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Abstract

The abundance of video surveillance footage stimulates
an emergence of video analysis researches. These re-
searches call for large amount of annotated datasets for
tasks like information retrieval, learning-based network
training or algorithms evaluation. However, available an-
notated video datasets covering spatio-temporal informa-
tion are limited. Moreover, manual annotation is a costly
and tedious task, thus makes the generation of annotated
data more difficult. In this work we propose a semi-
automatic system for video annotation. We employ object
tracking to automatically locate the objects and involve vi-
sualization to facilitate video data identification, character-
ization as well as comprehension. It works as an integrated
visual analytics system which supports collecting and label-
ing object/action samples from video on demand. The an-
notated samples are to be applied to various video analysis
researches and applications. In this paper, we present the
visual design and propose the solution to semi-automatic
spatio-temporal data mining and annotation.

1. Introduction

The advancements in camera technology and the de-
crease of memory storage costs in the last decades have
led to an explosion of video surveillance footage. As a
consequence, an increasing number of applications and re-
searches for automatic video analysis emerged, lots of ef-
forts have been put into the development of powerful de-
tection, tracking and recognition approaches[20]. Recent
progress in learning-based video analysis researches show
bright prospect[3, 36, 28, 24]. Many approaches[26, 50]
have demonstrated the power of data-driven analysis given
labeled video footage[38]. However, the current anno-
tated video datasets that can be used for training, evalua-
tion or retrieval are limited, especially for motion related re-

∗This work is performed at TKH Security Solutions - Siqura B.V.

searches which require both spatial and temporal1 informa-
tion to analysis how objects behave over time (i.e. motion
pattern). Since (i) Annotated video datasets with spatio-
temporal(e.g. trajectory)2 coverage are scarce. (ii) In ex-
isting annotation works (e.g. VIRAT[30] and iVAT[6]), the
process is often simplified by annotating periodically and
using automatic interpolation to recover the annotations in-
between key frames[30], while resulting in loss of motion
details. (iii) A part of the datasets with trajectory coverage
(e.g. GeoLife Trajectory Dataset[52] and T-Drive Taxi Tra-
jectories[47]) provide spatio-temporal information on ge-
ographical level, which do not apply to researches based
on scenes such as a parking lot, an intersection or a shop
entrance. (iv) Considering the varying nature (i.e. differ-
ent lightings, viewpoints, background activity, etc) of visual
environments[20]. In order to apply to diverse scene condi-
tions, artificial neural networks need to be trained, and algo-
rithms need to be evaluated, by various annotated samples
(which are in shortage). (v) Existing annotations lack de-
tails, namely the labels are too general. Even in the most
detailed VIRAT, although the events are labeled as ”Person
gesturing”,”Person running”, etc., it still cannot fulfill user’s
more specified (retrieval) demand.

The limitation of annotated video datasets constrains
video researches from delving deeper and scaling up to
more scenarios, especially learning-based researches which
relies heavily on training samples with spatio-temporal in-
formation, e.g. anomaly behavior detection. Moreover,
video information retrieval and quantitative performance
evaluation of computer vision techniques also need large
scale annotated datasets. Hence the generation of such
datasets are in great demand. The main challenge of
this goal is that manual annotating of video data usually
costs huge amount of time and man power. The widely
used VIRAT video dataset consisting of 26-hour surveil-
lance footage of cars and people costs tens of thousands

1Spatial refers to information based on single image(frame), temporal
refers to information based on connection over frames.

2Trajectory is a typical spatio-temporal information. Within the scope
of this paper, by spatio-temporal we mainly refer to trajectory unless spe-
cially stated.
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of dollars, and requires up to a year of continuous work
to annotate[38], despite sacrificing part of details by inter-
polation for the sake of less labor. Furthermore, to anno-
tate both spatio and temporal information precisely will be
more time-consuming. The manual generation of precise
annotations requires the annotator to draw accurate bound
of each object on each frame in order to trace the trajectory
precisely, an overwhelming repetitive labor work. There-
fore, (semi-)automatic video annotation of precise spatio-
temporal data is needed, which can be implemented by em-
ploying object tracking algorithm (also known as tracker)
to automatically locate objects across frames. Thereby sup-
port the generation of (and fill the lack of) annotations
meanwhile alleviate the burden of the manual annotation.
Then considering the automatically collected data are unor-
ganized, which requires user supervision to to screen and
organize the results.

In this work we build an integrated visual analysis sys-
tem that allows for annotating spatio-temporal video data3

semi-automatically. We involve object tracking to auto-
matically locate moving objects across frames, and apply
data visualization to facilitate identifying object/action of
interest according to various spatial and/or temporal fea-
tures or properties. By interacting with the visual data us-
ing given selector, filter and marker, the user can identify
object/action with certain characteristics and label on de-
mand. The annotated output can be used in multiple com-
puter vision researches or applications as training samples
of artificial neutral networks, ground-truth of video analy-
sis algorithms performance evaluation or archives for fast
information retrieval. The data exploration process can also
facilitate the user’s comprehension of motion pattern (e.g.,
representative tracks or common trends shared by different
moving objects) and gain insights on video features (e.g.,
how discriminative each feature is, what characteristic it can
describe and it suits for distinguishing which object/action,
etc.).

The primary contributions of this paper are:

• We present an integrated visual analytics system that
facilitates annotating spatio-temporal data in video by
(semi-)automatic4 methods, effectively alleviates the
amount of manual repetitive labor while guarantees the
quality.

• We present a visual design with linked views that can
facilitate identifying object/action with certain charac-
teristics in video.

• We introduce several visualization modes for repre-
senting video data which facilitate study of motion pat-
terns and comprehension of video/image features.

3In current stage, we mainly collect image patches and trajectories of
objects.

4Automatic tracking combines manual selecting and labeling.

2. Related Work

In this section we review some of the related researches
in Video Data Mining, Visualization and Annotation.

Spatio-temporal information is of great importance to
motion related research (e.g. action recognition). The meth-
ods used in such research can be briefly grouped into two
categories: feature-based and deep learning-based meth-
ods 5. Feature-based methods generally start by detect-
ing spatio-temporal interest points (e.g., changing pixels
other than constant ones) and then describe these points
with motion characteristics(e.g. moving direction)[25].
Zelnik- Manor and Irani [51] use marginal histograms
of spatio-temporal gradients at multiple temporal scales
to cluster and recognize events in video. Botchen, et
al. [10] design a system to enable recognition of prim-
itive actions and their spatial and temporal relationship.
They characterize motion by a descriptor splitting optical
flow vectors into four channels. Other typical descriptors
for spatio-temporal features include Histogram of Optical
Flow (HOF)[23], 3D Histogram of Gradient (HOG3D)[22],
SIFT-3D[35], Extended SURF[43], Motion Boundary His-
togram (MBH)[46], global Color Moment Feature[48] and
Cuboids[13]. Recently, Wang et al. propose Dense
Trajectory[39], which densely sample local patches from
each frame at different scales and then track them in a dense
optical flow field, and the latter Improved Trajectory[41]
with improvements referring to [18, 23, 37]. Bolbol, et al.
[9] analyze the discriminative ability of four properties (i.e.
speed, acceleration, distance, and rate of change in head-
ing) of trajectory on six transportation modes (i.e. bus, car,
cycle, train, underground, and walk) and identify the speed
and acceleration as the best discriminative properties.

The aforementioned spatio-temporal feature extraction
of video generally result in complex high-dimensional de-
scriptors (that describes certain characteristics of the ob-
jects/movements), which are not intuitive for perception
thus call for visualization techniques to facilitate human’s
comprehension. Caspi, et al. [11] proposed a method for
generating visual summaries of video.They fuse key frames
into a single static image (dynamic still) or organized into a
short video clip representing the essence of the action (clip
trailer). Romero, et al. [11] present Viz-A-Vis, an over-
head video capture and access system for activity analysis.
They use heatmap, denoted as activity table, to visualize
the intensity of motion in a video. The intensity of motion
at each pixel is obtained by the dierence between neighbor
frames, and is mapped to the hotness of color. Schoemann
et al. [32, 33] present a novel video browsing tool visual-
izing video motion by color. Motion vectors are mapped to
the HSV color space such that motion direction and inten-
sity statistics become visible by color and brightness vari-

5Deep learning-based methods are beyond the scope of this paper.
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Figure 1. Workflow of our Visual Analytics and Annotation system. Video is first process to collect information of the moving objects,
including image patches of objects and trajectories. Next, draw bounding boxes and trajectories of objects on the top of the original video
to obtain Augmented Video(on top-left of the linked view). Extend the trajectories in temporal space and draw them in a 3D Spatio-
Temporal Volume(on top-right). Extract aforesaid information further to get features and properties, image-based features are to fed to
T-SNE Dimension Reduction to generate a 2D scatter plot(on bottom-left), properties such as Speed are to generate parallel coordinates(on
bottom-right). These visualizations integrate in an interactive and linked view, which allows users to supervise and export annotated data.

ations. Howe, et al. [16] develop an interactive browser
for a sample of the dataset of figures. They use different
combination of clustering and dimension reduction meth-
ods to map the distribution of figure vectors to 2D space. In
[10] depicts a video stream as a series of continuing video
volumes, which displays snapshots at relatively sparse in-
terval, and highlights the trajectory of moving objects in 3D
spatial-temporal space.

The comprehension of the video obtained from previous
process is meaningful for video research, thereby it is im-
portant to be recorded for later query (so that the compli-
cated comprehension process can be skipped or at least sim-
plified in subsequent study), in form of annotation. Much
of the computer vision progress has been enabled by the
availability of public annotated datasets, such as the KTH
[34] and Weizmann[8]. According to the research in [4, 21],
the performance of classifiers improve dramatically when
a conspicuous set of labeled training data is available[20].
Stimulated by the demand of annotations, tools for annotat-

ing start to occur and draw attention. Höferlin, et al. [15]
present an integrated visual analytics system which supports
comprehension of ad-hoc training classifiers and facilitate
overview and efficient annotation by visualization. They
introduce a novel visualization called cascaded scatterplot
that integrates multiple dependent scatterplots to visualize
the class distribution of data instances in each stage of the
classifier. Yuen, et al. [49] introduced LabelMe video,
an web-based platform that bounds object with polygonal
and uses linear interpolation to locate object in-between
frames. Ali et al. [1] present FlowBoost, a tool that can
annotate videos from sparse set of key frame annotations.
Kavasidis et al. [19] present GTTool, a tool for gener-
ating ground truth data for object detection, tracking and
recognition applications. They improved previous propaga-
tion strategy (based on interpolation of the boundaries of
an object between the starting and ending frame) by using
object tracking techniques for automatic detection of ob-
jects across frames. Their annotation shows impressive ef-
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ficiency with high accuracy. Other annotation tools include
ViPER-GT[29], GTVT[2], Inter OD[45], which, however,
show their limitations when it comes to generate precise
spatio-temporal annotations.

3. System Overview
The proposed system should be able to track objects

in video and derive spatial and temporal information, gen-
erate meaningful visualizations that represents motion(i.e.,
change in position of an object over time) related character-
istics of the video more intuitive and comprehensible, and
aid the user annotate these data on demand. In Section 2,
we present a number of tools that are available and widely
used for video annotation. However, none of these tools
provides spatio-temporal annotation. Since humans have
difficulty in perceiving space and time simultaneously, de-
signing this graphical interface presents subtle challenges
that, if not properly addressed, make video annotation un-
necessarily labor intensive. In this paper, we demonstrate
an efficient interface for video visual analytics and annota-
tion, inspired by related works, shown in Figure 3. Details
of the views will be described in Section 5.

It has been developed using C++, Qt libraries for the
Graphical User Interface (GUI), and Open Computer Vision
libraries (OpenCV) for computer vision algorithms. D3.js
has been involved to draw two plots and the 3D volume
is rendered using VTK libraries. The developed tool inte-
grates a number of computer vision and visualization tech-
niques, with the purpose of enhancing the annotation gen-
eration process in terms of efficiency and spatio-temporal
coverage, as well as the video data comprehension.

The scheme of the system is presented in Figure 1. Given
an input video, we start by tracking and stabilizing each
moving object present in it, collect (image patches and tra-
jectories of) the objects using video processing algorithms.
This gives us a object-centric spatio-temporal sequence for
each object which can be used to generate Augmented Video
and Spatio-Temporal Volume. The objective is to get rid of
the background and focus on motion information. Then de-
rive several feature descriptors and properties based on col-
lected data, in order to describe the object in terms of cer-
tain characteristics. Synthesize two visual representations
to show the distribution of data with respect to certain fea-
ture/property. The four main visualizations then integrate
into an interactive environment with linked views, which al-
lows the user to explore, select and label data of interest and
output annotations in certain data structure. Details of the
individual modules are discussed in the following sections.

Note that in current stage of our work, we only discuss
video captured from static fixed lens (which can be com-
monly found in a surveillance footage), and whose scaling
effects (result from different distances between the objects
and the camera) are negligible. We also ignore the possible

Figure 2. Flowchart of Video Processing

affects come from jittering, change in background, etc. and
assume the tracker can locate and bound the objects with
certain accuracy and high preciseness.

4. Video Processing
The Video Processing section processes received raw

video data, aims to extract motion related information,
namely location and pixel values of each moving object,
collect corresponding image patches (as a set of images) and
trajectory (as a sequence of spatial points) in order to pro-
vide information about how the objects move and be used
for the feature and property extraction later. Figure 2 shows
the procedures of our proposed video processing approach.

Notably, video data is composed of numerous interre-
lated pixel signals and contains high rate of redundancy
which makes browsing time-consuming. Pixels of mov-
ing objects generally provide more information about what
happen in the scene than (static) backgrounds. Based on
this perception, we subtract background information and
only focus on motion information in video. For this pur-
pose we employ BackgroundSubtractorMOG2, a Gaussian
mixture-based background/foreground segmentation algo-
rithm to find pixels which are likely to be background and
which are not. One important advantage of this algorithm
is its better adaptability to varying scenes due to illumina-
tion changes etc[53, 54]. The result from background sub-
traction contains noise, thus thresholding and morphologi-
cal filtering are applied to reduce noise. To this step, each
pixel is identified as either background pixel or foreground.
Each connective region consists of foreground pixels can
be denoted as a moving object region. Typical video an-
notation starts with locating objects of interest by drawing
a boundary (the most basic and easily drawn is bounding
box) around each object. Theoretically, these boundaries
should be drawn on every frame to produce accurate track
of each object. In (semi-)automatic annotation, to largely
relieve the manual labor, object tracking techniques (track-
ers) are used to locate instances of the same object across
frames[38]. In conjunction with the initialization (draw a
bounding box around each moving object), a tracker is used
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which takes the objects identified in the previous frames as
input and suggests associations with the objects localized
(automatically) in the current frame. We take advantage of
the accuracy and processing speed of KCF Tracker devel-
oped in [14] to locate the objects in successive frames6. The
image patches(i.e., sub-image, pixels within each bounding
box) and trajectory(i.e., a sequence of bounding boxes’ cen-
tral positions in temporal order) of each object are recorded,
and to be fed to generate visualizations in the next section.

Note that the quality of object tracking is of great im-
portance to the following steps. Although we introduce a
module (detailed in Section 5.3) to examine the tracking re-
sults and exclude flawed ones. In order to feed the visu-
alizations with more useful information for object/motion
identification, the bounding boxes are supposed to be accu-
rate in terms of location and size.

5. Data Visualization
The process in Section 4 results in an object list, where

for each object x, there records the image patch and posi-
tion (the bounding box) of x at a discrete temporal point t
∈ N, X(t) = [x1(t), x2(t), ..., xn(t)]

T . To label each x,
the objects/actions need to be identified. In this section, we
visualize the data by adopting several visual modes, in or-
der to enable viewers to identify and characterize different
detected objects/actions, associate spatial and temporal fea-
tures with object/action categories, and to empower users
to use their superior perceptual reasoning skills to detect
and label samples of interest and gain insight on the fea-
tures. We aim to examine the feasibility of obtaining in-
sight into the features/properties (e.g., what character the
feature describes, the property is discriminative for what
kind of objects/actions in which circumstance), by arousing
the user’s comprehension through exploring the visualized
data, rather than informing the user of an explicit conclusion
which can be very unreliable or partial.

Aided by the visualization, the user should be able to:

1 Identify and characterize different objects/actions and
search for objects/actions of interest on demand.

2 Relate selected object/action to the original video.

3 Examine the results of automatic object tracking and ex-
clude flawed one from annotation.

4 Set label to each selected object and export the annotated
data(mainly image patches and trajectory as a sequence
of points).

5 Associate spatial and/or temporal features/properties (or
combinations) with object/action identification.
6We provide 6 optional trackers: BOOSTING, MIL, KCF, TLD, ME-

DIANFLOW, and GOTURN and use KCF by default considering its supe-
riority in speed.

We provide multiple linked views to tackle these tasks.
The whole view of our visual design can be seen in Figure
3, the highlight in each view is dynamic in respond to user
interaction. A unique color is assigned to each object in
order to identify data of this object in all the views, since
human eyes are good at discriminating colors.

5.1. Video Viewer

As a fundamental requirement for video annotation,
the video sequence should be able to be browsed frame
by frame. It is also essential to aforementioned Task 2,
which can be achieved by retrieving the frames and re-
gions where the selected object is active. We employ focus-
and-context[10] visualization techniques, which combine
the display of extracted (motion related) data with original
video frames: the former is the focus(highlight), the latter
serves as context. The Video Viewer shown in Figure 3(a)
allows to browse the augmented video by sliding the slider,
there displays the frames sequentially with the bounding
boxes and trajectories superimposed to them. This is es-
pecially helpful when checking if the objects have been
tracked correctly. When an instance (in Image Scatterplot,
stands for an image patch) is selected, the viewer will po-
sition to the corresponding frame and highlight the region
where the instance occurs. Thereby each object/action is
connected to the original video.

5.2. Spatio-Temporal Volume

In order to achieve Task 1 and 5, the user needs to per-
ceive space and time simultaneously, thus we provide a
good visibility of motion traces along the temporal axis to
facilitate the comprehension of temporal behavior of the
objects. The 3D volume in Figure 3(b) displays the ex-
tracted trajectories of moving objects in Spatio-Temporal
space, by extending the trajectory sequence in temporal or-
der along Z-Axis. But only showing the trajectories conveys
restricted amount of detailed information, since visual in-
formation about the environment is lacking. Therefore, We
again employ focus-and-context approach, here we combine
the display of trajectories (focus) with the starting frame
as background (context). We also show the image patch at
respective space-time position when an instance (in Image
Scatterplot) is selected, to provide more details (at xn(t)).

The 3D environment allows for rotation and zoom in/out
the volume to view the trajectories from different angles and
in general/detail. In general, the user is able to see all the
performed action sequences that appeared in a video in one
continuous illustration at one glance, instead of browsing
the whole video. In detail, the user can easily discriminate
trails in terms of shape (straight or winding), heading direc-
tion, etc. and identify certain actions (Task 1), e.g., a car
moving straight or turning. As well as associate these prop-
erties with object/action categories, for the purpose of infer-
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Figure 3. Workspace of our visual analytics and annotation system. (a)Augmented Video viewer. (b) S-T 3D Volume, visualization of
trajectories in Spatio-Temporal space. (c) Image Scatterplot, 2D T-SNE embedding of image patches. (d)Parallel Coordinates, visualization
of proposed properties. (e)Object Viewers, view of selected image patch. (f)Labeling Panel, used for setting labels by the user. (g)Trajectory
Scatterplot, 2D T-SNE embedding of trajectories

ring discriminative properties (Task 5), e.g., if the trails of
cars turn out to be more straight than trials of pedestrians,
straightness would be a property to distinguish cars from
pedestrians.

5.3. Image Scatterplot

Aiming to tackle Task 3, we need a module to spot
flawed tracking results which should be excluded from an-
notation. The view shown in Figure 3(b) depicts the distri-
bution of the images patches based on features descriptors.
It is a 2D embedding of high-dimensional descriptors by
dimension-reduction method (detailed in below). We figure
out flawed result by searching for unexpectedly distributed
instances.

5.3.1 Feature Descriptor

Due to the imperfection of the tracker7, namely part of the
data collected in object tracking process is flawed which
should be excluded from annotation. Instead of manual in-
specting the tracked object data one by one, we utilize a
visual module to assist inspection.

Each X(t) contains an image patch xi(t) that can be in-
terpreted as a single high-dimensional data point, hence
our tracking results consist of a large number of high-
dimensional data points. Since the original data points
contains high rate of extraneous information which makes
comparison difficult, we introduce feature descriptors that
simplifies the image by extracting useful information (that
can better discriminate the images) to represent the origi-
nal data. Each descriptor can also be interpreted as a sin-

7The KCF tracker we use claims to have an average 73.2 % accuracy, a
relatively high quality among typical trackers.

6



gle high-dimensional (lower than the original) data point.
We depict the distribution of the descriptors and examine
the tracking results visually. In general case, images of the
same object (assigned with the same color in the views) are
supposed to be clustered in the plot (considering that they
are probably more similar and closer to each other in dis-
tribution). Images that do not conform to this, are likely to
be flawed samples. Notably, the tracker searches for target
object by comparing certain features of images. Thereby
the descriptors are supposed to use features in principles
differ from the tracker, in order to provide complemen-
tary information that the tracker is missing. For example,
KCF we use by default is based on low-frequency compo-
nent from Discrete Fourier Transform(DFT) of image, so
we need some feature that describes image details (since
the low-frequency component lack detail information) to
examine the results from KCF. Any image has information
distributed in the spatial or color dimensions. The features
were proposed so as to exploit information of these dimen-
sions. We introduce several features that are widely used
for image identification, include:

• HOG. Histogram of Oriented Gradients counts the dis-
tribution of oriented gradients in localized portions of
an image. It mainly describes local object appearance
and shape. HOG descriptor is particularly suited for
human detection[12], and has shown its outstanding
performance for images in which the edges are com-
plete and clear. While due to its scaling-variance and
rotation-variance inherence, it is incapable in case of
non-ignorable scaling or rotation effects.

• Intensity/Color Histogram. Analogous to HOG, Inten-
sity/Color Histogram is a representation of the distri-
bution of luminance or colors in an image. It counts
the percentage of pixels within each intensity or tonal
interval. In [7, 31] Color Histogram shows higher per-
formance than Intensity on head tracking. Color His-
togram does not apply to gray-scale image while suits
for describing objects with special color. Intensity His-
togram is sensitive to luminance change in the scene
and the influence of background.

• Single-channel Pixel value. Color image consists of
pixel values in RGB channels, we convert the orig-
inal data to HLS (Hue, Lightness, Saturation) and
YCbCr(Luma component, blue-difference and red-
difference chroma components) spaces, and provide
pixel values in each single-channel as descriptors.
These descriptors preserve whole information in cor-
responding channel while lose all information in the
rest channels, suit for distinguishing images whose in-
formation of one-single channel is dominating.

As a result, each image patch is represented as a feature

descriptor (in form of a high-dimensional data point) based
on one of the listed feature. The support of examination
relies on the discriminating of images through the feature,
namely the feature descriptors directly impact the capability
of examination.

5.3.2 Dimension Reduction

In general, images of the same object are supposed to be
more similar than other objects, represents as instances (of
image descriptors) of same object closer to each other (clus-
ter) in distribution. Considering that instances regarded as
the same object by the tracker are assigned with a unique
color, it can be expected that instances in same color will
cluster in distribution if the object is tracked correctly.
While instances that do not conform to the expectation are
likely to be flawed, we can spot the expectedly distributed
instances through visual observation.

Nevertheless, the aforementioned image descriptors are
high-dimensional data points that originally distributed in
high-dimensional space thus difficult to be intuitively pre-
sented for visual examination. We address this problem by
introducing dimensionality reduction technique to map the
high-dimensional data into low-dimensional (generally 2D
or 3D, we use 2D) space. Such techniques take the high-
dimensional distances of instances (by comparing corre-
sponding high-dimensional data points, using distance mea-
sures such as Euclidean) as input, map the data points into
low-dimensional space while reserve the original distances
in certain scale. Linear dimensionality reduction algorithms
(e.g. Principal Component Analysis (PCA)[44]) concen-
trate on placing dissimilar data points far apart, attempt to
preserve geometry at all scales. But in order to cluster im-
ages of same object, we focus on local structure, i.e., similar
data points must be represented close together. For this pur-
pose, we use t-Distributed Stochastic Neighbor Embedding
(t-SNE), a dimensionality reduction algorithm developed by
Van der Maaten and Hinton[27], particularly well suited for
the visualization of high-dimensional datasets. t-SNE pre-
serves the distances between nearby data points while dis-
torts long-distance relationships. The concentration on lo-
cal structure tends to better cluster instances of the same
object (more similar). We plot the 2D embedding in a scat-
terplot shown in Figure 3(c). Each colored dot indicates an
(image)instance which will show in the Object Viewer(3(e))
when the dot is selected.

By this view, the users can quickly spot and exclude the
data that incorrectly tracked(Task 3). Furthermore, although
not designed for, through the exploration, the user can also
get visual feedback about the performance of each spa-
tial(image) feature for distinguishing objects (a discrimi-
native feature is supposed to allow instances of same ob-
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ject well clustered in the scatterplot), thereby associate fea-
tures with object/action identification(Task 5). It also facil-
itates comprehending the nature of the tracker, gives a clue
what (information missing) leads to the failure of tracker
and what feature/information could be supplemented to im-
provement the tracker8.

5.4. Parallel Coordinates

To complement the illustration in the above views, facil-
itate object/action identification and characterization(Task
1), and discriminative property inference (Task 5), we de-
rive a spatio-temporal signature, S(s1, s2, s3...s7), from
X(t)t, for each object x and visualize the signature in par-
allel coordinates (See Figure 3(d)).

5.4.1 Property Extraction

S(s1, s2, s3...s7) exploits some characteristics of ob-
jects/actions that are not (well) illustrated in former views,
each dimension si refers to a derived property that charac-
terizes the objects/actions, include:

• Aspect Ratio. Ratio of width and height of bounding
box. When calculating HOG and Single-channel in
Section 5.3, the image patches are resized to a fixed
size in order to make sure the descriptors in same di-
mensionality (comparable). However, due to the re-
sizing, the original aspect ratio of image patches are
lost (in case of Intensity/Color Histogram, no bound-
ing box information involved), which is possible to dis-
criminate some objects. For instance, the aspect ratio
of image patch of a pedestrian (width ¡ height) is likely
to be different from a vehicle (width ¿ height) in gen-
eral. This property is useful if the objects to be dis-
tinguished differ a lot in aspect ratio, provided that the
bounding box has bounded the object accurately (i.e.,
the size of bounding box is approximate to the size of
object).

• Boundingbox Area. Multiplication of height and width
of bounding box. Analogous to Aspect Ratio, except
that it particularly suits for distinguishing objects differ
a lot in area, e.g., duck and vessel.

• Displacement (Magnitude and Angle). 2D vector
pointing to the ending position from starting position
of the object. Measuring how far the object moved
in the scene. This property suits for distinguishing
objects moving in different direction(angle) or dis-
tance(magnitude), e.g., turn left and turn right.

• Trajectory Length. The length of trajectory of each ob-
ject, measuring how long the object has covered. It can

8We do not discuss details here since improving the tracker is beyond
the scope of this paper.

work with Displacement to identify certain movement.
For example, large trajectory length with small dis-
placement indicates wandering-like movement. The
opposite indicates moving straight.

• Speed. Average moving speed of each object, equals
to length of trajectory divided by occurring time. It is
useful to distinguish objects that are supposed to have
differentiated moving speeds, e.g. pedestrian and mo-
torcycle.

• Acceleration. Average difference of speed. Measur-
ing the uniformity of movement. This property suits
for distinguishing movements differ in uniformity, e.g.,
hopping from walking, and speeding up from slowing
down.

Note that by deriving the above properties, we attempt
to quantify some real properties of the object/movement,
e.g., using moving speed in video to quantify the mov-
ing speed in reality, and apply them to discriminate ob-
jects/movements that differ a lot in one or multiple real
properties. Therefore, a property can work and make sense
on the assumption that it truly reflects the property in reality.

5.4.2 Signature Visualization

The spatio-temporal signature is multivariate data consists
of seven properties (dimensions). We have carefully cho-
sen parallel coordinates[17] to visual the signature for their
analytical capabilities in analyzing different aspects of mul-
tivariate data and revealing relationships between data di-
mensions. The design (Figure 3(d)), with polylines describ-
ing multivariate items that intersect with parallel axes rep-
resenting variables, can be used for the analysis of multiple
properties[42], e.g., identifying multivariate outliers, trends,
and clusters. Also consider that there are seven dimensions
to depict, the parallel axes can be properly spaced(neither
too clutter nor too sparse).

Each polyline (segments in same color) in the parallel
coordinates view corresponds to the signature of an ob-
ject. The usefulness of this view lies on (i) The order
of axes in parallel coordinate is switchable to place arbi-
trary axes adjacent. Relationships between adjacent di-
mensions are easier to perceive, e.g., one can place Speed
axis next to Boundingbox Area axis, and inspect if large
objects tend to move faster or conversely. (ii) It is easy
to detect outliers in parallel coordinates, e.g. something
moves extremely fast(high in Speed) or heads to a special
direction (Displacement-Angel), these samples are useful
for anomaly detection/recognition. (iii) It also allows for
brushing, the user can brush over a certain range on an
axis (e.g. high value of speed), and highlight therefrom the
instances of corresponding objects in all views, thus filter
down to a subset for further exploration. (iv) It helps to
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identify clusters, which present as dense lines. Thus infer
properties that can distinguish objects/actions (Task 5) and
characterize objects/actions(Task 1).

5.5. Trajectory Scatterplot

Analogous to the Image Scatterplot, we propose Trajec-
tory Scatterplot to illustrate the distribution of trajectories,
so as to identify trajectory clusters (similar trajectories) and
associate with objects/actions. For example, if objects from
a certain category generate similar trajectories, it can be in-
terpreted as a motion pattern of this category (Task 1, char-
acterization).

Nevertheless, to depict the distribution of trajectory
sequences (high-dimensional data) in low-dimensional
space analogous to Section 5.3, we need to derive dis-
tances(dissimilarities) between each pair of trajectories.
Different from other simple data types where the distance
is well-defined, the distance between trajectory has no gen-
eral definition. As trajectory is high-dimensional data and
contains spatio-temporal information, both of which needs
to be considered when measuring[40]. Besides, since the
length of data vary from trajectory to trajectory, typical
measures (e.g. Euclidean) cannot be easily adapted to mea-
suring trajectory distance. According to the study of Wang,
et al. in [40], we choose Dynamic Time Wrapping (DTW),
a well-known measure of trajectory dissimilarity, taking ad-
vantage of its capability of comparing sequences of differ-
ent lengths, pertinence in time-series and flexibility in cost
function. DTW is derived from [5], initially used in audio
analysis, aims to find an optimal alignment between two
given (time-dependent) sequences.

In detail, DTW uses a recursive manner to search all pos-
sible point combinations between two sequences (i.e. com-
bine each point in one sequence with a point in the other se-
quence) for the one with minimal distance[40]. Given two
sequences P = [p1, p2, ...pN ], Q = [q1, q2, ...qM ], the dis-
tance D(P,Q) is defined as the accumulation of distance
between every pair of combined points

∑
d(pnl, qml). The

measure of distance between a pair of combined points is
known as cost function. Since we focus on figuring out mo-
tion(change in position) pattern, we define the cost function
as difference between the tangent vectors, d(pnl, qml) =
|tpnl − tqml|, tpnl and tqml are the tangent vectors at pnl
and qml respectively. By this approach, we leave out the
absolute position of each data point, only consider how the
object is moving (change in position in each interval). It is
worth mention that our measure is translation and rotation
invariant. The disadvantage of DTW is that it is sensitive to
noise and decrease sample rate, which is not a problem on
assumption that the trajectories are tracked accurately and
precisely.

Figure 3(g) displays the scatterplot of trajectories, it is a
2D embedding generated by t-SNE based on above-defined

dissimilarity of trajectories. This view and Image Scatter-
plot complement each other, the former illustrates distribu-
tion of objects in terms of appearance (image), the latter
illustrates distribution in terms of movement (trajectory).

5.6. Interaction

The different views in the workspace are linked to each
other through interaction. This facilitates selection, analysis
and exploration:

• By clicking a single instance in the Image Scatterplot,
this instance and the corresponding instance in Tra-
jectory Scatterplot will enlarge, the Video Viewer will
jump to the frame where the selected data instance oc-
cur with a mask highlighting the object region, trajec-
tory in S-P Volume and signature in Parallel Coordi-
nates of the object will show in larger thickness, cor-
responding image patch will show in the left Object
Viewer and the slider of the object view will be en-
abled for browsing all the image patches of the object
in chronological order. Compare Figure 3 with Figure
8 to see the effects.

• By hovering in a single instance, the response is sim-
ilar to clicking, excerpt for all instances correspond-
ing to the same object will be highlighted with thicker
stroke, in Video Viewer where no response will hap-
pen and in Object Viewer the corresponding image will
show in the left viewer. When hovering out, the cor-
responding data in other views will recover to former
state. Compare Figure 3 with Figure 7 to see the ef-
fects.

• By brushing on the axes in parallel coordinates, signa-
tures which contains property value that are out of the
brush range will become transparent as well as corre-
sponding instances in two scatterplots, in the labeling
panel the rows of these objects will be marked with a
dark filling. Refer to Figure 13, after brush, data out-
side the brushed range are faded in S-P Volume and
two scatterplots.

• When a flawed tracking object is found, the user can
mark it as flawed, corresponding instances in Image
Scatterplot will be faded and the corresponding poly-
line in Parallel Coordinates will become dashed. See
Figure 9.

6. Annotation
Using aforementioned interactions, the user can select

single or multiple objects and set label(s) in the Labeling
Panel ((Figure 3(f))). The label(s) given by the user will be
recorded and display in the object list. The automatic track-
ing relieves the burden of drawing bounding on object frame
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by frame, and simplifies the process into selecting object of
interest using the visual tools. Result in an improvement
on cost-effectiveness. The visualizations enable the user to
quickly identify (action of) object and set proper label(s)
without browsing the frames. Although we give the free-
dom to the user that they can set label in whatever scope,
it can be as general as ”person walking” or as detailed as
”a person slowly wandering, head to southwest”, the user is
recommended to take advantage of perceptible information
provided by the visualizations and generate detailed anno-
tations.

The annotated output data (by default) consist of im-
age patches(a set of images named in chronological order)
, spatio-temporal data(a text file, including trajectory se-
quences, the signature, the given label etc) of detected ob-
jects in an organized directory. For further use of the there
needs a respective parser to parse the annotated file in target
projects.

7. Usage Scenario
In this section we present exemplary scenarios to demon-

strate the effectiveness of this system.
Case 1, detection of flawed tracking. (i)See Figure 10.

When we look at the Image Scatterplot, we can easily find
that instances of the selected (thicker stroke) object sepa-
rates into (mainly) two clusters, by monitoring the corre-
sponding image in the Object Viewer, we figure out that it
is actually images of two different objects, but the tracker
thought they are the same object. So we should exclude
this sample. This is how we can spot flawed results of the
tracker with the help of Image Scatterplot.

(ii)An analogous example can be seen in Figure 11,
where two (different-in-color) clusters are very close to
each other on the Image Scatterplot. By selecting instances
in the two clusters and monitoring the image, we find that
these two clusters are actually images of the same object,
but the tracker regarded them as different objects. This is
another type of flawed result of the tracker.

(iii)A third type of flawed tracking is noise tracked as
object (false alarm). See Figure 12, the selected pink in-
stances are scattered in Image Scatterplot, according to the
Parallel Coordinates its every property value is low, in S-T
volume and Trajectory Scatterplot we find that its trajectory
are quite different from others’. Any of the visual represen-
tations suggests the ”object” is problematic, we can easily
spot noise like this.

Case 2, identify object/action. See Figure 13, brushing
on Speed axis we easily screen out two fastest moving ob-
jects in the scene. Then by comparing their accelerations,
we can identify that Object 3 (yellow-colored) whose accel-
eration is lower moves more uniformly than Object 6 (blue-
colored). This can hardly be quickly identified by browsing
the video. The visualizations fasten the identification and

gives subtle information.

Case 3, incomplete object. See Figure 14, using the
brush we screen out a small-size object with rather high
speed, namely a person-size object moves as far as car. So
we retrieve to frames and figure out what happened and it
turns out to be a piece of a truck. This suggests that the im-
ages, and bounding box information are incorrect. Nonethe-
less, by looking at its trajectory in S-P Volume and Video
Viewer, we find that its trajectory completely comforts to
the track of the truck. Thus we can still annotate the trajec-
tory of the truck, although the images should be excluded.
Our system can make use of incomplete objects.

Case 4, identify similar motion. See Figure 15, we
easily find two objects with similar trajectories through the
Trajectory Scatterplot, but their image patches are not clus-
tered in the Image Scatterplot which indicates their images
are different, the properties in Parallel Coordinates gives af-
firmative information (two spatial (bounding box) proper-
ties are different, the rest properties relate to trajectory show
similar in value). Then by browsing in the Video and Object
Viewer we can figure out that one is a motorcycle, the other
is a pair of bikers pass the same route. Due to the track-
ing problem, the bikers are regarded as a single object. As
a result they show different in appearance (images) while
similar in motion(trajectories). Our system enables the user
to categorize objects/actions based on trajectories.

8. Evaluation

To assess more quantified effectiveness of the proposed
annotation in terms of time, we ourselves performed tests.
We tested the process of video annotation using our sys-
tem on three videos and recorded the time it takes. Table
1,2 and 3 shows the time for annotating video in Figure 4,
5 and 6 respectively. Consider that there is no other an-
notation tool that is capable of spatio-temporal annotation,
the cost-effectiveness of our work is not directly compa-
rable with other existing tools. The key quantity is time
per bounding box, which can be compared with the time
needed to manually draw each bounding box. According
to our test, the system costs (in average) less than 0.2 sec-
ond to draw a bounding box, which is unattainable in man-
ual drawing frame-by-frame. Even compare with tools that
only collect images, e.g., iVAT and ViPER-GT which take
0.43” and 1.15”[6] to draw a bounding box respective, our
system shows superiority in effectiveness.

Note that when computing average time e.g. time per
bounding box, we only consider time consumed in annota-
tion, not include time consumed in video processing. Since
our video processing is totally automatic, the user are free
to do any other task during video processing.
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Table 1. Result of Test 1
Tracker Frames

Processing
time

Objects
tracked

Objects
flawed

Tracking
accuracy

KCF 310 135” 7 1 85.7%
Annotation
time

Images
annotated

Trajectories
annotated

Time per
object av.

Images per
object av.

Time per
boundingbox av.

45” 456 6 7.5” 76 0.099”

Figure 4. Video used in Test 1. A 3-channel thermal video, resolu-
tion 720*540, 310 frames.

Table 2. Result of Test 2
Tracker Frames

Processing
time

Objects
tracked

Objects
flawed

Tracking
accuracy

KCF 200 394” 14 7 50%
Annotation
time

Images
annotated

Trajectories
annotated

Time per
object av.

Images per
object av.

Time per
boundingbox av.

151” 736 7 21.6” 105 0.205”

Figure 5. Video used in Test 2. A 3-channel grayscale video, reso-
lution 476*316, 200 frames.

Table 3. Result for Test 3
Tracker Frames

Processing
time

Objects
tracked

Objects
flawed

Tracking
accuracy

KCF 200 1426” 18 6 66.7%
Annotation
time

Images
annotated

Trajectories
annotated

Time per
object av.

Images per
object av.

Time per
boundingbox av.

219” 2114 12 18.3” 176 0.104”

Figure 6. Video used in Test 3. A 3-channel color video, resolution
720*480, 722 frames.

9. Conclusion and Future Work

In this paper we, for the first time, bring up the impor-
tance of spatio-temporal video annotation. And present our
integrated semi-automatic system for video data mining, vi-
sual analytics and annotation. We display the visual design
and illustrate the scheme and explain the functionality. We
also give several usage scenarios to demonstrate the poten-
tial use of our system.

Our system faces below limitations and future work can
be conducted in: (i) We deal with the flawed tracking results
by simply excluding those from annotation (without consid-
ering correcting them). This results in a waste of data and
heavily rely on the tracking performance, in videos where
the tracker performance poorly, we can hardly annotation
proper samples. The future work can direct to the scheme
to correct the flawed results. (ii) Although ignored in the-
ory, the scaling effect of video affects the accuracy of many
properties in practice. In the future work, approaches to
compensate the error caused by scaling would be a signif-
icant improvement. (iii) As product, the application and
further study of the spatio-temporal data annotated by our
system will also be much expected.
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Figure 7. Hover in an instance of object 2 (in yellow) in Image Scatterplot.
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Figure 8. Click an instance of Object 2 (in yellow) in Image Scatterplot. while hovering in Object 3 (in pink).
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Figure 9. Mark Object 2 (in yellow) as flawed.
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Figure 10. Case 1. Spot flawed result of tracking using Image Scatterplot. Instances in same color scatter into different clusters.
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Figure 11. Case 1. Spot flawed result of tracking using Image Scatterplot. Instances in different colors rather close.
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Figure 12. Case 2. Spot flawed result of tracking using Image Scatterplot. Noise tracked as object.
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Figure 13. Case 2. Search for a uniform moving car.
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Figure 14. Case 3. Part of an object tracked.
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Figure 15. Case 4. Objects with unsimilar images but similar trajectories.
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