
 
 

Delft University of Technology

Testing principles, current practices, and effects of change localization

Raemaekers, SBA; Nane, GF; van Deursen, A; Visser, J

DOI
10.1109/MSR.2013.6624037
Publication date
2013
Document Version
Accepted author manuscript
Published in
Proceedings - 10th Working Conference on Mining Software Repositories (MSR)

Citation (APA)
Raemaekers, SBA., Nane, GF., van Deursen, A., & Visser, J. (2013). Testing principles, current practices,
and effects of change localization. In T. Zimmermann, M. di Penta, & S. Kim (Eds.), Proceedings - 10th
Working Conference on Mining Software Repositories (MSR) (pp. 257-266). IEEE.
https://doi.org/10.1109/MSR.2013.6624037
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSR.2013.6624037
https://doi.org/10.1109/MSR.2013.6624037


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Testing Principles, Current Practices, and
Effects of Change Localization

Steven Raemaekers, Gabriela F. Nane, Arie van Deursen, and
Joost Visser

Report TUD-SERG-2013-004

SERG



TUD-SERG-2013-004

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 10th Working Conference on Mining Software
Repositories 2013, IEEE. http://dl.acm.org/citation.cfm?id=2487136

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dl.acm.org/citation.cfm?id=2487136


Testing Principles, Current Practices,
and Effects of Change Localization

Steven Raemaekers⇤†, Gabriela F. Nane‡, Arie van Deursen†, and Joost Visser⇤

⇤ Software Improvement Group, Amsterdam, The Netherlands
{s.raemaekers,j.visser}@sig.eu

† Delft University of Technology, Delft, The Netherlands
{s.b.a.raemaekers, arie.vandeursen, g.f.nane}@tudelft.nl

‡ Delft Institute of Applied Mathematics, Delft, The Netherlands

Abstract—Best practices in software development state that
code that is likely to change should be encapsulated to localize
possible modifications. In this paper, we investigate the appli-
cation and effects of this design principle. We investigate the
relationship between the stability, encapsulation and popularity
of libraries on a dataset of 148,253 Java libraries. We find that
bigger systems with more rework in existing methods have less
stable interfaces and that bigger systems tend to encapsulate
dependencies better. Additionally, there are a number of factors
that are associated with change in library interfaces, such
as rework in existing methods, system size, encapsulation of
dependencies and the number of dependencies. We find that
current encapsulation practices are not targeted at libraries that
change the most. We also investigate the strength of ripple effects
caused by instability of dependencies and we find that libraries
cause ripple effects in systems using them and that these effects
can be mitigated by encapsulation.

Index Terms—Software libraries, encapsulation, ripple effects

I. INTRODUCTION

Encapsulation is an important design principle in modern
software development. The famous “Gang of Four” describe
design patterns [7] which have the primary goal of encapsu-
lating change and hiding implementation details. Booch [3]
states that encapsulation should be used to localize changes to
specific places in a system. In the end, these principles should
make it easier and cheaper to modify a software system and
to implement new requirements.

Although there is general consensus among developers that
encapsulation principles should be used, little is known about
the actual usage and the effects of these principles in real-
world software systems. In this paper, we therefore investigate
encapsulation principles and their relationship with various
system properties on a set of 148,253 library versions with
a total of more than 350 million lines of code. By measuring
library stability, encapsulation and stability of dependencies,
we can investigate whether dependencies are being encapsu-
lated, whether changes from these dependencies cause ripple
effects in systems using them and whether encapsulation can
decrease the impact of these ripple effects.

The goal of this paper is to shed some light on current
practices and effects of encapsulation: are software developers
encapsulating the right software libraries, that is, the ones

that change the most? We investigate the relationship between
several properties of software systems, such as size, popularity
and changes in these libraries and their dependencies. We also
investigate factors that are correlated with breaking changes in
library API’s.

We measure encapsulation through a simple metric, which
focuses on the desired effect of encapsulation: limiting the
amount of code that is exposed to a library and thus exposed
to potential changes in that library. We use the percentage of
source files that import a certain library in a client to measure
this. We measure stability of libraries and their API’s through
the change in existing methods, method removals and growth
in new methods.

The structure of this paper is as follows. In Section II,
the problem is stated. Section III explains how data was
obtained and what techniques have been used to calculate
metrics. Section IV discusses our dataset. In Sections
VII and VIII, results of our analysis can be found. In
Section IX and X, threats to validity and a discussion can
be found. Section XI discusses related work and Section
XII concludes the paper. An online addendum containing
links to websites of software mentioned in this paper is
available at http://www.sig.eu/en/msr2013a.
Source code of the analysis, the complete dataset
and a description of this dataset is available at
http://www.sig.eu/en/msr2013b.

II. PROBLEM STATEMENT

A. Illustrative Example

As an illustrative example, we investigate the H2 relational
database management system. This open source database
system is written in Java and supports standard ISO-SQL and
JDBC. H2 has a fairly stable release schedule, with a minor
release approximately every 2-3 weeks. Table 1 shows the
number of removed methods and classes from its API between
a sample of (non-subsequent) releases. As can be seen in
this table, the number of method and class removals from
public interfaces is considerable. For instance, between version
1.2.133 (dated April 10, 2010) and version 1.3.158 (dated July
17, 2011) 68 method removals and 15 class removals occurred.

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 1



First
Version Date

Se
co

nd
Ve

rs
io

n

1.
0.

57

1.
0.

68

1.
0.

79

1.
1.

11
0

1.
2.

12
1

1.
2.

13
3

1.
2.

14
7

1.
3.

15
8

1.0.57 26-aug-‘07 0 7 13 16 16 26 27 27
1.0.68 15-mar-‘08 29 0 7 12 12 30 31 31
1.0.79 26-sep-‘08 102 81 0 5 5 23 24 24

1.1.110 03-apr-‘09 114 97 25 0 3 23 23 26
1.2.121 11-oct-‘09 139 121 63 40 0 21 22 22
1.2.133 10-apr-‘10 189 184 127 114 104 0 15 15
1.2.147 21-nov-‘10 197 195 142 127 121 24 0 0
1.3.158 17-jul-‘11 219 221 166 153 150 68 45 0

Table 1. The number of breaking changes between different versions of the
H2 database system. In the lower-left side of the table, below the diagonal,
the number of method removals from public interfaces can be found. In the
upper right side of the table class removals can be found.

The actual usage of these methods and classes in other
libraries or systems is not taken into account in this table;
the impact of these interface changes on systems using H2 is
therefore unknown. But this case nevertheless illustrates the
amount of method and class removals from public interfaces
that can occur during continuous development of a library.

When the removed methods and classes are being used
by other systems and libraries, rework has to be performed
because every method or class removal from a public interface
causes a breaking change in libraries using that method
or class. This results in compilation errors in systems and
libraries which then have to be rebuilt and fixed before they
can be executed again. The better dependencies to libraries
are encapsulated at particular places, the less code has to be
changed when such a breaking change occurs. We regard this
to be the ultimate goal of encapsulation and the localization
of changes: to limit the amount of work required to make a
change in a software system and to limit the amount of places
where changes have to be made.

B. Research Questions

In this paper, we aim to answer the following research
questions:

• RQ1: How do library properties like size, stability, en-
capsulation and popularity relate to each other?

• RQ2: Which library properties influence the stability of
a library?

• RQ3: How is encapsulation of library dependencies cur-
rently applied in practice?

• RQ4: Do unstable libraries cause ripple effects in systems
that use them, and can these effects be mitigated by
encapsulation?

In the next section, we begin by discussing concepts and
the methodology we used. We then discuss our experimental
setup to obtain metrics from source files. After this, we
explore individual library properties to answer RQ1 and RQ2.
We then investigate relationships between libraries and the
encapsulation of dependencies to answer research questions
RQ3 and RQ4. Throughout this paper, we refer to the H2
database system as a running example to illustrate concepts
and models as described in this paper.

III. CONCEPTUAL FRAMEWORK AND METHODOLOGY

We define stability to be the amount of change in a library
compared to its previous version. The less change, the more
stable a library is. These changes may happen in such way
that existing functionality is changed or existing interfaces are
broken. This can have an effect on systems using these libraries
and can possibly cause rework. We call the rework caused by
library dependencies ripple effects. As stated before, modern
software development principles state that changes should be
encapsulated, which has the goal of reducing the amount of
effort required to implement a change, i.e. to reduce the size
of the ripple effect.

We measure the amount of encapsulation of a certain depen-
dency in a system through the isolation rating. We define the
isolation rating for library L used in client C as the percentage
of files in C that does not contain an import statement of
library L. Higher isolation of library L in system C indicates
better encapsulation of L and usage of L in fewer files of C,
and thus possibly less rework caused by changes in L. The
average outgoing isolation rating is the average rating of all
libraries that C uses. It indicates the average encapsulation
effort of developers responsible for implementing C. The
average incoming isolation rating is the average isolation of
library L in systems that use it, which indicates the amount
of isolation deemed necessary for L across all users of L.

To meaure stability, we use three metrics which we defined
in previous work [15]:

• CEM (Change in Existing Methods)
CEM measures the amount of change in cyclomatic
complexity (McCabe) between two versions of a library.
It is calculated by summing over the differences be-
tween McCabe values for each method in both versions
and weighting the result with the times each method
is being used in a certain reference set. A high CEM
value indicates a library version with large amount of
change (churn) in existing and frequently used methods
compared to its previous version.

• WRM (Weighted number of Removed Methods)
WRM is the number of removed methods weighted by
the time each method is being used. A large WRM value
indicates a library version with a large amount of used
methods removed from its interface.

• PNM (Percentage of New Methods)
The PNM is the percentage of new methods that have
been added to the next version of a library. A high PNM
value indicates a large growth in new methods.

These metrics all measure library stability in a different way
and provide a single number for metric differences in a library
compared with its previous version. In this paper we select
WRM as an dependent (outcome) variable to assess factors
influencing library stability, since removing methods that are
used by other systems always causes breaking changes in these
systems and always requires rework. Although CEM also gives
an indication of the amount of change that has occurred and
this change is weighted by usage frequencies, it would also

Testing Principles, Current Practices, and Effects of Change Localization SERG

2 TUD-SERG-2013-004



include non-relevant rework in methods since it is unknown
which part of added lines of code or changes in the cyclomatic
complexity will cause an observable difference in behavior
from the perspective of a library user. We also use WRM and
PNM as dependent variables in our statistical analyses.

We measure ripple effects and the effects of encapsulation
with linear regression techniques. These effects becomes visi-
ble statistically by constructing models which include stability
of libraries, encapsulation of dependencies, and stability of
these dependencies. We answer RQ1 and RQ3 by computing
correlations between properties of individual libraries. We fit
a linear regression model with WRM as dependent variable to
assess the influence of other library properties on the stability
of a library to answer RQ2. We finally consider statistical
models to account for the interaction between encapsulation of
dependencies and ripple effects caused by instability in these
dependencies to answer RQ4.

A robust regression method (Huber and biweight itera-
tions [10]) is applied to the linear regression models in this
paper, meaning that estimates of standard errors and p-values
are robust against violations of normality, homoscedastiscity
and independence [6]. We have applied log transformations
where needed, because the data is strongly skewed and visual
inspection shows that the data is approximately normally
distributed after applying a logarithmic transformation. To
calculate correlations between library properties, Spearman
rank correlation coefficients were used since we cannot assume
that properties are linearly correlated. When fitting a linear
regression model without taking the clustered structure of
the network of library dependencies into account, incorrect
conclusions could result due to model misspecification [1],
[18]. To account for the graph structure of dependencies
between libraries, more advanced statistical methods are re-
quired. Multilevel modeling [17] is used to fit a statistical
model which takes into account these dependencies.

Regarding the relationship of popularity with other library
properties (RQ1), we expect that popular systems have more
stable interfaces for two reasons. First, we expect that libraries
are more popular because they have more stable interfaces.
This is beneficial for software developers because this reduces
the expected amount of rework due to ripple effects when
including these libraries. Second, developers of popular sys-
tems might feel limited in their freedom to change existing
interfaces because a larger number of other systems depend
on it. Either way, this becomes visible by calculating the
correlation between library stability and network metrics such
as the PageRank [13]. Systems that are more “central” in the
network of library dependencies are expected to get a higher
score for these metrics.

We do not make a distinction between test code and other
code since this distinction is not relevant for our research
question. Ripple effects coming from a dependency can also
occur in test code and the effects of method removals from
interfaces are identical for test and non-test code.

IV. DATASET

We use the Maven repository for our analysis, a collection
source and binary jar files of third-party libraries. Maven is
a build configuration tool in which third-party library depen-
dencies can be specified in the build file of a project. When
building a project, Maven automatically retrieves the required
libraries from a central repository. We downloaded a snapshot
of this repository, dated July 30, 2011. It contains 148,253
separate jar files, approximately 20,000 separate projects and
on average 7 versions per project.

We chose the Maven repository as dataset because it is
the largest collection of open-source third-party Java libraries
publicly available. We assume that programming practices
in the Java programming language as investigated in this
paper are representative for practices in other object-oriented
languages.

For a more detailed description of our dataset and a down-
load location, see [16]. Additional information is also available
on the accompanying websites mentioned earlier.

V. IMPLEMENTATION

To calculate correlations between system properties, metrics
of all libraries in the Maven repository were obtained. To
obtain source code measurements such as the number of lines
of code, number of methods and stability metrics, the Soft-
ware Analysis Toolkit of the Software Improvement Group1

was used, which was adapted to run in parallel on multiple
machines.

Specialized data structures were required to store the large
amount of data. Berkeley DB, an on-disk key-value store,
was used to store all properties of methods on disk and to
make statistical calculations possible. To calculate isolation
ratings, source code jars were unzipped and source code was
scanned for package declarations. This way, a collection of
package names was obtained for each jar file. These names
were reduced to one or multiple package prefixes, which
were used to scan for dependencies in other libraries. For
example, the package prefix of H2 is com.h2database.
For each jar file, the number of files that contain an import
statement which starts with a package prefix were counted.
Only prefixes of dependencies which were included in the
corresponding pom.xml file of the library were checked. For
instance, to calculate the isolation rating for H2 in systems
using it, the number of files that contain an import statement
starting with “import com.h2database” were counted.
When multiple statements with the same prefix appear within a
file, the file was counted only once. The final score is 1 minus
the proportion of files importing a certain library, so a higher
score means better encapsulation of a specific dependency in
a library.

As noted before, the example of the H2 database system
does not take into account the actual usage of removed meth-
ods and the impact on systems using these libraries is therefore
unknown. Our metrics take the actual usage frequencies of

1http://www.sig.eu/en

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 3



methods into account by weighting each metric value of a
method by the number of times this method is being used
throughout the Maven repository. To obtain usage counts, java
class files were disassembled from binary jars using javap
-private -c -s, meaning that a bytecode dump of all
class methods was created with method calls annotated with
fully qualified names. These names were counted and also
stored. In contrast to previous work [15], we add 1 to all usage
frequencies, even if methods are never called. This ensures that
all libraries get a non-zero metric score and prevents that most
libraries receive a score of 0 for all metrics. Methods that are
called more frequently are still weighted more and have more
influence in the final stability score of a library.

VI. DESCRIPTIVE STATISTICS

In Table 2, descriptive statistics of our dataset can be found.
The database comprises 148,253 java libraries, but source
code of only 94,670 libraries is available due to a variety
of reasons, such as corrupted jar files or jar files containing
only non-source code files. The code that is available has a
total of 350,571,247 SLOC, 4,174,150 classes and 37,406,546
methods.

min p5 p25 p50 p75 p95 max avg sd
nM 1.0 4.0 21.0 69.0 240 1.5k 56k 468 1.7k
nC 1.0 1.0 3.0 10.0 30.0 223 4.7k 52.23 166.7

LOC 1.0 39.0 203 650 2.2k 17.5k 382k 4.4k 15.7k
inD 1.0 1.0 1.0 3.0 10.0 76.0 19.6k 24.42 212

outD 1.0 1.0 2.0 5.0 8.0 18.0 211 6.5 7.02
inI 0.01 0.01 0.38 0.70 0.91 1.0 1.0 0.63 0.31

outI 0.01 0.01 0.51 0.75 0.98 1.0 1.0 0.67 0.26
WRM 0.0 0.0 0.0 0.0 0.0 98.0 1.5m 298 13k
CEM 0.0 0.0 0.0 0.0 5e-06 0.02 31.5 0.01 0.14
PNM 0.0 0.0 0.0 0.0 0.01 0.35 1.0 0.06 0.17

RCNO 0.0 0.0 0.0 0.0 0.0 1.6k 7.3m 3.4k 69k

Table 2. Descriptive statitistics for libraries in the Maven repository. nM =
number of methods, nC = number of classes, LOC = lines of code, inD =
indegree, outD = outdegree, inI = average incoming isolation rating, outI =
average outgoing isolation rating.

The variation in system size (LOC) is large: the smallest
system is only 1 LOC, compared to the largest system which is
382,000 SLOC. There are few systems larger than 2,000 lines
of code: the 75th percentile is at 2,200 SLOC. Inspection of a
sample of libraries showed that there are libraries which only
contain an empty interface, which explains the minimum of 1
line of code. Moreover, there exist “property jars”, which only
contain configuration files and no Java code. Libraries are used
24.42 times (indegree) on average and use 6.5 other libraries
(outdegree) on average. The maximum number of times a
library is being used is 19,621 (this is JUnit 4.8.2). Note that
values for nM, LOC, WRM and RCNO have large standard
deviations, which indicates a great spread in data values. Most
metrics follow a strong power law, in which most values fall
within a certain range (for instance, close to 0.0 for WRM)
and there exist a small number of extreme outliers.

The next section describes results obtained from further
analysis. We first investigate relationships between properties
of individual libraries. After this, we take into account depen-
dencies between libraries.

VII. INDIVIDUAL LIBRARY RESULTS

A. The Relationship Between Library Properties

To answer RQ1, we inspect relationships between properties
of individual libraries. These relationships are shown in Table
4. In the lower left part of the table, below the diagonal, the
strength of correlations can be found [4]. In the upper right
part of the table p-values can be found. Using a Bonferroni
adjustment of 105 (

P14
i=1 i), all shown correlations are signif-

icant at the 0.0005 (0.05 / 105) level. P-values smaller than
1e-300 are denoted as 0 and nonsignificant correlations are
not shown.

Four of the most interesting relationships are also presented
graphically in Figure 3. The upper left panel exhibits the
relationship between the log transformed WRM and CEM.
Since the log is a monotone function, transformation of the
two variables does not change their rank correlation. The rank
correlation coefficient is 0.53, indicating that systems with
more change in existing methods tend to have less stable
interfaces. The upper right panel shows that bigger systems
(measured in number of methods, nM) also tend to have less
stable interfaces, with a correlation coefficient of 0.36. The
number of data points (n) is different in the four graphs due
to missing package prefixes.

The lower panels of Figure 3 shows the relationships
between system size (nM) and the average incoming (inI)
and outgoing isolation (outI) rating. In the lower left panel,
the average outgoing isolation rating is plotted against system
size. The positive correlation coefficient of 0.47 indicates that
dependencies on other libraries tend to be better encapsulated
in bigger systems. The opposite does not seem to be the case:
there exists only a very weak correlation of -0.11 between
system size and the average incoming isolation rating, as
can be seen in the lower right panel. This indicates that
bigger libraries tend to be encapsulated only marginally less
in systems that use them.

Table 4 further shows that network metrics, such as the
PageRank and the Hubbiness and Authoritativeness from the
HITS-algorithm [9] are weakly positively correlated with other
system properties. This contradicts our hypothesis that more
popular libraries are more stable and shows that popular
libraries tend to change more. The table further shows that
the four stability metrics WRM, CEM, PNM and RCNO are
strongly correlated, indicating that rework in existing methods,
building new methods and removing old methods are activities
that are often performed together.

The table also shows that there exists an almost perfect
correlation between WRM and nMr, which is not surprising
since WRM and nMr both measure the number of removed
methods but WRM weighs them with the number of times they
are being used. Similarly, nMn and PNM are also strongly
correlated because they measure the same thing in a different
way; PNM calculates the percentage of new methods in a
snapshot while nMn is the absolute number of new methods
in each snapshot.

Testing Principles, Current Practices, and Effects of Change Localization SERG

4 TUD-SERG-2013-004



PageR. Hubb. Auth. WRM CEM RCNO PNM nM nMn nMr InI. OutI. InD. OutD.
PageRank 1.00 9.0e-78 0 9.7e-165 6.0e-233 1.4e-267 5.6e-182 0 1.2e-267 4.8e-162 1.5e-135 0 1.8e-26

Hubbiness -0.06 1.00 6.5e-08 2.8e-67 8.1e-73 3.9e-75 3.7e-56 0 3.4e-75 4.0e-64 0 8.8e-13 0

Authoritativeness 0.96 -0.02 1.00 6.0e-155 1.8e-217 3.1e-245 2.8e-173 0 1.3e-247 4.8e-152 2.5e-125 1.0e-133 0 9.4e-10

WRM 0.11 0.07 0.11 1.00 0 0 0 0 0 0 0 2.4e-20 2.0e-239

CEM 0.13 0.07 0.13 0.53 1.00 0 0 0 0 0 1.8e-290 4.6e-25 4.3e-245

RCNO 0.14 0.08 0.14 0.58 0.83 1.00 0 0 0 0 0 1.5e-32 3.2e-250

PNM 0.12 0.07 0.12 0.75 0.59 0.70 1.00 0 0 0 0 9.4e-22 1.3e-196

Number of methods (nM) 0.19 0.17 0.17 0.36 0.39 0.43 0.35 1.00 0 0 1.9e-14 0 5.5e-74 0

Number new methods (nMn) 0.14 0.08 0.14 0.78 0.62 0.75 0.98 0.44 1.00 0 0 3.9e-36 1.7e-267

Number removed methods (nMr) 0.11 0.07 0.11 1.00 0.52 0.58 0.76 0.36 0.78 1.00 0 2.8e-19 7.4e-236

Avg. Incoming Isolation (InI.) 0.24 -0.11 1.00 2.0e-11 3.8e-61 4.5e-16

Avg. Outgoing Isolation (OutI.) 0.10 0.31 0.10 0.20 0.16 0.20 0.19 0.47 0.24 0.20 -0.08 1.00 2.0e-09 0

Indegree (InD.) 0.45 0.06 0.33 0.12 0.13 0.15 0.12 0.23 0.16 0.11 0.17 0.06 1.00
Outdegree (OutD.) -0.04 0.54 -0.02 0.14 0.14 0.14 0.13 0.24 0.15 0.14 -0.09 0.39 1.00

Table 4. Spearman rank correlation matrix for jar file properties. All shown correlations are significant at the 0.0005 (0.05 / 105) level. In the upper right
part of the table, above the diagonal, p-values can be found. PageR. = PageRank, Hubb. = hubbiness, Auth. = authoritativeness.

Fig. 3. Scatterplots and Spearman rank correlations between, CEM, WRM,
number of methods (nM) and average incoming (inI) and outgoing isolation
rating (outI). The axis limits have been adjusted and logarithmic transforma-
tions have been applied to demonstrate the relationships more clearly.

B. Regression Results

Although the correlations in the previous paragraph provide
a first insight in the relationship between library properties,
they do not provide us any information on possible influences
of library properties on breaking changes in library interfaces.
To investigate this, we perform a linear regression analysis
with WRM as the dependent (outcome) variable and multiple
independent (predictor) variables. The results of this analysis
can be found in Table 5. With this analysis, we can investigate
possible explanations for library instability from the perspec-
tive of a single library.

We performed a linear regression analysis with log(WRM)
as dependent variable and log(CEM), log(nM), log(PNM),
average outgoing isolation rating (outI) and the outdegree as
independent variables. The model is based on 7394 observa-
tions and the results of this model are shown in Table 5.

Independents Coeff. Beta Std. Err. p-value 95% C.I.
log(CEM) 0.094 0.099 0.011 0.000 0.073 - 0.115

log(nM) 0.939 0.674 0.016 0.000 0.907 - 0.970
log(PNM) 0.694 0.487 0.017 0.000 0.661 - 0.726

outI -0.439 -0.042 0.106 0.000 -0.647 - -0.230
outD 0.007 0.029 0.002 0.003 0.003 - 0.012

constant 0.352 - 0.093 0.000 0.169 - 0.534

Table 5. A regression model performed on the number of removed methods
from library interfaces.

Expressed as a formula, the model looks as follows:

log(WRM) = 0.352 + 0.094log(CEM) + 0.939log(nM)

+0.694log(PNM) � 0.439outI + 0.007outD (1)

The effect of all predictors in our model is significant with
p-values close to 0. The standardized coefficients (“Beta”)
in Table 5 indicate that the size of the system and the
percentage of new methods are the two most important factors.
The R2 of the model is 0.3877, indicating that 38.7% of
the total variability in log(WRM) can be explained by the
model. Furthermore, the p-value of the overall model is 0.000,
indicating a rejection of the null hypothesis that all the slopes
in the linear model are zero.

The model shows that there exists a positive linear rela-
tionship between CEM and WRM, indicating that systems
which are more actively developed tend to have less stable
interfaces. There also exists a positive linear relationship with
PNM, which indicates that growing systems tend to have
less stable interfaces. The average outgoing isolation rating
influences WRM negatively, indicating that systems which
encapsulate their dependencies better tend to have more stable
interfaces. The number of dependencies to other libraries is
positively correlated with WRM, indicating that libraries with
more external dependencies tend to have less stable interfaces.

Although correlations between these library properties and
WRM of the opposite direction can be found in Table 4,
this model shows us that after correcting for other library
properties, this direction reverses. The results of our linear
regression model thus indicate that the amount of breaking
changes in library interfaces can be explained by the churn
in existing methods, the size of the system measured in the
number of methods, the percentage of new methods in each
snapshot, the average outgoing isolation rating and the number
of other libraries the library depends upon. The PageRank,
Hubbiness and Authoritativeness were originally also incuded

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 5



in this model but did not have a significant effect on instability
in libraries and where removed from the model.

To answer RQ2: The encapsulation of dependencies has
a significant positive effect, and the size of the library, the
growth in new methods, the change in existing methods and the
number of external dependencies have a significant negative
effect on the stability of a library.

In the case of the H2 database system, we can predict
the number of breaking changes in the public interface of a
specific library version by filling in values for all independent
variables. For instance, version 1.3.157 of the H2 database
system has a CEM of 2.1 ⇤ 10�4, 7058 units, a PNM of
8.8 ⇤ 10�3, an average outgoing isolation rating of 0 and an
outdegree of 0. Filling in these values in the regression formula
leads to a predicted WRM of e4.58 = 98.45. The actual WRM
for this library version is 64. The model also tells us that if
the number of methods and the PNM value would be halved,
predicted WRM would be e3.60 = 32.04. This illustrates that
smaller, slower growing systems tend to have greater stability
of public interfaces. Predicted values could be further reduced
by increasing encapsulation of external dependencies in the
system and decreasing the number of external dependencies.
However, the model does not imply a causal relationship
between predictors and the outcome variable and therefore
care has to be taken when using this model for prediction,
especially considering the R2 of the model (0.3877), indicating
that only 38.77% of variability in the outcome variable can be
explained by the model.

VIII. LIBRARY INTERDEPENDENCY MODELING RESULTS

In the previous section we investigated relationships be-
tween properties of individual libraries. In this section we
take into account dependencies to other libraries. We start by
creating a simple model which gives us an indication of the
size of the ripple and encapsulation effect. After this, we take
more of the complex structure of the data into account to see
whether this advanced model confirms our simpler analysis.

A. Estimating the Encapsulation Effect

In order to estimate the effect of encapsulation on stability
of libraries, we fit another linear regression model which
investigates the effect of encapsulation on the stability of
libraries and their dependencies. We want to model the effect
of instability in dependencies (WRMto) on stability in libraries
using them (WRMfrom), while correcting for encapsulation of
these dependencies. We expect to find a positive relationship
between instability in dependencies and library instability,
indicating that library instability tends to increase when insta-
bility in dependencies increases. We expect that the addition of
isolation as a predictor will have a dampening effect, indicating
that encapsulation is able to offset ripple effects.

The results are displayed in Table 6. Expressed as a formula,
the model looks as follows:

log(WRMfrom) = 3.24 + 0.037log(WRMto) � 1.17is (2)

Independents Coeff. Std. Err. p-value 95% C.I.
log(WRMto) 0.037 0.011 0.001 0.015 - 0.059

isolation -1.17 0.109 0.000 -1.38 - -0.957
constant 3.24 0.061 0.000 3.12 - 3.36

Table 6. A regression model with stability in libraries and their dependencies,
and the isolation rating between them.

The model is based on 6813 cases, is significant with a
p-value of 0.000 but has an R2 of only 2%. This does not
pose a problem since the effect found is highly significant
and the isolation rating and the WRM in dependencies alone
are not expected to explain a large part of the variability in
the outcome variable. The model thus shows that there indeed
exists a positive effect of dependency instability on library
instability while correcting for isolation (is). The intercept of
3.24 can considered to be the baseline change in libraries,
regardless of dependency changes. The model is in line with
our expectation to find a ripple effect: for every increase
in log(WRMto), there is a 0.037 increase in log(WRMfrom).
This is the residual ripple effect that remains when taking
into account baseline changes in libraries and encapsulation
of dependencies. It shows that, apparently, encapsulation is
not fully capable of preventing ripple effects coming from
dependencies. This model partly answers RQ4, but further
analysis is performed in Section VIII-C.

B. Current Encapsulation Practice

To investigate whether dependencies that change more are
isolated better, i.e., whether there exists a positive correlation
between log(WRMto) and isolation, we performed a Spearman
rank correlation test. This gives a Spearman’s ⇢ of 0.0295
(p=0), meaning that there does not exist a strong correlation
between breaking changes from dependencies and isolation of
those dependencies. We expected to find a positive correlation.
The result indicates that existing encapsulation practices are
not targeted at dependencies that change the most. This
possibly means that developers are not aware which libraries
change the most and thus do not isolate these libraries better.

To answer RQ3: current encapsulation practice is not
targeted at the most unstable libraries.

C. Multilevel Model for Interface Instability

The robust regression technique as used in the previous
paragraphs can provide us with useful initial estimates and is
robust against violations of independence and nonnormality to
some extent. To fully take into account the complete structure
of the data, however, a more advanced statistical method
has to be used. Instead of treating the complex network
structure as a nuisance and control for it, this structure can
also be incorporated in the model specification which enables
us to perform a more sophisticated analysis of sources of
breaking interface changes. A technique called hierarchical
or multilevel modeling is capable of dealing with the type
of relationships present in our data, such as a one-to-many
relationship between a library and its dependencies.

Specifying a model that fully acknowledges all dependen-
cies between observations also enables us to get an unbiased

Testing Principles, Current Practices, and Effects of Change Localization SERG

6 TUD-SERG-2013-004



and correctly estimated effect of the size of ripple effects.
Multilevel modeling is commonly used in the social sciences,
for instance to model the quality of care of nurses in a hospital.
Each patient can be treated by one or more nurses and a single
nurse can treat multiple patients. If we want to model the
effect of work hours of a nurse on the health of a patient, we
could run correlation test which correlates the blood pressure
of patients, for instance, and the amount of hours each nurse
works during multiple weeks. The problem is that multiple
measurements of work hours over time belong to the same
nurse and multiple measurements of blood pressure over time
belong to the same patient. Also, patients can move in and out
of the ward, thus not receiving care of the same nurse anymore.
When not accounting for dependencies such as these, incorrect
conclusions would be drawn from the analysis [1], [18].

The same principles apply in our dataset, of which Figure
7 shows an example. As can be seen in panel A of this figure,
there can be multiple library versions pointing to multiple
versions of other libraries. The tabular form of properties
presented in Figure 7A can be found in Table 8. Since
statistical analysis requires data to be stored as one observation
per row, data duplication results, which leads to violations of
independence of observations. To see why, see Table 8, where
multiple violations of independence of observations can be
identified. The first type, duplicated measurements, appear be-
cause there exist one-to-many relationships between a library
and its dependencies. In Table 8, Libraries A1, C1 and D1 have
multiple dependencies and thus reappear with corresponding
WRMfrom values. A time dependency is also present between
A1 and A2. Incorporating time dependencies in our model
acknowledges the fact that measurements of the same library
over time are more likely to be correlated than measurements
of independent libraries. Summarizing both duplicated mea-
surements and time dependencies, measurements eventually
belong to a group of the same artifact, as can be seen in the
latest two columns. Finally, the isolation ratings marked as
independent observation in the table are independent since no
related libraries are involved. The duplication is a coincidence
in this case.

A1
WRM=10

C1
WRM=5

B1
WRM=12

D1
WRM=0

E1
WRM=0

F1
WRM=2

0.7 0.41.0

0.6 0.8 0.3

0.2

1.0 = dependency with isolation

next version
A1

WRM=10
D1

WRM=0

ripple effect

0.7

D

D2
WRM=1

= dependency group

A2
WRM=11 0.6

EE1
WRM=0

C1
WRM=5

D1
WRM=0

0.6

0.8

Libraries (level 1) Dependencies (level 2)

Dep.groups 
(level 3)

(A) Example dependency network (B) A piece of the corresponding multilevel model

WRMfrom WRMto

Fig. 7. An example of libraries and their dependencies. On the right side,
the corresponding multilevel representation of the left side is shown. Not all
nodes and relationships from panel A are included in panel B.

when not accounting for these effects, incorrect conclusions
would result [1], [12].

A1
CEM=20
WRM=10

C1
CEM=24
WRM=5

B1
CEM=15
WRM=12

D1
CEM=5
WRM=0

E1
CEM=4
WRM=0

F1
CEM=14
WRM=2

0.7 0.41.0

0.2 0.8 0.3

0.6

WRM 
from A1

1.0 = dependency with isolation

metrics
Lvl 1

versions

A

D1

libs
versions

Lvl 2

WRM
from A2

next version

WRM
from B1

B

WRM
from B2

0.4

0.6

ripple effect

group
Lvl 3

D

D2

C1

C2

1.0

0.7

C

dependencies

WRMto

Fig. 6. An example of libraries and their dependencies. On the right side,
data dependencies are shown. The right side also includes multiple versions
of the same library, which are not shown on the left.

Table ?? shows a table of the properties presented in Figure
6.

from to WRMfrom WRMto isolation Libfrom Libto
A1 C1 10 5 1.0 A C
A1 D1 10 0 0.7 A D
A2� D2 11 1 0.6 A D
B1 D1 12 0 0.4 B D
C1 D1 5 0 0.6 C D
C1 E1 5 0 0.2 C E
D1 E1 0 0 0.8 D E
D1 F1 0 2 0.3 D F

Table. 7. Tabular form of the diagram presented in Figure 6. Multiple sources
of data duplication and dependency can be identified in this table. �This
relationship is not shown in Figure 6.

C. Model specification

We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a
minimum at the same time. We use a multilevel model with
three levels: individual measurements nested in dependency
versions nested in dependencies. Practically, this means that
individual measurements such as the log(WRMfrom) are defined
for the individual library at level 1. These libraries point to
other libraries, which is level 2 in our model. These libraries
are multiple versions of the same library, which is level 3 in
our model. We apply the same robust regression techniques as
in the previous analyses, thus correcting for the fact that we
miss the left-most levels “versions” and “libs” from Figure 6.

We want to model the effect of WRM in library depen-
dencies on WRM of libraries, taking into account isolation of
these dependencies. This enables us to answer whether there
exists instability in dependencies that causes ripple effects in
libraries using them and whether isolation is able to mitigate
these ripple effects.

Since we want to model the influence of removed methods
in dependencies on removed methods in libraries using them
while also taking into account isolation of these dependencies,
we need to add these factors to the model. In part B of Figure

log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope

lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 8. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j . In figure B, slopes are allowed to vary,
leading to a different � per group.

8, a group-specific intercept is depicted which means that we
expect that isolation has a different effect on

We can write the general regression formula with variable
intercept and variable slope in the following form:

log(WRMijk) = �0 + �1log(WRMjk) + �2is + ✏ijk (2)

�0 = �00 + �0j + �0k

�1 = �01

�2 = �02 + �2k

In this formula, WRM for library version v (level 1) of
artifact a (level 2) pointing to dependency d (level 3) is
modeled as a regression line with an intercept and a slope
depending on the WRM of dependencies and the isolation
of those dependencies. The grand mean of WRM across all
libraries is denoted as �00, each artifact adds an artifact-
specific intercept �0a and each dependency adds a dependency-
specific intercept �0d.

Running this model provides us with a grand mean �00 of
3.13, which is the average log(WRM) in libraries, a variance
in group means �00 of 0.92 (95% C.I. 0.86 - 0.98) and a
�2 of 5.24 (95% C.I. 5.19 - 5.28). The intra-class correlation
of our null model is 0.92 / (0.92 + 5.23) = 14.96%. This
means that around 15% of the variance in log(WRM) is due
to differences across dependency groups, with the remaining
85.04% attributable to individual differences.

Table III shows a mixed model for log(WRM) for depen-
dencies between libraries.

We first define a null model to test the variance in breaking
changes between defined groups, which can considered to be a
baseline measurement. Formally, this baseline model is defined
as follows:

log(WRMijk) = �0jk + ✏ijk (3)

�0jk = �00 + �0j + �0k

which specifies that log(WRMfrom) for library i using a
dependency with version j in dependency group k is defined
as the mean WRM in a level 2 group (�0jk) plus a individual
deviation term ✏ijk from the mean WRM in his group. The
mean in a level 2 group consists of the overall mean �00 plus
a deviation for level 2 groups �0j plus a deviation for level
3 groups �0k. This can be seen in part A of Figure 8, which

Duplicated 
measurement

Time 
dependency

Independent 
observations

Same
Artifact

effects. Multilevel modeling is commonly used in the social
sciences, for instance to model the effect of cross-cultural
differences on software development team communication.
If communication in software development teams in a large
multinational company would be investigated, cultural dif-
ferences between a team in Japan and a team in Europe
would have to be taken into account. Each development
team consists of individuals which tend to have a common
way of communicating with each other. However, teams in
Japan possibly tend to communicate differently than teams in
Europe, separately from invididual differences. A multilevel
model would be capable of separating the amount of difference
in communication between individuals, differences in team
composition and cultural differences present at the country
level. Similar grouping effects are also present in our data, and
when not accounting for these effects, incorrect conclusions
would result [1], [12].

A1
CEM=20
WRM=10

C1
CEM=24
WRM=5

B1
CEM=15
WRM=12

D1
CEM=5
WRM=0

E1
CEM=4
WRM=0

F1
CEM=14
WRM=2

0.7 0.41.0

0.2 0.8 0.3

0.6

WRM 
from A1

1.0 = dependency with isolation

metrics
Lvl 1

versions

A

D1

libs
versions

Lvl 2

WRM
from A2

next version

WRM
from B1

B

WRM
from B2

0.4

0.6

ripple effect

group
Lvl 3

D

D2

C1

C2

1.0

0.7

C

dependencies

WRMto

Fig. 7. An example of libraries and their dependencies. On the right side,
data dependencies are shown. The right side also includes multiple versions
of the same library, which are not shown on the left.

The tabular form of properties presented in Figure 7 can
be found in Table 8. Multiple violations of independence of
observations can be identified in this table. The first type,
duplicated measurements, appear because there exist one-to-
many relationships between a library and its dependencies. In
Table 8, Libraries A1, C1 and D1 have multiple dependencies
and thus reappear with corresponding WRMfrom values. A time
dependency is also present between A1 and A2. Incorporating
time dependencies in our model acknowledges the fact that
measurements of the same library over time are more likely
to be correlated than measurements of independent libraries.
Summarizing both duplicated measurements and time depen-
dencies, measurements eventually belong to a group of the
same artifact, as can be seen in the latest two columns. Finally,
the isolation rating marked as independent observation in the
Table are independent since no related libraries are involved.
The duplication is a coincidence in this case.

C. Model specification

We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a

when not accounting for these effects, incorrect conclusions
would result [1], [12].

A1
CEM=20
WRM=10

C1
CEM=24
WRM=5

B1
CEM=15
WRM=12

D1
CEM=5
WRM=0

E1
CEM=4
WRM=0

F1
CEM=14
WRM=2

0.7 0.41.0

0.2 0.8 0.3

0.6

WRM 
from A1

1.0 = dependency with isolation

metrics
Lvl 1

versions

A

D1

libs
versions

Lvl 2

WRM
from A2

next version

WRM
from B1

B

WRM
from B2

0.4

0.6

ripple effect

group
Lvl 3

D

D2

C1

C2

1.0

0.7

C

dependencies

WRMto

Fig. 6. An example of libraries and their dependencies. On the right side,
data dependencies are shown. The right side also includes multiple versions
of the same library, which are not shown on the left.

Table ?? shows a table of the properties presented in Figure
6.

from to WRMfrom WRMto isolation Libfrom Libto
A1 C1 10 5 1.0 A C
A1 D1 10 0 0.7 A D
A2� D2 11 1 0.6 A D
B1 D1 12 0 0.4 B D
C1 D1 5 0 0.6 C D
C1 E1 5 0 0.2 C E
D1 E1 0 0 0.8 D E
D1 F1 0 2 0.3 D F

Table. 7. Tabular form of the diagram presented in Figure 6. Multiple sources
of data duplication and dependency can be identified in this table. �This
relationship is not shown in Figure 6.

C. Model specification

We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a
minimum at the same time. We use a multilevel model with
three levels: individual measurements nested in dependency
versions nested in dependencies. Practically, this means that
individual measurements such as the log(WRMfrom) are defined
for the individual library at level 1. These libraries point to
other libraries, which is level 2 in our model. These libraries
are multiple versions of the same library, which is level 3 in
our model. We apply the same robust regression techniques as
in the previous analyses, thus correcting for the fact that we
miss the left-most levels “versions” and “libs” from Figure 6.

We want to model the effect of WRM in library depen-
dencies on WRM of libraries, taking into account isolation of
these dependencies. This enables us to answer whether there
exists instability in dependencies that causes ripple effects in
libraries using them and whether isolation is able to mitigate
these ripple effects.

Since we want to model the influence of removed methods
in dependencies on removed methods in libraries using them
while also taking into account isolation of these dependencies,
we need to add these factors to the model. In part B of Figure

log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope

lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 8. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j . In figure B, slopes are allowed to vary,
leading to a different � per group.

8, a group-specific intercept is depicted which means that we
expect that isolation has a different effect on

We can write the general regression formula with variable
intercept and variable slope in the following form:

log(WRMijk) = �0 + �1log(WRMjk) + �2is + ✏ijk (2)

�0 = �00 + �0j + �0k

�1 = �01

�2 = �02 + �2k

In this formula, WRM for library version v (level 1) of
artifact a (level 2) pointing to dependency d (level 3) is
modeled as a regression line with an intercept and a slope
depending on the WRM of dependencies and the isolation
of those dependencies. The grand mean of WRM across all
libraries is denoted as �00, each artifact adds an artifact-
specific intercept �0a and each dependency adds a dependency-
specific intercept �0d.

Running this model provides us with a grand mean �00 of
3.13, which is the average log(WRM) in libraries, a variance
in group means �00 of 0.92 (95% C.I. 0.86 - 0.98) and a
�2 of 5.24 (95% C.I. 5.19 - 5.28). The intra-class correlation
of our null model is 0.92 / (0.92 + 5.23) = 14.96%. This
means that around 15% of the variance in log(WRM) is due
to differences across dependency groups, with the remaining
85.04% attributable to individual differences.

Table III shows a mixed model for log(WRM) for depen-
dencies between libraries.

We first define a null model to test the variance in breaking
changes between defined groups, which can considered to be a
baseline measurement. Formally, this baseline model is defined
as follows:

log(WRMijk) = �0jk + ✏ijk (3)

�0jk = �00 + �0j + �0k

which specifies that log(WRMfrom) for library i using a
dependency with version j in dependency group k is defined
as the mean WRM in a level 2 group (�0jk) plus a individual
deviation term ✏ijk from the mean WRM in his group. The
mean in a level 2 group consists of the overall mean �00 plus
a deviation for level 2 groups �0j plus a deviation for level
3 groups �0k. This can be seen in part A of Figure 8, which

Duplicated 
measurement

Time 
dependency

Independent 
observations

Same
Artifact

Table. 8. Tabular form of the diagram presented in Figure 7. Multiple sources
of data duplication and dependency can be identified in this table. �This
relationship is not shown in Figure 7.

minimum at the same time. We use a multilevel model with
three levels: individual measurements nested in dependency
versions nested in dependencies. Practically, this means that
individual measurements such as the log(WRMfrom) are defined
for the individual library at level 1. These libraries point to
other libraries, which is level 2 in our model. These libraries
are multiple versions of the same library, which is level 3 in
our model. We apply the same robust regression techniques as
in the previous analyses, thus correcting for the fact that we
miss the left-most levels “versions” and “libs” from Figure 7.

We want to model the effect of WRM in library depen-
dencies on WRM of libraries, taking into account isolation of
these dependencies. This enables us to answer whether there
exists instability in dependencies that causes ripple effects in
libraries using them and whether isolation is able to mitigate
these ripple effects.

log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope

lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 9. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j . In figure B, slopes are allowed to vary,
leading to a different � per group.

Since we want to model the influence of removed methods
in dependencies on removed methods in libraries using them
while also taking into account isolation of these dependencies,
we need to add these factors to the model. In part B of Figure
9, a group-specific intercept is depicted which means that we
expect that isolation has a different effect on

We can write the general regression formula with variable
intercept and variable slope in the following form:

log(WRMijk) = �0 + �1log(WRMjk) + �2is + ✏ijk (3)

�0 = �00 + �0j + �0k

�1 = �01

�2 = �02 + �2k

effects. Multilevel modeling is commonly used in the social
sciences, for instance to model the effect of cross-cultural
differences on software development team communication.
If communication in software development teams in a large
multinational company would be investigated, cultural dif-
ferences between a team in Japan and a team in Europe
would have to be taken into account. Each development
team consists of individuals which tend to have a common
way of communicating with each other. However, teams in
Japan possibly tend to communicate differently than teams in
Europe, separately from invididual differences. A multilevel
model would be capable of separating the amount of difference
in communication between individuals, differences in team
composition and cultural differences present at the country
level. Similar grouping effects are also present in our data, and
when not accounting for these effects, incorrect conclusions
would result [1], [12].

A1
CEM=20
WRM=10

C1
CEM=24
WRM=5

B1
CEM=15
WRM=12

D1
CEM=5
WRM=0

E1
CEM=4
WRM=0

F1
CEM=14
WRM=2

0.7 0.41.0

0.2 0.8 0.3

0.6

WRM 
from A1

1.0 = dependency with isolation

metrics
Lvl 1

versions

A

D1

libs
versions

Lvl 2

WRM
from A2

next version

WRM
from B1

B

WRM
from B2

0.4

0.6

ripple effect

group
Lvl 3

D

D2

C1

C2

1.0

0.7

C

dependencies

WRMto

Fig. 7. An example of libraries and their dependencies. On the right side,
data dependencies are shown. The right side also includes multiple versions
of the same library, which are not shown on the left.

The tabular form of properties presented in Figure 7 can
be found in Table 8. Multiple violations of independence of
observations can be identified in this table. The first type,
duplicated measurements, appear because there exist one-to-
many relationships between a library and its dependencies. In
Table 8, Libraries A1, C1 and D1 have multiple dependencies
and thus reappear with corresponding WRMfrom values. A time
dependency is also present between A1 and A2. Incorporating
time dependencies in our model acknowledges the fact that
measurements of the same library over time are more likely
to be correlated than measurements of independent libraries.
Summarizing both duplicated measurements and time depen-
dencies, measurements eventually belong to a group of the
same artifact, as can be seen in the latest two columns. Finally,
the isolation rating marked as independent observation in the
Table are independent since no related libraries are involved.
The duplication is a coincidence in this case.

C. Model specification

We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a

when not accounting for these effects, incorrect conclusions
would result [1], [12].

A1
CEM=20
WRM=10

C1
CEM=24
WRM=5

B1
CEM=15
WRM=12

D1
CEM=5
WRM=0

E1
CEM=4
WRM=0

F1
CEM=14
WRM=2

0.7 0.41.0

0.2 0.8 0.3

0.6

WRM 
from A1

1.0 = dependency with isolation

metrics
Lvl 1

versions

A

D1

libs
versions

Lvl 2

WRM
from A2

next version

WRM
from B1

B

WRM
from B2

0.4

0.6

ripple effect

group
Lvl 3

D

D2

C1

C2

1.0

0.7

C

dependencies

WRMto

Fig. 6. An example of libraries and their dependencies. On the right side,
data dependencies are shown. The right side also includes multiple versions
of the same library, which are not shown on the left.

Table ?? shows a table of the properties presented in Figure
6.

from to WRMfrom WRMto isolation Libfrom Libto
A1 C1 10 5 1.0 A C
A1 D1 10 0 0.7 A D
A2� D2 11 1 0.6 A D
B1 D1 12 0 0.4 B D
C1 D1 5 0 0.6 C D
C1 E1 5 0 0.2 C E
D1 E1 0 0 0.8 D E
D1 F1 0 2 0.3 D F

Table. 7. Tabular form of the diagram presented in Figure 6. Multiple sources
of data duplication and dependency can be identified in this table. �This
relationship is not shown in Figure 6.

C. Model specification

We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a
minimum at the same time. We use a multilevel model with
three levels: individual measurements nested in dependency
versions nested in dependencies. Practically, this means that
individual measurements such as the log(WRMfrom) are defined
for the individual library at level 1. These libraries point to
other libraries, which is level 2 in our model. These libraries
are multiple versions of the same library, which is level 3 in
our model. We apply the same robust regression techniques as
in the previous analyses, thus correcting for the fact that we
miss the left-most levels “versions” and “libs” from Figure 6.

We want to model the effect of WRM in library depen-
dencies on WRM of libraries, taking into account isolation of
these dependencies. This enables us to answer whether there
exists instability in dependencies that causes ripple effects in
libraries using them and whether isolation is able to mitigate
these ripple effects.

Since we want to model the influence of removed methods
in dependencies on removed methods in libraries using them
while also taking into account isolation of these dependencies,
we need to add these factors to the model. In part B of Figure

log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope

lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 8. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j . In figure B, slopes are allowed to vary,
leading to a different � per group.

8, a group-specific intercept is depicted which means that we
expect that isolation has a different effect on

We can write the general regression formula with variable
intercept and variable slope in the following form:

log(WRMijk) = �0 + �1log(WRMjk) + �2is + ✏ijk (2)

�0 = �00 + �0j + �0k

�1 = �01

�2 = �02 + �2k

In this formula, WRM for library version v (level 1) of
artifact a (level 2) pointing to dependency d (level 3) is
modeled as a regression line with an intercept and a slope
depending on the WRM of dependencies and the isolation
of those dependencies. The grand mean of WRM across all
libraries is denoted as �00, each artifact adds an artifact-
specific intercept �0a and each dependency adds a dependency-
specific intercept �0d.

Running this model provides us with a grand mean �00 of
3.13, which is the average log(WRM) in libraries, a variance
in group means �00 of 0.92 (95% C.I. 0.86 - 0.98) and a
�2 of 5.24 (95% C.I. 5.19 - 5.28). The intra-class correlation
of our null model is 0.92 / (0.92 + 5.23) = 14.96%. This
means that around 15% of the variance in log(WRM) is due
to differences across dependency groups, with the remaining
85.04% attributable to individual differences.

Table III shows a mixed model for log(WRM) for depen-
dencies between libraries.

We first define a null model to test the variance in breaking
changes between defined groups, which can considered to be a
baseline measurement. Formally, this baseline model is defined
as follows:

log(WRMijk) = �0jk + ✏ijk (3)

�0jk = �00 + �0j + �0k

which specifies that log(WRMfrom) for library i using a
dependency with version j in dependency group k is defined
as the mean WRM in a level 2 group (�0jk) plus a individual
deviation term ✏ijk from the mean WRM in his group. The
mean in a level 2 group consists of the overall mean �00 plus
a deviation for level 2 groups �0j plus a deviation for level
3 groups �0k. This can be seen in part A of Figure 8, which

Duplicated 
measurement

Time 
dependency

Independent 
observations

Same
Artifact

Table. 8. Tabular form of the diagram presented in Figure 7. Multiple sources
of data duplication and dependency can be identified in this table. �This
relationship is not shown in Figure 7.

minimum at the same time. We use a multilevel model with
three levels: individual measurements nested in dependency
versions nested in dependencies. Practically, this means that
individual measurements such as the log(WRMfrom) are defined
for the individual library at level 1. These libraries point to
other libraries, which is level 2 in our model. These libraries
are multiple versions of the same library, which is level 3 in
our model. We apply the same robust regression techniques as
in the previous analyses, thus correcting for the fact that we
miss the left-most levels “versions” and “libs” from Figure 7.

We want to model the effect of WRM in library depen-
dencies on WRM of libraries, taking into account isolation of
these dependencies. This enables us to answer whether there
exists instability in dependencies that causes ripple effects in
libraries using them and whether isolation is able to mitigate
these ripple effects.

log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope

lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 9. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j . In figure B, slopes are allowed to vary,
leading to a different � per group.

Since we want to model the influence of removed methods
in dependencies on removed methods in libraries using them
while also taking into account isolation of these dependencies,
we need to add these factors to the model. In part B of Figure
9, a group-specific intercept is depicted which means that we
expect that isolation has a different effect on

We can write the general regression formula with variable
intercept and variable slope in the following form:

log(WRMijk) = �0 + �1log(WRMjk) + �2is + ✏ijk (3)

�0 = �00 + �0j + �0k

�1 = �01

�2 = �02 + �2k

Table. 8. Tabular form of the diagram presented in Figure 7A. Multiple
sources of data dependencies can be identified in this table.

D. Model Specification

Figure 7B shows a piece of the corresponding multilevel
model. In this paper, we use a model with three levels:
individual measurements nested in dependency versions nested
in dependencies. The groupings at higher levels are expected
to influence lower levels: measurements that are grouped
at a higher level are expected to be correlated more than
measurements which are not. log(WRMfrom) is defined for the
individual library at level 1. These libraries point to other
libraries, which is level 2 in our model. The libraries at level
2 are multiple versions of the same library, which is level 3 in
our model. The model acknowledges that the same dependency
version has an effect that is expected to be correlated between
different libraries using it, since the same dependency is
causing the effect. The multilevel modeling technique then
takes care to incorporate the clustered structure of the data as
specified in our model. This way, estimates of the influence of
different dependencies and dependency versions on instability
and ripple effects are obtained. We also apply the same robust
regression techniques as in the previous analyses.

Similar to the model in Section VIII-A, we want to model
the effect of WRM in library dependencies (WRMto) on WRM
of libraries (WRMfrom), while taking into account isolation of
these dependencies. This enables us to investigate RQ4 further
while taking the clustered structure of the data into account.
We choose to define a model that does justice to the reality
of our dataset while reducing complexity of the model to a
minimum at the same time; we therefore ignore the fact that
libraries at level 1 are multiple versions of the same library.

We expect that not all dependencies are isolated similarly,
but that certain libraries are more difficult to encapsulate than
others. To incorporate this hypothesis in our model, we let the
isolation rating vary among dependencies. This means that
we expect a difference between the isolation of a logging
framework and a database application, for instance. We also
expect that library stability varies among artifacts, meaning
that we expect differences in baseline instability between
different artifacts. This is shown in Figure 9. Panel A of
this figure shows the results of a group-specific intercept,
meaning that the baseline instability in libraries is expected to
be different between groups. Panel B shows a group-specific
intercept, meaning that the dampening effect of isolation on
ripple effects is expected to be different between groups.

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 7



log(WRMto)

lo
g(
W
R
M
fr
om
)

β0

δ0j1

δ0j2
β0

β1

β2

εi

(A) Group-specific intercept (B) Group-specific slope
lo
g(
W
R
M
fr
om
)

log(WRMto)

γ00

δ0k1

Fig. 9. Visual representation of group-specific intercept and slope. In figure
A, the intercept is allowed to vary but regression lines stay parallel; the total
group-specific intercept is �00 + �0j + �0k . In figure B, slopes are allowed
to vary, leading to a different � per group.

Dependent variable log(WRMfrom)
Level 1 Group variable Dependency versions
Level 2 Group variable Dependencies

Number of cases 6813
Number of level 1 groups 1277
Number of level 2 groups 641

Cases per level 1 group min 1, avg 5.3, max 523
Cases per level 2 group min 1, avg 10.6, max 649

Wald �2 65.31
P(> �2) 0.000

Single library effects parameter estimates
Independents Coeff. Std. Err p-value 95% C.I.

�00 3.269 0.099 0.000 3.074 - 3.463
�01 0.037 0.018 0.045 0.000 - 0.073
�02 -1.079 0.183 0.000 -1.437 - -0.721

Group effects parameter estimates
Estimate Std. Err 95% C.I.

�(�0j) 0.317 0.080 0.194 - 0.518
�(�0k) 0.636 0.112 0.450 - 0.897
�(�2k) 1.203 0.358 0.671 - 2.156

�(Residual) 5.515 0.100 5.323 - 5.715

Fig. 10. A multilevel model for removals of interface methods.

Formally, we can write the general regression formula with
variable intercept and variable slope in the following form:

log(WRMijk) = �0jk + �1log(WRMjk) + �2is + ✏ijk (3)

�0jk = �00 + �0j + �0k

�1 = �01

�2k = �02 + �2k

In this formula, the WRM for library version i (level 1)
pointing to dependency version j (level 2) of dependency k
(level 3) is modeled as a regression line with an intercept
and slope depending on the WRM of dependencies and the
isolation of those dependencies. The grand mean of WRM
across all libraries is denoted as �00, each dependency version
adds a version-specific intercept �0j and each dependency adds
a dependency-specific intercept �0k. Comparing this model
to formula 2, �0 is 3.24, �1 is 0.037 and �2 is -1.17. The
individual error term is not shown in formula 2.

E. Multilevel Model Explanation

The results of this model are shown in Table 10. The overall
model is significant with a p-value of 0.000. The model yields
a grand mean �00 of 3.27, which is the average log(WRM) in
libraries. This is comparable to our earlier result of 3.24 in
formula 2. The ripple effect �01 attributable to dependencies

is exactly the same, namely 0.037. This is expected since there
are no group-specific parameters for �1; the estimation method
for single libraries (the middle table in Figure 10) is a linear
regression method. The encapsulation effect is also similar, -
1.079 compared to -1.17 in formula 2. The estimates for single
libraries are thus comparable to our earlier model, indicating
that the results of that model were not an artifact of model
misspecification.

The bottom table shows variances for estimates of group
effects. All group effects as specified in the model are sig-
nificant, as indicated by the fact that the confidence intervals
do not include 0. The variance in instability due to specific
versions of dependencies is denoted as �(�0j) and is estimated
to be 0.317. This means that each library version adds its own
amount of instability to the total amount of library instability.
The variance in the additive baseline effect for dependency
groups at level 3 is denoted as �(�0k) and is 0.636. Even
more interesting is the library-specific dampening effect of
isolation on ripple effects, denoted as �(�2k), which is 1.203.
This indicates that there exists a large variance in the effect
that the isolation of dependencies has on ripple effects. This
means that it depends on the specific library dependency to
what degree ripple effects from this library can be dampened
with isolation.

To answer RQ4: library dependencies cause ripple effects
in libraries using them and these effects can be mitigated by
encapsulation. The size of this mitigating effect is library-
specific.

IX. THREATS TO VALIDITY

A. Internal validity

We assume that the number of files that import a depen-
dency is a good indicator for encapsulation of dependencies
and modularity of design, but we do not try to automatically
detect the type of mechanism to achieve this encapsulation. We
assume that all encapsulation mechanisms and architectural
patterns will eventually lead to a lower percentage of files
importing a library. We assume that the number of unused
imports per file is not large enough to influence our results.

Due to the large size of the dataset it is impossible to man-
ually acquire package prefixes with which library imports can
be recognized. Some libraries use multiple package prefixes,
making automatical detection more difficult. Some files in our
dataset do not have a package prefix and are therefore not
included in the calculation of our isolation metric. We expect
that there does not exist a bias in systems that have missing
package prefixes.

We automatically assign snapshot numbers to subsequent
versions, but manual inspection shows that this sometimes
gives erronerous results. This will lead to incorrect stability
ratings between two versions of a library. However, due to the
large scale of the experiment, data errors like these will be
only present in a small percentage of the total dataset and will
not be strong enough to influence large-scale correlations. This
is confirmed by manual inspection of a sample of jar files.

Testing Principles, Current Practices, and Effects of Change Localization SERG

8 TUD-SERG-2013-004



B. External Validity

The external validity of our results is large due to the
size of our dataset. Although only open source third-party
Java libraries are included, we do not have reason to believe
that the results will be different for libraries written in other
programming languages since our conceptual framework is
language-agnostic and applies to any programming language
in which external dependencies are defined in source code.

X. DISCUSSION

A. Inferring Actionable Advice from Statistical Analysis

The strength of our analysis lies in the fact that a large
dataset has been analyzed, the robustness of the used re-
gression techniques and the acknowledgement of the complex
structure of the data at hand. Since the statistical analysis per-
formed in this paper does not immediately provide actionable
advice, it is worth investigating the practical consequences of
the analysis. Looking at the linear regression in figure 5, we
find that breaking interfaces are correlated with system size,
rework in existing methods, the growth of the system, the
average outgoing isolation rating and the number of outgoing
dependencies.

It is not possible to infer causal relationships from this
model but it implies that a system that grows faster and
has more rework tends to break existing interfaces sooner.
Software developers working on big or fast-growing systems
should therefore pay attention to existing interfaces to maintain
backward compatibility, which might be neglected during fast
system growth. Systems that have more external dependencies
tend to have more breaking interface changes, but from the
simple linear regression it is unclear if this comes from
changes in external dependencies. Since system size is also in
this model and thus corrects for the fact that bigger systems
tend to have more external dependencies and more breaking
interface changes in general, the significant effect of the
number of dependencies on the number of breaking changes
in this model cannot be accounted to system size.

The formula in Section VIII-A indicates that encapsulation
has a dampening effect on the stability of a library, although
the statistical model does not require that changes as measured
in dependencies are the actual cause of changes in libraries
using them. However, the model distinguishes between a
baseline effect (the constant of 3.24) and the additive effect
of instability in dependencies with a value of 0.037, which
indicates an additive effect per dependency, regardless of the
baseline effect in the system without dependencies.

The multilevel model better accounts for the complex struc-
ture of the data and confirms the result of the straightforward
analysis of Section VIII-A. This means that the results found
in Section VIII-A are not an artifact of model misspecification.
Additionally, there seems to be a large library-specific encap-
sulation effect, which indicates that it depends on the specific
dependency (for instance, Log4j or the Spring framework)
what the dampening effect of encapsulation on ripple effects
will be. Ripple effects from a certain dependency may be

dampened more by encapsulation than ripple effects from
another dependency.

B. Relationship with Aspect-oriented Programming

The isolation rating as defined in this paper is closely related
to the concept of scattering from the field of aspect-oriented
programming. Scattering is the degree to which a certain
feature is distributed among multiple program modules. Our
isolation rating does not measure the scattering of single fea-
tures but only looks at the distribution of library dependencies
in source files. A library can be seen as a collection of related
features, but if it is seen as a single feature then the isolation
rating is 1 minus the scattering of a library in a system.

Another connection to aspect-oriented programming can be
found in the concept of a cross-cutting concern. A cross-
cutting concern is a feature that is difficult to encapsulate
at a certain place because it needs to be used throughout
the entire system. A classical example of this is logging.
Our isolation rating does not distinguish between libraries
that can be seen as cross-cutting concerns and libraries that
are not properly encapsulated due to programming style. Li-
braries which implement cross-cutting concerns are inherently
difficult to encapsulate, but libraries which do not have this
property can be improperly encapsulated because developers
just did not spend enough effort to encapsulate a dependency,
while ideally, it should have been. Future work can make a
distinction between these two types of situations.

In this paper, we ignored the underlying mechanism used to
achieve encapsulation since we assume that all encapsulation
mechanisms will eventually lead to a smaller percentage of
system code being exposed to a dependency. We assume that
the more files import a library, the more exposure the system
has to this library, and the higher the chance that a modification
in that library will cause a ripple effect in the system using it.

C. Model Misspecification Risk

In applying complex statistical techniques such as the
multilevel modeling technique in this paper, the chance that
models are misspecified increases as the complexity of the
model increases. On the other hand, ignoring complexities
present in the data structure will lead to incorrect inferences
from models that are too simplistic. We tried to find a balance
between a model that gives enough information to test our
hypothesis while at the same time not being overly complex.
The models considered in this paper yield consistent results,
thus strengthening our confidence that investigated relation-
ships are present in the data, although the exact coefficients
may need to be regarded as approximations given the fact that
some model misspecification risk still remains present.

To our knowledge, the multilevel method has not been
applied before in the software engineering research commu-
nity. However, the multilevel modeling technique is capable
of dealing with the complexity of our data structure and
we therefore believe that this technique is the best way to
make statistical inferences from our dataset. We also think
that this technique should be applied more often in software

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 9



engineering research, since situations with data dependencies
as described in Section VIII-C are expected to be common.

D. Multiple Hypotheses Testing

We performed multiple correlation tests on the same dataset
and a large part of them turned out to be significant. For this
reason, concerns may rise about the increased chance of type
I errors. Due to the large size of our dataset, tested hypothe-
ses often have extremely small p-values, making almost all
correlations statistically significant. This makes p-values of
correlations less relevant and we therefore focus more on the
strength of correlations.

We applied a Bonferroni adjustment factor on the correla-
tions in table 4, but there exist strong conceptual objections
against the use of Bonferroni adjustments in general. First of
all, the truth of a hypothesis does not depend on the number
of tested hypotheses. Additionally, Bonferroni adjustments
increase the chance of type II errors (not finding correlations
that do exist in reality). Statistically speaking, they reduce
the power of the test. For a more elaborate discussion on the
objections of using Bonferroni adjustments in general, see [14]
and [12]. Nonetheless, even with a conservative Bonferroni
adjustment factor of 105 as applied in this paper, the largest
part of tested correlations is significant at the 0.0005 level.

XI. RELATED WORK

Similar to the kind of relationships investigated in this
paper, Mohagheghi [11] et al. performed an experiment which
investigates the relationship between defect density, stability
and the impact of component size on defects. They found that
components that are reused more change less. This was our
initial hypothesis on the relationship between popularity and
stability but this relationship is not present in our dataset.

Ripple effects have been investigated extensively, for ex-
ample by Herzig [8], who investigates the long-term impact
of code changes by detecting dependencies between code
changes and by measuring their influence on software quality,
maintainability and development effort. Black [2] takes a more
formal approach and measures the ripple effect through the
use of matrix algebra, which enables exact calculation of
places in code that likely need to change, instead of large-
scale statistical approximations as used in this paper.

Cossette et al. [5] manually checked a set of API incom-
patibilities in newer versions of Java library versions and
determined what the correct adaptations are to migrate from
the older to the newer version of a library. A more general
estimate of the amount of rework caused by these migrations
can be found in the regression model in Section VIII-A.

In previous work [15] we defined each metric to aggregate
over all snapshot differences, while weighting the most recent
differences more than older differences. In this paper, we
only look at the four stability ratings as compared to the
immediately preceding version of the library.

XII. CONCLUSION

In this paper, we made the following contributions:

• A large-scale experimental setup to process a large num-
ber of source files;

• An investigation of the relationship between interface
stability, encapsulation and stability in dependencies of
almost 100,000 libraries;

• A statistical model to explain change in library interfaces;
• An investigation of the effect of encapsulation on ripple

effects caused by unstable libraries.
Our analysis gives insight in the relationship between sys-

tem properties such as size, stability and encapsulation. In
particular, we come to the conclusion that library stability is
influenced by the change in existing methods, the growth in
the system, system size, encapsulation of dependencies and
the number of dependencies. We also observed that current
encapsulation practice does not seem to be targeted at libraries
that change the most. Our analysis further shows that library
dependencies cause ripple effects in systems that use them and
that these effects can be mitigated by encapsulation.

REFERENCES

[1] M. Aitkin, D. Anderson, and J. Hinde. Statistical modelling of data
on teaching styles. Journal of the Royal Statistical Society. Series A
(General), 144(4):419–461, 1981.

[2] S. Black. Deriving an approximation algorithm for automatic compu-
tation of ripple effect measures. Information & Software Technology,
50(7-8):723–736, 2008.

[3] G. Booch. Object-oriented analysis and design with applications (2nd
ed.). Benjamin-Cummings Publishing Co., Redwood City, USA, 1994.

[4] J. Cohen. Statistical Power Analysis for the Behavioral Sciences, Second
Edition. Lawrence Erlbaum Associates, Publ., 1988.

[5] B. Cossette and R. J. Walker. Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries. In SIGSOFT
FSE, page 55, 2012.

[6] J. Fox. Applied Regression Analysis and Generalized Linear Models,
Second Edition. SAGE Publications, Inc., 2008.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[8] K. S. Herzig. Capturing the long-term impact of changes. In ICSE
’10: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 393–396, New York, NY, 2010. ACM.

[9] J. M. Kleinberg. Hubs, authorities, and communities. ACM Comput.
Surv., 31(4es), Dec. 1999.

[10] G. Li. Robust regression. In D. Hoaglin, F. Mosteller, and J. Tukey,
editors, Exploring Data Tables, Trends, and Shapes, pages 281–343.
John Wiley & Sons, New York, 1985.

[11] P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz. An empirical
study of software reuse vs. defect-density and stability. In Software En-
gineering, 2004. ICSE 2004. Proceedings. 26th International Conference
on, ICSE’04, pages 282–291, may 2004.

[12] S. Nakagawa. A farewell to Bonferroni: the problems of low statistical
power and publication bias. Behavioral Ecology, 15(6):1044–1045,
2004.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: bringing order to the web. Technical report, November 1999.

[14] T. V. Perneger. What’s wrong with Bonferroni adjustments. British
Medical Journal, 316:1236–1238, 1998.

[15] S. Raemaekers, A. v. Deursen, and J. Visser. Measuring software library
stability through historical version analysis. In 28th IEEE International
Conference on Software Maintenance (ICSM), 2012.

[16] S. Raemaekers, A. v. Deursen, and J. Visser. The maven repository
dataset of metrics, changes, and dependencies. In 10th Working Con-
ference on Mining Software Repositories (MSR), 2013.

[17] T. Snijders and R. Bosker. Multilevel Analysis: An Introduction to Basic
and Advanced Multilevel Modeling, Second Edition. SAGE Publications,
Inc., 2011.

[18] N. Spencer. Combining modelling strategies to analyse teaching styles
data. Quality and Quantity, 36:113–127, 2002.

Testing Principles, Current Practices, and Effects of Change Localization SERG

10 TUD-SERG-2013-004



Addendum
To the paper “Testing Principles, Current Practices and Effects of Change Localization”

I. MENTIONED WEBSITES

The following software is mentioned in the paper:

H2 Database http://www.h2database.com
Clirr http://clirr.sourceforge.net
DAS-3 Supercomputer http://www.cs.vu.nl/das3
Berkeley DB http://www.oracle.com/technetwork

/products/berkeleydb
Neo4j Graph Database http://www.neo4j.org
Apache Maven http://maven.apache.org
Apache Ant http://ant.apache.org

II. CORRELATIONS WITH MAINTAINABILITY

The following correlations have been calculated be-
tween the SIG maintainability rating and other code
properties:

Property Spearman’s ρ p-value
PageRank -0.10 5.9e-165
Hubbiness -0.08 7.4e-107

Authoritativeness -0.09 3.7e-138
WRM -0.23 0
CEM -0.34 0

RCNO -0.33 0
PNM -0.22 0
dUn -0.26 0
dUo -0.34 0

nU -0.57 0
nUn -0.27 0
nUr -0.22 0

OutI. -0.20 0
OutD. -0.18 0

Fig. 1. dUn = change in new methods, dUo = change in old methods,
nU = number of methods, nUn = number of new methods, nUr =
number of removed methods, OutI. = average outgoing isolation rating,
OutD. = number of external dependencies.

The SIG Maintainability rating shows to be negatively
correlated with all metrics in this table, such as network
metrics (PageRank and Hubbiness and Authoritative-
ness), stability metrics (WRM, CEM, RCNO and PNM)
and system size (nU). This indicates that code that is
larger, changes faster and changes more tends to be
less maintainable. The Maintainability rating is also
negatively correlated with the number of incoming and
outgoing dependencies, indicating that systems with a
larger number of dependencies are less maintainable

and libraries which are used more frequently by other
libraries also tend to be less maintainable.

min p5 p25 p50 p75 p95 max avg sd
vol 2.78 5.18 5.46 5.49 5.50 5.50 5.50 5.41 0.36

dup 0.51 2.10 3.96 5.30 5.50 5.50 5.50 4.62 1.20
us 0.50 1.29 2.22 3.40 4.53 5.50 5.50 3.41 1.44
uc 0.50 1.34 2.37 4.07 5.50 5.50 5.50 3.91 1.64
ui 0.50 1.33 2.37 3.95 5.50 5.50 5.50 3.76 1.52

mc 0.61 2.40 4.82 5.50 5.50 5.50 5.50 4.96 1.02

Table 2. Descriptive statitistics for libraries in the Maven repository.
vol = volume, dup = duplication, us = unit size, uc = unit complexity,
ui = unit interfacing, mc = module coupling

Table 2 contains SIG star ratings, ranging from 0.5 to
5.5. A rating of 0.5 to 1.5 means that the system scores
the same as the worst 5% of systems in our industrial
benchmark of more than 500 software systems, and a
score of 4.5 to 5.5 means that the system scores the same
as the best 5%. Scores in between are evenly distributed,
meaning that 30% of systems in our benchmark score
between 1.5 and 2.5, 30% score between 2.5 and 3.5
and 30% score between 3.5 and 4.5. The reason that
the 5th percentile of volume in Table 2 is not at 1.5 is
that apparently, systems in the Maven repository are rel-
atively small compared to our industrial benchmark. The
same is true for duplication, which means that systems
in the Maven repository generally have less duplication
than systems in our benchmark. For an explanation of
the other star ratings see [1].

Figure 3 and 4 show the relationship between the
Maintainability rating and system size and change. Fig-
ure 3 shows that bigger systems (log(nrUnits)) tend to be
less maintainable (Maintainability / volume), indicated
by a negative Spearman’s correlation coefficient of -0.51.
In this figure, Maintainability is corrected for system vol-
ume since system size is a component of maintainability.
The figure shows that even after correcting for volume,
bigger systems still tend to be less maintainable. Figure
4 show that systems that change more (log(CEM)) tend
to be less maintainable (Maintainability), as indicated by
a correlation coefficient of -0.34.

SERG Testing Principles, Current Practices, and Effects of Change Localization

TUD-SERG-2013-004 11



Figure 3. The correlation between the SIG Maintainability rating and
system size as measured in number of units. Logarithmic transforma-
tions have been applied to demonstrate the relationships more clearly.
This does not affect the strength of the correlation.

Figure 4. The correlation between the SIG Maintainability rating
and log(CEM). Logarithmic transformations have been applied to
demonstrate the relationships more clearly. This does not affect the
strength of the correlation.

REFERENCES

[1] I. Heitlager, T. Kuipers, and J. Visser. A practical model for
measuring maintainability. In Proceedings of the 6th Interna-
tional Conference on Quality of Information and Communications
Technology, pages 30–39, Washington, DC, USA, 2007. IEEE
Computer Society.

2

Testing Principles, Current Practices, and Effects of Change Localization SERG

12 TUD-SERG-2013-004





TUD-SERG-2013-004
ISSN 1872-5392 SERG


