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Abstract

This research addresses the challenge of deploying real-time drinking gesture de-
tection in messy, "in-the-wild" environments. We propose and evaluate two compu-
tationally inexpensive systems, one using a Random Forest classifier, another using
a 1-Dimensional Convolutional Neural Net (1D-CNN) classifier. Both are trained on
2D skeleton data, or features derived from that solely that data. Tested on the Con-
flab social interaction dataset, our method is designed to handle sparse labels and
significant data occlusion. This study reports on the performance of this light-weight,
video-based approach, providing a benchmark for applicability in real-world health and
human-computer-interaction applications where privacy and computational efficiency
are important factors. Although we were unable to create a robust and reliable classi-
fier (f1 of 0.07 and 0.03 respectively), this work shows that there is potential for future
work to succeed (roc-auc’s of 0.63 and 0.55 respectively) and provides critical insights
into pitfalls to avoid when designing similar systems.

1 Introduction

Detecting when a person takes a drink in real time might sound redundant, but it’s a piece
of information that can be incredibly useful in a wide range of applications. In medicine, it
can help monitor patient recovery or combat health issues like obesity. For human-computer
interaction (HCI) and even marketing, understanding this simple action can provide valuable
insights. The key to making this technology practical is finding a method that is cheap, non-
intrusive, and easy to deploy. Combining simple fast-running machine learning algorithms
with pose data, in this paper, we hope to contribute to exactly that goal.

Recent advancements in computer vision have made it possible to extract 2D skeletal data
from videos in real-time, even with multiple people in the frame[1, 2]. This "skeleton-only"
approach is promising because it respects privacy (no faces are needed) and is computation-
ally efficient. Previous research has already shown its potential, especially when combined
with multiple input modalities [1]. For instance, one study demonstrated that skeleton
data is a viable alternative to more complex motion capture systems for analyzing drinking
motions [3]. Another successful project used video to detect eating and drinking gestures
in a cafeteria, achieving high F1 scores of 0.88 for drinking. Furthermore, research using
Spatial-Temporal Graph Convolutional Networks (S-T GCNs, neural networks designed to
analyze skeletal motion over time) has confirmed that skeleton data can be used to robustly
detect these "intake gestures" in a way that generalizes across different datasets[4].

However, a significant gap exists between these successful studies and real-world ap-
plication. A lot of the previous research was conducted in controlled environments with
relatively "clean" data, using models that often require higher-end hardware to run. Study
participants were often stationary, filmed from a good angle, and not blocking each other. A
challenge presents itself in how well these models perform in messy, uncontrolled social set-
tings (e.g. at a party or in a busy cafe) where people are mingling, cameras are at awkward
angles, and body parts are frequently hidden from view (occluded), especially when applied
to real-time detection. One study [1] has shown that drinking-specific intake detection on
this type of data is possible. Yet, the model used in this study is relatively computationally
expensive and might be out of scope for projects that require real-time, cheap, or offline
usability. While some studies have shown that simpler intake detection models can work
on imperfect footage of animals, and that data quality loss doesn’t always harm gesture
detection, this specific leap to complex human social scenes has not been fully explored.



Our research aims to test whether the success of real-time skeleton-based drinking de-
tection can be extrapolated to these challenging, "in-the-wild" scenarios. To guide our
investigation, we have formulated a main research question and several sub-questions.

1.1 Research Questions

Main Question: Can skeleton-only data reliably be used to detect the drinking action in
uncontrolled, human social settings in real-time applications? To address this, we will
investigate the following sub-questions:

1. To what extent can computationally inexpensive models, trained on sparse 2D skele-
ton data, achieve reliable performance for drinking detection in ’in-the-wild’ social
settings?

2. How well can classifiers trained on sparse pose features distinguish drinking from
visually similar actions, and which actions are most commonly confused?

3. Under which specific visual conditions (e.g., occlusion, camera angle) do the trained
pose-based models tend to fail?

2 Related Work

In this section, we build upon the topics introduced previously, reviewing the literature and
recent developments that are foundational to our research. We will examine the progression
from video to skeleton data, its application in human intake detection, and the challenges
of deploying these methods in uncontrolled environments.

2.1 From Video to Skeleton Data: A Viable Alternative

The core technology enabling our research is the ability to extract skeletal keypoints from
standard video footage. Recent studies have validated this "video-to-skeleton" pipeline as a
low-cost, non-intrusive alternative to traditional, marker-based motion capture systems. For
instance, a study on neurotypical adults performing a drinking task found that computer
vision-based pose estimation yielded results comparable to those from on-body motion cap-
ture systems, effectively demonstrating its potential for objectively assessing motor function
in clinical settings [3]. This underscores the potential for significant advancements in medi-
cal monitoring. Furthermore, research into detecting similarly complex social actions, such
as laughter, has shown that models can be surprisingly resilient to the loss of input modal-
ity or the use of imperfect annotations during training [5]. This robustness is a promising
indicator for our goal of analyzing messy, "in-the-wild" footage.

2.2 Detecting Human Intake Gestures

The use of skeleton data for detecting intake gestures is a burgeoning field. Researchers have
successfully employed models designed to interpret spatial-temporal data (such as Recurrent
Neural Networks (RNNs) and Spatial-Temporal Graph Convolutional Networks (ST-GCNs))
to classify actions from keypoint trajectories [2, 6, 7, 8]. For example, one notable study
utilized entire-meal context from video to achieve high F1 scores of approximately 0.93 for
eating and 0.88 for drinking gestures within a large cafeteria dataset. Another advanced



approach used MMPose to extract a 23-joint upper-body skeleton and fed this data into an
ST-GCN combined with a BiLSTM network to effectively distinguish between eating and
drinking actions.

While these results are impressive, they often rely on computationally intensive models.
One of the few studies to specifically tackle drinking detection in uncontrolled social mingling
situations highlighted this trade-off [1]. The authors achieved strong results using a top-
down camera view combined with static social data, but noted that their approach was too
computationally expensive for many real-time or embedded systems. This finding motivates
our central goal: to find a computationally leaner approach, especially given that for many
human-computer interaction applications, system response times are expected to be under
a few seconds [9].

To achieve real-time performance, other researchers have explored alternative sensors.
For example, studies have successfully detected drinking gestures using wrist-worn IMU sen-
sors [10, 8] and even FMCW radar systems [11]. While our work focuses on video, these
studies are relevant as they often employ similar temporal convolutional network architec-
tures and share the application goal of monitoring fluid intake for the elderly and patients in
daily life. Their success reinforces the feasibility of real-time gesture detection and provides
insights into effective model architectures. Interestingly, several of these studies also suggest
that dividing the drinking action into distinct stages (e.g., reaching, drinking, retracting)
can significantly improve detection accuracy [8, 1].

2.3 "In-the-Wild" Detection

A key question is whether these successes can translate to the chaos of real-world social
scenes. While research on humans in such settings is still developing, studies on animal
behavior offer compelling evidence[12]. For instance, high-throughput, real-time tracking of
intake and other actions has been achieved in caged tree shrews using only pose estimation
data from imperfect camera angles. Similarly, the BehaviorDePOT tool demonstrates that
automated behavioral detection based on markerless pose tracking can achieve excellent
results in relatively uncontrolled environments with non-human subjects [13]. These suc-
cesses in animal studies bolster the hypothesis that pose-only data can be a powerful tool
for detecting specific actions even in complex, unpredictable settings.

Finally, a review of the literature suggests that a few key features are consistently pre-
dictive of drinking actions. The most crucial signals appear to be hand-to-face proximity,
particularly the distance between wrist keypoints and the nose or mouth region. This is
complemented by secondary features such as the elevation of the arm and forearm, joint
angles like elbow flexion, and the overall temporal profile of the hand’s trajectory. Our re-
search will leverage these established feature sets as a starting point for our computationally
inexpensive model.

3 Dataset

To effectively test our research questions, we required a dataset that captures the complexi-
ties of real-world human interaction. An ideal dataset would feature multiple subjects in an
uncontrolled social setting, contain significant visual challenges like occlusion, and include
annotations for both the target action (drinking) and corresponding skeletal poses. For
these reasons, we selected the Conflab dataset.



Participant: 4, Video: 3
Frame index: 4169

Figure 1: Example of a Skeleton (this person is viewed from their top left at a 45 degree
rotational angle)

Conflab is a rich, multimodal dataset collected during a "real-life professional network-
ing event at the international conference ACM Multimedia 2019."[14] It provides a unique
opportunity to study social behaviors "in-the-wild" using footage from various cameras, cap-
turing at 60 frames per second, and data from chest-worn accelerometers. For this study,
we utilized the video footage, the publicly available drinking annotations, and the corre-
sponding 2D COCO-like skeletal keypoint annotations (as in Figure 1) derived from the
video. The dataset’s camera perspectives, often from a top-down angle, capture the natural
mingling of participants, providing a realistic testbed for our models.

3.1 Dataset Characteristics and Limitations

While its authenticity makes it highly suitable for our research, the Conflab dataset also
presents several significant challenges that mirror the difficulties of real-world deployment.

First, the dataset contains a limited number of positive examples. We identified just
under 200 instances of drinking across the entire dataset. After aligning these with the
available pose data and allowing a 60-frame tolerance to capture the full motion, we were
left with 109 distinct drinking sequences. This scarcity is compounded by the fact that some
sequences are duplicates resulting from multiple annotators labeling the same event. This
results in a severe class imbalance, with only about 1 in every 124 frames being labeled as
part of a drinking action.

Second, the data is inherently messy and incomplete. Due to the nature of a crowded
social event, subjects frequently occlude one another, leading to a high number of null values
in the pose data where key points could not be detected. Participants also move freely
between different camera views, creating discontinuities. The intersection of reliable pose
data and drinking annotations is therefore relatively small, posing a significant challenge for
training a robust classifier.

3.2 Exploratory Data Analysis

A preliminary analysis of the dataset revealed several key characteristics that inform our
feature engineering and modeling approach.

We first analyzed the variance difference between the two classes of each skeletal key
point’s coordinates to identify which body parts exhibit the most movement during drinking
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Figure 2: Temporal movement variance per keypoint, label and axis

actions (Figure 2). As expected, key points associated with the upper body, specifically the
neck, shoulders, elbows, and wrists, showed high per-segment variance. This confirms their
importance as predictive features. More surprisingly, our analysis also revealed significant
movement in the hips, knees, and feet, suggesting that subtle shifts in posture and stance
may be a secondary signature of the drinking action.

We also examined the distance between the hands and the mouth (Figure 3), using the
wrist and nose keypoints as proxies. This is theoretically a primary indicator of drinking.
However, a plot of the minimum wrist-to-nose distance during annotated drinking events
revealed that between the two labels, the observed difference in distances was not as big as
anticipated. This is further corroborated by the fact that preliminary analysis on segmented
data, which shows there is not an immediately apparent correlation between the amount
of frames with the positive label (y=1) in a window, and the variance of each key-point’s
position.

4 Methodology

This chapter details the systematic process used to investigate our research questions. We
outline two distinct modeling approaches: a lightweight, feature-based Random Forest clas-
sifier and a heavier to train, yet light to run 1-Dimensional (the dimension being the time
direction) Convolutional Neural Network (CNN) based on the architecture designed in an
earlier study [5]. For both methods, we will explain the data pre-processing pipeline, feature
selection and extraction, model architecture, training procedure, and evaluation protocol.
By evaluating a classical feature-based model (Random Forest) against a deep learning ap-
proach (1D-CNN), we aim to compare two distinct lightweight methodologies. By
doing so, we ensure our conclusions are not contingent on a single modeling architecture,
thereby strengthening their validity.
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Figure 3: The Minimum hand-to-mouth Distance Per Label.

4.1 Shared Experimental Setup

Both models were trained and evaluated using a 5-fold cross-validation scheme to ensure
robust and generalizable results. To prevent data leakage between folds, the data was strictly
partitioned by video, video segment, and participant ID. This strategy ensures that
data from the same participant or continuous scene, even if captured by different cameras
or labeled by different annotators, does not appear in both the training and validation set
of a given fold. The core of our data handling for both approaches relied on a sliding
window method, segmenting the continuous stream of pose data into fixed-size windows
for classification. For both approaches, a window was considered part of the positive class
if at least 60 percent of its frames had the positive label (drinking). Negative samples were
generated as follows: For the training sets only, windows with an overall negative label (not
drinking) were discarded if they contained any individual frames of the positive class. For
validation, the 60 percent rule still applies, but no windows are thrown out.

On the usable data intersection (refer to section 3), drinking segments averaged 170.12
frames but were highly variable (SD=131.07). To balance capturing a large chunk of the
drinking action with the need for sufficient training data, we chose a 180-frame window, as
longer windows severely limited sample availability due to the 60 percent sampling rule for
positives.

4.2 Approach 1: Random Forest Classifier

Our first approach prioritized computational efficiency and real-time performance by using
a Random Forest (RF) classifier. This model is well-suited for learning from a curated set
of higher-level features and is inherently robust to noisy data.

Data Pre-processing and Feature Extraction Before training, we worked exclusively
with the intersection of data where both drinking and pose annotations were available.



The primary pre-processing step involved compressing the spatio-temporal pose data from
each window into a fixed-size feature vector. Guided by our exploratory data analysis, we
engineered features designed to capture the key dynamics of a drinking motion:

e Hand-to-Face Proximity: The maximum and minimum Euclidean distance between
the wrist keypoints and the nose keypoint.

e Hand Dynamics: The mean speeds and total horizontal and vertical displacements
of the hands.

e Limb Variance: The temporal variance of horizontal and vertical coordinates for the
wrist, head, shoulder, and feet.

e Arm Kinematics: The angles formed by the shoulder-elbow-wrist keypoints.

Occluded keypoints (represented as NaN values) were handled during this feature extrac-
tion step. Within each sliding window, any NaN value was imputed using the mean of the
available data points for that specific coordinate within that window.

Model Training and Implementation To address the severe class imbalance, we down-
sampled the negative class during training. Furthermore the following hyperparame-
ters were tuned: window stride (5), the negative-to-positive training ratio (2), and several
Random Forest parameters: number of estimators (1000), max depth (none), minimum
samples for split (8), and minimum samples per leaf (4).

4.3 Approach 2: 1D-CNN Classifier

Our second approach aligns more closely with current literature, using a 1D-CNN to learn
features directly from raw pose data. The architecture was inspired by a previous study[5]
on laughter detection of which the source code has been published on GitHub[15].

Data Pre-processing and Input Representation Based on our analysis showing that
certain joints are more informative, we selected a minimal yet effective skeleton to reduce
noise and dimensionality. The input for the CNN consisted of the raw coordinate sequences
of the following keypoints: nose, neck, both shoulders, both wrists, and both hips.
This selection captures essential upper body and core movement. For this model, occluded
data points within a window were imputed with zero. The raw sequences of these coordinates
from a fixed-size window of 180 frames were fed directly into the CNN.

Model Training and Implementation The sliding window approach achieved an op-
timal window stride at 60 frames. To manage the class imbalance, we again downsampled
the negative class and used a weighted Binary Cross-Entropy (BCE) loss function with a
weight factor of 8.

The following hyperparameters were optimized, with the final values used in parentheses:
learning rate (3e-4), batch size (32), BCE loss weight (8), and the negative-to-positive ratio

(2)-



Table 1: Overall Cross-Validation Performance of the 1D-CNN Model.

Metric Average Score

ROC AUC | 0.5527 (4/- 0.1690)
Precision 0.0240 (+/- 0.0459)
Recall 0.0532 (+/- 0.0972)
F1-Score 0.0330 (+/- 0.0624)
Accuracy | 0.9213 (+/- 0.0064)

4.4 Evaluation Protocol

Both models were evaluated using the same set of metrics: F1-score, Precision, Recall,
ROC-AUC, and overall accuracy. To convert the probabilistic outputs of each model
into binary labels for calculating F1, precision, and recall, we did not use a fixed 0.5 thresh-
old. Instead, for each fold, we determined an optimal threshold by selecting the value
that maximized the Fl-score on the Precision-Recall curve of that fold’s validation data.
Finally, a manual qualitative analysis was performed to examine false positives and false
negatives to identify which gestures are most commonly misclassified by each model.

For a more in-depth view of the model implementations and to ensure full reproducibility
of these experiments, the source code is available on GitHub[16]. Refer to section 8 for a
concrete statement on reproducibility.

5 Results

In this section, we present the performance of the two proposed classification models. The
results are organized to directly address the research sub-questions outlined in section 1.1,
providing a comparative analysis based on quantitative metrics and qualitative error inspec-
tion.

5.1 Comparative Model Performance

We evaluate both models according to the validation criteria discussed in section 4. To
address RQ1 regarding the performance of lightweight models, the overall metrics for the
1D-CNN approach are presented in Table 1, and overall metrics for the RF approach are
presented in Table 2.

5.1.1 1D-CNN-Based Approach

The 1D-CNN was trained using the optimal hyperparameters found during tuning, which
included a training stride of 60, a learning rate of 3e-4, a batch size of 32, a BCE loss weight
of 8, and a negative-to-positive training ratio of 2. The average performance across all five
folds, using a dynamically optimized classification threshold for each fold, is summarized in
Table 1.

While the overall scores are low, the model’s performance was consistently better than
random chance. Figure 4 displays the Receiver Operating Characteristic (ROC) curves for
each fold and their mean, plotting the true positive rate against the false positive rate. As
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Figure 4: ROC curves for the 1D-CNN model. The plot shows the performance of each of
the 5 folds, their mean (in blue), and the performance of a random guesser (dashed line).

Table 2: Overall (mean) Performance of the Random Forest Model.

Metric Score
ROC AUC | 0.6391
Accuracy 0.9427
Precision 0.0512
Recall 0.1730
F1-Score 0.0790

shown, the mean curve and several individual folds remain above the diagonal line represent-
ing a random guesser, indicating that the model learned a discernible, albeit weak, signal
from the data.

The Precision-Recall curves, shown in Figure 5, further illustrate the model’s behavior.
This plot of precision versus recall highlights that Fold 2 demonstrated the most potential
in distinguishing positive instances.

To provide a qualitative view, Figures 6a through 6d show examples of the model’s
predictions plotted against the ground truth on a timeline.

5.1.2 Random Forest-Based Approach

The Random Forest (RF) model, which operated on engineered features, yielded the per-
formance metrics (mean across folds) shown in Table 2. Interestingly, the best results were
achieved by training the model to predict the negative class (class 0) and taking the proba-
bility for the positive class as 1 - P(0).
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Figure 5: Precision-Recall curves for the 1D-CNN model for each fold against a random
guesser baseline.

The ROC curve for the RF model, seen in Figure 7, shows that the mean performance
is notably above the random baseline, with Fold 4 performing particularly well. However,
the Precision-Recall curves in Figure 8 are mostly flat and close to the baseline, with a
sharp spike in precision only at a near-zero recall. This indicates the model struggled to
confidently identify positive samples without creating many false positives. This behavior
is further clarified by observing that the optimal threshold for achieving a realistic F1-score
was very high (approximately 0.98 , suggesting the model learned to default a single class.

5.2 False Positives: Misclassifications on Similar Actions

Since the CNN showed slightly more potential for nuanced classification despite its low
scores, we focused the detailed qualitative analysis on its errors.

In total there were 43 continuous sequences of frames (not individual windows, but
subsequences of the total data) either classified as false positive or false negative. These
were gathered from the validation set predictions of the associated folds. The full list of
these identified sequences can be found in the Appendix B.

To understand which actions are most commonly confused with drinking, we manually
inspected the false positives generated by the models.

What resulted was the following list of actions with the associated amount of occur-
rences (this list does not remove duplicates among camera angles since the model classified
both differently on some occasions): Wrist clutching: 1, General talking gestures:
5, Scratch: 2, Adjust hair: 2, Fully occluded: 1, partially occluded: 4, mostly
occluded: 6, hands and mouth in close 2D proximity due to camera angle: 2, head
bowing down: 2, no specific associated action (likely due to the decision threshold
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(a) A correctly identified drinking sequence.

Fold 2: Predictions vs. Truth
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(b) A delayed positive classification.
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(c) An incorrect negative classification.

Fold 2: Predictions vs. Truth
Participant 34 | Video 2 | Segment 9 | Camera 8
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(d) An incorrect positive classification (person was gesturing while speaking).

Figure 6: Qualitative examples of the 1D-CNN model’s performance. (a) A correct detection.
(b) A correct but delayed detection. (c) A false negative (missed event). (d) A false positive
(incorrect event). 11
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Figure 7: ROC curves for the Random Forest model, showing each fold, their mean, and a
random guesser.
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Figure 8: Precision-Recall curves for the Random Forest model.
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being sub-optimal): 7.

5.3 False Negatives: Analysis of Failure Conditions

Finally, we investigated the conditions under which the CNN model failed to detect true
drinking events. A primary hypothesis was that performance would degrade with poorer data
quality. Inspection of the drinking instances missed by the model confirmed that the model
performed worse on segments with a higher number of occluded keypoints. An investigation
into the model’s false negatives confirmed our hypothesis that performance degrades with
poorer data quality. Of the 11 drinking events missed by the model, the distribution was
as follows: Partially occluded: 3, Mostly occluded: 2, fully occluded: 2, annotator
mistakes: 2, similarity (between drinking and not drinking pose due to camera angle): 1,
not occluded: 1.

6 Discussion

The performance of both the 1D-CNN and Random Forest models was unmistakably poor,
with Fl-scores only slightly better than random chance. This leaves the answer to RQ1,
which questioned if lightweight models could achieve reliable performance, largely inconclu-
sive, save for the observation that they performed slightly better than random guessing.

In response to RQ3, which investigated specific failure conditions, this poor performance
is largely attributable to severe data scarcity (and to a lesser extent, inherently messy data);
with fewer than 40 positive training instances, the models were data-starved, making the lack
of varied data the most severe bottleneck. However, the limited results that were garnered
do suggest that occlusion of the limbs and the accidental 2D proximity of hands and limbs
due to camera angles both contribute to a model’s predictive uncertainty.

Furthermore, regarding RQ2, which focused on confusion with visually similar actions,
the dataset’s top-down perspective created ambiguous cues where common non-drinking
movements, such as general hand gesturing or adjusting the hair, were easily mistaken for
the target action due to similar hand-to-head proximity. The models also seemed to perform
roughly as bad on ambiguous actions as on occluded actions. Despite these fundamental
challenges, the ROC curves for both models remained consistently above the random-chance
baseline, indicating that a weak, learnable signal does exist, even if it could not be effectively
captured by models trained from scratch on this limited dataset.

6.0.1 Limitations and Future Directions

The primary limitation of this study was the attempt to train models on an insufficient
dataset, a decision constrained by the project’s 10-week timeline. This timeframe precluded
more effective strategies such as acquiring a richer dataset, performing additional annota-
tion, or correctly implementing a transfer learning approach with a pre-trained model like
MMAction2[17]. Additionally, the Random Forest model was hampered by a sub-optimal
feature set. This could be mitigated by utilizing features known to have a higher rate of
success. The features outlined by EatSense[18] in their study could lead to improved results,
but were not implemented due to time constraints.

Consequently, future work should directly address these limitations. The most critical
next step is to establish a robust baseline on this dataset by fine-tuning a large, pre-trained
action recognition model. This would provide a much clearer answer to the core research
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question. Subsequent efforts could then focus on engineering more discriminative features
for classical models and developing methods to account for potential annotator lag in the
dataset.

6.0.2 Broader Implications

While the direct results were not successful, they carry several important implications for
research in this area:

An "In-the-Wild" lesson: Our findings serve an advisory role for future work, high-
lighting the significant performance gap between models trained on controlled data versus
those deployed in messy, real-world scenarios.

The Necessity of Transfer Learning: This work strongly suggests that for sparse
data problems like this one, transfer learning with large, pre-trained models should be the
default methodology, not an alternative to training from scratch.

A Focus on Data-Centric AI: The challenges posed by camera angles, occlusion, and
potential annotation errors indicate that progress may depend more on curating higher-
quality datasets than on simply designing novel model architectures.

7 Conclusion and Future Work

This research investigated the viability of using lightweight, skeleton-only models for real-
time drinking detection in challenging, "in-the-wild" social environments. We evaluated
two distinct approaches, a feature-based Random Forest classifier and a 1D-CNN, on the
Conflab dataset, which is characterized by sparse labels and significant visual noise.

Our findings demonstrate that training these models from scratch on such data, limited
in size as the dataset turned out to be, is insufficient to achieve reliable performance. Both
models performed only marginally better than a random baseline, failing to produce a ro-
bust classifier suitable for real-world application. The primary obstacles identified were the
severe scarcity of positive training examples, occlusion of the limbs, and the inherent visual
ambiguity of the top-down camera angles, which together made it difficult to distinguish
drinking from other common hand-to-head movements.

Despite these low performance scores, our analysis suggests a weak, learnable signal is
present in the data. Therefore, future work should not abandon this problem but rather
pivot to more suitable methods. The most critical next step is to leverage transfer learning by
fine-tuning large, pretrained action recognition models, which we hypothesize are necessary
to overcome the data-related challenges encountered in this study. Securing richer datasets
for training and engineering more sophisticated features for classical models remain vital
secondary avenues for exploration.

Ultimately, while this study did not produce a deployable model, it successfully under-
scores the significant gap between controlled and real-world scenarios and provides a clear,
data-centric path forward for achieving practical, real-time behavioral analysis.

8 Responsible Research and Privacy

This research complies with the 'TU Delft Code of Conduct’, as well as the 'Netherlands
code of conduct for research integrity’[19].
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We acknowledge the ethical responsibilities inherent in conducting research involving
human data and developing technologies for behavioral analysis. This work was conducted
in adherence with the principles outlined in the TU Delft Code of Conduct for Research
Integrity. Our ethical considerations focused on three key areas: study reproducibility, the
privacy of the dataset participants and the broader societal implications of this research.

8.1 Reproducibility

Standard libraries have been used in the implementation of the models and evaluation criteria
mentioned in the article. The source code has also been released[16]. The main hurdle to
reproducibility is access to the database, which can be requested via university institutions.
The dataset was not used in it’s entirety, seeing as not all the data was useful, the code
to attain the same intersection of used data has also been released in the same repository
as the rest of the source code. Most of the results are numerical and can be verified. A
random state’ set at an unchanging 42 was used to prevent random results after running
the training loop. These facts together should make the results of this paper easily verifiable
and reproducible on hardware with at least 16GB of RAM.

To ensure full transparency and to allow for the verification of our findings, the source
code[16] for this project has been released publicly in an open-source repository. This
approach is in line with our commitment to reproducibility, allowing other researchers to
build upon and critique this work.

Finally, all software libraries used in our implementation are open-source with open
licenses, ensuring there are no implementation related licensing barriers to reproducing this
work and replicating our results.

8.2 Bias

We acknowledge that several forms of bias could influence this research.

The Conflab dataset was collected at an international academic conference. The demo-
graphics of such an event may not be representative of the general population, potentially
skewing towards specific age groups and ethnicities, and will especially be biased in terms
of levels of education. A model trained on this data may therefore perform differently and
less equitably when applied to other demographic groups.

With a very small number of positive examples (around 40 training instances), there is
a high risk that a model could learn spurious correlations. For example, if a specific gesture
or camera angle coincidentally appeared in several drinking sequences, the model might
incorrectly learn that this feature is predictive of drinking.

The poor performance of our models inherently mitigates the risk of deploying a biased
system, as the models are not reliable enough for any application. However, we acknowledge
these biases are present in the dataset. We strongly recommend that any future, more suc-
cessful research using this or similar datasets to include a rigorous evaluation of the model’s
performance across diverse demographics, ensuring fairness and preventing the amplification
of existing societal biases.

8.3 Participant Privacy and Data Handling

The primary dataset used in this study, Conflab, consists of multimodal recordings of in-
dividuals at a real-life event. Our first step was to examine the ethical protocol of the
original data collection. The authors of the Conflab dataset state that participants provided
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informed consent for their data to be used in further research studies, which provides the
ethical foundation for our work.

To build upon this foundation and to ensure the privacy of the participants, our method-
ology was designed to be inherently privacy-preserving. To train the models, we exclusively
used binary drinking annotations, and 2D skeleton data derived from the video footage.
This process abstracts the visual information into a set of anonymized keypoints and their
trajectories, removing identifiable features such as faces and making the re-identification of
an individual from the processed data extremely difficult.

8.4 Societal Implications and Mitigation

We recognize that any technology capable of detecting human actions from video footage has
the potential for misuse. Such tools could be applied to applications of surveillance, leading
to potential abuses by those in positions of power. While this technology is already widely
and openly available, a successful outcome of this study could contribute to its ability to be
deployed more covertly or on a wider scale by enabling it to run on smaller, local hardware.

Several factors mitigate this risk in the context of our project. First, this study does
not develop a new, more powerful detection paradigm; it merely examines the performance
of existing techniques on challenging, "in-the-wild" data. Our work serves as an analysis of
what is currently possible rather than a tool created for public release.

Due to the potential for misuse, we recommend future successful works to only deploy the
resulting technologies in situations where it is a best fit solutions, and where subject have
provided explicit consent for the technology to observe them, thus preventing (unethical)
surveillance.

8.5 Use of GenAl

A full statement on the use of Generative Al can be found in the appendices. In short
Generative Al was used in the making of this paper in two main ways:

1. Writing help: An LLM was asked to improve the use of language and sentence structure
of student-written text. In the process it made suggestions on parts of the student
explanation that were still unclear and needed improvements.

2. Implementation help: An LLM was prompted to provide the boilerplate code for the
DataSet/Loader and the main training and evaluation loops.

A Statement on the Use of Generative Al

Generative Al was used in the making of this paper and the source code. The following
strategy was employed

e Writing help: An LLM was asked to improve the use of language and sentence structure
of student-written text. In the process it made suggestions on parts of the student
explanation that were still unclear and needed improvements.

e Implementation help: An LLM was prompted to provide the boilerplate code for the
DataSet/Loader and the main training and evaluation loops.

The following Prompts were used in the writing process:
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Hi! Could you please improve the flow, sentence structure and word usage of the following, wl

[insert paragraph or section]

The following prompts were used in the coding process:

Hi! Could you please show me how to implement the general structure/architecture of an ML pij

Debugging prompts:

Hi! Could you please help me figure out why the follwing code:

[..

-]

Produces the following error:

[..

-]

The above was used when a google search did not yield sufficient results.

Hi

p5

p5

p6

p6

pl2
p36
p36
p36
p44
p46
p25
p34
p43
p43
p43
p43

sb
sb
s2
sb

s9
s9
s9
s9
s2
sb
s2
s9
s2
s3
s3
s4

c6:
c8:
c4d:
c4d:

c4d:
c2:
c4:
c6:
c6:
c6:
c8:
c8:
c6:
c2:
c4d:
c2:

pl v3 s6 c4:

pl0
p20
p20
p20
p23
p23
p24
P26
p29
p40
p41

v2
v3
v3
v3
v2
v2
v3
v3
v3
v3
v3

s9
s2
s2
s2
s9
s9
sb
s2
sb
sb
s6

c8:
c2:
c4d:
c6:
c6:
c8:
c4:
c2:
c4d:
c4d:
c4d:

Gem, could you please turn this into a tabel for me? Please leave the text as is:

FP 2900-3000 frames - walking clutching wrist with other hand

FN 6700 frames - has walked out of frame

FP on the entire thing - starts segment with hands on mouth but then goes to ges
FP 1700-2000 and 4500 - talking hand gestures

FP
FP
FP
FP
FP
FP
FP
FP

after 1000 til the end - goes to scratch ear, then keeps gesturing

1450 frame - adjusting know/ponytail/hair

500-2000 frame - adjusting hair and walks out of frame

after frame 500 til the end - not in frame except legs at frame 500

2700 - (walks into frame and) scratches nose

f 5000-6300 - walks into frame, hands behind back

frame 0-10 - camera angle occludes hands, when they show they are close to 1l
2400-2700 - walks into frame to shake hands (counted as hand gesturing)

multiple FN on 600-900, 2700-3200, 4200-4500, 6600-6900 - only one keypoint oc«

FN
FN

frame 6400-6900 - not in frame
frame 6400-6900 - not occluded

entire segment FP - scratches a few times but not occluded, could be explained
entire thing FP - due to camera angle hands are behind/on the head

FP
FN
FN
FP
FN
FN
FP
FP
FP
FP
FP

4600-end - walks into frame

frame 5900-6700 - only leg visible and turns around

frame 5900-6700 - positioned in the middle of the screen, almost viewed fror
frames 2200-2400 - almost entirely occluded

frames 2100-2400 - annotator mistake, cup empty

frames 2100-2400 - annotator mistake, cup is empty

entire segment - hands behind back occluded

entire segment - just standing: threshold failure

entire segment - regular movement, hands only sometimes occluded, mostly moc
entire segment - mostly occluded, hands moving rapidly

after frame 5000 - hands become non-occluded and starts gesturing
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p4l v3 s6 c6:

FN frames 1500-1800 - almost entirely occluded

p3 v2 s8 c4: entire segment - just standing, threshold failure
p3 v2 s8 c6: FP frames 5500-5600 - circular hand gestures while talking
p3 v3 s2 c4: entire segment - mostly standing, threshold failure

p5 v3 s6 c2:

pl3 v3 sb c4:
pl6é v3 sb c4:
p4l v3 sb c4:
p44 v3 sb c4:

FN frames 1000-1300 and frame 6900-end - camera angle makes cup look close to f:
FP entire segment - hands mostly occluded turned away from camera

FP entire segment - hands behind back mostly occluded

FP entire segment - regular pose variation, threshold failure

entire segment - both gesturing and scratching continually, camera angle makes

pl v3 s4 c4: FN frames 1100-3600 - scratches head (turned away from camera)
p6 v2 s9 c4: FP frames 5500-end - makes multiple circular talking hand gestures
p7 v3 s2 c2: FP entire segment

pl0 v3 s2 c8:
p25 v2 89 c8:
p4l v2 s9 c8:

FP 3600 - bows head closer to hands
FP begin-4100 - mostly out of frame
FP 4000-end - entirely occluded

a lot of times on the worse folds, just walking into frame seems to be enough for the mislcas

model seems to falsely attribute drinking label to bows??

B Identified False Positives and False Negatives

In the following tables B.2 and B.1, the identifier key is specified as follows:

: Participant number
: Video Number

s_: Segment Number

c_: Camera Number
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B.1 False Positives (FP)

Identifier Frames Description

p5 v3sb c6 | 2900-3000 frames walking clutching wrist with other hand

p6 v3 s2 c4 on the entire thing starts segment with hands on mouth
but then goes to gesturing while talking
the entire segment

p6 v3 85 c4 1700-2000 and 4500 talking hand gestures

pl2 v2 89 c4 | after 1000 til the end goes to scratch ear, then keeps gesturing

p36 v2 s9 c2 | 1450 frame adjusting know /ponytail /hair

p36 v2 s9 c4 | 500-2000 frame adjusting hair and walks out of frame

p36 v2 s9 c6 | after frame 500 til the end | not in frame except legs at frame 500

p44 v3 s2 c6 | 2700 (walks into frame and) scratches nose

p46 v3 s5 c6 | f 5000-6300 walks into frame, hands behind back

p25 v3 s2 c8 | frame 0-10 camera angle occludes hands, when
they show they are close to head due to
camera angle

p34 v2 89 ¢8 | 2400-2700 walks into frame to shake hands
(counted as hand gesturing)

p43 v3 s4 c2 | entire segment scratches a few times but not occluded,
could be explained by bowing action
which not many participants exhibit

pl v3 s6 c4 entire thing due to camera angle hands are
behind/on the head

pl0 v2 s9 ¢8 | 4600-end walks into frame

p20 v3 s2 c6 | frames 2200-2400 almost entirely occluded

p24 v3 sb c4 | entire segment hands behind back occluded

p26 v3 s2 c2 | entire segment just standing: threshold failure

p29 v3 sb c4 | entire segment regular movement, hands only
sometimes occluded, mostly model
threshold failure

p40 v3 sb c4 | entire segment mostly occluded, hands moving rapidly

p4l v3 s6 c4 | after frame 5000 hands become non-occluded and starts
gesturing

p3 v2 88 c4 entire segment just standing, threshold failure

p3 v2s8 c6 | frames 5500-5600 circular hand gestures while talking

p3 v3s2 c4 entire segment mostly standing, threshold failure

pl3 v3 sb c4 | entire segment hands mostly occluded turned away
from camera

pl6 v3 s5 c4d | entire segment hands behind back mostly occluded

p4l v3 sb c4 | entire segment regular pose variation, threshold failure

p44 v3 sb c4 | entire segment both gesturing and scratching
continually, camera angle makes hand
close to head

p6 v2s9 c4 | frames 5500-end makes multiple circular talking hand
gestures

p7 v3 82 c2 entire segment

pl0 v3 s2 ¢8 | 3600 bows head closer to hands

p25 v2 59 c8 | begin-4100 mostly out of frame

p4l v2 89 c8 | 4000-end 1 entirely occluded




B.2 False Negatives (FN)

Identifier Frames Description

p5 v3 85 c8 6700 frames has walked out of frame

p43 v3 s2 c6 | 600-900, 2700-3200, 4200-4500, 6600-6900 | multiple FN on - only
one keypoint occluded

p43 v3 83 ¢2 | frame 6400-6900 not in frame

p43 v3 83 c4 | frame 6400-6900 not occluded

p20 v3 s2 c2 | frame 5900-6700 only leg visible and
turns around

p20 v3 s2 c4 | frame 5900-6700 positioned in the middle
of the screen, almost
viewed from the top

p23 v2 89 ¢6 | frames 2100-2400 annotator mistake, cup
empty

p23 v2 89 c8 | frames 2100-2400 annotator mistake, cup
is empty

p4l v3 s6 c6 | frames 1500-1800 almost entirely occluded

pb v3 s6 c2 frames 1000-1300 and frame 6900-end camera angle makes cup
look close to face, then
lifts other hand to
gesture while talking

pl v3sd c4 | frames 1100-3600 scratches head (turned

away from camera)
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