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Abstract

Obtaining an accurate image of the subsurface still remains a great challenge for the seismic method.

Migration algorithms aim mainly on positioning seismic events in complex geological contexts. Multiple

reflections are typically not accounted for in this process, which can lead to the emergence of artifacts. In

Marchenko imaging, we retrieve the complete up- and downgoing wavefields in the subsurface to construct

an image without such artifacts. The quality of this image depends on the type of imaging condition

that is applied. In this paper, we propose an imaging condition that is based on stabilized unidimensional

deconvolution. This condition is computationally much cheaper than multidimensional deconvolution, which

has been proposed for Marchenko imaging earlier. Two specific approaches are considered. In the first

approach, we use the full up- and downgoing wavefields for deconvolution. Although this leads to balanced

and relatively accurate amplitudes, the crosstalk is not completely removed. The second approach is to

incorporate the initial focusing function in the deconvolution process, in such a way that the retrieval of

crosstalk is avoided. We compare images with the results of the classical cross-correlation imaging condition,

which we apply to reverse-time migrated wavefields and to the up- and downgoing wavefields that are

retrieved by the Marchenko method.



1 Introduction

Seismic imaging methods are heading for better resolution images, in a sense that more information

can be extract from them. Interpreters should be able to recognize the limitations of the dataset they are

working with and be presented to a range of possible solutions for obtaining material parameters as accurate

as possible to achieve less uncertainty in decision making.

Prestack reverse-time migration (RTM) presents itself as the most robust imaging tool commercially in

use. It is based on the two-way wave equation solution, simulating wavefield propagation in all directions

accurately, including reflections and transmissions, with no restriction of steeply dipping structures, which

allows for imaging through complex media. But even such sophisticated method has some drawbacks for it

relies on the single-scattering assumption, which means that the imaging process does not take in account

multiply-scattered events, assuming all reflections are primary (Figure 1). This has two major implications:

multiple reflections should be eliminated prior to the migration process; and ghost reflectors will appear on

the final image in case this elimination is not efficient, which can lead to misinterpretation.

Nowadays there is an important discussion on whether to incorporate the information given by multiples in

the imaging process for it may improve illumination (Berkhout, 2017). Marchenko imaging (Thorbecke et al.,

2013; Behura et al., 2014; Broggini et al., 2014b,a; Wapenaar et al., 2014b; Meles et al., 2016; da Costa Filho

et al., 2017; Singh et al., 2017) shows up as a novel target-oriented method that takes multiples into account

and provides cleaner images with more reliable amplitudes. Although some limiting assumptions have to

be made (e.g., lossless media, infinite aperture, among others), provided the same inputs as conventional

migration algorithms (i.e., pre-conditioned observed data and a velocity model with the best possible res-

olution) the technique is showing promising results on the proposed subject as shown in mentioned works

above. Several other methods are being developed that utilize multiply-scattered events during the migration

process (Wang et al., 1999; Zhou et al., 2003; Guitton, 2002; Muijs et al., 2007; Malcolm et al., 2009; Ong

et al., 2013; Fleury, 2013; Berkhout and Verschuur, 2006; Weglein et al., 2003), but the comparison between

these and Marchenko’s solution is not part of the scope in this paper.

When it comes to utilizing multiple reflections, it is critical to account for free-surface multiples as well

as internal multiple reflections. Berkhout (2017) addresses this issue as a ”plea made to say farewell to

investments in multiple removal algorithms”. Adapting the Marchenko method to account for the combined

surface-related and internal multiples effects is an ongoing research effort. Only very recently free-surface

effects have been incorporated in Marchenko equation. Singh and Snieder (2017) have adjusted the method-

ology to accommodate free-surface multiples as well. However, it has been shown that solving for the

Marchenko’s equation based on the previously established iterative scheme may not always converge, and

hence new approaches have been proposed such as we may see in the works of Dukalski and de Vos (2017)

and Staring et al. (2017). Alternative inversion schemes have been proposed if one assumes that the wavefield

is recorded such that the vertical particle velocity data is properly sampled and can be obtained in separate

up- and downgoing components (Slob and Wapenaar, 2017; Ravasi, 2017).

In this work, we apply Marchenko imaging. This imaging method is composed of wavefield extrapola-
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tion and image condition steps, as any other kind of migration technique. The first step in this case is

specifically known as Marchenko redatuming that consists of an iterative autofocusing scheme that allows

for retrieving the up- and downgoing Green’s functions at any desired focal point in the subsurface one

intends to image. These components of the Green’s function are the imaging operators we work on in this

paper, assessing the results of applying different image conditions that reckon multiply-scattered reflections.

Our main goal is to apply Marchenko imaging with a deconvolution-based imaging condition, relying on a

stabilized unidimensional deconvolution approach. This is different from the multidimensional deconvolution

imaging condition (MDD) of Broggini et al. (2014b), and our proposed imaging condition is computationally

much cheaper. We compare the results with the RTM image that makes use of the classic correlation-based

imaging condition.

Hence, we start by briefly presenting Marchenko redatuming exerting the iterative so-called conventional

scheme (Thorbecke et al., 2017). After that, we describe the proposed imaging conditions and depict the

obtained results for two synthetic models. One last observation we need to point out is that we deal with the

acoustic case and do not incorporate free surface-related multiples, since this is still under very recent inves-

tigation and we make use of the iterative scheme. Therefore, we consider a transparent acquisition surface,

given that our numerical examples involve synthetic models. For real data, in practice, all surface-related

multiples should be removed from the reflection response (Verschuur et al., 1992; Amundsen, 2001) prior to

Green’s functions retrieval to accommodate for this limitation, which is no different from industry’s modus

operandi currently in conventional pre-migration processing workflows.

2 The iterative Marchenko method

From reciprocity theorems of correlation and convolution types between two states (de Hoop, 1995;

Wapenaar and Grimberg, 1996; Slob et al., 2014; Wapenaar et al., 2014a; van der Neut et al., 2015) and

based on inverse scattering theory (Broggini and Snieder, 2012), it is possible to relate wavefields that focus

the energy in a specific focal point in the subsurface to the Green’s function relative to this point that is

recognized as a virtual source. These wavefields are known as focusing functions or focusing solutions and

the relation to the up- and downgoing Green’s function component at the selected point in subsurface is

given by ∫

Sa

dx [f̂+1 (x, z0;x′, zi)R̂(x, z0;x′′, z0)]− f̂−1 (x′′, z0;x′, zi) = Ĝ−(x′, zi;x
′′, z0), (1)

and

f̂+1 (x′′, z0;x′, zi)−
∫

Sa

dx [f̂−1 (x, z0;x′, zi)R̂
∗(x, z0;x′′, z0)] = Ĝ+∗(x′, zi;x

′′, z0). (2)

In equations (1) and (2), the down- and upgoing focusing functions in the frequency domain, f̂+1 (x, z0;x′, zi)

and f̂−1 (x′′, z0;x′, zi), respectively, are defined in a modified medium that is homogeneous below zi. These

correspond to solutions to the wave equation that focus at zero-time at the determined subsurface point x′, zi,

and then continue as downgoing diverging fields into a lower homogeneous half-space. They are injected from

the surface datum Sa (x, z0). Moreover, Ĝ−(x′, zi;x′′, z0) and Ĝ+(x′, zi;x′′, z0) are the up- and downgoing

Green’s function components, respectively, also in frequency domain, with a source at the acquisition surface

Sa (x′′, z0), and a receiver at the desired focal point in subsurface x′, zi, which belong to the wave state of

2



the physical world where data R̂(x, z0;x′′, z0) are acquired. The superscript ’*’ corresponds to the complex

conjugate of the wavefield, which corresponds to time-reversal in time domain.

Equations (1) and (2) comprehend the Green’s functions representation and these wavefields are the ones

we aim to obtain for the redatuming purpose. If we write these equations in the time domain, we get (Slob

et al., 2014; Wapenaar et al., 2014a):

f−1 (x′′, z0;x′, zi; t) +G−(x′, zi;x
′′, z0; t) =

=

∫

Sa

dx

∫
dτR(x, z0;x′′, z0; t− τ)f+1 (x, z0;x′, zi; τ), (3)

and

f+1 (x′′, z0;x′, zi; t)−G+(x′, zi;x
′′, z0;−t) =

∫

Sa

dx

∫
dτR(x, z0;x′′, z0; t+ τ)f+1 (x, z0;x′, zi; τ). (4)

Pursuing the simplicity of the matrix notation (van der Neut et al., 2015), we achieve:





f−1 + g− = Rf+1

f+1 − g+∗ = R∗f−1 ,
(5)

where now we have R as a convolutional matrix operator containing the reflection response acquired acting

on the focusing functions f−1 and f+1 (stored as vectors). And R∗ is a correlational matrix for the same purpose.

We suppose that f+1 may be decomposed into a first arrival/direct wave f+1d and a scattering coda f+1coda

in such a way that f+1 = f+1d + f+1coda. It can be shown that f+1d is the inverse of the transmission response

according to the relation:

i = Tdf
+
1d, (6)

where i is a vector having only one non-zero element at t = 0 and (x = x′)z=zi , being the location of the

chosen focal point (i.e., imaging point). The term Td is defined in a similar way as R. This matrix applies

multidimensional convolution with the direct transmission response from the imaging point in the subsurface

to the sources at the acquisition surface Sa.

Resorting the causality properties of the focusing solutions and the Green’s functions, we can apply a window

matrix Θ that imposes a causality condition to the underdetermined system (5) (schematically represented

by Figure 2), which is designed such that Θg− = 0, Θg+∗ = 0, Θf+1 = f+1coda and Θf−1 = f−1 , as demonstrated

by the referenced authors.

Hence, applying the window matrix to the system (5), it is now possible to solve the coupled Marchenko

equations for the focusing functions by solving the system of equations:




f−1 = ΘRf+1d + ΘRf+1coda

f+1coda = ΘR∗f−1 .
(7)
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The pseudocode 1 depicts an iterative method to solve the system above from a known initial focusing

function f+1d and the reflection response R. The initial focusing function, f+1d, can be approximated by the

time-reversed first arrival of a Green’s function as computed in a background velocity model (Broggini et al.,

2014b). For very complex geological situation, better approximations can be obtained by inverting the trans-

mission response (Vasconcelos et al., 2014, 2015).

From this, it is finally possible to retrieve the Green’s function components at the subsurface point we

desire to image. When the focusing functions are retrieved by solving equation (7), the Green’s functions

can be computed by extracting from system of equations (5) that




g− = ΨRf+1d + ΨRf+1coda, and

g+∗ = f+1d −ΨR∗f−1 ,
(8)

where Ψ = I−Θ, with I being the identity matrix.

Pseudocode 1 Iterative Green’s functions retrieval

1. Conventional pre-processing of observed data;

2. Direct arrivals computation through conventional velocity model:

Modeling of Gd(x
′′, z0;x′, zi;−t)→ Tinv

d

3. Iterative scheme for the focusing functions:

f+1d = T∗dδ ! initial focusing function (from equation (6))

f
+(0)
1coda = 0. ! coda for initial focusing function

DO k = 1, niter

f
−(k)
1 = ΘRf+1d + ΘRf

+(k−1)
1coda

f
+(k)
1coda = ΘR∗f−(k)1

IF convergence ok THEN ; STOP

ELSE ; k = k + 1

ENDIF

END DO

4. Green’s components retrieval for new datum:

g− = ΨRf+1d + ΨRf+1coda

g+∗ = f+1d −ΨR∗f−1

3 On the imaging conditions

Applying the imaging condition is the step that consolidates the imaging process of any migration al-

gorithm. In possession of the extrapolated wavefields, these are cross-correlated to build an image follow-

ing Claerbout’s imaging principle, by taking the zero lag of this operation (Claerbout, 1971; Chang and
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McMechan, 1986).

Dealing with prestack data and referring to reverse-time migration, to migrate the registered data of one

shot, meaning R(x′′, z0;x, z0; t) for a source at (x, z = 0) and receivers at (x′′, z = 0), it is necessary to

compute the wavefield that originates from the source and to backpropagate the wavefield that was sensed

by the receivers. The source wavefield ps expands following a solution of the full wave equation for constant

density [
1

c2(x)

∂2

∂t2
−∇2

]
ps(x, t) = δ(x− x′′)z=z0f(t), (9)

where the spatial coordinates are given by x = (x, z), x and z are the horizontal and vertical (depth)

coordinates, respectively; c(x) is the velocity of the medium; the right-side term constitutes the source term

as designated by the delta function, with a band-limited spectrum defined by f(t); and

∇2ps ≡
∂2ps
∂x2

+
∂2ps
∂z2

, (10)

corresponding to the Laplacian operator applied to ps(x, t). The receivers wavefield pr is propagated back-

ward in time following a solution for

[
1

c2(x)

∂2

∂t2
−∇2

]
pr(x, t) = 0, (11)

where pr(x, t) = R(x′′, z0;x, z0; t) at the acquisition surface (Zhang et al., 2007).

In practice, the imaging condition is implemented by extrapolating both wavefields separately and cross-

correlating them at each time step as schematically depicted in Figure 3 and expressed as

I(x, z) =
∑

nxs

tmax∑

t=0

ps(x, z, t)pr(x, z, t), (12)

where nxs is the number of acquisition shots; t = 0 is the initial forward propagation time from the source

on the surface; tmax is the maximum propagation time, that corresponds to total register time; ps(x, z, t)

represents the modeled source wavefield from initial to maximum time; and finally pr(x, z, t) represents the

receivers backpropagated wavefield from maximum to minimum time (t = 0). The reflector image will be

built where the wavefields are coincident in time.

Benefiting from the iterative scheme presented at the redatuming section, for the Marchenko imaging the

equivalent of the receivers’ wavefield is the upgoing Green’s function Ĝ− in the frequency domain, and the

downward field analogous to the source wavefield is the downgoing Ĝ+. In possession of the retrieved de-

composed Green’s function, it is possible to apply multidimensional deconvolution – MDD (Wapenaar et al.,

2008; van der Neut et al., 2011) – relying on (Wapenaar et al., 2000):

G−(x′, zi;x, z0, t) =

∫

Sf

dx′
∫ +∞

−∞
dτ Rf (x, zi;x

′, zi, τ)G+(x′, zi;x
′′, z0, t− τ). (13)

Rf (x, zi;x
′, zi, τ) would then be the optimal result of Marchenko imaging, as claimed in literature (Wapenaar

et al., 2014b; Broggini et al., 2014b; Singh et al., 2017). However, this imaging condition is very expensive.

Equation (13) should be inverted and solved for Rf (x, zi;x
′, zi, τ) at different depth levels z = zi and many
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image points.

To save computation time, it is suggested to apply the classic cross-correlation imaging condition using

these components of the Green’s function (Behura et al., 2014), expressed as

Icc(xI) =
∑

xS

∑

ω

Ĝ−(xI ,xS)Ĝ+∗(xI ,xS), (14)

where now (x′, zi) = xI for the focal point coordinates in the subsurface, and (x′′, z0) = xS for the

sources/receivers position at the original acquisition surface Sa. Yet, this yields inaccurate amplitudes

and crosstalk noise.

Adding complexity to honor the reflection physics and trying to compensate for the amplitude loss in-

herent to the cross-correlation imaging condition, we implemented an unidimensional deconvolution imaging

condition (Claerbout, 1971; Valenciano and Biondi, 2003) with a stabilization factor as derived by Ortiz

(2015).

The deconvolution imaging condition as initially proposed by Claerbout (1971) consists of a division of

the upgoing wavefield by the downgoing one. It is important given that it provides a better illumination

compensation and amplitude recovery of the reflectors. However, application of this condition requires

caution, because the denominator might be zero at some points. Consequently, some kind of stabilization

becomes necessary to avoid division by zero. A simple way to overcome this problem is to add a stability

factor, ε, to the downgoing wavefield modulus, |WS |, where the value of the factor might be chosen empirically.

In practice, the result may be very sensitive to the stability factor that substitutes for the small values

of |WS |, and an improper value of ε could lead to a strong smoothing. Setting the imaging condition to zero

for values of |WS | smaller than ε is another form of stabilization, evading from wrong amplitudes caused by

the choice of an ε value with poor criteria, on the other hand. The work of Schleicher et al. (2008) presents

an analysis on this very specific kind of stabilization for deconvolution imaging condition. The authors show

how migration artifacts are enhanced, which leads to a ringing of amplitudes along reflectors, although the

degree of enhancement varies and the reflector images are better equalized.

In this work, the choice of the stabilization implemented is based on Taylor’s expansion, where the divi-

sion issue becomes a geometric series. Therefore, ε’s value is defined in an adaptive way as a function of the

downgoing wavefield spectrum average value, WS . In this case, if stable, the division behaves better and the

result becomes more reliable when compared to the deconvolution imaging condition as stated by Claerbout

(1971). For this reason, using the proposed method, the division by zero is averted and the provided results

are more reliable, as it will be seen in the synthetic examples section.

Following the arguments and reasoning above, we now have:

Isd(xI) =
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∑
xS

∑
ω

Ĝ−(xI ,xS)Ĝ+∗(xI ,xS)

WS
, if WS > αφ0;

∑
xS

∑
ω

Ĝ−(xI ,xS)Ĝ+∗(xI ,xS)

WS

(
2− WS

αφ0

)[
1 +

(
1− WS

αφ0

)2]
, if WS ≤ αφ0,

(15)

where the subscript ’sd’ refers to stabilized deconvolution image condition. In equation (15), WS represents

the autocorrelation of downgoing wavefield averaged over the source positions along the surface, (in other

words, spectrum average value of this wavefield referred above) meaning:

WS =
∑

xS

Ĝ+(xI ,xS)Ĝ+∗(xI ,xS)

NxS

, (16)

where NxS
is the number of shot positions at the surface. Yet, α may take values between 0 and 1 (we use

an empiric value of 0.2); and the φ0 term represents the average value of the downgoing wavefield for all

frequencies, and as so, it’s represented as:

φ0 =
1

nω

∑

nω

WS , (17)

where nω corresponds the number of frequencies that represent the wavefield in the frequency domain.

The numerator of equation (15) still contains crosstalk noise, because the Ĝ+ component consists of ad-

ditional events apart from the first arrival. It is crosstalk between deep events in G− and multiples in G+

(also deep events). This noise is not compensated by the denominator’s accuracy. While unidimensional

deconvolution comprises an amplitude balancing, it leaves such crosstalk in place.

Since these artifacts are caused by interaction of multiples in G+ and primaries (plus multiples) in G−,

they can be avoided by removing the multiples in G+, but not by removing the multiples in G−. Therefore,

we address removing them from G+ substituting Ĝ+∗ by the initial focusing function, f̂+1d, in a sense that

we now can have the following imaging condition:

Idf (xI) =





∑
xS

∑
ω

Ĝ−(xI ,xS)f̂+
1d(xI ,xS)

WS
, if WS > αφ0;

∑
xS

∑
ω

Ĝ−(xI ,xS)f̂+
1d(xI ,xS)

WS

(
2− WS

αφ0

)[
1 +

(
1− WS

αφ0

)2]
, if WS ≤ αφ0,

(18)

where subscript ’df ’ refers to the stabilized deconvolution imaging condition using the initial focusing func-

tion. And now we have

WS =
∑

NxS

Ĝ+(xI ,xS)f̂+1d(xI ,xS)

NxS

. (19)

Hence, this stabilized imaging condition that incorporates the initial focusing function allows for removal of

ghost artifacts and balancing of the amplitudes at a much lower cost as MDD would require.

In regard to an extension to 3D, the distinction between the approached processes should be clear from

the whole work presented above: one is the Marchenko redatuming process; and the other, the imaging

condition we propose to apply. Applying the Marchenko redatuming in 3D is feasible, though expensive,
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as demonstrated by the recently presented work of Lomas and Curtis (2018). The implementation of the

cross-correlation imaging condition is easy and relatively cheap. The method needs the Green’s function

components, as well as the focusing functions, to be stored in disk, or to be computed during the process, as

was done for the 2D case. For the deconvolution-based imaging conditions, we need only to obtain the max-

imum to proceed the normalization. Then, the expansion should be performed. Therefore, for the imaging

condition, the cost is very little, for either of the cases, if we compare to the time expended on the Green’s

function retrieving by the Marchenko method itself.

Finally, we may summarize the Marchenko process schematically for a single image point (see Figure 4).

4 Results from synthetic data

We now present the results for two synthetic datasets by applying the three discussed imaging conditions

for Marchenko’s imaging operators: cross-correlation, stabilized unidimensional deconvolution, and stabilized

unidimensional deconvolution resorting the initial focusing function. We depict these results by comparing

them with the image obtained via RTM applying the classic (correlation-based) imaging condition on the

extrapolated two-way wavefields.

The models are chosen for specific purposes. The model1 is a well-known example for related work on

the Marchenko solution (Wapenaar et al., 2014b; Singh et al., 2017) and illustrates the interbed reflections

issue remarkably well, so this may be considered a benchmark. The other selected model is intended to

represent a more realistic geological situation, given that it is based on a real data model.

For both models, wavefields are generated by a finite differences algorithm by Thorbecke and Draganov

(2011) (this algorithm considers second and forth order approximations in time and space, respectively)

using velocity and density models. The traveltimes of the direct arrivals were computed from the eikonal

equation solver as proposed by Faria and Stoffa (1994). These traveltimes were convolved with a Ricker

wavelet to construct our estimated direct arrival. We should emphasize that the acquisition surface is made

transparent to avoid the presence of free surface-related multiples.

All RTM final responses are computed by combining the rapid expansion method (i.e., REM) and pseu-

dospectral modeling solutions of the complete wave equation for forward and backward propagation of the

wavefields (Pestana and Stoffa, 2010). Moreover, the obtained images were filtered making use of a Laplacian

filter (Santos et al., 2012) to attenuate the peculiar low frequency noise inherent to the cross-correlation of

the full-wavefields used in the RTM method.

4.1 Syncline model

The velocity and density models for the syncline model are shown in Figure 5. The sample interval used

for modeling was 10 m for receivers as well as for sources. We observe the synform feature filled up with

1Extracted from the demo open source code provided by Jan Thorbecke, referenced as a work of Thorbecke and Draganov

(2011).
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horizontal layers at the upper half of the model, a small velocity inversion in relation to the layer right above

the interface around 1200 m, and a subtle ramp at the lower half of the model. Density values in the upper

part of the model expose very strong contrasts, so that interbed reflections are significant.

Four redatumed fields were selected from two depth levels to illustrate how the reflectors are formed based on

Claerbout imaging principle. Figure 6(a) explains the image construction schematically as a cross-correlation

or deconvolution process of the up- and downgoing Green’s function for depth 1100 m which are shown in

Figures 6(b) and 6(c). Figure 7(a) depicts the case where no reflector is imaged given that events for such

depth (1000 m in this case) (Figures 7b and 7c) are not coincident in time.

When observing the conventional imaging result (Figure 8a – RTM/cross-correlation imaging condition

on full wavefields), the imaged ghost reflectors are easily noticeable. The results of the Marchenko imaging

for the same delimited area shown for the RTM image (−2000 m ≤ x′ ≤ 2000 m and 100 m ≤ zi ≤ 1700 m,

a total of 64561 points imaged) are depicted in Figure 8(b – d). The efficiency of the method in attenuating

the harmful ghost reflections is very clear for any imaging condition resorted.

Nonetheless, besides inaccurate amplitudes, we may still observe a weak copy of the syncline structure

between 300 m and 500 m in Figure 8(b). In Figure 8(c), this artifact is not completely removed, since

unidimensional deconvolution acts only as an amplitude balancing process. Assessing the result obtained in

Figure 8(d), we now verify that the ghost artifacts are completely removed, and amplitudes are well balanced.

So we may conclude that we achieve an image free from crosstalk noise and ghost reflectors/artifacts, with

more reliable amplitudes, at a much lower cost compared to MDD, only by applying the stabilized imaging

condition which makes use of the initial focusing function.

4.2 Santos Basin model

For this example (Figure 9), the density values for the synthesized model were obtained regarding Gard-

ner’s velocity-density relation (Gardner et al., 1974). The selected focal points cover an area of 201 by 201

points (−2000 m ≤ x′ ≤ 2000 m and 100 m ≤ zi ≤ 1700 m, a total of 40401 points imaged) in a grid where

horizontal sampling is 10 m between receivers and between sources as well. The imaged area coincides with

the shallow portion of the thin layered structure. This area represents a part of a sedimentary basin for

marine environment systems, as we typically encounter at Brazil’s eastern coast.

The first arrivals were computed in a smoothed velocity model (i.e., macromodel) (Figure 9c). All im-

ages that were obtained for this dataset are presented in Figure 10. The RTM image, which was generated

using the same smoothed model, exposes a much lower signal-to-noise ratio (Figure 10a) and the noise may

be easily mistaken for possible reservoir erroneous seismic facies. Reservoir rugosity would not be an un-

thinkable misinterpretation to be made from this image assessment. Also, this noise can be responsible for

spurious discontinuity of the reflectors.

The Marchenko image that was made with a cross-correlation imaging condition is less noisy – see Fig-
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ure 10(b). In fact, we observe that the image is clean and that discontinuity is no longer a product of

the associated noise seen in the RTM image. When we analyze the results from stabilized deconvolution

imaging conditions, the amplitude is much more reliable (Figures 10c and 10d). Evenmore, the continuity of

the reflectors seems to honor much better the velocity and density models when we use the initial focusing

function to realize the imaging condition (compare Figures 9a and 9b to 10d).
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5 Conclusions

We have tested two imaging conditions based on unidimensional stabilized deconvolution. These were

applied to the up- and downgoing Green’s functions, which were retrieved by the Marchenko method in

two synthetic velocity models. The obtained results were compared with the ones from the classic cross-

correlation imaging condition, applied both on extrapolated wavefields via Marchenko and via RTM imaging

methods. We were able to verify that Marchenko imaging provides cleaner images with less crosstalk from

interbed reflections. These ghost reflectors could be interpreted as real events and embarrass interpretation

of the images, leading to inaccurate retrieval of rock/reservoir properties and seismic amplitude attributes

in general.

When we compare the images obtained from the stabilized deconvolution-based imaging conditions, we

can observe clearly the illumination improvement compared to images that are based on cross-correlation.

This can be understood since the deconvolution operation provides an amplitude compensation. Moreover,

we could notice that the use of the initial focusing function (rather than the full downgoing Green’s function)

yields an even better resolution and honors the continuity of imaged reflectors. With this approach, ghost

artifacts are removed efficiently and crosstalk is avoided because the first event will always be a primary

reflection when this imaging condition is used.

However, for even more complex geological situations, better approximations of the transmission response

should be used to compute the initial focusing function. The key idea is that, although an optimal image may

be achieved using more sophisticated methods such as multidimensional deconvolution, by applying simpler

imaging conditions as proposed and depicted here, one might provide accurate images at a considerable lower

cost.
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Figure 1: Illustration for 1D multiple scattering from a point source at the surface and events registered at

the receivers at the same datum. The real horizontal reflectors are represented by the two continuous black

lines; the downgoing direct wavefield by the red arrow; the upgoing primary reflections by the continuous

dark blue arrows; the intrabed reflections by the green arrows; the multiple reflections by the light blue

arrows. The downward projections of the continuous light blue arrows, depicted by the dashed light blue

arrows, describe the origin of ghost reflectors – dark gray dashed horizontal line – created because of the

single-scattering assumption incorporated by the conventional imaging methods. (Modified from Behura et

al., 2014.)
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Figure 2: Schematic representation of the window matrix design Θ, which imposes the causality condition to

the equations system (5) analysis. Events that occur after or at the same time of the direct arrival (region

bellow the inferior continuous blue line, for t ≥ td(x
′, zi;x′′, z0)) are eliminated, as well as the events that

occur earlier than time-reversed first arrival, imposed by the filter’s symmetry.
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The RTM algorithm consists of three main steps: forward propagation of the source wavefield; backward

propagation of the receiver wavefield; and applying the imaging condition, which is given by the time

summation in equation (12).
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Figure 5: Syncline velocity (a) and density (b) models, in m/s and kg/m3, respectively. The region inside

the black dashed line is the target area for imaging with Marchenko and comparison with the RTM image.
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Figure 6: (a) 1D scheme for the Claerbout image construction principle for a focal point (blue dot) in

subsurface in the presence of interbed scattering (modified from Behura et al., 2014). The continuous blue

line is the upgoing redatumed wavefield G−, and the red dashed line represents the downgoing wavefield

G+ (source-receiver reciprocity has been applied for easier visual understanding). The image point is on the

reflector and hence imaging operators are time coincident, kinematically in phase. However, their amplitudes

commonly differ by the reflection coefficient magnitude (which may be exploited by a deconvolution imaging

condition). (b) and (c) show the imaging operators G+ and G−, respectively, for depth 1100 m of the

syncline model (Figure 5).
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Figure 7: (a) 1D scheme for the Claerbout image construction principle for a focal point (blue dot) in the

subsurface in the presence of interbed scattering (modified from Behura et al., 2014). The continuous blue

line is the upgoing redatumed wavefield G−, and the red dashed line represents the downgoing wavefield

G+ (source-receiver reciprocity has been applied for easier visual understanding). The image point does not

coincide with a reflector and hence imaging operators are not in phase, therefore no image is constructed.

(b) and (c) show the imaging operators G+ and G−, respectively, for depth 1000 m of the syncline model

(Figure 5).
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Figure 8: Comparison of images from distinct imaging conditions applied for the syncline model. (a) RTM

image for reference with very apparent internal multiples (pointed out by the red arrows) and poor illumi-

nation of the lower portion of the image. (b) shows the classic imaging condition (Icc) applied to Marchenko

redatumed fields: a weak ghost artifact is present between 300 m and 500 m (pointed out by the blue ar-

row). (c) and (d) depict results from the stabilized deconvolution imaging conditions proposed: only using

the Green’s functions (Isd), and incorporating the time-reversed direct arrival (Idf ), respectively. Notice

the slight improvement of the amplitudes and complete removal of the artifact between 300 m and 500 m,

pointed out by the blue arrow, from (c) to (d). Nonetheless, all Marchenko images are cleaner concerning

multiply scattered events in comparison to RTM (a Laplacian filter has been applied to all images.)
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Figure 9: Thinly layered structure with smooth lateral velocity variation (a) and density (b) of Santos Basin

synthetic model. Velocity macromodel in (c). The region inside the red dashed line is the target area for

imaging with Marchenko and comparison with the RTM image.
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Figure 10: Comparison between images from distinct imaging conditions applied for the Santos Basin syn-

thetic model. (a) RTM image for reference with noticeable noise present and inaccurate amplitudes (red

circled areas and some regions are pointed out by yellow arrows) – a Laplacian filter has been applied.

(b) shows the correlation-based imaging condition (Icc) applied to Marchenko redatumed fields, resulting

in a cleaner image compared to (a) (highlighted by the red circled areas), but the amplitude response is

still inaccurate because of the cross-correlation process. (c) and (d) depict the results of resorted stabilized

deconvolution image conditions proposed: only using the Green’s functions (Isd), and incorporating the

time-reversed direct arrival (Idf ), respectively. Both images expose more accurate amplitudes. Improvement

of the reflector continuity is observed from (c) to (d) (see for instance the dashed yellow arrow in (c) and

the horizon interpretation by the dashed yellow line). All Marchenko images are cleaner in comparison to

the RTM image.
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