigned to their closest charger 𝑗 ∈   are instead 
allocated to the second, third, or fourth nearest one. This can be attributed to the twofold model’s objective of minimizing not only 
the deadheading time (𝑡𝑘𝑗) but also the queue waiting time.

From Table  A.18 in the Appendix, under the stochastic approach and chance constraints nearing 𝛽 = 100%,  buses  tend to start 
their charging process (𝑓 ) significantly later in their operation day compared to the deterministic method. This delay, as occurred 
𝑘𝑗
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Table 15
Assignment of electric buses 𝑘 ∈  (3 electric buses per bus line) to chargers 𝑗 ∈  across all stochastic approaches with different 𝛽 (%) variations.
 𝑞𝑘𝑗 𝛽(%) percentage variations
 Lines 100 (%) 95 (%) 80 (%) 75 (%) 60 (%)  
 (1,18) (1,18) (1,18) (1,18) (1,18)  
 #1 (2,18) (2,2) (2,18) (2,18) (2,18)  
 (3,18) (3,2) (3,18) (3,18) (3,18)  
 (4,2) (4,16) (4,18) (4,8) (4,2)  
 #2 (5,3) (5,3) (5,18) (5,18) (5,18)  
 (6,2) (6,18) (6,17) (6,17) (6,18)  
 (7,7) (7,2) (7,2) (7,2) (7,2)  
 #3 (8,2) (8,2) (8,3) (8,2) (8,3)  
 (9,2) (9,2) (9,2) (9,3) (9,1)  
 (10,2) (10,2) (10,2) (10,2) (10,3)  
 #4 (11,1) (11,3) (11,1) (11,2) (11,2)  
 (12,1) (12,2) (12,3) (12,3) (12,2)  
 (13,18) (13,18) (13,2) (13,17) (13,17)  
 #5 (14,18) (14,2) (14,18) (14,17) (14,17)  
 (15,17) (15,18) (15,18) (15,8) (15,18)  
 (16,2) (16,17) (16,17) (16,18) (16,2)  
 #6 (17,18) (17,18) (17,2) (17,18) (17,18)  
 (18,17) (18,17) (18,18) (18,18) (18,18)  
 (19,2) (19,1) (19,18) (19,15) (19,2)  
 #7 (20,8) (20,1) (20,1) (20,1) (20,1)  
 (21,1) (21,2) (21,2) (21,2) (21,1)  
 (22,3) (22,16) (22,2) (22,16) (22,2)  
 #8 (23,18) (23,18) (23,1) (23,1) (23,2)  
 (24,16) (24,3) (24,3) (24,3) (24,2)  
 (25,17) (25,18) (25,17) (25,18) (25,18)  
 #9 (26,18) (26,18) (26,18) (26,18) (26,18)  
 (27,18) (27,18) (27,18) (27,17) (27,18)  
 (28,18) (28,18) (28,17) (28,17) (28,17)  
 #10 (29,17) (29,17) (29,17) (29,17) (29,18)  
 (30,18) (30,18) (30,18) (30,2) (30,2)  
 Objective Function Value: 1754.79 1265.07 825.04 745.61 572.08  
 Total Queue Waiting Time (min): 1.60 23.49 1.06 3.78 0.77  
 Buses assigned to their closest charger (out of 30): 22 23 27 25 27  
 Computation Time (min): 6.68 16.99 255.98 684.38 5216.55 

in the toy network, is expected due to the stringent requirement for constraints (53) to be satisfied across the vast majority of the ||
scenarios. As we progress to the chance-constrained approach with 𝛽 = 60%, the 𝑓𝑘𝑗 values approximate those of the deterministic 
approach. Based on the 𝑓𝑘𝑗 values of the Table  A.18, the sequence of the charging process of  electric buses 𝑘 ∈   assigned to 
the same charger 𝑗 ∈  , and the charging completion time (𝑙𝑘𝑗) of all  buses  within the designated time horizon of 𝑐𝑙 = 12 a.m. 
were confirmed. Additionally, in the Appendix, Table  A.19 presents the remaining battery levels of all  buses 𝑘  upon arrival at 
their assigned charging location 𝑗 across all 𝛽(%) variations, while Table  A.20 presents the active service times, idle times due to 
deadheading and charging, and downtimes of  buses  under the most stringent approach — the stochastic one. From these results, 
it can be concluded that none of the stochastic approaches violate the energy threshold 𝑆𝑂𝐶min

𝑘 , and the most elevated downtimes 
are observed in  buses  assigned to slow charging types, with the highest downtime occurring in  electric bus #15.

Based on the results of the above experiments solved both deterministically and involving time and energy-related uncertainties 
through the stochastic and chance-constrained approaches, our findings demonstrate that the problem can be effectively addressed 
with Branch-and-Cut. Computation times for stochastic approaches, which are presented in Table  15, were acceptable for mid-
sized networks, except for the chance-constrained approaches with 𝛽 = 75% and 𝛽 = 60%. It is important to note that solving the 
MILP with uncertainties (stochastic optimization model) requires significantly more computation time compared to the deterministic 
optimization model due to:

• The need to incorporate all the sampled travel time and energy consumption scenarios || into the optimization process, 
leading to a higher number of parameters and variables (3 × (|| × | | × ||) additional binary variables).

• The requirement for constraints (53), (56), and (59) to hold true for the 𝛽(%) variations in such an extensive network, which 
results in a wide-ranging exploration of the rooted Branch-and-Cut tree to find a globally optimal solution (Huang et al., 2021; 
Morrison et al., 2016; Gkiotsalitis et al., 2023a).
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Table 16
Total deadheading, queue waiting, and excessive times (in minutes) from the simulation of the solutions obtained in Section 5.4.2 across new scenarios 𝑠 ∈ .
 𝛽 (%) percentage variation simulations
 100 (%) 95 (%) 80 (%) 75 (%) 60 (%)
 Total Deadheading Time (min): 279.12 291.52 276.14 279.74 268.99
 Total Queue Waiting Time (min): 22.11 93.30 34.51 8.52 45.03
 Total Excessive Time (min): 1858.50 1936.05 1862.13 1835.93 1870.07

5.4.3. Simulation-based performance evaluation of the optimal solutions obtained from the stochastic and chance constraint approaches
Besides the initial sampling of 𝜏𝑠,𝑘, 𝑡𝑠,𝑘𝑗 , and 𝑒𝑠 described above, an additional set of samples, independent from the previous 

one, is drawn for evaluating the performance of the optimal solutions derived by the stochastic and chance constraint optimization 
approaches. The new samples of 𝜏𝑠,𝑘, 𝑡𝑠,𝑘𝑗 , and 𝑒𝑠, which are used to evaluate the performance of the optimal solutions proposed by 
the stochastic and chance-constrained models, contain different scenarios (||) from the initial ones.

We now proceed to the evaluation of the performance of the solutions obtained from the stochastic and chance constraint 
optimization approaches in Section 5.4.2. To perform this task, for each obtained solution in Tables  14 and 15, we performed 
simulations using newly sampled  electric bus completion times,  deadheading times, and battery energy consumption data to test its 
performance in terms of deadheading and queue waiting times for charging purposes. As one might have expected, the deadheading 
times and queue waiting times of each solution differ when applied to new scenarios. The results of this simulation-based evaluation 
of each solution are presented in Table  16.

For each tested solution, Table  16 presents the deadheading time, the total queue waiting time, and the total excessive time (the 
sum of both), which corresponds to the objective function value of the respective solutions in Table  15. One can notice that the total 
excessive times in Table  16 approach the objective function of the stochastic approach in Table  15, due to their shared stochastic 
nature. More specifically, constraints (53), (56), and (59) were enforced to always hold true during the simulations to reflect the real 
conditions, ensuring all  buses 𝑘 ∈   are charged, and their battery levels remain above 𝑆𝑂𝐶min

𝑘 . However, differences arise even 
with the stochastic approach due to the different completion time (𝜏𝑠,𝑘), deadheading duration (𝑡𝑠,𝑘𝑗), and energy consumption per 
traveled distance (𝑒𝑠) scenarios generated in the simulation process. These time and energy-related distributions significantly affect 
the final configuration of charging station types, the assignment of each  bus 𝑘  to potential chargers 𝑗 ∈   (𝑞𝑘𝑗), and the charging 
schedules. Higher time and energy values may necessitate additional charging stations or types to meet the charging demand and the 
model’s dual objective, maintain charging sequences, and ensure  buses  are served within the operational day horizon (in our case, 
from the start of the operational day until 𝑐𝑙 = 12 a.m.), without depleting the bus battery levels below the established thresholds. 
This contrasts with scenarios where more balanced-distributed parameters allow the same charging station locations to successively 
meet all charging demands within the designated time frame.

Regarding the total queue waiting times, the simulation results yield non-zero values — see Table  16 – which are higher than 
the corresponding values of the respective solutions in Table  15. Among all tested configurations, the optimal solution derived from 
the chance-constrained method with 𝛽 = 75% provides the best results in terms of total excessive time and queue waiting time. As 
detailed in Table  14, this approach recommends the same set of charging station locations, 𝑉 = {1, 3, 7, 8}, with locations #1 and 
#8 favored by most electric buses, and the same total number of chargers 𝑗 ∈   (8 in total) as the stochastic solution (𝛽 = 100%). 
However, the two solutions differ in both the allocation and types of chargers installed at certain charging sites. Notably, the solution 
for 𝛽 = 75% recommends a more uniform distribution of the electric bus charging demands across charging sites, which reduces 
overlaps in charging schedules and leads to a slight improvement in overall simulation performance compared to the solution for 
𝛽 = 100%, as evidenced in Table  16.

In contrast, the simulation of the optimal solution from the chance-constrained method with 𝛽 = 95% results in the poorest total 
excessive time and highest total queue waiting time, despite recommending the second most extensive infrastructure configuration 
— three charging locations and six charging types. Interestingly, even the simulation results of the chance-constrained approaches 
with 𝛽 = 60% and 𝛽 = 80%, which recommend only two, yet highly critical, charging locations (#1 and #8), and fewer charging 
types (five in total), outperform the simulation results of the solution for 𝛽 = 95% due to a more effective distribution of charging 
demand at these key locations. Therefore, it can be inferred that, under time and energy-related uncertainties, the diversity of 
charging types and the balanced distribution of charging demand across charging locations are more influential factors than the 
number of charging locations themselves, especially at critical charging sites that accommodate a large share of the total demand. 

Concluding remarks

We propose a novel mathematical optimization model for the Electric Bus Charging Station Location Problem (EB-CSLP) within 
a network of electric buses. The model considers multiple charger types and aims to maintain time continuity and sequence between 
electric buses  at any charger type, without predefined charging time slots. The objective is to minimize two time-related factors: (a) 
the deadheading time, which is the time electric buses travel without passengers between their final stop and the potential charging 
stations, and (b) the queue waiting time, which is the elapsed time between the arrival of the electric bus at the charger and the 
start of the charging process.

The model imposes several constraints to maintain the state of charge of each electric bus at acceptable levels and prevent 
overlapping charging assignments at shared chargers. It also accounts for uncertainties in inter-station travel times, including 
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completion times, deadheading durations, and energy consumption per traveled distance while electric buses head to the charging 
sites. To simulate real-world conditions, multiple scenarios were generated to capture the variability of these uncertain parameters, 
particularly relevant for electric buses equipped with new and untested technologies. The model is tested in two distinct cases: i) 
a toy network with synthetic data from the transportation network of Athens, Greece, and (ii) a real-world case study in central 
Athens. Experimental results indicate that the diversity of charging types and a uniform distribution of charging demand across 
charging locations are more critical under time- and energy-related uncertainties than simply increasing the number of charging 
sites. Moreover, implementing chance constraints with 𝛽 = 75%, which ensures stochastic constraint satisfaction in at least 75% of 
all scenarios, yielded the best performance when tested on new scenarios with unseen data. 

Taking into account the model’s assumptions and limitations, future research could explore the simultaneous charging of multiple 
vehicles at a single charger. This would involve examining the capacity and constraints of power grids near the charging stations, 
as infrastructure upgrades and smart energy management systems might be necessary. Additionally, the dynamic routing of electric 
buses to charging locations could be investigated to account for unforeseen events affecting travel paths. Future studies should also 
incorporate cost considerations for charging installations, including energy pricing, to provide a more comprehensive comparison 
of the cost efficiency of the model under both deterministic and stochastic perspectives. Finally, metaheuristic solution approaches 
can be employed to reduce computational costs when applying our method to large problem instances.
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Appendix

See Tables  A.17–A.20.

Table A.17
Estimated deadheading time 𝑡𝑘𝑗 (in minutes) between the final stop of each electric bus 𝑘 ∈  (3 electric buses per bus line) and the potential charging station 
𝑗 ∈  – Athens case study network.
 Line Buses Charging station option 𝑗 ∈ 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
 1 5.66 5.66 5.66 13.38 13.38 13.38 8.41 8.41 13.88 13.88 29.02 29.02 29.28 29.28 8.57 8.57 8.51 8.51 17.76 17.76 
 #1 2 5.66 5.66 5.66 13.38 13.38 13.38 8.41 8.41 13.88 13.88 29.02 29.02 29.28 29.28 8.57 8.57 8.51 8.51 17.76 17.76 
 3 5.66 5.66 5.66 13.38 13.38 13.38 8.41 8.41 13.88 13.88 29.02 29.02 29.28 29.28 8.57 8.57 8.51 8.51 17.76 17.76 
 4 6.25 6.25 6.25 13.77 13.77 13.77 8.86 8.86 12.65 12.65 28.66 28.66 30.86 30.86 9.11 9.11 5.12 5.12 19.10 19.10 
 #2 5 6.25 6.25 6.25 13.77 13.77 13.77 8.86 8.86 12.65 12.65 28.66 28.66 30.86 30.86 9.11 9.11 5.12 5.12 19.10 19.10 
 6 6.25 6.25 6.25 13.77 13.77 13.77 8.86 8.86 12.65 12.65 28.66 28.66 30.86 30.86 9.11 9.11 5.12 5.12 19.10 19.10 
 7 7.46 7.46 7.46 9.60 9.60 9.60 4.89 4.89 14.70 14.70 33.22 33.22 27.47 27.47 4.80 4.80 3.60 3.60 18.03 18.03 
 #3 8 7.46 7.46 7.46 9.60 9.60 9.60 4.89 4.89 14.70 14.70 33.22 33.22 27.47 27.47 4.80 4.80 3.60 3.60 18.03 18.03 
 9 7.46 7.46 7.46 9.60 9.60 9.60 4.89 4.89 14.70 14.70 33.22 33.22 27.47 27.47 4.80 4.80 3.60 3.60 18.03 18.03 
 10 5.25 5.25 5.25 7.86 7.86 7.86 2.92 2.92 12.91 12.91 34.58 34.58 29.35 29.35 3.01 3.01 5.66 5.66 20.24 20.24 
 #4 11 5.25 5.25 5.25 7.86 7.86 7.86 2.92 2.92 12.91 12.91 34.58 34.58 29.35 29.35 3.01 3.01 5.66 5.66 20.24 20.24 
 12 5.25 5.25 5.25 7.86 7.86 7.86 2.92 2.92 12.91 12.91 34.58 34.58 29.35 29.35 3.01 3.01 5.66 5.66 20.24 20.24 
 (continued on next page)
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Table A.17 (continued).
 Line Buses Charging station option 𝑗 ∈ 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
 13 15.20 15.20 15.20 22.90 22.90 22.90 17.94 17.94 19.69 19.69 19.48 19.48 31.30 31.30 18.11 18.11 10.99 10.99 17.01 17.01 
 #5 14 15.20 15.20 15.20 22.90 22.90 22.90 17.94 17.94 19.69 19.69 19.48 19.48 31.30 31.30 18.11 18.11 10.99 10.99 17.01 17.01 
 15 15.20 15.20 15.20 22.90 22.90 22.90 17.94 17.94 19.69 19.69 19.48 19.48 31.30 31.30 18.11 18.11 10.99 10.99 17.01 17.01 
 16 15.72 15.72 15.72 23.44 23.44 23.44 18.47 18.47 20.51 20.51 18.98 18.98 30.85 30.85 18.62 18.62 11.28 11.28 16.46 16.46 
 #6 17 15.72 15.72 15.72 23.44 23.44 23.44 18.47 18.47 20.51 20.51 18.98 18.98 30.85 30.85 18.62 18.62 11.28 11.28 16.46 16.46 
 18 15.72 15.72 15.72 23.44 23.44 23.44 18.47 18.47 20.51 20.51 18.98 18.98 30.85 30.85 18.62 18.62 11.28 11.28 16.46 16.46 
 19 5.44 5.44 5.44 9.41 9.41 9.41 5.69 5.69 17.12 17.12 34.83 34.83 25.19 25.19 5.32 5.32 4.78 4.78 17.01 17.01 
 #7 20 5.44 5.44 5.44 9.41 9.41 9.41 5.69 5.69 17.12 17.12 34.83 34.83 25.19 25.19 5.32 5.32 4.78 4.78 17.01 17.01 
 21 5.44 5.44 5.44 9.41 9.41 9.41 5.69 5.69 17.12 17.12 34.83 34.83 25.19 25.19 5.32 5.32 4.78 4.78 17.01 17.01 
 22 6.50 6.50 6.50 9.42 9.42 9.42 5.73 5.73 17.18 17.18 34.86 34.86 25.14 25.14 5.35 5.35 4.82 4.82 16.99 16.99 
 #8 23 6.50 6.50 6.50 9.42 9.42 9.42 5.73 5.73 17.18 17.18 34.86 34.86 25.14 25.14 5.35 5.35 4.82 4.82 16.99 16.99 
 24 6.50 6.50 6.50 9.42 9.42 9.42 5.73 5.73 17.18 17.18 34.86 34.86 25.14 25.14 5.35 5.35 4.82 4.82 16.99 16.99 
 25 6.02 6.02 6.02 12.26 12.26 12.26 8.08 8.08 18.15 18.15 32.11 32.11 24.08 24.08 7.83 7.83 8.56 8.56 14.52 14.52 
 #9 26 6.02 6.02 6.02 12.26 12.26 12.26 8.08 8.08 18.15 18.15 32.11 32.11 24.08 24.08 7.83 7.83 8.56 8.56 14.52 14.52 
 27 6.02 6.02 6.02 12.26 12.26 12.26 8.08 8.08 18.15 18.15 32.11 32.11 24.08 24.08 7.83 7.83 8.56 8.56 14.52 14.52 
 28 6.37 6.37 6.37 13.90 13.90 13.90 8.98 8.98 12.74 12.74 28.54 28.54 30.83 30.83 9.23 9.23 5.12 5.12 19.03 19.03 
 #10 29 6.37 6.37 6.37 13.90 13.90 13.90 8.98 8.98 12.74 12.74 28.54 28.54 30.83 30.83 9.23 9.23 5.12 5.12 19.03 19.03 
 30 6.37 6.37 6.37 13.90 13.90 13.90 8.98 8.98 12.74 12.74 28.54 28.54 30.83 30.83 9.23 9.23 5.12 5.12 19.03 19.03 

Table A.18
Charging start (𝑓𝑘𝑗 ) and end (𝑙𝑘𝑗 ) time values of each electric bus 𝑘 ∈  (3 electric buses per bus line) at the assigned charging location 𝑗 ∈  across all 𝛽 (%)
variations (in minutes past midnight) – Athens case study network.
 Lines Buses 𝛽 (%) percentage variations
 100 (%) 95 (%) 80 (%) 75 (%) 60 (%)
 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗 𝑓𝑘𝑗 𝑙𝑘𝑗  
 1 759.75 777.16 749.48 766.86 732.73 750.14 729.80 747.04 720.55 737.74  
 #1 2 797.19 808.10 776.21 793.63 756.95 773.71 755.70 772.44 748.85 765.54  
 3 846.85 866.26 841.71 861.66 815.16 834.45 812.10 831.34 803.13 822.31  
 4 914.15 933.28 893.61 913.41 870.24 889.03 871.29 890.66 859.09 877.81  
 #2 5 909.17 989.67 905.84 986.13 889.05 908.76 885.96 905.54 876.50 896  
 6 764.18 780.81 717.99 734.27 705.73 770.87 700.14 764.45 692.90 708.90  
 7 925.52 1004.61 900.59 919.70 891.55 910.61 888.68 907.70 880.04 899.02  
 #3 8 890.82 907.96 861.66 878.77 837.97 906.45 834.36 851.38 825.20 893.12  
 9 838.98 857.62 823.09 841.71 805.15 823.69 802.83 876.91 797.55 871.47  
 10 956.17 976.24 945.14 965.21 934.86 954.91 930.43 950.49 923.58 1003.78 
 #4 11 856.26 924.52 837.59 905.84 822.21 890.43 817.20 834.26 810.21 827.27  
 12 956.03 1020.29 965.21 981.27 921.69 985.95 919.71 983.92 911.12 927.17  
 13 867.46 885.31 843.73 861.50 835.13 853.42 827.04 896.29 818.99 887.56  
 #5 14 935.71 958.06 919.70 943.02 908.76 930.64 896.29 983.54 887.73 974.30  
 15 867.85 955.27 861.50 883.25 840 861.85 845.34 868.12 828.36 849.50  
 16 871.74 890.82 857.01 928.35 845.65 915.42 841.46 858.84 841.02 859.09  
 #6 17 914.23 935.17 884.32 905.16 869.90 891.30 861.02 881.39 849.50 869.71  
 18 1062.88 1152.61 1053.48 1142.81 1037.93 1059.90 1034.65 1056.52 1024.63 1046.33 
 19 1035.90 1054.55 1024.91 1099.37 1013.09 1031.63 1009.59 1084.07 1000.53 1018.90 
 #7 20 918.03 935.51 906.79 975.25 890.54 959.16 885.28 953.02 875.11 942.58  
 21 1023.09 1095.71 1010.37 1028.49 996.91 1014.87 992.46 1010.39 985.19 1056.66 
 22 1121.30 1159.97 1104.29 1114.13 1089.09 1098.56 1087.88 1097.51 1079.78 1096.65 
 #8 23 1022.40 1038.65 1002.70 1018.92 984.41 1048.30 980.90 1044.69 971.30 987.18  
 24 1107.22 1119.61 1057.77 1136.29 1046.71 1125.26 1043.91 1121.70 1036.23 1055.61 
 25 1163.29 1207.96 1153.40 1164.54 1139.10 1183.32 1135.94 1146.98 1128.07 1139.07 
 #9 26 988.98 1007.64 984.06 1002.70 974.52 993.19 969.19 987.73 958.95 977.45  
 27 1135.65 1144.32 1129.52 1138.17 1116.39 1125.04 1115.94 1150.10 1105.20 1113.70 
 28 1089.72 1100.05 1067.71 1085.50 1048.19 1118.62 1045.63 1115.94 1038.78 1108.78 
 #10 29 1249.11 1288.44 1220.04 1259.18 1198.50 1237.64 1196.27 1234.58 1188.33 1197.83 
 30 1157.45 1168.28 1140.11 1150.89 1130.56 1141.39 1128.67 1139.51 1122.06 1132.80 
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Table A.19
Remaining State of Charge of each electric bus 𝑘 ∈  upon their arrival at the charging location 𝑗 ∈  across all 𝛽 (%) variations (kWh) – Athens case study 
network.
 𝛽 % percentage variations
 Buses 100 (%) 95 (%) 80 (%) 75 (%) 60 (%) 
 1 30.18 30.24 30.18 30.52 30.63  
 2 31.18 30.16 31.48 31.52 31.63  
 3 26.18 25.11 26.42 26.52 26.63  
 4 26.75 25.40 27.43 26.27 27.56  
 5 24.75 24.86 25.57 25.84 26.00  
 6 31.75 32.43 32.43 32.85 33.00  
 7 25.46 26.76 26.87 26.96 27.04  
 8 30.72 30.76 30.76 30.96 31.04  
 9 27.72 27.76 27.91 27.96 28.04  
 10 24.87 24.87 24.88 24.88 24.90  
 11 30.87 30.87 30.89 30.88 30.88  
 12 32.87 32.87 32.87 32.90 32.89  
 13 29.29 29.46 28.43 30.37 30.71  
 14 20.29 20.36 21.25 21.38 21.71  
 15 21.29 21.48 21.29 20.01 22.71  
 16 26.83 29.33 30.12 30.25 28.87  
 17 23.13 23.33 22.20 24.25 24.59  
 18 20.14 20.33 21.08 21.25 21.59  
 19 27.69 27.77 27.93 27.76 28.27  
 20 30.04 30.77 30.69 31.13 31.27  
 21 28.69 28.77 29.08 29.13 29.27  
 22 30.66 30.31 31.05 30.75 31.24  
 23 32.49 32.57 33.05 33.11 33.24  
 24 25.21 25.74 25.73 26.10 26.24  
 25 27.67 27.71 27.89 27.92 28.00  
 26 27.67 27.71 27.67 27.92 28.00  
 27 32.67 32.71 32.69 32.92 33.00  
 28 29.34 29.43 29.79 29.84 30.00  
 29 30.34 30.43 30.43 30.84 31.00  
 30 28.34 28.43 28.34 28.32 28.51  

Table A.20
Active service time, idle time due to deadheading and charging, and downtime (%) for each electric bus 𝑘 ∈  (3 electric buses per bus line) under the stochastic 
approach (in minutes) – Athens case study network.
 Lines Buses Active service

time
Idle time due to 
deadheading

Idle time due to 
charging

Bus downtime (%) 

 1 438.90 10.85 17.41 6.05%  
 #1 2 450.45 10.74 16.91 5.78%  
 3 484.40 12.45 19.41 6.17%  
 4 553.89 10.26 19.13 5.04%  
 #2 5 534.44 9.72 80.51 14.44%  
 6 422.76 11.43 16.63 6.22%  
 7 697.62 12.90 79.09 11.65%  
 #3 8 514.96 9.27 17.14 4.88%  
 9 498.96 10.02 18.64 5.43%  
 10 570.74 5.43 20.07 4.28%  
 #4 11 535.82 5.44 68.26 12.09%  
 12 605.61 5.42 64.26 10.32%  
 13 484.98 17.47 17.86 6.79%  
 #5 14 462.16 18.55 22.36 8.13%  
 15 439.73 18.11 87.42 19.35%  
 16 504.03 27.70 19.09 8.49%  
 #6 17 526.24 18.00 20.93 6.89%  
 18 647.96 19.92 89.73 14.47%  
 (continued on next page)
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Table A.20 (continued).
 Lines Buses Active service

time
Idle time due to 
deadheading

Idle time due to 
charging

Bus downtime (%) 

 19 698.23 7.67 18.65 3.63%  
 #7 20 608.08 9.95 17.48 4.32%  
 21 700.55 7.54 72.62 10.27%  
 22 677.18 9.12 38.68 6.59%  
 #8 23 606.70 10.70 16.25 4.25%  
 24 677.45 9.77 12.39 3.17%  
 25 778.36 9.93 44.67 6.55%  
 #9 26 663.88 10.10 18.67 4.15%  
 27 779.75 10.90 8.67 2.45%  
 28 721.36 8.35 10.33 2.52%  
 #10 29 819.71 9.40 39.33 5.61%  
 30 758.83 8.61 10.83 2.50%  
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