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Layman’s Summary

Researchers can be interested in certain characteristics of a group of people: a population. This population
can be divided into different subgroups based on, for instance, gender, age, religion, height or weight. Usu-
ally, a smaller sample of the population is created to examine all people. All subgroups are represented in
the sample and ideally, the relative size of every subgroup in the sample is equal to the share in which every
subgroup appears in the population. If, for instance, one has 70% men and 30% women in the population,
these percentages should be more or less the same in the sample to obtain a representative result for all peo-
ple together. Sometimes, this is not the case, but it can still be necessary to use the acquired data, because
it is costly to redo a survey. In this thesis, different ways to use the flawed data are explored, developed and
compared in the case of two subgroups. This leads to two suitable methods that take the share of the sub-
groups into account. However, if one does not know how many people in the population belong to a certain
subgroup, these methods become less valuable. Hence, information about a population is very important for
the statistical analysis of this population.
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Abstract

Dividing a population into subgroups and conducting research on this population including the subgroups
comes with a challenge. This stratified sampling relies on information about the share of the subgroups in the
population. Sometimes the proportions in the sample are not taken equal to the true proportions of the popu-
lation. This can be corrected through the use of particular estimators taking these proportions into account.
In this thesis, different estimators for the true population mean and variance are defined and examined in
terms of bias and variance in the case of two subgroups. Weighing the measurements according to the true
proportions creates unbiased estimators for both the mean and the variance. These unbiased estimators are
compared with other, biased, estimators, including naive ones in which the influence of different subgroups
is not taken into account. The naive estimators are not only biased, they also have a variance of the same
order as the unbiased ones. When the true proportions are not available, one can only take a guess. A guess
lying close to the true proportions leads to a smaller bias and therefore a better estimator. This underlines
the importance of obtaining sufficient knowledge about the population.
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1
Introduction

In social studies, many surveys are held to examine certain attributes of a population. For acquiring data
and information about people, a researcher may want to obtain an understanding of different characteris-
tics of the population. With these insights, it is possible to divide the population into different subgroups.
Subgroups could be based on, for instance, age, gender, religion, height or weight. This process of selecting a
sample is called stratified sampling and the subgroups are called strata. Examining the strata individually can
result in new knowledge about their own characteristics, but stratified sampling can also be used to study the
complete population. Through the use of stratified sampling, one can make sure every subgroup is correctly
represented in the sample, which ensures that the results are representing the complete population.

Acknowledging the existence of the subgroups is important if one wants to assemble a diverse and repre-
sentative sample of the complete population. A researcher may want to take the influence of these subgroups
into account when creating a sample in order to obtain results about the whole population. If, for instance,
the population consists of 70% men and 30% women, it is important to know this beforehand. Collecting data
from a sample consisting of 50% men and 50% women is then not the best approach to study the population,
despite it being a natural choice. This would result in having different group proportions in the sample than
in the population and might not give representative results for the population.

Similar to the example given above, there are cases in which the proportions in the sample are not equal
or even close to the true proportions of the population. This could be a result of not being able to obtain the
true proportions or simply because they were not taken into account. Sometimes the data has already been
acquired using the wrong proportions and it is costly to redo the survey. Can the data still be used to obtain
reliable results about the population?

When one still wants to draw conclusions from the data, it is important that this is done cautiously. To
start with, it must be realised that not necessarily the true proportions are used. This does not mean that
the true proportions are known, but the researcher should at least be aware of the fact that their proportions
can be inaccurate. A lack of awareness on this could lead to a naive approach to estimating, with major
consequences. Wrong conclusions could be drawn, because certain groups can be overrepresented while
others are underrepresented or even absent in the sample. Neglecting the inaccurate proportions will lead to
a conclusion in which the result of the overrepresented group has too much influence on the main result in
comparison with other subgroups. If the outcome of the conducted study determines new legislation, it can
even have the discrimination of minorities as a result. The goal of this thesis is to prevent such consequences
by developing estimators which can be used even if wrong proportions occur in the sample.

To further illustrate the importance of selecting a proper method to analyse the acquired data, an example
is given by Thangavelu and Brunner [4]. They show that a wrong way of sampling and not adjusting for this
can cause problems in medical research. In their studies, a new treatment is tested in four different medical
centers with all participants equally distributed among the centers. Various standard techniques used in
multiple clinical trials show an issue regarding their representativeness for the whole population. This could
ultimately lead to a wrong choice of which treatment is best. An advanced analysis of these estimators was
done and modifications were made. The techniques used are very different from the ones used in this thesis
and are therefore not very applicable here.
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3

Research has already been done on how to select a sample properly in order to have great estimators.
For instance, Horvitz and Thompson assumed they could choose a probability for each individual of the
population to be part of the sample [2]. They have provided different sampling schemes in relation to the
optimal selection probabilities in order for their estimators to work as best as possible. Also Chaudhuri and
Stenger [1] and Pfeffermann and Rao [3] studied different sampling schemes. However, in this thesis, we are
not able to choose sampling schemes and selection probabilities, but are restricted to using the sample as
described before. Only the strata and their shares in the population can be of influence on the way a sample
is created.

In this thesis, multiple estimators for the mean and variance of a population with two subgroups are
developed. They are defined, modified and compared in terms of bias and variance. For both parameters, an
unbiased estimator has been found.

The thesis is structured as follows: Chapter 2 contains the estimation of the population mean for two
strata. Various estimators are defined and compared in terms of bias and variance. This is done for both fixed
group sizes in the sample and for random group sizes.

Chapter 3 is about estimating the true variance of a population with two subgroups. Different estimators
are defined and their biases are derived. The bias of one estimator inspires the creation of a new one, ulti-
mately resulting in an unbiased estimator. Comparing the estimators on their variance leads to a final verdict
on the best estimator choice. Because the variance involves quadratic terms, this chapter contains much
longer proofs and equations than Chapter 2. Therefore, the chapter is structured such that the definitions
and results are given in the beginning and all proofs of the stated theorems are at the end of the chapter. The
thesis ends with a conclusion in Chapter 4, followed by some recommendations for future work.



2
Estimating the mean

This chapter starts with setting the framework for this thesis in Section 2.1. In Section 2.2, multiple estimators
for the mean are defined and compared for fixed subgroup sizes. Section 2.3 contains a comparison of the
previously defined estimators with the case of random group sizes.

2.1. Preliminaries
Let us consider a certain population. This population can be divided into different subgroups based on dif-
ferent characteristics. This is called stratified sampling and the subgroups are called strata. Examples of these
characteristics could be gender, age or hair colour. Define an experiment done with this population divided
into two strata: 1 and 2. Originally, they have the true proportions p∗

1 and p∗
2 . Note that p∗

1 +p∗
2 = 1, because

the groups form a partition of the population. They are disjoint and their union is the complete set. The true
proportions might be available, but this is not necessarily the case.

Fix in advance the numbers of measurements per group: n1 and n2. Although the group sizes are fixed,
individuals from both strata are still randomly selected as a measurement in the experiment. So n1 measure-
ments are taken at random in group 1 of the population and n2 individuals are randomly selected in group 2.
Let n = n1 +n2 be the total number of measurements.

For unknown true group proportions, taking a guess of the proportions comes as a solution when these
weights are needed. By p1 and p2 the guessed proportions are denoted. These guesses could be based on any
available information on the group sizes in the population. Two particular guesses are p̂1 := n1

n and p̂2 := n2
n .

These are the proportions of measurements in each group in the sample. Because n1 and n2 are fixed, these
proportions p̂1 and p̂2 are also fixed. All guesses are taken such that p1+p2 = p̂1+p̂2 = 1, because both groups
together cover the complete sample.

The measurements of group 1 are denoted by X1,1, ..., Xn1,1 and those of group 2 by X1,2, ..., Xn2,2. Let
X1,1, ..., Xn1,1 be independent and identically distributed from an unknown distribution with mean µ∗

1 and
varianceσ∗

1
2 and X1,2, ..., Xn2,2 from an unknown distribution with mean µ∗

2 and varianceσ∗
2

2. The true mean
µ∗ of the complete population is: µ∗ = p∗

1µ
∗
1 + p∗

2µ
∗
2 . The true population mean can be of the interest of

a researcher or statistician. Multiple ways of estimation of this quantity will therefore be examined in this
chapter.

Besides the mean, one could also desire to know the true variance σ∗2 of the population. Firstly, an
expression for this is derived below. Different ways of estimating are presented and compared in Chapter 3.

Let Z denote the group (1 or 2) of a measurement X out of the complete dataset.

Theorem 2.1. The true variance of the population is:

σ∗2 = p∗
1σ

∗
1

2 +p∗
2σ

∗
2

2 +p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 − (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2 . (2.1)

4



2.2. Estimating the mean for fixed group sizes 5

Proof of Theorem 2.1. By definition,

σ∗2 =E[
(X −E [X ])2]

=E
[(

X −µ∗)2
]

=E[
X 2]−µ∗2

= p∗
1E

[
X 2|Z = 1

]+p∗
2E

[
X 2|Z = 2

]− (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2 .

Now, by definition,
E

[
X 2|Z = 1

]=σ∗
1

2 +E [X |Z = 1]2 =σ∗
1

2 +µ∗
1

2, (2.2)

and similarly for Z = 2.

The first two terms of Equation (2.1) represent the intra-group variance: the group variances averaged
according to the true proportions. The other terms represent the inter-group variance: the variance between
the different group means. Equation (2.1) could then also be written as:

σ∗2 =E [Var[X |Z ]]+Var[E [X |Z ]] , (2.3)

where

E [Var[X |Z ]] = p∗
1σ

∗
1

2 +p∗
2σ

∗
2

2,

Var[E [X |Z ]] = p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 −µ∗2. (2.4)

New notation is introduced in the definition below, because multiple proofs and computations contain
similar expressions.

Definition 2.1. Define the following differences:

∆p := p∗
1 − p̂1 = p̂2 −p∗

2

∆̃p := p∗
1 −p1 = p2 −p∗

2

∆µ :=µ∗
2 −µ∗

1

∆µ2 :=µ∗
2

2 −µ∗
1

2

∆σ2 :=σ∗
2

2 −σ∗
1

2

∆n := n2 −n1.

Remember that p∗
1 + p∗

2 = p1 + p2 = p̂1 + p̂2 = 1. Note the difference between
(
∆µ

)2 = (
µ∗

2 −µ∗
1

)2 and ∆µ2 =
µ∗

2
2 −µ∗

1
2.

The true third and fourth moments of the first stratum are denoted by m∗
3,1 and m∗

4,1, respectively. These
quantities are not estimated in this thesis, but they appear in the variances of some of the developed estima-
tors and are therefore defined here. The true third and fourth moments of the second subgroup are likewise
denoted by m∗

3,2 and m∗
4,2, respectively.

2.2. Estimating the mean for fixed group sizes
In this section and the next one, all expectations and variances are with respect to µ∗ and therefore this is
omitted.

Definition 2.2. Define the following three estimators for µ∗: X , θ̂p1,p2 and θ̂oracle:

X := 1

n

(
n1∑

i=1
Xi ,1 +

n2∑
i=1

Xi ,2

)
, (2.5)

θ̂p1,p2 := p1

n1

n1∑
i=1

Xi ,1 + p2

n2

n2∑
i=1

Xi ,2, (2.6)

θ̂oracle := p∗
1

n1

n1∑
i=1

Xi ,1 +
p∗

2

n2

n2∑
i=1

Xi ,2. (2.7)



2.2. Estimating the mean for fixed group sizes 6

The estimator X is a naive one where all measurements are added together and then divided by the total
number of measurements. In a situation without stratified sampling, this would be a logical choice. As stated
in Theorem 2.2, X is biased in general. Therefore, one might consider adjusting the estimator such that the
group proportions are taken into account. This gives rise to the estimator θ̂p1,p2 . This estimator weighs the
measurements with the guessed proportions, when the true proportions are unavailable. However, if these
are known, a third estimator θ̂oracle can be used to estimate µ∗. This is a special case of θ̂p1,p2 .

Theorem 2.2. The bias of the estimator X is

E

[
X

]
−µ∗ =∆p∆µ.

The Mean Squared Error (MSE) is

MSE
(
µ∗; X

)
= p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

∆p
)2 (
∆µ

)2 .

Proof of Theorem 2.2. The bias of X is the following:

E

[
X

]
−µ∗ =E

[
1

n

(
n1∑

i=1
Xi ,1 +

n2∑
i=1

Xi ,2

)]
−µ∗

= 1

n

(
n1∑

i=1
E

[
Xi ,1

]+ n2∑
i=1
E

[
Xi ,2

])−µ∗

= 1

n

(
n1µ

∗
1 +n2µ

∗
2

)− (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)
=−∆pµ∗

1 +∆pµ∗
2

=∆p∆µ. (2.8)

By definition, the MSE is

MSE
(
µ∗; X

)
= Var

[
X

]
+

(
E

[
X

]
−µ∗

)2
. (2.9)

Computing the variance gives:

Var
[

X
]
= Var

[
1

n

(
n1∑

i=1
Xi ,1 +

n2∑
i=1

Xi ,2

)]

= 1

n2

(
n1∑

i=1
Var

[
Xi ,1

]+ n2∑
i=1

Var
[

Xi ,2
])

= 1

n2

(
n1σ

∗
1

2 +n2σ
∗
2

2
)

= p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2. (2.10)

Note that the independence of measurements of different groups is used in the second step. Combining
Equation (2.8), Equation (2.9) and Equation (2.10) gives:

MSE
(
µ∗; X

)
= p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

∆p
)2 (
∆µ

)2 .

It follows that X is unbiased if ∆p = 0 or ∆µ = 0, so if p̂1 = p∗
1 or µ∗

1 = µ∗
2 . When p̂1 = p∗

1 , the fixed
proportions are equal to the true proportions. This means that the group sizes in the sample exactly match
the true proportions. Therefore, all measurements can just be added together and then divided by the total
number of measurements, without taking the proportions into account. This is exactly what is done with X .
When µ∗

1 = µ∗
2 , the true means of both groups are equal. Although the true group variances can still be very

different, the groups are now quite similar and at least have the same expectation. Hence, it is a logical result
that X is unbiased, because the proportions do not have to be taken into account if the groups are already



2.2. Estimating the mean for fixed group sizes 7

equally distributed in terms of mean. In all other cases, X is biased, because then ∆p∆µ ̸= 0. This raises
the question whether it would be better to weigh the measurements according to their proportions. This is
done with the θ̂p1,p2 estimator. Guesses of the true proportions are used to weigh the measurements of both
groups. The bias and MSE of this estimator are stated below.

Theorem 2.3. The bias of the estimator θ̂p1,p2 is

E
[
θ̂p1,p2

]−µ∗ = ∆̃p∆µ.

The MSE of θ̂p1,p2 is the following:

MSE
(
µ∗; θ̂p1,p2

)= p2
1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2 + (

∆̃p
)2 (
∆µ

)2 . (2.11)

Proof of Theorem 2.3. The bias is the following:

E
[
θ̂p1,p2

]−µ∗ =E
[

p1

n1

n1∑
i=1

Xi ,1 + p2

n2

n2∑
i=1

Xi ,2

]
−µ∗

= p1

n1

n1∑
i=1
E

[
Xi ,1

]+ p2

n2

n2∑
i=1
E

[
Xi ,2

]− (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)
= (

p1 −p∗
1

)
µ∗

1 + (
p2 −p∗

2

)
µ∗

2 .

With the differences defined in Definition 2.1, we can rewrite the bias as:

E
[
θ̂p1,p2

]−µ∗ =−∆̃pµ∗
1 + ∆̃pµ∗

2 = ∆̃p∆µ.

The MSE again consists of the variance and the square of the bias. The variance is computed below.

Var
[
θ̂p1,p2

]= Var

[
p1

n1

n1∑
i=1

Xi ,1 + p2

n2

n2∑
i=1

Xi ,2

]

= p2
1

n2
1

n1∑
i=1

Var
[

Xi ,1
]+ p2

2

n2
2

n2∑
i=1

Var
[

Xi ,2
]

= p2
1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2.

Adding the variance and the square of the bias together leads to the MSE:

MSE
(
µ∗; θ̂p1,p2

)= p2
1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2 + (

∆̃p
)2 (
∆µ

)2 .

From Theorem 2.3, it can be concluded that θ̂p1,p2 is biased in general. The bias, denoted by ∆̃p∆µ, is of

similar form as the bias of X . Only the guessed proportions are different. The consequence is that θ̂p1,p2 is

unbiased in similar cases as X : when the guessed proportions match the true ones (p1 = p∗
1 ) or when both

groups have equal means (µ∗
1 =µ∗

2 ).

When the guesses p1 and p2 are taken equal to the fixed proportions p̂1 and p̂2, the coefficients of θ̂p1,p2

become equal to the ones of X : p̂1
n1

= n1
nn1

= 1
n , and similarly for p̂2

n2
. This means θ̂p̂1,p̂2 = X . So there is no

difference in X and θ̂p1,p2 as an estimator for µ∗ when the guesses p1, p2 are taken as the fixed proportions

p̂1, p̂2. It can be concluded that θ̂p1,p2 is only useful when one has a reason to take a different guess than the

fixed one for the proportions. Otherwise, the estimator X suffices, as it is more natural to interpret.

It is possible that the true proportions are known to the researcher. Then it is natural to use them instead
of guesses. This is the estimator θ̂oracle, given in Equation (2.7). The calculation of the MSE of θ̂oracle is very
similar to the one of θ̂p1,p2 , only now all p1’s and p2’s are replaced by their true values p∗

1 and p∗
2 . This creates

an unbiased estimator, which makes the second term of Equation (2.11) vanish, leading to the corollary below.

Corollary 2.4. The estimator θ̂oracle is unbiased and its MSE is

MSE
(
µ∗; θ̂oracle

)= p∗
1

2

n1
σ∗

1
2 + p∗

2
2

n2
σ∗

2
2. (2.12)

Because θ̂oracle is always unbiased, it is preferable to use this estimator over X and θ̂p1,p2 .
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2.3. Estimating the mean for random group sizes
In this section, the group sizes n1 and n2 are random variables. Still, n = n1+n2 is of fixed size, so n2 = n−n1.
Variable n1 behaves like a binomial distribution with n datapoints and a probability of p∗

1 . Let X random be the

same estimator as X , defined in Equation (2.5), but now for random group sizes n1,n2.

Theorem 2.5. The estimator X random is unbiased for µ∗. The MSE of X random is

MSE
(
µ∗; X random

)
= p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2 +p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 −µ∗2

n
. (2.13)

Proof of Theorem 2.5. The expected value of this estimator X random is: E
[

X random

]
=E [X ] =µ∗, with X some

measurement of the dataset. Therefore, X random is an unbiased estimator for µ∗. The MSE of X random is then
equal to its variance, which is just the true population variance σ∗2 divided by n.

The case of fixed n1,n2 with known true proportions p∗
1 , p∗

2 and estimator θ̂oracle can be compared with

the case of random n1,n2 with the estimator X random to decide which estimator to use.

Theorem 2.6. The difference between the MSEs of X random and θ̂oracle is

n
(
MSE

(
µ∗; X random

)
−MSE

(
µ∗; θ̂oracle

))= Var[E [X |Z ]]− ∆p

p̂1p̂2

(
p∗

1 p̂2∆σ
2 +∆pσ∗

2
2
)

. (2.14)

Proof of Theorem 2.6. The two first terms of Equation (2.12) and Equation (2.13), which look similar, are sub-
tracted and compared below:

p∗
1

2

p̂1
σ∗

1
2 + p∗

2
2

p̂2
σ∗

2
2 − (p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2) =
(

p∗
1

p̂1
−1

)
p∗

1σ
∗
1

2 +
(

p∗
2

p̂2
−1

)
p∗

2σ
∗
2

2

= (
p∗

1 − p̂1
) p∗

1

p̂1
σ∗

1
2 + (

p∗
2 − p̂2

) p∗
2

p̂2
σ∗

2
2

=∆p

(
p∗

1

p̂1
σ∗

1
2 − p∗

2

p̂2
σ∗

2
2
)

= ∆p

p̂1p̂2

(
p∗

1 p̂2σ
∗
1

2 −p∗
2 p̂1σ

∗
2

2
)

.

Rewriting proportions of group 2 into the ones of group 1 with the use of p∗
1 +p∗

2 = 1, leads to:

p∗
1

2

p̂1
σ∗

1
2 + p∗

2
2

p̂2
σ∗

2
2 − (p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2) = ∆p

p̂1p̂2

(
p∗

1 (1− p̂1)σ∗
1

2 − (1−p∗
1 )p̂1σ

∗
2

2
)

= ∆p

p̂1p̂2

(
−p∗

1 p̂1∆σ
2 +p∗

1σ
∗
1

2 − p̂1σ
∗
2

2
)

= ∆p

p̂1p̂2

(
−p∗

1 p̂1∆σ
2 +p∗

1σ
∗
1

2 − (p∗
1 −∆p)σ∗

2
2
)

= ∆p

p̂1p̂2

(
−p∗

1 p̂1∆σ
2 +p∗

1∆σ
2 +∆pσ∗

2
2
)

= ∆p

p̂1p̂2

(
p∗

1 p̂2∆σ
2 +∆pσ∗

2
2
)

.

Note that p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 −µ∗2 = Var[E[X |Z ]], as in Equation (2.4). The MSEs of both estimators can now
be compared:

n
(
MSE

(
µ∗; X random

)
−MSE

(
µ∗; θ̂oracle

))= n
(
Var

[
X random

]
−Var

[
θ̂oracle

])
= Var[E [X |Z ]]− ∆p

p̂1p̂2

(
p∗

1 p̂2∆σ
2 +∆pσ∗

2
2
)

.

When ∆p is equal to zero, this difference will be non-negative, because Var[E [X |Z ]] is non-negative by
definition. It is therefore better to choose θ̂oracle as an estimator. Also when the group means are very different
(so Var[E [X |Z ]] is large), the MSE of X random will be greater than the MSE of θ̂oracle. Only when∆p is relatively
large, X random is the better choice to estimate µ∗. This means that it could be better to let go the stratified
sampling and instead sample completely at random when one can not take proper guesses of the proportions.



3
Estimating the variance

In this chapter, the true variance of the experiment discussed in Section 2.1 is estimated in different ways.
Firstly, various estimators are defined and the main results are stated in Section 3.1 and Section 3.2. In the
remainder of the chapter, the stated theorems about the biases and variances of these estimators are proved.
SVarious lemmas are derived in Section 3.3 to be used in the proofs.

Note that the group sizes n1,n2 are fixed in this chapter. All expectations and variances in this chapter are
with respect to the true variance σ∗2.

3.1. Estimators and their bias
In order to estimate σ∗2 well with two subgroups, a natural first step might be estimating the variance as if
all measurements were coming from just one group. Then all squared differences of the measurements and
the mean are added together and afterwards divided by n −1. This approach is done initially, resulting in the
somewhat naive estimator defined below.

Definition 3.1. A naive estimator for σ∗2 is the following one:

V̂ar[X ] := 1

n −1

(
n1∑

i=1

(
Xi ,1 −X

)2 +
n2∑

i=1

(
Xi ,2 −X

)2
)

. (3.1)

As stated in the theorem below, the estimator V̂ar[X ] is in general a biased estimator. The proof of this
theorem is given in Section 3.4.

Theorem 3.1. The bias of V̂ar[X ] is

E
[
V̂ar[X ]

]−σ∗2 =∆p
(
∆σ2 +∆µ2)+ϵn ,

with

ϵn := 1

n −1

(
p̂1µ

∗
1

2 + p̂2µ
∗
2

2 − (
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +2p̂1p̂2∆σ
2
)

.

Remark that the ϵn-term is equal to zero in the asymptotic regime n → +∞. Therefore, multiple cases
exist for which the naive estimator becomes unbiased in under this asymptotic regime. This is similar to the
estimation of the mean studied in the previous chapter: we also studied several similar cases in which the
naive estimator X is unbiased. Firstly, when the fixed proportions p̂1, p̂2 are equal to the true proportions
p∗

1 , p∗
2 , the difference ∆p becomes zero. Only the ϵn term remains, letting the bias tend to zero. This result

does not come as a surprise, because in this case both groups are perfectly represented in the sample. Sec-
ondly, when the groups have equal means and variances, the bias tends to zero. Indeed, ∆σ2 +∆µ2 becomes
zero, leaving ϵn as the only term of the bias. This is also a natural result, because having similar distributions
in both groups means weighing the groups with their proportions becomes unnecessary. Therefore, the naive
estimator performs well enough. Lastly, if σ∗

2
2 = µ∗

1
2 and σ∗

1
2 = µ∗

2
2, the bias also tends to zero. In this rare

case, ∆σ2 +∆µ2 becomes zero. Thus, using the naive estimator is acceptable. However, it can be hard to
predict in advance whether these equations hold as it is an odd case.

9
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3.1.1. Developing an unbiased estimator
One can be interested in a generally unbiased estimator. Because the naive estimator is generally biased,
other approaches must be tried. In search of such an improvement, an estimator looking like the expression
for the true variance can be examined. Consider an estimator where all unknown, true parameters in the
expression of the true variance (given in Equation (2.1)) are replaced by guessed or estimated parameters. It
is defined below.

Definition 3.2. The estimator γ̂p1,p2 for σ∗2 is defined as:

γ̂p1,p2 := p1σ̂
2
1 +p2σ̂

2
2 +p1µ̂

2
1 +p2µ̂

2
2 − θ̂2

p1,p2
, (3.2)

with plug-in estimators

µ̂1 := 1

n1

n1∑
i=1

Xi ,1, (3.3)

σ̂2
1 := 1

n1 −1

n1∑
i=1

(
Xi ,1 − 1

n1

n1∑
j=1

X j ,1

)2

= 1

n1 −1

n1∑
i=1

(
Xi ,1 − µ̂1

)2 , (3.4)

and µ̂2, σ̂2 similarly. The estimator θ̂p1,p2 is as defined in Equation (2.6).

The plug-in estimators µ̂1 and σ̂2
1 are unbiased for µ∗

1 andσ∗
1

2, respectively. This is proved in Lemma 3.15.

Studied in the previous chapter, θ̂p1,p2 is biased in general (Theorem 2.3). Only when the true proportions p∗
1

and p∗
2 are known (or both groups have equal means), µ∗ is estimated without a bias. Then θ̂p1,p2 becomes

the estimator θ̂oracle, defined in Equation (2.7). Theorem 3.2 is the result of adding the biases of these plug-in
estimators, multiplied by their coefficients stated in Equation (3.2). It is proved in Section 3.5.

Theorem 3.2. The bias of the estimator γ̂p1,p2 for the true variance σ∗2 is

E
[
γ̂p1,p2

]−σ∗2 = ∆̃p
(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 + p1p2

n1
σ∗

1
2 + p1p2

n2
σ∗

2
2. (3.5)

Remark that the last two terms tend to zero for n →+∞. The other terms of Equation (3.5) are only zero
when the guessed proportions are exactly equal to the true proportions, except for some rare cases. Thus,
in general, γ̂p1,p2 is also not an unbiased estimator. Replacing the guessed proportions p1, p2 by the true
proportions p∗

1 , p∗
2 could potentially solve this problem. Remember that this is not always possible, because

the true proportions could be unavailable. When it is possible, it results in the estimator γ̂oracle defined below.

Definition 3.3. The estimator γ̂oracle for the true variance is defined as:

γ̂oracle := p∗
1 σ̂

2
1 +p∗

2 σ̂
2
2 +p∗

1 µ̂
2
1 +p∗

2 µ̂
2
2 − θ̂2

oracle. (3.6)

The corollary below is a result of Theorem 3.2.

Corollary 3.3. The estimator γ̂oracle has the following bias for σ∗2:

E
[
γ̂oracle

]−σ∗2 = p∗
1 p∗

2

(
σ∗

1
2

n1
+ σ∗

2
2

n2

)
. (3.7)

Proof of Corollary 3.3. When the true proportions are used, ∆̃p = 0. Furthermore, remember thatµ∗ = p∗
1µ

∗
1+

p∗
2µ

∗
2 . Therefore, Equation (3.21) becomes:

E
[
γ̂oracle

]−σ∗2 = p∗
1 p∗

2

n1
σ∗

1
2 + p∗

1 p∗
2

n2
σ∗

2
2 = p∗

1 p∗
2

(
σ∗

1
2

n1
+ σ∗

2
2

n2

)
.

Having the opportunity to use the true proportions results in a bias that is usually smaller in absolute
value than before, except for some rare cases. The estimator γ̂oracle is asymptotically unbiased for n →+∞.
This is an improvement in comparison with the estimator γ̂p1,p2 . Although γ̂oracle is asymptotically unbiased,



3.1. Estimators and their bias 11

it is still biased for finite number of measurements. Remark that this estimator is the expression of the true
variance where the true parameters have been replaced with naive plug-estimators for the group means and
variances. Note that some of these plug-in estimators are biased for what they estimate in the current ex-
pression. Although the simple estimator µ̂1 is unbiased for µ∗

1 , the estimator µ̂2
1 is biased for µ∗

1
2. Likewise,

θ̂2
oracle is a biased estimator for µ∗2, while θ̂oracle is unbiased for µ∗. These statements are results of Jensen’s

inequality.

A natural follow-up questions is how to construct unbiased estimators for these quantities. In the follow-
ing corollary, we present a debiased estimator for µ∗

1
2, as a consequence of Lemma 3.15.

Corollary 3.4. The estimator µ̂2
1 −

σ̂2
1

n1
is unbiased for µ∗

1
2.

Proof of Corollary 3.4. Using Lemma 3.15, the expectation of the estimator µ̂2
1 −

σ̂2
1

n1
is:

E

[
µ̂2

1 −
σ̂2

1

n1

]
=E[

µ̂2
1

]− 1

n1
E

[
σ̂2

1

]= σ∗
1

2

n1
+µ∗

1
2 − σ∗

1
2

n1
=µ∗

1
2.

Therefore, it is an unbiased estimator for µ∗
1

2.

Using similar techniques, we now present a debiased estimator for µ∗2, as a consequence of Lemma 3.22.

Corollary 3.5. The estimator θ̂2
oracle −

p∗
1

2

n1
σ̂2

1 −
p∗

2
2

n2
σ̂2

2 is unbiased for µ∗2.

Proof of Corollary 3.5. With the use of Lemma 3.15 and Lemma 3.22, the expectation of this new estimator is
the following:

E

[
θ̂2

oracle −
p∗

1
2

n1
σ̂2

1 −
p∗

2
2

n2
σ̂2

2

]
=E[

θ̂2
oracle

]− p∗
1

2

n1
E

[
σ̂2

1

]− p∗
2

2

n2
E

[
σ̂2

2

]
= p∗

1
2

n1
σ∗

1
2 + p∗

2
2

n2
σ∗

2
2 + (

p∗
1µ

∗
1 +p∗

2µ
∗
2

)2 − p∗
1

2

n1
σ∗

1
2 − p∗

2
2

n2
σ∗

2
2

=µ∗2.

Therefore, θ̂2
oracle −

p∗
1

2

n1
σ̂2

1 −
p∗

2
2

n2
σ̂2

2 is an unbiased estimator for µ∗2.

With these new plug-in estimators as results from Corollary 3.4 and Corollary 3.5, the estimator γ̂oracle can
be modified such that it is also unbiased for a finite number of measurements. This leads to the estimator
ψ̂oracle as defined below.

Definition 3.4. The modified version of estimator γ̂oracle for σ∗2 is defined as:

ψ̂oracle := p∗
1 σ̂

2
1 +p∗

2 σ̂
2
2 +p∗

1 µ̂
2
1 +p∗

2 µ̂
2
2 − θ̂2

oracle −p∗
1 p∗

2

(
σ̂2

1

n1
+ σ̂2

2

n2

)
. (3.8)

Before examining the bias of ψ̂oracle, a more general case is considered. The true proportions p∗
1 and p∗

2
are used in the estimator ψ̂oracle. However, these are not always known to a researcher. To be able to still
estimate the variance well, the guessed proportions p1, p2 are used. These can be based on the available
information one has at their disposal. It leads to ψ̂p1,p2 as defined in the definition below, which can be seen
as a modification of the estimator γ̂p1,p2 .

Definition 3.5. A new estimator for σ∗2 is introduced:

ψ̂p1,p2 := p1σ̂
2
1 +p2σ̂

2
2 +p1µ̂

2
1 +p2µ̂

2
2 − θ̂2

p1,p2
−p1p2

(
σ̂2

1

n1
+ σ̂2

2

n2

)
. (3.9)

Remark that ψ̂p1,p2 is equal to ψ̂oracle, but with the guessed proportions instead of the true ones.

This estimator is biased in general, as stated in the theorem below. It is proved in Section 3.9.
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Theorem 3.6. The bias of ψ̂p1,p2 is

E
[
ψ̂p1,p2

]−σ∗2 = ∆̃p
(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 . (3.10)

It is clear that the terms depending on the number of measurements from Equation (3.5) vanished, which
was exactly the goal of the new estimator ψ̂p1,p2 . However, it is still a biased estimator. Remark that these two
new estimators are asymptotically the same as the uncorrected ones. This is therefore only a finite-sample
correction.

Despite ψ̂p1,p2 still being biased, in many cases it does have a smaller squared bias than the previously de-
fined estimator γ̂p1,p2 , especially when the true group variances are big. Having enough information available
such that the true proportions are known, is an advantage and is used in the estimator ψ̂oracle. The guessed
proportions of Equation (3.10) are replaced by the true ones, resulting in the corollary below.

Corollary 3.7. The estimator ψ̂oracle is unbiased for σ∗2.

Proof of Corollary 3.7. Substituting the true proportions for the guessed ones in Equation (3.10), results in ∆̃p
being 0. Also, remark that µ∗ = p∗

1µ
∗
1 +p∗

2µ
∗
2 . Hence,E

[
ψ̂oracle

]−σ∗2 = 0.

The goal of finding an unbiased estimator for σ∗2 is reached. Note that ψ̂oracle can only be used if the
true proportions are known to the researcher. Otherwise, the estimator ψ̂p1,p2 is a possible option for esti-
mation, although it is not unbiased in general. The importance of acquiring data and information about the
population is emphasised by this result, because a better approximation of the proportions leads to a smaller
bias.

An unbiased estimator is not always the best one to use. Similar as before in Chapter 2, the variances of the
estimators are also computed. This is done in Section 3.2, where the estimator variances are also compared.
The next subsection is about a different approach to estimating the variance.

3.1.2. A different approach to estimating
Remember the decomposition of the variance that was given in Equation (2.3). In this formula, the total
variance of the random variable X is divided into two parts, an intra-group component and an inter-group
component. The intra-group component averages the variances according to the proportions of each group,
whereas the inter-group component accommodates for the difference in group means. A similar way of think-
ing can inspire a corresponding estimator for the variance. Such an estimator is presented in the definition
below.

Definition 3.6. The estimator δ̂p1,p2 for σ∗2 is defined as:

δ̂p1,p2 := p1σ̂
2
1 +p2σ̂

2
2 +p1(µ̂1 − µ̂)2 +p2(µ̂2 − µ̂)2, (3.11)

where µ̂ is a plug-in estimator from the previous chapter for the mean µ∗ of the complete population. The other
plug-in estimators µ̂1 and σ̂2

1 are defined in Equations (3.3) and (3.4), respectively. The used plug-in estimator
for µ∗ can be denoted in the following way:

δ̂p1,p2,θ̂p1,p2
:= p1σ̂

2
1 +p2σ̂

2
2 +p1(µ̂1 − θ̂p1,p2 )2 +p2(µ̂2 − θ̂p1,p2 )2, (3.12)

δ̂p1,p2,X := p1σ̂
2
1 +p2σ̂

2
2 +p1(µ̂1 −X )2 +p2(µ̂2 −X )2. (3.13)

The first two terms of Equation (3.11) are representing the intra-group variance and the last two terms the
inter-group variance. If µ̂ is chosen to be θ̂p1,p2 , the estimator δ̂p1,p2 becomes equal to the previously defined

γ̂p1,p2 . However, if a different estimator for µ∗ is taken, for example X , the estimator δ̂p1,p2 is different from

γ̂p1,p2 . The theorem below shows the bias of δ̂p1,p2,θ̂p1,p2
. Note that it is indeed equal to the bias of γ̂p1,p2 ,

given in Equation (3.5). The proof is given in Section 3.6.

Theorem 3.8. The bias of δ̂p1,p2,θ̂p1,p2
is

E

[
δ̂p1,p2,θ̂p1,p2

]
−σ∗2 = ∆̃p

(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 + p1p2

n1
σ∗

1
2 + p1p2

n2
σ∗

2
2.
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Estimatingσ∗2 with δ̂p1,p2,θ̂p1,p2
is not a new concept, because it is the same estimator as γ̂p1,p2 . Therefore,

µ̂ of Equation (3.11) is chosen to be X , resulting in the estimator δ̂p1,p2,X . The bias is stated in the theorem
below, which is proved in Section 3.6.

Theorem 3.9. The bias of δ̂p1,p2,X is

E

[
δ̂p1,p2,X

]
−σ∗2 = ∆̃p

(
∆σ2 +∆µ2)+µ∗2 + ((

p̂1 −2p1
)
µ∗

1 + (
p̂2 −2p2

)
µ∗

2

)(
p̂1µ

∗
1 + p̂2µ

∗
2

)+ p̂2σ
∗
1

2 + p̂1σ
∗
2

2.

This bias is of similar form as the bias of δ̂p1,p2,θ̂p1,p2
. However, the last two terms do not tend to zero any-

more. Moreover, these are always postive, except when the group variances are zero. That is a rare, unusual
case, as it would mean that all measurements in a group are equal. Hence, it is unreasonable to estimate the
variance with δ̂p1,p2,X , as it will be biased in most cases.

Both δ̂p1,p2,θ̂p1,p2
and δ̂p1,p2,X are depending on the guessed proportions p1 and p2. When the true pro-

portions p∗
1 and p∗

2 are available, it is natural to use them in the estimators. This leads to the estimator δ̂oracle,

in which θ̂oracle is taken as the plug-in estimator for µ∗.

Definition 3.7. The estimator δ̂oracle is defined as:

δ̂oracle := p∗
1 σ̂

2
1 +p∗

2 σ̂
2
2 +p∗

1

(
µ̂1 − θ̂oracle

)2 +p∗
2

(
µ̂2 − θ̂oracle

)2
. (3.14)

The estimator defined above is the same as γ̂oracle and thus has the same bias. Because the estimator
ψ̂oracle has a smaller bias than γ̂oracle, using δ̂oracle to estimate the variance is not preferable.

3.2. Variance & Comparison of the estimators
In order to compare all the previously defined estimators, their performances can be measured with the Mean
Squared Error (MSE). The estimator with the smallest MSE generally has the best overall performance. The
MSE consists of the variance of an estimator plus the square of its bias. The biases have already been dis-
cussed in the previous section. In this section, the variances are stated in various theorems and compared.

The variance of V̂ar[X ] is stated in the theorem below. Section 3.7 contains the proof.

Theorem 3.10. The variance of the estimator V̂ar[X ] is

Var[V̂ar[X ]] = 1

n

(
p̂1(m∗

4,1 −σ∗
1

2)+ p̂2(m∗
4,2 −σ∗

2
2)+ p̂2

1K1,1 +2p̂1p̂2K1,2 + p̂2
2K2,2

)
+O (1/n2), (3.15)

with

Kr,s := 2µ∗
s

(
(µ∗

r
2 +σ∗

r
2)µ∗

r +2µ̃σ∗
r

2 −m∗
3,r

)
+2µ∗

r

(
(µ∗

s
2 +σ∗

s
2)µ∗

s +2µ̃σ∗
s

2 −m∗
3,s

)
+4σ̃2(µ∗

r − µ̃)(
µ∗

s − µ̃
)+O (1/n),

where µ̃ := p̂1µ
∗
1 + p̂2µ

∗
2 and σ̃2 := p̂1σ

∗
1

2 + p̂2σ
∗
2

2.

Remark that Landau’s O (un)-symbol denotes all terms of at least the order of some arbitrary sequence un .
Consequently, the variance of V̂ar[X ] is of the order O (1/n). Theorem 3.11 and Theorem 3.12 show that also
both other examined estimators have a variance where all terms are depending on the number of measure-
ments. Therefore the variances of all variance estimators are asymptotically equal to zero for n →+∞.

The variance of the estimator γ̂p1,p2 is stated in the theorem below. Its proof can be found in Section 3.8.

Theorem 3.11. The variance of γ̂p1,p2 is

Var
[
γ̂p1,p2

]= p2
1

G1

n1
+p2

2
G2

n2
+O

(
1

n2

)
, (3.16)

with

G1 := m∗
4,1 −4m∗

3,1

(
p1µ

∗
1 +p2µ

∗
2

)+4σ∗
1

2
(
p2

1µ
∗
1

2 −p2
(
2p2 −3

)
µ∗

1µ
∗
2 +p2

2µ
∗
2

2
)

+µ∗
1

3 (
3µ∗

1 +4p2∆µ
)−σ∗

1
4,

and G2 equal to G1 with all indices changed from 1 to 2 and vice versa.
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The following theorem is proved in Section 3.8.

Theorem 3.12. The variance of the estimator ψ̂p1,p2 is:

Var
[
ψ̂p1,p2

]= p2
1

Q1

n1
+p2

2
Q2

n2
+O

(
1

n2

)
, (3.17)

where

Q1 := m∗
4,1 −4m∗

3,1

(
p1µ

∗
1 +p2µ

∗
2

)+σ∗
1

2
((

p2
1 −2p2

2

)
µ∗

1
2 −4p2

(
2p2 −3

)
µ∗

1µ
∗
2 +4p2

2µ
∗
2

2
)

+µ∗
1

3 (
3µ∗

1 +4p2∆µ
)−σ∗

1
4,

and Q2 is equal but with the indices changed from 1 to 2 and vice versa.

Remark that the estimators γ̂p1,p2 and ψ̂p1,p2 and V̂ar[X ] all have a variance of the order O (1/n). Com-
paring the variance of the naive estimator and the modified estimators precisely is left for further research.
However, one can expect that there are cases in which the naive estimator has a smaller variance and cases in
which the modified estimators have a smaller variance. Possibly, this depends on the quality of the guesses
made for the proportions.

The variances of γ̂p1,p2 and ψ̂p1,p2 are similar and compared in the corollary below. Subtracting Equa-
tion 3.17 from Equation 3.16 results directly in this corollary.

Corollary 3.13. The difference between the variances of the estimators γ̂p1,p2 and ψ̂p1,p2 is

Var
[
γ̂p1,p2

]−Var
[
ψ̂p1,p2

]= 1

n1
p2

1

(
3p2

1 +2p2
2

)
σ∗

1
2
µ∗

1
2 + 1

n2
p2

2

(
2p2

1 +3p2
2

)
σ∗

2
2
µ∗

2
2 +O

(
1

n2

)
> 0,

for a sufficiently large number of measurements n.

The corollary above shows that the variance of γ̂p1,p2 is larger than the variance of ψ̂p1,p2 for the number
of measurements sufficiently large. Because ψ̂p1,p2 also has a smaller bias than γ̂p1,p2 , it has the smallest MSE.
Therefore, ψ̂p1,p2 is the best estimator to use when the true proportions are unavailable.

However, when these true proportions are known, the oracle estimators γ̂oracle and ψ̂oracle are available to
use. Recall from the previous section that the estimator ψ̂oracle is unbiased. The true proportions p∗

1 and p∗
2

do not change the variances of the estimators, except changing the guessed proportions into true ones. This
leads to the corollary below.

Corollary 3.14. The difference between the variances of the estimators γ̂oracle and ψ̂oracle is

Var
[
γ̂oracle

]−Var
[
ψ̂oracle

]= 1

n1
p∗

1
2
(
3p∗

1
2 +2p∗

2
2
)
σ∗

1
2
µ∗

1
2 + 1

n2
p∗

2
2
(
2p∗

1
2 +3p∗

2
2
)
σ∗

2
2
µ∗

2
2 +O

(
1

n2

)
> 0,

for a sufficiently large number of measurements n.

Both the variance and the square of the bias of ψ̂oracle are smaller than those of γ̂oracle. This results in the
MSE of ψ̂oracle being smaller than the MSE of γ̂oracle. Thus, the estimator ψ̂oracle is the best estimator to use
for σ∗2.

Because the estimator δ̂p1,p2 was not an improvement over the other estimators in terms of bias, the
variance of it is not computed. However, it can be computed with similar techniques as used for the variance
of the other estimators. The remainder of this chapter is dedicated to the proofs of all theorems stated in the
first two sections.

3.3. Lemmas
In this section, several lemmas are developed in order to compute estimator biases and variances. In the
calculations below, X1 is a measurement X of group 1. Because the measurements are independent and
identically distributed, it does not matter which measurement one takes of a certain group.
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Lemma 3.15. Consider the simple estimators µ̂1 and σ̂2
1, defined in Equation (3.3) and Equation (3.4), respec-

tively. Their expected values, together with the expected value of µ̂2
1, are the following:

E
[
µ̂1

]=µ∗
1 , (3.18)

E
[
µ̂2

1

]= σ∗
1

2

n1
+µ∗

1
2, (3.19)

E
[
σ̂2

1

]=σ∗
1

2. (3.20)

Proof of Lemma 3.15. The proof of Equation (3.18) is very short:

E
[
µ̂1

]= 1

n1

n1∑
i=1
E

[
Xi ,1

]= n1

n1
µ∗

1 =µ∗
1 .

With the use of Equation (2.2), the second result is derived:

E
[
µ̂2

1

]= 1

n2
1

n1∑
i=1

n1∑
j=1
E

[
Xi ,1X j ,1

]
= 1

n2
1

(
n1E

[
X 2

1

]+n1 (n1 −1)E [X1]2)
= 1

n2
1

(
n1

(
σ∗

1
2 +µ∗

1
2
)
+n1 (n1 −1)µ∗

1
2
)

= σ∗
1

2

n1
+µ∗

1
2.

Equation (3.20) is established using the result above as a known quantity. Firstly, the square is expanded:

E
[
σ̂2

1

]= 1

(n1 −1)

n1∑
i=1
E

[
X 2

i ,1 −2Xi ,1µ̂1 + µ̂2
1

]
= 1

(n1 −1)

n1∑
i=1

(
E

[
X 2

i ,1

]
− 2

n1
E

[
n1∑
j=1

Xi ,1X j ,1

]
+E[

µ̂2
1

])

= n1

(n1 −1)

(
E

[
X 2

1

]− 2

n1
E

[
X 2

1

]− 2(n1 −1)

n1
E [X1]2 +E[

µ̂2
1

])
.

Secondly, the expectations of the equation above are filled in and simplified:

E
[
σ̂2

1

]= n1

(n1 −1)

(
σ∗

1
2 +µ∗

1
2 − 2

n1

(
σ∗

1
2 +µ∗

1
2
)
−

(
2− 2

n1

)
µ∗

1
2 + σ∗

1
2

n1
+µ∗

1
2

)

= n1

(n1 −1)

(
1− 1

n1

)
σ∗

1
2

=σ∗
1

2.

Lemma 3.16. The expectation of the third power of the simple estimator µ̂1 of Equation (3.3) is:

E
[
µ̂3

1

]=µ∗
1

3 + 3

n1
σ∗

1
2
µ∗

1 + 1

n2
1

(
m∗

3,1 −3σ∗
1

2
µ∗

1 −µ∗
1

3
)

.

Proof of Lemma 3.16. Starting with expanding the third power and the triple sum gives:

E
[
µ̂3

1

]= 1

n3
1

n1∑
i=1

n1∑
j=1

n1∑
k=1
E

[
Xi ,1X j ,1Xk,1

]
= 1

n3
1

(
n1E

[
X 3

1

]+3n1 (n1 −1)E
[

X 2
1

]
E [X1]+n1 (n1 −1)(n1 −2)E [X1]3) .
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All expected values of the expression above are known and can be filled in. Rewriting the equation leads to:

E
[
µ̂3

1

]= 1

n3
1

(
n1m∗

3,1 +3n1 (n1 −1)
(
σ∗

1
2 +µ∗

1
2
)
µ∗

1 +n1 (n1 −1)(n1 −2)µ∗
1

3
)

= 1

n2
1

m∗
3,1 +

n1 −1

n2
1

(
3σ∗

1
2
µ∗

1 + (n1 +1)µ∗
1

3
)

=µ∗
1

3 + 3

n1
σ∗

1
2
µ∗

1 + 1

n2
1

(
m∗

3,1 −3σ∗
1

2
µ∗

1 −µ∗
1

3
)

.

Lemma 3.17. Taking the expectation of the fourth power of the simple estimator µ̂1, given in Equation (3.3),
results in:

E
[
µ̂4

1

]=µ∗
1

4 + 6

n1
µ∗

1
2
σ∗

1
2 + 1

n2
1

(
4µ∗

1 m∗
3,1 −12µ∗

1
2
σ∗

1
2 +3σ∗

1
4 −4µ∗

1
4
)

+ 1

n3
1

(
m∗

4,1 −4µ∗
1 m∗

3,1 +6µ∗
1

2
σ∗

1
2 −3σ∗

1
4 +3µ∗

1
4
)

.

Proof of Lemma 3.17. The fourth power results in a quadruple sum, which is expanded below:

E
[
µ̂4

1

]= 1

n4
1

n1∑
i=1

n1∑
j=1

n1∑
k=1

n1∑
ℓ=1
E

[
Xi ,1X j ,1Xk,1Xℓ,1

]
= 1

n4
1

(
n1E

[
X 4

1

]+4n1 (n1 −1)E
[

X 3
1

]
E [X1]+6n1 (n1 −1)(n1 −2)E

[
X 2

1

]
E [X1]2)

+ 1

n4
1

(
3n1 (n1 −1)E

[
X 2

1

]2 +n1 (n1 −1)(n1 −2)(n1 −3)E [X1]4
)

.

Simplifying this expression leads to:

E
[
µ̂4

1

]= 1

n4
1

(
n1m∗

4,1 +4n1 (n1 −1)m∗
3,1µ

∗
1 +6n1 (n1 −1)(n1 −2)

(
σ∗

1
2 +µ∗

1
2
)
µ∗

1
2
)

+ 1

n4
1

(
3n1 (n1 −1)

(
σ∗

1
2 +µ∗

1
2
)2 +n1 (n1 −1)(n1 −2)(n1 −3)µ∗

1
4
)

= 1

n3
1

m∗
4,1 +

4(n1 −1)

n3
1

µ∗
1 m∗

3,1 +
(n1 −1)

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2))

n3
1

(
σ∗

1
2 +µ∗

1
2
)

+ (n1 −1)(n1 −2)(n1 −3)

n3
1

µ∗
1

4

= 1

n3
1

m∗
4,1 +

n1 −1

n3
1

(
4µ∗

1 m∗
3,1 +

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
)

.

To get a clear overview of the order of all terms, it is rewritten as:

E
[
µ̂4

1

]= 1

n3
1

m∗
4,1 +

n1 −1

n3
1

(
4µ∗

1 m∗
3,1 +6(n1 −1)µ∗

1
2
σ∗

1
2 +3σ∗

1
4 + (

n2
1 +n1 −3

)
µ∗

1
4
)

=µ∗
1

4 + 6

n1
µ∗

1
2
σ∗

1
2 + 1

n2
1

(
4µ∗

1 m∗
3,1 −12µ∗

1
2
σ∗

1
2 +3σ∗

1
4 −4µ∗

1
4
)

+ 1

n3
1

(
m∗

4,1 −4µ∗
1 m∗

3,1 +6µ∗
1

2
σ∗

1
2 −3σ∗

1
4 +3µ∗

1
4
)

.

Lemma 3.18. Remark the two simple estimators σ̂2
1 and µ̂1, given in Equation (3.4) and Equation (3.3), respec-

tively. The expected value of the product of these estimators is:

E
[
σ̂2

1µ̂1
]=σ∗

1
2
µ∗

1 + 1

n1

(
m∗

3,1 −3σ∗
1

2
µ∗

1 −µ∗
1

3
)

.
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Proof of Lemma 3.18. Starting with the expansion of all terms and rewriting this to already known quantities,
leads to:

E
[
σ̂2

1µ̂1
]= 1

n1 −1
E

[(
n1∑

i=1

(
Xi ,1 − µ̂1

)2

)
µ̂1

]

= 1

n1 −1

n1∑
i=1
E

[
X 2

i ,1µ̂1 −2Xi ,1µ̂
2
1 + µ̂3

1

]
= 1

n1 −1

(
1

n1

n1∑
i=1

n1∑
j=1
E

[
X 2

i ,1X j ,1

]
− 2

n2
1

n1∑
i=1

n1∑
j=1

n1∑
k=1
E

[
Xi ,1X j ,1Xk,1

]+ n1∑
i=1
E

[
µ̂3

1

])

= 1

n1 (n1 −1)

(
n1E

[
X 3

1

]+n1 (n1 −1)E
[

X 2
1

]
E [X1]

)− 2n1

n1 −1
E

[
µ̂3

1

]+ n1

n1 −1
E

[
µ̂3

1

]
= 1

n1 (n1 −1)

(
n1E

[
X 3

1

]+n1 (n1 −1)E
[

X 2
1

]
E [X1]

)− n1

n1 −1
E

[
µ̂3

1

]
.

Filling in all terms (using Lemma 3.16) and simplifying the equation, results in the desired expression:

E
[
σ̂2

1µ̂1
]= 1

n1 −1

(
m∗

3,1 + (n1 −1)
(
σ∗

1
2 +µ∗

1
2
)
µ∗

1

)
− n1

n1 −1

(
1

n2
1

m∗
3,1 +

n1 −1

n2
1

(
3σ∗

1
2
µ∗

1 + (n1 +1)µ∗
1

3
))

= 1

n1 −1
m∗

3,1 +
(
σ∗

1
2 +µ∗

1
2
)
µ∗

1 − 1

n1 (n1 −1)
m∗

3,1 −
1

n1

(
3σ∗

1
2
µ∗

1 + (n1 +1)µ∗
1

3
)

= n1 −1

n1 (n1 −1)
m∗

3,1 +
n1 −3

n1
σ∗

1
2
µ∗

1 + n1 − (n1 +1)

n1
µ∗

1
3

= 1

n1

(
m∗

3,1 + (n1 −3)σ∗
1

2
µ∗

1 −µ∗
1

3
)

=σ∗
1

2
µ∗

1 + 1

n1

(
m∗

3,1 −3σ∗
1

2
µ∗

1 −µ∗
1

3
)

.

Lemma 3.19. The expectation of the product of the estimators σ̂2
1 and µ̂2

1 is:

E
[
σ̂2

1µ̂
2
1

]=σ∗
1

2
µ∗

1
2 + 1

n1

(
2m∗

3,1µ
∗
1 −6σ∗

1
2
µ∗

1
2 −2µ∗

1
4 +σ∗

1
4
)
+ 1

n2
1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4 −3σ∗

1
4
)

.

Proof of Lemma 3.19. The squares of the estimators are expanded, resulting in multiple sums:

E
[
σ̂2

1µ̂
2
1

]= 1

n1 −1
E

[(
n1∑

i=1

(
Xi ,1 − µ̂1

)2

)
µ̂2

1

]

= 1

n1 −1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1 −2Xi ,1µ̂

3
1 + µ̂4

1

]
= 1

n1 −1

(
1

n2
1

n1∑
i=1

n1∑
j=1

n1∑
k=1
E

[
X 2

i ,1X j ,1Xk,1

]
− 2

n3
1

n1∑
i=1

n1∑
j=1

n1∑
k=1

n1∑
ℓ=1
E

[
Xi ,1X j ,1Xk,1Xℓ,1

]+ n1∑
i=1
E

[
µ̂4

1

])
.

This can be rewritten as

1

n1 −1

(
1

n2
1

n1∑
i=1

n1∑
j=1

n1∑
k=1
E

[
X 2

i ,1X j ,1Xk,1

]
−2n1E

[
µ̂4

1

]+n1E
[
µ̂4

1

])

= 1

n1 −1

(
1

n2
1

(
n1E

[
X 4

1

]+2n1 (n1 −1)E
[

X 3
1

]
E [X1]+n1 (n1 −1)E

[
X 2

1

]2
)

+ 1

n2
1

n1 (n1 −1)(n1 −2)E
[

X 2
1

]
E [X1]2 −n1E

[
µ̂4

1

])
.
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Replacing the expectations with their known quantities, using Lemma 3.17, leads to:

1

n1 (n1 −1)

(
m∗

4,1 +2(n1 −1)m∗
3,1µ

∗
1 + (n1 −1)

(
σ∗

1
2 +µ∗

1
2
)2 + (n1 −1)(n1 −2)

(
σ∗

1
2 +µ∗

1
2
)
µ∗

1
2
)

− 1

n1 −1

(
1

n2
1

m∗
4,1 +

(n1 −1)

n2
1

(
4µ∗

1 m∗
3,1 +

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
))

= n1 −1

n2
1 (n1 −1)

m∗
4,1 +

1

n1

(
2m∗

3,1µ
∗
1 +

(
(n1 −2)µ∗

1
2 +

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
))

− 1

n2
1

(
4m∗

3,1µ
∗
1 +

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
)

.

Simplifying and collecting all terms with equal order results in the desired expression forE
[
σ̂2

1µ̂
2
1

]
:

1

n2
1

(
m∗

4,1 +
(
(n1 −2)(n1 −6)µ∗

1
2 + (n1 −3)

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+2(n1 −2)m∗

3,1µ
∗
1 − (n1 −2)(n1 −3)µ∗

1
4
)

= 1

n2
1

(
m∗

4,1 +
(
n2

1 −8n1 +12
)
σ∗

1
2
µ∗

1
2 + (

n2
1 −8n1 +12

)
µ∗

1
4 + (n1 −3)

(
σ∗

1
4 +2σ∗

1
2
µ∗

1
2 +µ∗

1
4
)

+ (2n1 −4)m∗
3,1µ

∗
1 − (

n2
1 −5n1 +6

)
µ∗

1
4
)

= 1

n2
1

(
m∗

4,1 +2(n1 −2)m∗
3,1µ

∗
1 + (

n2
1 −6n1 +6

)
σ∗

1
2
µ∗

1
2 + (−2n1 +3)µ∗

1
4 + (n1 −3)σ∗

1
4
)

=σ∗
1

2
µ∗

1
2 + 1

n1

(
2m∗

3,1µ
∗
1 −6σ∗

1
2
µ∗

1
2 −2µ∗

1
4 +σ∗

1
4
)
+ 1

n2
1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4 −3σ∗

1
4
)

.

Lemma 3.20. Remember the estimator σ̂2
1 from Equation (3.4). The expected value of its square is

E
[
σ̂4

1

]=σ∗
1

4 + 1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4 −σ∗

1
4
)
+ 2

n1 (n1 −1)
σ∗

1
4.

Proof of Lemma 3.20. We remark thatE
[
σ̂4

1

]
can be rewritten as

1

(n1 −1)2E

[(
n1∑

i=1

(
Xi ,1 − µ̂1

)2

)2]

= 1

(n1 −1)2

n1∑
i=1

n1∑
j=1
E

[(
Xi ,1 − µ̂1

)2 (
X j ,1 − µ̂1

)2
]

= 1

(n1 −1)2

(
n1∑

i=1

n1∑
j=1
E

[
X 2

i ,1X 2
j ,1

]
−2

n1∑
i=1

n1∑
j=1
E

[
X 2

i ,1X j ,1µ̂1

]
+

n1∑
i=1

n1∑
j=1
E

[
X 2

i ,1µ̂
2
1

]
−2

n1∑
i=1

n1∑
j=1
E

[
Xi ,1X 2

j ,1µ̂1

]
+4

n1∑
i=1

n1∑
j=1
E

[
Xi ,1X j ,1µ̂

2
1

]−2
n1∑

i=1

n1∑
j=1
E

[
Xi ,1µ̂

3
1

]
+

n1∑
i=1

n1∑
j=1
E

[
X 2

j ,1µ̂
2
1

]
−2

n1∑
i=1

n1∑
j=1
E

[
X j ,1µ̂

3
1

]+ n1∑
i=1

n1∑
j=1
E

[
µ̂4

1

])
.
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Rewriting the terms above into known expectations leads to:

1

(n1 −1)2

(
n1∑

i=1

n1∑
j=1
E

[
X 2

i ,1X 2
j ,1

]
−2n1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1

]
+n1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1

]
−2n1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1

]
+4n2

1E
[
µ̂4

1

]−2n2
1E

[
µ̂4

1

]+n1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1

]
−2n2

1E
[
µ̂4

1

]+n2
1E

[
µ̂4

1

])

= 1

(n1 −1)2

(
n1∑

i=1

n1∑
j=1
E

[
X 2

i ,1X 2
j ,1

]
−2n1

n1∑
i=1
E

[
X 2

i ,1µ̂
2
1

]
+n2

1E
[
µ̂4

1

])

= 1

(n1 −1)2

(
n1E

[
X 4

1

]+n1 (n1 −1)E
[

X 2
1

]2 − 2

n1

(
n1E

[
X 4

1

]+2n1 (n1 −1)E
[

X 3
1

]
E [X1]

)
− 2

n1

(
n1 (n1 −1)E

[
X 2

1

]2 +n1 (n1 −1)(n1 −2)E
[

X 2
1

]
E [X1]2

)
+n2

1E
[
µ̂4

1

])
= 1

(n1 −1)2

(
(n1 −2)E

[
X 4

1

]+ (n1 −1)(n1 −2)E
[

X 2
1

]2

−2(n1 −1)
(
2E

[
X 3

1

]
E [X1]+ (n1 −2)E

[
X 2

1

]
E [X1]2)+n2

1E
[
µ̂4

1

])
.

These expectations are known (using Lemma 3.17). WritingE
[
σ̂4

1

]
in terms of m∗

4,1,m∗
3,1,σ∗

1 and µ∗
1 leads to:

1

(n1 −1)2

(
(n1 −2)m∗

4,1 + (n1 −1)(n1 −2)
(
σ∗

1
2 +µ∗

1
2
)2 −2(n1 −1)

(
2m∗

3,1µ
∗
1 + (n1 −2)

(
σ∗

1
2 +µ∗

1
2
)
µ∗

1
2
)

+ 1

n1
m∗

4,1 +
n1 −1

n1

(
4µ∗

1 m∗
3,1 +

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
))

= 1

(n1 −1)2

(
n2

1 −2n1 +1

n1
m∗

4,1 + (n1 −1)

(
−4(n1 −1)

n1
m∗

3,1µ
∗
1 + (n1 −2)

(
σ∗

1
2 +µ∗

1
2
)(
σ∗

1
2 −µ∗

1
2
))

+n1 −1

n1

((
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
))

= 1

(n1 −1)2

(
(n1 −1)2

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1

)+ (n1 −1)(n1 −2)
(
σ∗

1
4 −µ∗

1
4
)

+n1 −1

n1

(
3σ∗

1
4 +6(n1 −1)σ∗

1
2
µ∗

1
2 + (

n2
1 +n1 −3

)
µ∗

1
4
))

,

which is rewritten into:

E
[
σ̂4

1

]= 1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1

)+ 1

n1 (n1 −1)

((
n2

1 −2n1 +3
)
σ∗

1
4 +6(n1 −1)σ∗

1
2
µ∗

1
2 +3(n1 −1)µ∗

1
4
)

= 1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4
)
+ 1

n1 (n1 −1)

(
(n1 −1)2 +2

)
σ∗

1
4

=σ∗
1

4 + 1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4 −σ∗

1
4
)
+ 2

n1 (n1 −1)
σ∗

1
4.

The expected values of the squares of both main estimators of Chapter 2 are needed for other proofs about
estimators for the true variance and are therefore computed in the Lemmas below.

Lemma 3.21. The expectation of the square of the estimator X , which is defined in Equation (2.5), is:

E

[
X

2
]
= p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2 .

Proof of Lemma 3.21. Starting with expanding the square and the double sums that appear,

E

[
X

2
]
= 1

n2E

[(
n1∑

i=1
Xi ,1

)2

+2

(
n1∑

i=1
Xi ,1

)(
n2∑

i=1
Xi ,2

)
+

(
n2∑

i=1
Xi ,2

)2]

= 1

n2

(
n1∑

i=1

n1∑
j=1
E

[
Xi ,1X j ,1

]+2

(
n1∑

i=1
E

[
Xi ,1

])(
n2∑

i=1
E

[
Xi ,2

])+ n2∑
i=1

n2∑
j=1
E

[
Xi ,2X j ,2

])

= 1

n2

((
n1E

[
X 2

1

]+n1 (n1 −1)E [X1]2)+2n1n2E
[

Xi ,1
]
E

[
Xi ,2

]+ (
n2E

[
X 2

2

]+n2 (n2 −1)E [X2]2)) .
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The expression above gets simplified to:

E

[
X

2
]
= 1

n2

(
n1σ

∗
1

2 +n2σ
∗
2

2 +n2
1µ

∗
1

2 +n2
2µ

∗
2

2 +2n1n2µ
∗
1µ

∗
2

)
= p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2 .

Lemma 3.22. The expectation of the square of the estimator θ̂p1,p2 , which is defined in Equation (2.6), is:

E

[
θ̂2

p1,p2

]
= p2

1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2 + (

p1µ
∗
1 +p2µ

∗
2

)2 .

Proof of Lemma 3.22. Expanding the square leads to the following equation:

E

[
θ̂2

p1,p2

]
=E

[(
p1

n1

n1∑
i=1

Xi ,1 + p2

n2

n2∑
i=1

Xi ,2

)2]

= p2
1

n2
1

E

[(
n1∑

i=1
Xi ,1

)2]
+ 2p1p2

n1n2
E

[(
n1∑

i=1
Xi ,1

)(
n2∑

i=1
Xi ,2

)]
+ p2

2

n2
2

E

[(
n2∑

i=1
Xi ,2

)2]

= p2
1

n2
1

(
n1E

[
X 2

1

]+n1 (n1 −1)E [X1]2)+ 2p1p2

n1n2

n1∑
i=1
E

[
Xi ,1

] n2∑
i=1
E

[
Xi ,2

]
+ p2

2

n2
2

(
n2E

[
X 2

2

]+n2 (n2 −1)E [X2]2) .

Simplifying this expression results in:

E

[
θ̂2

p1,p2

]
= p2

1

n2
1

(
n1

(
σ∗

1
2 +µ∗

1
2
)
+n1 (n1 −1)µ∗

1
2
)
+2p1p2µ

∗
1µ

∗
2 + p2

2

n2
2

(
n2

(
σ∗

2
2 +µ∗

2
2
)
+n2 (n2 −1)µ∗

2
2
)

= p2
1

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
+2p1p2µ

∗
1µ

∗
2 + p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

= p2
1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2 + (

p1µ
∗
1 +p2µ

∗
2

)2 .

Having stated the Lemmas above, the theorems stated in Section 3.1 and Section 3.2 can be proved. These
proofs are shown in the remainder of this chapter.

3.4. Bias of V̂ar[X ] – Proof
In this section, Theorem 3.1 is proved. This theorem states the bias of the estimator V̂ar[X ] from Equa-
tion (3.1).

Proof of Theorem 3.1. The bias is by definition equal to E
[
V̂ar[X ]

]−σ∗2. To start with, the expectation is
computed in Subsection 3.4.1, followed by subtracting the true variance in Subsection 3.4.2.

3.4.1. Computing the expected value
The expectation of the estimator can be split up in the following way:

E
[
V̂ar[X ]

]=E[
1

n −1

(
n1∑

i=1

(
Xi ,1 −X

)2 +
n2∑

i=1

(
Xi ,2 −X

)2
)]

= 1

n −1
A1 + 1

n −1
A2,
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with

A1 :=E
[

n1∑
i=1

(
Xi ,1 −X

)2
]

=
n1∑

i=1

(
E

[
X 2

i ,1

]
−2E

[
Xi ,1X

]
+E

[
X

2
])

=
n1∑

i=1

(
E

[
X 2

i ,1

]
− 2

n

(
n1∑
j=1
E

[
Xi ,1X j ,1

]+ n2∑
j=1
E

[
Xi ,1X j ,2

])+E[
X

2
])

.

This can be further simplified to

A1 = n1

(
E

[
X 2

1

]− 2

n

(
E

[
X 2

1

]+ (n1 −1)E [X1]2 +n2E [X1]E [X2]
)+E[

X
2
])

= n1

n

(
(n −2)E

[
X 2

1

]−2(n1 −1)E [X1]2 −2n2E [X1]E [X2]
)+n1E

[
X

2
]

= p̂1

(
(n −2)

(
σ∗

1
2 +µ∗

1
2
)
−2(n1 −1)µ∗

1
2 −2n2µ

∗
1µ

∗
2

)
+n1

(
p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2
)

= p̂1

(
(n −2)σ∗

1
2 + (n2 −n1)µ∗

1
2 −2n2µ

∗
1µ

∗
2

)
+ p̂2

1σ
∗
1

2 + p̂1p̂2σ
∗
2

2 +n1
(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 .

The second term, A2, is equal to A1 with all indices switched from 1 to 2 and vice versa. Note that Lemma (3.21)
is used in the third line above. Dividing by n −1 gives:

A1

n −1
= p̂1

(
n −2

n −1
σ∗

1
2 + n2 −n1

n −1
µ∗

1
2 − 2n2

n −1
µ∗

1µ
∗
2

)
+ p̂2

1σ
∗
1

2 + p̂1p̂2σ
∗
2

2

n −1
+ n1

n −1

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2

= p̂1

((
n −1

n −1
+ −1

n −1

)
σ∗

1
2 +

(
n2

n
− n1

n
+ n2 −n1

n (n −1)

)
µ∗

1
2 −2

(
n2

n
+ n2

n (n −1)

)
µ∗

1µ
∗
2

)
+ p̂2

1σ
∗
1

2 + p̂1p̂2σ
∗
2

2

n −1
+

(
n1

n
+ n1

n (n −1)

)(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 .

All terms of the order O (1/n) are taken separately and are put into the term ϵn,1 below:

A1

n −1
= p̂1

(
σ∗

1
2 + (

p̂2 − p̂1
)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2

)
+ p̂1

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +ϵn,1

= p̂1

(
σ∗

1
2 + (

∆p +p∗
2 − p̂1

)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2

)
+ p̂1

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +ϵn,1

= p̂1

(
σ∗

1
2 + (

∆p +1−p∗
1 − p̂1

)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2

)
+ p̂1

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +ϵn,1

= p̂1

(
σ∗

1
2 + (

1−2p̂1
)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2

)
+ p̂1

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +ϵn,1,

with

ϵn,1 := p̂1

(
− 1

n −1
σ∗

1
2 + n2 −n1

n (n −1)
µ∗

1
2 − 2n2

n (n −1)
µ∗

1µ
∗
2

)
+ p̂2

1σ
∗
1

2 + p̂1p̂2σ
∗
2

2

n −1
+ n1

n (n −1)

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2

= p̂1

n −1

(
−σ∗

1
2 + (

p̂2 − p̂1
)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2 + p̂1σ

∗
1

2 + p̂2σ
∗
2

2 + (
p̂1µ

∗
1 + p̂2µ

∗
2

)2
)

= p̂1

n −1

((
p̂2 − p̂1

)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2 − p̂2σ

∗
1

2 + p̂2σ
∗
2

2 + (
p̂1µ

∗
1 + p̂2µ

∗
2

)2
)

= p̂1

n −1

((
p̂2 − p̂1

)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2 + p̂2∆σ

2 + (
p̂1µ

∗
1 + p̂2µ

∗
2

)2
)

.

Similarly, A2
n−1 contains a remainder term denoted by ϵn,2. This one is equal to ϵn,1, but with the indices

changed from 1 to 2 and vice versa. When the number of measurements is large enough, ϵn,1 and ϵn,2 become
negligible.
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3.4.2. Subtracting the true variance
Adding both A1

n−1 and A2
n−1 together and subtracting the true variance leads to the desired expression for the

bias:

E
[
V̂ar[X ]

]−σ∗2 = A1

n −1
+ A2

n −1
−

(
p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2 +p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 − (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2
)

= (
p̂1 −p∗

1

)
σ∗

1
2 + (

p̂2 −p∗
2

)
σ∗

2
2 + (

p̂1
(
1−2p̂1

)−p∗
1

)
µ∗

1
2 + (

p̂2
(
1−2p̂2

)−p∗
2

)
µ∗

2
2

−4p̂1p̂2µ
∗
1µ

∗
2 + (

p̂1 + p̂2 +1
)(

p̂1µ
∗
1 + p̂2µ

∗
2

)2 +ϵn

=−∆pσ∗
1

2 +∆pσ∗
2

2 + (−∆p −2p̂2
1

)
µ∗

1
2 + (

∆p −2p̂2
2

)
µ∗

2
2

−4p̂1p̂2µ
∗
1µ

∗
2 +2

(
p̂2

1µ
∗
1

2 + p̂2
2µ

∗
2

2 +2p̂1p̂2µ
∗
1µ

∗
2

)
+ϵn

=∆p
(
∆σ2 +∆µ2)+ϵn .

Note the previously defined differences of Definition 2.1. The remainder term ϵn is defined as the sum of ϵn,1

and ϵn,2 and can be rewritten as:

ϵn := ϵn,1 +ϵn,2

= p̂1

n −1

((
p̂2 − p̂1

)
µ∗

1
2 −2p̂2µ

∗
1µ

∗
2 + p̂2∆σ

2 + (
p̂1µ

∗
1 + p̂2µ

∗
2

)2
)

+ p̂2

n −1

((
p̂1 − p̂2

)
µ∗

2
2 −2p̂1µ

∗
1µ

∗
2 + p̂1∆σ

2 + (
p̂1µ

∗
1 + p̂2µ

∗
2

)2
)

= 1

n −1

(
p̂1

((
1− p̂1

)− p̂1
)
µ∗

1
2 −4p̂1p̂2µ

∗
1µ

∗
2 + p̂2

((
1− p̂2

)− p̂2
)
µ∗

2
2

+2p̂1p̂2∆σ
2 + (

p̂1 + p̂2
)(

p̂1µ
∗
1 + p̂2µ

∗
2

)2
)

= 1

n −1

(
−2p̂2

1µ
∗
1

2 −4p̂1p̂2µ
∗
1µ

∗
2 −2p̂2

2µ
∗
2

2 + p̂1µ
∗
1

2 + p̂2µ
∗
2

2 +2p̂1p̂2∆σ
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2
)

= 1

n −1

(
−2

(
p̂1µ

∗
1 + p̂2µ

∗
2

)2 + p̂1µ
∗
1

2 + p̂2µ
∗
2

2 +2p̂1p̂2∆σ
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2
)

= 1

n −1

(
p̂1µ

∗
1

2 + p̂2µ
∗
2

2 − (
p̂1µ

∗
1 + p̂2µ

∗
2

)2 +2p̂1p̂2∆σ
2
)

.

Remark that ϵn goes to zero when the number of measurements becomes large enough.

3.5. Bias of γ̂p1,p2 and ψ̂p1,p2 – Proof
In this section, Theorem 3.2 and Theorem 3.6 are proved. These theorems are about the biases of the estima-
tors γ̂p1,p2 and ψ̂p1,p2 , respectively. The estimators are defined in Equation (3.2) and Equation (3.9).

3.5.1. Proving Theorem 3.2
Let us recall Theorem 3.2. The proof of this theorem is given in the current subsection. Corollary 3.3, which
follows from this theorem, has already been proved in Section 3.1.

Proof of Theorem 3.2. By definition, the bias of the estimator is equal to its expectation minus the true vari-
ance. Using Lemmas 3.15 and 3.22, the expectation of γ̂p1,p2 is:

E
[
γ̂p1,p2

]= p1E
[
σ̂2

1

]+p2E
[
σ̂2

2

]+p1E
[
µ̂2

1

]+p2E
[
µ̂2

2

]−E[
θ̂2

p1,p2

]
= p1σ

∗
1

2 +p2σ
∗
2

2 +p1

(
σ∗

1
2

n1
+µ∗

1
2

)
+p2

(
σ∗

2
2

n2
+µ∗

2
2

)
− p2

1

n1
σ∗

1
2 − p2

2

n2
σ∗

2
2 − (

p1µ
∗
1 +p2µ

∗
2

)2 ,

by the linearity of the expectation. This can be further simplified to:

E
[
γ̂p1,p2

]= n1 +1−p1

n1
p1σ

∗
1

2 + n2 +1−p2

n2
p2σ

∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − (
p1µ

∗
1 +p2µ

∗
2

)2

= n1 +p2

n1
p1σ

∗
1

2 + n2 +p1

n2
p2σ

∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − (
p1µ

∗
1 +p2µ

∗
2

)2 .
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Subtracting the true variance σ∗2 gives:

E
[
γ̂p1,p2

]−σ∗2 = n1 +p2

n1
p1σ

∗
1

2 + n2 +p1

n2
p2σ

∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − (
p1µ

∗
1 +p2µ

∗
2

)2

−
(
σ∗2 = p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2 +p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 − (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2
)

=
(

p1
n1 +p2

n1
−p∗

1

)
σ∗

1
2 +

(
p2

n2 +p1

n2
−p∗

2

)
σ∗

2
2 + (

p1 −p∗
1

)
µ∗

1
2 + (

p2 −p∗
2

)
µ∗

2
2

− (
p1µ

∗
1 +p2µ

∗
2

)2 + (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2 .

This expression can be simplified with the differences of Defintion 2.1, resulting in:

E
[
γ̂p1,p2

]−σ∗2 =
(

p1p2

n1
− ∆̃p

)
σ∗

1
2 +

(
p1p2

n2
+ ∆̃p

)
σ∗

2
2 − ∆̃pµ∗

1
2 + ∆̃pµ∗

2
2 +µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2

= ∆̃p
(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 + p1p2

n1
σ∗

1
2 + p1p2

n2
σ∗

2
2, (3.21)

giving the desired expression for the bias of the estimator γ̂p1,p2 .

3.5.2. Proving Theorem 3.6
In order to obtain an unbiased estimator for σ∗2, Corollary 3.4 and Corollary 3.5 were used. These have
already been proved in Section 3.1. The current subsection contains the proof of Theorem 3.6 about the bias
of the estimator ψ̂p1,p2 , defined in Equation (3.9).

Proof of Theorem 3.6. We can rewrite ψ̂p1,p2 as

ψ̂p1,p2 = p1σ̂
2
1 +p2σ̂

2
2 +p1µ̂

2
1 +p2µ̂

2
2 − θ̂2

p1,p2
− p1

(
1−p1

)
n1

σ̂2
1 −

p2
(
1−p2

)
n2

σ̂2
2

= p1σ̂
2
1 +p2σ̂

2
2 +p1

(
µ̂2

1 −
σ̂2

1

n1

)
+p2

(
µ̂2

2 −
σ̂2

2

n2

)
− θ̂2

p1,p2
+ p2

1

n1
σ̂2

1 +
p2

2

n2
σ̂2

2.

Using Corollary 3.4 and Corollary 3.5, the expectation of ψ̂p1,p2 is:

E
[
ψ̂p1,p2

]= p1E
[
σ̂2

1

]+p2E
[
σ̂2

2

]+p1E

[
µ̂2

1 −
σ̂2

1

n1

]
+p2E

[
µ̂2

2 −
σ̂2

2

n2

]
−E

[
θ̂2

p1,p2

]
+ p2

1

n1
E

[
σ̂2

1

]+ p2
2

n2
E

[
σ̂2

2

]
= p1σ

∗
1

2 +p2σ
∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − p2
1

n1
σ∗

1
2 − p2

2

n2
σ∗

2
2 − (

p1µ
∗
1 +p2µ

∗
2

)2 + p2
1

n1
σ∗

1
2 + p2

2

n2
σ∗

2
2

= p1σ
∗
1

2 +p2σ
∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − (
p1µ

∗
1 +p2µ

∗
2

)2 .

Subtracting the true variance leads to a bias of:

E
[
ψ̂p1,p2

]−σ∗2 = p1σ
∗
1

2 +p2σ
∗
2

2 +p1µ
∗
1

2 +p2µ
∗
2

2 − (
p1µ

∗
1 +p2µ

∗
2

)2

−
(
p∗

1σ
∗
1

2 +p∗
2σ

∗
2

2 +p∗
1µ

∗
1

2 +p∗
2µ

∗
2

2 − (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2
)

.

Applying the differences from Definition 2.1 results in:

E
[
ψ̂p1,p2

]−σ∗2 =−∆̃pσ∗
1

2 + ∆̃pσ∗
2

2 − ∆̃pµ∗
1

2 + ∆̃pµ∗
2

2 + (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2 − (
p1µ

∗
1 +p2µ

∗
2

)2

= ∆̃p
(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 ,

which is the desired expression for the bias.

3.6. Bias of δ̂p1,p2 – Proof
In this section, the bias of δ̂p1,p2 is computed for two different plug-in estimators, proving Theorem 3.8 and

Theorem 3.9. Firstly, the estimator θ̂p1,p2 is used as a plug-in estimator, resulting in the estimator δ̂p1,p2,θ̂p1,p2

as defined in Equation (3.12). Secondly, the estimator X is applied as plug-in estimator, such that the estima-
tor for σ∗2 is denoted by δ̂p1,p2,X as in Equation (3.13).
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3.6.1. Proving Theorem 3.8
In this subsection, the bias of δ̂p1,p2,θ̂p1,p2

is derived, thereby proving Theorem 3.8.

Proof of Theorem 3.8. The bias is by definition equal to the expected value of the estimator minus the true
variance σ∗2. The expectation of δ̂p1,p2 can be split up in the following way:

E

[
δ̂p1,p2,θ̂p1,p2

]
= p1σ

∗
1

2 +p2σ
∗
2

2 +p1B1 +p2B2,

where B1 is the following:

B1 :=E
[(
µ̂1 − θ̂p1,p2

)2
]

=E[
µ̂2

1

]−2E

[(
1

n1

n1∑
i=1

Xi ,1

)(
p1

n1

n1∑
i=1

Xi ,1 + p2

n2

n2∑
i=1

Xi ,2

)]
+E

[
θ̂2

p1,p2

]

=E[
µ̂2

1

]− 2p1

n2
1

E

[(
n1∑

i=1
Xi ,1

)2]
− 2p2

n1n2
E

[(
n1∑

i=1
Xi ,1

)(
n2∑

i=1
Xi ,2

)]
+E

[
θ̂2

p1,p2

]
=E[

µ̂2
1

]− 2p1

n2
1

(
n1E

[
X 2

1

]+n1 (n1 −1)E [X1]2)− 2p2

n1n2

n1∑
i=1
E

[
Xi ,1

] n2∑
i=1
E

[
Xi ,2

]+E[
θ̂2

p1,p2

]
.

Using Equation (3.19) and Lemma 3.22, the previous equation can be written as:

B1 =
σ∗

1
2

n1
+µ∗

1
2 − 2p1

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
−2p2µ

∗
1µ

∗
2 + p2

1

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
+2p1p2µ

∗
1µ

∗
2 + p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

= p2
1 −2p1 +1

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
+2

(
p1 −1

)
p2µ

∗
1µ

∗
2 + p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

.

This expression can be factorised and simplified to:

B1 =
(
p1 −1

)2

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
−2p2

2µ
∗
1µ

∗
2 + p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

= p2
2

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
−2p2

2µ
∗
1µ

∗
2 + p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

= p2
2

(
σ∗

1
2

n1
+ σ∗

2
2

n2
+ (
µ∗

1 −µ∗
2

)2

)

= p2
2

(
σ∗

1
2

n1
+ σ∗

2
2

n2
+ (
∆µ

)2

)
.

By symmetry, B2 is equal, but with all indices 1 and 2 switched.

Subtracting the true variance leads to the bias of δ̂p1,p2,θ̂p1,p2
:

E

[
δ̂p1,p2,θ̂p1,p2

]
−σ∗2 = (

p1 −p∗
1

)
σ∗

1
2 + (

p2 −p∗
2

)
σ∗

2
2 +p1B1 +p2B2 −p∗

1µ
∗
1

2 −p∗
2µ

∗
2

2 + (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2

= (
p1 −p∗

1

)
σ∗

1
2 + (

p2 −p∗
2

)
σ∗

2
2 +p1

p2
1 −2p1 +1

n1

(
σ∗

1
2 +n1µ

∗
1

2
)

+2p1
(
p1 −1

)
p2µ

∗
1µ

∗
2 + p1p2

2

n2

(
σ∗

2
2 +n2µ

∗
2

2
)
+p2

p2
2 −2p2 +1

n2

(
σ∗

2
2 +n2µ

∗
2

2
)

+2p2
(
p2 −1

)
p1µ

∗
1µ

∗
2 + p2

1p2

n1

(
σ∗

1
2 +n1µ

∗
1

2
)
−p∗

1µ
∗
1

2 −p∗
2µ

∗
2

2 + (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2 .

We remark that the bias can be rewritten as:(
p1

p2
1 +p1

(
p2 −2

)+1

n1
+p1 −p∗

1

)
σ∗

1
2 +

(
p2

p2
2 +p2

(
p1 −2

)+1

n2
+p2 −p∗

2

)
σ∗

2
2

+ (
p3

1 +p2
1

(
p2 −2

)+p1 −p∗
1

)
µ∗

1
2 + (

p3
2 +p2

2

(
p1 −2

)+p2 −p∗
2

)
µ∗

2
2

+2p1p2
(
p1 +p2 −2

)
µ∗

1µ
∗
2 + (

p∗
1µ

∗
1 +p∗

2µ
∗
2

)2 .
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Remember the differences defined in Definition 2.1. With these, the bias can be simplified to:(
p1

p2
1 +p1

(−p1 −1
)+1

n1
− ∆̃p

)
σ∗

1
2 +

(
p2

p2
2 +p2

(−p2 −1
)+1

n2
+ ∆̃p

)
σ∗

2
2

+ (
p3

1 +p2
1

(−p1 −1
)+p1 −p∗

1

)
µ∗

1
2 + (

p3
2 +p2

2

(−p2 −1
)+p2 −p∗

2

)
µ∗

2
2

−2p1p2µ
∗
1µ

∗
2 + (

p∗
1µ

∗
1 +p∗

2µ
∗
2

)2

=
(

p1
−p1 +1

n1
− ∆̃p

)
σ∗

1
2 +

(
p2

−p2 +1

n2
+ ∆̃p

)
σ∗

2
2 + (−p2

1 − ∆̃p
)
µ∗

1
2

+ (−p2
2 + ∆̃p

)
µ∗

2
2 −2p1p2µ

∗
1µ

∗
2 + (

p∗
1µ

∗
1 +p∗

2µ
∗
2

)2 .

Further simplifying this equation leads to the desired expression for the bias of the estimator δ̂p1,p2,θ̂p1,p2
:

E

[
δ̂p1,p2,θ̂p1,p2

]
−σ∗2 =

(
p1p2

n1
− ∆̃p

)
σ∗

1
2 +

(
p1p2

n2
+ ∆̃p

)
σ∗

2
2 − ∆̃pµ∗

1
2 + ∆̃pµ∗

2
2

− (
p1µ

∗
1 +p2µ

∗
2

)2 + (
p∗

1µ
∗
1 +p∗

2µ
∗
2

)2

= ∆̃p
(
∆σ2 +∆µ2)+µ∗2 − (

p1µ
∗
1 +p2µ

∗
2

)2 + p1p2

n1
σ∗

1
2 + p1p2

n2
σ∗

2
2.

3.6.2. Proving Theorem 3.9
Let us recall Theorem 3.9. It states the bias of δ̂p1,p2,X . This estimator is defined in Equation (3.13) and uses

X as a plug-in estimator. The proof of this theorem is given below.

Proof of Theorem 3.9. The bias of an estimator is defined by its expectation minus the true parameter σ∗2.
We remark that the expectation can be split up in the following way:

E

[
δ̂p1,p2,X

]
= p1σ

∗
1

2 +p2σ
∗
2

2 +p1C1 +p2C2,

with C1 given below:

C1 :=E
[(
µ̂1 −X

)2
]

=E[
µ̂2

1

]−2E

[(
1

n1

n1∑
i=1

Xi ,1

)
1

n

(
n1∑

i=1
Xi ,1 +

n2∑
i=1

Xi ,2

)]
+E

[
X

2
]

=E[
µ̂2

1

]− 2

n1n
E

[(
n1∑

i=1
Xi ,1

)2

+
(

n1∑
i=1

Xi ,1

)(
n2∑

i=1
Xi ,2

)]
+E

[
X

2
]

=E[
µ̂2

1

]− 2

n1n

(
n1E

[
X 2

i ,1

]
+n1 (n1 −1)E

[
Xi ,1

]2 +
n1∑

i=1
E

[
Xi ,1

] n2∑
i=1
E

[
Xi ,2

])+E[
X

2
]

.

Recall Equation 3.19 and Lemma 3.21. Hence, we can rewrite the equation above as:

C1 =
σ∗

1
2

n1
+µ∗

1
2 − 2

n

(
σ∗

1
2 +n1µ

∗
1

2
)
− 2n1n2

nn1
µ∗

1µ
∗
2 + p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2
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n

(
σ∗

1
2

n1
+µ∗

1
2

)
−2p̂2µ

∗
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∗
2 + p̂1

n
σ∗

1
2 + p̂2

n
σ∗

2
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p̂1µ
∗
1 + p̂2µ

∗
2

)2

= (
p̂2 − p̂1

)(σ∗
1

2
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1
2

)
−2p̂2µ
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∗
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1
2 + p̂2
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2
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2
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= (
p̂2 − p̂1
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1
2 −2p̂2µ

∗
1µ

∗
2 + (

p̂1µ
∗
1 + p̂2µ

∗
2

)2 +
(

p̂2 − p̂1

p̂1
+ p̂1

)
σ∗

1
2

n
+ p̂2

σ∗
2

2

n
.

By symmetry, C2 is equal to C1, but with the indices 1 and 2 swapped.
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Subtracting the true value of the variance leads to the bias of δ̂p1,p2,X :

E

[
δ̂p1,p2,X

]
−σ∗2 = (

p1 −p∗
1

)
σ∗

1
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p2 −p∗
2

)
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2
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)
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1
2 −2p1p̂2µ

∗
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∗
2 +p1

(
p̂1µ

∗
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∗
2
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(
p̂2 − p̂1
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1
2

n
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2

2
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(
p̂1 − p̂2

)
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∗
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∗
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∗
2
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+p2
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+ p̂2
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2
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2
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2µ
∗
2
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1
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1
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p2 −p∗
2

)
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2
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(
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(
1− p̂2

)+ (
1− p̂2

)2
)
σ∗

1
2 + p̂1p̂2σ

∗
1

2
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(
1− p̂1
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1− p̂1

)2
)
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2
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∗
2
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p̂2 − p̂1

)
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1
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p1p̂2 + p̂1p2
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2
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∗
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∗
2

)2 .

Remember that p̂1 + p̂2 = 1. This is used to rewrite the bias as the desired expression:

E

[
δ̂p1,p2,X

]
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1
2 + ∆̃pσ∗

2
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∗
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(
1−2p̂2
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2

)
µ∗

2
2 + (
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∗
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2
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2
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∗
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∗
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∗
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2
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∗
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∗
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∗
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2 + p̂1σ
∗
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2,

which concludes the proof.

3.7. Variance of V̂ar[X ] – Proof
Let us recall Theorem 3.10 about the variance of the naive estimator V̂ar[X ]. It is proved in this section.

3.7.1. Main idea of the proof
Proof of Theorem 3.10. Let µ̃ := p̂1µ

∗
1 + p̂2µ

∗
2 . Let σ̃2 := p̂1σ

∗
1

2 + p̂2σ
∗
2

2. Note that

Var[V̂ar[X ]] = 1

(n −1)2 Var

[
n∑

i=1

(
Xi −X

)2
]
= 1

(n −1)2

n∑
i , j=1

Ci , j ,

where

Ci , j := Cov

((
Xi −X

)2
,
(

X j −X
)2

)
.

Note that

Var[X
2

] = Var

[
1

n2

n∑
i=1

n∑
j=1

Xi X j

]
= 1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

Cov
(
Xi X j , Xk Xℓ

)=O (1/n),
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since covariances are zero by independence whenever all i , j ,k,ℓ are distinct. If i = j , then

Ci ,i = Var

((
Xi −X

)2
)

= Var
(
X 2

i

)−2Cov(Xi , X )+Var[X
2

]

= Var
(
X 2

i

)−2
1

n

n∑
k=1

Cov(Xi , Xk )+O (1/n)

= Var
(
X 2

i

)−2
1

n
Var(Xi )+O (1/n) = Var(X 2

i )+O (1/n).

By summing up the previous equation over all i = 1, . . . ,n, and dividing by n, we obtain

1

n

n∑
i=1

Ci ,i = p̂1(m∗
4,1 −σ∗

1
2)+ p̂2(m∗

4,2 −σ∗
2

2)+O (1/n).

So

Var[V̂ar[X ]] =
p̂1(m∗

4,1 −σ∗
1

2)+ p̂2(m∗
4,2 −σ∗

2
2)

n
+ 1

(n −1)2

∑
i ̸= j

Ci , j +O (1/n2).

The behavior of Ci , j is given in the following lemma, which is proved afterwards.

Lemma 3.23. For i ̸= j , we have

Ci , j = 2

n

(
E[X j ]

(
E[X 2

i ]E[Xi ]+2µ̃Var[Xi ]−E[X 3
i ]

)
+E[Xi ]

(
E[X 2

j ]E[X j ]+2µ̃Var[X j ]−E[X 3
j ]

)
+2σ̃2(

E[Xi ]− µ̃)(
E[X j ]− µ̃))+O (1/n2).

As a consequence, when individual i is in subgroup r ∈ {1,2} and individual j is in subgroup s ∈ {1,2}, we
have

n ×Ci , j = Kr,s := 2µ∗
s

(
(µ∗

r
2 +σ∗

r
2)µ∗

r +2µ̃σ∗
r

2 −m∗
3,r

)
+2µ∗

r

(
(µ∗

s
2 +σ∗

s
2)µ∗

s +2µ̃σ∗
s

2 −m∗
3,s

)
+4σ̃2(µ∗

r − µ̃)(
µ∗

s − µ̃
)+O (1/n)

Therefore,

Var[V̂ar[X ]] = 1

n

(
p̂1(m∗

4,1 −σ∗
1

2)+ p̂2(m∗
4,2 −σ∗

2
2)+ p̂2

1K1,1 +2p̂1p̂2K1,2 + p̂2
2K2,2

)
+O (1/n2). (3.22)

3.7.2. Lemmas and their proofs
In order for Equation (3.22) to hold, we must prove Lemma 3.23. This leads to two other lemmas, which are
also proved in this subsection.

Proof of Lemma 3.23.

Ci , j = Cov

((
Xi −X

)2
,
(

X j ,1 −X
)2

)
= Cov

((
Xi − µ̃+ µ̃−X

)2
,
(

X j ,1 − µ̃+ µ̃−X
)2

)
= Cov

(
(Xi − µ̃)2 +2(Xi − µ̃)(µ̃−X )+ (µ̃−X )2 , (X j − µ̃)2 +2(X j − µ̃)(µ̃−X )+ (µ̃−X )2

)
=

3∑
k=1

3∑
ℓ=1

Ci , j ,k,ℓ,
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where

Ci , j ,1,1 := Cov
(
(Xi − µ̃)2 , (X j − µ̃)2) ,

Ci , j ,2,1 := 2Cov
(
(Xi − µ̃)2 , (X j − µ̃)(µ̃−X )

)
,

Ci , j ,3,1 := Cov
(
(Xi − µ̃)2 , (µ̃−X )2

)
,

Ci , j ,1,2 := 2Cov
(
(Xi − µ̃)(µ̃−X ) , (X j − µ̃)2

)
,

Ci , j ,2,2 := 4Cov
(
(Xi − µ̃)(µ̃−X ) , (X j − µ̃)(µ̃−X )

)
,

Ci , j ,3,2 := 2Cov
(
(Xi − µ̃)(µ̃−X ) , (µ̃−X )2

)
,

Ci , j ,1,3 := Cov
(
(µ̃−X )2 , (X j − µ̃)2

)
,

Ci , j ,2,3 := 2Cov
(
(µ̃−X )2 , (X j − µ̃)(µ̃−X )

)
,

Ci , j ,3,3 = Cov
(
(µ̃−X )2 , (µ̃−X )2

)
.

By independence, Ci , j ,1,1 = 0. We know that µ̃−X =O (1/n). This means that the terms Ci , j ,3,1,Ci , j ,3,2,Ci , j ,1,3,
Ci , j ,2,3 and Ci , j ,3,3 are of the order O (1/n2). Note that Ci , j ,1,2 =C j ,i ,2,1. It remains to study Ci , j ,2,1 and Ci , j ,2,2.

The expression of Ci , j ,2,1 and of Ci , j ,2,2 are respectively given by the following lemmas, which conclude
the proof.

Lemma 3.24. We have

Ci , j ,2,1 = 2

n
E[X j ]

(
E[X 2

i ]E[Xi ]+2µ̃Var[Xi ]−E[X 3
i ]

)

Lemma 3.25. We have

Ci , j ,2,2 = 4

n
σ̃2(
E[Xi ]− µ̃)(

E[X j ]− µ̃)+O (1/n2).

Proof of Lemma 3.24.

Ci , j ,2,1 := 2Cov
(
(Xi − µ̃)2 , (X j − µ̃)(µ̃−X )

)
= 2Cov

(
(Xi − µ̃)2 , (X j − µ̃)µ̃

)−2Cov
(
(Xi − µ̃)2 , (X j − µ̃)X

)
=−2Cov

(
(Xi − µ̃)2 , (X j − µ̃)X

)
,

by independence between Xi and X j . Therefore,

−Ci , j ,2,1 = 2
1

n

n∑
k=1

Cov
(
(Xi − µ̃)2 , (X j − µ̃)Xk

)
= 2

1

n
Cov

(
(Xi − µ̃)2 , (X j − µ̃)Xi

)+2
1

n
Cov

(
(Xi − µ̃)2 , (X j − µ̃)X j

)+2
n −2

n
Cov

(
(Xi − µ̃)2 , (X j − µ̃)Xk

)
.

Note that the second and third terms cancel by independence, so that

−(n/2)×Ci , j ,2,1 = Cov
(
(Xi − µ̃)2 , (X j − µ̃)Xi

)
= Cov

(
X 2

i −2Xi µ̃+ µ̃2 , Xi X j −X j µ̃
)

= Cov
(
X 2

i −2Xi µ̃ , Xi X j −X j µ̃
)

= Cov
(
X 2

i −2Xi µ̃ , Xi X j
)

,

by independence. Therefore

−(n/2)×Ci , j ,2,1 = Cov
(
X 2

i , Xi X j
)−2µ̃Cov

(
Xi , Xi X j

)
.
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Note that

Cov
(
X 2

i , Xi X j
)=E[X 2

i Xi X j ]−E[X 2
i ]E[Xi X j ]

=E[X 3
i ]E[X j ]−E[X 2

i ]E[Xi ]E[X j ]

=E[X j ]
(
E[X 3

i ]−E[X 2
i ]E[Xi ]

)
,

and

Cov
(
Xi , Xi X j

)=E[Xi Xi X j ]−E[Xi ]E[Xi X j ]

=E[X 2
i ]E[X j ]−E[Xi ]E[Xi ]E[X j ]

=E[X j ]
(
E[X 2

i ]−E[Xi ]E[Xi ]
)
.

So that

−(n/2)×Ci , j ,2,1 =E[X j ]
(
E[X 3

i ]−E[X 2
i ]E[Xi ]−2µ̃

(
E[X 2

i ]−E[Xi ]E[Xi ]
))

.

Proof of Lemma 3.25. We have

Ci , j ,2,2 := 4Cov
(
(Xi − µ̃)(µ̃−X ) , (X j − µ̃)(µ̃−X )

)
= 4Cov

(
Xi µ̃−Xi X − µ̃2 +X µ̃ , X j µ̃−X j X − µ̃2 +X µ̃

)
= 4Cov

(
Xi µ̃−Xi X +X µ̃ , X j µ̃−X j X +X µ̃

)
,

so

1

4
Ci , j ,2,2 =

3∑
k,ℓ=1

Ak,ℓ,

where

A1,1 = Cov
(
Xi µ̃ , X j µ̃

)
,

A1,2 =−Cov
(

Xi µ̃ , X j X
)

,

A1,3 = Cov
(

Xi µ̃ , X µ̃
)

,

A2,1 =−Cov
(

Xi X , X j µ̃
)

,

A2,2 = Cov
(

Xi X , X j X
)

,

A2,3 =−Cov
(

Xi X , X µ̃
)

,

A3,1 = Cov
(

X µ̃ , X j µ̃
)

,

A3,2 =−Cov
(

X µ̃ , X j X
)

,

A3,3 = Cov
(

X µ̃ , X µ̃
)

.

Note that A1,1 = 0 by independence. We have

A1,2 =−Cov
(

Xi µ̃ , X j X
)
=− 1

n
µ̃Var[Xi ]E[X j ],

A1,3 = Cov
(

Xi µ̃ , X µ̃
)
= 1

n
µ̃2Var[Xi ],
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A2,1 =−Cov
(

Xi X , X j µ̃
)
=− 1

n
µ̃E[Xi ]Var[X j ],

A2,2 = Cov
(

Xi X , X j X
)
= 1

n2

n∑
k=1

n∑
ℓ=1

Cov
(
Xi Xk , X j Xℓ

)
.

This is 0 unless ℓ= k or k = j or ℓ= i . So

A2,2 = Cov
(

Xi X , X j X
)
= 1

n2

(
n∑

k=1
Cov

(
Xi Xk , X j Xk

)+ n∑
ℓ=1

Cov
(
Xi X j , X j Xℓ

)+ n∑
k=1

Cov
(
Xi Xk , X j Xi

)+O (1)

)
.

Note that

1

n

n∑
k=1

Cov
(
Xi Xk , X j Xk

)= 1

n

n∑
k=1
E[Xi X 2

k X j ]−E[Xi Xk ]E[Xk X j ]

= 1

n

n∑
k=1
E[Xi ]E[X 2

k ]E[X j ]−E[Xi ]E2[Xk ]E[X j ]+O (1/n)

=E[Xi ]E[X j ]

(
1

n

n∑
k=1
E[X 2

k ]−E2[Xk ]

)
+O (1/n)

=E[Xi ]E[X j ]
1

n

n∑
k=1

Var[Xk ]+O (1/n)

=E[Xi ]E[X j ](p̂1σ
∗
1

2 + p̂2σ
∗
2

2)+O (1/n)

=E[Xi ]E[X j ]σ̃2 +O (1/n).

Moreover,

1

n

n∑
ℓ=1

Cov
(
Xi X j , X j Xℓ

)= 1

n

n∑
ℓ=1
E[Xi X 2

j Xℓ]−E[Xi X j ]E[X j Xℓ]

= 1

n

n∑
ℓ=1
E[Xℓ]E[Xi ]Var[X j ]+O (1/n)

= µ̃E[Xi ]Var[X j ]+O (1/n).

Combining the previous computations, we obtain

A2,2 = 1

n

(
E[Xi ]E[X j ]σ̃2 + µ̃E[Xi ]Var[X j ]+ µ̃E[X j ]Var[Xi ]

)+O (1/n2).

Similarly,

A2,3 =−Cov
(

Xi X , X µ̃
)

=−µ̃Cov
(

Xi X , X
)

=−µ̃ 1

n2

n∑
k=1

n∑
ℓ=1

Cov(Xi Xk , Xℓ)

=−µ̃ 1

n2

(
n∑

k=1
Cov(Xi Xk , Xi )+

n∑
k=1

Cov(Xi Xk , Xk )

)
+O (1/n2)

=− 1

n

(
µ̃2Var[Xi ]+ µ̃E[Xi ]σ̃2)+O (1/n2).

Similarly as for A1,3, we find that

A3,1 = 1

n
µ̃2Var[X j ].

Similarly as for A2,3, we find that

A3,2 =− 1

n

(
µ̃2Var[X j ]+ µ̃E[X j ]σ̃2)+O (1/n2).
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Lastly, we find:

A3,3 = 1

n2 µ̃
2

n∑
k=1

n∑
ℓ=1

Cov(Xk , Xℓ) = 1

n
µ̃2σ̃2 +O (1/n2).

Combining all results together, we obtain

Ci , j ,2,2 = 4

n

(
− µ̃Var[Xi ]E[X j ]+ µ̃2Var[Xi ]− µ̃E[Xi ]Var[X j ]

+E[Xi ]E[X j ]σ̃2 + µ̃E[Xi ]Var[X j ]+ µ̃E[X j ]Var[Xi ]

− µ̃2Var[Xi ]− µ̃E[Xi ]σ̃2 + µ̃2Var[X j ]− µ̃2Var[X j ]− µ̃E[X j ]σ̃2 + µ̃2 ∗ σ̃2
)
+O (1/n2)

= 4

n
σ̃2(
E[Xi ]E[X j ]+ µ̃2 − µ̃E[Xi ]− µ̃E[X j ]

)+O (1/n2)

= 4

n
σ̃2(
E[Xi ]− µ̃)(

E[X j ]− µ̃)+O (1/n2).

With all lemmas now proved, the theorem is proved.

3.8. Variance of γ̂p1,p2– Proof
The variance of the estimator γ̂p1,p2 is computed in this section, proving Theorem 3.11 from Section 3.2. This
theorem states the variance of the estimator γ̂p1,p2 . It is proved below.

Proof of Theorem 3.11. The variance of a sum is in general equal to the sum of the variances plus two times
the sum of the covariance. This principle is used two times to break the variance of γ̂p1,p2 down. Before doing
this, all estimators of the parameters of equal groups are collected when possible:

Var
[
γ̂p1,p2

]= Var
[

p1σ̂
2
1 +p2σ̂

2
2 +p1µ̂

2
1 +p2µ̂

2
2 − θ̂2

p1,p2

]
= Var

[
p1σ̂

2
1 +p2σ̂

2
2 +p1µ̂

2
1 +p2µ̂

2
2 −

(
p1µ̂1 +p2µ̂2

)2
]

= Var
[(

p1σ̂
2
1 +

(
p1 −p2

1

)
µ̂2

1

)+ (
p2σ̂

2
2 +

(
p2 −p2

2

)
µ̂2

2

)−2p1p2µ̂1µ̂2
]

= Var
[(

p1σ̂
2
1 +p1p2µ̂

2
1

)+ (
p2σ̂

2
2 +p1p2µ̂

2
2

)−2p1p2µ̂1µ̂2
]

.

Now the three terms from the expression above are split up below:

Var
[
γ̂p1,p2

]= Var
[
p1σ̂

2
1 +p1p2µ̂

2
1

]+Var
[
p2σ̂

2
2 +p1p2µ̂

2
2

]+Var
[−2p1p2µ̂1µ̂2

]
+2Cov

(
p1σ̂

2
1 +p1p2µ̂

2
1, p2σ̂

2
2 +p1p2µ̂

2
2

)+2Cov
(
p1σ̂

2
1 +p1p2µ̂

2
1,−2p1p2µ̂1µ̂2

)
+2Cov

(
p2σ̂

2
2 +p1p2µ̂

2
2,−2p1p2µ̂1µ̂2

)
= p2

1Var
[
σ̂2

1 +p2µ̂
2
1

]+p2
2Var

[
σ̂2

2 +p1µ̂
2
2

]+4p2
1p2

2Var
[
µ̂1µ̂2

]
−4p2

1p2Cov
(
σ̂2

1 +p2µ̂
2
1, µ̂1µ̂2

)−4p1p2
2Cov

(
σ̂2

2 +p1µ̂
2
2, µ̂1µ̂2

)
, (3.23)

by independence of terms of different groups. All terms of the equation above are examined separately, start-
ing with the first three terms in the next subsection.

3.8.1. Computing the variance terms – γ̂p1,p2
In this subsection, expressions for the first three terms of Equation (3.23) are derived. By definition, the
variance is:

Var
[
σ̂2

1 +p2µ̂
2
1

]=E[(
σ̂2

1 +p2µ̂
2
1

)2
]
−E[

σ̂2
1 +p2µ̂

2
1

]2
. (3.24)

The second term is computed below, using Lemma 3.15:

E
[
σ̂2

1 +p2µ̂
2
1

]=E[
σ̂2

1

]+p2E
[
µ̂2

1

]
=σ∗

1
2 +p2

(
σ∗

1
2

n1
+µ∗

1
2

)
=σ∗

1
2 +p2µ

∗
1

2 + p2

n1
σ∗

1
2. (3.25)
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The first term of Equation (3.24) can be written as the sum of multiple expectations:

E

[(
σ̂2

1 +p2µ̂
2
1

)2
]
=E[

σ̂4
1 +p2

2µ̂
4
1 +2p2σ̂

2
1µ̂

2
1

]
=E[

σ̂4
1

]+p2
2E

[
µ̂4

1

]+2p2E
[
σ̂2

1µ̂
2
1

]
.

With Lemma 3.17, Lemma 3.19 and Lemma 3.20, the expression forE
[(
σ̂2

1 +p2µ̂
2
1

)2
]

is rewritten as:

1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4
)
+ n1 −1

n1
σ∗

1
4 + 2

n1 (n1 −1)
σ∗

1
4

+p2
2

(
1

n3
1

m∗
4,1 +

(n1 −1)

n3
1

(
4µ∗

1 m∗
3,1 +

(
6(n1 −2)µ∗

1
2 +3

(
σ∗

1
2 +µ∗

1
2
))(

σ∗
1

2 +µ∗
1

2
)
+ (n1 −2)(n1 −3)µ∗

1
4
))

+2p2
1

n2
1

(
m∗

4,1 +2(n1 −2)m∗
3,1µ

∗
1 + (

n2
1 −6n1 +6

)
σ∗

1
2
µ∗

1
2 + (−2n1 +3)µ∗

1
4 + (n1 −3)σ∗

1
4
)

.

We can further simplify this to

σ∗
1

4 +p2
2µ

∗
1

4 +2p2σ
∗
1

2
µ∗

1
2 + 1

n1

(
m∗

4,1 −4m∗
3,1µ

∗
1 +6σ∗

1
2
µ∗

1
2 +3µ∗

1
4 −σ∗

1
4
)

+ 1

n1

(
p2

2

(
6µ∗

1
2
(
σ∗

1
2 +µ∗

1
2
)
−6µ∗

1
4
)
+2p2

(
2m∗

3,1µ
∗
1 −6σ∗

1
2
µ∗

1
2 −2µ∗

1
4 +σ∗

1
4
))

=σ∗
1

4 +p2
2µ

∗
1

4 +2p2σ
∗
1

2
µ∗

1
2

+ 1

n1

(
m∗

4,1 +4
(
p2 −1

)
m∗

3,1µ
∗
1 +6

(
p2

2 −2p2 +1
)
σ∗

1
2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 + (

2p2 −1
)
σ∗

1
4
)
+O

(
1

n2

)
=σ∗

1
4 +p2

2µ
∗
1

4 +2p2σ
∗
1

2
µ∗

1
2 + 1

n1

(
m∗

4,1 −4p1m∗
3,1µ

∗
1 +6p2

1σ
∗
1

2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 + (

p2 −p1
)
σ∗

1
4
)
+O

(
1

n2

)
.

(3.26)

Assembling Equation (3.24), Equation (3.25) and Equation (3.26) leads to:

Var
[
σ̂2

1 +p2µ̂
2
1

]=σ∗
1

4 +p2
2µ

∗
1

4 +2p2σ
∗
1

2
µ∗

1
2 −

((
σ∗

1
2 +p2µ

∗
1

2
)
+ p2

n1
σ∗

1
2
)2

+ 1

n1

(
m∗

4,1 −4p1m∗
3,1µ

∗
1 +6p2

1σ
∗
1

2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 + (

p2 −p1
)
σ∗

1
4
)
+O

(
1

n2

)
=σ∗

1
4 +p2

2µ
∗
1

4 +2p2σ
∗
1

2
µ∗

1
2 −

(
σ∗

1
2 +p2µ

∗
1

2
)2 − 2p2

n1
σ∗

1
2
(
σ∗

1
2 +p2µ

∗
1

2
)
− p2

2

n1
σ∗

1
2

+ 1

n1

(
m∗

4,1 −4p1m∗
3,1µ

∗
1 +6p2

1σ
∗
1

2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 + (

p2 −p1
)
σ∗

1
4
)
+O

(
1

n2

)
.

All terms of the order of O (1) cancel, meaning only second order terms or higher are remaining. This results
in:

Var
[
σ̂2

1 +p2µ̂
2
1

]=σ∗
1

4 +p2
2µ

∗
1

4 +2p2σ
∗
1

2
µ∗

1
2 −

(
σ∗

1
4 +2p2σ

∗
1

2
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1
2 +p2

2µ
∗
1

4
)

+ 1

n1

(
m∗

4,1 −4p1m∗
3,1µ

∗
1 +4p2

1σ
∗
1

2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 + (−p2 −p1

)
σ∗

1
4
)
+O

(
1

n2

)
= 1

n1

(
m∗

4,1 −4p1m∗
3,1µ

∗
1 +4p2

1σ
∗
1

2
µ∗

1
2 + (

3−4p2
)
µ∗

1
4 −σ∗

1
4
)
+O

(
1

n2

)
. (3.27)

By symmetry, Var
[
σ̂2

2 +p1µ̂
2
2

]
is equal to Equation (3.27) with all indices changed from 1 to 2 and vice versa.

The next term of Equation (3.23) is computed below, using the independence of measurements of differ-
ent groups:

Var
[
µ̂1µ̂2

]=E[
µ̂2

1µ̂
2
2

]−E[
µ̂1µ̂2

]2

=E[
µ̂2

1

]
E

[
µ̂2

2

]−E[
µ̂1

]2
E

[
µ̂2

]2 .
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Replacing the expected value with true parameters leads to:

Var
[
µ̂1µ̂2

]= (
σ∗

1
2

n1
+µ∗

1
2

)(
σ∗

2
2

n2
+µ∗

2
2

)
−µ∗

1
2
µ∗

2
2

= σ∗
1

2σ∗
2

2

n1n2
+ σ∗

1
2µ∗

2
2

n1
+ σ∗

2
2µ∗

1
2

n2

= 1

n1
σ∗

1
2
µ∗

2
2 + 1

n2
σ∗

2
2
µ∗

1
2 +O

(
1

n2

)
. (3.28)

3.8.2. Computing the covariance terms – γ̂p1,p2
The first three terms of Equation (3.23) have already been derived in the previous subsection. The other two
terms, involving a covariance, are worked out in this subsection. They are similar and therefore, computing
one directly gives the other term. We firstly rewrite Cov

(
σ̂2

2 +p1µ̂
2
2, µ̂1µ̂2

)
using its definition. The indepen-

dence of measurements of different groups is used thereafter. This leads to

Cov
(
σ̂2

2 +p1µ̂
2
2, µ̂1µ̂2

)=E[(
σ̂2

2 +p1µ̂
2
2

)
µ̂1µ̂2

]−E[
σ̂2

2 +p1µ̂
2
2

]
E

[
µ̂1µ̂2

]
= (
E

[
σ̂2

2µ̂1µ̂2
]+p1E

[
µ̂1µ̂

3
2

])− (
E

[
σ̂2

2

]+p1E
[
µ̂2

2

])
E

[
µ̂1µ̂2

]
=E[

σ̂2
2µ̂2

]
E

[
µ̂1

]+p1E
[
µ̂1

]
E

[
µ̂3

2

]− (
E

[
σ̂2

2

]+p1E
[
µ̂2

2

])
E

[
µ̂1

]
E

[
µ̂2

]
.

With Lemma 3.15, Lemma 3.16 and Lemma 3.18, we can rewrite the previous equation as

1

n2

(
m∗

3,2 + (n2 −3)σ∗
2

2
µ∗

2 −µ∗
2

3
)
µ∗

1 +p1µ
∗
1

(
1

n2
2
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3,2 +
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n2
2

(
3σ∗

2
2
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2 + (n2 +1)µ∗
2

3
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−
(
σ∗

2
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(
σ∗

2
2
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2
2

))
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1µ
∗
2
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1µ

∗
2σ

∗
2
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∗
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∗
2
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∗
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∗
2

3
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(
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2
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2
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(
1
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)
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(
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∗
2
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2p1 −3

)
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∗
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∗
2

2
)
+O

(
1

n2

)
,

from which we can conclude that only terms of the order O (1/n) or higher are remaining. The other term,
Cov

(
σ̂2

1 +p2µ̂
2
1, µ̂1µ̂2

)
, is similar, but with the indices switched from 1 to 2 and vice versa.

All terms of Equation (3.23) are now known. Adding the terms leads to the desired expression for the
variance of γ̂p1,p2 :

Var
[
γ̂p1,p2

]= 1
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(
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4,1 −4p3
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∗
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(
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∗
1
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1

(
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1
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1
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∗
1

4
)

+ 1
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(
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∗
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∗
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∗
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2
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1
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2

(
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∗
2

2

+p2
2

(
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)
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2
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∗
2

3 −p2
2σ

∗
2

4
)
+O

(
1

n2

)
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1
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(
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3,1

(
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∗
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∗
2
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1

2
(
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∗
1
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(
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)
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∗
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∗
2

2
)

+µ∗
1

3 (
3µ∗
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)−σ∗

1
4
)
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2
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(
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3,2

(
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∗
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∗
2
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2

2
(
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∗
1

2 −p1
(
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)
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∗
2 +p2
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∗
2

2
)
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2

3 (
3µ∗
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2
4
)
+O

(
1
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)
,

which concludes the proof.
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3.9. Variance of ψ̂p1,p2 – Proof
Let us recall Theorem 3.12. The proof of this theorem, stating the variance of the estimator ψ̂p1,p2 , is given
below. The proof has the same structure as the proof of Theorem 3.11 given in the previous section.

Proof of Theorem 3.12. All terms inside the variance of ψ̂p1,p2 can be collected as in the expression below:

Var
[
ψ̂p1,p2

]= Var

[
p1σ̂

2
1 +p2σ̂

2
2 +p1

(
µ̂2

1 −
σ̂2

1
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)
+p2

(
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σ̂2

2
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)
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1
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σ̂2
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2

n2
σ̂2

2

]
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[
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(
σ̂2

1 +
(
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)
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1 +
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σ̂2

1

)
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(
σ̂2
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)
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p2 −1

n2
σ̂2

2

)
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]
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(
σ̂2
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σ̂2

1
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(
σ̂2
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2

)
−2p1p2µ̂1µ̂2

]
.

Breaking the variance down into different parts leads to:
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[
ψ̂p1,p2

]= Var

[
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(
σ̂2

1 +p2µ̂
2
1 −

p2
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σ̂2

1

)]
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[
p2

(
σ̂2

2 +p1µ̂
2
2 −

p1
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σ̂2

2
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]

+2Cov

(
p1

(
σ̂2
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2
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1

)
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σ̂2
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σ̂2
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2 +p1µ̂
2
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2
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)
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[
σ̂2
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σ̂2

1

]
+p2
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[
σ̂2
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2
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σ̂2

2

]
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1p2
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[
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]
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1p2Cov

(
σ̂2

1 +p2µ̂
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σ̂2
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)
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(
σ̂2
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2
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σ̂2

2, µ̂1µ̂2

)
, (3.29)

because of the independence of different groups.

The terms containing a variance are computed in the first subsection, whereas the terms containing a
covariance are computed in the second subsection.

3.9.1. Computing the variance terms – ψ̂p1,p2
The first term of Equation 3.29 is by definition equal to:

Var

[
σ̂2

1 +p2µ̂
2
1 −

p2

n1
σ̂2

1

]
=E

[(
σ̂2

1 +p2µ̂
2
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p2
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σ̂2

1

)2]
−E

[
σ̂2

1 +p2µ̂
2
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p2
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σ̂2

1

]2

, (3.30)

with

E

[
σ̂2

1 +p2µ̂
2
1 −
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σ̂2

1

]
=E[

σ̂2
1

]+p2E
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1
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1
2
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2
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2
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1
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∗
1

2.

The first term of Equation 3.30 is equal to:

E
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[
σ̂4
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.
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Remark that this expression only exists of known terms. Using Lemma 3.17, Lemma 3.19 and Lemma 3.20,
we can simplify it as:
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1
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(n1 −1)

n3
1

(
4µ∗

1 m∗
3,1 +
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(
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Now Equation 3.30 becomes:
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(
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.

The computation of Var
[
σ̂2
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2

]
is similar, leading to:
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By Equation (3.28),
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3.9.2. Computing the covariance terms – ψ̂p1,p2
The first three terms of Equation 3.29 are now known. Computing one of the two covariance terms of this
equation leads to:
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.

Using all known quantities from Lemma 3.15, Lemma 3.16 and Lemma 3.18, this can be rewritten as:
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Similarly,
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.

Putting all terms together leads to the following expression for the variance of the estimator ψ̂p1,p2 :
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which is as desired.



4
Conclusion

In this thesis, estimators for the mean and variance of a population are developed in the case of stratified
sampling with two subgroups. These estimators are especially important when the sample is not represen-
tative for the population. Therefore, the estimators are modified such that the results are representing the
complete population. These estimators are compared with original, naive ones on their bias and variance. It
is preferable to obtain an unbiased estimator with a small variance. For both the population mean and the
variance, this is achieved.

Estimating the true mean of the population can be done with the naive estimator X , which adds all mea-
surements and divides it by the total number of measurements. The group proportions are not taken into
account with this estimator and it is generally biased. Weighing the measurements according to their pro-
portions in the population results in two other estimators for µ∗. When these true proportions are unknown,
they have to be guessed based on the available information, resulting in the estimator θ̂p1,p2 . When the true

proportions can be used, the estimator is called θ̂oracle. The former of these is also biased, while the latter is
unbiased.

The estimation of the true variance of the population is a more complicated task. Originally, it can be
done with an estimator not taking the subgroups into account: V̂ar[X ]. This is in general a biased estimator.
In search of an unbiased estimator with a smaller variance, the estimator γ̂p1,p2 is developed. It represents
the true variance of the population where all true parameters are replaced by estimated ones. It is still bi-
ased, because some of the used plug-in estimators are biased. Therefore, also when the true proportions are
available and used such that the estimator γ̂oracle appears, the estimator is biased. In search of an unbiased
estimator, γ̂p1,p2 is improved by using unbiased plug-in estimators for µ∗

1
2 and µ∗2 instead of the biased ones

of before. The new estimator is denoted by ψ̂p1,p2 . Its bias is smaller, but still not equal to zero. Only when the
true proportions are used in the estimator ψ̂oracle, a truly unbiased estimator for the variance is found. This
estimator even has a smaller variance than γ̂oracle, which makes it a better estimator. Likewise, ψ̂p1,p2 has a
smaller variance than γ̂p1,p2 . Therefore, the estimator ψ̂p1,p2 should be used to estimate the true population
variance if the true proportions are unavailable.

All estimators perform better when the number of measurements is increased. Having information about
the population at one’s disposal is also of major importance for estimating the population parameters. This
creates the opportunity to take a better guess of the proportions, or even use the true ones, which results in
an estimate closer to the real value. Using wrong proportions, however, can even lead to a very bad estimate.
In some of those cases, the naive estimators will perform better than the newly developed estimators. One
must therefore be really careful in choosing how to estimate and in guessing the proportions.

For both the population mean and variance, an unbiased estimator has been found. Both estimators
make use of the true proportions, which are not always available. When there is not enough information, it
is still important to perform a good estimation, but this might be biased. An interesting question for future
research would be whether it is possible to prove that there does not exist an unbiased estimator if the true
proportions are not available.
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The techniques used in this thesis can also be extended on the matter of linear regression. This possible
future work would extend the knowledge on the mean and variance with the estimation of more parameters:
the regression coefficients. Another possible extension is the generalisation of the developed estimators for
a greater number of subgroups. All proofs are executed for two strata, but one can imagine the existence of
multiple subgroups. The computations and proofs are likely to remain similar for k strata, but the expressions
will have to be generalised.
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