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Abstract

Training data for segmentation tasks are often available
only on a small scale. Transferring learned representa-
tions from pre-trained classification models is therefore
widely adopted by convolutional neural networks for se-
mantic segmentation. In domains where the representa-
tions from the classification models are not directly appli-
cable, we propose to train representations with segmen-
tation datasets that potentially contains label errors. Our
experiments demonstrate that label errors, such as mis-
labeled segments and missing segmentations, have neg-
ative influences to the learned representations. To alle-
viate the negative effects of object mislabelling, we pro-
pose to discard the object labels and instead train fore-
ground/background segmentation. The learned represen-
tations with binary segmentation achieve a fine-tuning
performance comparable to the representations learned
with “gold” standard segmentations. In the existence of
missing segmentations, a sigmoid loss for the background
class is proposed to achieve high recall while keeping the
precision better than simply weighting the classes. The
proposed class dependent, sigmoid loss obtains better seg-
mentation performance as well as better representations
than the weighting the classes in the presence of missing
segmentations. To summerize, we propose to learn repre-
sentations with foreground/background segmentation and
with a sigmoid loss for the background class when there
exist missing segmentations for objects.

1 Introduction

The often limited availability of training samples moti-
vates most state-or-the-art deep learning based segmen-
tation models [27, 2, 14] to transfer convolutional neu-
ral network (CNN) models [20, 37, 39, 15] trained on a
subset of images from ImageNet. The difficulty of ob-
taining manual segmentations is natural because it costs
much more efforts for people to segment than to clas-
sify an image. One of the largest segmentation datasets,
Microsoft COCO2014 [25], contains 123,287 images of
80 object categories. As a comparison, a well-known
successful task for convolutional neural networks, object
recognition on the ILSRVC dataset[35], has around 1.2
million images for 1000 categories to train. Transferring
weights from the pre-trained ImageNet models can pro-
vide a segmentation performance boost in the limitation of
lacking training samples, as reported in [27] and adopted
by [2, 14]. But the pre-trained ImageNet models are origi-
nally designed for object recognition problems, which can
cause more problems than it solves.

In practice, it can be challenging to employ represen-
tations from the ImageNet CNN models directly for seg-
mentation. Firstly, the object recognition models pursue
features invariance to better capture semantics regardless
the variations in objects. The result translation invari-
ant and resolution-reduced features reduce the localiza-
tion accuracy which is not essential for object recognition
but is critical for object segmentation. [44, 2] Secondly,
the ImageNet models were originally trained with natural
images at relatively low resolution. However, images to
be segmented may (1) have a third dimension (3D images
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Figure 1: Learning representations with segmentation
datasets that potentially contains mislabeled objects and
missing segmentation. The observed segmentations may
contain mislabeled segments and unsegmented objects.
We propose (1) to train foreground/background segmen-
tation instead of per class segmentation, (2) to apply a
sigmoid loss for the background class in the presence of
unsegmented objects. The learned representations can be
used as weights initialization for another dataset of inter-
est, e.g., traffic sign segmentation.

like CT scans and MRI scans), (2) contain extra chan-
nels (RGB-D images), (3) be non-natural, such as aerial
images and medical images. These issues prevent trans-
ferring representations of the ImageNet models from im-
proving segmentation performance significantly. In this
case, it can be beneficial to retrain the pre-trained Ima-
geNet models with segmentation datasets for fine-grained
cues about boundaries in the domain.

The segmentation datasets for pre-training representa-
tions may contain label errors. The use of the crowd-
sourcing platform like Mechanical Turk is common nowa-
days to collect annotations on a large-scale. It is natural
for crowd-sourcing workers to make mistakes as a result
of lack of expertise, inherent ambiguity of tasks or un-
conscious bias. Enormous efforts are required, according

to [25, 10], to ensure the correctness of segmentations.
In addition, automated labels other than the manual ones
may be freely available for particular tasks. For exam-
ple, segmentations of road and buildings for aerial images
can be derived from digital maps, like OpenStreetMap, by
aligning images to maps. However, segmentations con-
structed in this way suffer from incompleteness as well
as registration problems [29]. Ideally, label errors in seg-
mentations should not significantly affect the learned rep-
resentations and its transferability to other datasets.

Label errors of different kinds can exist in segmenta-
tion labels. We consider mislabelling errors occurred to
the whole segment instead of individual pixels, assuming
the outline of objects is always correct. This is based on
the observations that most objects in natural images have
visually clear borders, and it may be untrue in some cases,
for example, context segmentations[30]. In particular, we
consider three types of label errors: inexhaustive segmen-
tation, objects mislabelling, and false positive segmen-
tations. Objects mislabelling from one category to an-
other exist occasionally even for well-annotated datasets.
For example, the Microsoft COCO dataset [25] contains
some mislabeled cats and dogs even though annotators
were asked to segment only one category at a time; Inex-
haustive segmentation means that there exist objects left
unsegmented. A typical scenario where incomplete seg-
mentation emerges is to segment images containing mas-
sive amounts of objects of the same kind, e.g., a flock of
sheep or a pile of products; False positive segmentation
denotes that semantically meaningful objects from an un-
defined category are wrongly segmented, as objects of in-
terest. For instance, a dataset may contain segmentations
for toy cats, labeled cats, given that toy is not one of the
categories of interest and cat is. We report in this work
that objects mislabelling and inexhaustive segmentation
both have a negative influence on the learned represen-
tations, whereas the false positive segmentation has little
effects.

If negative influences to the learned representations in-
troduced by label noises are remarkable, methods to com-
pensate the errors become necessary. To overcome the
negative influence of objects mislabelling, we propose to
group all object categories into one foreground class and
train representations by learning to segment foreground
and background. Incorrect foreground labels can be con-
sidered as precise but inaccurate measurements of object
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class, whereas the label “foreground” is accurate but im-
precise for segmented objects. Grouping object categories
can be regarded as converting precise but potentially in-
accurate labels to accurate but imprecise labels. We argue
that learning representations do not require as precise su-
pervision as learning classifiers. As a matter of fact, how
well the learned representations transfer to another dataset
is inversely correlated to its dependence of specific cate-
gories [43]. In addition, Jain et al. [18] demonstrated
a fully convolutional network trained on over one mil-
lion images to for binary segmentation generalizes well to
thousands of unseen object categories. This observation
indicates that a convolutional network can learn generic
knowledge about object boundaries if it can segment fore-
ground and background for a wide range of categories suf-
ficiently well. Therefore, we propose to learn representa-
tions by foreground/background segmentation instead of
per-class segmentation.

If we consider datasets contained missing segmenta-
tions, the problem becomes similar to a so-called positive
and unlabelled learning (PU learning) setup [24]. In the
positive and unlabeled learning setup, the training dataset
has two sets of examples: a positive (P) set, containing
only positive examples, and an unlabeled (U) set, con-
taining a mix of positive or negative examples. Semi-
supervised learning techniques are not applicable in this
scenario as a result of the absence of negative training
samples. The set of background pixels mixed with un-
segmented object pixels, in general, fulfills this property.
In an incompletely segmented dataset, pixels of the seg-
mented objects form the P set, and the rest pixels construct
the U set. Training with a segmentation dataset with in-
complete segmentations is therefore similar to a learning
problem with only positive examples and unlabeled ex-
amples. In this work, we treat the unlabeled set as a set
of examples with noisy negative labels and propose to use
the sigmoid loss for the negative class.

To summarize, the main contributions of this work are:

1. Apart from the negative influence on classification
accuracy, we present that label errors also have neg-
ative influences on the learned representations.

2. We propose to learn representations by training
foreground/background segmentations instead of by
training per-class segmentation.

3. We propose a class-dependent sigmoid loss to train
deep neural networks with only positive and unla-
beled data.

The rest of this thesis is organized as follows: In the
next section, we summarize related works. In Section
3, we formulate the model for segmentation model and
learning with positive and unlabeled data. The proposed
sigmoid loss is evaluated, compared to the class-weighted
loss, for classification with positive and unlabeled data
and segmentation with positive and unlabeled data in Sec-
tion 5.1 and Section 5.2 respectively. We introduce the
class-dependent, sigmoid loss for the negative class for
deep learning with positive and unlabeled examples in
Section 4. Experiments in Section 5.3 are designed to in-
vestigate the influences of objects mislabeling, inexhaus-
tive segmentations, and false positive segmentations in-
dependently, and validate whether our proposed methods
can alleviate the negative influences. Discussions are pre-
sented in Section 6 and conclusions are summarized in
Section 7.

2 Related works
Transfer Learning Weights of convolutional neural
networks were proved “transferable” not only to another
dataset, for example, interstitial lung disease (ILD) clas-
sification [36], but also to other applications like object
detection [11], and semantic segmentation[27]. Trans-
ferable means initializing the model with weights from
a pre-trained CNN model results in an improvement of
the model performance compared to the random initial-
ization. [31] Yosinski et al. [43] discovered that the trans-
ferability of features is correlated with feature generality,
i.e., how much the feature depends on a particular cate-
gory. They also reported the weights from low-level lay-
ers of CNN models are well transferable to dissimilar cat-
egories, for example, from natural objects to human-made
objects. Because features are transferable regardless the
exact categories they are trained with, we argue that bina-
rizing or categorizing the pre-training classes is expected
to have no significant influence to the transferability of the
result pre-trained models.

Apart from the supervised pre-training, one can also
perform unsupervised learning to obtain pre-trained fea-
tures in the absence of labeled training data, typically with

3



auto-encoders [41, 28], deep belief networks [16, 22].
Though a few studies [9, 8, 1] discussed the advantage
of unsupervised pre-trained features compared to random
weights initialization, the difference between the two has
been diminished ever since the arises of modern initial-
ization strategies, namely Xavier initialization [12] and
its variants. We used random weights initialization as the
lower baseline for pre-training with noisy labels. Rep-
resentations learned with supervision in the presence of
label noises should at least outperform random weights
because noisy information should be still better than no
information.

Deep Learning with Noisy Labels The impact of ran-
domly flipped labels on classification performance has
been investigated by [38, 32] for convolutional neural net-
works. They both reported decreases in classification per-
formance as the proportion of flipped labels increases for
a fixed number of training samples. On the other hand,
Rolnick et al. [34] argued that deep neural networks can
learn robustly from noisy datasets as long as appropriate
choices of hyperparameters were made. They studied the
effect of label noise by diluting correct labels with errored
labels instead of corrupting correct labels with errored
ones and argued that collecting more labels is of more
importance than correcting the obtained labels. None of
these studies explored the influence of label noises on fea-
ture transferability. To the best of our knowledge, we are
the first research to investigate representations robustness
to label noises.

To alleviate the negative effects on classification perfor-
mance introduced by errored labels, a few methods were
proposed for deep neural network models. Sukhbaatar et
al. [38] introduced a linear noise layer on top of the model
output, and Patrini et al. [32] proposed two forms of loss
correction concerning the label observation bias. Xiao et
al. [42] integrated a probabilistic graphic model to an end-
to-end deep learning system to predict the observed labels
and to correct the observed labels. Additionally, Reed &
Lee [33] proposed a bootstrapping loss to emphasize per-
ceptual consistency when learning in the presence incom-
plete and errored labels. All these methods are proposed
to solve label errors from any class to any class but of-
ten have the capability of solving specific errors from one
class to another. In our problem of learning with only pos-

itive and unlabeled data, the unlabeled data can be treated
as a set of examples assigned with correct negative labels
and incorrect negative labels. The problem then converts
to learning in the presence of label errors from positive
to negative but not from negative to positive. We mod-
ified the bootstrapping loss to interpret the prior knowl-
edge that positive labels are reliable, and set a benchmark
in the experiments for the state-of-the-art methods.

Positive and Unlabeled Learning Traditional methods
to learn with only positive samples and unlabeled sam-
ples for text classification [26, 24] often follow a two-
step strategy: (1) first identifying a set of reliable negative
samples (RN set) from U set and (2) then iteratively build
a set of classifiers with RN set and P set, while updating
the RN set with a selected classifier. Methods following
this two step strategy do not extend well to deep learning
models because it would take tremendously longer time to
iteratively train a sequence of deep learning models than
to train a sequence of naı̈ve Bayesian (NB) models or sup-
ported vector machines (SVMs). For this reason, we do
not consider training deep neural networks following this
two-step strategy in this work.

Alternatively, one can treat all unlabeled examples as
negative, and weight the losses for positive and nega-
tive examples differently [23]. Under the assumption that
which positive examples are selected to be labeled is com-
pletely at random, i.e., independent of the input features,
Elkan & Noto [7] proved that the probability for an ob-
ject of being observed as positive differs from the proba-
bility of being truely positive by a constant factor. They
also observed that a classifier trained on positive and un-
labeled examples predicts probabilities that differ by only
a constant factor from the true conditional probabilities
of being positive. These two works considered only bi-
nary classification. We provide an extension of binary
PU learning to multiclass PU learning where examples
from multiple relevant classes are partially unlabeled and
mixed with examples for the non-relevant class.

The often used logistic loss for neural networks grows
to infinity as the confidence of wrong prediction increases
to one. This can be a problem for class-weighed loss:
the superfluous penalty for confident, positive predictions,
i.e., samples far from the decision boundary have a large
influence on the final solution. [40] Du et al. [3] illus-
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trated that the logistic loss and the hinge loss perform
worse than the ramp loss in the PU classification set-
ting due to their superfluous penalty for confident predic-
tions. The non-convex Ramp loss [4] and a convex dou-
ble hinge-loss [3] were proposed separately to learn from
positive and unlabeled data by Du et al. But neither of the
two losses are continuous, which is problematic for a gra-
dient based optimization so that we turns to a continuous
altenative of the ramp loss, the sigmoid loss.

Tax & Wang [40] proposed to use the sigmoid loss for
the positive class to retrieve relevant objects from a large,
non-relevant objects dominant dataset, with only poorly
labeled relevant objects. PU learning is happening on an
opposite side of this retrieving problem: the positive ex-
amples are labeled reliably and the unlabeled examples
can be considered as poorly labeled negative examples.
So we proposed to use the sigmoid loss[40] for the nega-
tive class to alleviate the superfluous punishment for con-
fident, positive predictions.

3 Problem Formulation
In this section, we formulate the model for semantic seg-
mentation and learning with positive and unlabeled data
(PU Learning).

Model for semantic segmentation A deep learning
model for semantic segmentation normally consists of
two principal functions: a CNN feature extractor g that
extracts hierarchical feature maps F from images I , fol-
lowed by a classifier h that generates pixel-by-pixel pre-
diction to fit labels S. Together they form a segmentation
model f to predict class probabilities for each of the pix-
els in a given image I:

f(I) = h(g(I)). (1)

Training is to find an optimal f from the space of func-
tions which minimizes a loss function L that measures
the distance between S and f(I):

f∗ = argmin
f

L(S, f(I)). (2)

The corresponding optimal feature extractor, a.k.a., repre-
sentations, g∗ from f∗(I) = h∗(g∗(I)) can be used as the
initialization of g for another dataset.

Learning with only positive and unlabeled data
Consider a dataset containing N training examples
(xi, yi, si), i ∈ {1, 2, . . . , N}, where xi is the observed
features for the i-th examples, and yi ∈ {−1,+1} is the
label for the i-th example, and si is a binary variable de-
noting whether the label for the i-th example is observed
or not.

In a normal binary classification setup, labels for all
examples are observed:

si = 1,∀i ∈ {1, 2, . . . , N} (3)

However, in a PU learning setup, only a subset of the pos-
itive examples P are observed while the rest are not:

si =

{
1, yi = +1 ∧ i ∈ P
0, otherwise.

(4)

The set of labeled positive examples is called the positive
P set and the other examples form an unlabeled U set.
The problem of training classifier with the P set and the U
set only is referred to as PU learning.

In this work, we train classifiers by assigning examples
in the unlabeled set negative labels and covert PU learn-
ing to a learning problem with reliable positive labels and
unreliable negative loss. The observed label ỹi for the i-th
example is:

ỹi =

{
+1, yi = +1 ∧ i ∈ P
−1, otherwise.

(5)

4 Class-dependent sigmoid loss for
PU Learning

In this section, we introduce losses for learning with pos-
itive and unlabeled examples.

Class-weighted loss A class-weighted logistic loss
lweighted(·) for a pair of input feature and observed label
(x, y) with a model f(·) parametrized by θ is:

lweigted(x, y; θ) =

{
−α log(σ(f(x; θ))), y = +1

−β log(1− σ(f(x; θ))), y = −1,
(6)

where α and β are weights for positive and negative class
respectively, and σ(·) is the sigmoid function. This loss
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Losses and derivatives
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Figure 2: The differences in losses (left figure) and deriva-
tives (right figure) with respect to the model f between the
weighted logistic loss and the sigmoid loss for the neg-
ative class. The x-axis denotes the model output f(x),
varying from negative infinity to positive infinity. We
present only (−5, 5) for compact figures. The + sign rep-
resents the loss of positive samples, and the - sign stands
for the loss of negative samples. The sigmoid loss of neg-
ative examples reaches a plateau and the derivative drops
to zero in the region of large f(x), whereas the weighted
logistic loss for negative is a linearly scaled logistic loss.
The sigmoid loss fulfills the requirement of not punishing
the model more for more positive output than less positive
output.

is referred to as the class-weighted loss in the rest of this
thesis. Empirically, the choice of α, β can be made based
on the highest precision and recall achieved on a valida-
tion set, or based on a class priors estimation[5].

We extend the class-weighted logistic loss to a class-
weighted cross entropy for multiclass classification with
K relevant classes and one one-relevant class (class 0).
Suppose there are K relevant categories and one non-
relevant categories, the corresponding class-weighted loss
lwtd for a training sample (x, y) with a model f(·)

parametrized by θ is:

lweighted(x, y; θ) =


−β log(σ0(f(x; θ))), y = 0

−α1 log(σ1(f(x; θ))), y = 1
...

−αK log(σK(f(x; θ))), y = K,

(7)

where α1, . . . , αK , β are the weighting factors,
σ0, . . . , σK are the softmax functions for class 0 to
K respectively. This loss is referred to as the class-
weighted cross-entropy.

Sigmoid/softmax Loss for the negative class The
class-dependent sigmoid loss lsigmoid a sigmoid loss for
the negative class and keep the loss for the positive class
unchanged uses a logistic loss, for example, a logistic
loss:

lsigmoid(x, y; θ) =

{
− log(σ(f(x; θ))), y = +1

σ(f(x; θ)), y = −1,
(8)

where (x, y) is a pair of input feature and label, and f(·; θ)
is the model parametrized by θ, and σ(·) is the sigmoid
function. This loss is referred as the class-dependent sig-
moid loss or the sigmoid loss in short, in a sense it uses a
sigmoid function for the negative class only.

Figure 2 shows the sigmoid loss reaches a plaetau when
the model output f(x) grows above 2, and its derivatives
with respect to the model f drops zero. By contrast, the
weighted logistic loss, with α = 1 and β = 0.5, for the
negative class is scaled by a factor of 0.5 compared to the
normal logistic loss for the negative class. It keeps grow-
ing with a rate of 0.5 as f(x) grows in the large f(x) area.
A large output f(x) represents that the model is more con-
fident for the corresponding example being positive. The
sigmoid loss follows our idea of not punishing highly con-
fident positive predictions more than positive predictions
with less confidence, whereas the weighted loss does not.

The class-dependent sigmoid loss is extendable to a
multiclass scenario where K is the number of relevant
classes and 0 denotes the non-relevant class. The corre-
sponding loss lsoftmax for an example, label pair (x, y)
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with a model f(;̇θ) is:

lsoftmax(x, y; θ) =


1− σ0(f(x; θ))), y = 0

− log(σ1(f(x; θ))), y = 1
...

− log(σK(f(x; θ))), y = K,

(9)

where σ0, . . . , σK are the softmax functions for class 0 to
K respectively. This loss is called the class-dependent
softmax loss or the softmax loss for simplicity.

Hard bootstrapping loss for the negative class In ad-
dition to the proposed sigmoid loss, we also modify the
hard bootstrapping loss by Reed et al. [33] for PU learn-
ing to set a benchmark. The modified class-dependent
hard bootstrapping loss for a pair of inputs and label (x, y)
with a model f(·; θ) is:

lbootstrap(x, y; θ) =

{
− log(σ+1(f(x; θ))), y = +1

−β log(σ−1(f(x; θ)))− (1− β) log(σŷ(f(x; θ))), y = −1,
(10)

where ŷ = argmaxj∈{−1,+1} σj(f(x; θ)) is the class
with the highest predicted probability and 0 < β < 1
is a hyperparameter to tune. The first term of the loss
for the negative class is a weighted logistic loss and the
second term can be considered as a regularization term to
encourage consistent predictions. This loss is referred as
the bootstrapping loss for the rest of this paper.

Similarly as the weighted loss and the sigmoid loss, this
hard bootstrapping loss lbootstrap can be extended to mul-
ticlass:

lbootstrap(x, y; θ) =


−β log(σ0(f(x; θ)))− (1− β) log(σŷ(f(x; θ))), y = 0

− log(σ1(f(x; θ))), y = 1
...

− log(σK(f(x; θ))), y = K,

(11)

where f(·) is the model parametrized by θ, and
σ0, . . . , σK are the softmax functions for class 0 to K
respectively, and (x, y) is a pair of example and label,
and K is the number of relevant class while 0 is the non-
relevant class, and lastly 0 < β < 1 is a hyperparameter.

Implementation details For all losses being used to
learning with positive and unlabeled data, we reweighed
the positive and negative class based on their occurrences
in the observed labels to alleviate the influence of imbal-
ance introduced by the unlabeled positive examples. We

introduced the hard bootstrapping loss only after training
with a class-weighted cross entropy loss for a few epochs
because it relies on a nonrandom model for sufficiently
reliable prediction ŷ.

5 Experiments

5.1 Learning with only positive and unla-
beled samples

In this section, we apply the sigmoid/softmax loss for the
negative class to train classifiers with only positive data
and unlabeled data and compare with the class-weighted
loss regarding the learned decision boundary, the achieved
precision and recall.

5.1.1 2D non-linear dataset

To investigate the decision boundaries led by the sigmoid
loss for the negative class, we trained a multilayer percep-
tron with a two-dimensional, non-linear separable dataset.

Dataset The training data contains four hundred sam-
ples per class drawn randomly from two interleaving half
circles with noises added with a minor standard deviation,
as shown in Figure 3. Half of the positive examples were
assigned negative labels, resulting in a training data with
reliable positive labels but noisy negative labels.

Experimental setup The multilayer perceptron con-
tains two layers, with six neurons per layer. The nor-
mal logistic loss, the class-weighted logistic loss, and the
class-dependent sigmoid loss were trained independently,
and the result optimal decision boundaries are drawn as
white regions in Figure 3. The same multilayer percep-
tron classifier was also trained with true labels to present
a baseline decision boundary. The weights for the positive
class and the negative class in the weighted logistic loss
were 1 and 0.5 respectively.

Decision boundary with large margin by the sigmoid
loss If trained with the sigmoid loss, the decision bound-
ary is distant from the positive cluster with a relatively
large margin, whereas the decision boundary for the
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weighted logistic loss is still closed to the positive ex-
amples, as shown in Figure 3. For sigmoid loss, the
mislabeled positive examples far away from the decision
boundary do not contribute more loss than samples less
distant from the decision boundary. As a consequence,
the loss derivative with respect to the model weights is
larger for examples near the decision boundary than ex-
amples far away, illustrated as marker sizes in Figure 4.
The derivative determines the update rate for the model
weights. Higher derivative means a higher rate of update.
Therefore, examples near the decision boundary have a
higher contribution to the model updates for the sigmoid
loss. In other words, the sigmoid loss emphasizes the pos-
itive predictions with low confidence. The emphasization
of the uncertain predictions near the decision boundary
for the sigmoid loss leads to a decision boundary con-
verges to low-density regions for the inputs distribution.
By contrast, the logistic loss has higher derivative for pos-
itive predictions with high confidence. It emphasizes the
incorrect predictions with confidence so that the decision
boundary is pulled toward the positive cluster by misla-
beled positive samples. Since the sigmoid loss converges
to an optimal decision boundary that has a relatively large
margin from the positive cluster while still keeping distant
from the negative samples, it is expected to achieve high
recall and not sacrifice precision.

5.1.2 CIFAR dataset

To compare the precision and recall achieved by the class-
dependent sigmoid/softmax loss and the class-weighted
loss, we trained a CNN model to classify images of mul-
tiple relevant categories from non-relevant images with
partially labeled relevant images.

Dataset We combined the CIFAR10 dataset and CI-
FAR100 dataset [19] to form a dataset with images for
eleven classes: ten relevant classes from CIFAR10 and
one non-relevant class for all categories from CIFAR100.
Only part of the relevant images are labeled (with cor-
rect classes), and the rest of the relevant images forms an
unlabeled (U) set together with the non-relevant images.
Images from the unlabeled set were assigned negative la-
bels.

Experimental setup An eight layer CNN model was
trained with the cross-entropy loss, the class-weighted
cross-entropy loss and the class-depend sigmoid loss re-
spectively in the simulated PU learning setup, where 50%
of the positive examples were unlabeled. The CNN model
was also trained with the modified hard bootstrapping loss
introduced in Section 4 to set a benchmark for the state-
of-the-art method to learn in the presence of label noises.
Model performances were evaluated on a separate test set
with true labels. The architecture of the CNN model can
be found in Table 6 in Appendix C.1. Each model was
trained from scratch with Adam optimizer and base learn-
ing rate 0.0001. Experiments were repeated three times
with random split of P set, and U set and standard devia-
tions were around 0.01 if not explicitly mentioned.

Higher recall and comparable precision with the soft-
max loss Table 1 shows using the softmax loss for the
non-relevant class achieves better recall than the class-
weighted cross-entropy loss without lowering precision
significantly. With 50% of the relevant examples correctly
labeled and the rest assigned non-relevant labels, the nor-
mal cross-entropy loss leads to an imbalanced model with
high precision but low recall, and therefore with a low f1-
score. By reweighing the loss for the non-relevant class
by a factor of 0.5, the model becomes balanced for pre-
cision and recall so that the result f1-score is improved
significantly. Compared to the class-weighted cross en-
tropy, the class-dependent softmax loss improves recall by
0.08 while reduces precision only by 0.01. The f1-score
achieved by the class-dependent softmax loss is slightly
better than the class-weighted loss, though not as good as
training with clean labels with either 50% of the sample or
the complete training set. The state-of-the-art benchmark
method, the hard bootstrap loss, achieves the same f1-
score as the softmax loss but not as high recall. The soft-
max loss for the non-relevant class can achieve higher re-
call without sacrificing the precision by much, compared
to the class-weighted loss.

To compare the class-dependent softmax loss and the
class-weighted cross entropy with varying percentage of
labeled relevant images, we also trained models with
datasets containing varing percentages of labeled rel-
evant images. Figure 5 demonstrates that the class-
dependent softmax loss performs slightly better than the
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Classifier decision boundaries with different losses
Weighted Logistic Loss

 with Incomplete Posotive Labels
Sigmoid Loss for negative class 
with Incomplete Positive Labels

Figure 3: Decision boundaries of a 2-layer multilayer perceptron trained with different losses on a 2D moons dataset
with the unlabeled positive. A red circle represents an example labeled as positive and a blue square represents the
example has a negative label. The background colors indicate the classifier prediction in the corresponding area:
red for negative class, blue for positive class and white for the class transition areas, i.e., decision boundaries. The
markers sizes demonstrates the training loss normalized per-class. Compared to the normal logistic loss and weighted
logistic loss (positive:negative=1:0.5), the decision boundary optimized with the sigmoid loss has a large margin from
the positive cluster as well as from the negative clusters. It is expected to achieve both high recall and high precision.
(Best viewed in color.)

class-weighted cross-entropy when the percentage of la-
beled relevant images is neither too high (> 0.8) nor too
low (< 0.2). When the percentage of labeled relevant im-
ages is high or low, the softmax loss behaves no worse
than the class-weighted cross-entropy. Therefore, the sig-
moid loss is in general better than weighting the losses for
different classes.

5.2 Learning with incomplete segmenta-
tions

To compare the class-dependent sigmoid loss with
the class-weighted logistic loss for training fore-
ground/background segmentation with incomplete seg-
mentations, we constructed an incompletely labeled
dataset from the PASCAL VOC2011 dataset [10] with ex-
tra segmentations [13].

Dataset Objects from the 20 foreground categories of
the PASCAL VOC2011 dataset were labeled as fore-
ground, constructing binary segmentations with the back-
ground pixels. We selected objects in the training images
completed at random with a probability of 0.5 to be la-
beled. The other objects and the background pixels were

left unlabeled. Only single-object images were used for
training and testing to avoid the influence of two adjacent
objects joining as one object because of binary segmenta-
tion, resulting in totally 4000 training images for 20 cat-
egories available for pre-training, fine-tuning and evalua-
tion. We subsampled the original images by four times to
accelerate the training process.

Experimental setup A Fully Convolutional Networks
with AlexNet model (FCN-AlexNet), as shown in Figure
10 in Appendix A.2, was used for experiments because of
its relatively small capacity and thus short training time.
The FCN-AlexNet model was trained together with the
normal logistic loss, the class-weighted logistic loss, and
the class-dependent sigmoid loss independently to pre-
dict binary segmentation, determining whether a pixel is a
foreground or background. The learned models were eval-
uated with the test set of the PASCAL VOC2011 dataset
with complete binary segmentations. Weights from the
pre-trained AlexNet model [20] were used as initialization
for compatible weights of the FCN-AlexNet model. The
other weights of the FCN-AlexNet model were randomly
initialized with Xavier initialization [12]. The default
hyperparameters of FCN-AlexNet in [27] were kept un-
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Derivatives of different losses and decision boundaries
Weighted Logistic Loss

 with Incomplete Posotive Labels
Sigmoid Loss for negative class 
with Incomplete Positive Labels

Figure 4: Derivatives w.r.t the last layer output for the
two losses (normalized per class and shown as the marker
size). The sigmoid loss has small derivatives for sam-
ples farther from the decision boundary and large deriva-
tives for samples near the decision boundary, which is
opposite to the weighted logistic loss. Higher derivative
means the example has a higher rate to update the model
weights during optimization. The sigmoid loss empha-
sizes the uncertain incorrect predictions (points near the
decision boundary) in training, whereas the weighted lo-
gistic loss emphasizes the confident incorrect predictions
(points distant from the decision boundary). (Best viewed
in color.)

changed. The training process run 240,000 iterations for
pre-training phase, and 12,000 iterations for fine-tuning
phase. Snapshots for trained models were taken every
4,000 iterations. Each experiment was repeated three
times, and the highest mean IU achieved on the test set
for the last five snapshots were summarized in Table 2.

Higher recall with the sigmoid loss As shown in Table
2, the class dependent sigmoid loss achieves the higher
mean recall by approximately 0.07 than training with the
normal logistic loss, and by 0.04 than the class-weighted
loss. Specifically for the two classes, the foregorund re-
call class increases whereas the background recall de-
creases for the sigmoid loss. This difference in classes
lead to a mean IU for the class-dependent sigmoid loss no
better than the class-weigthed loss because the mean IU
counts for both low false positive rate and low false nega-
tive rate. The class-dependent sigmoid loss improves the
recall averaged for the foreground class and background

Classification performance with partially labeled
relevant data

Annotation Loss acc. mean prec. mean rec. mean F1

R+N CrossEntropy 0.87 0.88 0.82 0.85
50%(R+N) CrossEntropy 0.83 0.84 0.78 0.80
50%R+U CrossEntropy 0.66 0.94 0.38 0.49
50%R+U ClassWeighted 0.78 0.75 0.75 0.76
50%R+U SoftmaxLoss 0.79 0.74 0.83 0.78
50%R+U BootstrapHard 0.80 0.76 0.81 0.78

Table 1: Comparing different losses for training a 2-
layer multilayer perception to classify ten relevant classes
and one non-relevant class with partially labeled rele-
vant examples and unlabeled non-relevant examples. The
trained classifiers are evaluated on a test set of true la-
bels. For each of the relevant classes, precision, recall,
and f1-score are measured with the one-vs-all strategy
and averaged. R+N denotes model trained with the com-
plete relevant labels (R set) and non-relevant labels (N
set); 50%(R+N) represents model trained with the half
of the relevant labels and non-relevant labels respectively;
50%R+U means the model is trained with half of the rele-
vant samples, and the rest relevant samples are mixed with
non-relevant samples (U set). Weighting the non-relevant
class for the cross-entropy loss by a factor of 0.5 improves
the mean f1-score significantly. The class-dependent soft-
max loss achieves higher recall than the class-weighted
loss without sacrificing precision, but not as good as train-
ing with a set of labeled negative examples (R+N and
50%(R+N)). The class-dependent softmax loss achieves
better f1-score than the class-weighted loss and is compa-
rable to a state-of-the-art method, the hard bootstrapping
loss.

class when training with incomplete segmentations.
Selective predictions made by the models trained with

the sigmoid loss and the cross entropy loss were presented
in Figure 6. For the two example images shown, the
model trained with the cross entropy loss failed to seg-
ment objects from images whereas the sigmoid loss pre-
dicted segmentations on the position of the objects. The
coarse outlines were mainly due to the limited compac-
ity of the FCN-AlexNet model. The third column shows
predictions given by model trained with complete training
segmentation, and it did not produce more accurate out-
lines than training with the sigmoid loss and incomplete
segmentations. There is no example observed correctly
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Classification performance with varying percentage
of labeled relevant images
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Figure 5: Comparing f1-score for the class-dependent
softmax loss and the class-weighted cross entropy with
varying percentage of relevant images labeled. The class-
dependent softmax loss achieves better test f1-score than
the class-weighted cross entropy when 20% and 50% per-
centage of relevant images are labeled, and the others are
mixed with non-relevant images.

segmented by the model with the class-weighted logistic
loss but not by the model with the class-dependent sig-
moid loss. These two examples show that the sigmoid
loss improves the segmentation performance by segment
a few more objects than the weighted logistic loss.

5.3 Learning representaions in the presence
of mislabeled segmentations

To learn representations in the presence of lablel errors,
we set up three experiments for three types of label errors,
(1) inexhaustive segmentations, (2) objects mislabelling
and (3) false positive segmentations, independently with
three datasets constructed from a well-annotated dataset,
the PASCAL VOC2011 segmentation dataset [10].

5.3.1 Datasets

In this experiment, fifteen out of twenty categories of the
VOC2011 dataset were selected to form a pre-training
dataset and the other categories formed a fine-tuning
dataset. Three types of label errors of interest were in-
troduced independently with stochastical corruptions to

Segmentation performance
Annotation Loss overall acc. mean rec. f.w. IU mean IU
Complete LogisticLoss 0.90 0.85 0.82 0.75
50%Unseg. LogisticLoss 0.85 0.68 0.73 0.60
50%Unseg. ClassWeighted 0.84 0.71 0.73 0.62
50%Unseg. SigmoidLoss 0.83 0.75 0.72 0.62

Table 2: Training foreground/background segmentation
with different losses when 50% of the objects are unseg-
mented. The performances are achieved on the test set
of PASCAL VOC2011 segmentation dataset. Both the
class-dependent sigmoid loss and the class-weighted lo-
gistic loss perform better than the normal logistic loss
when 50% objects unsegmented, but not as good as the
model trained with complete segmentations. The class-
dependent sigmoid loss achieves higher recall than the
class-weighted logistic loss and a similar mean IU as the
class-weighted logistic loss.

the well-annotated pre-training dataset. To avoid the in-
fluence of the choice of the pre-training and fine-tuning
splitting for categories, we divided the 20 categories of
VOC2011 equally into four folds. The exact folds of cat-
egories are:

Fold 1 aeroplane, bicycle, bird, boat, bottle

Fold 2 bus, car, cat, chair, cow

Fold 3 dining table, dog, horse, motorbike, person

Fold 4 potted plant, sheep. sofa, train, TV

The training dataset was enriched with extra segmenta-
tions by Hariharan et al. [13] To keep the segmentation
task simple, we used only single-object images, resulting
in totally 4000 training images for 20 categories available
for pre-training, fine-tuning and evaluation. The original
images were subsampled by four times to accelerate the
training process.

5.3.2 Experimental setup

A Fully Convolutional Network with AlexNet (FCN-
AlexNet) model [27], as shown in Table 10 in Appendix
A.2, was used for segmentation. Models were first pre-
trained with the pre-training datasets and then fine-tuned
with the fine-tuning datasets. The fine-tuned models were

11



Fine-tuning performance of representations trained in the presence of random labels

Pre-trained
Models

Fine-tuning mean IU per pretraining-finetuning fold Average
mean IUFold1 Fold2 Fold3 Fold4

Baseline RandomWeights 0.29± 0.01 0.29± 0.03 0.27± 0.01 0.30± 0.02 0.29± 0.02
TrueLabels 0.29± 0.01 0.36± 0.01 0.29± 0.01 0.37± 0.01 0.33± 0.01

Objects
Mislabelling

AllRandomLabels 0.29± 0.01 0.33± 0.03 0.26± 0.01 0.28± 0.01 0.29± 0.01
HalfRandomLabels 0.27± 0.01 0.33± 0.02 0.25± 0.01 0.29± 0.01 0.29± 0.01

BinarizedLabels 0.30± 0.02 0.35± 0.01 0.29± 0.02 0.35± 0.03 0.32± 0.02

Table 3: Segmentation performance for FCN-AlexNet models pre-trained on 15 categories from the PASCAL
VOC2011 dataset and fine-tuned on the other five categories. The splits of pre-training and fine-tuning categories
are organized in four folds. RandomWeights represents the randomly initialized weights; TrueLabels stands for
the model pre-trained with true labels; AllRandomLabels denotes the model pre-trained with all random foreground
labels; HalfRandomLabels is the model pre-trained with half random and half correct foreground labels; Binary-
Labels demonstrates that the model is pre-trained with binary (foreground and background) segmentations; Random
foreground labels for segmentations in the training set decreased the fine-tuning performance for the learned repre-
sentations, compared to the true foreground labels. Training foreground and background segmentation instead of per
foreground class segmentation improves the fine-tuning performance when the pre-training dataset contains misla-
beled objects from one foreground class to another.

Example predictions

Raw Label Complete SigmoidLoss ClassWeight.

Raw Label Complete SigmoidLoss ClassWeight.

Figure 6: Example predictions made by models trained
with the logistic loss and the class-dependent sigmoid
loss. This figure presents two selective images for which
the model trained with the logistic loss failed to seg-
ment objects, whereas the model trained with the class-
dependent sigmoid negative loss succeed.

evaluated by mean intersection over union ratio (mean IU)
on the fine-tuning test set, which is referred to as the fine-
tuning performance. Performance improvement of fine-
tuning transferred models compared to a randomly ini-
tialized model indicates the transferability of pre-trained
weights. The non-transferable layers of FCN-AlexNet
were randomly initialized with Xavier Initialization. Ran-

dom weights initialization were considered as the base-
line. A well pre-trained model should at least outperform
random weights initialization. The default hyperparame-
ters of FCN-AlexNet in [27] were kept unchanged. The
training process run 240,000 iterations for pre-training
phase, and 12,000 iterations for fine-tuning phase. Snap-
shots for trained models were taken every 4,000 iterations.
Each experiment was repeated three times, mean and stan-
dard deviation were computed over the last five snapshots
for all repetitions.

5.3.3 Results

Training binary segmentations in the presence of ob-
jects mislabelling Objects Mislabelling denotes that a
subset of segmented objects are mislabeled from one cat-
egory to another in a training segmentation dataset. To
validate that training binary segmentation can learn repre-
sentations better than training per-category segmentation
in the presence of objects mislabelling, we constructed
three different datasets with (1) all random labels for ob-
jects, (2) half random and half correct labels for objects,
and (3) all correct labels for objects. The learned rep-
resentations with these three datasets were fine-tuned to
segment the five fine-tuning categories and evaluated by a
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Fine-tuning performance of representations trained in the presence of incomplete segmentations

Pre-trained
Models

Fine-tuning mean IU per pretraining-finetuning fold Average
mean IUFold1 Fold2 Fold3 Fold4

Baseline RandomWeights 0.29± 0.01 0.29± 0.03 0.27± 0.01 0.30± 0.02 0.29± 0.02
CompleteLabels 0.29± 0.01 0.36± 0.01 0.29± 0.01 0.37± 0.01 0.33± 0.01

Inexaustive
Segmention

HalfUnsegmented 0.26± 0.01 0.30± 0.03 0.28± 0.03 0.32± 0.02 0.29± 0.02
SigmoidalLoss 0.30± 0.01 0.37± 0.01 0.31± 0.02 0.34± 0.02 0.33± 0.02

Table 4: Segmentation performance for FCN-AlexNet models pre-trained on 15 categories from the PASCAL
VOC2011 dataset and fine-tuned on the other five categories. The splits of pre-training and fine-tuning categories
are organized in four folds. RandomWeights represents the randomly initialized weights; CompleteLabels stands
for the model pre-trained with complete segmentations; HalfUnsegmented denotes the model pre-trained with half
of the objects unsegmented; SigmoidLoss means that the model pre-trained with half of the objects unsegmented
and with the sigmoid loss applied to the background class. Applying the sigmoid loss to the negative class when
pre-trained with inexhaustive segmentations achieves a fine-tuning performance comparable to pre-training with the
complete segmentations, better than training with the normal logistic loss.

Fine-tuning performance of representations trained in the presence of false positive segmentations

Pre-trained
Models

Fine-tuning mean IU per pretraining-finetuning fold Average
mean IUFold1 Fold2 Fold3 Fold4

Baseline RandomWeights 0.29± 0.01 0.29± 0.03 0.27± 0.01 0.30± 0.02 0.29± 0.02
NoFalsePositive 0.26± 0.01 0.37± 0.03 0.27± 0.01 0.33± 0.04 0.31± 0.02

False positive segmentaion HalfFalsePositive 0.27± 0.01 0.34± 0.01 0.30± 0.01 0.32± 0.01 0.31± 0.01

Table 5: Segmentation performance for FCN-AlexNet models pre-trained on 15 categories from the PASCAL
VOC2011 dataset and fine-tuned on the other five categories. The splits of pre-training and fine-tuning categories
are organized in four folds. RandomWeights represents the randomly initialized weights; NoFalsePositive denotes
the model pre-trained with no segmented object from the non-relevant categories; HalfFalsePositive represents the
model pre-trained with segmented objects from the noninterested categories; Including the false positive segmenta-
tions in pre-training achieves no worse fine-tuning performance than not including the false positive segmentations,
better than random initialization.

test set for the five fine-tuning classes.

Results in Table 3 suggests that pre-training with misla-
beled foreground objects have a negative influence on the
learned representations. Compared to the model trained
with true labels, both models trained with all random la-
bels and half-true half-random foreground labels do not
present improvement of segmentation performance to the
random weights initialization on the test set of the fine-
tuning dataset.

We instead discard the labels for the objects and train
binary (foreground/background) segmentation. The result
representations achieve a fine-tuning performance better

than training with the mislabeled objects and equivalent
to the model pre-trained with correct labels. Randomized
object labels were mislabeled among foreground classes
so that binarizing labels a foreground and background
classes can in a sense correct the randomized labels. This
observation indicates that binarizing segmentation labels
into foreground and background have little influence on
the learned representations.

Categorizing the foreground classes We then investi-
gate the influence of categorizing the foreground classes
instead of grouping all of them as one foreground class.
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Fine-tuning performance of representations trained
with categorized segmentation labels
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Figure 7: Segmentation performance for the fine-tuned
representations learned with various categorizations of the
pre-training classes. Zero categorize means no pre-trained
weights used and the model was random initialized. Er-
ror bars located on lines denote the meaningful catego-
rization, and isolated error bars denote random catego-
rizations (RC) of the 15 classes. The displayed mean
IU/mean accuracies and standard deviations were aver-
aged over four folds. The line shows that binarizing and
categorizing classes meaningful had little negative effect
on the learned representations.

We categorized the fifteen pre-training classes into four
meaningful categories: person, animal, vehicle, indoor
according to [10], and trained segmentation models to
transfer. The fifteen pre-training classes were also ran-
domly categorized into 4, 7, 11 categories, respectively,
to pre-train segmentation models. The learned multi-
categories segmentation models are then fine-tuned with
the 5-categories fine-tuning dataset and shown as the error
bars in Figure 7.

The line in Figure 7 demonstrates that the segmen-
tations labeled in one category, in four categories, and
in fifteen categories have no significant influence on the
learned representations. All the three learned representa-
tions improve the fine-tuning performance compared to
a random weights initialization show as the blue circle
at categories=0. Additionally, the isolated error bars in
figure 7 reveal that even training by random categoriza-
tion of the foreground classes has little effect on the fine-

tuning performance for the learned representations. This
observation indicates that it is not necessary to group the
foreground classes into meaningful categories to reserve
the class specific information. Therefore, we propose
to train foreground/background segmentations when the
purpose is to learn representations that can transfer to an-
other dataset.

Training with the sigmoid loss applied to the back-
ground class in the presence of inexhaustive segmen-
tation Inexhaustive segmentation means that there ex-
ist unsegmented objects of interest in the training images.
To validate the use of sigmoid loss for the background
class can alleviate the negative effects of inexhaustive seg-
mentation to the learned representation, we constructed a
training dataset with only 50% of the objects segmented,
together with a training dataset with 100% of the objects
segmented. Segmented means the object is labeled as
foreground, and unsegmented means the object is labeled
as background. The class-dependent sigmoid loss and the
normal logistic loss were applied to the dataset with 50%
of the objects unsegmented. The learned representations
were evaluated by fine-tuned and validated with the five-
categories fine-tuning dataset.

The segmentation performance, mean IU, for the model
pre-trained with incomplete segmentations is worse than
the model pre-trained with complete segmentations by
0.04 when using the logistic loss to train, are demon-
strated in Table 4. By applying the class-dependent sig-
moid loss to pre-train models with half of the objects
unsegmented, the learned representations achieve a fine-
tuning performance comparable to the model pre-trained
with complete segmentation. The representations learned
with the class-dependent sigmoid loss is demonstrated to
achieve better fine-tuning performance than the normal
logistic loss.

Including false positive segmentations for training if
they present False positive segmentations represents
those segmented objects that are semantically meaning-
ful but not from a pre-defined category to segment. To in-
vestigate the influence of including false positive segmen-
tations for training, we consider a dataset contains dogs
as the only category to segment. Objects from the other
fourteen categories are not supposed to be segmented for
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an error-free dataset without false positive segmentations.
The model trained with this correctly labeled dataset is
named as the NoFalsePositive model in Table 5. Another
dataset, containing half of the objects from the other four-
teen categories segmented, is referred to as the HalfFalse-
Positive model.

We observe, as presented in Table 5, that transferring
the HalfFalsePositive model performs almost the same
as the NoFalsePositive model and better than the random
weights initialization. Based on this observation, we con-
clude that including the false positive segmentations for
training have little negative effects on the learned CNN
representations.

6 Discussion
Datasets with not only label errors but also segmen-
tation errors In practice, datasets may also contain
segmentation errors such as imprecise boundaries, over-
segmenting and under segmenting the objects. Our pro-
posed method of learning representation with segmenta-
tion data do not take these types of label noises into ac-
count. The investigation of the influence of segmenta-
tion noises on the learned representations is left for future
works.

Disadvantages for the sigmoid loss First of all, we
are not able to determine what is the threshold when the
sigmoid loss saturates. A generalized logistic function
may be used to replace the normal logistic function as
the activation function to achieve a more flexible S-shape
and the tuning where the loss saturates. For example, a
parametrized sigmoid loss for the negative class could be
α( 1

1+exp (βz)
)γ , where z is the model output for the neg-

ative class, α is the scale factor, γ affects where the loss
starts, β determines where the loss saturates. Future in-
vestigation for this parametrized general sigmoid loss and
the corresponding choices of the hyperparmeters is re-
quired to achieve potentially better classification perfor-
mance.

Secondly, a loss saturates in the regions of confident
predictions can have its disadvantages: (1) If a classifier
makes incorrect predictions with high confidence, it tends
to keep being wrong for these examples and emphasize
predictions by itself. (2) Punishing confident predictions

more than uncertain predictions with the logistic loss is
a design of choice for neural networks to optimize more
effectively, whereas the sigmoid loss breaks it. These fac-
tors determine that the sigmoid loss often performs worse
than the logistic loss when the dataset contains only cor-
rect labels or a few noisy labels. There is a trade-off to
make between punishing and not punishing more for con-
fident predictions, based on the prior knowledge: an esti-
mation of the noisy negative labels percentage.

The difference between learning with positive and un-
labeled data and learning with incomplete segmenta-
tions In Section 1, we argue that learning in the pres-
ence of unlabeled foreground pixels is similar to learning
with positive and unlabeled data. Despite the similarities
between the two, there is also a difference between learn-
ing with unlabeled foreground pixels and learning with
positive and unlabeled examples. Each example in the
normal PU learning setup is independent of each other,
whereas the pixels in images are not. In practice, there is
often a spatial dependence for pixels of being labeled or
unlabeled. When we apply the sigmoid loss to the back-
ground class for learning segmentation moels with incom-
plete segmentations, we assume that the probability for a
foreground pixel of being labeled as the background is in-
dependent of its neighbor pixels. A method to interpret
the spatial dependence for pixels of being labeled in the
model can potentially further improve the segmentation
performance.

7 Conclusion
We investigate in this paper to learn representations
by training with segmentation datasets containing label
noises. (1) We report both mislabeled objects and un-
segmented objects in a segmentation dataset negatively
influence the transferability of the learned representa-
tions, i.e., how well the representations transfer to another
dataset. By contrast, false positive segmentations, i.e.,
segmented objects that are not supposed to be segmented,
do not influence the learned representation as significant
as the other two types noises do. (2) We present that
training foreground/background segmentation can pro-
duce learned representations comparable to the represen-
tations trained with per-class segmentation. In addition,
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binarizing classes for segmentation alleviates the negative
influence on the learned representations introduced by the
mislabeled objects. (3) We propose a class-dependent sig-
moid loss to not over-punish the confident, positive pre-
dictions for the negative class when there exist poorly la-
beled negative samples. Compared to simply reweighing
classes differently, the proposed sigmoid loss for the neg-
ative class achieves higher recall while not sacrificing pre-
cision by much. Applying the sigmoid loss to the segmen-
tation model pre-training improves both the segmentation
performance and the transferability of the learned repre-
sentations for a dataset with incomplete segmentations.
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Figure 8: A basic convolution operation. A 3x3 convo-
lutional filter convolves with a 3x3 window sliding over
the image (bottom). The output of convolutions at each
sliding position form a feature map (top). This figure was
drawn by Dumoulin and Visin [6]

A Convolutional Networks for Se-
mantic Segmentation

A.1 Convolutional Neural Networks
The main components of a typical convolutional neural
network (CNN) are several layers of convolutions and
sub-sampling, followed by a few fully-connected layers.
For example, LeNet-5 (1998) [21], a simple CNN model
for handwritten digit recognition, is shown in Figure 9.

Features produced by CNN models have a rich hierar-
chy varying from local to global, from simple to complex.
The bottom layers in the convolutional layer stack have
smaller receptive fields and the top layers have larger re-
ceptive fields. A small receptive field means that the filter
have access to information only in a local sub-region of
the image while a large receptive field can convey more
global information.

Example classification model: FCN-AlexNet

Figure 9: An example convolutional neural network,
LeNet-5 [21]. The first convolutional layer of LeNet con-
tains 6 convolutional kernels of size 5x5 and each convo-
lutional kernels convolve with small windows sliding over
the images and produce a feature map of size 28x28. Each
output in the produced feature map is corresponding to a
small sub-region of the visual field (the image), called a
receptive field. A following max pooling layer subsam-
ples the feature maps by a factor of two by extracting the
maximum values for every two adjacent pixels literally
and vertically. The result feature map S2 has a shape of
14 by 14 and a receptive field of 6 by 6. Another sequence
of convolutional and pooling layers generate feature maps
of size 5x5 with receptive field 16x16. Neurons in the last
three layers of LeNet are fully connected to the layer be-
fore and the layer after if exists, creating the final predic-
tion for 10 classes.

The various pattern responses from local to global,
from simple to complex for stacked convolutional layers
is a reflect of emulating animals visual cortex. In cat’s vi-
sual cortex [17], two basic cell types of visual cortex have
been identified: Simple cells respond maximally to spe-
cific edge-like patterns within their receptive field. Com-
plex cells have larger receptive fields and are locally in-
variant to the exact position of the pattern. The shallower
convolutional layers play a similar functionlity as simple
cells while the deeper layers maps are similar to complex
cells.

The main benefit of CNN compared to a standard mul-
tilayer neural network (multilayer perceptron) is that 1.
take advantage of the 2D structure of an input image 2.

19



it is easier to optimize because of spatial weights shar-
ing and local connectivy pattern of convolutional layers.
Convolutional neurons and maximum pooling, transla-
tion invariance as well as scaling invariance and distor-
tion invariance to some extent are achievable for convo-
lutional neural networks. [21] Different from the tradi-
tional handcrafted features, learnable convolutional fea-
tures normally generalize well and can achieve better per-
formance for dataset with a complex input distribution.
[20] By increasing the number of convolution layers and
number of filters in each layer, one can create CNN mod-
els with high capacity, meaning a large space of repre-
sentable functions. This can be beneficial for datasets
of immense complexity, for example, ILSVRC [35], Mi-
crosoft COCO [25], as long as there are sufficient training
samples with an appropriate optimization strategy.

A.2 Semantic image segmentation
Semantic image segmentation is to segment images into
semantically meaningful partitions, a.k.a.,segments. It
can be operated as classifying pixels into the correspond-
ing pre-defined categories.

CNN models on object classification tasks can be
adapted to perform semantic image segmentation tasks.
[27] One of the primary challenges of applying CNN
model to segmentation tasks is how to combine global in-
formation and local information to solve semantics and
localization altogether. In contrast to object classification
tasks, which normally only need global information to re-
solve semantics, segmentation tasks also require local in-
formation to resolve locations.

Long et al. [27] proposed a so-called skip architecture
in the Fully convovolutional networks (FCN) to aggregate
information from the local low-level features in the hi-
erarchy with global information from the high-level fea-
tures. As we discussed in the previous session, convo-
lutional layers can extract hierarchical features, varying
from low-level to high-level encode information from lo-
cal to global. The low-level features are fine, presenting
appearances and the high-level features are coarse, reveal-
ing semantics. By combining them together, it becomes
possible to create accurate and detailed segmentation.

Convolutional layers in FCN for feature extractions
(solid arrows in Figure 10) can be transferred from Im-
ageNet models.

Example segmentation model: FCN-AlexNet

Figure 10: Fully convolutional network with AlexNet
(FCN-AlexNet) by Long et al. (2015) [27]. Features of
different resolutions are stacked in a feature pyramid on
the left-hand side, with the image at the bottom of the
pyramid. Predictions of different resolutions are piled in
a prediction pyramid on the right-hand side. Each solid
arrow denotes a few convolutional layers followed by a
max polling layer; Dotted arrow represents convolutional
layers with kernel size one by one; Dashed arrows are up-
sampling layers or transposed convolutional layers. From
top to bottom, each level of prediction is upsampled and
merged with the prediction under it. The bottom predic-
tion is output as the final prediction, which has the same
size as the image.

B Cost function and Optimization

B.1 Cross entropy loss

The cross entropy loss (a.k.a. softmax loss) is one of the
most commonly used cost function for convolutional neu-
ral networks in classification problems. Let x(i) be an in-
put example from totally m examples, y(i) ∈ 0, ...,K be
the corresponding label, and θ be parameteres of model
f(·). The cross entropy loss is defined as:

J(θ) = −
m∑
i=1

K∑
k=0

1{y(i) = k} logP (y(i) = k|x(i); θ)

20



In the equation above, 1{·} is the “indicator function” de-
fined as:

1{statement} =

{
1, statement is true
0, otherwise

P (y(i) = k|x(i); θ) = σ(f(x; θ))k is the likelihood of
y(i) being k, predicted by model f(·), where σ(·)k is the
softmax function that applies to model output for the k-th
class.

Model outputs f(x(i); θ) is a vector of k elments with
values varying from negative infinity to positive infinity.
Each element of the output vector is corresponding to one
class out ofK classes. A larger output value for one class,
k, than another, j, means that the example x(i) is more
likely to be class k than class j. The softmax function
ensures that the model outputs are normalized to a region
between 0 and 1, and sum up to 1 for all classes so that
the result outputs fullfils a probability distribution over K
different possible outcomes.

The cross entropy loss is a form of negative log-
likelihood. The loss is closed to zero if the predicted prob-
ability of y(i) is large, and takes a large positive value
if the probability is small. Minimizing the negative log
likelihood of the correct class can be interpreted as per-
forming Maximum Likelihood Estimation (MLE), a com-
monly optimization.

B.2 Gradient based optimization and Back-
propagation

The model is optimized by solving the optimal θ that min-
imizes the loss function. It is impossible to solve θ for a
non-linear model analytically so that a gradient-based op-
timization can be used as an efficient alternative.

The derivative of the cross entropy loss with respect to
the k-th parameter of the last layer θ(L)k is:

∇
θ
(L)
k

J(θ) = −
∑m
i=1

[
z(i)

(
1{y(i) = k} − P (y(i) = k|x(i); θ)

)]
where the superscription (L) of θ denotes the layer num-
ber of the last layer, and z(i) is the output of the last layer
for the i-th example.

Weights of the last layer in the t + 1-th iteration is up-
dated by:

θ
(L)
t+1 = θ

(L)
t − α∇(θ(L))J(θ)

layer name output size 8-layer

conv1 16 × 16
3 × 3, 32, LeakyReLU(0.2)
3 × 3, 32, LeakyReLU(0.2)

2 × 2 max pool, dropout(0.2)

conv2 8 × 8
3 × 3, 64, LeakyReLU(0.2)
3 × 3, 64, LeakyReLU(0.2)

2 × 2 max pool, dropout(0.2)

conv3 4 × 4
3 × 3, 128, LeakyReLU(0.2)
3 × 3, 128, LeakyReLU(0.2)
2 × 2 max pool, dropout(0.2)

fc 1 × 1 flatten, 512-d fc, ReLU, dropout(0.5)
11-d fc, softmax

Parameters 1,341,739

Table 6: 8-layer Convolutional Neural Networks used in
the classification of the CIFAR dataset.

where α is the learning rate determining how quickly the
weights are updated.

Gradients in the layers l < L are calculated via a so-
called back propagation of errors. The error of l-th layer
is propagated the layer after l + 1:

δ(l) =
(
(θ(l))T δ(l+1)

)
• f ′(z(l))

where f ′(z(l)) is the derivative of the activation function.
Gradients with respect to weights for the l-th layer is:

∇θ(l)J(θ) = δ(l+1)(a(l))T

The weights update for the l-th layer in the t + 1 is
computed similarly as the last layer by:

θ
(l)
t+1 = θ

(l)
t − α∇(θ(l))J(θ)

C Additional information

C.1 An 8-layer Convolutional neural net-
work

The architecture of the 8-layer convolutional neural net-
work used in the classification of CIFAR dataset is pre-
sented in Table 6.
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C.2 Evaluation metrics

accuracy =
true pos. + true neg.

true pos. + false pos. + true neg. + false neg.

precision =
true pos.

true pos. + false pos.

recall =
true pos.

true pos. + false neg.

F1 = 2 · precision · recall
precision + recall

IU =
true pos.

true pos. + false pos. + false neg.
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