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Abstract

Substantial efforts are being made to make robots more reliable and safe to work around hu-
mans. Robots often perform flawless demos in a controlled environment under the supervision
of an operator but tend to fail in the real world when deployed for a long period of time due to
faults and environmental disturbances. A robotic system is composed of different physical and
software components whose characteristics are likely to change over time. Assumptions made
about the system during the design phase may change over time, especially when a system is
deployed for long periods. Such changes that are often ignored, need to be considered. Envi-
ronments in which a robot operates are dynamic with high uncertainty and unpredictability.
In such scenarios, capabilities such as situational awareness and self-adaptation will be useful
to create more robust, resilient and reliable solutions. The objective for this thesis work is
to develop a framework which will embed capabilities such as situational-awareness, context-
awareness and self-adaptation within a robot. This research provides a novel, reusable and
generalised localisation framework called Situation-Aware Self-Adaptive (SASA) localisation
framework for robotics application. This framework is developed using knowledge represen-
tation and reasoning which will provide a robot with the capability of adapting according to
the situation. We have demonstrated the applicability of the SASA framework to a mobile
robot localisation use case. In this research work we have demonstrated the performance
of the framework during environmental disturbances due to poor illumination and feature-
less environment and internal fault due to component failure. We have also demonstrated the
reusability, changeability and the consistency of SASA framework. This work showed that the
situational-awareness and self-adaptation capability enhances the robot’s localisation ability
and provides reliable localisation even in the case of environmental uncertainties and internal
faults where conventional localisation systems fail. This thesis represents a leap forward in
the direction of creating more reliable and resilient solutions for robotic applications and it
lays the foundations for further research in this direction.
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Chapter 1

Introduction

Substantial efforts are being made to make robots more reliable and safe to work yet robots
usually tend to fail in the real world when deployed for a long period of time. The work
developed in this research project addresses this problem by exploiting self-awareness and self-
adaptation capability of the robot in the direction of creating more reliable robotic solutions.
This introductory chapter focuses on the motivations behind this research, posing the two
fundamental questions that this thesis addresses and the main contributions of this work are
highlighted. The chapter is then concluded with the outline of the document.

1-1 Research motivations

Robotics has gained a lot of attention in the past few years. Robots are being used for various
applications from cleaning houses [7], to serving drinks [8] and autonomous cars [9]. Service
robots are being developed for assisting humans in homes and offices [10]. With increasing
autonomy, the complexity of the system is increasing and so is the need for reliability. This
situation presents important challenges for the development of autonomous systems in real
world applications.

Robots often perform flawless demos in controlled environments under the supervision of
an operator, but usually tend to fail in the real world when deployed for a long period of
time [11]. Murphay et al. describes in [12] that Unmanned Ground Vehicle (UGV) (in
a disaster situation) fails 10 times as frequently as the same robot in a laboratory setting
and UGVs in the field have have a Mean Time Between Failure (MTBF) of 6-20 hours. The
problem lies in enhancing the robustness and fault tolerance capability of the systems for their
autonomous behaviour. With increasing complexity, more number of components are added
to the system thereby increasing the probability of it being faulty. Unexpected interactions
of faulty components and uncertain environment changes are a threat to system reliability
and functionality. Hence, it is essential to focus on the robustness of an autonomous system
in order to improve its reliability.
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2 Introduction

Conventional control techniques such as feedback control only operate over a closed set of
limited quantitative uncertainties and tend to fail if the system behaviour diverges from the
model of the plant. The models are usually derived from a system identification technique
which is a methodology for building mathematical models of dynamic systems using measure-
ments of the input and output signals of the system. These models are derived using some
assumptions during the design phase which may change over time especially when a system
is deployed for long periods. The control strategy heavily relies on how closely these static
models represent changes in an actual system over a longer deployment period. Intelligent
control technique such as adaptive control can perform on-line identification of the process
parameters, or modification of controller gains, thereby improving the robustness properties.
Unfortunately, it is efficient only for linear systems whose parameters have slow variations.
Sliding mode control alters the dynamics of a nonlinear system by switching from one contin-
uous structure to another based on the region of operation. Though these types of controllers
cover a large region of operation, the control strategy is static and can function properly pro-
vided the uncertain parameters or disturbances are found within some bounded set. In case
of robotic systems, strong nonlinear dynamics and highly uncertain operational environment
makes it difficult to model the system accurately. Even if the system and its environment are
modelled well, the region of operation can’t be predicted beforehand. Human intervention is
required for decision-making in case of failures and uncertainties.
Having said that, in recent years, lot of advancements have been made in the direction self-
adaptation for improving levels of autonomy in complex systems. IBM introduced the idea
of automatic computing in 2001. The goal of autonomic computing was to realise computer
and software systems and applications that can manage themselves with little or no guidance
from humans. Kephart and Chess [3] proposed Monitor-Analyze-Plan-Execute over a shared
Knowledge (MAPE-K) reference model for automatic computing which enables a system
to perform self management i.e. self-configuration, self-healing, self-optimisation and self-
protection. The proposed model for self-adaptation divides the system into two parts i.e.
a managed system and a feedback loop. The managed system consists of the plant and
the control system, while the feedback loop acts as an external supervisor and deals with
adaptation concerns of the managed system (e.g. heal the managed system when a fault is
detected, and so forth). This model was originally proposed for Information technology (IT)
systems for improving quality of service but it could be used in a robotic context to provide
self-adaptation capability. Such capability would allow the system to make run-time decisions
to modify it’s behaviour in response to unexpected events such as changing availability of
resources, faults and even environmental uncertainties.
Though MAPE-K reference model provides a solution for self-adaptation, there are two major
challenges in implementing self-adaptation in robotic systems: 1) Situational-awareness: the
ability of a system, to be aware of itself and its operational environment, 2) Knowledge
Representation: Defining appropriate abstractions and models for capturing system’s internal
structure and environment in such a way that it must be inherent to the system. Though
Knowledge Representation and Reasoning (KR&R) is an established research field in Artifical
Intelligence (AI), little work has been done to realise knowledge processing mechanisms for
robotic applications [13]. KR&R can be exploited to give machines the power of consciously
making sense of things by applying logic and emulate the decision-making ability of a human
expert based on beliefs and existing information.
In this thesis work, we have developed a Situation-Aware Self-Adaptive (SASA) localisation
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1-2 Main contributions 3

framework for mobile robot application using KR&R which has the capability to adapt itself
according to the situation. The robot localisation problem is selected due to two primary
reasons: 1) The localisation problem in mobile robots still has an open loop nature, in the
sense that no feedback mechanism is available to overcome the effects of uncertainties and
faults. 2) It is the lowest level problem in robot navigation pipeline and even after receiving
the greatest research attention in the past decades and significant advances [4], the localisation
problem is not completely solved and more research is needed in the direction of reliability,
fault tolerance and long term autonomy [14]. To conclude, the research motivations led to
the formulation of two primary questions that this work addresses:

1. Can we enhance the localisation capability of a robotic system using situational-
awareness and self-adaptation?

2. Can explicit knowledge representation and automated reasoning about the
robot’s internal components be exploited to obtain an intrinsically fault tol-
erant and reliable systems?

1-2 Main contributions

The goal of this research includes developing a novel Situation-Aware Self-Adaptive (SASA)
localisation system which will enhance the localisation reliability and fault tolerance capabil-
ity. This system is meant to be applied to mobile robots subject to uncertain environmental
situations and component failures, providing a scalable, reusable and flexible solution. The
main contributions of this work are detailed below:

• Self-adaptive situational-aware mobile robot localisation framework to per-
form run-time reconfiguration
In this work we have developed a self-adaptive localisation framework using MAPE-K
reference model which can perform run-time reconfiguration in cases of environmental
uncertainties and internal faults aiming for enabling robust long-term autonomy. We
have also developed few environmental quality metric for quantifying environmental
situations which will provide important information for taking run-time decisions.

• Fault detection, isolation and recovery for localisation system using deduc-
tive reasoning
In this work we have developed reusable semantic knowledge models in the form of ontol-
ogy/knowledge graph to perform automated deductive reasoning about internal faults
and constraint violations, and perform online recovery. The proposed approach simpli-
fies the overall architecture for fault detection and recovery, exploiting the structure of
the system and the inter-dependencies between the components and hierarchy.

1-3 Thesis outline

This document is organised as follows. Chapter 2 covers the localisation problem in mobile
robotics, the limitations in current state-of-the-art localisation frameworks and the challenges
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4 Introduction

with localising in real world scenarios. Chapter 3 covers the main topics related to this the-
sis: the Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) reference model
for self adaptation and Knowledge Representation and Reasoning (KR&R). In chapter 4
we describe the development process of Situation-Aware Self-Adaptive (SASA) localisation
framework, the operational environment and the few examples of the scenarios that the de-
veloped system should handle. Chapter 5 discusses the development process of each element
of the automatic manager in Situation-Aware Self-Adaptive (SASA) localisation framework
along with the reasoning process required for performing self-adaptation. In chapter 6 we have
validated the work done in this thesis using five experiments and observed the frameworks
response during: ‘Environmental Uncertainty’ due to poor illumination, ‘Internal fault’ due
to component failure, ‘Environmental Uncertainty’ due to featureless environment, ‘System
modifications’ during robot life-cycle, and ‘Consistency’ of the designed framework. We have
also discussed the corresponding results of the experiments and compared them with conven-
tional localisation systems. Finally, chapter 7 concludes the work presented in this document,
and it summarises the answers to the research questions previously mentioned. Besides, we
have also included some recommendations for future research in this direction.

Shreyash S. Palande Master of Science Thesis



Chapter 2

Robot Localisation and it’s Limitations

In this chapter we present the mobile robot localisation problem with the purpose of making
this report as self-contained as possible. Section 2-1 discusses briefly about the robot locali-
sation pipeline along with comparison of few state-of-the-art techniques used for localisation.
Section 2-2 presents the limitations in the current state-of-the-art techniques and the need for
situational-awareness and self-adaptation in the localisation system.

2-1 Localisation problem

Mobile robot localisation is the problem of determining the pose of a robot in the current
environment. It is the most basic perceptual problem in robotics and often called position
estimation or position tracking. Nearly all robotic tasks require knowledge of the location
of the robots although not necessarily within a global map. Localisation can be seen as
a problem of coordinate transformation. Localisation problem can be categorised into the
following types:

• Local Localisation: In this problem, the initial robot pose is known and the subsequent
poses are estimated as the robot moves in the environment. This is also called position
tracking problem which is considered a local problem, since the uncertainty is local and
confined to a region near the robot’s true pose. [15].

• Global Localisation: This is a more complicated localisation problem. Here, the initial
pose of the robot is unknown and the robot must determine its pose in the global map.
The amount of uncertainty is much higher and assumptions cannot be made about
boundedness of the pose error [15].

• Kidnapped robot problem: This problem is a variant of the global localisation problem,
but it is even more difficult because the robot might believe it knows where it is while
it actually does not. One might argue that robots are rarely kidnapped in practice, but
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6 Robot Localisation and it’s Limitations

the practical importance of this problem arises from the observation that most state-
of-the-art localisation algorithms cannot guaranteed 100% success and sensor failures
might occur unexpectedly [15].

The mobile robot localisation pipeline at the highest level is shown in the Figure 2-1. The
process of localisation can be divided into two stages: perception and state estimation. The
robot uses the sensor to perceive the environment and then uses this perceived information
to estimate the pose.

Environment

Sensing

Processing

Local State
Estimation

Global State
Estimation

Map

Robot Pose

Perception Level

Estimation Level

Environment Level

Figure 2-1: Robot Localisation Pipeline. The localisation system perceives the surrounding
environment and the internal states using sensor which is then used for performing local state
estimation. The local estimates are then used along with the environment map to preform global
state estimation.

Various approaches are present for solving the localisation problem in mobile robots which
are broadly classified into two categories: Relative localisation and Absolute localisation [16].
Relative Localisation: Relative localisation uses proprioceptive sensors1 to extract the
position and orientation information. The examples of sensors used are encoders, gyroscope,
accelerometers, etc. Relative localisation can be accomplished either by odometry or by
inertial navigation.

• Odometry: Odometry is the study of the position estimation of the robot using the
rotations of it’s wheels. Odometry is used to estimate the position relative to the starting
location. Odometry uses encoders to count the number of rotations of the wheels to
measure the distance traveled. The pose is determined relative to the world frame by
using the robot’s kinematics. To estimate an absolute position, the relative translation
and orientation between two encoder readings is integrated. Odometry provides good
short-term accuracy and is inexpensive but has various drawbacks such as errors due to
irregular surface, wheel slippage, etc.[17].

1Proprioceptive sensors measure values internal to the system
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2-1 Localisation problem 7

• Inertial Navigation: It is performed by using the robot’s motion state evaluation. It
uses gyroscope and accelerometer to measure the rate of rotation and acceleration re-
spectively. However, inertial sensor data encounters drift over time because of the
integration of the acceleration data to get position. Hence, they are unsuitable to per-
form localisation over long time periods. They are usually used in supplement with
other localisation techniques [17].

Absolute Localisation Absolute localisation uses exteroceptive sensors2 such as beacons,
landmarks, satellite-based signals to obtain the absolute position. Various methods to perform
absolute localisation is given below:

• Active and passive beacons: This method computes the absolute position by measuring
the distance to different beacons or by measuring the direction of incidence. Two popular
methods of beacon systems are trilateration and triangulation. Trilateration uses time-
of-flight information to compute the distance between the known stationary transmitter
beacons and the on-board receiver. An example of trilateration is Global Positioning
System (GPS). Triangulation uses multiple beacons mounted at known locations and
a rotating sensor on the robot registers the angles at which it detects the transmitter
beacons relative to the vehicle position or vice versa. The difference in the two is that
trilateration measures distance and triangulation measures angles. Localisation using
beacons is highly reliable and provides high sampling rate but it has high installation
and maintenance cost. Also, trilateration based localisation faces many difficulties in
indoor environment due to poor signal strength of GPS signal and triangulation based
Localisation cannot be used for long range as it will require multiple beacons. [17].

• Landmark based: In this type of localisation the robot recognises specific environment
features using its sensors. Landmarks can be classified into artificial landmarks (bar
codes, QR codes) and natural landmarks. Robots recognise the known landmarks and
calculate its position relative to the landmarks.

• Map based: The global map of the environment is stored in the robot’s memory which
can be a CAD model or a map built by using the sensor data. When robot moves around
the environment it produces local maps which are compared with the global map stored
in the memory and the actual position can be computed. This type of localisation is
more used for indoor navigation because the environment is limited and hence a map
can be easily developed. This method is advantageous because it uses the naturally oc-
curring structure of typical indoor environments to derive position information without
modifying the environment [16].

2-1-1 Sensors used for localisation

Sensors are used to perceive, analyse and interpret the state of mobile robot and its surround-
ings. Variety of sensors used for robot localisation which can be classified into proprioceptive3/

2Exteroceptive sensors acquire information from the robot’s environment
3Proprioceptive sensors measures the internal state of the robot
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8 Robot Localisation and it’s Limitations

exteroceptive4 and passive5/active6. Table 2-1 shows the classification of sensors used for lo-
calisation. The reliability of the localisation system heavily relies on the sensor performance.
Some sensors provide accurate results in a controlled environment but are prone to errors in
the real world. Various environmental factors affect the performance of the sensors such as
magnetic field affecting the magnetometer readings, low lighting affecting the image data, etc.
Any physical damage can also cause sensor failures. In long term deployment conditions the
reliability of the system can be improved if it is able to cope with uncertainties and failures.

Table 2-1: Classification of sensor use w.r.t. mobile robotic localisation modified from [4]

Sensor Type Use Sensing System PC/EC A/P

Wheel sensors Wheel speed/position

Brush encoders
Optical Encoders
Magnetic encoders
Inductive encoders
Capacitive encoders

PC
PC
PC
PC
PC

P
A
A
A
A

Inertial Sensors Acceleration, Orientation

Accelerometers
Compass
Gyroscopes
Inclinometers

PC
EC
PC
PC

P
P
P
A/P

Ground-based
beacons Localisation in a fixed frame

GPS
Optical beacons
Ultrasonic beacons
Motion Capture

EC
EC
EC
EC

A
A
A
P

Range Sensors Time of Flight

Infrared sensor
Ultrasonic sensor
Laser rangefinder
Structured light

EC
EC
EC
EC

A
A
A
A

Vision-based sensor F2F Matching, F2M Match-
ing, Optical flow

CMOS Camera
CCD Camera

EC
EC

P
P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive

2-1-2 Techniques for state estimation

After perceiving the environment, the robot needs to maintain a meaningful position estimate
in the long run. There are mainly two techniques for estimating the robot pose: Filtering-
based and Optimisation-based [18, 19, 20, 21].

• Filtering-based: In this method the system state is estimated using probabilistic filtering
algorithms such as Extended Kalman Filter (EKF), Particle Filter, Maximum likelihood
estimation and expectation maximisation.

– Kalman Filter: It is derived from recursive Bayesian rule [20] and is the optimal
linear filter which can estimate the internal states of a dynamic system from noisy

4Exteroceptive sensors acquire information from the robot’s environment
5Passive sensors measure the energy entering the sensor
6Active sensors emits the energy into environment and then measures the environmental reaction
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2-1 Localisation problem 9

measurements. However, Kalman Filter makes an assumption that the system is
linear and the noise is Gaussian. Hence an extended version called EKF is used to
solve probabilistic state estimation problem for non linear system. However, EKF
is sensitive to erroneous data associations which can cause the filter to diverge.
EKF is also difficult to apply for large scale map because the computation process
increases quadratically with the landmarks [18].

– Particle Filter: Particle Filter is a nonparametric variant of recursive Bayes filter
that uses random samples to describe arbitrary distributions. [22]. Particle Filters
has good scalability for maps with multiple landmarks [18] which estimates the
robot path and the landmarks position by several low dimensional EKFs [20].
Adaptive Monte Carlo Localization (AMCL) is one of the examples of particle filter
used for robot localisation which treats the robot position as a set of randomised
samples (particles), which are distributed evenly over the pose space. As the robot
senses the environment, the filter is updated and it starts to converge to the real
pose.

• Optimisation-based: Graph optimisation method is composed of three parts 1) motion
estimation 2) loop-closure detection 3)graph optimisation. Motion estimation and loop
closure acts as a front end part and graph optimisation is performed at the back end [18].
The graph based localisation approach abstract the sensor measurements and create a
pose estimation problem. Each pose is represented as soft node and the landmarks
which are obtained from map are treated as fixed nodes. The sensor measurements
are treated as factors in the graph which are labelled with a probability distribution
over relative location between two nodes. When the graph is formed, optimisation is
performed to minimise the error induced by the factors which are sensor measurements
[23].

2-1-3 Metric to evaluate localisation performance

To evaluate and compare performance of localisation methods, different metrics are available
and among which most popularly used metrics are Absolute Trajectory Error (ATE) and
%CPU usage. However, %CPU usage is highly dependent on the system configuration hence
most of this metric is compared based on the performance of different methods on the same
processor which will give a relative %CPU usage of different methods. To compare the
trajectory we will also use ATE metric which is as follows:

ATE =
(

1
N

N−1∑
i=0
||∆pi||2

) 1
2

(2-1)

where ∆pi = pi − ∆Rip̂i
′ , pi ∈ R3 is the position of the robot, Ri is the rotation matrix

p
′
i = Rpi + t, t ∈ R3 = robot trajectory. N: Number of samples. For more information on

ATE refer [24].

2-1-4 State of the art localisation frameworks

Localisation is quite a popular problem in robotics community and has gained lot of interest
over past decades, which resulted in different types of localisation frameworks. As this thesis
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10 Robot Localisation and it’s Limitations

Table 2-2: Best suitable LIDAR and Vision based localisation algorithm [5, 6]

Method Framework Accuracy [6]
(ATEmax[m])

Computation [5]
(Mean % CPU)

Laser-based Hector SLAM [25]
GMapping [26]

1.71
4.59

28.460
25.601

Vision-based RTAB map [27]
ORB-SLAM2 [28]

0.08
0.31

38.831
51.042

does not focus on developing a new localisation framework but rather focuses on situational
awareness and adaptation of localisation, we have decided to use the available frameworks
directly for localisation. We have already compared various state-of-the-art frameworks in
the literature survey which was done prior to the thesis work. The comparison was done
based on two metrics: ATE and CPU usage in (%) for processing. The important results are
summarised in Table 2-2 which shows the two best suitable LIDAR based and Vision based
localisation frameworks according to the above two metrics. As Real-Time Appearance-Based
Mapping (RTAB map) is best in terms of accuracy we have decided to use RTAB map as a
default localisation method.

2-2 Limitations of the state of the art localisation frameworks

The localisation framework can be expressed in form of control loop as shown in Figure 2-2.
The control loop is not fail safe as it is still open loop w.r.t. fault/failures of the different
components and environmental uncertainties. If a fault occurs in any sensor, it will be prop-
agated through the entire system and can cause erroneous pose estimation. Figure 2-3 shows
the error in proprioceptive affecting the entire system causing errors in pose estimates. Erro-
neous estimation are not only caused due to sensor failure but also because of various other
reasons which we have identified below.

2-2-1 Sources of localisation errors

The sensor characteristics can be measured in a laboratory environment. However, all factors
which might affect sensor performance in the real world cannot be taken into account while
testing the sensor. This is most relevant to sophisticated sensors such as laser ranging and
vision-based sensors.

Wheel encoders which measure the angular velocity of the individual wheels are affected due
to wheel slipping/skidding caused due to low friction surface, uneven ground, and accidental
human push. Other sources of errors are misalignment of the wheels, uncertainty in the
wheel diameter or reduction in the wheel diameter as the wheel wears with use and variation
in the contact point of the wheel. Inertial sensors such as magnetometers might give false
or noisy readings due to the disturbance of the magnetic field by other magnetic surfaces in
the vicinity and their susceptibility to vibration. Sensors such as GPS can provide accurate
pose information but have limitations in the indoor environment such as poor signal strength.
Cameras are highly susceptible to motion blur and are dependent on lighting changes, lighting
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Figure 2-2: Mobile Robot localisation as a open loop with respect to fault and disturbances.

ω_des, v_des represents the desired angular and linear velocities, ω_actual, v_actual represents the angular
and linear velocities, δω, δv represents the error between the current velocities and the desired velocities.
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Figure 2-3: Sensor fault affecting the entire localisation system

specularity, reflections, shadows, etc [4, 29]. Narrow dynamic range in the camera might
acquire saturated images in low lighting conditions. Long exposure time and large gain can
cause motion blur and increased noise [30], smoke rendering on the cameras [31] and shadows
caused due to dynamic obstacles can affect the quality of the camera data.

Laser scanner which comes under the category of active ranging sensor, are commonly used in
robotic applications. Laser scanner uses time-of-flight technique to provide accurate distance
information but is highly affected by various factors such as object surface characteristics in
the surrounding, multiple returns, atmospheric transmittance [32] etc. One of the causes of
error involves coherent reflection caused by highly polished surface such as mirror, polished
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12 Robot Localisation and it’s Limitations

Figure 2-4: False perception due to incomplete information. The table is detected as a red dot
by the 2D laser scanner.

metals and ghost readings caused due to transparent surfaces. Also laser rangefinders do not
have the ability to detect transparent materials such as glass [4]. If multiple laser rangefinders
are present in the close vicinity, it can cause cross-talk and interference [33, 1]. Figure 2-5
shows the affects of mutual interference on the laser reading shown in red due to the presence
of other laser scanner in the vicinity. Ultrasonic range sensors will also be affected similar
to laser scanners due to the reflection from smooth and angled surfaces. Also, it will face
interference between multiple sonar emitters. 2D sensors such as laser scanner or ultrasonic
sensors also might not produce enough information for the robot to perceive the environment
correctly. For example: In case of tables, trolleys or humans the robot will only get the scan
reading of the level on which the sensor is mounted which might result into faulty perception
as shown in Figure 2-4 where the table is incorrectly perceived as a small red dot by the laser
scanner but perceived correctly by the camera.

Situations may arise where data association between the sensor readings and available map
may lead to multi modal hypothesis. For example in a repetitive feature environment the
robot may believe that it is at different locations at the same time. This might also be caused
due to symmetric environment and long parallel hallways. Sensor noise and environmental
uncertainties reduce the ability of the robot to localise accurately. Solutions such as temporal
fusion or multi-sensor fusion using Kalman Filter (KF), EKF, etc works well within a certain
framework, and under certain conditions but may be unreliable and suffer divergence or
convergence to an incorrect solution in presence of severe data fault. Also, the filter based
sensor fusion does not allow any kind of flexibility to add and remove sensors as it models
one specific system. Once the model represented in the filter matrices has been defined to
accommodate certain sensors, all those sensors must give information at each iteration of the
filter. If one of the sensors fails to provide new information for the current iteration, the
output of the filter can be erroneous [34]. This could be solved by using Information filters
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2-3 Summary 13

Figure 2-5: The figure in the left shows the placement of the two laser scanners placed closed
to each other. The figure in the right shows the reflected rays detected by the scanner ‘a’ which
has a lot of noise (shown in red) because of the mutual interference between the two lasers . The
actual wall is shown in green.[1]

but they have other limitations such as updating the filter states is more complex than KF,
the initial belief must be Gaussian [15], the inability to maintain multiple data association
hypotheses which results in brittleness in the presence of ambiguous features, the static world
assumption which makes the approach inapplicable to modeling moving objects [35].

There are solutions available in the literature which address the specific problem for failures
and changing environment. Kim et. al [29] solves the problem of changing lighting conditions
by building multiple maps of same environment for different lighting conditions, Shim et al.
[36] solves the same problem by controlling camera exposure time, Koch et al. [37] solved the
problem of laser reflection from transparent surface by Mirror Detector Approach which uses
pre-filtering and post-filtering on laser scan data to detect reflecting surfaces. But in all these
methods the problem was solved by creating a tailored solution. In an open environment
predicting all such scenarios in advance is difficult. Hence, we feel a need for a solution which
can manage an unexpected situations even if the system’s response in that situation is not
modelled in advance.

2-3 Summary

This chapter discussed the mobile robot localisation problem which can be divided into three
layers i.e. perception, local state estimation and global state estimation. Different alternatives
are available for developing each layer of the pipeline. Though different methods are available
in literature for robot localisation there is still a gap with respect to the reliability of the
localisation system which needs to be addressed. Some tailored solutions have already been
developed to tackle the environmental disturbances and internal failures however as mobile
robot operates in open world not all situations can be predicted in advance. To make the
robot localisation more reliable, there is an urgent need to close the loop with respect to
faults, failures and unexpected environmental disturbances. This motivated us to search for
a technique which can make the localisation system more reliable and fault tolerant which we
will discuss in the next chapter.
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Chapter 3

Background

We have seen the limitations of the state-of-the-art localisation framework in chapter 2 and
the need to close the loop of the localisation pipeline. In order to do this we started looking at
different approaches available in literature for providing fault tolerance. Out of them the most
relatable one was fault tolerant controllers. However such controllers needs an analytically
model of the plant which at times if difficult to derive accurately due to its nonlinear na-
ture. Also conventional fault tolerant controllers cannot account for qualitative uncertainties.
Hence, we look further into approaches for fault tolerant control system where we came across
data driven methods such as Artificial Neural Networks (ANN). But these types of approaches
generally require a large amount of labelled faulty data for training diagnosis models which is
quite costly and at times impossible to get. Also adaptability was another concern. In most
cases they cannot extrapolate beyond the range of training data [38]. The operating conditions
of the robot could be changed over its lifetime not only due to faults but also due to changing
environmental conditions which will need re-training. Also they lack explanation facility. As
our motivation was to develop a more reliable system, these artificial neural network based
approaches could not provide more meaningful information and their reliability is still doubt-
ful [38, 39]. Training a network could sometimes result in over-fitting which would have a
negative impact on fault detection. Over-fitting tends to make a network conservative which
in case of fault detection would increase false positive outcomes. Lastly, the training process
is often time consuming and needs several iterations for learning.

We look further and came across self adaptive systems which could provide intrinsic fault toler-
ance capability. This motivated us to develop a Situation-Aware Self-Adaptive (SASA) locali-
sation framework which could provide the robot with capabilities such as situational awareness
and self-adaptation such that it could be used to obtain intrinsic fault tolerant and reliable
systems. This chapter present a brief background on the topics used for developing SASA
localisation framework. This chapter covers the fundamental theoretical concepts, the think-
ing behind the methodology used and tools chosen for Knowledge Representation and Rea-
soning (KR&R). Fault tolerance is of maximal relevance for our research which is covered
in Section 3-1. Section 3-1-2 discuss briefly about the self-adaptive system especially using
Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) reference model. Section
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3-2 covers the methodology used for knowledge representation, process of ontology design and
tools used for implementing the ontology in the robotic system.

3-1 Fault Tolerant Systems

Dependability have become a crucial challenge for autonomous control systems. Depend-
ability can be defined as "the ability to deliver service that can justifiably be trusted" [40].
Dependability mainly combines together two system properties which are:

1. Reliability: It is the ability of the component/system to deliver the required func-
tion/services under the stated conditions for specific periods of time. Reliability ba-
sically evaluates how frequently the system becomes faulty. Reliability can closely be
related to the Mean Time To Failure (MTTF) of the system.

2. Availability: It is the probability of a system to be operational when needed. Contrary
to reliability, availability also depends on the system maintenance polices. Availability
can closely be related to the Mean Time Between Failure (MTBF) of the system.

A dependable system is a fail-safe system with high availability and reliability. An internal
failure within the system or environmental uncertainties can affect the system’s functionality.
In the general sense, the desired functionality of a system can be affected due to failures,
uncertainties and disturbances. In case of failure, the system is unable to perform and might
even cause a permanent breakdown. An error is a part of the system state which can propagate
through the entire system and can cause the system to fail. It is a deviation of the system
from the expected behaviour. Faults are the hypothesised cause of the error. A fault is a
deviation of the system state or the system parameters from the nominal situation [41]. In the
event of a fault, the system might be able to continue it’s functionality with some acceptable
degradation in performance but failure is an irrecoverable event and the system has to be
shut down. The overall system works satisfactorily only if all components i.e. sensors and
algorithms, provide the desired service. As there is so much inter-dependency between the
internal components, a fault might change the performance of the whole system. In any case,
the faults or disturbances are the primary cause of changes in the system functionality which
eventually leads to a degraded system performance or loss of functionality [2]. Assume that
the system behaviour can be described by the two variables y1 and y2. Then Figure 3-1
shows the different regions of the system behaviour. In the region B1, the system satisfies
its function. This is the region where the system should ideally remain during its time of
operation. On occurrence of faults or disturbances, the the behaviour of the system changes
and the system enters the B2 region which is acceptable because the system can still provide
services with certain degradation in performance. Faults and disturbances bring the system
from the region B1 to B2. A fault-tolerant controller should be able to initiate recovery
actions that prevent a further degradation of the performance towards the unacceptable or
unsafe regions and it should move the system back into the region of desired performance. At
the border between the two regions, the supervision system is invoked, which diagnoses the
faults and adjusts the controlled system to the new situation [2].
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Figure 3-1: Regions of system behaviour. Faults and disturbances will take the system from B1
towards B4

3-1-1 Fault Tolerant Control Systems (FTCS)

There are certain control techniques which allow the accommodation of faults and distur-
bances to a certain extent [2]. They are as follows:

• Robust Control: It is an approach to design a fixed controller that tolerates changes of
the plant dynamics. Fault tolerance is achieved without changing the control param-
eters and is hence a passive approach. However, robust controllers can perform over
a restricted set of changes in plant behaviour and does not provide best performance
in a nominal plant because its parameters are fixed so as to get a trade-off between
performance and robustness [2].

• Adaptive Control: It is a control method in which the controller adapts its parameters
with the changes in the controlled system. However, the theory of adaptive control
shows that this principle is particularly efficient only for plants that are described by
linear models with slowly varying parameters. These restrictions are usually not met by
systems under the influence of faults, which typically have a nonlinear behaviour with
sudden and large parameter changes [2].

A robust control policy is static and the controller is sub-optimal as it is designed to work
assuming that certain variables will be unknown but bounded. As against robust controllers,
a prior information is not required about the bounds on the uncertain or time-varying pa-
rameters in adaptive control but adaptation is limited to only slowly varying systems. On the
contrary, Fault Tolerant Control (FTC) can deal with occurrence of fault on any magnitude
by changing the control law to cancel the effects of the faults and unbounded uncertainties
or to attenuate them to an acceptable level. In a faultless system, nominal performance can
be achieved as the control law is only changed after occurrence of faults.
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The general architecture of FTC is shown in Figure 3-2. Note that the faults f and distur-
bances d are different. Robust controllers usually take into account only the disturbances d.
Moreover, it can be seen from the Figure 3-2 fault-tolerant control extends the usual feedback
controller by a supervision system, which has to perform two tasks:

• Fault Diagnosis: The diagnosis block measures the control input and plant’s output
using sensor and test the consistency with the plant’s model. It is responsible for
detecting and diagnosing the fault in the system.

• Controller Redesign: The redesign block takes input from the ‘diagnosis’ and adjusts
the controller setting to the faulty situation. Controller redesign considers the problem
of changing the control structure and the control law after a fault has occurred in the
plant. It aims to fulfil the performance requirements of the system even in case of faults.

Controller System

DiagnosisController
re-design

sensing

action
output

ref.

alarm

fault disturb.
Execution

level

Supervision
level

Figure 3-2: Architecture of FTC adapted from [2]

The main advantage of fault-tolerant control over other measures for fault tolerance is the
fact that fault-tolerant control makes ‘intelligent’ use of the redundancies included in the
system which makes it the most promising field for providing more reliable systems. However,
in conventional fault tolerant control systems the process of fault diagnosis is divided into
two parts: a residual generation module and a residual evaluation module. For residual
generation, a mathematical model of the supervised process is required which is deduced
from differential equations [41] and the output of the model is then compared with the actual
output of the system for evaluation purpose. For the purpose of fault diagnosis, a fault
model of the system is required which describes a specific fault effect. A robotic system is
a complex, nonlinear and highly interdependent system which makes the process of deriving
a process model and fault model very difficult and time consuming. Also a robot operates
in an open environment and hence we cannot account for all the faults that might occur in
the system at design time. And without information about the faults and the way in which
the faults affect the system, no fault isolation and identification is possible [41]. Even if the
model is derived after lot of efforts the model is specific to a single system which limits the
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reusability of the model. Classical fault tolerant controllers cannot account for qualitative
uncertainties. "Qualitative uncertainty refers to the occurrence of unexpected events that
qualitatively change the behaviour of the plant. They cannot be accounted for in traditional
control models as disturbances" [42]. This motivated us to look further into methods other
than classical fault tolerant controllers which can provide fault tolerance without explicit fault
models or mathematical process models and we came across Self Adaptive System (SAS). SAS
system is a class of systems which are capable of modifying their runtime behaviour in order
to achieve system objectives. Unpredictable circumstances such as changes in the system’s
environment, system faults, and changes in the priority of requirements are handled by such
systems by performing runtime adaptation.

3-1-2 Self-adaptive Systems

With increasing autonomy, a robotic system is not just limited to a single controller but con-
sists of multiple feedback loops at different levels of hierarchy with lots of inter-dependencies.
Hence the controllers used for high autonomy applications are very software-intensive. In
software systems a lot of research has been done on Autonomic computing, where computing
systems can manage themselves given high-level objectives. This technique has been applied
in areas of fault-tolerant systems where a software system can perform dynamic adaptation
in relation to fault-tolerance. The dependability of a software-based system is improved by
providing the system with the ability to adapt itself at run time to handle resource variability,
changing user needs, and system faults. Such a system, which is able to automatically modify
itself in response to changes in its operating environment is called Self Adaptive System (SAS)
[43, 44]. The system modifies itself by manipulating the parameters or its behaviour in re-
sponse to the changing environment or internal states. SAS can provide self-management
properties such as self-configuration and self-healing in presence of failures.
Kephart and Chess [3] introduced MAPE-K reference model for SAS which is shown in Fig-
ure 3-3. Though the MAPE-K model have been there for quite some time it still remains as
one of the influential reference model for autonomic and self-adaptive systems. It divides the
SAS into Managed element and automatic manager. The Automatic Manager is responsible
for adaptation and consists of:

• Monitor: It is responsible for monitoring the managed system and the environment. It
collects and provides the information to the analyze phase.

• Analyze: It performs data analysis and reasoning on the data provided by the monitors.
Analyze is responsible for determining whether adaptation actions are required using
the monitored information of the managed system, the environment, and the adaptation
concern of interest.

• Plan is responsible for planning the actions and adaptation necessary to achieve the
goals or objectives.

• Execute: It changes the behaviour of the managed resources using the actions recom-
mended from the plan phase.

• Knowledge: Knowledge are the models that provide abstraction of the relevant aspects
of the system, its operating environment and the adaptation goals.
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Effectors

Knowledge

Analyze Plan

ExecuteMonitor

Automatic Manager

Sensors

Managed Element

Figure 3-3: MAPE-K Feedback Loop for Self-adaptive system adapted from [3]

MAPE-K Feedback loop is an abstract representation of the reference control model which
will provide fault-tolerance and self-adaptation capability. MAPE-K reference model can be
mapped to the architecture of FTC which is shown in Figure 3-4. The Monitor and Analyze
element of the MAPE-K will be used to perform fault detection and diagnosis while the Plan
and Execute element will perform controller redesign i.e. reconfiguration. The knowledge is
equivalent to the mathematical model the system used in FTC. Note that the sensors here
are not just limited to the sensors used for feedback in control loop but can also include
performance monitors, disturbance monitors, mission progress monitors, etc. In this research
we will use MAPE-K to build SASA localisation framework which will provide robustness,
fault tolerance and self-adaptation capability on top of the conventional localisation pipeline.

Execution level =
Managed Element 

alarm

Controller System

sensing

control 
input

outputref.

fault disturb.

Supervision level =
Automatic ManagerKnowledge

Plan Analyze

MonitorExecute

DiagnosisController redesign

reconfiguration-
action

monitored_states

Figure 3-4: MAPE-K Feedback Loop mapped onto architecture of active FTC. The monitor
and analyze element of MAPE-K reference model acts as a diagnosis task of active FTC and Plan
and Execute element of the MAPE-K acts as controller redesign part of FTC
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3-2 Knowledge Representation

For implementing MAPE-K loop, knowledge about the system and its components is required
in order to perform run-time reconfiguration. Hence it is necessary to represent knowledge in
the form that the system can understand. Knowledge Representation is the field of artificial
intelligence that focuses on designing computer representations which can capture information
related to the system and its surrounding world. Various methods are available to represent
knowledge such as First-order Logic (FOL), Description Logic (DL), Ontology, Behavioural
tree, etc. which were reviewed in the literature survey prior to this thesis. Among them, on-
tologies are the best suitable for our application because they provide shareable and reusable
knowledge base using easy human-interpretable format for storing and amalgamating knowl-
edge, readily available editing, consistency checking and reasoning tools [45]. Hence, we will
use ontology as a form of knowledge representation for this thesis work.

An ontology is an explicit specification of a conceptualisation [46]. Ontologies represent knowl-
edge as a taxonomy and hierarchy of concepts with their attributes, values and relations. This
type of representation will be beneficial for Fault Tolerant System (FTS) as it can model the
different components of the system and their dependency effectively. They provide a platform
which facilitates the sharing and reuse of knowledge between groups in a computational form.
Ontology has been strongly developed as a form of semantic knowledge base1. Using ontology
for symbolic knowledge representation can provide re-use and sharing of expert knowledge.
The ontology can be used for finding fault causes in the system by reasoning over data. It can
directly or indirectly provide repair or maintenance strategy [47]. Ontology can also represent
the available data in a structured manner on which rules can be applied to perform reason-
ing, targeting at finding out the root fault causes and inferring some repair or maintenance
proposals. Hence, a decision was made to use ontology for knowledge representation. Use of
ontology in robotics is increasing. Projects such as Open Robot Ontology (ORO) by Lemaig-
nan et al. [48], Knowledge Processing Framework (KnowRob) by Tenorth et al. [49], Smart
and Networking Underwater Robots in Cooperation Meshes (SWARMs) [50], Perception and
Manipulation Knowledge (PMK) [51] use ontology for semantic representation. The survey
work done in literature survey prior to this thesis work and the study mentioned in [52]
and [53] covers the recent use of ontology in robotics and shows in-depth comparison. How-
ever, none of the methods mentioned covers the fault and failure of the components and the
reconfiguration strategy in robotics domain.

3-2-1 Ontology Design and Development process

Before developing an ontology, it is important to specify the purpose. In our case, the purpose
of developing an ontology is to represent a robotic system especially a localisation system in
the form of different components and functionalities these components could provide. This
kind of knowledge representation in the form of components could be used to find alternatives
during faults and failures, using the redundancy present in the system. This ontology should
not be specific to a single use case or a single system and should cover the general components

1A semantic knowledge, or frames is a knowledge base that represents semantic relations between concepts
in a system or a domain. It is a graph consisting of vertices, which represent concepts, and edges, which
represent semantic relations between concepts
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of the localisation system. The developed ontology will be used to perform reasoning and
to search for alternatives and reconfigure the system by using the available redundancy such
that the system will be able to provide with the functionality even in case of faults and
disturbances.
In principle, there are two different approaches to construct ontologies given in [54]: 1)
Bottom-up and 2) Top-Down

• Top-Down: In top-down approach the process of ontology building starts by analysing
and studying the relevant information about the domain and then modelling the top
level concepts in, which are then subsequently refined in the next step. This approach
is usually carried out by domain experts which results in development of a high quality
upper ontology [54].

• Bottom-Up: In bottom-up approach the process starts from the most specific concepts
and conceptual structure of the domain and then they are generalised for building the
ontology in incremental fashion.

Both the approaches have their own pros and cons. Ontologies developed from Top-down ap-
proach can be reused across multiple applications and scenario. This approach helps creating
a reusable and shareable ontology with a better control on the level of detail [55]. However
developing an ontology using top-down approach requires a domain expert and is costly and
time consuming [54]. Starting with high level concepts can result in choosing arbitrary high-
level categories causing a risk of less stability in the model [55]. Also due to highly dynamic
and constantly evolving nature of the knowledge related to a certain domain, the ontology
needs to be updated and refined. The advantage of using bottom-up approach is the pos-
sibility of discovering knowledge at larger scale and faster pace and detecting and revising
human biases is also possible [54]. The ontologies developed by this approach are domain
and/or application specific and are not reusable. But it supports the refining and expanding
of existing ontologies by adding new knowledge emerging from texts [54]. Due to the high
level of detail this approach makes it difficult to spot commonality between related concepts
and increases the risk of inconsistencies [54, 55].
The "middle-out" as proposed by Uschold and Gruninger [56] was chosen for ontology de-
velopment. In this approach of ontology development the process is started by specifying
the most common concepts, branching out to the most general and then to the most specific
ones which allows to focus on most relevant knowledge [57]. The main advantage of using
middle-out approach is that the identification of primary concept of the ontology is possible.
After defining the relevant concepts, it is possible to specialise or generalise them if necessary.
This causes more stable ontology and requires less rework [58]. The reason for choosing this
approach is because of availability of the relevant concepts related to the localisation system.
Hence we just need to structure those concepts to develop a ontology schema.

3-2-2 Ontology Implementation

To be able to use ontologies in an actual autonomous system, a method for implementing
them in the system is required. There are several ontology languages and tools that can
be used to implement ontologies. The in-depth review of the tools and languages used for
ontology was done in the literature survey which will be summarised here.
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Choice of the language and tools used for ontologies

Languages available for building ontologies can be classified into two types: Traditional ontol-
ogy languages and Ontology markup languages. The first type consists of languages based on
first order logic (e.g., KIF), on frames combined with first order logic (e.g., CycL, Ontolingua,
OCML and FLogic), and on description logics (e.g. LOOM). The second category is Web stan-
dards, which are used to facilitate interchange on the Internet, and ontology languages, which
are web standards compatible, are named Web-based ontology languages. Examples of lan-
guages of this group are: SHOE, RDF, RDFS, OIL, DAML and OWL. Among these the most
popular ontology languages are KIF, OWL, RDF + RDF(S) and DAML+OIL [59]. However
OWL, RDF + RDF(S) and DAML+OIL has advantage over KIF as it receives strong support
from other communities besides the ontology community, which means that more tools are
available for editing, handling, and documenting the ontologies [60]. Other languages are also
available such Graql which was considered most promising in the literature survey. Graql is a
querying language for GRAKN.AI. GRAKN.AI which will be refereed as Grakn throughout
the thesis is an open source distributed, hyper-relational database for managing complex data
in the form of a knowledge graph that implements a concept-level schema for cognitive and
Artifical Intelligence (AI) systems [61]. Knowledge graph and ontology though are different
have same meaning in our use case and hence will be used interchangeably throughout the
thesis.

Table 3-1: Comparison between OWL and Graql based on the evaluation from the literature
study done prior to this thesis

Criteria OWL Graql

Modeling
Flexibility

Two individuals can only have bi-
nary relations. In order to create
N-ary relationship each OWL prop-
erty needs to be separately mod-
eled and then combine together into
N-ary relation patterns using aux-
iliary class names and property re-
strictions.

Graql’s ontology language contains
higher level constructs that can de-
fine N-ary relationships and objects

Querying
Capability

In OWL querying is performed in a
set of triples

In Graql multiple information can
be extracted in a single query which
makes the querying process easy.

Third party
dependability

OWL require components from
many different systems, such as on-
tology editors (e.g. Protege), stor-
age (RDF triple stores), query en-
gines (e.g. SPARQL), reasoners
(e.g. Pellet, other OWL reasoners).

Graql has a fully integrated
knowledge-base environment, with
storage, querying, validation,
reasoning and visualization.

Ease of
use

OWL need lot of different compo-
nents which need to be learn for
building, querying and reasoning
with ontology

Graql can be used to perform
both ontology building an reason-
ing which has a simple and intuitive
syntax

The languages mentioned above need tools for ontology editing and reasoning. Protégé is an
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open source tool used for ontology editing and has an OWL API which is a Java API for
developing and editing OWL ontologies. Web Ontology Language (OWL) constructs should
be used for developing ontology in Protégé which results in very restrictive schema thus
limiting the flexibility of the tool making it hard to add new concept. Protégé has interfaces
to reasoners such as Fact++ and Pellet. The tool also has plugins for visualisation, such as
OWLViz and Ontograf. Querying the ontology is done using SPARQL Protocol And RDF
Query Language (SPARQL) and reasoning Semantic Web Rule Language (SWRL) using rules.
Large number of options, multiple plugins and different API’s makes it confusing to use the
tool.

Graql however uses Grakn for ontology representation and reasoning. This knowledge repre-
sentation system has its inbuilt automated reasoning engine that performs automated deduc-
tive reasoning during query time. The ontology can be modelled by programming using Graql
language or graphically using Grakn Workbase2. Grakn provides Python, JAVA and Node.js
APIs for querying and updating the data in the ontology. Grakn provides a complete package
for representing concept-level model, a type system, a query language, a reasoning engine
and schema verification. To do the same with OWL requires multiple standards and their
respective implementations, each with their own inherent complexities. In particular, OWL
is extremely feature rich, which has resulted in a high degree of complexity making it unsuit-
able for most software applications [62]. However Grakn also has few limitations. Grakn does
make use of a schema, but does not use semantic standards, which makes it incompatible with
the other ontologies which are developed using OWL. Also, Grakn is quite young tool and
hence has a smaller user community and thus less support from fellow users. The advantages
of Grakn were more significant for us than its limitations. Grakn also provides a suitable
balance between complexity and expressivity for knowledge representation and an automated
reasoning and integrated package which was a decisive factor in choosing Grakn over OWL.

3-3 Summary

In this chapter we discussed about the background topics which helped us to develop SASA lo-
calisation framework. Instead of looking in the direction of conventional fault tolerant control
system, we decided to use a slightly different approach in the direction of SAS using MAPE-K
reference model. We made these decisions because it is difficult to model different environ-
mental properties mathematically and fault tolerant controllers don’t account for qualitative
uncertainties in the system. MAPE-K reference model can provide self adaptation capability
which can be used to develop intrinsic fault tolerant system. As against the classical fault
tolerant controllers, a knowledge based framework can also be reused for other similar types
of systems, provided the knowledge is shareable and reusable. Hence we decided to make use
of ontology for knowledge modelling. Ontologies have various advantages over other forms
of knowledge representations among which reusability and provision for reasoning were more
important for us. Using heuristic relationships and performing deduction using the knowl-
edge and facts expressed as rules and parameters, the system can mimic the intelligence of a
human expert. Also, reasoning can provide explanation to justify the decisions made which
is an important property for developing reliable systems. In the later part of the chapter, we

2Grakn Workbase is a tool which provides an interface through which we can read from a Grakn knowledge
graph or model ontology graphically
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saw different tools for ontology modelling among which we chose Grakn for implementation
due to its modelling flexibility, querying capability and ease of use. In the next chapter we
will discuss about the development process of the SASA localisation framework.
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Chapter 4

Development process of
Situation-Aware Self-Adaptive

Localisation System

In this chapter we discuss the development process of the Situation-Aware Self-Adaptive
(SASA) localisation framework. To develop the framework we have followed Integrated Sys-
tems Engineering and Pipelines of Processes in Object-Oriented Architectures (ISE&PPOOA)
process from [63]. This chapter discusses about the operational context, different operational
scenarios, the desired behaviour of SASA framework and the framework requirements from
a Systems Engineering perspective. This chapter is important to get a clear idea about the
scope and the functionality of SASA localisation framework. This chapter will be concluded
with the skeleton of the functional architecture of SASA framework which will be completed
in Chapter 5

4-1 Operational Context, Operational Scenarios and desired be-
haviour

The first step of the system design process according to ISE&PPOOA process is the identifica-
tion of the operational scenarios. The goal of this process is to identify the possible operational
context of the system and describe its operational scenarios for the different modes of opera-
tion. Note that this step is just to get a clear idea about how the system should operate in
some limited scenarios. However the adaptation should not only be limited to these scenarios
but also to other types of situations which could occur in real life which are not discussed
here or not known to the framework in advance.
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4-1-1 Identify Operational Context

The first step of the system development is to identify the operational context. In this step
we will identify the context and the environment in which our system will be operating.

Our goal is to develop a situation aware localisation system which at any moment provides
a reasonable estimation of the robot position available for display in a map of the retail
store, so a human supervisor or the navigation planner could make decisions concerning
robot operation. The robot will operate in a retail store environment. We are using a retail
environment because this work is part of a bigger project under AIR Lab Delft which is a
TU Delft-Ahold Delhaize collaboration focused on developing state-of-the-art innovations in
the retail industry. The environment is created using Gazebo simulator [64] 1 and shown
in Figure 4-1. The environment has multiple shelves with different types of products. The
environment has nonuniform illumination and featureless regions to replicate the actual store
which is created using Gazebo plugins and can be changed using input commands. The robot
will use the SASA localisation framework and provide its accurate location while moving in
the store which can be visualised in Rviz which is a 3D visualisation tool for Robot Operating
System (ROS)2. The robot will be operated manually by user commands for its motion in the
environment. The teleoperation can be replaced with navigation planner in future to perform
the autonomous mission. The localisation system might fail due to environmental disturbance
such as uncertain lighting conditions, low visual features, smoke rendering on sensor which will
affect stereo vision, and long, narrow aisle, cross-talk between active sensors, transparent and
reflective surfaces which will affect laser based localisation, and various other reasons which
are mentioned in section 2-2-1. However, the localisation system might also fail due internal
failure such as algorithmic failure (i.e. pose estimator divergence from actual value), transient
failure caused due to driver malfunction, permanent failure caused due to physical damage
to the sensor, and system freezing due to resources exhaustion. Figure 4-2 establish the
context of our SASA localisation framework by using System Modelling Language (SysML)
block definition diagram in which the relations between the main elements are defined. SASA
framework is not just limited to this context and should also perform in other types of stores.
This context is taken just to show a proof of working of SASA localisation framework.

4-1-2 Operational Scenarios and desired behaviour

After identifying the operational context and the environment, the next step is to identify
scenarios which the localisation system may have to face. The scenarios identified are with
respect to environmental uncertainties, internal faults and unavailability of resources. The
scenarios are given below and Table 4-1 describes the desired behaviour of the localisation
system in detail in each scenarios.

• S1: Normal Conditions. The environmental conditions are proper for estimating robot’s
state, all components are working properly without any faults in any part of the system.
Everything is working as desired.

1Gazebo is an open-source 3D robotics simulator
2Robot Operating System is a collection of software frameworks for robot software development.
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Figure 4-1: Retail store simulation environment
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Figure 4-2: Context diagram for SASA localisation framework which can face unexpected situa-
tions such as environment disturbances and internal failures. Even in the presence of such type of
disturbances and failures, the SASA localisation framework should provide the pose information.
Here we are assuming that we have a prior map of the environment.
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• S2: Unacceptable environmental disturbance: The environment has poor illumination
conditions, or low visual features or obstructed Field of View (FOV) which highly affects
vision based methods and causes erroneous pose estimates. The errors are not caused
due to internal components of the robot but due to the environmental disturbance. The
environmental uncertainties described in Section 2-2-1 fall under this category. Such
types of situation should be handled by SASA framework.

• S3: Transient failure. The environment conditions are proper, however during op-
eration there are transient failures such as algorithmic failure, data synchronisation or
processing problem, hardware driver failure which can give rise to errors in conventional
localisation system. These type of failures are not permanent and can be solved just by
re-initialising the the faulty component which should be done by SASA framework.

• S4: Permanent hardware failure. These types of failures are permanent in the system
and caused due to some damage to the hardware or software component. The SASA
framework should recover from such type of failures by using redundancy available
within the system.

• S5: Temporary unavailability of the resources: There can be situations when the re-
sources which are otherwise available are not available for certain period of time. Such
as computational power or battery. During such scenarios the localisation system might
freeze due to resources exhaustion.

4-2 Operational Needs and System Requirements

We have identified different operational scenarios in the previous section and how the system
should behave in each scenario. In this section, we will identify the operational needs which
will cover all the operational scenarios and convert those needed into system requirements,
capabilities and functions.

4-2-1 Identify Operational Needs

The process of identifying operational need is important as it will help us define the objective of
our system and which will be converted into the system requirements and system capabilities.
At this stage, we don’t need a rigorous list of requirements as they will be converted into
precise system requirements later. The identified operational needs are as follows:

• ON1: The developed system shall be able to perform the localisation as that of a
conventional localisation system which we have discussed in chapter 2.

• ON2: The system shall be able to monitor the internal states and the external environ-
ment in order to detect and identify run-time errors and failures caused in the internal
components and also the disturbances caused due to environmental changes.

• ON3: The system shall be able to identify the redundancies available in the system
so that those redundancies can be used to overcome the situation of internal failure or
environmental disturbances.
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Table 4-1: Description of desired behaviour in different Operational Scenarios

Scenario S1: Normal Conditions
Preconditions The localisation system is initialised and running

Periodic event The localisation system works as desired with reasonable performancea
without any internal error or environmental disturbances.

Description The localisation system reads the sensor data and extract necessary
information to preform state estimation to provide robot’s pose.

Scenario S2: Unacceptable Environmental disturbances
Preconditions The localisation system is initialised and running
Triggering event Unexpected situation affects the ability of pose estimator.

Description

During operation the an unexpected environmental disturbance occur
which affects the qualityb of the sensor data or the performancea of lo-
calisation. For example in a featureless or a dark environment, the sensor
information is insufficient to perform vision based pose estimation. The
framework should be able to detect low performance and the cause of
low performance and should try to overcome this situation using the
redundancy available in the system.

Basic Flow

1. Detect the inability/low performance of localisation and the cause for
low performance (which is environmental disturbances in this case)
2. Search for alternatives using available redundancy
3. Deploy the alternatives by performing run-time adaptation which can
provide reasonable performance

Post-conditions The system resumes its localisation even with disturbances using avail-
able redundancy

Scenario S3:Transient failure
Preconditions The localisation system is up and running with the default configuration.

Triggering event Any internal component fails either due to algorithmic failure or due to
abrupt stop of any process.

Description

During operation the estimator fails and diverges from actual values
causing high variance in the estimates or an component stops providing
data to the other components. The framework should detect this kind
of abnormality and actuate the recovery from it by re-initialising the
failed component.

Basic Flow
1. Detect errors in the components and the reason behind them
2. Update the state of components
3. Re-start the faulty component

Post-conditions The localisation system resumes its operation as previously with same
the performance.

a, b: The metric for performance and quality will be discussed later in Chapter 5

• ON4: The system shall be able to change the configuration in run-time without affecting
the other processes of the system. For example: in case of poor illumination the system
shall be able to stop the vision based localisation and start the laser based localisation
without affecting the other process in the system.
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Table 4-2: Description of the Operational Scenarios (Continued...)

Scenario S3:Permanent failure

Preconditions The localisation system is not running due to the unavailability of data
or a component.

Triggering event A component ceases to be available

Description

During operation a sensor used for localisation is damaged physically
or any component such as an estimation algorithm stops providing the
data to the the localisation system. Restarting as in the previous sce-
nario doesn’t solve the problem. The SASA framework should detects
this abnormality and actuate to recover from it by searching for an al-
ternative from the available redundancy. If any redundancy is available,
the system should perform run-time adaptation and use the alternate
method to achieve same functionality

Basic Flow

1. Detect fault in the components of the localisation system
2. Updates its status of the component
3. Re-start the faulty component: This won’t work as the component is
not available anymore
4. Search for alternative exploiting the available redundancy
5. Use that redundancy to perform estimation

Postconditions The system resumes its operation with same or acceptable performance
degradation of the localisation system with an alternate configuration

Scenario S5: Temporary Unavailability of resources
Preconditions The localisation system is initialised and running

Triggering event High computational load due to other computation demanding tasks
reduces the localisation performance

Description

During operation other task which need high computational load starts
in parallel. As a result the performance of the localisation system de-
grades causing it to lag or update at lower rate. This should be detected
by the SASA framework and the system should shift to a configuration
which has lower computational requirements.

Basic Flow

1. Detect high computational load (Note that here we are making an as-
sumption that a high computational load will also results in performance
degradation of a localisation system)
2. Search for configuration which has lower computation requirements
3. Makes changes to the current configuration according to alternate
configuration

Post-conditions

The system continues its operation with some modifications in the cur-
rent configuration which might results in trade-off such as low accuracy
due to lower computation. For example: for lower computation the
number of particles in particle filter based estimator can be reduced.

4-2-2 Specify system capabilities and NFR

After describing the operational scenarios of our localisation system, the next step is to
convert the operational needs into a set of capabilities, functions, and quality attributes that
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the SASA framework needs to posses. The goal of this step is to transform scenarios and
needs into a set of system capabilities and high-level system requirements. The identified
high level capabilities of our localisation system is given in Table 4-3. The first capability
is required for performing localisation while the other two are required for the system to be
fault tolerant and reliable.

Table 4-3: Identified high level capabilities of our system

C1: Self-localisation
The self-localisation capability will provide the robot with
the ability to estimate its pose within the operational envi-
ronment. This is the primary capability of our system.

C2: Situational
awareness

This capability is required by the robot to understand what
is going around in the environment and within the internal
system. This capability will provide the robot with the abil-
ity to detect faults and failures within the system and the
detect disturbances which will affect the performance of the
C1.

C3: Self adaptation

The capability C2 will just allow the robot to analyse and
understand the faults in the system and the environmen-
tal conditions but it won’t provide the ability to act on it.
Hence self adaptation capability is required which will pro-
vide robot with the ability to react to the situations such
that the robot will be able to preform operation even in the
presence of disturbances and faults.

Non-Functional requirements (NFR) of a system specify the criteria that can be used to judge
the operation of a system, rather than specific behaviours. In simple terms, the functional
requirements define what the system is supposed to do or how it is supposed to behave and
the NFR specifies how the system is suppose to be. We have seen in the literature survey
and even in chapter 2 that there are various methods available for mobile robot localisation
and each has their own pros and cons. In this research work we are not really focusing on
developing the localisation system by our self but we want to develop a framework which
can be used on top of any localisation system and provide self adaptation. Hence for us, the
reusability and modularity of the developed framework is of great importance. The framework
should be such that it can be applied to any of the localisation methods currently available
or which might be developed in future. Also, it should possible to add, remove and modify
components from the system with minimum efforts and should hence be modular.

Apart from reusability and modularity, we are dealing with adaptation and hence the sys-
tem should have adaptability, however we prefer to consider adaptation as part of behaviour
because adaptation as a functionality can be allocated. But the system should have other
quality attributes related to adaptation performance such as low latency and adaptation re-
sponse time 3. Response time is the time taken by the system to overcome a situation after
the occurrence of that situation. Latency is the time taken by the SASA framework to detect
any unexpected event.

3The adaptation latency and adaptation response time are discussed in chapter 6 while testing the framework
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4-3 Functional Architecture

Once the localisation system has been characterised from a operational viewpoint through the
capabilities and quality attributes, we have to design the functional architecture that addresses
them. This step is the most important one in the ISE&PPOOA process. A Functional archi-
tecture is an architectural model that identifies system function and the interactions between
different components in the system [65]. It defines how the functions will operate together
to perform a particular objective or an operation. Generally, more than one architecture can
satisfy the system requirements. However, each architecture will have different operational
cost, performance, risk, etc. The functional architecture represents the problem space at
the highest level of hierarchy independent of the technical solution used. Thus a functional
architecture is a permanent architecture in contrast to a physical architecture which is more
dependent on the technical insights of a solution. The functional architecture of a system is
reusable for similar systems of the same product family or systems with similar missions or
in the same application domain, saving development time and money [63].

The path we have followed to develop the functional architecture of our system is slightly
different from ISE&PPOOA process. The reason for this is we have used a ROS based
architecture which has developed localisation packages. These packages are already defined
in a certain functional architecture which we have adapted to our requirements. This means
that instead of beginning by defining the functional architecture of the system in design, and
then implementing it, we had performed functional analysis of the ROS localisation packages,
and used those packages in our SASA localisation framework. Note that the functional
analysis done in this chapter is only with respect to capability C1 i.e. self-localisation and
the other capabilities will be presented in the chapter 5

4-3-1 Functional Analysis of Localisation System

The localisation system available in ROS can be can be grouped into two different subsys-
tems based on the functionality i.e. perception and state estimation. Figure 4-3 depicts the
functional breakdown of the localisation layer of SASA framework into subsystems and the
subsystem further into components. It consists of:

• Perception subsystem: It consists of sensors mounted on the robot which are a part
of the robotic system used for sensing robot’s internal states and environment states
relevant for localisation. It is also responsible for processing the sensor data before it is
used by other sub-systems.

• State-estimation subsystem: It is responsible for estimating the state of the robot i.e.
the current pose of the robot in the environment. It is composed of local state estimation
and global state estimation. For local state estimation, the robot estimates the relative
state from the start of the motion and for global state estimation it uses a map of the
environment stored in the database to estimate the global pose.

• MOTION subsystem: It contains the mobile base and receives the motion commands
in our case given manually as input from user using keyboard/joystick. This tele-
operation component can however be replaced by an autonomous navigation planner
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which will give the motion commands to the mobile robot. Though it is not a part
of localisation system we have mentioned it to show the complete flow of the motion-
perception-estimation cycle.

Mobile Robot

Sensing

Processing

Local State
Estimation

Global State
Estimation

Map 

Robot Pose

Perception 
Subsystem

Estimation 
Subsystem

Motion Subsystem Teleoperationvelocity 
command

processed 
sensor data

Global Pose

Map data

raw sensor 
data

Relative Pose
processed 

sensor data

Figure 4-3: The functional decomposition of the self-localisation layer of our framework.
In this diagram the motion subsystem is not a part of the localisation system but it shown here because it

controls the robot motion which is detected by the localisation system due to change in position.

Note that the functional decomposition shown in Figure 4-3 only shows the conventional
localisation with capability C1. The other capabilities C2: Situational awareness and C3:
Self-adaptation will be added later to the functional architecture. The decomposition shows
the components involved in the localisation and their functionality. For example, the sensing
component will preform sensing function, local state estimation will perform local estimation
function and so on.

4-3-2 Design Alternatives

The functional architecture of the localisation system is unique. There are multiple ways to
design a physical system which can provide same functionality. In this step we have identified
different design alternatives which can provide the same functionality. Knowledge about
design alternatives is important to identify the available redundancies. We will identify the
alternatives mainly based on two approaches used for localisation i.e. vision based localisation
and laser based localisation. Note that there can be alternatives apart from one shown in
Figure 4-4 and Figure 4-5 where the method can combine both the sensors i.e. laser and
vision. But such methods do have a primary sensor and they tend to fail if any disturbance

3The arrows show the direction of the data flow and blue boxes shows what kind of information is exchanged
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or fault affects the data quality of the primary sensor. For example, some versions of Real-
Time Appearance-Based Mapping (RTAB map) though uses laser scan as an input to increase
the accuracy of localisation fails if vision data is unavailable [6].

Figure 4-4 shows the vision based localisation system. The perception layer consists of a stereo
camera component which will capture the stereo images and provide it to other components,
and an IMU sensor which provides inertial measurements of the mobile robot. The Stereo
odometry estimation component will take the stereo images produced by the sensor to perform
local pose estimation. The sensor fusion component will take the input from the local state
estimation component and IMU sensor and produce more reliable pose estimation. In the
end, the vision-based localisation component will take the local pose estimates from the sensor
fusion component, the sensor data from stereo camera and map data from the map server
component to provide the global pose estimation of the robot.

Figure 4-5 shows alternative configuration using laser scanner. On the perception level it
consists of a laser scanner and a IMU sensor. The laser scanner will produce a 2D range scan
of the surrounding which can be used by other components. The data from the laser scanner
is used by the laser odometry component to estimate local pose. The estimated pose is then
used by the sensor fusion component along with the IMU sensor data to reduce uncertainty in
pose estimates. Finally, the laser based localisation component will take input from the sensor
fusion component, map server and the laser scanner sensor to provide global pose estimates.
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Map 
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Figure 4-4: Vision-based Configuration
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Figure 4-5: Laser-based Configuration

4-4 Addition of automatic manager

So far, we have a functional design of a localisation system which can perform reasonable
pose estimation of the robot. But as shown in the Figure 2-3 any fault or uncertainty can
affect the localisation system and there is no method by which the system will be able to
overcome the faulty situation. In order to create a situation aware self-adaptive localisation
system we will use Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) as a
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reference feedback loop. The system developed till now will act as a managed element of the
MAPE-K loop and now we have to develop automatic supervisor which consists of elements
such as monitor, analyze, plan, execute and knowledge which will work in combination to
analyze the situation and provide adaptation alternatives according to the situation. After
completion, the MAPE-K loop for SASA system will be similar to the one shown in Figure 4-
6. The monitor component consists of the ROS nodes which will continuously monitor the
environmental and internal status of the robot. The analyze component will analyze the
information extracted by the monitor component to detect if any fault is present in the
system. The plan component will only be used when any fault or uncertainties is detected in
the system. It will use reasoning to overcome the fault and provide the same functionality.
The execute component will acts as an effector for switching the ROS nodes in the run-
time. All of the components are explained in the detail in the next Chapter 5. Note that
the missing elements will be added to Figure 4-6 in the next chapter where the complete
functional architecture of the SASA will be shown.
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Figure 4-6: Functional Architecture of the SASA localisation framework with with information
about the managed system layer

4-5 Summary

In this chapter we discussed the development process of the SASA localisation framework. We
started with an example of operation context, and the operational scenarios. While analysing

Master of Science Thesis Shreyash S. Palande



38 Development process of Situation-Aware Self-Adaptive Localisation System

the operational scenarios we understood that the conventional localisation framework can
only perform in normal situation but in order to perform in presence of environmental un-
certainties and internal failures, the system needed additional capabilities such as situational
awareness and self adaptation. The operational needs helped us identify the functional and
Non-Functional requirements (NFR) of the SASA localisation framework such as reusabil-
ity, modularity, adaptation performance. We started designing the functional architecture
of the SASA framework where we identified different design alternatives for self-localisation
capability. In the later part of the chapter we presented the functional architecture of the
localisation layer of the SASA localisation framework. However this functional architecture is
still incomplete and still needs elements which will provide the capability to perform during
unexpected situations. In the next chapter, we will discuss the automatic manager which will
provide the system with capabilities such as self adaptation and situational awareness using
which the system will be able to handle unexpected situations.
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Chapter 5

Development of MAPE-K elements

The functional architecture defined in Figure 4-6 does not have any information about the au-
tomatic manager layer of Situation-Aware Self-Adaptive (SASA) framework. In this chapter
we will present the adaptation layer and discuss in detail different elements of the adaptation
layer i.e. Monitor, Analyze, Plan, Execute and Knowledge. This layer is responsible to pro-
vide the system with situational awareness and self adaptation capability. This chapter will
be concluded with the complete functional architecture of the SASA localisation framework.

5-1 Knowledge

The automatic supervisor needs knowledge of the system to perform adaptation. These knowl-
edge can be represented in different form such as First-order Logic (FOL), Description logics
(DL), Ontologies, Behaviour trees, etc [45]. Among them ontology have various advantages
over others. 1) It is easily extensible: It is possible to extend ontology by adding new class and
relationships to the already available ontology. So no need to build the complete knowledge
model from scratch. 2) It is reusable: The same knowledge model can be applied to different
applications. 3) It provides high granularity: The amount of detail captured using ontology
can be varied. It can capture knowledge about the general concepts in a system to the most
specific ones. 4) Allows reasoning: Ontology models support reasoning. It is possible to infer
logical consequences from a set of asserted facts or data.

The overview of the primary concepts of our knowledge schema is shown in Figure 5-1. A
schema is a schematic representation or a blueprint of concepts and relationships within
domain. Note that these concepts are not specific to the localisation but are quite generalised
because we have used ‘middle-out approach’ for ontology development where we start from
these generalised concepts. We will start with these concepts and move towards more detailed
ones in the upcoming section.
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5-1-1 General Schema

The core concepts of our schema are shown in Figure 5-1. The purple-box represents the con-
cepts which are the main entities of our domain, green-diamond represents the relationships
between the concepts and the yellow-highlighted text shows the roles the concept plays in that
relationship. A robot is composed of different components. We start with robot component
where a robot component can be anything such as software, hardware or a communication
interface. Each component can provide some functionality, where a functionality is the
purpose which the component can serve when used. Each component can serve multiple
functions such as a camera can be used for localisation as well as obstacle identification.
So the functionality which a component can provide, depends on the component setting i.e.
how it is configured. This is modelled using functionality-relation relationship in the
schema. The processing-relation relates: a Robot Component concept where it plays a
role of component, the Process input and Process output concepts which plays the role
of has-input and has-output respectively. A processing-relation can be considered as
a black box which will process some inputs and provide some outputs. Process input and
Process output concepts are used to model inputs and outputs of the process.

A processing-relation also has Property which acts as a constraint. The idea behind
modelling this relation is that every process has some constraints and the process would only
be successful if the constraints are satisfied. To represent it in control terminology, a linear
controller would only be effective near the region of operation. In our case, the Property could
be anything from an environmental property, the system’s internal property such as battery,
computational load to the performance of estimation algorithms. The property will be used
to model a state of an environment, internal system or an estimator which can affect the way
in which a component can function. For example: Low illumination in the environment or a
large error in pose estimation will affect the localisation functionality. Finally the status will
be used to representation the status of the process. If all the constraints are satisfied then
the process will have a health status and if any fault occurs in the system then the status will
be unhealthy.

The schema explained above consists of general components which can be used to represent
different types of processes in a robotic system. But we want to focus on the concepts
which are specific to localisation which we have mentioned in the last chapter. These include
concepts like local state estimation, perception, etc. To do this we will create sub types of the
primary concepts. The sub-types will act as a child concept and will inherit all the properties
of the parent concept.

The process of creating sub-types will drive the ontology towards specialisation. A robot
component can be anything from a hardware sensor to a software component or a communi-
cation component. Hence we have created them as sub-types of the robot component. As we
are using Robot Operating System (ROS) [66] based architecture, the ROS-Message concept
will be a sub-type of Communication concept and ROS-nodes will be sub-type of Software
concept. A robot component could also be a Hardware which can then be more specific to
Power Supply, Sensor, Computational Resources. Figure 5-2, Figure 5-3 and Figure 5-4
shows the sub-types of concepts in a hierarchical manner. Note that the mentioned sub-types
are just an example and does not cover the exhaustive list of all the sub-types in our system.
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5-1-2 Schema for Localisation use case

In the previous section we have discussed the general concepts in the schema and how we can
create more specific sub-types according to our requirement. In this section we will see the
final schema for SASA localisation framework.
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Figure 5-5: Developed Schema of the SASA localisation framework

Figure 5-5 shows the complete schema of our SASA localisation framework. This acts as a
primary skeleton for conceptualisation of elements related to the localisation. Note that, as
we are using ROS based architecture, the inputs and outputs of the process will be in the
form of ROS messages and the processing will happen in a ROS node. Let us start from
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ROS-Processing Node. The node will have some input in the form of a ROS-Message and
those messages will have some name and type. This is modelled using attributes which are
shown in blue boxes. Each message is differentiated using a name and the node will only
accept an input of certain datatype, hence we have modelled them in our schema. Now same
as the general schema, the Property will act as a constraint. But in this schema we have give
some attributes to the property such as property threshold and constraint type. The
threshold will be used in future to identify the violation of constraints. The constraint-type
attribute will hold the value of type of property. For example: the component can still provide
the functionality if some constraints are violated and hence such properties will act as a soft
constraint, and some constraints if violated will stop the component’s ability to provide the
functionality. Hence they will act as hard constraints. Note that all those sub-types which
we had mentioned in the previous section i.e. environment property, I/O property, etc will
all have these attributes. Now we need a monitor which will observe those properties. These
monitors are required to update the current states of the properties in the knowledge and
these updated values will be compared with the threshold values to check for constraint vio-
lation. There is a concept in the schema called Property-compensator. These compensator
are such that they can alter the effects of the property. To given an example: consider illu-
mination property. If the robot is mounted with flashlights it can use that flashlights when
the illumination is low. The attribute isActive will be used later in the reasoning section.
It is to update the status of the compensator when it is deployed.

Now the ROS-processing-node has attributes such as node-name, launch-file and package-name.
These attributes will be useful to start or stop a process during run-time in ROS. The
ROS-processing-node has a relationship with Functionality and Component-setting. So
as mentioned before, each component can provide functionalities with different performance.
For example: The performance of a particle filter used for state estimation depends on the
amount of particle used for estimation. Higher the amount of particle higher is the accuracy
and vice versa. Hence the concept of component setting will be used to model the parameters
for that particular component. Note that component setting has an attribute confidence.
This user defined attribute will be used to encode the knowledge of how well the component
can accomplish the functionality. The ROS-processing-node also has some status. If all
the constraints are satisfied then the node will have the status of healthy. While if only the
soft constraints are violated then the status of the node will be unreliable and if the hard
constraint is violated then the status will be Unhealthy.

Apart from the schema in Figure 5-5 there are few more concepts which are shown in Figure 5-
6. These concepts are used to establish a hierarchical network within the knowledge by
inference. Note that the roles which are shown by red lines are not defined by user and will
be inferred using reasoning which will be explained in the coming sections of this chapter.

5-1-3 Data instantiation of schema concepts

The schema described in Figure 5-5 will just provide a structured model of the concepts
related to localisation but does not have any significance unless it is grounded. Grounding is
the process of making physical quantities correspond to their conceptual counterparts, where
we actually map the physical data in our system to the knowledge. To perform grounding,
we need to instate the concepts according to components available in our system. To explain
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Figure 5-6: Configuration Hierarchy relation between processing nodes

in a form of object-oriented methodology the schema are equivalent to the classes and the
instances are equivalent to the objects. Instances are needed to perform reasoning which is
needed for fault analysis and system reconfiguration. We will try to explain the process of
instantiation with an example.

Consider we have a ROS node in our system which will take the stereo images from the
camera and produces the local pose estimates of the robot. The schema grounding of for this
particular node is shown in Figure 5-7. The node will produce the output in form of ROS
message. The functionality of this node is to provide local pose estimation. The functionality
of the node will be affected due to the poor illumination and low visual features. Note that
we have only shown the illumination property in the figure. The functionality of the node will
also be affected due to poor quality of estimates. There may be a situation when the robot
would still be able to estimate it’s pose in low illuminated environment. So here we cannot
really put a number as a threshold to the environmental property hence we have assigned
it as a soft constraint. In this case, poor illumination will affect the reliability of the node
but not it’s functionality. The primary function of the node is to estimate the pose and
hence the pose quality should be good. If the pose quality is poor, it will affect all other
components which are using estimated pose as an input. Hence pose quality is assigned as a
hard constraint because this should never be violated and if violated, should raise an error.
The two monitors i.e. Illumination monitor and Pose monitor will observe the respective
property i.e. environmental illumination in former and pose and quality of pose in later, and
will update the current value to the knowledge base. In this way the same schema can be used
for grounding all the ROS nodes and hardware components present in the system. Grounding
of all the components according to our system will be shown in the next chapter.
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Figure 5-7: Data Instance of the concepts related to stereo camera ROS node

5-2 Monitor

The monitor element of Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K)
loop is responsible for gathering particular data from the underlying managed system and
the environment through probes or sensors of the managed system, and saving the data
in the Knowledge. This element along with analyse which is discussed in the next section is
responsible for achieving situational awareness. We have seen examples of few monitors in the
last section. Here we will discuss all the monitors which we have created for our localisation
system. We have used some guidelines for developing the monitors which are as follows:

• Monitor should be as general as possible: We want the the monitors to be such
that they can be used for maximum possible cases. However, a single monitor can not
cover all the properties. But we can create monitors such that they will capture the
environmental properties independent of the method used for estimation. For example:
Consider a feature extraction algorithm being used for vision based localisation. The
performance of that algorithm would be dependent on the tuning of the algorithm
parameters and the environmental conditions which affects the vision. We will focus on
the monitors which will capture environmental conditions because those same conditions
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would also affect all vision based methods.

• Use minimum number of parameters for monitor: We want our monitors to use
less number of parameters

• Monitors should not be computationally expensive: As these monitors would
only observe the current conditions and have no contribution to the primary task of the
robot. Hence they should not use much computation.

Using the above guidelines we have developed four types of monitors to observe the quality
of the environmental conditions and estimation algorithm for vision based localisation. We
have not developed any monitors for laser based localisation due to the time limitation of this
thesis. But it can be done using some of the methods available in literature such as accuracy
estimation for laser point cloud [67] and analysing the quality of matched 3D point clouds
[68].

5-2-1 Pose quality monitor

The main task of the localisation system to estimate the pose of the robot. Several methods
have been proposed in literature for quantifying and dealing with the uncertainty in the robot
pose. The most commonly used metric is the co-variance matrix as the uncertainty measure
for the location estimator [69]. We will also use the same metric as a pose quality metric to
monitor the quality of the pose estimation. Other metric such as Absolute Trajectory Error
(ATE) can also be used as a performance metric but for ATE the ground truth measurement
is required which is not available in real life unless some external tracking system is used.
Hence during runtime operation we will use pose co-variance as a performance metric. The
co-variance measures the squared expected deviation from the mean values and is used to
expresses position uncertainty after error correction [70]. Almost all the methods for robot
localisation give co-variance matrix as a side product along with the robot pose. Hence we
have decided to use co-variance matrix to quantify the quality of the localisation method.
The higher the co-variance matrix the poorer is the quality of the localisation method and
vice versa. The robot pose in 2D has 3 states i.e. x position, y position and the yaw angle
and each state is uncorrelated. Hence the co-variance matrix is

∑
pose

=

 σ2
x σx ∗ σy σx ∗ σθ

σy ∗ σx σ2
y σy ∗ σθ

σθ ∗ σx σθ ∗ σy σ2
θ

 =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ


where σ is variance in each state.

But instead of representing each individual variance, we used root sum squared variance as
the pose quality metric L_pose.

L_pose =
√
σ2
x + σ2

y + σ2
θ (5-1)

Analysing only the pose co-variance metric is not sufficient as it will only tell about the quality
of the robot localisation but not the reason behind the poor quality. Hence we also need to
analyse the environmental conditions to find the cause behind the poor quality of localisation.
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5-2-2 Environment illumination monitor

In order to identify the reason behind the poor quality of localisation we need to monitor
the components involved in the localisation and the environmental situations. Environmental
properties have lot of effects on the localisation capability. For vision based localisation, we
need to monitor the factors that might affect the robot vision such as illumination, noise,
visual features, etc. Hence we have developed monitors to observe those features.

Intensity histogram provides the information about various characteristics of the image such
as brightness and contrast. If the histogram is concentrated in a narrow region, it means
the image has low contrast and broad histogram reflects an image with significant contrast.
The mean and standard deviation of the histogram gives an idea about the overall histogram
distribution which can be used to estimate the environmental illumination. Hence we will use
intensity histogram as illumination monitor.

The RGB image obtained using camera can be converted to Gray scale image(Y) which
denotes the intensity of the each pixel in the image. We have done conversion using YCbCr
color encoding system [71]

Y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (5-2)

Gray image consists of intensity pixels Y and histogram of the Gray image gives the over-
all intensity distribution of an image. Using the gray image histogram we can define the
illumination metric as follows:

Lillumination =
N∑
i=1

i ∗ P (i) (5-3)

where P(i) is the probability of gray value and N is the number of possible gray values in the
histogram (256 for 8 bit image)

The intensity histogram varies with the change in the illumination of the surrounding which is
captured by illumination metric. Instead of using image to detect the environmental bright-
ness, we can directly use a light meter or lux sensor which is a device used for measuring
the illuminance, but we don’t have the hardware available so we will use indirect methods to
determine the environment illumination.

5-2-3 Visual information monitor

The image gradient is the attribute related to the fine details, texture and edges of the
image and can be used to extract information from images. Various image features such as
Histogram of oriented gradients (HOG) [72], Scale-invariant feature transform (SIFT) [73],
edge detection, object detection are computed using image gradient information. As these
features use gradient information, we can use a gradient based metric to monitor the amount
of visual information in the surrounding. We could have used the feature detection method
itself such as HOG or SIFT for monitoring visual information. But there are different feature
based methods and any of the methods can be used for the localisation. So those types of
monitors will not provide generality and would be dependent on the method used. Also, there
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are lot of parameters for each of these methods which are tuned differently for each system.
Hence we have used a monitor which will use image gradient information directly without
depending on any specific method.

The purpose of the visual information monitor is to quantify the visual information available
in the image. We have adopted the nonlinear gradient mapping function from Shim et al.
[36], and made additional improvements similar to [30]. First the grayscale image obtained
from Equation 5-2 is use to calculate the gradient of the image. The gradient is calculated
using Sobel operator [74]. The operator uses 3x3 kernel which is convoluted over the image
to calculate the approximate derivative. The horizontal and vertical changes are calculated
separately and are merged as shown in Equation 5-5.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ I (5-4)

where * denotes 2-dimensional convolution operation, Gx, Gy represent the image gradient
in horizontal and vertical direction respectively.

The overall gradient magnitude of the intensity image Y is given by:

G =
√
G2
x +G2

y (5-5)

The mapping function relates the gradient magnitude to the gradient information and is
calculated as follows.

g̃i =
{ 1
Ng

(λ(gi − δ) + 1), gi ≥ δ
0, gi < δ

(5-6)

s.t. Ng = log(λ(1− δ) + 1),

where gi ∈ [0, 1]1 which is the gradient magnitude at pixel i of gradient image obtained from
Equation 5-5, δ is the activation threshold which is used to filter out noise, λ is the control
parameter to adjust the mapping behaviour, Ng is the normalisation factor and g̃i is the
of gradient information at pixel i. However this mapping function is strongly biased to the
gradients caused by the high exposure [30]. In order to remove the bias the image is divided
into grids and the gradient information in each grid is aggregated. This modification in the
mapping function reduces the bias caused due to non-uniform distribution. The gradient
information in each grid is given by

Gj =
∑
i∈Cj

g̃i
Wj ∗Hj

, j = 1, 2, . . . , Nc (5-7)

where Gj is the jth grid cell, Nc is the total number of grid cells, Wj,Hj are the width and
height of the jth grid and g̃i is the amount of gradient information.

The final gradient metric is given by mean gradient information in each tile i.e.

Lgradient = E(G) (5-8)
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where E(G) is the mean value of the distribution of the gradient information in each grid
cells Gj . Large Lgradient indicates that the gradient information is strong and uniformly
distributed and low Lgradient indicates weak and biased gradient. This gradient information
metric is independent of the method used and will capture the information about the amount
of visual feature in the environment.

5-2-4 Image Noise monitor

The visual localisation methods can also suffer when the image noise reaches a certain intensity
[75]. As none of the above monitors explicitly capture the noise in the image, we will use a
noise based metric to quantify the noise available in the image. There are various methods to
estimate the noise in the image such as Peak signal-to-noise ratio (PSNR), Feature similarity
index (FSIM) which compares the distorted images with original image. However in our case
there is no reference image to compare with and so we will use the noise metric without
a reference image. Also, the methods proposed in [76] based on eigen value analysis and
[77] based on principal component analysis give more accurate results but are computational
expensive. Hence we use the method proposed in [78] which used a filter based approach
which is computational fast.

The metric estimates the noise using laplacian operator proposed by Immerkaer in [79] with
some modifications of adaptive edge detection proposed in [78] to prevent over-estimation of
the noise.

Immerkaer [79] proposed a noise estimation operator which mask the image using 3x3 kernel
given by

M =

 1 −2 1
−2 4 −2
1 −2 1

 (5-9)

However the above laplacian kernel is sensitive to image objects which will result in inaccurate
noise estimates. To improve the accuracy the laplacian filter should be applied to remove the
saturated regions and only to keep unsaturated homogeneous regions. Hence we uses two
masks one for unsaturated regions which is a simple threshold mask given by:

U(i) =
{

1, τl ≤ Y (i) ≤ τh
0, otherwise

where τl, τh are the lower limit and upper limit for unsaturated pixel, Y (i) is the intensity
image.

The homogeneous region mask H which is an adaptive threshold mask is given by

H(i) =
{

1, gi ≤ δp
0, gi > δp

where the adaptive threshold δp is the pth percentile of gradients in the image, and g(i) is the
gradient magnitude of the pixel i.
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The noise based metric is given by

Łimage−noise =
√

π

2 ∗Ns
∑
i

H(i).U(i).|I ∗M |(i) (5-10)

where NS denotes the number of valid pixels in the mask H · U , * denotes the convolution
operator and |·| denotes the absolute operator.

Changing lighting conditions [4, 29, 30, 80], areas of inconstant visual features [4] and camera
noise [75, 30] are the major issues for visual perception which are observed by the monitors
which we have developed. There are other problems that have a close influence on the
performance of visual perception such as photometric calibration, motion bias, and rolling
shutter effect [81]. However motion bias and rolling shutter were not of concern here as the
mobile robot does not preform any high speed manoeuvre. Hence we choose to ignore them.
These monitors will extract meaningful information from the environment and update the
current states to the knowledge base which will be used to check the violation of constraints
and take the adaptation decision. The results of these visual perception monitors on TID2008
dataset [82] is shown in Appendix B. Note that in this thesis work we have not covered issues
related to the laser perception due to the time constraint.

5-3 Analyse using Deductive reasoning

Different approaches for analysing and planning the adaptation are present which needs a
criteria for identifying the need for adaptation and for choosing a suitable adaptation plans,
respectively. These metrics are based on: models, rules, goals, or policies. In order to analyse
the system for faults and uncertainties and plan the reconfiguration, we will use deductive
reasoning. Deductive reasoning or deductive logic is the process of reasoning from one or
more statements (i.e. premises) to reach a logical conclusion. If all premises are true, the
terms are clear, and the rules of deductive logic are followed, then the conclusion reached is
necessarily true [83]. An example of deductive reasoning is

• All men are mortal. (First premise)

• Socrates is a man. (Second premise)

• Therefore, Socrates is mortal. (Conclusion)

The first premise states that all objects classified as "men" have the attribute "mortal." The
second premise states that "Socrates" is classified as a "man" – a member of the set "men."
The conclusion then states that "Socrates" must be "mortal" because he inherits this attribute
from his classification as a "man." [83]

This type of deductive reasoning will be performed on the data which will be used to analyse
the faults and its effects on the system and to come up with reconfiguration strategy. The
advantage of using deductive reasoning is that a conclusion is reached deductively by applying
general rules which hold over the entire closed domain. These general rules can be reused or
shared for other system which fulfils our Non-Functional requirements (NFR) of reusability
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and generality. We will now discuss how reasoning is performed in our system to analyse the
situation.

After having created the data instances of the concepts specific to our system, reasoning
can be performed over the data using pre-defined rules, which can be included in the Graql
definition of the ontology schema or by using match insert queries. The match-insert query
together in combination can be used to perform reasoning such as when a particular pattern
of the instances are found in the match clause new data can be inserted into knowledge
graph using insert clause. The rules though somewhat similar to the match insert queries
have slightly different functionality. The rule-based reasoning in Grakn allows us to capture
the evolution of patterns within the knowledge graph. These rules are composed of a set of
conditions (the “when” part of the rule) and a conclusion (the “then” part of the rule). When
all the conditions of the premises are satisfied, Graql rules will search for a given pattern in
the data and if found, it will create a queryable relation only for the time being of the given
transaction, so a queryable relationships is inferred without actually adding new data [84].

The advantage of using rules is that the set of rules included in the Grakn schema can be used
for any data that is inserted in the ontology and the inferred conclusions do not have to be
deleted separately when the corresponding pattern is deleted. On the other hand, inserting
the data using insert queries will only take into account the data at that specific moment
and the inserted relationships have to be deleted separately if the corresponding pattern is
deleted. Hence we will use rules to perform deductive reasoning for two main reasons: 1)
We don’t want tailored queries to perform reasoning as this will limit the reusability of the
rules 2) We don’t want to complicate the process of reasoning by adding data instances and
deleting separately if a corresponding pattern is deleted.

Table 5-1 presents the rules in logical formalism which we have developed for analysing the
situation. Note that these rule are expressed using logic notation for easy understanding.
However in our system, these rules are modelled using Graql language which makes them
much more expressive. We have used 7 rules all of which are general and can be used for any
ROS based system. In the rules "?x" indicate a variable x, "A(?x,?y)" indicate two variables
x and y are in a relationship "A", and "B(?x,var)" indicate the variable x has a attribute B
which holds the value var. The meaning of all the rules is mentioned in Table 5-3.

Note that all of these rules are general and do not have any special encoding for localisation.
Hence these rules can be reused for any ROS based system and not just limited to localisation.
For reusing the rules one needs to follow the schema shown in Figure 5-5. For example,
consider a robot manipulator which is developed using ROS architecture. The robot has to
move an object from position A to position B. There are three ROS nodes one for producing
image data, one which will take the image data to detect the object, and third the planning
node which will take the information of the detected object to perform planning. Using rule
R1 and R2 hierarchy at all the levels will be inferred. Now if the obstacle is blocking the view
of camera and there is one monitor detecting the quality of camera feed similar to the visual
quality monitor which we have developed, it will update the knowledge that even though the
camera node is producing data it doesn’t have much information. Hence using rule R3 and
R4 the camera node will become unhealthy. This will make the object detection node and the
planning node unhealthy because of rule R6. Hence the rules we have developed are general
and can be reused for any ROS based system, provided the schema if followed.
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Table 5-1: Rules for analysing the situation represented in boolean logic

Purpose Rule
Node R1: Node(?N1) ∧hasop(?N1, ?IO2)∧

Hierarchy Node(?N2) ∧hasip(?N2, ?IO2)
→ ConfigHierarchy(subordinate :?N1, superior :?N2)

R2: Node(?N1) ∧Node(?N2) ∧Node(?N3)
∧ConfigHierarchy(subordinate :?N1, superior :?N2)∧

ConfigHierarchy(subordinate:?N2,superior:?N3)
→ ConfigHierarchy(subordinate :?N1, superior :?N3)

Health R3: Property(?P) ∧hasthresh(?P, ?Th) ∧Monitor(?M)∧
propobvrelation(?P,?M) ∧hasvalue(?M, ?V ) ∧ (?V <?Th)

Detection → issatisfy(?P, false)
R4: Node(?N) ∧Property(?P ) ∧ hasconstraint(?N, ?P, hard)
∧issatisfy(?P, false)→ Nodestatus(?N, unhealthy)
R5: Node(?N) ∧Property(?P1) ∧ Property(?P2)

∧hasconstraint(?N, ?P1, soft) ∧ hasconstraint(?N, ?P2, hard)
∧issatisfy(?P1, false) ∧ ¬issatisfy(?P2, false)

→ Nodestatus(?N, unreliable)
Health R6: Node(?N2) ∧Node(?N1) ∧Nodestatus(?N1, unhealthy)

Propagation ∧ConfigHierarchy(subordinate :?N1, superior :?N2)
→ Nodestatus(?N2, unhealthy)

R7: Node(?N2) ∧Node(?N1) ∧Nodestatus(?N1, unreliable)∧
∧ConfigHierarchy(subordinate :?N1, superior :?N2)

∧¬Nodestatus(?N2, unhealthy)
→ Nodestatus(?N1, unreliable)

5-4 Plan and Execute

The monitor and analyze together will provide situational awareness and will answer ques-
tions such as: is the environment good for performing localisation, is the estimator working
properly, etc. However, if any event is detected which affects the localisation functionality,
the system should try to overcome it using other available resources. Hence we need plan and
execute element which are the part of the MAPE-K feedback loop. In MAPE-K the plan and
execute agent is responsible for finding an alternative for reconfiguration and executing those
alternatives. To perform adaptations, plan and execute elements use the knowledge of the
components present in the system to search for a configuration which will provide the same
functionality to overcome the faulty behaviour.

5-4-1 Plan element using rules and queries

As we know that Graql queries can be used to retrieve or modify information stored in a
knowledge graph, we will use queries to plan the reconfiguration and update the reconfigured
components into the knowledge. The planning could also be done by using a decision making
or planning approach such as STRIPS solver, Planning Domain Definition Language (PDDL),
behaviour tree based method. However planing using languages like PDDL are often con-
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structed for a specific application and can be difficult to reuse [85]. Instead we have used
Graql queries for planning.

Table 5-2: Rules an queries for planning the reconfiguration in boolean logic

Purpose Rule
Action R8: Node(?N) ∧Nodestatus(?N,Unreliable)

recommendation → action(?N, optionalreconfigure)
R9: Node(?N) ∧Nodestatus(?N,Unhealthy)
→ action(?N,mandatoryreconfigure)

Query Q1: action(?a,?type) ⇒ get(?a, ?type)
Action Query Q2: action(?N, mandatoryreconfigure) ∧Property(?P )

for ∧hasconstraint(?N, ?P ) ∧ issatisfy(?P, false)
adaptation ∧propobvrelation(?P, compensator :?C)∧

isActive(?C,false) ⇒ get(?C)
Q3: action(?N1, mandatoryreconfigure) ∧Node(?N2)

∧Functionality(?F, localisation) ∧Nodestatus(?N2, healthy)
∧functionalityprovider(?N1, ?N2, ?F );

ConfigHierarchy(?N3,?N2) ⇒ get(?N3, ?N2, ?N1)
Q3: action(?N1, mandatoryreconfigure) ∧Node(?N2)
∧Functionality(?F ) ∧Nodestatus(?N2, healthy)

∧functionalityprovider(?N1, ?N2, ?F );
ConfigHierarchy(?N3,?N2) ⇒ get(?N3, ?N2, ?N1)

Query Q4: functionalityprovider(?N,localisation)
for ∧Node(?N) ∧ Posedata(?p) ∧ hasop(?N, ?p)

initialization ∧hasposex(?P, ?x) ∧ hasposey(?P, ?y)∧
hasposeyaw(?P,?yaw) ⇒ get(?x, ?y, ?yaw)

Note that Q3 and Q3 are similar queries. The only difference is that Q3 is generic and in Q3 we
are searching for alternative configuration which can provide the localisation functionality. We will
only use Q3 hereafter for our use case

Table 5-2 show the primary queries and rules for planning. The meanings of these rules and
queries are given in Table 5-3.
Note that the reconfiguration action is optional if the constraint is soft and node status is
unreliable, and the it is mandatory if the constraint is hard and node status is unhealthy.
These rules are static and will be added while defining the schema. The queries on the other
hand can be used to add, update and delete data from the knowledge base. These queries will
be used to perform adaptation. A ROS nodes will continuously query the knowledge graph
at certain frequency with query Q1 to check if any action is needed. Ideally this query should
be NULL if all the components are working properly and all constraints are satisfied. But if
any constraints are violated, the query will return with the action which should be taken. If
the action is reconfiguration the planning node will query the knowledge with Q2 to check if
any compensator is available for violated constraint. If it is available the compensator will be
activated and the state will be updated in the knowledge. However if there is no compensator
for the violated constraint the node will query the knowledge with Q3 to search for other
configuration which can provide the localisation functionality.
Note that till now all the rules and queries are general and reusable for other ROS based
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Table 5-3: Meaning of rules and queries which are presented in Table 5-1 and Table 5-2

Rule/
Query Generality Meaning

R1 general
Node N1 produces output IO2 and node N2 has input IO2 then Node N1
act as a subordinate node to the node N2 in the configuration hierarchy
relation

R2 general
Node N1 acts as a subordinate node to node N2 and Node N2 acts as a
subordinate node to node N3 then node N1 will also act as a subordinate
node to node N3

R3 general
There is a property P and it has some threshold Th, there is a monitor
M observing that property and has current value V then if vale V <Th
the property will be violated

R4 general
There is a node N which has property P as a constraint and the P is
a hard constraint and if P is violated then the node will have status
unhealthy

R5 general

There is a node N which has property P1 and P2 as constraints and P1
is a soft constraint and P2 is a hard constraint. Now if P1 is violated and
there is no P2 which is violated then the node will have an unreliable
status.

R6 general
There is a node N1 and N2 and they are in a configuration hierarchy,
where N1 is a subordinate node and N2, is a superior node. Now if N1
is unhealthy then N2 will also be unhealthy

R7 general
There is a node N1 and N2 and they are in a configuration hierarchy,
where N1 is a subordinate node and N2, is a superior node. Now if N1
is unreliable and N2 is not unhealthy then N2 will also be unreliable

R8 general There is a node N1 which has node status unreliable. Then the recom-
mended action is to optionally reconfigure node N1

R9 general There is a node N1 which has node status unhealthy. Then the recom-
mended action is to compulsory reconfigure node N1

Q1 general If there is an action recommendation then get the type of action to be
performed and the node on which the action needs to be performed

Q2 general

If there is an action recommendation on node N1 which is a compulsory
reconfiguration and the node N1 has constraints P and the constraints
are violated. If the property has a compensator and if the compensator
is not active then get the compensator name.

Q3 Localisation
Specific

If there is an action recommendation on node N1 which is a compulsory
reconfiguration and the node N1 provides localisation functionality then
is there any other node N2 which can provide localisation functionality
and has a status healthy

Q4 Localisation
Specific

There is a node N which provides the functionality of localisation. The
node has an output P which is of type pose data and pose data has x,y,
yaw information. Then get x,y, yaw

application. However, while changing the configuration we want the other configuration to
be initialised from some initial state i.e. the initial pose of the robot. Once we get the launch
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files of the node for the alternative configuration we would initialise them with the last saved
robot pose. This is done by again querying the knowledge graph to give the the latest saved
pose provided by the node which was offering localisation functionality. This is done using
query Q4 which will get the initial states of the robot. These states will be passed as an
argument to the execute element along with the launch name of the nodes.

5-4-2 Execute element using ROS node manipulator

The Execute element is responsible for executing the adaptation actions of the generated
plans. Execute requires an effector to adapt the managed element (in our case ROS nodes)
according to the results of the planning element. We have used ROS action server as an
execute agent. The planning ROS node acts as a ROS action client and will send a request to
ROS execute node for executing adaptation actions. In our case the action would be starting
new ROS nodes, stopping working ROS nodes or changing some parameter values. The ROS
execute node will execute the actions and send the results of the actions back to the planning
ROS node which will update the knowledge base. For switching the ROS nodes we are using
the python subprocess module which allows to spawn new processes, connect to their input,
output, error pipes, and obtain their return codes in runtime.

5-5 Functional Architecture of SASA localisation framework

Now as we have explained each element of our framework we will discuss the functional
architecture of the SASA localisation framework. Figure 5-8 shows the functional architecture
of the complete system. In the developed SASA framework there would be different number
of monitors which will observe and update the current status of the environment and the
internal states of the robot to the knowledge. These client monitoring nodes will send a
request to the monitor manager which will provide the service of updating the current status
to the knowledge. There will be one monitor manager and multiple monitoring nodes as per
the requirement. The planning node will query the knowledge graph at certain frequency to
check for action recommendation. This planning node will be a ROS action client node and
will send request to the execution manager node which is a ROS action server node and will
act as a execution manager which will execute the the necessary actions. The complete flow
of the activity in the system is shown in the Figure 5-9.

5-6 Summary

In this chapter we completed the development process of the SASA localisation framework.
We added the automatic manager layer to our framework using MAPE-K reference model.
This automatic manager provided our framework with the capability of self-adaptation and
situational awareness. The knowledge schema which we have developed is generic and reusable
to any ROS based system. However to make it more specific to the localisation use case we
created the sub-types of the schema concepts and instantiated those sub-types according to
the components available within our system. We developed the quality monitors to observe
the performance of the localisation and the surrounding environment. These monitors would
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Figure 5-8: Functional architecture of SASA localisation framework

help the SASA framework to understand the current situation of the robot and its environ-
ment. We also developed the rules which will be used to analyse the situation and plan the
reconfiguration action in case of unexpected situations. In the end, we presented the complete
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Figure 5-9: Activity diagram of situational aware localisation system
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functional architecture of our SASA localisation framework and the activity diagram of our
framework.
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Chapter 6

Experiments and Results

The research questions mentioned in Chapter 1 were answered using experiments. This
chapter covers the experiments carried out to validate the developed Situation-Aware Self-
Adaptive (SASA) localisation framework. Section 6-1 will cover the experimental design and
the scenarios tested along with the technical details of the system. Then we will discuss the
results of each test scenarios. Section 6-7 will discuss the general analysis about the SASA
framework.

6-1 Experimental Setup

In order to validate the developed framework we carried out 5 experiments. These experiments
were preformed to test the fault tolerance capability of the framework and the capability to
perform during environment disturbances. Experiments were also carried to test the reusabil-
ity, changeability and consistency of the framework. The behaviour of the system will be
analyzed by comparing the pose estimation before and after the occurrence of an event. The
trajectories of different methods will be compared based on Absolute Trajectory Error (ATE).

6-1-1 T1: Environmental disturbance

To test the system’s behaviour during environmental disturbances we performed tests by
changing the lighting conditions in the simulation environment. The lighting in the retail
store environment is not uniform and might change over the period of time or get damaged
or could be blocked due to some shelves which will cause nonuniform illumination. This
will affect the robot’s ability to perform vision based localisation. To validate our developed
SASA localisation system for this situation, we preformed tests by changing the lighting in
the environment. For changing the lighting conditions we have created our custom plugin in
Gazebo simulator which can modify the lighting intensity of the environment.
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6-1-2 T2: Fault tolerance

To test the reconfiguration due to internal failure we performed tests by injecting a fault in
the localisation system. As the experiments were carried out in the simulation environment,
it was not possible to replicate the failure of the sensor in run-time. However we intentionally
stopped a running process (i.e. ROS node) which was required for other Robot Operating
System (ROS) nodes at upper hierarchical level.

6-1-3 T3: Reusability

To test the reusability of the developed rules we performed tests on a different property
which acted as a constraint to the stereo pose estimation node. For this test we created a
new monitoring client node to detect the amount of visual information in the surrounding
environment. The monitor was created using the metric we discussed in Section 5-2-3. No
modification was made to any of the rules. To replicate it in the simulation environment,
empty shelves were placed in some part of the retail store environment and some regions had
plain wall. This made those regions featureless which will affect the robot’s ability to perform
vision based localisation.

6-1-4 T4: Changeability

To test the changeability of our framework we made some modification to the robot’s hard-
ware. We have added a flashlight on the robot which can be actuated by the robot using
gazebo plugins. This experiment was performed to replicate the situation where some modi-
fications are made to the robot during it’s life-cycle. To do this, one instance of compensator
class was created which is subtyped from Robot component, and it was added to the property
-observer-relation with Illumination property. The new flashlight component will
play the role of compensator in property-observer-relation. No modifications were made
to the rules.

6-1-5 T5: Consistency

To test the consistency of the SASA framework, experiments were performed where we simu-
lated the same situation 15 times at different locations in the retail store to check whether the
behaviour of the framework consistent. This test was done to replicate the real life scenario
where the robot needs to behave consistently in real world.

6-1-6 Technical details of the system

The carry out the above test scenarios we used a laptop with Intel Core i7 8th generation pro-
cessor, 16 GB RAM, NVIDIA GeForce GTX 1050Ti GPU, Ubuntu 18.04 Operating System.
The simulator and ROS packages used for experiments are as follows:

• Gazebo Simulator: Multi-robot simulator, version 9.15.0. All experiments are performed
in this simulator with added plugins for controlling the illumination in the environment
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with the help of light/modify gazebo topic. The properties of the lights in the simula-
tion can be modified using the plugins in run-time.

• Mobile Robot: The robot models are created in Gazebo using Universal Robotic De-
scription Format (URDF) which is an Extensible Markup Language (XML) format for
representing a robot model. Using URDF we can specify the kinematic and dynamic
properties of the robots. The robots is equipped with sensors which are mentioned
below.

• Sensors: The robots are equipped with 9-DOF IMU sensor, Bumblebee Stereo RGB
Camera and a SICK LMS111 2D range scanner. They are attached to the robot model
and are interfaced using gazebo sensor plugins which allows complete access to the
physical properties of sensors and their underlying elements.

• RViz: The rviz node is a graphical interface provided by the ROS visualization packages
that displays geometric information of the running system: positions, maps, sensor
readings, etc. This node is used for the visualizing the robot during operation.

• Teleoperation: The teleop node is a very simple node that allows to teleoperate the
mobile robot using the computer’s keyboard. It publishes messages in the cmd vel ROS
topic, which send linear and angular velocity commands to the robot.

• Execution manager: The execution_manager node is responsible for initializing the
system and starting the different nodes as per the operation requirement and controlling
the nodes during runtime. It acts as an execute element of the Monitor-Analyze-Plan-
Execute over a shared Knowledge (MAPE-K) loop. The execution_manager node is
a ROS action server which takes the request from the planning node to start and stop
different processes in run-time.

• Monitor manager: The monitor_manager node is responsible for updating the moni-
tored states to the knowledge graph. It acts as a server node which takes the requests
from different monitoring node and update the information in the knowledge graph.

• Monitors: It consists of different monitoring node used for monitoring internal states of
the localisation system and the environmental status such as environmental illumination
monitor, node status monitor, pose monitor, etc. These monitoring nodes are started
and stooped as per the requirement by execution manager.

• Planning node: The planning_node is responsible for querying the knowledge graph
at certain frequency interval to check the need for adaptation. If any adaptation
is needed i.e. configuration needs to be changed, it will send the request to the
execution_manager node.

• Odometry Estimation: To estimate odometry we have two alternative nodes i.e. stereo
odometry estimation node provided by rtabmap_ros package [86] and laser odometry
estimation node provided by rf2o_laser_odometry package [87]. Both the nodes use
different primary sensors to estimate odometry because of which they can be used in
different situations. The node estimates the odometry and publishes the odometry
information on a ROS topic as well as publish the transform between robot link and the
odometry frame. The stereo_odometry node performs Feature to Feature (F2F) visual
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feature matching and hence is a feature-based, which extracts image feature points and
tracks them in the image sequence. The laser_odometry node performs estimate the
planar motion of a laser from consecutive range scans by formulating the range flow
constraint equation in terms of the sensor velocity, and minimize a robust function of
the resulting geometric constraints to obtain the motion estimate [87]. Both of the
packages are used in default configuration without modifying the parameters.

• Localisation: To perform localisation we have two nodes. One approach uses laser
based localisation using the Adaptive Monte Carlo Localization (AMCL) approach as
described by Dieter Fox in [88]. The acml node uses laser scan and odometry readings
from laser_odometry_node in the form of a tf message, along with a given occupancy
map of the environment, and produces an estimation of the robot pose which it published
as a ROS message. Another alternative approach uses rtab-map localisation [6] which
consumes the stereo images provided by Bumblebee Stereo RGB Camera along with the
odometry readings provided by odometry estimation node, IMU sensor readings and a
point cloud map and produces an estimation of the robot pose which it published as a
ROS message.

• Map server: The map_server ROS node loads the saved map data of the retail store
from a file and publishes it as an occupancy grid map. The map is essential for the
operation of the amcl localisation. The map_server node is only required for amcl
localisation as rtab-map localisation uses the map internally which is saved in the form
of database file.

Here we have two different alternatives for localisation i.e. vision-based alternative and laser-
based alternative, from the available components and ROS package. Both of these alternatives
were tested in simulation environment where a robot was operated manually and the ATE
between the ground truth and the estimation method was compared after the test run. In
total 8 experiments were conducted 4 using stereo estimation and 4 using laser estimation
for the path length of around 20m in each experiment. The ATE of the estimation method
is shown in Table 6-1. Note that all experiments were conducted with the default parameter
values without any tuning. The performance of the two methods for all the experiments
are shown in the Figure 6-1. The two design alternatives have reasonable yet slightly differ-
ent performances. For vision based estimation, we have used stereo_odometry node from
rtab-map ROS package [86] and for laser based configuration we used laser_odometry node
from rf2o_laser_odometry package [87]. The vision-based configuration has a mean ATE of
0.031m while the laser-based configuration has a median ATE of 0.05m. High ATE for laser
based localisation configuration could be due to the parallel stocking of shelves in the stores
which acts as a long parallel wall which is one of the limitations of laser based estimation.
From the results of this test-run and the discussion from section 2-1-4, we have decided to
use vision-based localisation as our default configuration as it provides greater accuracy than
laser based localisation. The two different approaches for pose estimation will be tested in
different situations and the performance of these two methods will be compared with the
performance of the SASA localisation framework.
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Table 6-1: ATE(m) measure for stereo estimation and laser estimation for the path traveled of
length 20 m

Experiment Exp1 Exp2 Exp3 Exp4
Stereo Est 0.03 0.035 0.032 0.028
Laser Est 0.0447 0.052 0.049 0.051
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Figure 6-1: Comparison between distribution of ATE for laser-based pose estimation and vision-
based pose estimation for simulation in performed in Gazebo simulator

6-1-7 Schema Instantiation

Now, to perform reasoning, we need to instantiate the concepts from the schema equivalent
to their physical counterparts. The packages mentioned above will act as ROS nodes of
the system. The instantiated knowledge graph with the entities, relation and attributes is
shown in Figure 6-2. In total the knowledge graph contains 19 entities and 10 relations.
They are horizontally divided into three levels i.e. sensor-data , local state estimation and
global state estimation. As rtabmap localisation node launches its map in form a database
it was not instantiated in the knowledge graph. There are two alternate configurations to
perform localisation i.e. laser-based localisation and vision-based localisation. Here for the
experiments we are only focusing on vision based localisation and its adaptation to laser based
localisation. Hence we have created monitors for visual pose estimation node only.

The threshold of the pose covariance property was set after analysing the response of
L_pose which is shown in Figure 6-3. During normal situations the L_posemetric is observed
to be less than 0.1 and that value increases abruptly like a step response on occurrence of
any unexpected situation. This causes the pose estimates to diverge from the original values
leading to high covariance. Hence the value was set to 0.1. For node health property the
threshold was set to 1 because the node monitor keep the health 1 until the node is active
and sets to 0 when the node is unavailable. The threshold of the illumination property was
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set empirically to 0.2. Note that the L_illumination value below 0.2 does not mean that the
robot will suddenly stop providing pose estimation. Instead it just means that the robot has
entered a region with poor illumination.
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Figure 6-2: Knowledge grounding for our localisation system

We have created three monitors for stereo odometry node which act as a subordinate node
for vision based localisation. If the stereo odometry node is unhealthy then the robot cannot
perform vision based localisation. The functionality of the stereo odometry node depends on
three constraints. Pose variance and node health are hard constraints because if any of the
constraint is violated then it will affect local estimation. Note here that we have created a
negative threshold for pose covariance. This is because, according to rule R3 the constraint
would only be violated if the current value is less then the threshold. But in case of covariance
the less accurate estimation gives higher covariance. Hence to match the the property with
the rule we are updating the negated value of the current pose covariance. And when the
value is more due to poor estimation the rule R3 will be satisfied. In future also we will put
a negative threshold and update the negated current value of the property which will follow
a similar trend as that of covariance.

The functional architecture of the instantiated system would also follow the same structure
of the one shown in Figure 5-8. Here we have three monitors which will act as ROS action
clients and update the current states in the knowledge by sending a request to the monitor
manager. The structure of the monitors and monitor manager is show in Figure 6-4. Having
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Figure 6-3: The left figure shows the values of L_pose metric in normal situations. the figure
in the right shows the values of L_pose metric during an unexpected situation such as dark
environment
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Figure 6-4: Monitors for our localisation system

discussed the system in detail, we will now analyse the results of our experiments.

6-2 Results of T1:Environmental disturbance

This test was carried to observe our system response for environmental disturbances. The
sequence of activity in the system proceeds as follows. While the robot is in motion and
performing localisation, the illumination was changed manually. This illumination change
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causes low brightness and high co-variance in the position estimates. High pose co-variance
and the low environmental illumination is detected by the monitoring nodes which updates
the current states to the knowledge graph. This will cause the premises of rule R3 to be
satisfied due to which rule R4 and R6 will also be satisfied. This will cause the stereo
odometry node and vision based localisation node to change its status to unhealthy. Now the
planning node which is querying the knowledge graph should ideally get NULL values will get
some action recommendation due to satisfaction of rule R9. As an action is recommended,
the planning node will again query the knowledge graph for additional information such as
configuration hierarchy, property compensator availability using Query Q3 which will be
returned with the set of unhealthy nodes, alternate nodes and the subordinate node which
will be sent to execution manager for execution. The sequence of the inference is as follows:

R3→ R4→ R6→ R9⇒ isCompensatorQ2?activateC : (Q3→ Q4) (6-1)

Figure 6-5 shows the response of the SASA localisation system to the poor illumination.
Figure 6-5.b displays the comparison between the ground truth and the pose estimation.
Note that low illumination will cause a change in configuration in runtime. The response
time of the system is 3.8 sec. Ts: Response time: It can be defined as the total time taken by
the system to overcome a situation after the occurrence of that situation. Response time is sum
of the latency, reconfiguration time and action time. In this scenario the SASA framework
was able to adapt and reconfigure successfully to a new configuration within reasonable time
and accuracy.

6-3 Results of T2: Fault tolerance

This test was carried to observe our system response during internal fault. The sequence
of activity in the system proceeds as follows. While the robot is in motion and performing
localisation, an executable file of a process (stereo odometry estimation node) was deleted and
the process was stopped intentionally. As the node was stopped, the node monitor which was
monitoring whether the node is active will detect it and update the current status of the node
being inactive i.e. current value 0. This will cause the premises of rule R3 to be satisfied
due to which rule R4 and R6 will also be satisfied. This will cause the stereo odometry
node and vision based localisation node to change its status to unhealthy. The planning
node which is querying the knowledge graph which should ideally get NULL values, will get
some action recommendation due to satisfaction of rule R9. As an action is recommended,
the planning node will again query the knowledge graph for additional information such as
configuration hierarchy, property compensator availability using Query Q3 which will be
returned with the set of unhealthy nodes, alternate nodes and the subordinate node and be
sent to the execution manager for execution. The sequence of the inference is as follows:

R3→ R4→ R6→ R9⇒ isCompensatorQ2?activateC : (Q3→ Q4) (6-2)

Figure 6-6 shows the response of the SASA localisation system for internal failure. Figure 6-
6.b displays the comparison between the ground truth and the pose estimation. Note that
the internal failure has caused the configuration to be changed during runtime. The SASA
framework was able to respond in is 2.8 sec. In this scenario, the SASA framework was
able to adapt and reconfigure successfully to a new configuration within reasonable time and
accuracy. The ATE before configuration was 0.0538 m and after adaptation was 0.11 m.
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6-4 Results of T3: Reusability

This test was carried to check the reusability of the rules for which we decided to add a new
environmental constraint about the visual information to the stereo odometry estimation
node. To do this, we created a monitoring node which acts as a client node and sent the
visual information status to the monitoring manager node. On the data instantiation side,
we created 2 concepts for visual information property and visual information monitor
and one property observer relationship between them. The property was set to soft constraint
and a new role player was added to the stereo odometry estimation node. So in total 2 entities
were added, one relation was added and 1 relation was modified. No modification was made
to any of the rules. The sequence of activity in the system proceeds as follows. While the
robot is in motion and performing localisation, the robot was made to enter a region which
had a featureless wall. This would affect the vision based localisation performance because
the vision based localisation is not able to preform in a featureless environment. The monitor
which is created by the metric mentioned in section 5-2-3 detects the low visual information
and the pose monitor detects the high covariance in the pose estimates. This will cause the
premises of rule R3 to be satisfied due to which rule R4 and R6 will also be satisfied. And
the same process will repeat again as the previous scenarios.
Figure 6-7 shows the response of the SASA localisation system in featureless environment.
Figure 6-7.b displays the comparison between the ground truth and the pose estimation. Note
that the featureless environment has caused the configuration to be changed during runtime
from vision based to laser based. The time SASA framework was able to respond in is 3.72
sec. In this scenario the SASA framework was able to adapt and reconfigure successfully to
a new configuration within reasonable time and accuracy. The ATE before configuration was
0.039 m and after adaptation was 0.072 m.

6-5 Results of T4: Changeability

This test was carried to check the changeability of the SASA framework. We decided to add a
new component to the robot which is a flashlight using which the robot could perform vision
based localisation even in a low illumination environment. After adding this new component,
the system will not need to change its configuration to laser even during low illumination.
On the data instantiation side we created 1 new flashlight entity and property observer
relation for illumination property was modified with a new role player. The modified relation
can be seen in Figure 6-9. No modification was made to the rules. So in total 1 entity was
added and 1 relation was modified.
The sequence of activity in the system proceeds as follows. While the robot is in motion and
performing localisation, the illumination was changed manually. This illumination change
causes low brightness and high co-variance in the position estimates. High pose co-variance
and the low environmental illumination is detected by the monitoring nodes which updates the
current states to the knowledge graph. This will cause the premises of rule R3 to be satisfied
due to which rule R4 and R6 will also be satisfied. This will cause the stereo odometry
node and vision based localisation node to change its status to unhealthy. Now the planning
node which is querying the knowledge graph and should ideally get NULL values, will get
some action recommendation due to satisfaction of rule R9. Now as a new compensator is
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Figure 6-7: The featureless environment affects the functionality of vision based localisation.
This is detected by the robot which adapts to the situation. The yellow circle is the moment at
which the robot enters the region of low features.
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Figure 6-8: Compensator added for illumination

added to the illumination property the query Q2 will be answered with the recommendation
to activate the compensator. Hence the conditional statement isCompensatorQ2?activateC :
(Q3→ Q4) is satisfied and the system won’t query Q3. This will cause the activation of the
component and the robot will switch on its flashlight.

Figure 6-9 shows the response of the SASA localisation system in low illuminated environment.
Figure 6-9.b displays the comparison between the ground truth and the pose estimation. Note
that the low illuminated environment has made the robot use its component to perform local-
isation functionality. The SASA framework was able to respond in 2.02 sec. In this scenario
the SASA framework was able to adapt and reconfigure successfully to a new configuration
within reasonable time and accuracy. The ATE before configuration was 0.055 m and after
adaptation was 0.068 m.

6-6 Results of T5: Consistency

This test was carried to check the consistency of the SASA framework. In this experiment
we simulated the same situation 15 times at different locations in the retail store to check
whether the behaviour of the framework is consistent. So the situation for the previous test
i.e. T4 was repeated 15 times. Figure 6-10 shows the response of the SASA localisation
system for the same situation. Here the time means as follows

Tl: Latency: It is defined as the total time taken by the monitor element to detect an event
after occurrence of an event.

Tr: Reconfiguration time: It is defined as the total time taken by the automatic manager to
provide some action recommendation after detecting an event.

Ta: Action time: It is defined as the total time taken by the system to perform an action after
the action is recommended by the automatic manager.

Ts: Response time: It can be defined as the total time taken by the system to overcome a
situation after the occurrence of that situation. Response time is sum of the latency, recon-
figuration time and action time.

Note here Ta depends on the action which is executed and hence it will be different for
different actions. Figure 6-11 displays the distribution of time for test performed. For all the
tests, the system took on average 1.052 sec to detect the environmental state once it occurred
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Figure 6-9: The low illuminated environment affects the ability of the robot to perform vision
based pose estimation. This is detect by the robot and it preforms reconfiguration. This robot
has a component which can alter the illumination. Hence it will use the component instead of
searching for alternative configuration
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and 0.664 sec to analyse the situation and provide action recommendation. For all the test
the system was able to overcome the environmental disturbance situation on an average of
2.3465sec. The system was consistent with the behaviour and showed same behaviour every
time with a consistency rate of 100%.
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Figure 6-11: Latency, Reconfiguration Time and response time for adaptation for 15 test per-
formed using test T4 scenario. The system performed adaption ever time which make it 100%
consistent

6-7 Analysis

Experiments were performed to validate the behaviour of SASA localisation framework in
different situations. The localisation framework was able to cope with all the situations given
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to it and provided reliable and reasonable response in all the scenarios. Being a rule based
system it was possible to predict the behaviour of the system in all the scenarios and the
system behaved as per the predictions. The framework made it easy to change or modify
different components in the system with ease. There was no need to add new rules for any of
the scenario. No modification were made even to schema concepts. Just new instantiation was
made according to the added physical components. Table 6-2 summarises the modification
made to the system for different scenarios. The modifications made to the system is difficult
to express in terms of a quantity. However, we will use a software metric which is a standard
of measure of a degree to which a software system or process possesses some property. One
commonly used metric is Logical Lines of code (LLOC)1. To give an example, grounding
one new concept from the knowledge needs adding 1 LLOC to the Graql file. So adding
new knowledge to the SASA is not costly. On the ROS system side adding one monitoring
node will cost only one script which will consist of property monitoring algorithm and 2
Graql queries one for updating the property states. So adding new components to the SASA
framework on adaptation layer is not costly and would hardly take any time.

Table 6-2: Summary of the changes made to the knowledge w.r.t. different experiments

Initial System New Property Constraint
T3

New Compensator
T4

Number of changes
made to rules N/A 0 0

Number of changes
schema N/A 0 0

Modification made
to classes and relation

data
N/A

+2 entity
+1 relation

1 relation modifed

+1 entity
1 relation modified

Cost for adding new
knowledge N/A +2 LLOC for 2 entity

+1 LLOC for 1 new relation +1 LLOC for 1 entity

Total classes and
relations

19 entities
10 relation

19 + 2 entities
10+1 relation

21 + 1 entities
11 relation

Changes made to
ROS system N/A +1 monitoring

client
+1 ROS message

for compensation action

Cost for adding new
ROS component N/A

+1 ROS Action client
node. The action client

will contain the algorithm
for monitoring and two
graql queries. One for
deleting the old states
and one for adding
current states.

+1 ROS topic publisher
which will publish the
action to activate the

component

Table 6-3 summarises the response of the conventional localisation pipeline with the novel
SASA localisation system. In normal situations, the SASA framework provided compara-
ble performance with the other conventional framework. The SASA localisation system was
able to handle different situation which the laser-based pose estimation framework or the

1LLOC measures the number of executable statements
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vision-based pose estimation could not handle. One would argue that the laser based pose
estimation showed better results than the SASA localisation framework in almost all cases
except internal failure. This was because, the situations tested were the limitations of vision
based pose estimation method and the situations where the laser based pose estimation could
fail such as active interference between different sensors, transparent and reflective surfaces
were not tested due to the time constraints. In such scenarios the laser based pose estimation
could have failed. For the experiments performed and their results we can make a statement
that the developed SASA localisation framework could provide benefits over conventional
localisation pipeline. One could also argue that the adaptation logic could be hard-coded
in the localisation pipeline. But hard-coded logic will only take into account the scenarios
considered while designing the logic. Adding new scenarios or new components to the local-
isation system would make the hard-coded logic useless and new rules and logic would be
required which is time consuming and cumbersome process. The SASA localisation frame-
work provided addition and modification to the localisation pipeline without any change to
adaptation logic. Just modification made to the system should be added to the knowledge
following the schema structure and the SASA framework would take that into consideration
during adaptation. Hence the SASA localisation framework provided the robot with the
ability of self-awareness and self-adaptation which can handle different situations on its own.

Table 6-3: Comparison of SASA localisation framework with Vision-based pose estimation and
laser-based pose estimation localisation in different scenarios for the path length on 20 m

Vision-localisation
ATE(m)

Laser-localisation
ATE(m)

SASA localisation
framework
ATE(m)

Normal Scenario 0.03 0.05 0.055
Featureless
Environment Fail 0.0447 0.072

Dark
Environment Fail 0.051 0.068

Internal node
Failure Fail Fail 0.11

The localisation system developed and the experimental scenarios described throughout this
chapter, has demonstrated the validity of the approach for the designing self-awareness and
adaptive properties in localisation system. The designed MAPE-K loop developed for the
localisation system has provided the capability to detect environmental uncertainties which
affect the localisation performance, malfunctioning of internal components and overcome it
by adapting through reconfiguration. Regarding the online operation the SASA localisation
system demonstrates successful adaptation in reasonable time for various scenarios regarding
environmental uncertainty and internal component failure which provides the system with
fault-tolerance capabilities exploiting system redundancy. The system also demonstrates ar-
chitectural redesign using automated deductive reasoning during run-time.
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Chapter 7

Conclusion

This conclusive chapter summarises the content presented in this work, and provides answers
to the initially posed research questions. Besides, some guidelines for future work are also
mentioned.

7-1 Summary

In this work we proposed a Situation-Aware Self-Adaptive (SASA) localisation framework
based on Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) reference model.
The starting point was the analysis of the mobile robot localisation problem and the limita-
tions of the current state-of-the-art localisation framework in the direction of fault tolerance
and environmental uncertainty. This motivated us to look in the direction of fault tolerant
control systems. However, classical fault tolerant controllers were difficult to apply for our
use case due to their requirement of a mathematical model of the process and their inability
to handle qualitative uncertainties. The resuability of the classical fault tolerance controllers
was also a concern which motivated us to look for approaches which can embed the fault
tolerance capability within the system intrinsically. While exploring relevant literature, we
came across MAPE-K feedback loop for Self Adaptive System (SAS) which lead to the ori-
gin of SASA localisation framework. The SASA framework could provide the conventional
localisation system with the added advantage of situational awareness and self adaptation.
This framework was indented to use the system’s knowledge to provide run-time reconfig-
uration when any unexpected situation occurs without the added cost of developing fault
models of the system. Chapter 4 and chapter 5 discusses the development process of the
SASA localisation framework. In chapter 6 we validated the developed SASA framework on
different scenarios such as environment disturbances and internal failures. We also demon-
strated the reusability and low modification cost of the framework. We also compared the
SASA localisation framework with the state-of-the-art conventional localisation framework
available in literature. The SASA framework showed comparable performance with the other
conventional framework and outperformed them in case of failures.
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7-2 The answers to the research questions

The research goal of this thesis was to develop a self-adaptive situational aware framework for
mobile robot localisation application. At the time when this research was conducted there was
no self-adaptive framework which was focusing explicitly on mobile robot localisation use case
to the best of our knowledge. Also there was no method available which took into account
the current situation and the effects of environmental disturbance and internal failure, on
the localisation ability up to our knowledge. The outcome of this work led to the following
answers to the initially posed research questions.
Can we enhance the localisation capability of a robotic system using situational-
awareness and self-adaptation?
The functional architecture of the system developed in Figure 5-8 could be used to embed
the self-adaptation capability in the robot. Also the monitors developed in Section 5-2 along
with general rules developed in Table 5-1 and Table 5-2 provide the system with situational
awareness capability. These two capabilities made the robot localisation more reliable without
affecting the normal operation of the localisation system. It even provided functionality in a
situation which conventional localisation system could not handle. Hence we can state that
the localisation capability of a robotic system was enhanced using situational-awareness and
self-adaptation capability.
Can explicit knowledge representation and automated reasoning about the robot’s
internal components be exploited to obtain an intrinsically fault tolerant and
reliable systems?
Many advantages regarding Knowledge Representation and Reasoning (KR&R) emerged dur-
ing this study. The knowledge in the form of schema explained in Section 5-1 and the rules
developed in Table 5-1 to perform automated reasoning showed that using KR&R, the robot
was able to cope with the internal faults and even environmental disturbances. The recovery
was performed by the framework on its own without causing the system to enter the state
of failure. Overall, the knowledge model and the functional architecture in Figure 5-8 can
be seen as an intrinsically fault tolerant scheme, which facilitates the detection, isolation and
recovery from internal faults and environmental disturbances. Hence we can say that explicit
knowledge representation about the robot’s internal components and automated reasoning
made the system intrinsically fault tolerant and more reliable.
To conclude, the SASA localisation framework provided a general and reusable schema and
rules which allows addition of more constraints about the environmental property and allows
modification of the internal components with ease and without worrying about the adaptation
logic. Due to its symbolic nature, it also provides explanation about the violated constraints
and how those affect the rest of the system. Lastly, the developed schema and rules are
general and not limited to localisation use case thereby making the framework scalable and
applicable to other Robot Operating System (ROS) based systems.

7-3 Future work

The framework developed in this thesis was able to handle all the situations for which it
was tested i.e. ‘Environmental Uncertainty’ due to poor illumination, ‘Internal fault’ due

Shreyash S. Palande Master of Science Thesis



7-3 Future work 79

to component failure, ‘Environmental Uncertainty’ due to featureless environment, ‘System
modifications’ during robot life-cycle, and ‘Consistency’ of the designed framework. However,
there are many ideas for future developments and improvements.

The proposed framework was tested in a simulation environment. However it would be
interesting to see how the framework performs in real world environment. According to
us there won’t be any problem to transfer the framework on a real robot and the performance
would be dependent on how closely the developed monitors are able to detect the situations.

Another interesting direction for further development would be to add rules using fuzzy logic.
In our system the rules were developed using boolean logic i.e. something is either true or
false. However rules developed using fuzzy logic would provide multi-valued logic in the region
close to the thresholds.

One more addition to the SASA framework would be to add a metric of resource utilisation
to the schema where the knowledge would be updated during run-time operation about the
computational load and the battery utilised by a particular configuration. This knowledge
could be used in a situation when the battery is low or computation load is high.
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Appendix A

Definitions

Functional requirements: A functional requirement defines a function of a system or its
component, where a function is described as a specification of behavior between outputs and
inputs [89].
Non-Functional requirements (NFR): NFR are the requirements that specify a criteria
that can be used to judge the development or operation of a system rather than specific
behaviors.
Reusability: “The degree to which an asset can be used in more than one software system,
or in building other assets” [90] p. 307
Modifiability: A system’s modifiability is defined as the system’s receptiveness to change
Reliability: “The ability of a system or component to perform its required functions under
stated conditions for a specified period of time” [90] p.297.
Resilience: "The ability to adapt to changing conditions and prepare for, withstand, and
rapidly recover from disruption" [91]
Adaptability: "Degree to which a product or system can be effectively and efficiently adapted
for different or evolving hardware, software or other operational or usage environments” [92]
Survivability: "The degree to which a product or system continues to fulfil its mission
by providing essential services in a timely manner in spite of the presence of attacks. cf.
recoverability".
Resource utilisation: It is the ability of the system to use appropriate amounts and types
of resources when the system performs its mission functions under stated conditions.
Latency: It is defined as the total time taken by the monitor element to detect an event
after occurrence of an event.
Reconfiguration time: It is defined as the total time taken by the automatic manager to
provide some action recommendation after detecting an event.
Action time: It is defined as the total time taken by the system to perform an action after
the action is recommended by the automatic manager.
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Response time: It can be defined as the total time taken by the system to overcome
a situation after the occurrence of that situation. Response time is sum of the latency,
reconfiguration time and action time.

A-1 Definitions of schema concepts

This section gives definitions for the concepts used in the Situation-Aware Self-Adaptive
(SASA) localisation framework.

Robot Component: A physical, software or communication element that can be part of a
robotic system and that fulfils certain functions that is relevant for one or more configurations.

Robot Component Setting: Concept to represent the parameter setting of the component

Functionality: The purpose a component can serve when used.

Process Input: Concept that is used to model the inputs of the process.

Process Output: Concept that is used to model the outputs of the process.

Property: Anything which can affect or limit the functionality of the component.

Status: It describes the health of a particular component.

Communication component: It is a concept which can be used to represent the elements
which are responsible for the communication between different components.

Hardware component: It is a concept which can be used to represent the hardware elements
present in the system.

Software component: It is a concept which can be used to represent the algorithms or
processes which are responsible for the controlling or processing in a system.

Monitoring component: It is a concept which can be used to represent the components
which are responsible to observe the state of a system or the environment.

Property Compensator: It is a concept which can be used to represent the components
which are alter or affect the constraints on a component.

ROS Message: Concept to represent the communication between different components
within a ROS system.

Healthy: Entity that represents the state of the component when ever constraint is satisfied.

Unreliable: Entity that represents the state of the component when only soft constraints
are violated.

Unhealthy: Entity that represents the state of the component when any of the hard con-
straints are violated.

ROS processing node: Relationship which processes some inputs and produces outputs in
a Robot Operating System (ROS) based system .

Property observer relation: Relationship which connects together the property and the
monitor which is observing that property.
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Functionality relation: Relationship which connects together the component concept and
the functionality which that component provides.

Configuration hierarchy relation: Relationship which connects set of components con-
nected through input/output that together provide some functionality.

Master of Science Thesis Shreyash S. Palande



84 Definitions

Shreyash S. Palande Master of Science Thesis



Appendix B

Results of developed visual perception
monitors on TID2008 dataset

Figure B-1: TDI2008 Dataset Change in intensity

Figure B-2: TDI2008 Dataset Change in blur

Figure B-3: TDI2008 Dataset Change in gaussian noise
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Figure B-4: TDI2008 Dataset Change in intensity

Figure B-5: TDI2008 Dataset Change in blur

Figure B-6: TDI2008 Dataset Change in gaussian noise

Figure B-7: TDI2008 Dataset Change in intensity

Figure B-8: TDI2008 Dataset Change in blur
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Figure B-9: TDI2008 Dataset Change in gaussian noise

Figure B-10: TDI2008 Dataset Change in intensity

Figure B-11: TDI2008 Dataset Change in blur

Figure B-12: TDI2008 Dataset Change in gaussian noise
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Glossary

List of Acronyms

HOG Histogram of oriented gradients
SIFT Scale-invariant feature transform
SAS Self Adaptive System
PMK Perception and Manipulation Knowledge
NFR Non-Functional requirements
ROS Robot Operating System
MTBF Mean Time Between Failures
UGV Unmanned Ground Vehicle
ISE&PPOOA Integrated Systems Engineering and Pipelines of Processes in

Object-Oriented Architectures
MAPE-K Monitor-Analyze-Plan-Execute over a shared Knowledge
FOV Field of View
SysML System Modelling Language
AMCL Adaptive Monte Carlo Localization
PSNR Peak signal-to-noise ratio
FSIM Feature similarity index
CCD Charge coupled device
CMOS Complementary metal oxide semiconductor
F2F Feature to Feature
F2M Feature to Map
EKF Extended Kalman Filter
KF Kalman Filter
FTCS Fault Tolerant Control Systems
FTC Fault Tolerant Control
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FTS Fault Tolerant System
MTTF Mean Time To Failure
MTBF Mean Time Between Failure
CAD Computer-aided design
ANN Artificial Neural Networks
AI Artifical Intelligence
UGV Unmanned Ground Vehicle
UGV Unmanned Ground Vehicle
OWL Web Ontology Language
ORO Open Robot Ontology
KnowRob Knowledge Processing Framework
SWARMs Smart and Networking Underwater Robots in Cooperation Meshes
SWRL Semantic Web Rule Language
PMK Perception and Manipulation Knowledge
SPARQL SPARQL Protocol And RDF Query Language
GPS Global Positioning System
RTAB map Real-Time Appearance-Based Mapping
PDDL Planning Domain Definition Language
STRIPS Stanford Research Institute Problem Solver
URDF Universal Robotic Description Format
XML Extensible Markup Language
SASA Situation-Aware Self-Adaptive
IT Information technology
KR&R Knowledge Representation and Reasoning
ATE Absolute Trajectory Error
LLOC Logical Lines of code
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