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Abstract

Inertial Measurement Unit (IMU)-based motion capture has gained interest over the years
due to its potential to measure human movement in the clinic and on the sports field at
low cost. Still, IMU-based motion reconstruction remains a challenging task as these IMU
measurements are corrupted by noise and bias. There have been many filtering and sensor
fusion algorithms developed to address this problem, but limited attention has been paid
to including the system dynamics of the subject to estimate kinematics and kinetics from
multiple IMUs. I propose a novel motion reconstruction algorithm for capturing 3D motions
in a markerless and unconstrained environment using gyroscope and accelerometer measure-
ments. The algorithm is based upon an Iterated Extended Kalman Filter for state estimation
and the 3D dynamical model of the subject created in OpenSim (IEKF-OS). The IEKF-OS
algorithm consists of two stages. The first stage incorporates the dynamics of the subject to
predict the motion. The second stage tracks measurements from multiple IMUs to improve
model estimates of joint angles and speeds. The goal of this thesis is threefold. Firstly, the
IEKF-OS is derived and verified using simulations performed on a six-link robot manipula-
tor including sensor placement errors. Secondly, experiments are performed to validate the
algorithm’s estimations against the robot’s ground truth joint encoder values. Thirdly, the
algorithm is compared against an inverse kinematics method to track IMU estimated orien-
tations (OpenSense) provided by OpenSim. The IEKF-OS algorithm showed lower motion
tracking errors compared to OpenSense for various motions performed by the robot manip-
ulator. The joint angle estimations as computed by both methods are compared against
the gold-standard ground truth robot encoder values. OpenSense joint angle values were
in the range of 0.6-6.4 [deg] RMSE, whereas the IEKF-OS algorithm estimated joint angles
and speeds in the range of 0.4-2.8 [deg] and 0.3-2 [deg/s] RMSE, respectively. These results
highlight accurate 3D motion reconstruction on a six-link robot manipulator. Contrary to
OpenSense, the IEKF-OS is able to accurately reconstruct motions regardless of magnetic
disturbances because it does not rely on magnetometer data.
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Prior to applying for the Systems and Control Master’s degree program, I did my Bachelor’s
thesis in the field of Mechanical Engineering. During this thesis, I joined a team of multidisci-
plinary students with the aim to develop a sensor system for patients with Parkinson’s disease.
My focus was to estimate spatio-temporal gait characteristics using acceleration data logged
by an IMU positioned at the lower back region to predict when a patient would experience a
freeze of gait event. Having enjoyed this project thoroughly, I knew that I wanted to continue
my studies and noticed that the TU Delft offered a BioMechanical Design Master’s program.
Despite being intrigued by the combination of biomechanical systems and sensor fusion, I
ended up applying for the Systems and Control Master, not knowing that Dr. Manon Kok,
an expert in the field of sensor fusion, would eventually become my first supervisor during my
thesis project. After our first meeting, I couldn’t be happier. Dr. Kok had a joint project in
mind for me together with Dr. Ir. Ajay Seth. During Dr. Seth’s time at Stanford University,
he, together with other people in Biomechanical engineering, created an open-source modeling
and simulation software package for biomechanical systems. After the first meeting with the
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combination of sensor fusion and biomechanical modeling.
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“Part of this thesis is serendipity: allowing for chance finds, and accepting that
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Chapter 1

Introduction

In this first chapter, the motivations behind this research are posed. Three research questions
will be defined after which the main contributions of this thesis will be presented. Lastly, this
introductory chapter is concluded with the outline of this thesis work.

1-1 Research motivations

The field of motion capture, also referred to as motion reconstruction, has gained interest over
the years due to its widespread applicability [1]. Motion capture is the process of recording
the motion of people or objects [2]. Application areas are very diverse and range from analyses
in the domains of robotics and biomechanics, to capturing motions for the game and movie
entertainment industry, see e.g. [3], [4]. These areas make it an exciting and attractive topic
to research.

In the past years, various methods have been developed for human motion capture and analy-
sis. Cappozzo et al. (2005) [5] formulated human motion analysis as “the science that aims at
gathering quantitative information about the mechanics of the musculoskeletal system during
the execution of a motor task”. From these various methods, two main motion reconstruc-
tion directions can be recognized. One direction of research focuses on tracking motions by
attaching reflective markers on rigid bodies. Optoelectronic camera-based systems are then
used to identify the 3D motions of these body segments. Approaches based on these kinds
of setups are commonly denoted as Optical Motion Capture (OMC). This capture technique,
however, has its drawbacks. It is rather expensive due to the large set of cameras needed, and
as such, can mostly only be used indoors. This is a critical downside as it limits the motions
possible to be tracked, i.e., sport and daily life activities. For example, when clinicians desire
to monitor the rehabilitation process of patients at home and use this information to support
their medical diagnoses made [6]. As such, with this aim of eventual unconstrained and envi-
ronment independent human motion analysis in mind, techniques in the field of OMC seem
unsuitable.
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An alternative is Inertial Motion Capture (IMC), which relies on Inertial Measurement Units
(IMUs). IMUs are tri-axial sensors that are becoming a serious candidate for human motion
analysis [7]. Especially due to the advances in Micro-Electro-Mechanical System (MEMS)
technology, these IMUs have become small, wearable, inexpensive, and easy in use [8]. These
advantages make them suitable for continuous human motion analysis [9]. An IMU, depicted
in Figure 1-1, typically consists of two components, being a gyroscope and an accelerometer.
The gyroscope measures the sensor’s angular velocity around each of its three axes. Integrat-
ing these angular velocity measurements yields information about the sensor’s 3D orientation.
The accelerometer measures the external specific force acting on the sensor. This force con-
sists of both the earth’s gravity and the sensor’s acceleration. By fusing the measurements
made by these two components in a sensor fusion algorithm, the IMU’s orientation, as well
as its position can be estimated [10].

Figure 1-1: The Xsens MTw Awinda wireless IMU sensor [11].

Unfortunately, these measurements are corrupted by noise and bias making estimations er-
roneous [12]. For orientation estimation, in the sensor fusion algorithm of [10] the gyroscope
measurements need to be integrated once. Moreover, for position estimation, the accelerom-
eter measurements need to be integrated twice. As a result, accumulations of error evolve
due to the integration of this noise and bias present in these measurements. This leads to
so-called integration drift [10], degrading the quality of these estimations made, resulting in
unreliable information.
For that reason, researchers have been looking into physics-based approaches using kinematic
chain models or musculoskeletal models. A kinematic chain model is an assembly of rigid
bodies, connected by joints to constrain its motion. Musculoskeletal models are more ad-
vanced. Next to the joints incorporated, this computational model encompasses a skeleton
and has muscles spanning between the rigid bodies. These muscles are able to generate forces
resulting in the model’s movement. Using these models, more information can be taken into
account. Together with global optimizations or Extended Kalman filters, these models can be
used to constrain the motions possible [7],[13],[14],[15]. However, the kinematic chain models
seem to lack the complexity required to estimate human kinetics and do not take into account
physical ranges of motion. In contrast, reconstructing motions with a musculoskeletal model
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could open the doors to an extensive analysis of kinematic and kinetic related quantities.
Kinematics is the branch of mechanics that considers the motion of an object in terms of
displacement, velocity, and acceleration. It does, however, not take into account the forces
that produce this motion. Kinetics, on the other hand, is the branch of mechanics that studies
the relationship between the forces acting on the body and the changes it produces in the
body’s motion [16].

However, to date, limited attention has been paid to including the system dynamics of the
subject to estimate kinematics and kinetics from multiple IMUs [17]. Koning et al. (2015)
[7] demonstrated that kinematically driving a musculoskeletal model using IMU orientation
estimations solely is feasible. However, they only focused on the kinematics of the model and
did not perform inverse dynamic calculations. The limitation is that no forces and torques
were estimated. Evaluation of joint torques and muscle forces is important to understand the
physiological and mechanical mechanisms of human motion [17].

At the moment, literature seems to be lacking. Only a few papers have looked into com-
bining IMU data with dynamical models, including its inertial properties to estimate human
kinematics and kinetics [6][17]. However, the method of [6] only investigated 2D motions.
From a research perspective, it is therefore interesting whether including the system’s dy-
namical model combined with multiple IMUs could improve motion reconstruction accuracy.
Especially when in addition to kinematic constraints, the system dynamics with its inertial
properties are included. The term inertial properties encompasses a rigid body’s mass, length,
center of mass location, and moment of inertia. From these inertial data-driven models, the
kinematics and kinetics can be estimated which are especially useful for clinical studies. As
of now, these studies are primarily limited to motion capture laboratories [17].

The recently developed motion reconstruction algorithm by Dorschky et al. (2019) [6] formed
the inspiration for this thesis work. Their idea was to create virtual IMUs on the segments of a
modeled human body. The outputs of these virtual IMUs then had to match the measurements
as logged by the experimental counterpart IMUs which were positioned on the body of the
participant. This approach aimed to not only estimate human kinematics but rather also
allowed for kinetics estimations. As previously stated, this method is currently only applied
to 2D models, disregarding the effects of the unmodeled dynamics in the third dimension.
This leaves out important information, from which the authors of [6], considered that this 2D
model might have affected the capability to track the IMU data correctly [6]. Therefore, the
hypothesis made prior to this thesis is that when incorporating a 3D model together with 3D
inertial measurements, motion reconstruction accuracy can be improved. To conclude, the
overall goal of this thesis is formulated as

How can the inertial measures of multiple IMUs and the system’s dynamical
model be used to improve 3D motion reconstruction accuracy?

Therefore, this thesis aims to constitute an important step to boost the accuracy of estimating
3D motions and the torques driving the model by bridging the fields of sensor fusion and
biomechanical modeling.
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Figure 1-2: This thesis aims to bridge the fields of sensor fusion and biomechanical modelling
to improve the accuracy of estimating 3D motions.

Looking at this research question, the idea is thus to develop a novel algorithm, which includes
the system’s kinematic constraints and its dynamics. It should be noted that the eventual
goal of this algorithm is focused on human motion capture. However, it is hard to validate
this novel algorithm on human motions. Mainly as there are no ground truth joint angles
available. Therefore, the algorithm will be applied to motions performed by the KUKA LBR
iiwa 7 R800 robot manipulator. This robot features joint encoders in each link such that
the actual joint angles during undergoing movements can be logged. These encoders are
considered to be producing ground truth joint angle data allowing for validation. Another
reason why no experiments have been performed on human body segments has to do with
the placement of IMUs on human skin. This can lead to the violation of assuming that the
IMU sensor is positioned fixed to the rigid body segment. This results in so-called soft tissue
artifacts (STAs) disturbing the measurements of the IMUs. As such, the algorithm will be
tested on the KUKA robot manipulator composed of rigid links. As a robot does not have soft
tissue covering its links, no STAs are present. Moreover, it is assumed that it is easier to create
a more accurate model of a given robot manipulator with its mechanical joint types. This
compared to a model of for instance a participant’s upper body with the complex shoulder
joint. The latter would require to accurately measure the subject’s body segment lengths
and estimate its masses together with their moments of inertia. Contrary, information about
robot manipulators is specified by the robot manufacturer. With this focus, the overall goal
of this thesis can be formulated in more detailed questions presented below.

• What method can be developed to exploit the system’s nonlinear dynamical
model while simultaneously addressing the noise affecting the inertial mea-
surements?
Devising an algorithm to combine the information available, will be the cornerstone
challenge that initially needs to be addressed. The new method should embrace scala-
bility to systems composed of multiple linked rigid bodies, and be applicable to various
systems across different domains. Particularly to facilitate and motivate exploration for
future human motion capture research.
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• How sensitive is the new algorithm to common sensor placement errors
when applied to a robot manipulator?
With the future goal of applying this method to reconstruct human motions, it is inter-
esting to analyze how accurately these sensors need to be positioned. Still, outcomes
should only be seen as an indication of the algorithm’s robustness to these errors for the
robot manipulator. As such, it must be noted that when answering this question, the
results cannot be translated directly to specify how accurately this algorithm requires
sensors to be positioned on a human body.

• How does the novel algorithm utilizing the system’s dynamical model com-
pare to a method which solely uses kinematical constraints in terms of track-
ing performance for various ranges of motion?
To date, there is no comparison showing the added value of a method including these
dynamical models compared to a method incorporating only the system’s kinematical
constraints.

1-2 Contributions of this thesis

Prior to this thesis work, a literature survey was conducted. From this survey, it was hy-
pothesized that tracking experimentally obtained IMU measurements in combination with a
(bio)mechanical model, yields a promising method for motion reconstruction. Particularly, as
this technique combines the data from different sensors while taking into account the system’s
dynamics and its kinematical constraints. Therefore, the goal of this thesis is to develop a
novel motion reconstruction algorithm incorporating these elements. As previously stated,
the initial aim of this algorithm was to reconstruct human motions. However, to verify and
validate this novel approach, the method presented, will be applied to the motions performed
by the KUKA robot manipulator. The obtained ground truth joint encoder measurements
during motion experiments can be used for this validation. The main contributions of this
thesis are presented in the following list.

• Development of a 3D motion reconstruction algorithm for a generic n-DoF
robotic system or human body.
In this thesis, a novel motion reconstruction method is derived based on tracking noisy
gyroscope and accelerometer data. The algorithm presented is easily applicable to
(bio)mechanical systems when the user has a model of this system at hand available.
Using the developed algorithm, accurate motion reconstruction is obtained even for
systems composed of multiple linked rigid bodies. This work extends the work of [6],
who limited their analysis to 2D motions, to reconstruct 3D motions. Moreover, the
novel approach derived in this thesis realized a different approach. It combines filtering
of measurements and estimation of the control input in one block leading to 3D motion
reconstruction.

• Verification and validation of the motion reconstruction algorithm on a 7
DoF robotic system.
Firstly, the performance of the technique presented will be verified using numerical sim-
ulations. Results obtained from these simulations show that high motion reconstruction
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accuracy is obtained for the KUKA robotic manipulator. Next to that, for this system,
the method developed shows that it can deal with disturbances such as sensor noise and
moderate sensor misalignments errors. Simultaneously, the algorithm still converges
when the joint angles of the modeled system are initialized differently compared to
the original system. Secondly, validity was assessed by conducting experiments on the
KUKA robot under varying movement excitations. The algorithm developed, recon-
structs the original motion in presence of naturally occurring sources of error like sensor
misalignments and misplacements.

• Comparison of motion reconstruction performance with respect to an in-
verse kinematics method incorporating only kinematical constraints.
To evaluate the performance of this novel algorithm, a comparison with an inverse kine-
matics (IK) based approach is presented. Both methods incorporate the same model
and use the same positioned and oriented virtual IMUs allowing for a fair comparison.
The differences are, however, that this IK method only includes the system’s kinemat-
ical constraints and does not include the system dynamics. Moreover, the IK method
relies on orientation estimations and thus not on tracking noisy inertial sensor data.
It rather constrains the orientation estimates to the underlying model. The joint an-
gle estimations as computed by both methods are compared against the gold-standard
ground truth robot encoder values and evaluated using the RMSE metric. The results
presented, provide evidence that the novel algorithm has lower tracking errors compared
to the IK method for the motions performed by the KUKA robot manipulator.

1-3 Outline of the thesis

Having defined the research questions and thesis contributions, Chapter 2, will focus on the
related work which inspired this thesis work. Next to that, other relevant sensor fusion
methods are outlined giving an overview of the work in this field. As previously stated, this
thesis aims to develop a new algorithm extending the work of Dorschky et al. (2019) [6] who
limited their reconstruction to 2D motion, to 3D motion tracking. As such, it is essential
to list the requirements for this novel motion reconstruction approach. To that intend, this
chapter will conclude with these main requirements.
Following up Chapter 2, in Chapter 3, the novel motion reconstruction algorithm is derived for
general n-DoF (bio)mechanical systems. The motion reconstruction problem formulation is
posed and the algorithm’s three main components are illustrated. These three concepts, being
experimental IMU measurements, virtual IMU measurements, and the algorithm’s filtering
and state estimation capabilities will be explained in great detail. Lastly, an algorithmic
overview of the method developed is presented.
In Chapter 4, the motion reconstruction performance will be assessed using numerical simu-
lations on the 7-DoF modeled robot manipulator used for this thesis. The task is to recon-
struct the robot’s six segment link’s 3D motions. As this same system will be used for actual
experiments conducted later on, a sensitivity analysis to sensor misplacements and sensor
misalignments will be performed. These errors will be introduced on the virtual sensors as
translational and rotational offsets. This step should yield insights into how its reconstruc-
tion performance for this robotic system is affected by these commonly occurring experimental
sources of error.
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With the robustness assessed, in Chapter 5, the method presented will be validated on the
actual robotic manipulator system proposed in Chapter 4. As this robot features joint en-
coders in each link, the joint angles as estimated by this novel reconstruction method can be
validated against these ground truth joint encoder measurements. This validation constitutes
an essential step for the aim of applying this novel algorithm in the field for future research.
Moreover, the algorithm will be compared to an inverse kinematics based approach which
does not take into account the system’s dynamics.

Finally, Chapter 6 will conclude the work presented in this thesis. The research questions
posed in this introductory chapter will be answered and the suggestions for future work will
be stated. Here, the main challenges and the questions that are unanswered will be pointed
out.
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Chapter 2

Related work

This chapter will acquaint the reader with the related work, giving a clear overview of the
current research in the field of motion reconstruction. These methods presented, are adapted
from the literature survey, which was conducted prior to this thesis. Next to that, the chal-
lenges addressed and limitations left unanswered of each method are stated. Especially the
latter should motivate the need for this novel technique developed in this thesis. Finally, the
requirements, which this new motion reconstruction algorithm needs to fulfill, are posed.

2-1 Inspiration from current human motion estimation techniques
While developing this thesis work, knowledge and inspiration were accumulated from current
motion estimation techniques. Although the combination of IMU measurements with the
system’s dynamical model has gained limited attention, the literature that did consider this
was carefully studied. Moreover, also the state-of-the-art sensor fusion approach of Weygers
et al. (2020) [15] was analyzed to gain more insights. In their study, however, the authors
did not include the system’s dynamics. Still, a brief outline will be given first in Section 2-2,
to gain a broader understanding of how connections of body segments can be integrated into
a sensor fusion framework.
This thesis, however, aims to include the system’s dynamical model and its kinematical con-
straints to improve 3D motion reconstruction using IMU measurements. The dynamical
model is based on the inertial properties of each rigid body. These inertial properties include
the body’s length and mass parameters, its center of mass location, and its moment of inertia.
A large part of this thesis is based on the fundamentals of the developed method by Dorschky
et al. (2019) [6]. In their study, the authors formulated an objective function of tracking
experimentally obtained IMU data using virtual sensors attached to a musculoskeletal model.
The goal was then to find the appropriate set of control inputs and model joint angles to
achieve motion tracking. The control inputs were then applied to drive the model such that a
dynamically consistent simulation was obtained from which human gait kinematics and kinet-
ics could be estimated. As this idea of tracking experimentally obtained IMU measurements
formed the main principle of this thesis, this method will be further detailed in Section 2-3.
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2-2 Existing work on sensor fusion based kinematics estimation

Recently, the study of [15], presented a method that estimates the 3D joint kinematics using
IMU data and modeled connections of body segments. These connections were included
by tightly coupling the rigid body kinematics in a sensor fusion algorithm which allowed
for drift-free joint kinematics estimation. As shown in Figure 2-1(a), two linked human
body segments are modeled as a system of two adjacent rigid body segments attached by
a spherical joint. The 3D joint type allows all rotational motions. Hence, this technique
inherently assumes that between two linked bodies, no rotational restrictions are imposed
even when the underlying system does feature this constraint. Each rigid body has a sensor
with an individual coordinate system Si modeled, for i = 1, 2. The i-th sensor is positioned
at a distance rSi

i from the joint center to its sensor coordinate center Si. This distance is
estimated from inertial measurement data using the technique of [18].

Figure 2-1: (a) Illustration of a kinematic model of two segments, each with an attached IMU,
connected by a spherical joint [15]. (b) The joint acceleration ajc,t given in both sensor coordinate
frames, aS1

jc,t, a
S2
jc,t, and both their projections on the common, but moving global coordinate frame

G. Figures are adapted from [15].

As described in Chapter 1, due to the integration of gyroscope measurements to obtain
orientation estimates, these estimates will drift over time. Commonly, use is made of mag-
netometers, which yield information about the heading of the sensor by measuring the local
magnetic field which compensates for angle drift [10]. This method of [15], however, proposes
a magnetometer-free approach. To eliminate drift in the 3D relative IMU orientation RS1S2

t ,
the author’s idea was to update both the orientations RGS1

t and RGS2
t simultaneously from the

adjacent IMUs. Here, RS1S2 denotes the orientation of S2 with respect to S1. Similarly, RGSi
t

denotes the orientation of the i-th IMU with respect to the global coordinate frame G. This
update is done by making use of the gyroscope and acceleration measurements, and exploiting
knowledge from rigid body kinematics. The joint center, being the point of interest here, can
only have one unique acceleration aSi

jc,t in a common reference frame. This is illustrated in
Figure 2-1(b) and can be expressed as

RGS1
t aS1

jc,t = RGS2
t aS2

jc,t + elink,t. (2-1)
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Assuming that elink,t is zero-mean Gaussian noise with covariance Σlink denoted as elink,t ∼
N (0,Σlink). The acceleration of the joint, expressed in both the sensor coordinate frames aS1

jc,t
and aS2

jc,t are then approximated by evaluating the obtained accelerations ySi
a,t at a distance

rSi
i from the joint center as follows [15][19][20][21],

aSi
jc,t = ySi

a,t − C
Si
t r

Si
i , (2-2a)

CSi
t =

[
ySi
ω,t×

]2
+
[
ẏSi
ω,t×

]
. (2-2b)

Here, ySi
ω,t denotes the angular velocity, ẏ

Si
ω,t denotes the angular acceleration and [x×] describes

the cross product matrix operator as given in [10]. These models were then implemented in
an optimization approach or an Extended Kalman Filter (EKF). The desired relative sensor
orientations were then obtained using

q̂S1S2
t =

(
q̂GS1
t

)c
� q̂GS2

t , (2-3)

where c and � denote the quaternion conjugate and the quaternion multiplication operator
respectively. Readers unfamiliar with quaternions and these operators can refer to [10].

The authors applied both an optimization and filtering approach to gait analysis on eleven
subjects to evaluate the IMU-based joint kinematic estimation method against a 3D optical
motion capture reference system. The mean RMSE knee joint angle values over all subjects
were 2.14 [deg], 1.85 [deg] and 3.66 [deg] for the optimization-based smoothing approach.
In the filtering-based implementation, these mean RMSE values were 3.08 [deg], 2.42 [deg],
and 4.47 [deg]. From these RMSE values, it can be concluded that the optimization-based
approach yielded more accurate results. However, the filtering method opens up for long term
patient monitoring [15].

When the related work methods have been discussed, in Section 2-6, a summary will be given
of each discussed method’s challenges being addressed and its remaining limitations. For that
reason, attention will now be turned to the method of Dorschky et al. (2019) which mainly
inspired this thesis work. Their method did not only take into account this notion of modeled
connected body segments but also included human anatomy and more model complexity. This
allowed the authors to estimate not only the human kinematics like the method of Weygers
et al. (2020) discussed here, but also opens the door to estimating human kinetics.

2-3 Existing work on sensor fusion and dynamical model based
kinematics and kinetics estimation

The work presented by Dorschky et al. (2019) made use of a biomechanical model with more
model complexity compared to the previously discussed method. For each segment, its mass,
length, center of mass location, and the moments of inertia were incorporated. This extra
information allowed the authors to fulfill their objective to estimate the kinematics as well
as the kinetics during human gait. To that aim, they modeled a planar (2D) musculoskeletal
model, as can be seen in Figure 2-2(a), conforming to the body of the participant. Virtual
sensors were positioned on the segments of this model. These virtual sensors produced com-
parable gyroscope and accelerometer signals as would be measured by the real IMUs being
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attached to the various body segments of the participant. One such virtual sensor attached
to the shank is shown in Figure 2-2(b). Subsequently, they proposed an optimal control prob-
lem to find the model states x and control inputs u, such that these virtual sensors tracked
experimentally logged raw IMU data gathered from each individual participant. From the
dynamically consistent simulations obtained, human kinematic and kinetic quantities could
be estimated [6].

The focus of [6] was aimed at human gait. As such, only the lower extremities were modeled
together with the trunk segment using nine generalized coordinates q, also shown in Figure 2-2.
The first two states contained the X and Y -position of the trunk denoted pTrunk, with respect
to the ground frame G. The other seven states were the various joint angles θ, between linked
rigid body segments defined relative to each other. The time derivatives of q were defined as
the generalized velocities v. The model itself was actuated by 16 muscles, where the state of
each muscle was characterized by its contractile element LCE , and its activation function α as
defined in [22]. Besides, foot-contact interactions were also taken into account. The model’s
state vector x consisted of all these defined variables. Their method was based on formulating
the system dynamics implicitly as a function of x, ẋ and u as f(x, ẋ, u) = 0. Here, u denotes
the control vector that drives the model consisting of the neural excitations of the muscles.
Due to the system dynamics being twice differentiable with respect to x, ẋ, and u, allowed
the authors to use a gradient-based optimal control method.

Figure 2-2: (a) The musculoskeletal model with its generalized coordinates, muscles, and rigid
segments. (Muscle have been omitted for model clarity). (b) Placement of a virtual sensor at
position pBs in the body-segment coordinate system Bs. The acceleration as and angular velocity
ωs are measured in Bs with respect to the global frame G using the transformation matrix RBsG.
Both figures are adapted from [6].

It was assumed that the axes of the sensor were aligned with the body segment coordinate
frame Bs and that the positions pBs were known in this Bs frame. The virtual sensor’s
gyroscope signal ωs was equal to the angular velocity of its corresponding body segment with
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respect to the global frame G. The virtual accelerations measured at a body segment as were
estimated as

as = RB
sG
(
aGG|Bs − g

)
+
[
−(ωs)2 −ω̇s
ω̇s −(ωs)2

]
pB

s
. (2-4)

Here aGG|Bs
is the segment’s origin acceleration relative to G, and RB

sG denotes the trans-
formation matrix from the global frame G to the respective body-segment frame Bs. The
gravity vector was set equal to g = [0,−9.81]> [m/s2]. To have these virtual sensors track
experimentally obtained raw IMU measurements, an optimal control problem was formulated
for which the cost function J was defined as follows

minimize
x(t),u(t)

J(x(t), u(t)) = 1
|S|N

N∑
k=1

∑
s∈S

(asx,k − µas
x,k

σax,k

)2

+
(
asy,k − µas

y,k

σas
y,k

)2

+

(
ωsk − µωs

k

σωs
k

)2
+ Weffort

16NV 2

N∑
k=1

16∑
m=1

u2
mk + Jreg.

(2-5)

Here S is the set of IMUs attached to the various body segments, N the number of collo-
cation nodes, and µ denotes the mean for multiple strides of the measured sensor signals.
The differences were normalized to the measured standard deviation σ of multiple strides.
This guaranteed that noise and movement artifacts were not tracked. Moreover, Weffort was
a weighting term found empirically and V was the model’s speed. Jreg denotes the term
proportional to the integral of the sum of squares of all state and control variables’ time
derivatives. The problem at hand was a large scale nonlinear optimization problem which
was then solved to compute the trunk position pTrunk, joint angles θ and control inputs u.
Although this proposed method constitutes a necessary step towards more advanced human
movement research, the limitation remains that a 2D model was used. This 2D model re-
stricted all motions to a plane. Hence, the authors propose future research to investigate
motions using 3D models for more advanced motion analysis.

Another method, proposed by Karatsidis et al. (2019) [17], made use of the commercially
available software suite Xsens MVN Link, developed by Xsens Technologies B.V. In their
approach, 17 IMUs were attached, using dedicated clothing, to the hands, forearms, upper
arms, shoulders, feet, lower legs, upper legs, pelvis, sternum, and head. The Xsens MVN Link
software was then used to obtain the orientations of the IMUs with respect to an earth-based
coordinate frame and to compute the kinematics by constrained optimization. The exact
sensor positions on the respective body segment were determined using the accompanied
manufacturer guidelines described in the Xsens MVNmanual. By formulating an optimization
problem, they obtained the muscle reaction forces for the performed motion trajectory by
minimizing the muscle activity which was subject to dynamic equilibrium constraints. For
validation purposes, the authors validated their approach against an Optical Motion Capture
(OMC) system. Eight infrared high-speed cameras were used to track the trajectories of the
53 attached reflective markers on the human body. Lastly, the ground reaction forces (GRFs)
and joint moments were determined using inverse dynamics for walking motions. The results
obtained from both Dorschky et al. (2019) and Karatsidis et al. (2019) are shown in Table
2-1.

The use of the Xsens MVN suite, however, limits the applicability of this procedure to these
commercial systems. Moreover, it is still vague from their paper [17] what kind of algorithms
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Table 2-1: The results of Dorschky et al. (2019) [6] and Karatsidis et al. (2019) [17]. The
lower limb kinematics and kinetics in the sagittal-plane are compared between the IMC method
and the OMC method. For each motion scenario, the root-mean-squared error (RMSE) mean
and (standard deviation) in degrees, BodyWeightBodyHeight% and BodyWeight% respectively
are shown. GRF in the table stands for Ground Reaction Force. Table is adapted from [6].

Quantity Walking [6] Running [6] Walking [17]

RMSE RMSE RMSE

Hip angle 8.2 (3.3) 8.7 (3.2) 5.7 (2.1)
Knee angle 5.5 (2.8) 5.3 (3.0) 4.4 (2.0)
Ankle angle 4.3 (1.5) 4.6 (1.7) 4.1 (1.3)
Hip moment 1.5 (0.4) 3.2 (1.0) 2.2 (0.6)
Knee moment 1.5 (0.4) 3.4 (1.2) 1.9 (0.5)
Ankle moment 1.6 (0.8) 3.2 (2.1) 1.6 (0.6)
Anterior-Posterior GRF 4.1 (1.2) 10.7 (3.9) 1.6 (0.6)
Vertical GRF 11.1 (3.4) 32.0 (7.9) 9.3 (3.0)

and methods are implemented to obtain these orientation estimates such that motions can
be tracked. To that aim, for this thesis work, use will be made of an open-source and freely
available modeling and simulation software package to circumvent this drawback.

2-4 OpenSim: A modeling and simulation environment

The discussed kinematic model for sensor fusion purposes developed by [15] lacks the human
anatomy. This results in the fact that the system’s dynamics and the type of joint connecting
two rigid bodies cannot be taken into account. From that perspective, this thesis will aim
to investigate the advantages of including more information about the system. Knowledge
about the system such as the type of joint between two segments, the rigid body’s mass and
length, its center of mass location, and moments of inertia will be incorporated.

For a double pendulum, one can derive the equations of motion (EoM) by hand that govern
the dynamics of this system using for example the Euler-Lagrange equations. However, for
systems composed of multiple links, this becomes a tedious and error-prone task as one has
to properly take care of for instance all the respective lengths, masses, and velocities. Hence,
formulating and solving the EoM that describe the dynamics of a musculoskeletal system is
troublesome and even more error-prone. Besides, especially in biomechanical systems, the
joints between two rigid body systems are not comparable to the classical type of joints, like
revolute or ball-and-socket joints, found in mechanical systems.

For that reason, the OpenSim software suite showed to be a promising modeling and simula-
tion framework. Mainly, as it automatically generates a system with these governing EoM for
a user-created model [23]. Using the built-in OpenSim solvers, a forward dynamics simulation
is generated such that one can study these models with their motion. From this simulated
model, more human motion-related metrics can then be obtained. Moreover, OpenSim was
chosen as these human-like joints can be modeled and scaled to the dimensions of the partici-
pant’s body. This is essential for the accurateness of in-field participant experiments. Another
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important benefit of this OpenSim framework is that it is a free and open-source modeling
platform. Next to that, the community of OpenSim users is growing, diverse, worldwide,
and has surpassed 370,000 downloads at the time of writing. This shows that developing a
new motion reconstruction algorithm based on OpenSim can, when tested and validated, be
implemented and used by this large community of users. The OpenSim API is available via
different programming languages such as C++, Java, MATLAB and Python or via the desktop
application comprising a GUI and visualizer. Especially, accessing the OpenSim functional-
ity via MATLAB or Python opens the door to researchers with less experience in coding, but
having experience in scripting. This moreover extends the functionality compared to running
OpenSim in the native desktop application.
Certainly, there are also other simulators available, for instance, Simscape Multibody from
MATLAB. This environment yet lacks the ability to create accurate custom joints analogous
to human joints and include muscles that deform when the body attached to the joint is
extended. As the aim of this thesis is to develop an algorithm that generalizes well to both
mechanical as well as biomechanical systems, this further motivated the choice for OpenSim.
In Figure 2-3, two different systems modeled in the OpenSim environment are shown. The
left biomechanical model depicts the scapulothoracic joint of [24], and the right mechanical
model shows the KUKA LBR iiwa R800 7 DoF robot manipulator.

Figure 2-3: The biomechanical model of the scapulothoracic joint [24] (left), and the mechanical
model of the KUKA LBR iiwa 7 R800 robot manipulator (right), in the modeling and simulation
environment OpenSim.

As previously explained in Chapter 1, the aim is to validate the algorithm developed on the
physical KUKA robot manipulator system. The corresponding OpenSim model of the KUKA
is shown in Figure 2-3 on the right. The main reason for choosing this physical robot system
was that this robot features quality joint encoders from which the ground truth joint angles
can be obtained. The estimates of the novel algorithm can then be validated against these
encoder values. With this validated generally applicable algorithm, future work could focus
on reconstructing human motions. Particularly, using the human shoulder joint [24] modeled
in OpenSim as shown in Figure 2-3 on the left. OpenSim then automatically determines the
EoM governing this complex shoulder joint’s motion.

Master of Science Thesis P.A.M. de Kanter



16 Related work

Recently, a new method as proposed by the creators of OpenSim has been created which also
allows to reconstruct human motions. This technique is based on tracking IMU orientations
which also uses a (bio)mechanical model and will be described next.

2-5 Opensense: An OpenSim software tool for reconstructing mo-
tion

In the new 4.1 version of OpenSim, a workflow for analyzing movements obtained from IMU
data is made available to the research community [25]. This method relies on the creation
of virtual IMUs as orthogonal XY Z-frames on the segments of the user-created OpenSim
model. The participant’s motion is then reconstructed using an inverse kinematics method.
This approach, at each time of the motion, computes the set of joint angles that minimizes the
errors between the experimental IMU orientations and the orientations of the virtual model
XY Z-sensor frames.

The user is required to input the orientations of an IMU. Estimating the orientation of a
sensor can be accomplished using various techniques. For example, one can use either the
Extended Kalman Filter algorithm with quaternions as states [10], Xsens’ native orientation
estimation algorithm provided with their MTw Awinda IMUs [11] or Madgwick’s orientation
estimation algorithm [26].

The OpenSense procedure will first start with the placement of the sensors on the desired
body segments whose motion should be tracked. Calibration data must then be collected by
having the participant standing in a known pose which should, as close as possible, match
the default pose of the OpenSim model. OpenSense assumes pre-processed data, such as time
syncing and data interpolation for missing entries. This pre-processing will be handled by
Xsens’ sensor system. However, when users work with different manufactured IMUs, they have
to perform these pre-processing steps themselves. OpenSense then requires the orientations
parametrized as rotation matrices as input. Upon import, a time-synced storage file for these
logged orientations is created where the rotation matrices are converted into quaternions. By
reading in the data, each IMU sensor is represented as an orthogonal XY Z coordinate frame
in the OpenSim model [25].

Lastly, the calibration step uses the gathered calibration data and the loaded OpenSim model
as input. For each constructed IMU frame, it finds its orientation with respect to the body
segments of the OpenSim model. Note that, this calibration procedure assumes that the
subject’s pose obtained from the calibration data matches the default pose of the model.
This then results in virtual XY Z-frames onto the segments of the biomechanical OpenSim
model. These virtualXY Z-frames represent the corresponding experimental IMUs positioned
on the participant’s body.

The limitation of this OpenSense workflow lies in the fact that these orientation estimates,
computed from the IMU measurements, are assumed to be 100% accurate. While in fact, these
orientation estimates are always slightly off. Especially, when the sensor is in the presence
of magnetic material, which disturbs the magnetometer measurements, leading to incorrect
orientation estimations [27]. Therefore, it is assumed that including more information together
with tracking raw inertial measurements, instead of orientations derived thereof, will increase
the accuracy of reconstructions obtained.
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2-6 Requirements for the motion reconstruction algorithm

With these current methods presented, various challenges addressed and current limitations
can be recognized. Hence, prior to arguing why a new method needs to be invented, a clear
overview of these elements should be taken in mind. Table 2-2 summarizes for each method
these main challenges addressed and highlights its limitations.

Table 2-2: Relevant past work in the field of motion reconstruction.

Method Approach Challenges addressed Current limitations

Weygers et
al. [15]

Incorporating tightly
coupled rigid body
kinematics in the
sensor fusion algorithm
to compensate for drift
and estimate 3D joint
kinematics.

Relative sensor orientation drift is
compensated without relying on a
magnetometer.

Joint angles between two body-
attached IMUs can be estimated with
an average accuracy of <2.56 [deg].

Accurate 3D joint estimations are
achieved for long (>5 min) gait trials.

Only kinematic variables can be estimated
as no inertial properties are included, hence
no kinetic metric estimations are possible.

The type of the joint is not considered, all
joints between two linked rigid bodies are
assumed to be spherical joints.

The ranges of motion for each rigid body
are not taken into account.

Dorschky et
al. [6]

Estimating gait
kinematics and kinetics
by tracking inertial
sensor data with a
musculoskeletal model
by solving an optimal
control problem.

Combination of raw inertial sensor
data with musculoskeletal models
to estimate kinematics and kinetics.

Create virtual sensors to generate
congruent artificial sensor data to
obtain dynamically consistent motions.

Incorporating accurate participant’s
segment inertial properties.

2D models limit the motions and analysis
to the sagittal plane, affecting the
ability of the model to track IMU data.

The method can be applied to 3D models,
however, this will result in longer
computation times, currently 2D only.

Still rather large joint angle RMSE values
obtained ranging between 4-8 [deg].

Karatsidis et
al. [17]

Perform musculoskeletal
model-based inverse
dynamics based on
tracking orientations
of 17 IMU sensors
attached to the
participant’s body

Driving a musculoskeletal model using
exclusively IMU orientation data to
estimate 3D kinematics and kinetics.

Scaling of the segments of the
musculoskeletal model to the measured
body dimensions of the participant.

Ability to estimate joint moments and
ground reaction forces.

Only tested for walking conditions, hence
unsure how the method performs during
more dynamic movements such as running.

The method is based on a commercial
algorithm which limits the applicability
to commercial settings.

The average joint angles RMSE values
ranged between 4-7 [deg].

OpenSense

Minimize the errors
between the experimental
IMU orientations and the
orientations of virtual
IMU frames attached on
the biomechanical model.

Constrain the orientation estimates of
the experimental sensors to the
segments of the underlying model.

Allows to be applied to user-created
biomechanical models incorporating the
joint type between two rigid bodies.

Plug-and-play method allowing one
to reconstruct human outdoor motions.

Relies on manufacturers’ orientation
estimation algorithm which is not 100 %
accurate when magnetically distorted.

No system dynamics and inertial properties
incorporated, hence only estimations of
kinematic metrics are possible.

Although OpenSim is worldwide used [23],
OpenSense has not yet been mentioned in
the literature.

With this table presented, it can be concluded that so far accurate 3D joint estimations are
possible using [15]. Unfortunately, this method currently does not allow for kinetic estimations
and does not take into account the type of the joint. Contrary, OpenSense does take into
account the joint type and as such constrains the orientation estimates of the sensor to the
underlying model. However, this approach too lacks the information to estimate kinetics. On
the other hand, [6], does incorporate this information which allows for kinetic estimations, but
their method is currently limited to 2D models. Moreover, their chosen optimization-based
approach limits this work to motions that have been captured and does not allow for real-time
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motion reconstruction. As such, this approach would not allow for continuously adding IMU
data, while the algorithm is processing the past measured IMU data sequentially. This latter
observation, however, can for instance be accomplished using a filtering-based approach. With
these remaining challenges noted, the main requirements that this novel framework should
fulfill are summarized below.

• Adaptability of the algorithm to nonlinear mechanical as well as biomechan-
ical systems which might be composed of multiple links.
With this work, the aim of this algorithm is to eventually be applied to a range of
(bio)mechanical systems. For example, those shown in Figure 2-3, offering scientists
and researchers in various fields, a new method for (human) motion reconstruction. As
the models governing the motions of these systems are non-linear, the new approach
should be able to deal with these nonlinear models.

• Continuous reconstruction of 3D motions in a markerless setting using
small and wearable inertial sensors.
The method of [6] limited their analysis to reconstructing 2D motions using an
optimization-based approach. The novel method developed in this thesis should be able
to reconstruct continuous motions taking place in a 3D space not sacrificing on recon-
struction accurateness. As such aiming for comparable joint angle estimations in the
range of 4-8 [deg] like [6], but rather striving to accuracy’s mentioned by [15] of around
2.56 [deg]. It must be noted that the results of [6] and [15] cannot be compared directly
as they are based on different data sets from different human subjects. The require-
ment of eventual real-time continuous motion reconstruction automatically translates
to a filtering-based approach. As real-time motion reconstruction is dependent on com-
putation power, it is merely something to keep in mind. The main requirement should
be to prove the concept of reconstructing 3D motions.

• Able to deal with noise, assumed to be of Gaussian form, and bias which
are affecting the IMU measurements.
Like all methods mentioned above, to make accurate motion metric related estimations,
the algorithm needs to be able to cope with noise and bias corrupting the inertial
measurements.

• Incorporating kinematic constraints as well as system dynamics.
To gain a deeper understanding of movement mechanics and its underlying causes, es-
pecially in a biomechanical setting, including the assessment of joint angles and joint
moments, would be beneficial. Clinicians require both accurate models of the sub-
ject’s body and reliable measurements of motion capture methods to examine healthy
and pathological movements [24]. To that aim, for this comprehensive biomechanical
analysis, this algorithm needs to incorporate additional information. Including these
kinematic constraints and the system’s dynamics allows to make joint angle and joint
moment estimations. Hence, also the masses, lengths, center of mass locations, and
moments of inertia of each rigid body together with the type of the joint connecting
two bodies should be incorporated.

With these requirements stated, Chapter 3, will propose the novel motion reconstruction
algorithm. This algorithm aims to eliminate the limitations of the related work mentioned in
this chapter and meet the requirements specified above.
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Chapter 3

A novel algorithm for IMU-based
motion reconstruction using dynamical

models from OpenSim

This chapter introduces the Iterated Extended Kalman Filter - OpenSim (IEKF-OS) motion
reconstruction algorithm. This algorithm includes noisy IMU measurement data, the system’s
dynamical model generated from OpenSim, and the Iterated Extended Kalman Filter (IEKF).
First, in Section 3-1, the tracking control problem will be formulated to give a detailed overview
of the approach taken to reconstruct the motion of the system at hand. Then, as for this
technique two kinds of IMUs are required, being experimental and virtual IMUs, in Section
3-2 and Section 3-3, the measurement models of both these IMUs will be discussed. Moreover,
it is also shown how the components of the IMUs can be calibrated. Having defined these
measurement models, first, in Section 3-4 the augmented state vector will be presented. Then,
in Section 3-5, the motion models will be discussed that govern the evolution of the state
variables describing the system. Finally, in Section 3-6, the IEKF-OS algorithm will be
presented which incorporates all this information to try and achieve the reconstruction of the
original motion.

3-1 Formulation of the tracking control problem

To accurately reconstruct the motion of a system in OpenSim, it is beneficial to have a clear
picture of this problem in mind. For that reason, a schematic overview of the motion tracking
control problem is given in Figure 3-1. From this schematic, it can be seen that the tracking
formulation is build up of three blocks. The first block, shown in green, illustrates the angular
velocity and linear acceleration measurements coming from the experimental IMUs. These
are the measurements that are obtained from body attached IMUs. For this thesis, the Xsens
MTw Awinda IMUs are chosen. One advantage is that Xsens’ Awinda protocol ensures time
synchronization for up to 20 MTw’s across the wireless network [11]. This makes it possible
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to effectively fuse data from several IMUs. On the other side, the virtual measurements are
depicted in the red block. These measurements should correspond to the same signals as mea-
sured by the experimental IMUs, hence being the angular velocity and linear acceleration.
These virtual measurements can be predicted in the modeling and simulation environment
OpenSim. To each of the rigid bodies of a user-generated model, an orthogonal XY Z-frame
can be attached. From these frames, their virtual angular velocities and linear accelerations
can be computed. The idea for this thesis is then to minimize the error between these exper-
imental and virtual measurements such that a congruent virtually reconstructed motion in
OpenSim is obtained. Lastly, the block in blue that can be recognized is the algorithm that
tries to accomplish this error minimization objective, the Iterated Extended Kalman Filter -
OpenSim (IEKF-OS).

Figure 3-1: Schematic overview of the tracking control problem. The experimentally obtained
IMU measurements are the reference tracking signals that the virtual IMU measurements have to
match to obtain a congruent movement reconstruction in OpenSim.

Having defined these three blocks, the following sections will dive deeper into the underlying
principles that make up these three blocks. First, the experimental IMUs with their measure-
ment models will be discussed in the next section. Subsequently, the second block with the
virtual IMUs will be detailed after which the IEKF-OS algorithm will be presented.

3-2 Experimental IMUs

In this thesis, a distinction is made between two types of IMUs. The first type of IMUs,
defined as experimental IMUs, denote the sensors which will be attached to the human body
segments or robotic links. The second type of IMUs, described by the term virtual IMUs,
will characterize the sensors added to the (bio)mechanical model of the system at hand.
This model can either represent a human or a robotic system. The virtual IMUs will be
modeled as orthogonal XY Z-frames from which quantities of interest can be obtained. This
section will begin with a brief outline of the coordinate frames used for both these types
of IMUs. Moreover, note that the experimental IMUs have different measurement models
than the virtual IMUs. This because the former are physical sensors that are affected by
noise and bias corrupting the measurements made. For that reason, in this section, first, the
measurement models of the experimental IMUs will be discussed. After that, it will be shown
how these sensors can be calibrated. Subsequently, the measurement models of the virtual
IMUs will be presented.
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3-2-1 Coordinate frames

Throughout this thesis, use will be made of five coordinate frames which are defined as

• Sensor frame si: The frame in which the measurements of both the experimental gyro-
scope and experimental accelerometer from the i-th IMU are obtained. The origin of
this sensor frame is located in the center of the accelerometer triad.

• Navigation frame n: Is the global coordinate reference frame for the experimental IMUs.
It is defined stationary with respect to the earth.

• Body frame bi: The frame of the rigid body segment which is located in the center of
the joint.

• Virtual sensor frame vi: The virtual frame in which the measurements of the i-th virtual
IMU will be expressed. This virtual sensor frame will be defined with respect to the
body frame bi of the corresponding link.

• The ground frame G: This is an arbitrarily defined frame in the modeling and simulation
environment OpenSim. As movements will be reconstructed in this digital environment,
this frame is only aligned with gravity. All the frames attached to the rigid bodies of
an OpenSim model are expressed with respect to the ground frame G unless otherwise
indicated.

The movement reconstruction algorithm depends on the measurements of multiple sensors
being attached to various robotic links or human body segments. However, for the sake of
notation, the i-th sensor frames are dropped. Moreover, it is assumed that the IMUs are
rigidly attached to their respective segments, which for human body segments is generally
not true. Considering that the validation part of this movement reconstruction algorithm will
be performed on a robotic arm, soft tissue artifacts (STAs) can be neglected.

3-2-2 Experimental IMU measurement models

Inertial Measurement Units (IMUs) are tri-axial sensors that, due to the advances in Micro-
Electro-Mechanical System (MEMS) technology, are nowadays wearable, inexpensive, small,
and easy in use [8]. These sensors typically consist of a gyroscope and an accelerometer which
provide measurements of the angular velocity and the linear acceleration respectively. These
quantities are corrupted by bias and noise. For the application of movement reconstruction,
it is key to accurately characterize the measurement models of both these components.

Measurement model of the experimental gyroscope

The first component of the IMU, the gyroscope, measures the angular velocity, ωs
t , at each

time instant t. The measurements of this sensor are affected by a bias term bsω,t and a noise
term es

ω,t which leads to the following measurement model

ys
ω,t = ωs

t + bsω,t + es
ω,t. (3-1)
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The slowly time-varying bias term, bω,t, can be dealt with in various ways. When the sensor
is used for short experiments, a calibration technique, as will be described in Section 3-2-3,
prior to the experiment can be performed. Another way is to treat this slowly time-varying
bias term by augmenting the state vector such that it can be estimated [10]. The noise
term es

ω,t on the other hand is assumed to be a Gaussian and modeled as es
ω,t ∼ N (0,Σω). In

Section 3-2-3, it will be shown how the covariance matrix Σω can be estimated from gyroscope
measurements.

Measurement model of the experimental accelerometer

The other IMU component used for this thesis is the accelerometer. Accelerometers measure
the specific force, denoted as f s

t , at each time instant t in the sensor frame s. The Coriolis
acceleration related to the earth’s rotation is small compared to the magnitude of the acceler-
ation measurements. Next to that, it is assumed that the centrifugal acceleration is absorbed
in the local gravity vector [10]. With these aspects taken into account, the simplified model
for the specific force in sensor frame s can be given as

f s = Rsn(an − gn). (3-2)

Here, Rsn denotes the rotation matrix mapping quantities expressed in navigation frame n,
to quantities expressed in the sensor frame s.
The output of this sensor consists of this specific force, but is moreover corrupted by a bias
term, bsa,t, and by a noise term, es

a,t. This leads to the following measurement model for the
accelerometer

ys
a,t = Rsn(an

t − gn) + bsa,t + es
a,t. (3-3)

The accelerometer noise term is assumed to be Gaussian and modeled as es
a,t ∼ N (0,Σa).

3-2-3 Calibration of experimental IMUs

From (3-1) and (3-3), it is evident that the outputs of the IMU are corrupted by bias and
noise. Moreover, the outputs can be affected by misalignment errors of the triad-axes and
scaling errors [28]. Therefore, significant accuracy can only be obtained when the IMU is
properly calibrated to remove sensor biases and systematic errors. With calibration, the
process is meant of comparing the instrument’s output with known reference information and
determining the coefficients that force the output to correspond with this reference information
over a range of output values [29]. Commonly, some of the sensor errors change over time, and
next to that, MEMS IMUs are only approximately calibrated by its producer [30]. Hence, to
obtain high accuracy measurements, these sensors have to be re-calibrated prior to attaching
the IMUs to the robotic arm or human body segments. To that aim, first, it will be outlined
how the gyroscope can be calibrated after which the procedure to calibrate the accelerometer
will be given.

Calibration of the experimental gyroscope

The calibration procedure of the gyroscope is rather straightforward. First, one needs to
observe that when a gyroscope is placed on a flat surface, then independent of its orientation,

P.A.M. de Kanter Master of Science Thesis



3-2 Experimental IMUs 23

the measured rotational velocity should be zero mean. For this to be true, it is assumed
that the effect of the earth’s rotational velocity, compared to the sensor’s noise, is too weak.
Therefore, this effect can be assumed to be approximately zero, hence neglected [28]. Looking
at the previously defined measurement model (3-1), one can observe that the measurements of
the gyroscope are a summation of the actual angular velocity ωs

t , a bias term bsω,t and a noise
es
ω,t. Hence, the gyroscope measurements are affected by a slowly time-varying bias bsω,t and a
zero-mean white noise denoted as es

ω,t ∼ N (0,Σω) [10]. For a calibrated sensor, however, the
three axes can be considered to yield independent measurements from one another. Therefore,
the covariance matrix Σω can be modeled as a diagonal matrix as

Σω =

 σ2
ω,x 0 0
0 σ2

ω,y 0
0 0 σ2

ω,z

 . (3-4)

To calibrate the gyroscope, the simple procedure as described in [28] is taken. Here the idea
is to determine the gyroscope bias by keeping it in a completely stationary state for a period
of time. Then, again ignoring the weak effect of the rotation of the earth, for an uncalibrated
gyroscope, this sensor’s output for this stationary state should be equal to the bias term bsω,t.
Hence, the gyroscope bias can be computed as the mean of the data during this stationary
period. The covariance matrix Σω can then be found as the standard deviation from this
mean. In Appendix F, a practical workflow for future users is presented to perform IMU
calibrations.

Calibration of the experimental accelerometer

Normally, for orientation estimation, the accelerometer calibration is often neglected. Mainly,
as for orientation estimation, the approximation is made that the accelerometer measurements
are typically dominated by the gravity vector [10]. For this thesis, however, it is important to
properly calibrate the accelerometer as the idea is to track motion-related accelerations. Here
only incorporating the gravity acceleration and not the additional accelerations would lead
to larger errors, resulting in inaccurate tracking performance. Therefore, a more elaborate
calibration of the accelerometer is followed, which is based on the methods as described in
[31], [32] and [33]. The noise affecting the accelerometer was assumed to be Gaussian and
therefore, can be modeled as es

a,t ∼ N (0,Σa). For a properly calibrated sensor, the covariance
matrix denoted as Σa can be modeled as a diagonal matrix of the following form

Σa =

 σ2
a,x 0 0
0 σ2

a,y 0
0 0 σ2

a,z

 . (3-5)

Contrary to the accelerometer measurement model as depicted in (3-3), the uncalibrated
measurements, ya,t, are modeled as

ya,t = DRsn
t (an

t − gn) + bsa,t + es
a,t. (3-6)

Here, sources of error are modeled by the matrix D ∈ R3×3. This D term can be seen
as a product of matrices that model errors such as non-orthogonal sensors axes, cross-axis
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interference, gains, and inter-sensor misalignments. The number of unknown parameters that
construct the elements of this D matrix can be reduced when some of these errors are not
taken into account. The matrix D can be decomposed into a matrix of scaling factors K, and
a matrix T , which model these above-mentioned misalignments [34]. The accelerometer triad
measures the linear acceleration in its sensor frame s. When the non-orthogonal sensitivity
axes of this accelerometer triad vary by a small angle from the ideal orthogonal set of axes,
then the specific force fN

t in the non-orthogonal axes N can be transformed into the orthogonal
axes s as shown in [35] as

f s
t = T sNfN

t , (3-7)

where the transformation matrix T sN is of the form

T sN =

 1 −αyz αzy
αxz 1 −αzx
−αxy αyx 1

 . (3-8)

Here, αij denotes the rotation of the i-th accelerometer axis around the j-th orthogonal axis.
When moreover, it is assumed that the X-axis of the accelerometer sensor coincides with the
ideal orthogonal X-axis and that the orthogonal Y -axis lies in the X,Y -plane spanned by the
accelerometer sensor axes, then the angles αxy, αxz and αyx become zero. This reduces T sN

to an upper triangular matrix as

T sN =

 1 −αyz αzy
0 1 −αzx
0 0 1

 . (3-9)

Lastly, the accelerometer scale factor error is also included in D. This error is expressed in
the scale factor matrix K as

K =

 kx 0 0
0 ky 0
0 0 kz

 . (3-10)

With T sN and K defined, D can then be written as

D =

 kx 0 0
0 ky 0
0 0 kz


 1 −αyz αzy

0 1 −αzx
0 0 1

 . (3-11)

Uncalibrated accelerometer measurements in a 3D space will form an ellipsoid centered around
the sensor bias bsa,t ∈ R3×1, while calibrated accelerometer measurements will form a sphere
of radius ||g||2 centered around the origin [33]. To map the data to a sphere, the ellipsoid
fitting method of [33] is taken. This method is based on the principle that the local gravity
field is constant. To perform the calibration, the IMU needs to be slowly rotated in as many
orientations as possible. These orientations, however, do not need to be known. By slowly
rotating the sensor, it is assumed that the sensor is moving with a constant linear velocity
while being in a constant gravitational field with gravitational acceleration g. To achieve
several IMU orientations, in which the sensor is stationary, and rotating the IMU between
orientations with approximately a constant velocity, an orientation prism was created as
shown in Figure 3-2.
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Figure 3-2: An orientation prism with 18 faces in which the Xsens MTw can be placed to obtain
stationary acceleration data for these 18 different orientations.

Hence, it is assumed that the sensor does not experience an external acceleration an
t which

reduces (3-6) to
ya,t = −DRsn

t g
n + bsa,t + es

a,t. (3-12)

Thus the desired error-free accelerometer output is equal to −Rsn
t g

n. When the terms D and
bsa,t in (3-12) are known, then the calibrated accelerometer measurements can be computed
as

ycala,t = D−1
(
ya,t − bsa,t

)
. (3-13)

Assuming thus that the system is in a constant gravitational field and has a constant linear
velocity during the calibration procedure. First, the norm of the local gravitational field will
be scaled such that this is equal to 1. The idea to find this D matrix and bias bsa,t can then
be posed as

|| −Rsn
t g

n||22 − 1 = 0,
||D−1(ya,t − bsa,t − es

a,t)||22 − 1 = 0.
(3-14)

Observing that the accelerometer measurements are corrupted by noise, this equality does
not hold exactly [32]. The ellipsoid fitting problem can for that reason be reformulated as
described in [31] as

y>a,tAya,t + β>ya,t + γ ≈ 0, (3-15)
with

A , D−>D−1, β> , −2bs>a A, γ , bs>a Absa − 1. (3-16)

When the matrix A is assumed to be positive definite, this problem can be viewed as the
definition of an ellipsoid with the parameters A, β and γ [36]. The fitting problem given in
(3-15) can be rewritten as a linear relation of the parameters M and ξ as shown in [31] as

Mξ ≈ 0, (3-17)

where

M =


ya,1 ⊗ ya,1 ya,1 1
ya,2 ⊗ ya,2 ya,2 1

...
...

...
ya,N ⊗ ya,N ya,N 1

 , ξ =

 vecA
β
γ

 , (3-18)
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where vec denotes the vectorization operator and ⊗ denotes the Kronecker product. To
circumvent the solution of obtaining the trivial solution ξ = 0 and guaranteeing the positive
definiteness of the matrix A, this problem is instead solved as a semidefinite program [32]

min
A,β,γ

1
2

∥∥∥∥∥∥∥M
 vecA

β
γ


∥∥∥∥∥∥∥

2

2

,

s.t. TrA = 1, A ∈ S3×3
++ .

(3-19)

Here the trace of the matrix A is constrained such to avoid the trivial solution ξ = 0 and S3×3
++

denotes the set of 3×3 positive definite symmetric matrices. Note that a convex optimization
problem is obtained which has a globally optimal solution. To solve (3-19), CVX was used
which is a package for specifying and solving convex programs [37][38]. From the computed
Â, β̂ and γ̂ terms, estimations for the calibration matrix D and the bias term bsa can be made
using (3-16) as

1 = bs>a D−>D−1bsa − γ,

= 1
4β
>A−1β − γ,

= α

(1
4β
>A−1β − γ

)
,

(3-20)

leading to the following relation for the scaling factor α being

α =
(1

4 β̂
>Â−1β̂ − γ̂

)−1
. (3-21)

Using this scaling factor, the estimates for both the calibration matrix D and the bias term
bsa can be found using (3-16) as

D̂−>D̂−1 = αÂ,

bsa = −1
2Â
−1β̂.

(3-22)

From 3-22 the estimate for D̂ can not uniquely be computed. For that reason, the initial
estimate is determined using a Cholesky decomposition which yields a lower triangular matrix
denoted by D̃ [32]. Moreover, as the norm of the local gravitational field was scaled to 1 for
the ellipsoid fitting problem, the bias term needs to compensated for this normalization effect.
Hence, the estimate of the bias is computed as

bsa = bsaNLGF , (3-23)

where NLGF is the estimate obtained of the local gravitational field norm in the position
where the calibration procedure was performed. The calibrated data fitted to a sphere can
be seen in Figure 3-3.
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Figure 3-3: The results obtained from the ellipsoid fitting method. The raw accelerometer data
is shown in red dots whereas the calibrated accelerometer data is shown in blue dots. Ideally, all
data should lie on the blue plotted sphere with a radius of g. The least-squares fitted ellipsoid is
shown in red.

3-3 Virtual IMUs

As it has now been outlined how the experimental gyroscopes and accelerometers can be
calibrated, the focus is now laid on the virtual IMUs. Contrary to the experimental IMUs,
these virtual IMUs do not have to be calibrated. Virtual IMUs are not affected by bias and
noise and correspondingly thus have different measurement models. Once the model for the
system is created in OpenSim, virtual sensors can be attached to its various segments. The
position of a virtual sensor can be arbitrarily defined and is placed with respect to its parent
frame, the body frame b. These frames are orthogonal XY Z-frames from which quantities of
interest such as position, angular velocity and angular acceleration, and linear velocity and
linear acceleration can be obtained. A visualization of a virtual IMU is shown in Figure 3-4.
The virtual IMU measurement models are discussed in Section 3-3-1. These measurement
models yield both the desired sensor dependent angular velocity and sensor dependent linear
acceleration.

3-3-1 Virtual IMU measurements

The idea behind reconstructing the original motion relies on minimizing the error between the
simulated virtual IMU measurements and the experimentally obtained IMU measurements.
For that reason, it is key that the same signals are subtracted from each other in the same
local sensor frame. Hence, the output of the measurement model, ht(xt), should produce
the angular velocity and the linear acceleration for each attached virtual IMU. Moreover, as
these virtual IMUs, contrary to the physical experimental IMUs, are simulated frames, their
outputs are not corrupted by bias and noise. As such, this yields the following measurement
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28 A novel algorithm for IMU-based motion reconstruction using dynamical models from OpenSim

Figure 3-4: A virtual IMU modeled as a XY Z-frame attached to a body segment in the modeling
and simulation software environment OpenSim. The OpenSim ground frame G is shown to the
left of the body.

model

ht (xt) =
(
ωv

av

)
∀v ∈ V, (3-24)

where v denotes the virtual sensor in the set of all virtual sensors V. Rather then formulating
the explicit formulas to obtain the values for these outputs as in [6], for this thesis, they
will be obtained from OpenSim. The user-generated models for both the robotic arm and
the human scapulothoracic joint consist of several body segments. The connection of these
segments in OpenSim is modeled by a so-called “mobilizer”. This mobilizer connects a body
to its unique parent body. Instead of restricting degrees of freedom (DoF) as constraints
do, the concept of the mobilizer relies on initially allowing zero DoFs to the body. From
there, the mobilizer technique grants the permitted motion of the body’s frame relative to
the parent’s body frame and provides a parametrization of that motion [39]. This permitted
mobility is characterized in terms of nq ≥ n scalar generalized coordinates q and n terms of
generalized speeds denoted by u. By this definition, the state vector that will be described
in Section 3-4, is based on this concept of generalized coordinates. The permitted spatial
motion of these body segments, which includes both rotations and translations, are related
to the internal coordinate formulation q, via a hinge matrix H. The multibody physics
API of OpenSim, called Simbody, uses this spatial notion which combines the rotational and
translational components in a single object as was first described by [40]. Here, the first sub-
vector of this object is always the rotational component of the motion whereas the second
sub-vector involves the translational movement. This yields the spatial velocity V and spatial
acceleration A objects as

V ,

(
Vω
Vv

)
, A ,

(
Aβ
Aa

)
, (3-25)

where Vω denotes the angular velocity and Vv corresponds to the linear velocity. Moreover,
Aβ is the angular acceleration, and Aa depicts the linear acceleration. Simbody determines
all these variables with respect to the OpenSim ground frame G unless otherwise indicated.
Therefore, the default symbols in (3-25) depict

V = V GB ,

(
V GB
ω

V GB
v

)
, A = AGB ,

(
AGBβ
AGBa

)
. (3-26)
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The transform in Simbody is denoted as XGB which implies frame B measured from and
expressed in frame G [39]. Transforms are used to specify the configuration of one frame with
respect to the other. Transforms combine a position as a translation, and a rotation. As such
being composed of the rotation matrix RGB which expresses the orientation of frame B in
the frame G, and the position vector pGB which is the vector from the origin of the G frame
to the origin of the B frame [39]. For example, with the rotation matrix RGB, a vector vB
expressed in the B frame, can be re-expressed as vG in the ground frame G as vG = RGBvB.
As such, the spatial position is defined as

XGB =
(
RGB | pGB

)
. (3-27)

The spatial position is thus a combination of the rotation, described using the rotation matrix
RGB, immediately followed by a translation vector denoted as pGB. To get the desired signals,
the virtual sensor dependent angular velocity ωv and the virtual sensor dependent linear
acceleration av, first note that the body’s relative permitted motion is described using a
pair of coordinate frames which correspond to the so-called MobilizedBody B. The term
MobilizedBody refers to the combination of a body segment with its unique mobilizer. The
first frame in this pair is the “fixed” frame F which is attached to the parent’s body P with a
constant transform XPF as can be seen in Figure 3-5. The second frame, which is the unique
mobilizer “moving” frame M , is attached to the body B with the constant transform XBM .

Figure 3-5: The MobilizedBody B, shown in blue, with respect to its parent body B, shown in
grey. Every frame and transform that is associated with the MobilizedBody B is also shown in
blue and the origins of these frames are denoted with O. Figure is adapted from [39].

With these definitions, the equations that define these generalized coordinates q and gener-
alized speeds u using the hinge matrix H can be given as

XFM (q) ,
(
RFM (q) | pFM (q)

)
, (3-28a)

V FM (q, u) ,
(
V FM
ω

Vv
FM

)
=
(
ωFM (q, u)
vFM (q, u)

)
= HFM

(
XFM (q)

)
u, (3-28b)

AFM (q, u, u̇) , V̇ FM =
(
βFM (q, u, u̇)
aFM (q, u, u̇)

)
= HFM u̇+ ḢFMu, (3-28c)

q̇ = N(q)u. (3-28d)
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Note that in (3-28c), the time derivative of the generalized speed is taken, which results in the
generalized acceleration u̇. Moreover, the kinematic coupling matrix N in (3-28d) governs the
evolution of the generalized coordinates q with the generalized velocities u. For most joints,
the kinematic coupling matrix N will be equal to the identity matrix I, e.g., like in hinge
joints. In such joints, the spatial angular velocity is equal to the derivatives of the Euler
angles or derivatives of the quaternions. This, of course, depending on the chosen rotation
parametrization.

The virtual sensor dependent measurement models yielding both the angular velocity and
linear acceleration signals, obtained from Simbody, can be given as

ht(xt) =
(
ωv

av

)
=
(
ωFM (q, u)
aFM (q, u, u̇)

)
=
(
V FM
ω

AFMa

)
=
(

HFM
ω u

HFM
v u̇+ ḢFM

v u

)
∀v ∈ V. (3-29)

Where HFM
ω and HFM

v are the upper and lower 3× n partitions of the hinge matrix H and
n denotes the number of mobilities granted by the mobilizer for body B with respect to its
parent’s body P .

3-3-2 Expressing the virtual IMU measurements in local virtual IMU frame

The angular velocity and the linear acceleration of an attached virtual frame to a body can
be obtained using OpenSim functions. These functions yield the angular velocity and linear
acceleration of the frame, measured with respect to and expressed in the ground frame. Note,
however, that the measurements logged by the experimental Xsens IMUs are not expressed
in the ground frame, but rather take place in the sensor frame, located in the center of the
accelerometer triad. As the idea of this thesis is to achieve the movement reconstruction by
means of minimizing the discrepancy between the experimental sensor measurements and the
virtual sensor measurements, it is key that both measurements are expressed in the same
frame. Therefore, the virtual measured angular velocity and linear acceleration need to be
re-expressed in their local frame. Next to that, the gravity-induced acceleration needs to be
incorporated, which will be outlined in the next section.

3-3-3 Incorporating the gravity-induced acceleration

Contrary to the real experimental IMUs, the virtual IMUs which are modeled as orthogonal
XY Z-frames in OpenSim, are just reference frames. The acceleration of this OpenSim frame,
similar to a body in OpenSim, is the resultant of forces which include reaction forces and
gravity. This means, that when the body and thus the frame is at rest, its net force and
acceleration are zero. Logically, experimental IMUs are not reference frames but are actual
sensors, which register the reaction force opposing the weight of the test mass of the IMU.
Thus when stationary, the output of the experimental IMU will read [ax, ay, az] = [0, g, 0]
with the Y -axis in this example pointing towards the sky. It is assumed that g is equal to
9.81 [m/s2] from now on. Thus to obtain similar signals and to model a virtual IMU sensor,
the acceleration induced by the gravity force needs to be accounted for in the virtual IMU
measurements in OpenSim. In OpenSim, the Y -axis of the ground frame G, the world frame
in OpenSim, is pointing out of the plane towards the sky. The gravity vector in this OpenSim
ground frame G is equal to gG = [gx, gy, gz] = [0, 9.81, 0]. To add this gravity vector in the
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virtual IMU frame at the current state, the rotation matrix RvG(q) was used. Re-expressing
the gravity vector in the OpenSim ground frame G to the local virtual sensor frame v. It must
be noted that this rotation matrix is state dependent. This leads to the following relation
used

gv = RvG(q)gG. (3-30)

Then the final measurement model, adapted from (3-24) can be written as

ht (xt) =
(

ωv

av + gv

)
∀v ∈ V. (3-31)

With the measurement models in place for both the experimental and virtual IMUs, attention
is now turned to the state vector which will be discussed in the next section.

3-4 Augmenting the state with the control input

To obtain a congruent reconstruction of the original motion, first, the model’s states have to be
defined. For this new algorithm, a similar but adapted approach from Dorschky et al. (2019)
[6] is taken. Similarly to their approach, the state vector for the model at hand will consist of
the joint generalized coordinates q and their rates of change, the joint generalized velocities
u. However, in this IEKF-OS motion reconstruction algorithm, a different formulation of the
tracking control problem is posed. The idea is to also include the joint control torques τ in
the model’s state vector that actuate the (bio)mechanical model. Augmenting the state with
these torques allows for estimating these inputs in the IEKF-OS algorithm and subsequently
applying them to the model. This results in the augmented state vector x as

x =

 q
u
τ

 . (3-32)

With the state vector defined, the next step is to look at the equations that govern the updates
of these state variables, the so-called equations of motion (EoM), which will be discussed next.

3-5 Motion models

The EoM, represented by a Simbody system, are the equations that govern the instantaneous
rates of change for the state variables [39]. When the rate of change equations for these
states are integrated, the trajectories of these states through time can be obtained. First,
the motion model of the generalized coordinates q and generalized velocities u will be given.
After that, it will be shown what model was devised for the unknown control input which has
to be estimated and applied during simulation to obtain an accurate motion reconstruction.

3-5-1 Motion model for the generalized coordinates and generalized speeds

For systems where the state variables, consisting of both the generalized coordinates q, and
the generalized speeds u, are defined dynamically by differential equations [39], the EoM that
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describe the system are given by

q̇ = N(q)u, (3-33a)
M(q)u̇ = fapp(t, q, u)− fbias(q, u), (3-33b)
n(q) = 0. (3-33c)

Here (3-33c) specifies additional constraints that q must satisfy for the case when there are
not enough equations of the form (3-33a) to specify q in a unique way [39]. This could for
instance occur when there are fewer u’s than q’s as Simbody models q as quaternions for which
n(q) is then the quaternion normalization constraint. Moreover, N(q) is again the kinematic
coupling matrix as was previously introduced in Section 3-3-1. M(q) is the n× n symmetric,
positive definite mass matrix in the mobility space (u-space). Here n is the number of Degrees
of Freedom (DoF) of the system. This matrix M(q) contains all the inertial properties of the
model in the current configuration. The term fbias(q, u) ∈ Rn×1 is quadratic in u and zero if
u = 0 and corresponds to the forces representing velocity-induced Coriolis acceleration and
gyroscopic terms. Lastly, the term fapp(t, q, u) ∈ Rn×1 denotes the set of all applied forces and
torques, including the gravity force. This set is mapped into an equivalent set of n generalized
forces that act along the mobilities.
With these EoM defined for both the generalized coordinates q and the generalized speeds u,
the time stepper study then seeks to obtain the trajectories for q(t) and u(t) as

q(t) = q (t0) +
∫ t

t=t0
q̇(t)dt, (3-34a)

u(t) = u (t0) +
∫ t

t=t0
u̇(t)dt. (3-34b)

Note that (3-33b) is just a version of Newton’s second law F = ma, which relates forces to
accelerations. Formally, one would solve for the accelerations as

u̇ = M−1(fapp − fbias). (3-35)

However, Simbody does not solve these equations “formally” by computing the inverse of
this mass matrix M as this is quite an expensive computational operation for large systems
[41]. There is always a special structure to the mass matrixM that can be taken advantage of,
from which the accelerations can be determined directly in O(n) time. Contrary, computing
this matrix inversion would take O(n3) time [39]. For that reason, Simbody does not form nor
factor M while it solves (3-35). Interested readers can consult [41] and [42] for more details.
Moreover, for interested readers who want to simulate their own user-defined OpenSim model,
the implementation is presented in Appendix B.
With the EoM defined for both the generalized coordinates q and generalized speeds u, the
motion model for the joint torque τ will now be presented.

3-5-2 Motion model for the joint torque

Contrary to the EoM that define the evolution of the generalized coordinates q and generalized
speeds u of the system, the joint torque τ in the state vector does not have a motion model
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that is based on physics. As the value of this state variable is arbitrary and unknown, the
idea is to model the evolution of this state using a random walk model as is similarly done in
[43]. Random walk models are a good initial guess when the underlying model that describes
how the input τ is generated is missing. The random walk model for the joint torque τ is
defined as

τ(t+ 1) = τ(t) + wτ (t), (3-36)

with wτ (t) a white-noise sequence that is uncorrelated with the process noises of both the
generalized coordinate wq(t) and the generalized speed wu(t). Moreover, this process noise
wτ (t) is also assumed to be uncorrelated with the measurement noise. This white-noise
sequence has the following covariance representation

wτ (t) = Q1/2
τ w̃τ (t), w̃τ (t) ∼ (0, Im), (3-37)

where m is the number of joint torques. For these kinds of signals, the problem is to find the
input covariance matrix Qτ which yields the best tracking behavior in terms of the Root-Mean
Square Error (RMSE) between the estimates of the joint angles and the robot encoder mea-
surements. This covariance matrix Qτ can, therefore, be considered as a tuning parameter.
When it is assumed that this input, the joint torque τ , is “almost” constant, the elements
should be set equal to small values. Increasing the values of these elements will allow for more
variation in the control signals applied at the various joints of the system. To test whether
this is a good choice, the reader can refer to Appendix C. There the motion reconstruction
algorithm was applied to a double pendulum with a known control input allowing for this
verification.

3-6 The IEKF-OS motion reconstruction algorithm

With the state vector and all the motion and measurement models defined, the state esti-
mation algorithm used in this thesis can now be introduced. This is the main keystone of
this motion reconstruction algorithm. First, observe that the measurement model as shown
in (3-29) and the motion model as given in (3-33), are nonlinear functions. Combining these
models result in the nonlinear equations that describe the system as

xt = ft−1(xt−1, wt−1), (3-38a)
yt = ht(xt, et). (3-38b)

Due to the nonlinearity of these equations, and the idea to estimate the states consisting
of the generalized coordinates q, generalized speeds u, and the joint torques τ , the Iterated
Extended Kalman Filter (IEKF) technique was chosen. This filtering approach allows for
dealing with nonlinear models and estimating the system’s states. The equations (3-38),
describing the dynamics of the system, are internally formulated in OpenSim for a user-
defined system. Hence the name Iterated Extended Kalman Filter-OpenSim (IEKF-OS), was
chosen for the motion reconstruction algorithm. Prior to presenting this algorithm, first, the
working principles of the general Kalman Filter (KF) will be discussed for readers unfamiliar
with this filter. Especially, as this IEKF is based on this Kalman filtering method.
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3-6-1 The Kalman filtering technique

The Kalman Filter is a recursive filter that gives an unbiased minimum variance estimate of
the state of a linear dynamic system [43]. Hence, this filter works under the assumption that
both the motion and measurement models are described by linear equations. Furthermore,
the algorithm of the linear Kalman Filter is based on conditional probability theory. It
assumes that both the process and measurement noises are Gaussian, that is, that they
can be described using Gaussian distributions. An important characteristic of this filtering
approach has to do with the fact that the probabilistic temporal model is a First-Order Markov
process. The Markov property states that: a stochastic process has the Markov property if
the conditional probability density function of the current state, given the previous state,
only depends on this previous state and not on earlier states or other measurements [44].
Kalman filters are conceptualized with two stages, namely the predict stage and the update
stage. For each time step, the filter starts with the prediction stage which only uses the state
estimate from the previous time instance to produce an estimate of the state at the current
time step. This predicted current state estimate is commonly defined as the a-priori estimate
as it does not take into account information from the current measurement. Once this a-priori
estimate is computed, the update step follows. This step combines this a-priori estimate with
the current measurement to improve the estimate of this state. This updated state is usually
denoted as the a-posteriori state estimate.
The important key point here is that when the state transition function f(x) and measure-
ment function h(x) are linear and both assumed to be affected by Gaussian noise, then after
undergoing this linear transformation, the distribution maintains its Gaussian property. Con-
trary, when f(x) and h(x) are nonlinear functions, which is the case for the system in this
thesis, then the resulting state distribution might not be linear. This could result in the
Kalman algorithm not converging. The Iterated Extended Kalman Filter used in this thesis,
is able to deal with these nonlinear models and will be presented next.

3-6-2 The Iterated Extended Kalman Filter

The Iterated Extended Kalman Filter (IEKF) is called “extended” as it is an extension of
the KF to nonlinear systems. The main difference between the IEKF with the KF is that it
linearizes the nonlinear motion and measurement functions by computing Jacobian matrices.
The choice of using an IEKF is a good option for state estimation when these nonlinear
models can be well approximated by linearization. The drawback of this approach may be
that it is difficult to calculate these Jacobians analytically due to the complicated derivatives.
Moreover, one also must note that the IEKF cannot be applied to systems with a discontinuous
model as those are not differentiable. The IEKF is called “iterated” as it computes multiple
iterations of the update step. These iterations, however, all rely on the same measurement
information of the current time step. The aim here is to approximate the actual underlying
state values better by computing these iterations.
In the IEKF algorithm, the belief function for xt is constrained to be Gaussian and given as

p(xt|x̌0, y0:t) = N (x̂t, P̂t), (3-39)

where x̂t is the mean and P̂t the covariance [45]. As shown in the beginning of Section 3-6,
the IEKF thus makes use of a nonlinear state-space model. Moreover, it is assumed that both
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3-6 The IEKF-OS motion reconstruction algorithm 35

the process and measurement noises are Gaussian distributed with zero-mean and constant
covariance [10]. This yields the following state-space model

xt = ft−1(xt−1, wt−1), (3-40a)
yt = ht(xt, et), (3-40b)

where both the noises can be described as: wt−1 ∼ N (0, Qt−1) and et ∼ N (0, Rt). The
first step of the IEKF algorithm consists in linearizing the nonlinear motion model about the
posterior mean estimate of the previous state. The linearization is performed using a Taylor
expansion which is of the following general form

f(x) = f(a) + ∂f(x)
∂x

∣∣∣∣
x=a

(x− a) +H.O.T., (3-41)

where a symbolizes the operation point around which the linearization is performed and
(H.O.T.) denotes the Higher Order Terms which are neglected.

Instead of working with double subscripts xt|t−1 and xt|t as is commonly done, e.g., [10],
throughout this section, x̌t is used to denote the prediction given the state transition model
at time t which corresponds to the common notation xt|t−1. Next to that, x̂t is used to denote
the corrected prediction given the measurement at time t which corresponds to the common
notation of xt|t. In the IEKF algorithm, the system is linearized around the most recent
state estimate and zero noise [45]. For the nonlinear motion model as given in (3-40a), this
means that the linearization is performed about the posterior mean estimate of the previous
state, denoted as x̂t−1. For the measurement model as stated in (3-40b), this means that the
linearization for the first iteration takes place about the current predicted state, denoted as
x̌t. The linearizations of the measurement model for the subsequent iterations will take place
around the iterated computed state denoted as x̄it as will be shown later in this section. As
the prediction step of the IEKF algorithm only makes use of the motion model, the linearized
motion model can be written as

xt = ft−1(xt−1, wt−1), (3-42a)
≈ x̌t + Ft−1(xt−1 − x̂t−1) + Lt−1wt−1. (3-42b)

Here the current predicted state is given by

x̌t = ft−1(x̂t−1, 0), (3-43)

and the current predicted state covariance matrix P̌t is computed as

P̌t = Ft−1P̂t−1F
>
t−1 + Lt−1Qt−1L

>
t1 . (3-44)

As can be seen in (3-44), the prediction step of the IEKF relies on computing the Ft−1 and
Lt−1 Jacobian matrices of the motion model derived to the state vector and noise vector
respectively. These Jacobians are computed as follows

Ft−1 = ∂ft−1 (xt−1, wt−1)
∂xt−1

∣∣∣∣xt−1=x̂t−1
wt=0

, Lt−1 = ∂ft−1 (xt−1, wt−1)
∂wt−1

∣∣∣∣xt−1=x̂t−1
wt=0

. (3-45)

In Section 3-6-3, it will be shown how these Jacobians are computed using the finite difference
technique and OpenSim commands.
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Contrary to the KF algorithm, in the prediction and update steps of the IEKF algorithm,
the nonlinear models are used to propagate the state estimate and compute the measurement
residual. This for the reason that the motion model is linearized about the posterior mean
estimate of the previous state x̂t−1 and the measurement model is linearized about the current
iterated state x̄it. By definition, this linear model exactly coincides with the nonlinear model
at this operating point. Besides, note that the L and M Jacobians, which are the motion
model and measurement model derived with respect to the process noise and measurement
noise vectors respectively, could be different depending on the state-space model used. These
matrices will be equal to identity matrices for the case that both noises w and e are additive.
This is, however, not always the case.

Once the first step of the algorithm, the prediction step, is completed, the second phase is
initiated which takes into account the current measurement information. When only one
iteration of the algorithm’s second phase is computed, one obtains the Extended Kalman
Filter (EKF). Note that, in the EKF case, the linearization is performed around the mean
which does not necessarily has to equal the true state. Therefore, the underlying idea of
computing multiple iterations of the measurement update step is to approximate this actual
state better.

From the previous step, note that the prior at time t is given by

p(xt|x̌0, y0:t−1) = N (x̌t, P̌t). (3-46)

Contrary to the EKF, the linearization of the nonlinear measurement model takes place
around an arbitrary operating point, which is denoted as x̄t, yielding

ht(xt, et) ≈ ȳt +Ht(xt − x̄t) +Mtet, (3-47)

where

ȳt = ht(x̄t, 0), Ht = ∂ht (xt, et)
∂xt

∣∣∣∣xt=x̄t
et=0

, Mt = ∂ht (xt, et)
∂et

∣∣∣∣xt=x̄t
et=0

. (3-48)

The measurement model and the Jacobians Ht and Mt are thus evaluated at x̄t, where for
ease of notation, the iteration i has been left out. With this linearized model, the joint density
for the state and measurement at time t can be expressed as approximately Gaussian as [45]

p(xt, yt|x̌0, y0:1−t) ≈ N
([
µx,t
µy,t

]
,

[
Σxx,t Σxy,t

Σyx,t Σyy,t

])
,

= N
([

x̌t
ȳt +Ht(x̌t − x̄t)

]
,

[
P̌t P̌tH

>
t

HtP̌t HtP̌tH
>
t +MtRtM

>
t

])
.

(3-49)
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When the measurement information is incorporated, hence known, the Gaussian conditional
density for the posterior xt, equivalent to equation (3-39) as given in the beginning of this
section, can be written as

p(xt|x̌0, y0:t) = N
(
µx,t + Σxy,tΣ−1

yy,t(yt − µy,t)︸ ︷︷ ︸
x̂t

,Σxx,t − Σxy,tΣ−1
yy,tΣyx,t︸ ︷︷ ︸

P̂t

)
, (3-50)

where the mean is defined as x̂t and P̂t as the covariance. For the probabilistic derivation of
this posterior xt as given in (3-50), the reader is referred to Appendix A. Observing (3-50)
closely, one can see that the Kalman gain is given by Σxy,tΣ−1

yy,t. Moreover, µx,t and Σxx,t are
set to µx,t = x̌t and Σxx,t = P̌t. At this point, deducing from (3-50), the generalized Gaussian
update equations can be derived as

Kt = Σxy,tΣ−1
yy,t, (3-51a)

P̂t = P̌t −KtΣ>xy,t, (3-51b)
x̂t = x̌t +Kt(yt − µy,t). (3-51c)

For the IEKF setting, contrary to the general Kalman Filter, now the moments of µy,t,Σyy,t

and Σxy,t as shown in (3-49) are now substituted which yield the equations for the second
phase of the IEKF algorithm

Kt = P̌tH
>
t (HtP̌tH

>
t +MtRtM

>
t )−1, (3-52a)

P̂t = (I −KtHt)P̌t, (3-52b)

x̂t = x̌t +Kt

(
yt − ȳt −Ht(x̌t − x̄t)

)
. (3-52c)

Note that, as was already stated, if the linearization in the IEKF takes place around the
mean of the predicted prior x̄t = x̌t, then, for that case, this results in the EKF algorithm.
The point of the IEKF, however, is that a much better approximation can be obtained when
(3-52) is computed iteratively [45]. The algorithm is initialized with x̄t = x̌t. As explained
previously, the mean x̂ does not necessarily need to represent the actual state, hence the call
for this IEKF approach to approximate the underlying actual state better. Commonly, the
algorithms’ iterations, denoted by i, for the state x at each time instant t are terminated
when a maximal number of user-set iterations ε have been reached. The iterations can also
be stopped when the change between x̄it and x̄i+1

t is smaller than a user-defined threshold δ.
In this thesis, the former criterion is taken. Typically, the algorithm converges within three
measurement update iterations. The IEKF algorithm is shown in Algorithm 1.
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Algorithm 1 The Iterated Extended Kalman Filter

Inputs: Measurement data and an initial x̂0 and P̂0. Qt−1 and Rt are the covariance
matrices of wt−1 and et, respectively. A threshold δ or maximal number of iterations ε.
Outputs: Estimates of the state x̂t and its covariance P̂t.

Note:
x̌t = Prediction given the state transition model at time t.
x̂t = Corrected prediction given the measurement at time t.

for t=1:N do
Step 1: Time update / Prediction step

x̌t = ft−1(x̂t−1, 0), (3-53a)
P̌t = Ft−1P̂t−1F

>
t−1 + Lt−1Qt−1L

>
t−1. (3-53b)

Set i = 1.
while ||x̄i+1

t − x̄it|| ≤ δ do or for i=1:ε
Step 2: Measurement update iterations / Correction step iterations

H i
t = ∂ht(xt, et)

∂xt

∣∣∣∣xt=x̄i
t

et=0

, M i
t = ∂ht(xt, et)

∂et

∣∣∣∣xt=x̄i
t

et=0

. (3-54)

Ki
t = P̌tH

i
t
>(H i

t P̌tH
i
t
> +M i

tRtM
i
t
>)−1, (3-55a)

x̄i+1
t = x̌t +Ki

t

(
yt − ht(x̄it, 0)−H i

t(x̌t − x̄it)
)
. (3-55b)

Set i = i+ 1.
end while or end for
Step 3: Update the state and the covariance matrix by setting:

x̂t = x̄i+1
t , (3-56a)

P̂t =
(
I −Ki

tH
i
t

)
P̌t. (3-56b)

end for

3-6-3 Computing the Jacobian matrices

Given the motion model and the measurement model, as defined in (3-38), one can easily
obtain an approximation to the four various Jacobians required for the IEKF algorithm by
perturbing the state variables one by one. This method is commonly referred to as a finite
difference approximation. The Jacobians for the prediction step, Ft−1 and Lt−1, and the
Jacobians for the update step, Ht andMt will be computed column wise. For the computation
of these Jacobians, Table 3-1 will at each row show which various functions F(χ) and vectors
χ need to be used as an input to Algorithm 2 such that the desired Jacobian can be computed.
For instance, if one wants to compute the Ft−1 Jacobian, from Table 3-1, it can be seen that
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3-6 The IEKF-OS motion reconstruction algorithm 39

F(χ) should be the motion model f(x) and χ should be the state vector xt−1 that are to be
used as inputs to Algorithm 2.

Table 3-1: The various functions and vectors used for computing the Jacobians.

Jacobian to Function F(χ) Vector χ used for
be computed used for evaluation evaluation and perturbation

Ft−1 Motion model: ft−1(x) State vector: xt−1

Lt−1 Motion model: ft−1(x) Noise vector: wt−1

Ht Measurement model: h(x) State vector: xt
Mt Measurement model: h(x) Noise vector: et

Iteratively perturbing the various states/noises one by one in the vector χ to compute the
Jacobian is summarized in Algorithm 2.

Algorithm 2 Numerical computation of the Jacobian
Inputs: The length n of the vector χ and the size of the perturbation step ε. Depending
on the Jacobian to be computed, the corresponding function F(χ) and vector χ as shown
in Table 3-1.
Outputs: Numerically computed Jacobian J .

Note:
χ̃ = Perturbed state vector.
χ = Original state vector.

Set perturbed vector equal to the original vector

χ̃ = χ. (3-57)

for i=1:n do

χ̃(i) = χ̃(i) + ε, (3-58a)
J(:, i) = (F(χ̃)− F(χ)) /ε, (3-58b)
χ̃(i) = χ(i). (3-58c)

end for

To evaluate the current function F(χ), which is not perturbed, it is important to realize the
acceleration stage internally in OpenSim. This command will, for instance, compute the
updates of the state variables being q̇ and u̇. An important note must be made, however.
If one wants to perturb the vector, a “copy” of the original OpenSim state object must be
created. The idea for copying this state object lies in the fact that in this way, the values
of the OpenSim state object, which are used in the actual simulation, are not affected.
Moreover, if one wants to evaluate the function with the perturbed vector, F(χ̃), again it is
important to realize the acceleration stage internally in OpenSim on this copied state object.
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3-6-4 Discretize motion model

The motion models introduced in Section 3-5 govern the dynamics of the system. Note,
however, that these equations are still given in continuous time, while the IEFK presented in
Section 3-6-2 is a discrete filter. For that reason, the computed F and L Jacobian matrices
have to be discretized such that they can be used in this filter. Various ways to discretize these
Jacobian matrices exist. A common approach to discretize is by using the matrix exponential
which results in the following discrete F and L Jacobian matrices

Fdis = eFcon∆t,

Ldis = eLcon∆t,
(3-59)

where Fdis and Ldis are the discretized Jacobian versions of the continuous time Jacobians
Fcon and Lcon. Moreover, ∆t is the sampling time which is set equal to the sampling time of
the experimental Xsens MTw Awinda IMUs.

With all the steps detailed, the resulting Iterated Extended Kalman Filter - OpenSim (IEKF-
OS) can be presented. The IEKF-OS algorithm is shown in Algorithm 3.

3-7 Conclusions

In this chapter, a novel approach to reconstruct a system’s motion is presented. The method
developed is based on the IEKF algorithm and the system’s dynamical model generated from
OpenSim.

Compared to the previously discussed sensor fusion algorithm [15] in Section 2-2, the idea
behind this thesis’ approach is to include more information about the system. For instance
incorporating the rigid-body masses and lengths, the moments of inertia, and their center
of mass locations. Moreover, this approach also takes into account the type of the joint
between two linked rigid-body segments. As an extension to this previously discussed sensor
fusion method, including this additional system information allows to simultaneously estimate
the required joint torques needed to drive the system. The overall solution only requires a
(bio)mechanical model of the system at hand in OpenSim, and experimentally obtained raw
angular velocity and linear acceleration data from the system’s attached IMUs.

Prior to validating the algorithm by carrying out experiments, first, this algorithm needs to
be verified. The algorithm will be verified on the KUKA’s OpenSim model via numerical
simulations. This verification will be described in Chapter 4.
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Algorithm 3 The Iterated Extended Kalman Filter - OpenSim (IEKF-OS) algorithm

Inputs: Measurement data and an initial x̂0 and P̂0. Qt−1 and Rt are the covariance
matrices of wt−1 and et, respectively. A threshold δ or maximal number of iterations ε. An
OpenSim model with one virtual IMU frame attached to each individual body segment.
Outputs: Estimates of the state x̂t and its covariance P̂t.

Note:
x̌t = Prediction given the state transition model at time t.
x̂t = Corrected prediction given the measurement at time t.

for t=1:N do
Step 1: Time update / Prediction step
A: Set q̂t−1, ût−1 and apply τ̂t−1. Then realize the OpenSim acceleration stage.
B: Form Ft−1 and Lt−1 Jacobians using Algorithm 2 and discretize using (3-59).

Ft−1 = ∂ft−1 (xt−1, wt−1)
∂xt−1

∣∣∣∣xt−1=x̂t−1
wt=0

, Lt−1 = ∂ft−1 (xt−1, wt−1)
∂wt−1

∣∣∣∣xt−1=x̂t−1
wt=0

. (3-60)

C: Integrate EoM via OpenSim using (3-34) and as detailed in Appendix B.
D: Get predicted states x̌t from OpenSim and compute P̌t.

x̌t = ft−1(x̂t−1, 0), (3-61a)
P̌t = Ft−1P̂t−1F

>
t−1 + Lt−1Qt−1L

>
t−1. (3-61b)

Set i = 1.
while ||x̄i+1

t − x̄it|| ≤ δ do or for i=1:ε
Step 2: Measurement update iterations / Correction step iterations
A: Set q̄it, ūit and apply τ̄ it . Then realize the OpenSim acceleration stage.
B: Compute virtual IMU frame local angular velocity and local linear acceleration.
C: Form H i

t and M i
t Jacobians using Algorithm 2.

H i
t = ∂ht(xt, et)

∂xt

∣∣∣∣xt=x̄i
t

et=0

, M i
t = ∂ht(xt, et)

∂et

∣∣∣∣xt=x̄i
t

et=0

. (3-62)

D: Load angular velocity and linear acceleration IMU measurements.

Ki
t = P̌tH

i
t
>(H i

t P̌tH
i
t
> +M i

tRtM
i
t
>)−1, (3-63a)

x̄i+1
t = x̌t +Ki

t

(
yt − ht(x̄it, 0)−H i

t(x̌t − x̄it)
)
. (3-63b)

Set i = i+ 1.
end while or end for
Step 3: Update and set the state. Update the covariance matrix.

x̂t = x̄i+1
t , (3-64a)

P̂t =
(
I −Ki

tH
i
t

)
P̌t. (3-64b)

end for

Master of Science Thesis P.A.M. de Kanter



42 A novel algorithm for IMU-based motion reconstruction using dynamical models from OpenSim

P.A.M. de Kanter Master of Science Thesis



Chapter 4

Simulation-based verification of the
motion reconstruction algorithm

This chapter describes the simulations performed to verify the IEKF-OS algorithm’s recon-
struction ability and to assess its performance in doing so. In particular by performing sim-
ulations on the OpenSim model of the KUKA LBR iiwa 7 R800 robot manipulator. This
model corresponds to the robotic arm system on which actual experiments, as later detailed in
Chapter 5, will be conducted. In this chapter, however, the algorithm will first be evaluated for
a scenario incorporating no virtual sensor modeling placement errors. As such, verifying the
applicability of the IEKF-OS algorithm for this intricate robotic system. Next to that, a brief
sensitivity analysis will be performed for different scenarios incorporating sensor placement
errors like translational and rotational offsets. Lastly, this chapter is concluded with some
final remarks.

4-1 Problem statement for the KUKA robot manipulator system

In Chapter 3, the motion reconstruction algorithm has been presented. Compared to a classi-
cal control approach, one would first have to filter the incoming noisy measurement data using
a dedicated filtering block. Then a control block is needed to achieve the desired reconstruc-
tion by means of a tracking objective. Looking at this formulation, given a (bio)mechanical
system’s motion to be reconstructed, the proposed method in this thesis combines both of
these blocks in one scheme. As such, it provides both the filtered state estimation and com-
putation of the control input through a single minimization function. This takes place in the
Kalman filtering update equation leading to the motion’s reconstruction.

Initially, the estimated joint angles q̂, joint angular velocities û and the joint torques τ̂ , will
differ from the actual system state variables q, u and τ . Hence, the only way to minimize this
discrepancy is by computing proper control actions. Usually, in classical control approaches,
the control input, here denoted as τ , remains separate from the systems state variables x.
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However, in this algorithm, the state vector, compromising the joint angles q and joint an-
gular velocities u, is augmented with this control input τ . This augmentation allows for
estimating the proper control torque in the Kalman filtering scheme, required to minimize
this discrepancy between the actual system’s motion and its reconstructed one.

As was described in Section 3-5-2, the motion model for the joint torque τ was chosen to be
a random walk model. To test whether this is a good choice, a simulation on an actuated
double pendulum was performed. As the aim for this chapter was to reconstruct the robot
manipulator’s motion, for conciseness of this chapter, interested readers can refer to Appendix
C for the double pendulum results obtained. From these results, as shown in Figure C-4 and
Figure C-5, it can be observed that the original motion and the original control input were
accurately reconstructed.

In fact, the interconnection between the state variables and control input is the key feature of
this algorithm together with the inclusion of the dynamical models governing the motion of
the system. This approach, moreover, also allows to adapt to systems composed of multiple
rigid body links as will be seen in Chapter 5. There the algorithm’s performance will be tested
and validated on a real robotic arm. To conclude, the best reconstruction of the motion is
obtained when the internal belief about the system’s states coincide with the actual dynamics
observed from the attached IMUs.

First, the KUKA robot manipulator will be presented, after which a schematic overview of
the workflow will be illustrated.

The KUKA LBR iiwa 7 R800 robot

The system at hand is the industrial manipulator, the KUKA LBR iiwa 7 R800 robot. This
robotic arm was chosen as this manipulator, consisting of seven links, is equipped with position
sensors in each of the joints. These encoders ensure noise-free measurements of the angular
position of an axle in a given rotary motion. Having access to these encoder measurements
will be especially useful for the validation purpose of the IEKF-OS estimates which will be
presented in the next chapter. Mainly, as these joint encoder values can be considered as gold
standard ground truth data to which the estimates obtained from the motion reconstruction
algorithm can be validated. It must be noted, however, that it is not always possible to place
these encoders at the desired positions. Especially in the context of biomechanics. Moreover,
these encoders are usually bulky and rather expensive devices [46]. On the contrary, with
the KUKA robot, these drawbacks are eliminated as these encoders have been implemented
inside the links of this manipulator robot. Besides, the actual KUKA robot features torque
controlled motors allowing to change each joint angle individually from the other joint angles.
The KUKA, compared to other conventional industrial manipulators, features 7 DoFs. This
extra DoF results in an increased dexterity and is thus able to avoid certain singularities. The
ranges of motion and the maximal joint velocities of this robot are given in Appendix D-2.
For this thesis, only six Xsens MTw Awinda IMUs were available. Therefore, the seventh
DoF, being the orientation of the end-effector, will not be tracked.
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Performed tests

The IEKF-OS performance will be tested on the KUKA robot OpenSim model for four
different simulation scenarios being

1. An idealized scenario which includes no sensor placement errors.

2. Scenarios incorporating translation sensor placement errors.

3. Scenarios incorporating rotational sensor placement errors.

4. Scenarios incorporating translation and rotational sensor placement errors.

For each scenario presented, the same movement, being an infinity shaped trajectory, will be
reconstructed. A schematic overview of the workflow is illustrated in Figure 4-1.

Figure 4-1: Workflow overview of the performed simulations. First, in the orange box, an infinity
shaped reference trajectory is created and the corresponding desired joint angles qd are obtained
from an IK solution. These angles qd are then prescribed to the OpenSim KUKA model and
a forward kinematics simulation is performed. With created artificial measurement data, the
motion is then reconstructed using the developed IEKF-OS algorithm. Lastly, the reconstruction
performance is assessed by computing the RMSE values between actual state variables q and q̂,
u and û.

The idea is to have the robot track a smooth and continuous infinity shaped reference tra-
jectory. Therefore, first, this reference trajectory was created which will be used for all four
numerical simulation scenarios. The artificial measurement data, as required as input for the
IEKF-OS algorithm, will be created by performing a forward kinematics simulation. This for-
ward kinematics simulation will be achieved by prescribing desired joint angles to the KUKA
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robot model in OpenSim. This results in the end-effector tracking this reference infinity
shaped trajectory. To obtain these desired joint angles, an inverse kinematics (IK) algorithm
was run. Note that, for these simulated scenarios, no joint torques are computed in the green
box in Figure 4-1. Rather the desired joint angles are prescribed to the OpenSim KUKA
model. For that reason, the torques as estimated by the IEKF-OS reconstruction cannot be
compared. In the following sections, the reconstruction of the original motion will be ex-
plained concisely. With the workflow illustrated, first, the KUKA LBR iiwa 7 R800 OpenSim
model will be presented.

4-2 The KUKA LBR iiwa 7 R800 OpenSim model

The KUKA LBR iiwa 7 R800 system was modeled using the inertial properties of each
KUKA’s rigid body. This term inertial properties encompasses the rigid body’s mass, its
center of mass locations, and the moments of inertia. These inertial properties for each link
of the KUKA robot were obtained from the GitHub file of Chatzilygeroudis et al. (2019) [47].
The values of these inertial properties for each KUKA’s rigid body are given in Appendix D
in Table D-1. The links of the KUKA are connected by revolute joints, allowing the child
body to rotate with respect to its parent body. Using this modeling information and inertial
properties, an OpenSim model was constructed in XML-code. From this code, an osim model
can be created and subsequently used in OpenSim. The OpenSim model, together with the six
generalized coordinates q denoting the joint angles, the six generalized velocities u denoting
the joint angular velocities, and the generalized moments τ denoting the joint torques are
shown in Figure 4-2a.

For this thesis, the motion of the end-effector, shown in black in Figure 4-2b, is not tracked.
Specifically, as for the real experiment only six IMUs were available. This end-effector is able
to rotate with respect to its parent link. For this thesis, the interest is primarily focused on
reconstructing the overall motion of the KUKA robot. Not on tracking the relative orientation
of the end-effector with respect to the sixth link. Thus this rotation was neglected. With the
model in place, the next step is to generate a reference trajectory that the end-effector has
to track.

4-3 Creating artificial IMU measurements

Prior to doing a real experiment, one first would be interested to simulate the system in a
realistic simulator. Verifying that the IEKF-OS algorithm developed, can be used to recon-
struct motions of this robot. Hence, the procedure to create artificial IMU measurements will
be outlined starting with creating the infinity shaped reference trajectory.

Reference trajectory and computing the desired joint angles

To reconstruct a motion performed by the KUKA robot, an infinity shaped reference trajec-
tory was created. This infinity shape was used as it is a continuous and smooth trajectory
that excites all the different joints. The trajectory was designed such that the whole trajec-
tory is tracked by the end-effector in 5 [s]. Points were assigned in a 3D space. A spline
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(a) (b)

Figure 4-2: (a) Schematic overview of the KUKA robot manipulator and its generalized co-
ordinates. (b) The modeled KUKA robot shown in the OpenSim environment in its default
configuration, qi = 0 [deg] ∀i ∈ Q, where Q is the set of all joints. The OpenSim reference frame
can be seen partly in the center of the base of the KUKA robot.

function was fitted with a sampling frequency of 100 [Hz] to obtain a continuous and smooth
trajectory in space. This frequency was chosen similar to the sampling frequency of the later
used real Xsens MTw IMUs. The XY Z-locations of these spacial points are shown in Table
4-1 and were determined with the KUKA ranges of motion in mind.

Table 4-1: The ordered XY Z-locations of the points used to create an infinity shaped trajectory.

X 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Y 0 -0.25 -0.375 -0.6 -0.75 -0.6 -0.375 -0.25 0 0.25 0.375 0.6 0.75 0.6 0.375 0.25 0
Z 0.75 0.95 1 0.95 0.75 0.55 0.5 0.55 0.75 0.95 1 0.95 0.75 0.55 0.5 0.55 0.75

With the trajectory generated, the IK solver was called which is available in the MATLAB
Robotics System Toolbox. This function performs the IK such that the end-effector of a
robot manipulator follows the desired set of user-generated waypoints. An illustration of the
generated infinity reference trajectory in 3D space is shown in Figure 4-3.

When a solution is obtained, the IK solver will return the desired values for each of the six
joint angles qd that result in having the end-effector track the reference trajectory. Looking
back to the schematic overview in Figure 4-1, the next step will be to prescribe these obtained
desired joint angles to the OpenSim version of the KUKA as shown there in the green box.
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Figure 4-3: The generated infinity spline trajectory shown together with the KUKA.

Prescribing the inverse kinematics obtained solution

Using a forward kinematics simulation, the desired joint angles qd will be prescribed to the
six joint angles of the KUKA model in OpenSim. Prior to this forward kinematics simula-
tion, virtual IMUs will be created and attached to the OpenSim model to generate artificial
measurement data. Note, however, that this forward kinematic simulation does not include
joint torques, but just simulates the prescribed desired coordinate values. Hence, the torques
as estimated and applied by the IEKF-OS algorithm to the KUKA model can’t be compared.

Creating the required measurement data

To create the required angular velocity and linear acceleration measurement data, virtual
IMUs are modeled as reference frames. For each rigid body of the KUKA, such a virtual
frame is attached. These virtual frames are defined with respect to their corresponding
parent frames being the body frames b. The locations and orientations of these virtual IMU
frames are given in Appendix D-2 in Table D-3. From the attached frame, the angular
velocity ωs and linear acceleration as can be obtained. The artificially created measurement
data is simulated again at 100 [Hz]. This corresponds to the maximal available sampling
frequency of the later used Xsens MTw Awinda’s. To mimic experimental data, Gaussian
noise corresponding to the actual noise disturbing the experimental IMUs was created. This
was achieved by determining the covariances of stationary experimental Xsens IMUs. The
noise obtained, was then added to these artificially created measurements y. This concludes
the procedure in the green box in Figure 4-1. The next step is to reconstruct the original
motion of the KUKA using the just created measurement data and will be presented in the
next section.

4-4 Reconstructing the original motion for the idealized scenario

The actual KUKA robot manipulator has seven links, hence seven DoFs. However, for later
conducted experiments, only six IMUs were available. This allows to only track just six of
the links of this KUKA robot. Only the motion of the end-effector will not be reconstructed.
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Therefore, this system will be described using six generalized coordinates q. Each coordinate
has a generalized velocity u, and a generalized moment τ . Hence, the total state vector which
is estimated in the IEKF-OS algorithm will consist of 18 states resulting in

x = (q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6 τ1 τ2 τ3 τ4 τ5 τ6 )>. (4-1)

It would be interesting to see if the IEKF-OS algorithm converges to the actual state values
when the IEKF-OS is initialized differently. Only the relative heading can be estimated once
the system becomes more dynamic. A drawback is thus that the absolute heading cannot
be estimated. This absolute heading estimate can only be obtained when magnetometers are
used. For this thesis, these sensors were not used as the goal was to try and reconstruct
motions based on angular velocities and linear accelerations solely. For that reason, the base
joint angle was set similar to the computed desired joint angle: q1 = q1d. The other five joint
angles were set at the desired joint angles qd plus 5 [deg].
The measurement covariance matrix R was a block diagonal matrix consisting of the noise
covariances of the six Xsens MTw Awinda IMUs. The noise covariances of these stationary
IMUs sensors were found experimentally at 100 [Hz]. The measurement covariance matrix R
was then set to R × 150. This value was, in an iterative procedure, found to work best for
this scenario. The standard deviations for all the random walk models of the joint torques
were set to στ,i = 1 [Nm] ∀i = 1 : 6. Hereby allowing room for large deviations of the applied
control input to the KUKA as estimated by the IEKF-OS. As the same model is used for
motion reconstruction, the process noise on the state variables q and u were set to 0 [rad]
and 0 [rad/s] respectively. The number of measurement iterations ε in the update step of
the Kalman filter is essentially a trade-off parameter. More iterations could result in better
convergence, however, at the cost of more computations. For this scenario, the parameter
was set to ε = 3.
The results obtained, for reconstructing the KUKA robot in terms of RMSE values, are shown
in Table 4-2. The corresponding estimated state evolutions are shown in Figure 4-4 and Figure
4-5. The RMSE values were determined after the first second allowing the IEKF-OS algorithm
to converge to the actual state variables.

Table 4-2: RMSE values obtained between the actual states q and u and the estimated states
q̂ and û. The gyroscope and accelerometer measurements used, had Gaussian noise applied
corresponding to the covariance matrices of experimental Xsens IMUs.

Joint angle RMSE [deg] Joint angular velocity RMSE [deg/s]

q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6

0.183 0.102 0.103 0.108 0.159 0.302 0.382 0.711 0.457 0.894 0.427 1.062

From the RMSE values and state trajectories obtained, it can be concluded that the IEKF-OS
algorithm is able to reconstruct the original motion. One must note that the results presented
here are for an idealized scenario as no sensor misalignments were introduced. Moreover, the
artificial measurements created, do not suffer from drift. This is a common phenomenon
observed in actual IMU sensor data, for an example see [10]. Still, the IEKF-OS algorithm
provides accurate estimations of the actual states describing the motion of the KUKA system.
Even when the states in this filter are initialized differently compared to the original state
values.
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Figure 4-4: The left column of plots shows the actual and estimated joint angles q1, q2 and q3.
The right column of plots shows the actual and estimated joint angular velocities u1, u2, and u3.

Figure 4-5: The left column of plots shows the actual and estimated joint angles q4, q5 and q6.
The right column of plots shows the actual and estimated joint angular velocities u4, u5, and u6.

From Figures 4-4 and 4-5, it can be seen that the estimated state variables, green dashed lines
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with circle markers, after converging, closely follow the actual state variable evolutions. These
results illustrate that the IEKF-OS algorithm is capable of near perfect motion reconstruction.

4-5 Reconstructing the original motion incorporating sensor place-
ment errors

The numerical simulation presented, did not incorporate sensor placement errors. However,
in a real experiment, there will be a position mismatch between the modeled virtual IMUs on
the OpenSim model and the experimental Xsens IMUs on the actual system. Therefore, prior
to carrying out experiments, it is interesting to observe what the effect is of translational
and rotational errors. Hence, a brief sensitivity analysis will be performed using Monte Carlo
simulations. These translational and rotational offsets will be applied to the virtual IMUs
modeled on the system creating the motion and measurements. Whereas the virtual IMUs on
the IEKF-OS system will be modeled unaltered. For these latter positions and orientations,
the reader is referred to Table D-3.

During the actual experiments conducted in Chapter 5, an experimental sensor-to-segment
calibration needs to be performed. It needs to be known how the experimental Xsens IMU is
oriented and positioned on the link it is attached to. With this information, the corresponding
virtual IMU on the OpenSim rigid body can be modeled. This experimental sensor-to-segment
calibration is outlined in Appendix F. This calibration procedure needs to be performed prior
to each conducted new experiment.

For the orientation part of the experimental sensor-to-segment calibration, this calibration
step relies on the Xsens Kalman Filter for 3D human motion (XKF3hm) algorithm. This
XKF3hm algorithm estimates the experimental sensor’s orientation with respect to the nav-
igation frame n. The translation part of the experimental sensor-to-segment calibration will
be performed by manually measuring the offset. Each time, the distance will be measured
from the joint center, of the respective segment the IMU is attached to, to the lower-left
corner of the Xsens IMU. A schematic drawing of the Xsens IMU is shown in Appendix F
in Figure F-2. This is done for the reason that from this lower-left corner, the accelerometer
origin is known. Moreover, all XY Z-distances, as measured from this joint center, will also
be expressed in the joint center’s coordinate frame.

Monte Carlo simulations were performed to analyze the IEKF-OS algorithm’s motion recon-
struction under the presence of these translational and rotational errors. First, in Section
4-5-1, it will be analyzed how only translational errors affect motion reconstruction perfor-
mance. Then, in Section 4-5-2, no translational errors will be imposed, but rotational errors
will be introduced. These different two scenarios should yield insights in which modeling er-
ror mainly dominates the degradation of the motion tracking performance. Lastly, in Section
4-5-3, both translational and rotational errors will be introduced. This latter scenario should
resemble a more realistic scenario similar to the later carried out experiments.

Again, for all the Monte Carlo simulations performed, the IEKF-OS KUKA system will be
initialized with the five joint angles increased by 5 [deg]. This being similar to the idealized
scenario of Section 4-4.
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4-5-1 Incorporating translational errors

Due to the geometry of the links of the KUKA being quite curved, it could be difficult
to accurately position experimental IMUs on these links. Hence, to analyze the IEKF-OS
algorithm’s motion reconstructing performance under presence of translational errors, Monte
Carlo simulations were performed. It is assumed, moreover, that measuring distances using a
tape measure is equally error-prone for each X,Y, Z-axis in which distances are needed. For
each of the six links of the KUKA robot, a virtual IMU will be attached. As such, for each
individual virtual IMU, a different translation vector ti will be created prior to each Monte
Carlo simulation. This i-th vector will be of the form

ti = α ·

±tX±tY
±tZ

 [cm], (4-2)

where α is the translational perturbation value. For each individual virtual IMU, a different
translational offset ti will be added to the i-th original virtual IMU location as depicted in
Table D-3.
In this section, three trials will be performed where each trial corresponds to 100 Monte
Carlo simulations. The three translations perturbation values were chosen to be α1 = 1
[cm], α2 = 2 [cm] and α3 = 3 [cm]. For example, for the first trial with α1 = 1, the first
translation perturbation vector applied to the first virtual IMU sensor could be of the form
t1 = 1 · [1 − 1 1]> [cm]. Whereas the second translation perturbation vector applied to the
second virtual sensor could be of the form t2 = 1 · [−1 1 − 1]> [cm]. In this fashion, prior to
each Monte Carlo simulation, initially six of these random translation perturbation vectors t
were created. One for each virtual IMU, and applied to the virtual IMU’s original position
respectively.
After 100 Monte Carlo simulations, the means and standard deviations of the Root Mean
Square Error (RMSE) values were calculated and are given in Table 4-3. For comparison, the
RMSE means and standard deviations for 100 simulations of the idealized scenario with α = 0
[cm] are also depicted in the first row of Table 4-3. In Figure 4-6, box plots corresponding to
these three perturbed trial Monte Carlo simulations, are shown to visualize the RMSE values
obtained.
From the results obtained, it can be concluded that translational errors do not notably affect
the degradation of the reconstruction performance. From Table 4-3, the means of the RMSE
values for all the joint angles q for the three trials conducted are still in the order of 10−1

[deg]. This could be explained as the IEKF-OS also tries to minimize the differences between
the estimated and actual measured angular velocities. As long as the frames in which this
minimization occurs, are properly aligned, the IEKF-OS is then still able to reconstruct the
state due to this angular velocity information. Note that, for a given body, a translated
but not rotated frame with respect to an original frame, will still measure the same angular
velocity. This compared to the angular velocity as measured by this original frame and
expressed in this original frame. Obviously, the angular velocity of a body expressed in this
original frame is independent of the position of the frame from which these measurements are
derived.
Thus it can be deduced that translational errors between modeled sensors do not really affect
the degradation of the motion reconstruction. The next section will analyze the IEKF-OS
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Table 4-3: The RMSE means and standard deviations obtained of 100 Monte Carlo simulations
for each of the three trials with different translational perturbation values α. RMSE means and
standard deviations are shown for each joint angle q and joint angular velocity u.

α RMSE Joint angle [deg] Joint angular velocity [deg/s]

[cm] q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6

0 Mean 0.293 0.103 0.100 0.111 0.183 0.319 0.386 0.707 0.462 0.889 0.427 1.064
σ 0.117 0.002 0.003 0.005 0.011 0.012 0.004 0.004 0.005 0.005 0.003 0.004

1 Mean 0.261 0.163 0.100 0.168 0.142 0.267 0.418 0.728 0.524 0.933 0.499 1.092
σ 0.226 0.190 0.064 0.157 0.070 0.094 0.047 0.156 0.110 0.164 0.084 0.052

2 Mean 0.298 0.169 0.131 0.208 0.169 0.375 0.461 0.795 0.599 1.066 0.644 1.184
σ 0.264 0.099 0.047 0.084 0.091 0.096 0.067 0.244 0.090 0.268 0.094 0.122

3 Mean 0.370 0.239 0.187 0.294 0.240 0.503 0.557 0.946 0.753 1.311 0.825 1.282
σ 0.459 0.215 0.151 0.128 0.133 0.129 0.107 0.357 0.137 0.368 0.158 0.148

Figure 4-6: Upper row of box plots corresponds to trial 1 with α1 = 1 [cm]. Middle column of
box plots corresponds to trial 2 with α2 = 2 [cm]. Last row of box plots corresponds to trial 3
with α3 = 3 [cm].

reconstruction performance under the presence of rotational errors. These rotational errors
are introduced at the virtual IMUs modeled on the system creating the measurements. Again,
the virtual IMUs modeled on the system of the IEKF-OS algorithm will be left unchanged. It
is assumed that these imposed rotational errors will affect the degradation to a greater extent
compared to translational errors. Mainly, as re-orienting these virtual IMU frames, will as
similar to translational errors affecting accelerometer measurements, moreover, also affect the
angular velocity measurements. This for the reason that now both the angular velocity and
the linear acceleration measurements are expressed in this re-oriented frame, differing from
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the original frame. How much this degrades performance is quantified in Section 4-5-2 using
Monte Carlo simulations again.

4-5-2 Incorporating rotational errors

The orientation error will mainly depend on how accurately the orientation of the experimental
Xsens IMU can be estimated. This error is defined between the experimental Xsens IMU on
the actual system and the modeled virtual IMU on the corresponding OpenSim model. As
previously stated, the orientation of the Xsens IMU will be obtained from the XKF3hm
algorithm. From Xsens’ orientation performance specifications, as shown in Table G-2, it
can be seen that the maximal RMS orientation error is equivalent to 1.5 degrees in one axis
[48]. This orientation error will be further denoted as XRMS = 1.5 [deg]. Again, prior to
each Monte Carlo simulation, each time six different ri perturbation vectors will be created.
The i-th rotational perturbation vector will be applied in the XY Z order to the i-th original
virtual IMU orientation. The original orientation here is defined in Table D-3. This ri vector
will be of the form

ri = β ·

±rx±ry
±rz

 [deg], (4-3)

where β is the rotational perturbation value now.
Three trials were performed, where again, each trial corresponds to 100 Monte Carlo simu-
lations. The three rotational perturbations values, βi, were set at the following fractions of
XRMS being 0.5, 1 and 1.5. This yields the following values: β1 = 0.5 ·XRMS = 0.75 [deg],
β2 = 1 ·XRMS = 1.5 [deg] and β3 = 1.5 ·XRMS = 2.25 [deg]. As an example of these modeled
offsets, consider for instance trial 3. The first rotational perturbation vector could be of the
form r1 = 2.25 · [−1 1 1]> [deg]. Whereas the second rotational perturbation vector could
be of the form r2 = 2.25 · [1 − 1 − 1]> [deg]. Six of these different rotational perturbation
vectors ri were created for the six virtual IMUs on the system creating the measurements.
These vectors were re-computed each time prior to each Monte Carlo simulation.
Like Section 4-5-1, after 100 Monte Carlo simulations, the RMSE means and standard de-
viations for each trial were determined. The values obtained are depicted in Table 4-4. To
facilitate comparison, in the first row of Table 4-4, the RMSE means and standard deviations
for 100 simulations of the idealized scenario with β = 0 [cm] are also presented. To visualize
the RMSE values, in Figure 4-7, box plots corresponding to these three perturbed trial Monte
Carlo simulations are shown.
Compared to the translational perturbations as described in the previous Section 4-5-1, it can
be inferred that rotational offsets impact the degradation more significantly. This was already
presumed. As can be seen, there is one order of magnitude between RMSE values for the
translational perturbed scenario and the RMSE values for the rotational perturbed scenario.
The performance degradation especially becomes evident for the scenario with β3 = 2.25
[deg], where a maximum for the mean value of joint angle q6 is observed. However, from the
RMSE values, it can not be concluded uniformly that segments located further away from
the root of the chain are estimated worse compared to the closer linked rigid bodies.
The definition of what error is acceptable is obviously dependent on the type of motion of
the system and its particular application, e.g., possibly clinical or sport settings. However,
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Table 4-4: The RMSE means and standard deviations obtained of 100 Monte Carlo simulations
for each of the three trials with various rotational perturbation values β. RMSE means and
standard deviations are shown for each joint angle q and joint angular velocity u.

β RMSE Joint angle [deg] Joint angular velocity [deg/s]

[deg] q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6

0 Mean 0.293 0.103 0.100 0.111 0.183 0.319 0.386 0.707 0.462 0.889 0.427 1.064
σ 0.117 0.002 0.003 0.005 0.011 0.012 0.004 0.004 0.005 0.005 0.003 0.004

0.5·XRMS Mean 0.440 0.530 0.609 0.745 0.664 0.892 0.629 0.944 0.923 1.246 1.120 1.553
σ 0.233 0.238 0.154 0.351 0.310 0.410 0.111 0.271 0.268 0.304 0.279 0.313

1·XRMS Mean 0.736 1.093 1.198 1.437 1.211 1.721 1.028 1.415 1.538 2.054 2.095 2.697
σ 0.355 0.438 0.319 0.660 0.499 0.753 0.245 0.454 0.408 0.707 0.600 0.868

1.5·XRMS Mean 1.194 1.557 1.808 2.184 1.875 2.589 1.529 1.982 2.494 2.860 3.159 3.613
σ 0.516 0.725 0.467 1.041 0.934 1.170 0.336 0.643 0.669 1.015 0.874 1.300

Figure 4-7: Upper row of box plots corresponds to trial 1 with β1 = 0.75 [deg]. Middle column
of box plots corresponds to trial 2 with β2 = 1.5 [deg]. Last row of box plots corresponds to trial
3 with β3 = 2.25 [deg].

to approach clinically acceptable errors, RMSE joint angle values of ≤ 5 [deg] should be
strived [49]. Hence, it can be noticed that the RMSE values are still acceptable for motion
reconstruction, as all the joint angle RMSE values are below this 5 [deg]. On the other hand,
for larger orientation perturbation values, this IEKF-OS algorithm will likely exceed this
joint angle RMSE of 5 [deg]. On that note, the next section will increase these rotational
perturbation values to a maximal value of 5 · XRMS = 7.5 [deg]. Yet, as the aim here was
to perform a sensitivity analysis to sensor placement errors, it has to be shown from actual
experiments whether the algorithm produces joint angle estimates lower than this 5 [deg]
error. Moreover, in comparison with [6] and [17], which reported mean RMSE joint angle
errors between 4-8 [deg], it can be stated that a similar performance could be obtained for this
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robotic system. This, of course, depends if indeed the orientation error achieved, is around
this XRMS value as specified by Xsens [48]. This claim, obviously still has to be justified.
To that aim, the IEKF-OS algorithm will be validated against ground truth joint encoder
measurements from actual experiments. To mimic a more realistic scenario, Section 4-5-3 will
introduce both translational as well as rotational errors.

4-5-3 Incorporating translational and rotational errors

The motion reconstruction performance will now be assessed when both translational and
rotational errors are applied to the virtual sensors creating the measurements. The first three
trials that will be analyzed are combinations of the previously specified trials. Again, each
trial corresponds to 100 Monte Carlo simulations. As such, trial 1 will be the combination of
introducing a translational offset first with α1 = 1 [cm] after which a rotational perturbation
of β1 = 0.75 [deg] will be applied. Hence as there are six virtual sensors to be perturbed,
prior to each Monte Carlo simulation, first each i-th virtual IMU will be given an translation
offset of form t1 = 1 · [±1 ± 1 ± 1]> [cm] after which its orientation will be perturbed in
an XY Z-order with the perturbation vector r1 = 0.75 · [±1 ± 1 ± 1]> [deg]. Similarly, the
other trials will be performed where trial 2 corresponds to α2 = 2 [cm] and β2 = 1.50 [deg],
and trial 3 corresponds to α3 = 3 [cm] and β3 = 2.25 [deg].

Additional offset vectors were created to check when the IEKF-OS performance really shows
to degrade. The maximal translational offsets were kept at a value of 3 cm. This as it
is very unlikely that manually measuring will lead to a larger translational error of 3 cm.
Moreover, as rotational perturbations really affect performance degradation, this value was
further increased by multiples of Xsens’ specified RMS XRMS = 1.5 [deg]. These multiples
were chosen to be α4 = 3 ·XRMS = 4.5 [deg], α5 = 4 ·XRMS = 6.0 [deg] and α6 = 5 ·XRMS =
7.5 [deg].

The means and standard deviations of the RMSE values for the joint angles q and joint
angular velocities u for the three trials are depicted in Table 4-5. To facilitate visualization
of these results to the reader, box plots as shown in Figure 4-8 and Figure 4-9 are included.
Besides, to evaluate the degradation of the IEKF-OS performance compared to the scenario
with no translational and rotational perturbations, the RMSE means and standard deviations
for 100 simulations are presented in the first row of Table 4-5 again.

Comparing the overall performance of the IEKF-OS algorithm under the presence of trans-
lational and rotational errors to the performance of the algorithm under the presence of
rotational errors only, it can be said that comparable RMSE values are obtained. The addi-
tion of the translational errors to the already present rotational offsets hence only minimally
degrade performance. This as the joint angle reconstruction performance is degraded by a
maximal amount of 0.2 [deg] of a given joint angle. This observation can be made when one
compares the RMSE means of the joint angles q in Table 4-4 and those in Table 4-5. With
this insight, it can be deduced that the main degradation of the algorithm’s performance is
due to the rotational offsets. This can be explained as re-oriented sensor frames both affect
the linear acceleration and the angular velocity measurements. This due to the fact that these
measurements are now expressed in a different frame.

Looking at the results of Table 4-5 and the box plots in Figure 4-9, real tracking performance
degradation can be observed for rotational errors induced in the order of β5 = 4 ·XRMS and
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Table 4-5: The RMSE means and standard deviations obtained of 100 Monte Carlo simulations
for various combinations of translational α and rotational β perturbation values. RMSE means
and standard deviations are shown for each joint angle q and joint angular velocity u.

α β RMSE Joint angle [deg] Joint angular velocity [deg/s]

[cm] [deg] q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6

0 0 Mean 0.293 0.103 0.100 0.111 0.183 0.319 0.386 0.707 0.462 0.889 0.427 1.064
σ 0.117 0.002 0.003 0.005 0.011 0.012 0.004 0.004 0.005 0.005 0.003 0.004

1 0.5XRMS Mean 0.419 0.530 0.589 0.716 0.663 0.973 0.625 0.965 0.863 1.252 1.169 1.586
σ 0.237 0.260 0.182 0.317 0.307 0.420 0.127 0.309 0.220 0.313 0.304 0.362

2 XRMS Mean 0.856 1.017 1.207 1.522 1.258 1.984 1.121 1.381 1.694 2.097 2.108 2.586
σ 0.367 0.513 0.276 0.800 0.518 0.932 0.299 0.518 0.407 0.674 0.602 0.822

3 1.5XRMS Mean 1.217 1.462 1.819 2.014 2.030 2.674 1.612 1.978 2.411 2.687 3.195 3.519
σ 0.611 0.705 0.496 1.078 0.861 1.377 0.361 0.692 0.658 0.910 0.979 1.282

3 3XRMS Mean 2.513 3.024 3.786 4.414 4.263 4.946 3.154 3.821 4.980 5.603 6.353 6.505
σ 1.170 1.358 1.093 1.971 1.723 2.686 0.857 1.516 1.215 2.365 2.045 2.741

3 4XRMS Mean 2.911 4.048 4.803 5.545 5.402 7.111 3.971 5.306 6.274 7.343 7.935 8.351
σ 1.375 1.737 1.500 2.552 2.180 3.730 1.066 1.755 1.701 2.711 2.233 3.363

3 5XRMS Mean 3.771 5.024 6.243 7.642 6.697 9.701 4.904 6.415 7.583 9.439 10.089 10.965
σ 1.857 2.438 1.574 3.300 2.761 4.852 1.198 2.290 2.085 3.647 3.458 4.881

Figure 4-8: Upper row of box plots corresponds to trial 1 with α1 = 1 [cm] and β1 = 0.5 ·
XRMS = 0.75 [deg]. Middle column of box plots corresponds to trial 2 with α2 = 2 [cm] and
β2 = XRMS = 1.5 [deg]. Last row of box plots corresponds to trial 3 with α3 = 3 [cm] and
β3 = 1.5 ·XRMS = 2.25 [deg].

β6 = 5 ·XRMS . As one can derive from these results, the joint angle RMSE values are then
approaching 7-10 [deg]. Future users aspiring to use this algorithm should therefore, need to
orient the sensors carefully with a maximal orientation error of 3 ·XRMS = 4.5 [deg] in each
axis. Note that these results only hold for this system and cannot be translated directly to
other systems such as human bodies. When applied to human motion capture, one also needs
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58 Simulation-based verification of the motion reconstruction algorithm

to take into account the soft tissue artifacts (STAs). These disturbances perturb the IMU
measurements even more.

Figure 4-9: Upper row of box plots corresponds to trial 4 with α4 = 3 [cm] and β4 = 3 ·
XRMS = 4.50 [deg]. Middle column of box plots corresponds to trial 5 with α5 = 3 [cm] and
β5 = 4 ·XRMS = 6.00 [deg]. Last row of box plots corresponds to trial 6 with α6 = 3 [cm] and
β6 = 5 ·XRMS = 7.50 [deg].

4-6 Conclusions
In this chapter, the IEKF-OS algorithm’s performance was tested on a 7 DoF robot manipu-
lator which was allowed to move in a 3D space. For this system, numerical simulations have
been performed to assess the novel algorithm’s motion reconstruction performance.
The algorithm has been shown to work for a simulation on a robotic manipulator which is
composed of multiple linked rigid bodies. With the results presented, the door is opened for
future users who want to extend this algorithm to human motion reconstruction. This later
desire can be accomplished when the user has an accurate OpenSim biomechanical model,
tuned to the participant’s body. The algorithm developed then utilizes the kinematical and
dynamical information to reconstruct the original motion.
With the Monte Carlo simulations presented, the IEKF-OS algorithm reconstructed the mo-
tions of the six links of the robot even under the presence of common sensor placement errors.
For moderate sensor placement errors, α = 3 [cm] and β = 1.5 ·XRMS = 2.25 [deg], all the
RMSE joint angles showed to be below 5 [deg] for this motion. Next to that, it was observed
that the IEKF-OS motion reconstruction accuracy is mainly affected by rotational errors in-
troduced. The IEKF-OS estimations made, showed clear degradation when rotational errors
of 7.5 [deg] around each virtual sensor’s axis were imposed. For that scenario, mean RMSE
joint angle and joint angular velocities values in the ranges of 7-10 [deg] and 5-11 [deg/s] were
observed, respectively.
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Chapter 5

Experiment-based validation of the
motion reconstruction algorithm

The motion tracking algorithm will now be validated by performing experiments on the physical
KUKA LBR iiwa 7 R800 robot manipulator. The Xsens MTw Awinda IMUs will be attached
to the links of this robot manipulator from which experimental IMU data can be obtained.
Moreover, the IEKF-OS motion reconstruction accuracy will be compared to OpenSense’s
motion tracking accuracy. OpenSense does not take into account the system dynamics, but
solely incorporates the system’s kinematic constraints. Lastly, the chapter is concluded with
some final remarks regarding the IEKF-OS and OpenSense comparison.

5-1 Tests performed on the KUKA robot manipulator

The motion reconstruction accuracy performance of the devised IEKF-OS will be validated
on the KUKA LBR iiwa 7 R800 robot. From the numerical simulations performed in Chapter
4, it was observed that the algorithm developed, was able to reconstruct the original motion.
It even reconstructs the original motion in the presence of common sensor placement errors.
From the results obtained, it was observed that imposed rotational errors between modeled
virtual sensors, mainly degrade reconstruction accuracy.

For the experiments conducted in this chapter, it is thus key to model the virtual IMUs as
closely as possible to their corresponding experimental IMUs. The virtual IMUs will again be
modeled as orthogonalXY Z-frames on each link of this OpenSim model. Accurate orientation
estimates can be obtained for these experimental IMUs using the Xsens Kalman Filter for
3D human motion (XKF3hm) [11]. This filter is provided with the Xsens IMUs used. The
orientation estimates obtained from XKF3hm, provide information on how each experimental
IMU is oriented on the KUKA’s link. With this information, the corresponding virtual IMUs
can be modeled on the respective links of the OpenSim KUKA model. For interested readers,
this sensor-to-segment calibration is extensively outlined in Appendix F-1.
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60 Experiment-based validation of the motion reconstruction algorithm

Positions of the experimental IMUs were manually measured using a tape measure. From
the previous numerical simulations, it was shown that translational offsets do not degrade
performance. Therefore, it was assumed that manually measuring yields sufficient position
estimates. In short, the positions were measured from each KUKA link’s joint center to the
left down corner of the attached IMU. From this left down corner, the distances are known to
the accelerometer position in the Xsens MTw IMU case. The location of the accelerometer is
shown in Figure F-2. For interested readers, this procedure is also outlined in Appendix F-1.
Future work could look into more advanced methods to estimate the sensor orientations and
locations on the body.

It must be noted that only six Xsens MTw Awinda IMUs were available for the experiments.
The KUKA robot, however, has seven links permitting seven DoFs. Due to this shortcoming
of MTw Awinda IMUs, the preference was given to reconstruct the motions of the first six
links. The end-effector, the last link shown in Figure 5-1, is allowed to rotate relative to the
sixth link. The rotary motion of the last link was thus not reconstructed. For that reason,
throughout this chapter, only joint angle evolutions of the first six links will be presented.

Performed tests

Three different analyses were performed to evaluate the motion tracking accuracy perfor-
mance of the IEKF-OS algorithm. These analyses were all carried out on the KUKA robot
manipulator and are presented below.

1. Experimental validation of the IEKF-OS algorithm for various ranges of motion. Joint
angle and joint angular velocity RMSE values are computed between IEKF-OS esti-
mations and the robot’s ground truth joint encoder values. The robot’s joint angular
velocities were approximated from the joint encoder values using a forward-difference
scheme.

2. Comparison of IEKF-OS estimated joint angles with respect to OpenSense estimated
joint angles. For OpenSense, Xsens’s XKF3hm algorithm [11] is used to estimate sensor
orientations from experimentally obtained gyroscope, accelerometer and magnetometer
data. The analysis is performed for the same motions as for the IEKF-OS experimental
validation analysis.

3. Comparison of IEKF-OS estimated joint angles with respect to OpenSense estimated
joint angles. For OpenSense, Madgwicks’s algorithm [26] is used to estimate sensor ori-
entations from experimentally obtained gyroscope and accelerometer data and OpenSim
synthesized magnetometer data. The analysis is performed for the same motions as for
the IEKF-OS experimental validation analysis.

For all these tests, the same KUKA OpenSim model, as presented in Chapter 4, will be
used. As outlined in Section 2-5, OpenSense is an inverse kinematics method. This method
computes the set of joint angles at each time instant that minimizes the error between the
virtual IMU frame orientations and the experimental IMU sensor orientations. IMU sensor
orientation estimates can be obtained from various orientation estimation algorithms, for
instance [10], [11], [26]. It must be noted that OpenSense highly relies on the method used
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that estimates the orientations of the experimental sensors from IMU data. If inaccurate
sensor orientation estimates are computed, the motion reconstruction accuracy of OpenSense
will deteriorate.

The choice for comparing the IEKF-OS algorithm against OpenSense was made for three
reasons. Firstly, OpenSense is the current method available to the OpenSim community for
reconstructing motions. Therefore, it is interesting to compare the IEKF-OS method against
it. Secondly, both methods rely on the same OpenSim model and lastly, they use the same
oriented virtual IMUs. As both methods will use the exact same initialized model with
the same placed virtual sensors, and use the same experimentally obtained IMU data, this
allows for a fair comparison. The difference, however, is that OpenSense only incorporates
the kinematic constraints of the OpenSim model, e.g. the type of the joint connecting two
segments. The IEKF-OS algorithm next to that also includes the system dynamics.

5-2 Validation experiments

Initially, to mimic arbitrary motions, the idea was to have the end-effector track the infinity
shaped trajectory as designed in Chapter 4. Unfortunately, errors occurred when trying to
compile this code for the KUKA robot. As such, the choice was made to apply sine waves
as input to each joint motor. These inputs would allow to excite each joint individually at
various frequencies and amplitudes.

Desired motion specification

The intention of the experiments was to increase the frequency of the sine waves applied to the
joint motors between trials. In this way, it can be observed whether motion reconstruction
accuracy is preserved for varying motion excitations. Four trials were conducted. For the
first trial, a sine wave with a frequency of 0.025 [Hz] and amplitude of 1.2 [rad] was applied
to each joint. For subsequent trials, the frequencies of the sine waves applied to each joint
were increased in steps of 0.025 [Hz]. As the KUKA is a collaborative robot, it is mainly
meant to work with humans. This resulted that for the two trials with applied sine waves
of frequencies 0.075 [Hz] and 0.1 [Hz], the robot stopped moving. This is likely due to joint
velocity limits for safe human-robot interaction that were exceeded. For that reason, for these
two frequencies, the amplitudes had to be decreased to 0.7 [rad].

Calibration procedure

As outlined in Section 3-2-3, both the IMU’s gyroscope and the accelerometer components
need to be calibrated. For interested readers, a practical workflow of this procedure is included
in Appendix F. After calibrating the gyroscope and accelerometer, the sensor-to-segment
calibration needs to be performed. It should be noted, that this sensor-to-segment calibration
is a crucial step. Misalignment between the orientation of the experimental Xsens IMU and
the orientation of the virtual IMU in OpenSim will lead to inaccurate motion reconstruction.
As was noted in Section 4-5-3, for orientation errors in the order of 7.5 [deg] around each
X-Y -Z axis, joint angle RMSE values approaching 10 [deg] were observed. However, it is
expected that orientation errors as specified by Xsens in the order of 1.5 [deg] will occur. For
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that scenario with additional translational errors, Table 4-5 in Section 4-5 shows that joint
angle RMSE values in the range of 1-3 [deg] are likely to be obtained.

For the sensor-to-segment calibration, it was required that the system is configured in its fully
extended upward position. This entails that all the generalized coordinates q should be equal
to 0 [deg]. This requirement was validated by reading of the values of the joint encoders. To
configure the KUKA robot in this fully extended position, the joints were prescribed using
the KUKA interface towards 0 [deg]. Eventually, each joint had a maximal angle error of 0.1
[deg].

Xsens Velcro straps were then positioned on each of the KUKA’s links. These straps allow for
easy IMU attachment on the links of the KUKA robot. The sensor-to-segment calibration, as
outlined in Appendix F-1, was performed prior to the actual experiments. Each Xsens IMU
was attached as follows. The IMU’s X-axis faced towards the sky, its Z-axis points away from
the center of the KUKA’s link, and then automatically the IMU’s Y-axis points towards the
left. The creation of the corresponding virtual IMUs on the KUKA OpenSim model will be
further detailed in Appendix D-2 and Appendix F-1. The six Xsens IMUs attached to the
KUKA robot’s first six links are shown in Figure 5-1.

Figure 5-1: The KUKA LBR iiwa 7 R800 robot with the six Xsens MTw Awinda IMUs.

Initialization of the IEKF-OS algorithm

After the experiment, the data logged from the attached Xsens IMUs and the KUKA robot’s
encoders was processed. Similar to Chapter 4, the variances σ2

q and σ2
u of the process noises

for the six generalized coordinates q, and the six generalized velocities u, were set at 0 [rad]
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and 0 [rad/s] respectively. Hence, Qq = O6 [rad] and Qu = O6 [rad/s], where O6 denotes a
matrix with zeros of size 6×6. The variances of the process noises for the six joint torques
τ , were all set to σ2

τ = 1 [Nm], yielding Qτ = 1 · I6 [Nm]. Here, I6 denotes the 6×6 identity
matrix. The high joint torque variance allows for large dynamic motion differences. The
process covariance matrix Q in the IEKF-OS algorithm was formed with the Qq, Qu, and Qτ
process noise covariances on the diagonal. From the stationary inertial data logged prior to
the experiments, for each i-th IMU, the covariance matrices of both the gyroscope Σω,i and the
accelerometer Σa,i were determined. The measurement covariance matrix R was then formed
as a block diagonal matrix with all these covariances as shown in (5-1). The measurement
covariance R was set at R = 150·R. The multiplication factor of 150 was, from the simulations
performed in Chapter 4, found to work best. For the experiments conducted, this can be partly
explained. The noise in the inertial data obtained, was observed to increase at higher joint
velocities. This can be seen in Figure 5-2. Increasing the measurement covariance matrix R

Figure 5-2: The gyroscope and accelerometer data for the first 20 seconds. It can be observed
that the noise affecting the IMU measurements increases at higher velocities.

implies that the measurements should be weighed less. As such, this yields the following Q
and R matrices

Q =

Qq . . . O6
... Qu

...
O6 . . . Qτ

 , R = 150 ·


Σω,1 O3 . . . O3 O3
O3 Σa,1 . . . O3 O3
...

... . . . ...
...

O3 O3 . . . Σω,6 O3
O3 O3 . . . O3 Σa,6

 . (5-1)

Lastly, the number of measurement iterations ε, in the update step of the Kalman filter needs
to be defined. More measurement update iterations allow for estimating the actual underlying
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state value more accurately, when the estimates of the filter converge, for example, see [50].
The downside of choosing a lot of these iterations translates to an increase in computational
cost and time. Like Section 4-4, the value was set at ε = 3 as for more iterations, the
performance gained, was negligible.

The initial joint encoder values were used to configure the joint angles of the KUKA OpenSim
model accordingly. Note that, the IEKF-OS algorithm samples at the maximal frequency of
the Xsens IMUs, being 100 [Hz]. The robot encoder measurements, however, are sampled at
200 [Hz]. For that reason, these encoder values were downsampled to 100 [Hz]. Time syn-
chronization between the joint encoder values and the Xsens IMUs was performed manually.
From the logged inertial data, the time instant was selected when the angular velocities of
the sixth attached IMU started to increase. From this time instant, the IEKF-OS algorithm
was initialized.

Results

After processing the inertial data through the IEKF-OS algorithm, joint angle q̂ and joint
angular velocities û estimations were obtained. These estimations were compared against
the robot’s ground truth joint angles q and joint angular velocities u. The joint angular
velocities were approximated from the robot’s joint angle encoder measurements using a
forward-difference scheme. The results obtained for the four various experiments conducted
are presented in Table 5-1. The RMSE values were computed after the first second such that
the estimates of the IEKF-OS could converge. For conciseness, only the estimated states q̂

Table 5-1: The joint angle q and joint angular velocities u RMSE results obtained for the trials.

Trial Sine wave Joint angle RMSE [deg] Joint angular velocity RMSE [deg/s]

[Hz] [rad] q1 q2 q3 q4 q5 q6 u1 u2 u3 u4 u5 u6

1 0.025 1.2 0.966 0.370 1.908 0.750 1.770 1.492 0.375 0.299 0.404 0.551 0.301 0.912

2 0.05 1.2 1.053 0.448 1.971 0.874 1.204 1.565 0.565 0.476 0.527 0.680 0.477 1.555

3 0.075 0.7 2.220 0.322 2.181 0.781 2.789 1.426 0.595 0.756 0.609 1.000 0.565 1.416

4 0.1 0.7 0.846 0.486 2.066 0.998 0.955 1.509 0.715 0.589 0.649 0.952 0.498 1.936

and û of the six links of trial 2 are shown in Figure 5-3 and Figure 5-4. For the results of
the other trials, the reader is referred to Appendix E-1. For comparison, the actual joint
angles q and approximated joint angular velocities u from the joint encoders are shown in
blue in these figures. From the RMSE results as shown in Table 5-1, it can be concluded that
the IEKF-OS algorithm developed, is able to reconstruct the robot’s movements for varying
ranges of motion. The RMSE values for the joint angles q for these four trials are all within
the range of 0.4 - 2.8 [deg]. This indicates that accurate joint angle reconstruction for these
scenarios on the KUKA robot manipulator can be achieved using the IEKF-OS algorithm.

As previously stated, by observing the joint angular velocities closely, it can be seen that
oscillations are present at higher angular velocities. This phenomenon can particularly be
observed in Figure 5-4 for joint angular velocity u6. Still, the IEKF-OS algorithm is able to
estimate the joint angular velocities u with RMSE values within the range of 0.3 - 2 [deg/s].
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Figure 5-3: Trial 2 with sine waves applied to each joint with a frequency of 0.05 [Hz] and an
amplitude of 1.2 [rad]. Depicted are the estimated and actual joint angles q1, q2, and q3 (left
column), and estimated and actual joint angular velocities u1, u2, and u3 (right column).

Figure 5-4: Trial 2 with sine waves applied to each joint with a frequency of 0.05 [Hz] and an
amplitude of 1.2 [rad]. Depicted are the estimated and actual joint angles q4, q5, and q6 (left
column), and estimated and actual joint angular velocities u4, u5, and u6 (right column).
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5-3 Comparing accuracy of OpenSense-XKF3hm and IEKF-OS

With the IEKF-OS algorithm validated, it is interesting how the method developed compares
to OpenSense. During the experiments, next to the raw angular velocity and raw linear accel-
eration, the orientation estimates from Xsens’ XKF3hm algorithm were logged. OpenSense
uses the orientation estimates of each attached Xsens IMU and with inverse kinematics, con-
strains these orientation estimates to the underlying OpenSim model. For OpenSense to work,
accurate orientation estimates are needed.

Xsens’ XKF3hm algorithm relies on three inertial components in the IMU. By integrating the
angular velocity from the gyroscope, the sensor’s orientation can be computed. Due to noises
and biases corrupting the measurements made, the orientation estimates drift from the true
orientation [10]. The second sensor, the accelerometer, reveals information on the direction of
the gravity vector. With this accelerometer, information can be obtained about the roll angle
(around the X-axis), and the pitch angle (around the Y -axis), to compensate for orientation
drift in these two angles. A magnetometer is then usually included to compensate for the drift
around the yaw angle, (around the Z-axis). This magnetometer measures the local magnetic
field and gives information about this yaw angle. The local field measurements consist of
both the magnetic field due to the presence of magnetic material and the earth magnetic field
[10].

Therefore, to obtain accurate orientation estimations, one must make sure that the magne-
tometer measures the undistorted earth magnetic field. However, as these Xsens IMUs are
attached to the links of the KUKA robot, consisting of ferromagnetic material, an orientation-
dependent magnetic distortion is introduced [27]. As such, the magnetometer needs to be
calibrated for the presence of this magnetic material [10]. Next to that, large currents applied
to the joint motors also influence the local magnetic field [51]. For these reasons, Xsens’ Mag-
netic Field Mapper calibration procedure [51] was used to calibrate the magnetometer. For
correct magnetometer calibration, each IMU should capture as many orientations as possible,
while being in a constant local magnetic field [32]. With Xsens’ Magnetic Field Mapper cal-
ibration procedure, it was tried to calibrate the magnetometers of the six Xsens IMUs used.
It must be noted that with the Xsens IMUs attached, not all orientations can be captured.
This then resulted in a failure to accurately calibrate the magnetometers.

Still, the OpenSense method was compared against the IEKF-OS algorithm. The results for
trial 1 and trial 4 are presented in Figure 5-5 and Figure 5-6. As the estimates of OpenSense
are not reliable, no RMSE values have been computed. From Figure 5-5, it can be observed
that for applied sine waves with large amplitudes, the results of OpenSense start to dete-
riorate. This can especially be observed for joint angles q4, q5 and q6 in Figure 5-6. This
is likely due to two reasons. Firstly, larger applied currents to the motors disturb the local
magnetic field more. Secondly, for these large ranges of motion of 1.2 [rad], the sixth link
came in the neighborhood of other located magnetic material, such as desks and computers.
These additional disturbances presumably have affected the magnetometer readings more.
For smaller ranges of motion, as shown in Figure 5-5, OpenSense estimates approach the
ground truth estimates better. Still, for that scenario as well, no conclusions with respect to
comparing OpenSense and the IEKF-OS algorithm can be drawn. Again for the reason that
the magnetometer is not calibrated.
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Figure 5-5: Trial 1 with sine waves applied to each joint with a frequency of 0.025 [Hz] and an
amplitude of 1.2 [rad]. Comparison between actual joint encoders values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.

Figure 5-6: Trial 4 with sine waves applied to each joint with a frequency of 0.1 [Hz] and an
amplitude of 0.7 [rad]. Comparison between actual joint encoders values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.
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Initially, the aim was to compare the motion reconstructions obtained from both the IEKF-
OS and OpenSense methods for experimentally obtained inertial data. As the magnetometer
was not calibrated, from these results it cannot be concluded whether the IEKF-OS method
developed performs better compared to the method of OpenSense. Yet, it can be stated that
the IEKF-OS method performs motion reconstruction independent of the environment and
under the presence of magnetic disturbances. This is, however, expected as the IEKF-OS
algorithm does not rely on magnetometer data. For the scenario where magnetic material is
present, OpenSense will likely lead to these strange observed results. This only is the case
when these magnetic disturbances are unaccounted for.

5-4 Comparing accuracy of OpenSense-Madgwick and IEKF-OS

Due to the inaccurately calibrated magnetometer, the XKF3hm algorithm could not accu-
rately estimate the IMU orientations as the magnetometer measurements were distorted. As
a result, the joint angle estimates computed by OpenSense are not valid for comparison with
the IEKF-OS estimated joint angles. For that reason, an additional analysis was performed.
Ideal magnetometer data was created in simulation without any bias or noise. This magne-
tometer data was created as follows. From the experimental KUKA robot manipulator, the
joint encoder values of each trial were available. These ground truth joint angles were then
prescribed to the six joint angles of the KUKA OpenSim model to create the same motion in
simulation. With the KUKA OpenSim model and the virtual IMU frames in place, a forward
kinematics simulation was run. In the OpenSim ground frame, the artificial magnetic field
was aligned with the ground frame’s X-axis as mG = (X,Y, Z) = (1, 0, 0). Note that the
magnitude of the field is irrelevant. Only the information about the direction of the artificial
magnetic field is of importance for orientation estimation [10]. From OpenSim, the exact
rotation matrices can be obtained which express this magnetic field in the local virtual IMU
frame. This step is equivalent to the addition of the gravity vector as was outlined in Section
3-3-3. This leads to the following relation yielding the magnetometer data expressed in the
local virtual IMU frame v

mv = RvG(q)mG. (5-2)

Here RvG(q) is the state dependent rotation matrix between the ground frame G and the
virtual IMU frame v. For each virtual IMU frame, artificial magnetometer data was synthe-
sized at 100 [Hz] as similar to the sampling frequency of the Xsens MTw IMU. Note that in
real experiments, the magnetometer data will be disturbed due to noise. However, for this
scenario, no noise was added yielding perfect heading information.

To compute the sensor’s orientation required as input for OpenSense, Madwick’s orientation
estimation algorithm was used [26]. This algorithm was chosen as it is easy in use, is compu-
tationally inexpensive, and allows for accurate sensor orientation estimation [26]. It is easy
in use as it only requires the IMU data and a single gain value β. This gain value β charac-
terizes the gyroscope measurement error defined as the magnitude of a quaternion derivative.
Readers unfamiliar with quaternions can for example refer to [10] and [52]. It is convenient
to choose β using the angular velocity quantity ω̃max. This ω̃max represents the maximum
static gyroscope measurement error of each axis and can be estimated from the gyroscope’s
measurements for each axis [53]. The value β is then found from the derivation given in [26]
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yielding (5-3)

βi =
√

3
4 ω̃max,i, (5-3)

where the subscript i denotes the i-th IMU considered. The values for the six Xsens MTw
gyroscopes were computed being β1 = 0.0012, β2 = 0.0019, β3 = 0.0033, β4 = 0.0039, β5 =
0.0017, β6 = 0.0032. The algorithm uses quaternions to represent the sensor’s orientation.
The filter fuses the magnetometer data and obtained accelerometer data in an optimized and
analytically derived gradient-descent algorithm to determine the direction of the gyroscope
measurement error. This error is expressed as a quaternion derivative.

The experimentally logged accelerometer and gyroscope data are not affected by the magnetic
material of the KUKA links. For that reason, the experimentally logged gyroscope and
accelerometer data from the actual experiment were then fused using the synthesized noise-
free magnetometer data in the Madgwick filter to compute sensor orientations. The six
sensor orientations were then given as input to OpenSense. The IEKF-OS and OpenSense
algorithms were given the same model with the same initial robot configuration and the same
placed virtual sensors. The initial configuration for each trial was set using the initial joint
encoder values obtained from the KUKA robot.

Results
The same four motions performed and presented in Section 5-2 were used for the motion track-
ing accuracy comparison of the IEKF-OS algorithm with respect to the method of OpenSense.
Both method’s joint angle estimations were compared to the ground truth joint angles ob-
tained from the KUKA’s encoders. The motion tracking accuracy performances of both
methods were assessed using the RMSE metric. The results obtained for all trials are pre-
sented in Table 5-2 and the joint angles of trial 3 are depicted in Figure 5-7.

Table 5-2: Comparison of the IEKF-OS joint angle RMSE values with the OpenSense joint angle
RMSE values. The RMSE values are computed with respect to the actual ground truth joint
encoder values. The mean RMSE joint angle q̄ for each trial is shown in the last column.

Trial Sine wave Method RMSE [deg] RMSE [deg]

[Hz] [rad] q1 q2 q3 q4 q5 q6 q̄

1 0.025 1.2
IEKF-OS 0.966 0.370 1.908 0.750 1.770 1.492 1.209
OpenSense 1.335 4.994 5.881 1.328 1.346 1.643 2.755

2 0.05 1.2
IEKF-OS 1.053 0.448 1.971 0.874 1.204 1.565 1.186
OpenSense 1.221 5.010 4.619 1.183 1.004 1.393 2.405

3 0.075 0.7
IEKF-OS 2.220 0.322 2.181 0.781 2.789 1.426 1.620
OpenSense 1.039 6.475 5.514 2.191 0.877 2.128 3.037

4 0.1 0.7
IEKF-OS 0.846 0.486 2.066 0.998 0.955 1.509 1.143
OpenSense 0.631 2.112 1.641 1.772 0.762 2.312 1.538
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Figure 5-7: Trial 3 with sine waves applied to each joint with a frequency of 0.075 [Hz] and an
amplitude of 0.7 [rad]. Comparison between actual joint encoder values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.

For conciseness, the actual and estimated joint angles of the other three trials are shown in
Appendix E-2. From the results presented, it can be concluded that the IEKF-OS algorithm
incorporating the system dynamics has lower tracking errors for the motions performed on
the KUKA robot compared to OpenSense. As can be seen from Table 5-2, looking at the
max RMSE values, OpenSense shows values around 6 [deg], whereas the IEKF-OS algorithm
does not exceed 3 [deg]. The mean RMSE joint angle q̄ of the six RMSE joint angle values is
shown in the last column of Table 5-2. Clearly, the mean RMSE q̄ of the IEKF-OS algorithm
is lower for each trial compared to the mean RMSE q̄ of OpenSense. Note that, the IEKF-OS
method reconstructs the motion based on the real experimentally obtained gyroscope and
accelerometer data. Whereas the sensor orientations computed by the Madgwick filter are
based on synthesized perfect magnetometer data. This data gives the exact information about
the sensor’s heading yielding accurate orientation estimations. This fact, even more, accentu-
ates the motion reconstruction accuracy improvement gained when the system dynamics are
included as incorporated in the IEKF-OS algorithm.

5-5 Conclusions

In this chapter, the IEKF-OS algorithm developed, was validated for varying dynamic motions
on the physical KUKA robot manipulator. Sensor placement errors are inevitably present
between the virtual IMUs and the experimental Xsens IMUs. Despite those sensor placement
errors, the IEKF-OS algorithm was still able to reconstruct the original motion. For the four
trials, RMSE values with respect to the ground truth joint encoder values are in the range

P.A.M. de Kanter Master of Science Thesis



5-5 Conclusions 71

of 0.4-2.8 [deg]. Vibrations occurring at higher joint velocities resulted in more noisy inertial
measurements at these velocities. Yet, the IEKF-OS joint angular velocities showed to be
accurate for the four trials with RMSE values ranging between 0.3-2 [deg/s].

As it was not feasible to calibrate the Xsens MTw magnetometers while being attached
to the KUKA links, the results obtained from OpenSense with the underlying XKF3hm
orientation estimation algorithm are not reliable. Therefore, the IEKF-OS algorithm and
OpenSense-XKF3hm could not be compared in terms of motion reconstruction accuracy.
From this comparison, it could only be concluded that the IEKF-OS algorithm is able to
accurately reconstruct motions regardless of magnetic disturbances. This is because the
IEKF-OS method does not rely on magnetometer data.

To be able to compare the IEKF-OS algorithm against OpenSense, noise-free exact magne-
tometer data was synthesized in a forward kinematics simulation. This motion was the same
motion as performed during the actual experiments. Fusing the magnetometer data in a
Madgwick filter together with the experimentally obtained gyroscope and accelerometer data
allowed OpenSense to reconstruct the KUKA robot motion. From the results obtained, it
was shown that the IEKF-OS technique showed lower tracking errors for the trials conducted
on the KUKA robot compared to the OpenSense-Madgwick approach. For the IEKF-OS
algorithm, mean RMSE joint angle values were in the range of 0.4-2.8 [deg], whereas the
OpenSense-Madgwick mean RMSE joint angle values ranged between 0.6-6.4 [deg]. It must
be noted that OpenSense, being an inverse kinematics method, highly relies on the under-
lying sensor orientations computed. Therefore, it would be interesting to test the IEKF-OS
algorithm against OpenSense-XKF3hm in a magnetically undistorted environment. Still, it
must be noted that accurate orientation estimations were computed as the Madgwick filter
used perfect magnetometer data.

With the goal of future human motion reconstruction, the IEKF-OS algorithm first has to
be validated for human motions. When validated, the algorithm could open up for the desire
of human motion reconstruction. For example, when motions are desired to be captured for
patient monitoring at home. The patient will, during its day-to-day tasks, come into close
contact with various magnetic materials. When unaccounted for these magnetic disturbances,
using OpenSense with magnetometer-based orientation estimates, will not lead to the desired
motion reconstruction results. The IEKF-OS algorithm does not rely on this magnetometer
data to reconstruct the subject’s motion. As such, the IEKF-OS method developed, could be
used as an alternative for capturing 3D motions in a markerless and unconstrained environ-
ment even when this environment is magnetically disturbed.
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Chapter 6

Conclusions and Recommendations

This concluding chapter gives a general summary of this thesis work presented and answers
the research questions as they were posed in the introductory chapter. Finally, the recommen-
dations are discussed for future work.

6-1 General summary

The main goal of this thesis was to develop a method that allows to reconstruct 3D motions
using inertial measurements and the system’s dynamical model together with its kinematic
constraints. To that aim to devise this novel technique, this thesis functioned as a bridge
between the fields of sensor fusion and biomechanical modeling.

The proposed structure of the motion reconstruction algorithm allows to include more kine-
matic information compared to the state-of-the-art sensor fusion approach of Weygers et al.
(2020) [15]. In their approach, the authors only assume that two bodies are linked by a
spherical joint allowing the bodies to freely rotate relative to each other. Compared to their
method, including the type of joint, as presented in this thesis, constrains the kinematically
possible movements between two linked rigid bodies. This allows for accurate motion recon-
struction on the KUKA robot manipulator as was shown using numerical simulations and
experiments. Next to that, also inertial properties of each rigid body such as segment masses
and lengths, center of mass locations, and moments of inertia are taken into account. This
similar to the approach taken by Dorschky et al. (2019) [6]. However, the method of [6], is
currently limited to 2D human motion reconstruction. For that reason, this thesis focused
on including a 3D model such that 3D motions of the KUKA robot manipulator could be
reconstructed.

It was observed that sensor placement errors, mainly rotational errors, affect the motion
reconstruction accuracy. This is expected as rotational errors affect the measurements from
both the gyroscope and the accelerometer. Translation errors, on the other hand, only affect
the readings of the accelerometer. This can be explained as the angular velocity, expressed
in a known frame, is only dependent on the orientation of that frame, not on its location on
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the body. Hence, is expected that the motion reconstruction accuracy will improve when the
sensor placement errors, between virtual and experimental sensors, are minimized.

The IEKF-OS algorithm was verified and validated on a robot manipulator using numerical
simulations and experiments, respectively. From these analyses, it could be concluded that
the 3D motions of the robot’s six interconnected links could be reconstructed. Although these
results cannot be translated directly to human motion capture, the next step would be to do
so and assess the IEKF-OS’ motion reconstruction accuracy for human motions.

6-2 Research questions

The main research question was for this thesis was defined as:

How can the inertial measures of multiple IMUs and the system’s dynamical
model be used to improve 3D motion reconstruction accuracy?

To answer this question, three sub-research questions were initially posed in the introductory
chapter. The results of this thesis led to the following answers.

What method can be developed to exploit the system’s nonlinear dynamical model
while simultaneously addressing the noise affecting the inertial measurements?

The IEKF-OS algorithm derived in Chapter 3, showed that accurate motion reconstruction
is possible on a six link robot manipulator. The first stage, the time update in the Kalman
filter, incorporates the subject’s dynamics, as computed by OpenSim, to predict the motion.
Due to the nonlinearity of the motion models governing the motion of the system, lineariza-
tions at the current state are computed. As such allowing to form the algorithm’s required
Jacobians matrices. The second stage of the algorithm, the correction step, then fuses the
IMU measurements from multiple IMUs to improve the model estimates of joint angles and
speeds at the current state. Besides, using the iterative nature of the IEKF-OS then allows
to increase the accuracy of the estimations made. As a result, a congruent virtual motion re-
construction is obtained. By including the control torque τ in the state vector, the technique
devised allows to approximate the torque needed to drive the model. Although no validation
of applied control inputs has been performed on the KUKA robot manipulator, this is shown
on an actuated double pendulum simulation as presented in Appendix C. There, from nu-
merical simulations performed, it is shown that due to the inclusion of the inertial properties
of the model, accurate reconstruction of the original torque applied, was possible. It must be
noted that that simulation was again for an idealized scenario in which no sensor placement
errors were imposed.

How sensitive is the new algorithm to common sensor placement errors when
applied to a robot manipulator?

The results in Chapter 4 show that for moderate sensor placement errors, the IEKF-OS algo-
rithm is still able to reconstruct the original motion. When each attached IMU was translated
in an X,Y and Z direction of 3 [cm] with respect to its original location, from 100 Monte
Carlos simulations, it was shown that joint angle RMSE values remained below 1 [deg] for all
joint angles. This could be explained as the angular velocity measurements were not affected
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by these translated frames. Contrary, it was observed that imposing rotation errors around
each IMU’s axis of 1.5 ·XRMS = 2.25 [deg] resulted in a higher joint angle RMSE. For that
scenario, RMSE values ranged between 1-5 [deg] per joint angle. This could be explained
as re-orienting the frame also affects the angular velocities measured. The algorithm’s mo-
tion tracking performance really showed to deteriorate when rotational errors around each
attached IMU’s axis were applied of 5 ·XRMS = 7.5 [deg] next to already present translation
errors of 3 [cm] in each axis. For that scenario, joint angle RMSE values ranging between 7-10
[deg] were observed. Care must, therefore, be taken when attaching IMUs to rigid bodies.
Modeling the virtual IMU’s orientation in agreement with the attached experimental IMU is
thus key to obtain accurate motion reconstruction. It should be noted that these outcomes
are only an indication of the algorithm’s robustness to sensor placement errors when these
IMU sensors are attached to the KUKA robot manipulator. For human motion capture, one
also needs to take into account the additional soft tissue artifacts (STAs) for the case when
sensors are attached to human skin. These STAs will disturb the IMU measurements made
to a larger extend.

How does the novel algorithm utilizing the system’s dynamical model compare to
a method which solely uses kinematical constraints in terms of tracking perfor-
mance for various ranges of motion?

The IEKF-OS method was compared against the method developed by the creators of Open-
Sim, called OpenSense. OpenSense is an inverse kinematics based approach. This tool uses
the sensor orientation estimates and constrains these to the underlying model. For this tech-
nique to work, accurate orientation estimations are required. For this thesis, Xsens IMUs were
used, from which the IMUs orientation can be estimated using Xsens’ XKF3hm algorithm.
This XKF3hm uses the magnetometer to compensate for the drift in the yaw angle. Due
to the joint torques applied and the KUKA link’s magnetic material, these magnetometer
measurements were distorted. No comparison could therefore be made between the IEKF-OS
and OpenSense-XKF3hm methods in terms of motion reconstruction accuracy. It could only
be concluded that the IEKF-OS method is able to reconstruct motions in a magnetically dis-
turbed environment as it does not rely on magnetometer data. To be able to compare both
method’s motion tracking accuracy performances, an additional analysis was performed. To
that aim, exact magnetometer data was synthesized in a forward kinematics simulation con-
gruent to the actual motions performed during the experiments. The Madgwick orientation
estimation algorithm was then used to compute sensor orientations from the artificial exact
magnetometer data, and experimentally obtained gyroscope and accelerometer data. The
exact magnetometer data having no noise added, provided the ideal heading information for
the Madgwick estimated IMU orientations. Still, from the results obtained, it was observed
that the IEKF-OS algorithm, solely relying on experimentally obtained IMU data, had lower
joint angle tracking errors. The IEKF-OS algorithm for the four experiments had joint angle
RMSE values in the range of 0.4-2.8 [deg]. The OpenSense-Madgwick method contrary re-
sulted in RMSE values ranging between 0.6-6.4 [deg]. For the various trials conducted, both
method’s joint angle estimations were compared against the ground truth joint encoder values
from the KUKA robot. One point needs to be made regarding this comparison. OpenSense
highly relies on the underlying method that computes the sensor orientations. As such, no
remarks can be made whether the IEKF-OS algorithm also shows lower tracking errors when
it is compared against OpenSense with Xsens’ XKF3hm orientation estimation algorithm.
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6-3 Recommendations for future work

With the new method proposed for reconstructing 3D motions, some recommendations for
future work are discussed.

Application to biomechanical models

With the IEKF-OS algorithm validated on the KUKA robot manipulator, it would be inter-
esting to assess the IEKF-OS motion reconstruction performance for human motions. Future
work could, therefore, extend this work to for instance the scapulothoracic joint model created
by [54] to examine human shoulder motions. From the results presented in this thesis, it can
be stated that the algorithm developed allows to reconstruct motions for six interconnected
robotic links. Hence it would, therefore, be assumed that motions of the human thorax, shoul-
der, upper arm, and lower arm, modeled as a four-link system, could also be reconstructed
using this algorithm. This statement, however, cannot be validated as such human motion
experiments have not been performed.

Including muscle physiology into the biomechanical model

Extending on the previous future work direction, it would be interesting to include muscle
physiology into the biomechanical model. In this thesis, the actuators were modeled as
coordinate actuators, as only mechanical systems have been concerned. For biomechanical
models, however, a more realistic approach would be to model these actuators as muscles.
Recently, the scapulothoracic joint model [54] was updated which includes muscles [24]. With
this musculoskeletal model, even more human movement-related metrics could be estimated.

Comparison against Optical Motion Capture

When the IEKF-OS algorithm was compared against the OpenSense-XKF3hm method with
experimentally obtained IMU data, no conclusions could be made about which method has
lower tracking errors. This due to the fact that the magnetometers couldn’t be calibrated
correctly due to the configuration and motions possible by the KUKA. Moreover, subsequent
links nearing other links located closer to the root of the KUKA influenced the local magnetic
field. This due to the steel material inferring with the local magnetic field. As such, when
both methods are applied to human motions in a magnetically undisturbed field, this would
allow for a fair comparison. This due to the fact that human bodies consisting of bones and
muscle logically do not interfere with the local magnetic field. The downside then would be
that there is no ground truth data available. As a solution, both methods should be tested
on human motions and compared to a data set obtained from an Optical Motion Capture
(OMC) system.

C++ implementation

The current limitation of the approach presented, lies in the fact that complex systems com-
posed of multiple linked rigid body segments are described by a larger set of state variables.
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The state vector x will grow with 3n for each added DoF n. Besides, for each added body,
an additional IMU is needed for which predicted measurements need to be computed. This
extension of the state vector with additional IMUs would translate to larger motion and
measurement model Jacobians. Together with the measurement update iterations, rendering
an increase in computational time. As a result, this then diverges from the eventual desire
towards real-time motion reconstruction in the field. As the IEKF-OS algorithm is currently
only incorporated in MATLAB, future work could look towards implementing the algorithm in
C++ for faster computational times.

Improve the sensor-to-segment calibration

For this thesis, a simple sensor-to-segment calibration method was developed. This method
relies on Xsens’ XKF3hm algorithm. Using XKF3hm, the orientation of the Xsens IMU can
be obtained. The IMU’s position was manually measured using a tape measure. With this
information, the corresponding virtual IMU on the OpenSim model was modeled. Future
work, however, could look at more advanced calibration procedures to minimize the sensor
placement error between modeled virtual IMUs and experimental IMUs.

Concluding remarks

To conclude, with this novel approach presented, a powerful motion reconstruction algorithm
has been developed. The author, therefore, encourages, in particular future researchers and
scientists in the biomechanical/clinical field, to extend this work to human motion recon-
struction. To that potential, the author hopes that this thesis can make a small contri-
bution one day to clinical studies investigating sport activities or research examining ab-
normal or impaired human movements. The author is convinced that fascinating insights
will be achieved when motions of patients are unobtrusively logged using these small and
lightweight inertial sensors during the patient’s day-to-day life. To facilitate that step, the
author plans to make the code, model, results, and experiment data available on the GitHub
https://github.com/DaandeKanter/IEKF-OS_Algorithm, for those researchers interested.
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Appendix A

Probabilistic derivation posterior in
IEKF

To derive the posterior xt as given in (3-50) in the Iterated Extended Kalman Filter, the joint
density for the state and measurement at time t, as shown in (3-49), is evaluated and can be
expressed as approximately Gaussian [45]. For plainness, (3-49) is presented here again

p(xt, yt|x̌0, y0:1−t) ≈ N
([
µx,t
µy,t

]
,

[
Σxx,t Σxy,t

Σyx,t Σyy,t

])
,

= N
([

x̌t
ȳt +Ht(x̌t − x̄t)

]
,

[
P̌t P̌tH

>
t

HtP̌t HtP̌tH
>
t +MtRtM

>
t

])
.

(A-1)

In (A-1), the joint Gaussian over a pair of variables (x,y) is written as

p(x, y) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
. (A-2)

Observing that, Σyx = Σ>xy and that it has the same exponential form as the multivariate
Gaussian PDF p(x|µ,Σ) where x ∈ RN is given as

p(x|µ,Σ) = 1√
(2π)N det Σ

exp
(
−1

2(x− µ)>Σ−1(x− µ)
)
. (A-3)

Here µ ∈ RN is the mean and Σ ∈ RN×N is the symmetric positive definite covariance matrix.

Subsequently, the Gaussian conditional density for xt, i.e. the posterior, is to be determined
where it is assumed that yt is known. To determine this posterior, note that it is always
possible to break a joint density into the product of two factors: p(x, y) = p(x|y)p(y). The

key here is to factor out the term
[
Σxx Σxy

Σyx Σyy

]
for the joint Gaussian case by making use of
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the Schur complement [43] as[
Σxx Σxy

Σyx Σyy

]
=
[
I ΣxyΣ−1

yy

0 I

] [
Σxx − ΣxyΣ−1

yy Σyx 0
0 Σyy

] [
I 0

Σ−1
yy Σyx I

]
. (A-4)

As in (A-3), the inverse of Σ is taken, inverting both sides of (A-4) yields[
Σxx Σxy

Σyx Σyy

]−1

=
[

I 0
−Σ−1

yy Σyx I

] [
(Σxx − ΣxyΣ−1

yy Σyx)−1 0
0 Σ−1

yy

] [
I −ΣxyΣ−1

yy

0 I

]
. (A-5)

Subsequently, looking at the exp-term (x− µ)>Σ−1(x− µ), then p(x, y) can be written using
the Schur complement as([

x
y

]
−
[
µx
µy

])> [
Σxx Σxy

Σyx Σyy

]−1([
x
y

]
−
[
µx
µy

])

=
([
x
y

]
−
[
µx
µy

])> [
I 0

−Σ−1
yy Σyx I

] [
(Σxx − ΣxyΣ−1

yy Σyx)−1 0
0 Σ−1

yy

] [
I −ΣxyΣ−1

yy

0 I

]([
x
y

]
−
[
µx
µy

])
,

=
(
x− µx − ΣxyΣ−1

yy (y − µy)
)>(

Σxx − ΣxyΣ−1
yy Σyx

)−1(
x− µx − ΣxyΣ−1

yy (y − µy)
)

+ (y − µy)>Σ−1
yy (y − µy).

(A-6)
Notice that this is the sum of two quadratic terms. Moreover, observe that the exponential
of a sum is the product of two exponentials, hence

p(x, y) = p(x|y)p(y), (A-7a)

p(x|y) = N
(
µx + ΣxyΣ−1

yy (y − µy),Σxx − ΣxyΣ−1
yy Σyx

)
, (A-7b)

p(y) = N (µy,Σyy). (A-7c)
As it was assumed that yt is known, the Gaussian conditional density for xt, the posterior, is
given as

p(xt|x̌0, y0:t) = N
(
µx,t + Σxy,tΣ−1

yy,t(yt − µy,t)︸ ︷︷ ︸
x̂t

,Σxx,t − Σxy,tΣ−1
yy,tΣyx,t︸ ︷︷ ︸

P̂t

)
, (A-8)

here x̂t denotes the mean and P̂ its covariance. This concludes the derivation of (3-50).
Continuing by observing (A-8) closely, the reader can see that the Kalman gain is given by
Σxy,tΣ−1

yy,t. Furthermore, µx,t and Σxx,t are set to µx,t = x̌t and Σxx,t = P̌t. Thus deriving
from (A-8), this yields the generalized Gaussian update/correction equations

Kt = Σxy,tΣ−1
yy,t, (A-9a)

P̂t = P̌t −KtΣ>xy,t, (A-9b)
x̂t = x̌t +Kt(yt − µy,t). (A-9c)

Contrary to the general KF, for the IEKF case, the moments of µy,t,Σyy,t and Σxy,t as shown
in (A-1) are now substituted which concludes this procedure and yields the IEKF equations

Kt = P̌tH
>
t (HtP̌tH

>
t +MtRtM

>
t )−1, (A-10a)

P̂t = (I −KtHt)P̌t, (A-10b)

x̂t = x̌t +Kt

(
yt − ȳt −Ht(x̌t − x̄t)

)
. (A-10c)
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Appendix B

Implementation in OpenSim

When a user-defined system, modeled as an .osim model is created, the first step to running
a simulation is to initialize this just created model. For convenience, this .osim model will be
named osimModel. The components of the model need to be interconnected and a Simbody
Multibody System needs to be created to represent the osimModel computationally. Then
this model needs to be finalized. These steps can be accomplished by running the OpenSim
command osimModel.initSystem on the osimModel which realizes the following steps

1. Generate the Equations of Motion (EoM) governing the dynamics of the model.

2. Assembles the model to satisfy position constraints.

3. Returns the initial state as a state object.

When no initial state is specified, OpenSim will set the state equal to 0. In OpenSim,
simulations for a user-defined system can then be performed by first constructing a Manager.
This class within OpenSim manages the execution of a simulation and by default uses a Runge-
Kutta-Merson integrator. First, the osimModel can be passed to this Manager constructor to
create an object of class Manager named manager as

manager = Manager(osimModel). (B-1)

The next step is to initialize the manager at the current state as

manager.initialize(state). (B-2)

The model can then be simulated from start till a specified final time fTime in one go by
integrating the EoM for the specified model at the current state as

manager.integrate(fT ime). (B-3)

If, however, users also want to extract values during simulation, like is the idea for this thesis,
a for-loop t = 1 : n can be defined such that the state is iteratively updated per time step as

state = manager.integrate(t ∗ dT ime), (B-4)
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where dTime is the time step and n the total simulation time. For this thesis, this dTime value
will be equal to the maximal available sampling frequency of the used Xsens MTw Awinda
IMUs. This sampling frequency, however, depends on the size of the set of MTw’s used and
is depicted in Table G-4. Using this for-loop approach, information such as the values of the
generalized coordinates q and generalized velocities u can be called at the current time t as

q = state.getQ, (B-5a)
u = state.getU, (B-5b)
q̇ = state.getQDot, (B-5c)
u̇ = state.getUDot. (B-5d)

Note that if one is interested in the derivatives of q and u, being q̇ and u̇ respectively,
one must realize the OpenSim acceleration stage prior to calling these state.getQDot and
state.getUDot functions. This realization can be accomplished as

osimModel.realizeAcceleration(state). (B-6)
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Appendix C

Simulation of an actuated double
pendulum

Prior to testing the IEKF-OS motion reconstruction algorithm on the KUKA robot manip-
ulator, the novel algorithm was first verified on a rather simple actuated double pendulum
system. First of all, a schematic overview of the verification process is shown in Figure C-1.

Figure C-1: Overview of the performed steps. First, as shown in the green box, artificial mea-
surement data is created from a forward kinematics performed simulation after which Gaussian
noise is added. With the simulated artificial measurement data, the motion is then reconstructed
using the developed motion reconstruction algorithm as shown in the blue box. Lastly, the per-
formance of the IEKF-OS algorithm is assessed in the red box by means of the computed RMSE
error between the actual state variables x and the estimated state variables x̂.
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As this verification process is simulation-based, the original values of the state vector x can
be extracted from this forward kinematics simulated system. The values obtained, can then
be compared against the predicted state vector x̂ computed by the IEKF-OS algorithm. The
reconstruction performance is then assessed by means of the Root-Mean-Square Error (RMSE)
between the actual state variables x and predicted state variables x̂ as will be outlined in
Section C-3. With the overview of the procedure detailed, the model of the simulated double
pendulum with the two hinge joints allowing for 3D motion is presented next.

C-1 The double pendulum OpenSim model

The upper link of the double pendulum, shown in red in Figure C-2a, is attached to the
ground by means of a pin joint allowing this link to rotate in the (X,Y ) plane. To have
the lower link of the double pendulum, shown in blue in Figure C-2a, perform motions out
of its 2D plane spanned by the axes (X,Y ), a second pin joint was modeled. This joint is
located between the upper link and the lower link and is rotated by 90 [deg] with respect to
the first joint around the Y -axes. This allows the lower link to perform motions in the (Z, Y )
plane. Combined with the first link, the lower link will perform motions in a 3D space. As to
each body, one virtual IMU frame is attached, the three angular velocities ω and three linear
accelerations a can be measured by each virtual attached IMU. A schematic overview of the
double pendulum and the generalized coordinates is shown below in Figure C-2a. Next to
this schematic, the double pendulum as modeled in the OpenSim environment is shown in
Figure C-2b.

(a) (b)

Figure C-2: (a) Schematic overview of the double pendulum and its generalized coordinates.
Moreover, each link has a virtual IMU attached, which both are modeled as reference frames.
(b) The modeled double pendulum system shown in the OpenSim environment together with two
reference frames functioning as virtual IMUs. The center of mass locations are shown by green
spheres at the end of each link. The OpenSim reference frame can be seen in the left corner.
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To create a model in OpenSim, for each body, the mass, the center of mass locations in the
body frame, and the elements of the inertia tensor measured about the mass center need to
be defined. The double pendulum system was modeled as two solid cylinders each having a
length of 1 [m], a radius of 0.1 [m], and a mass of 1 [kg]. The center of mass was located at
the center of the cylinder as can be seen by the green spheres in Figure C-2b. For a solid
cylinder with radius r, length l and mass m, the inertia tensor was equal to

I1 = I2 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 [kg m2], (C-1a)

=

 1
12m(3r2 + h2) 0 0

0 1
12m(3r2 + h2) 0

0 0 1
2mr

2

 =

0.085833 0 0
0 0.085833 0
0 0 0.005

 .
(C-1b)

With these inertial properties described, attention will now be turned to the state vector of
this double pendulum system.

C-1-1 State vector

The system dynamics are described using the generalized coordinate formulation. For each
Degree of Freedom (DoF), three state variables are used. Here, the first state variable de-
scribes its joint angle, denoted by q, the second state variable describes the joint angular
velocity, u, and lastly, the augmented state variable τ denotes the joint torque applied to
that joint. For instance, for two linked rigid-body segments, each subsequent generalized
coordinate is described with respect to its previous one as can be seen in Figure C-2a. There,
the joint angle q2 is defined relative to its linked upper body. The joint angle q1 is then again
defined relative to the vertical of the ground frame. As the system has two DoFs, the total
state vector x describing the system will consist of six state variables resulting in

x =



q1
q2
u1
u2
τ1
τ2


. (C-2)

C-1-2 Actuating the double pendulum model

To actuate the double pendulum model with the torque values as will be computed by the
IEKF-OS algorithm, coordinate actuators and controller objects were defined in the Open-
Sim model. Each coordinate actuator is only allowed to actuate the respective generalized
coordinate it has access to. Subsequently, a controller object needs to be made which defines
the amount of control torque that this coordinate actuator needs to supply to its joint. This
controller gets the computed IEKF-OS joint torque value as its input. Lastly, prior to running
a forward simulation, virtual IMUs need to be attached which is detailed in the next section.
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C-1-3 Attaching the virtual IMUs

With the system properties defined, the virtual IMUs which are modeled as reference frames
will now be detailed. These frames are visualized in Figure C-2b as orthogonal XY Z-frames,
with the X-axes in red, the Y -axes in green, and the Z-axes in blue. The first virtual IMU is
located at the center of the end of the first link. Similarly, the second virtual IMU is located
at the center of the end of the second link. For the double pendulum’s default configuration of
q1 = q2 = 0 [rad], the first virtual IMU has its X-axis, Y -axis, and Z-axis pointing along the
positive OpenSim ground reference frame X-, Y -, and Z-axes respectively. The joint between
the upper and lower link is rotated 90 [deg] counterclockwise around the Y -axis with respect
to the upper joint. Hence, the second virtual IMU for this pendulum’s default configuration
has its X-axis pointing along the negative OpenSim ground reference frame Z-axis, and its
Z-axis pointing along the positive OpenSim ground reference frame X-axis while having its
Y -axis pointing along the positive OpenSim ground reference frame Y -axis. With the created
model in place, the next section describes the contents as shown in the green box of the
schematic overview as was given in Figure C-1.

C-2 Creating artificial IMU measurements

As for this verification process, no real IMU measurements are available, they first have to be
created. Hence, the idea is to initialize the double pendulum system at a known initial state
x0 and perform a forward kinematics simulation. Moreover, various known joint torque step
functions will be applied to the joints. The aim is here to eventually estimate these torques
using the IEKF-OS algorithm and compare the actual and predicted torques later on.

Compared to the current motion tracking technique of [15], this is an additional benefit
as in this algorithm, the system’s segment masses and lengths, center of mass locations, and
moments of inertia are taken into account, allowing for this joint torque estimation. A current
limitation of the method presented in this thesis, however, is that no constraints are invoked
on the computed joint torques. Next to that, for the algorithm’s eventual use for human
motion reconstruction in the field, instead of the currently modeled coordinate actuators,
muscle objects need to be included in the model of the human. These muscle objects would
then allow for accurate muscle energy predictions.

Nonetheless, as the focus of this thesis is limited to the reconstruction of motions of mechan-
ical systems, future work could look towards reconstruction of human motions by instead
modeling a human body with muscles as actuators. Hence, for the rest of this chapter, it will
now be assumed that there are no limits on the to be supplied control torques to minimize
the error between the predicted and actual motion. This mainly since the system at hand
does not represent an actual modeled double pendulum setup, but was just modeled by the
author himself for the algorithm’s verification purposes. Attention will now be turned to the
double pendulum system where first the known torque input functions and the pendulum’s
initialization will be specified.
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Torque input functions and initialization

Instead of a forward kinematics simulation, where the system is just let go from its initial
state, the system will be actuated by two different supplied control torques yielding a non-
autonomous system. Here, τ1 is the joint torque supplied to joint angle q1 and similarly, τ2
the joint torque actuating joint angle q2. A visualization of these joint torque step functions,
f(t)τ1 and f(t)τ2 , with their starting and end times is shown in Figure C-3. The initial state
of the pendulum was set at rest meaning that both joint angles were equal to q1=q2=0 [deg]
and both joint angular speeds were also set to zero: u1=u2=0 [deg/s].

Figure C-3: The two control torque step functions f(t)τ1 and f(t)τ2 applied to the joint angles
q1 and q2 respectively.

As these input torque functions are known at each time, this allows to also assess the per-
formance of the IEKF-OS algorithm in estimating these various control inputs. The results
obtained will be detailed in Section C-3. With the initialization defined, the next step will be
to add Gaussian noise to the obtained measurements to mimic experimentally logged IMU
data.

Adding Gaussian noise to the artificially created IMU measurements

The system is simulated at 100 [Hz] using the initial conditions and given input torque step
functions as shown in the previous section. The sampling frequency of 100 [Hz] was chosen
as this is the maximum sampling frequency of the eventually used Xsens MTw IMUs when a
set of six IMUs are used [11]. This for the reason as during the experiments conducted on the
KUKA robot manipulator, as outlined in Chapter 5, a set of six Xsens IMUs will be used.
Looking at (3-52c), it can be seen that for each measurement, also a predicted measurement
is needed. For this reason, the sampling frequency of the motion reconstruction algorithm
should always be set similar to the sampling frequency of the experimental Xsens IMUs.

From the attached OpenSim frames, representing the virtual IMUs, during the simulation the
desired angular velocity ω and linear acceleration a of each pendulum link can be obtained.
This as the idea of the IEKF-OS algorithm is based on tracking raw angular velocities and
linear accelerations. Note, however, that in a real experiment, these quantities are measured
by body attached IMUs and are typically affected by noise, for example see Chapter 2 of [10].
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Hence, to get the simulation in agreement with an actual motion tracking experiment, noise
should be added. It is assumed that the noise, corrupting these measured angular velocities
and linear accelerations in real experiments, is of Gaussian form. To create noise that is
similar to real noise values of the eventually used Xsens MTw IMUs [11], first, the noise
covariances of two calibrated stationary IMU sensors were found experimentally at 100 [Hz]
as

Σω1 =

2.357 0 0
0 3.364 0
0 0 3.048

 · 10−6, Σω2 =

3.901 0 0
0 2.103 0
0 0 2.550

 · 10−6.

Σa1 =

1.957 0 0
0 1.840 0
0 0 3.102

 · 10−4, Σa2 =

1.932 0 0
0 1.817 0
0 0 2.792

 · 10−4.

where Σω is the noise covariance matrix obtained from the gyroscope and Σa the noise co-
variance matrix of the accelerometer. Using these obtained noise covariance matrices, the
noise vectors to be added to the gyroscope simulated angular velocity ω and accelerometer
simulated linear acceleration a were created as eω ∼ N (0,Σω) and ea ∼ N (0,Σa) using the
MATLAB function mvnrnd. The artificial measurements were then constructed by adding these
obtained noise values to the already obtained simulated ω and a signals as

y =


yω1

ya1

yω2

ya2

 =


ω1 + eω1

a1 + ea1

ω2 + eω2

a2 + ea2

 . (C-3)

Note that no plots of this obtained motion will be presented here as these obtained results
will be shown together with the IEKF-OS estimated motion in the next section. This for the
reason of easier comparison. With the forward kinematics simulation detailed, the motion’s
reconstruction as estimated by the IEKF-OS algorithm as shown in the blue box of Figure
C-1 will now be presented.

C-3 Double pendulum motion reconstruction and results

The motion tracking performance of the IEKF-OS algorithm will now be assessed. Here, the
results of an idealized simulated scenario will be presented. With idealized, it is meant that
the locations and orientations of the virtual IMUs in the IEKF-OS system, as shown in the
blue box in Figure C-1, are identical to the locations and orientations of the virtual IMUs in
the forward kinematics simulated system, as shown in the green box in Figure C-1. Mainly
for the reason, as it was first key to perform some sanity checks if the developed IEKF-
OS method was able to reconstruct the original motion. Moreover, the aim of this double
pendulum simulation was also to check the convergence of the IEKF-OS algorithm. This as
the IEKF-OS pendulum system will be initialized differently compared to the configuration
of the forward kinematics simulated pendulum system.
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Initialization

Compared to the initial state of the double pendulum system generating the measurements,
the initial state of the IEKF-OS double pendulum system was initialized with both joint
angles q1 and q2 set at 10 [deg]. The initial joint angular velocities u1 and u2 were also set
at 10 [deg/s]. For an unactuated system, this would result in a totally different obtained
simulation. However, the IEKF-OS algorithm will try to minimize this difference by applying
joint torques to the two joints. As such, trying to reduce this error and reconstruct the
original motion.

Number of measurement iterations ε

There are various parameters in the IEKF-OS algorithm to be tuned. For instance, the
number of measurement iterations ε can be defined as shown in Algorithm 3. This is essentially
a trade-off that needs to be made. More measurement update iterations allow for estimating
the actual underlying state value more accurately, for an example see [50]. The downside of
choosing a lot of these iterations translates to an increase in computational cost and time.
This then diverges from the desire of applying this algorithm for eventual real-time motion
reconstruction. For this reason, three measurement update iterations were chosen, as from
simulations it was shown that the performance gained for more iterations was negligible.

Process and measurement covariances Q and R

As the IEKF-OS simulated system is the same as the forward kinematics simulated system, the
process noises for both q and u were set to zero. This yields Qq = Qu = O3 which represents
that there is no process noise and thus no errors that are expected in the dynamical equations
giving the updates of these variables. On the other hand, looking back to Section 3-5-2, wτ (t)
in (3-37) should be tuned such that the best performance in terms of RMSE between the
actual state vector x and predicted state vector x̂ is obtained. Iteratively, it was found that,
for this system and simulation, Qτ set equal to 1·I3 [Nm] yielded the lowest RMSE.

The measurement covariance matrix R was set to 100 times the previously obtained Xsens
IMU covariance matrices of Σω1 , Σa1 , and Σω2 , Σa2 yielding more variance than the actual
computed noise covariance matrices. The resulting R matrix is of the form

R = 100 ·


Σω1 O3 O3 O3
O3 Σa1 O3 O3
O3 O3 Σω2 O3
O3 O3 O3 Σa2

 , (C-4)

where O3 denotes a matrix consisting of zeros with size R3×3. With all the to be tuned
parameters discussed, the results obtained will now be presented.

Results

To evaluate the motion tracking performance, the system was simulated for 10 [s]. From the
simulation obtained, it was observed that the IEKF-OS estimations already converged within

Master of Science Thesis P.A.M. de Kanter



90 Simulation of an actuated double pendulum

one iteration towards a steady-state error. The state estimates of the IEKF-OS converged to
the actual state vector x after the system became more dynamic when the first joint torque
on the original system was applied. Hence, the RMSE between the IEKF-OS estimated state
vector x̂ and the actual state vector x is calculated from 0.75 [s] till the end of the simulation.
The obtained RMSE values are presented in Table C-1.

Table C-1: Obtained RMSE values between the actual and IEKF-OS estimated state variables.

Joint angle RMSE [deg] Joint angular velocity RMSE [deg/s] Joint torque RMSE [Nm]

q1 0.063 u1 0.059 τ1 0.023
q2 0.091 u2 0.134 τ2 0.009

From this table, it can be concluded that the IEKF-OS algorithm presented in this thesis,
is able to reconstruct the original motion accurately. The obtained RMSE values are all in
the order of magnitude of 10−1 or lower. One must note, however, that this is an idealized
scenario where no sensor placement errors have been introduced between modeled virtual
IMU sensors. As such the errors presented in this table, are likely due to the noise that
was added to the artificially created IMU measurements. Next to these RMSE values, the
responses and computed joint torques are depicted in Figures C-4 and C-5.

Figure C-4: The results obtained for the reconstructed motion. The left column of plots illustrates
the two joint angles, q1 and q2, and the right column of plots shows the joint angular velocities,
u1 and u2. From these plots, it can be seen that the estimated state variables, dashed lines, are
completely following the actual state evolutions illustrating near-perfect motion reconstruction.

From Figure C-5, it can be seen that the idea of modeling the joint torque τ as a random-walk
model, as defined in Section 3-5-2, works neatly. In the reconstructed joint torque signals,
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Figure C-5: The two control torque step functions f(t)τ1 and f(t)τ2 applied to the joint angles
q1 and q2 respectively and their corresponding IEKF-OS estimated joint torques.

the overall form of the originally applied step function is clearly visible indicating accurate
reconstruction.
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Appendix D

OpenSim model of the KUKA LBR
iiwa 7 R800

D-1 Inertial properties of the links of the KUKA

As outlined in Section 4-2, the OpenSim model of the KUKA LBR iiwa 7 R800 robot was
modeled in XML code using the inertial properties as given in the GitHub repository of Chatzi-
lygeroudis et al. (2019) [47]. Subsequently, the joint between two rigid bodies was modeled as
an OpenSim PinJoint. This joint allows the child body to rotate with respect to the parent
joint it is connected to. Geometry files of all the links were included which are also available
on the repository of Chatzilygeroudis et al. (2019). Table D-1, adapted from this GitHub
file, illustrates the inertial properties of the KUKA robot.

Table D-1: The inertial properties of the KUKA LBR iiwa 7 R800 robot adapted from [47].

Link 0 1 2 3 4 5 6 7
CoM (XYZ) [m] (-0.1 0 0.07) (0 -0.03 0.12) (0.0003 0.059 0.042) (0 0.03 0.13) (0 0.067 0.034) (0.0001 0.021 0.076) (0 0.0006 0.0004) (0 0 0.02)
Mass [kg] 5 3.4525 3.4821 4.05623 3.4822 2.1633 2.3466 3.129
Ixx [kg m2] 0.05 0.02183 0.02076 0.03204 0.02178 0.01287 0.006509 0.01464
Ixy [kg m2] 0 0 0 0 0 0 0 0.0005912
Ixz [kg m2] 0 0 -0.003626 0 0 0 0 0
Iyy [kg m2] 0.06 0.007703 0.02179 0.00972 0.02075 0.005708 0.006259 0.01465
Iyz [kg m2] 0 -0.003887 0 0.006227 -0.003625 -0.003946 0.00031891 0
Izz [kg m2] 0.03 0.02083 0.00779 0.03042 0.007785 0.01112 0.004527 0.002872

For the interested reader, the ranges of motion and angular velocities of each individual joint
are shown in Table D-2 This table was adapted from [55].

Table D-2: The ranges of motion and the angular velocities of each KUKA link.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
Range of motion [deg] ±170 ±120 ±170 ±120 ±170 ±120 ±175

Speed with rated payload [deg/s] 98 98 100 130 140 180 180
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D-2 Locations and orientations of the virtual IMU frames on the
KUKA OpenSim model for the simulation-based verification

The virtual IMU frame, modeled as a PhysicalOffsetFrame, is created by defining an offset
translation vector and an offset rotational vector with respect to its parent coordinate frame
and expressed in the parent coordinate frame. For the actual experiment, it is important that
these two offset vectors are accurately defined. Determining these offset values is performed
using the calibration procedure as outlined in Appendix F for calibrating Xsens MTw IMUs
to an OpenSim model. This procedure relies on having all the parent coordinate frames, from
which virtual IMU frames are defined, aligned in the same orientation with respect to an
initially chosen base frame. Moreover, during this calibration, it is also important that the
KUKA robot is fully extended in its upright position, all joint angles q = 0 [rad]. Of course,
when one models an OpenSim model, these parent coordinate frames, located in the body’s
joint center, will not be aligned in the same orientation with this base frame. For that reason,
intermediate frames, also modeled as PhysicalOffsetFrames, were defined with respect to
the misaligned body frame b. As such that their orientation matches the orientation of the
base frame. This is illustrated in Figures D-1a and D-1b.

(a) (b)

Figure D-1: (a) The lower frame is the initial base frame chosen. It has its X-axis (red) pointing
forwards, its Y -axis (green) pointing to the left, and its Z-axis (blue) pointing up. The body
frame b2, located in the joint center of link 2, instead has its X-axis pointing backward, its Y -axis
pointing up, and its Z-axis pointing left. Thus for this joint, an intermediate frame needs to be
defined which is shown in Figure (b).
(b) The upper frame, the intermediate frame modeled, has its orientation congruent to the initially
chosen base frame as desired. To obtain this congruent orientation of this intermediate frame,
the intermediate frame was configured as such using set_orientation(Vec(−π/2, 0, π)) with
respect to its parent frame b2, located in the joint center of link 2.

For each joint, one needs to check if its corresponding joint center frame has its orientation
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congruent to the base frame. If not, one needs to create an intermediate frame as shown in
Figures D-1a and D-1b. With this idea illustrated, Table D-3 depicts the orientations and
translations of the virtual IMUs, as well as the defined KUKA required intermediate frames.

Table D-3: The translation and rotations of the defined frames all with respect to and expressed
in the corresponding parent coordinate frames.

Virtual
IMU 1

Intermediate
frame 2

Virtual
IMU 2

Virtual
IMU 3

Intermediate
frame 4

Translation [m] (0, -0.1, 0.07) (0, 0, 0) (0, 0.095, 0.12) (0, 0.095, 0.09) (0, 0, 0)
Rotation [rad] (π/2+0.3, 0, π/2) (−π/2, 0, π) (−π/2+0.3, 0, -π/2) (−π/2-0.4, 0, -π/2) (−π/2, 0, 0)
Parent frame Body frame b1 Body frame b2 Intermediate

frame 2
Body frame b3 Body frame b4

Virtual
IMU 4

Intermediate
frame 5

Virtual
IMU 5

Intermediate
frame 6

Virtual
IMU 6

Translation [m] (0, -0.09, 0.13) (0, 0, 0) (0, -0.095, 0.11) (0, 0, 0) (0, 0.12, 0.07)
Rotation [rad] (π/2-0.3, 0, π/2) (0, 0, π) (π/2+0.3, 0, π/2) (−π/2, 0, π) (−π/2+0.15, 0, -π/2)
Parent frame Intermediate

frame 4
Body frame b5 Intermediate

frame 5
Body frame b6 Intermediate

frame 6

Although this was a simulation, still these locations and orientations were chosen such that
they were not obstructing the ranges of motion of the links of the KUKA. Figure D-2 shows
all these virtual IMUs modeled as frames.

Figure D-2: The OpenSim KUKA model with all the virtual IMUs being modeled as frames.
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Appendix E

Experiment results

E-1 Results for the other IEKF-OS validation trials

Figure E-1: Trial 1 with sine waves applied to each joint with a frequency of 0.025 [Hz] and an
amplitude of 1.2 [rad]. Depicted are the estimated and actual joint angles q1, q2, and q3 (left
column), and estimated and actual joint angular velocities u1, u2, and u3(right column).
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Figure E-2: Trial 1 with sine waves applied to each joint with a frequency of 0.025 [Hz] and an
amplitude of 1.2 [rad]. Depicted are the estimated and actual joint angles q4, q5, and q6 (left
column), and estimated and actual joint angular velocities u4, u5, and u6 (right column).

Figure E-3: Trial 3 with sine waves applied to each joint with a frequency of 0.075 [Hz] and an
amplitude of 0.7 [rad]. Depicted are the estimated and actual joint angles q1, q2, and q3 (left
column), and estimated and actual joint angular velocities u1, u2, and u3 (right column).
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Figure E-4: Trial 3 with sine waves applied to each joint with a frequency of 0.075 [Hz] and an
amplitude of 0.7 [rad]. Depicted are the estimated and actual joint angles q4, q5, and q6 (left
column), and estimated and actual joint angular velocities u4, u5, and u6 (right column).

Figure E-5: Trial 4 with sine waves applied to each joint with a frequency of 0.1 [Hz] and an
amplitude of 0.7 [rad]. Depicted are the estimated and actual joint angles q1, q2, and q3 (left
column), and estimated and actual joint angular velocities u1, u2, and u3 (right column).
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Figure E-6: Trial 4 with sine waves applied to each joint with a frequency of 0.1 [Hz] and an
amplitude of 0.7 [rad]. Depicted are the estimated and actual joint angles q4, q5, and q6 (left
column), and estimated and actual joint angular velocities u4, u5, and u6 (right column).
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E-2 Results for the other trials comparing the IEKF-OS algorithm
with OpenSense-Madgwick

Figure E-7: Trial 1 with sine waves applied to each joint with a frequency of 0.025 [Hz] and an
amplitude of 1.2 [rad]. Comparison between actual joint encoder values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.
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Figure E-8: Trial 2 with sine waves applied to each joint with a frequency of 0.05 [Hz] and an
amplitude of 1.2 [rad]. Comparison between actual joint encoder values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.

Figure E-9: Trial 4 with sine waves applied to each joint with a frequency of 0.01 [Hz] and an
amplitude of 0.7 [rad]. Comparison between actual joint encoder values shown in blue, IEKF-OS
joint angle estimations shown in green, and OpenSense joint angle estimations shown in orange.
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Appendix F

Calibration of IMUs

F-1 Detailed workflow of calibration procedure

For future users who want to use the IEKF-OS algorithm, it is important to accurately register
and calibrate Xsens IMUs to the desired OpenSim model representing the system at hand.
In Section 3-2-3, the mathematical principles of calibrating the gyroscope and accelerometer
are presented. In this section, a more practical workflow is presented consisting of four to five
steps depending on the system from which the motion needs to be reconstructed. In case of
a system that consists of ferromagnetic materials such as iron or steel, the accuracy of the
heading estimates of the Xsens Kalman Filter for 3D human motion (XKF3hm) may decrease
[48]. In such a case, when one attaches Xsens IMUs to ferromagnetic materials, one may use
the Xsens Magnetic Field Mapper to perform calibration of the on-board magnetometer [51].
As this procedure is extensively outlined in [51], it won’t be detailed here. Hence, it is assumed
from here on that calibration of the magnetometers has been accounted for. Lastly, it is also
assumed that the user has access to Xsens MTw Awinda wireless IMU sensor [11]. Besides, it
is assumed that the user also has access to the Xsens MTManager software which ensures time
syncing between connected IMUs, sensor fusion, and data interpolation for missing entries.

Detailed list of the workflow for capturing Xsens IMU measurements

Gathering the data necessary to reconstruct the desired motion consists of four steps. As-
suming that the magnetometer has been calibrated, these steps are summarized in the list
below.

1. Log stationary data to estimate the gyroscope bias.

2. Log rotational data to estimate the accelerometer bias and misalignment matrix.

3. Perform Xsens IMU to rigid body registration and orientation calibration.

4. Log the raw inertial data during the motion of interest.
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Hence, before one wants to gather data of reconstructing the motion of interest, three steps
need to be performed. It is recommended, prior to doing these calibration steps, to create an
organized folder structure. This facilitates performing these calibration steps and minimizes
the possibility of making mistakes. An example could look like

Figure F-1: Recommended folder structure for performing the calibration procedure.

Moreover, the author is convinced that having a clear detailed list like is presented here will
for a large part avoid making mistakes. Especially when a large set of sensors is used for
which it will become more difficult to perform all necessary calibration steps for each sensor.
Therefore, all the performed steps, as were also carried out when actual experiments for this
thesis were conducted, will be outlined in a systematic fashion. Lastly, it is also recommended
to label each IMU and clearly have in mind which IMU will eventually be attached to which
body.

Log stationary data to estimate the gyroscope bias

With this folder structure created, the first step is to perform the stationary calibration to
determine the gyroscope bias.

1. In the MT manager software, choose the folder Stationary.

2. Connect the set of MTw’s to the Xsens MT manager software.

3. Place all the IMUs on a flat table.

4. Start the measurement.

5. Log the stationary data for about 60 seconds.

6. Stop the measurement and disconnect the IMUs.

7. Write the data to the folder Stationary.

(a) Make sure to select the angular velocity option when writing data to a file as this
measurement will be used for determining the gyroscope bias.

8. Perform the gyroscope calibration for all IMUs as is outlined in Section 3-2-3.
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Log rotary data to estimate the accelerometer bias and calibration matrix

With the calibration of the gyroscope performed, the next step is to determine the accelerom-
eter bias and calibration matrix for each IMU’s accelerometer individually. Whereas in the
previous calibration, all the sensors were connected simultaneously, in this calibration, each
IMU needs to be connected solely and then calibrated individually. As was already outlined
in Section 3-2-3, this calibration makes use of the ellipsoid fitting method [32]. For this cali-
bration, it is essential to configure the sensor in as many orientations as possible by making
sure to rotate the sensor between orientations using approximately a constant velocity. To
that aim, one can make an orientation prism in which the sensor is kept stationary for a cer-
tain orientation. This also facilitates the requirement of slowly rotating the sensor between
orientations. With these details in mind, the procedure for capturing the data to calibrate
the accelerometer is presented in the list below.

For each sensor in the set of sensors

1. In the MT manager software, choose the folder Rotary/Xsens_i where i denotes one of
the sub-folders corresponding to the i-th sensor.

2. Place the i-th sensor in the orientation prism.

3. Start the measurement.

4. Perform the rotations in the orientation cube as slowly as possible. Each session should
last about 2-3 minutes to capture enough data and in different orientations.

5. Stop the measurement and disconnect the i-th sensor.

6. Write the data to the folder Rotary/Xsens_i.

(a) Make sure to select the linear acceleration option when writing data to a file as
this measurement will be used for determining the accelerometer bias and the
calibration matrix.

7. Perform the i-th IMU accelerometer calibration as is outlined in Section 3-2-3.

Perform Xsens IMU to rigid body registration and orientation calibration.

Having collected the data necessary to calibrate both the gyroscope and the accelerometer,
the most important step of this calibration workflow will now be detailed. The IEKF-OS
algorithm assumes that the orientation of the i-th virtual IMU frame, attached to the i-th
body of the OpenSim model of the system at hand, matches the orientation of the i-th Xsens
IMU attached to the i-th body of the actual system. When for a system’s given configuration,
a large difference in orientation between the modeled virtual IMU frame and the Xsens IMU
frame is present, the motion reconstruction performance using the IEKF-OS algorithm is
deteriorated. Hence, it is key to estimate the orientation of the Xsens IMU on the rigid
body of the system as best as possible. The XKF3hm orientation estimation algorithm of
Xsens [48] can be used to determine the orientation of the sensor with respect to the world
frame. This world frame, however, does not coincide with the ground frame of OpenSim.
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For that reason, an inclination and heading reset will be performed when the Xsens IMU
is oriented similar to the chosen base frame. The notion of this base frame is illustrated in
Section D-2. With this inclination and heading reset performed, the Xsens IMU will now,
instead of computing its orientation with respect to the world frame, estimate its orientation
with respect to this base frame. Note that, prior to performing this inclination and heading
reset, one must carefully align the Xsens IMU’s axes with the axes of the chosen base frame.
Another important assumption is that the system has all its generalized coordinates equal to
zero, q = 0 [rad]. For the system at hand in this thesis, the KUKA robot, this means that
the robot should be fully extended in its upright position. This requirement was validated by
reading of the values of the joint encoders.

With these important assumptions outlined, the procedure to log the required data for per-
forming Xsens IMU orientation calibration is shown in the list below. Again, this procedure
needs to be performed for each Xsens IMU individually.

1. In the MT manager software, choose the folder
Xsens_IMU_Orientation_Calibration/Xsens_i where i denotes one of the sub-folders
corresponding to the i-th sensor and establish a connection with this i-th IMU.

2. Carefully align the axes of the i-th Xsens IMU sensor with the axes of the chosen base
frame.

3. Perform an inclination reset.

(a) Roll and pitch estimates should be approximately zero now.

4. Perform a heading reset.

(a) Yaw estimate should be approximately zero now.

5. Start recording.

6. Pick up the Xsens IMU and attach the IMU to the desired i-th link.

7. Stop recording when the Xsens IMU is attached to the corresponding link.

8. Write the orientation, parametrized as rotation matrix data of the sensor, to the folder:
Xsens_IMU_Orientation_Calibration/Xsens_i where i denotes one of the sub-folders
corresponding to the i-th sensor.

9. Important, disconnect the Xsens IMU, as otherwise all quantities logged by the IMU
will be measured with respect to this base frame!

(a) For the actual inertial data logging during the experiment, the IMUs should mea-
sure with respect to the world frame again, not with respect to the self-defined
base frame.

10. Open the last nine values of the logged rotation matrix and store these values in a
matrix in MATLAB as shown in F-1
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RotMatrix_Link_i =

Mat[1][1] Mat[1][2] Mat[1][3]
Mat[2][1] Mat[2][2] Mat[2][3]
Mat[3][1] Mat[3][2] Mat[3][3]

 . (F-1)

To obtain the space fixed Euler angles from this orientation needed to configure the virtual
IMU on the OpenSim model of the system at hand, the function
rotm2eul(RotMatrix_Link_i, ‘XYZ’) was used. The sequence XY Z needs to be set as the
option here, as this is the space fixed Euler angle sequence from IMU space to OpenSim space.

As an example of this whole procedure, the following code can be used to obtain the required
Euler angles that define how the virtual IMU should be configured on the OpenSim model.

1 %% Create a struct to store all the rotation and translation parameters.
2 Orientation = struct ;
3 % ______________________________________________________________________
4
5 %% KUKA Link 1
6 % Look at the last row of the file:
7 % Xsens_IMU_Orientation_Calibration/Xsens_1/OrientationData1.txt
8
9 % Determine the rotation parameters of Xsens IMU 1.
10 RotMatrix_Link_1 = [−0.009910 −0.999508 −0.029753
11 −0.219128 0.031202 −0.975197
12 0.975646 −0.003145 −0.291330] ;
13 eul_Link1 = rotm2eul ( RotMatrix_Link_1 , ’XYZ’ ) ;
14
15 Orientation . Xsens_1_Rot_X = eul_Link1 ( 1 , 1 ) ;
16 Orientation . Xsens_1_Rot_Y = eul_Link1 ( 1 , 2 ) ;
17 Orientation . Xsens_1_Rot_Z = eul_Link1 ( 1 , 3 ) ;
18 % ______________________________________________________________________

The first step of this calibration procedure has now been completed. The last step is to
determine the XYZ translations from the center of the coordinate frame of the parent body b
towards the center of the coordinate frame of the Xsens IMU. This latter frame corresponds
to the position of the accelerometer in the Xsens MTw Awinda IMU as shown in Figure F-
2. These translations need to be expressed in the coordinate frame of the i-th parent body
b to which this i-th Xsens IMU will be attached. As in this schematic, the accelerometer
position of the MTw Awinda has been defined with respect to the lower-left corner, the user
needs to manually measure, e.g., using a tape measure, the translations from the parent body
coordinate frame towards the lower-left corner of the MTw Awinda.

Master of Science Thesis P.A.M. de Kanter



108 Calibration of IMUs

Figure F-2: Schematics of the accelerometer position in the Xsens MTw Awinda IMU. Distances
are shown in [mm]. Figure adapted from [48].

Again, an example is illustrated in the following code to define these translational offsets
expressed in the coordinate frame of the i-th body.

1 %% Determine the translation parameters of Xsens IMU 1.
2 % XYZ translation measurements are approximately and measured toward
3 % the left down corner of the IMU and expressed in the base frame
4 % coordinates.
5
6 % Add the constant offset parameters from the left down corner to the
7 % accelerometer triad location. This information is obtained from
8 % the Xsens MTw manual page 64, section 11.1.5.
9 % Offset X expressed in OpenSim base frame with
10 % IMU pointing as follows: X upwards , Y to the left, and Z towards you.
11 % Hence , for the actual translations , check if these constants need to be
12 % added or subtracted!
13 % Express in meters!
14 Orientation . Xoffset = 0 .0242 ; % Meters
15 Orientation . Yoffset = 0 .0088 ; % Meters
16 Orientation . Zoffset = 0 .0262 ; % Meters
17
18 % Translations must be expressed in meters in OpenSim:
19 Orientation . Xsens_1_Trans_X = −0.015 + Orientation . Xoffset ;
20 Orientation . Xsens_1_Trans_Y = −0.071 − Orientation . Yoffset ;
21 Orientation . Xsens_1_Trans_Z = 0.005 + Orientation . Zoffset ;
22 % ______________________________________________________________________
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Finally, with both the rotational and translational parameters defined for the i-th IMU, the
virtual IMU can be created using a combination of OpenSim and MATLAB code as is illustrated
below.

1 %% Import OpenSim Libraries into Matlab.
2 import org . opensim . modeling .∗
3 % ______________________________________________________________________
4
5
6 %% Create the virtual IMU modeled as a PhysicalOffsetFrame.
7 IMU1 = PhysicalOffsetFrame ( ) ;
8 % Set the name of the IMU.
9 IMU1 . setName ( ‘ FirstIMU ’ ) ;
10 % Select the body to which it is attached.
11 IMU1 . setParentFrame ( Link1 ) ;
12 % Set the (XYZ) translation vector expressed in parent coordinate frame.
13 IMU1 . set_translation ( Vec3 ( Orientation . Xsens_1_Trans_X ,
14 Orientation . Xsens_1_Trans_Y ,
15 Orientation . Xsens_1_Trans_Z ) ) ; % Translate
16 % Set the (XYZ) rotation vector expressed in parent coordinate frame.
17 IMU1 . set_orientation ( Vec3 ( Orientation . Xsens_1_Rot_X ,
18 Orientation . Xsens_1_Rot_Y ,
19 Orientation . Xsens_1_Rot_Z ) ) ; % Rotate
20 % Add the virtual IMU to the rigid body.
21 Link1 . addComponent ( IMU1 ) ;
22 % ______________________________________________________________________

Log the raw inertial data during the motion of interest

When all the calibration steps have been performed as described in the previous sections, the
desired motion can be logged. It is very important that prior to this experiment, all the Xsens
IMUs are disconnected from the MT Manager. Failure in doing so results in the fact that the
MTw’s will log all raw inertial data of interest, angular velocities, and linear accelerations in
the previously set base frame. The MTw Awinda does not store the heading and inclination
resets on board [48]. Hence, disconnecting the Xsens IMUs and then connecting them again or
performing a re-scan ensures that the MTw Awinda stores the inertial data again according to
its body-fixed sensor coordinate system. The procedure of logging data is again listed below.

1. Select the folder Experimental/Motion_i.

2. Start up the Xsens MTw Awinda IMUs.

(a) Start moving the system at hand such that the IMUs become excited hence findable
again.

3. Make sure that all the desired IMUs are connected to the MT Manager.

4. Start recording.

5. Perform the motion that needs to be reconstructed later using the IEKF-OS algorithm.
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6. Stop recording when the motion is completed.

7. Write the logged data to the folder Experimental/Motion_i, where i denotes the number
of the trial.

(a) Store all the data.
• Angular velocity.
• Linear acceleration.
• Magnetometer data.
• Orientation data: rotation matrix, quaternion, Euler angles.

8. Possibly, perform another trial and start at the top of this list again.
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Appendix G

Technical Specifications Xsens MTw
Awinda IMU

MTw performance

Table G-1: The technical specifications of the Xsens MTw Awinda gyroscope, accelerometer,
and magnetometer. Table adapted from [48].

Angular velocity Linear acceleration Magnetic field
Dimensions 3 axes 3 axes 3 axes
Full scale ± 2000 [deg/s] ± 160 [m/s2] ± 1.9 [Gauss]
Nonlinearity 0.1% of full scale 0.1% of full scale 0.1% of full scale
Bias stability 10 [deg/hr] 0.1 [mg] -
Noise 0.01 [deg/s/

√
Hz] 200 [µg

√
Hz] 0.2 [mGauss/

√
Hz]

Alignment error 0.1 [deg] 0.1 [deg] 0.1 [deg]
Bandwidth 180 [Hz] 180 [Hz] 10-60 [Hz]

MTw orientation performance

Table G-2: Orientation performance of the Xsens MTw Awinda in a magnetically undisturbed
environment. Table adapted from [48].

Dynamic range All angles in 3D
Static accuracy (Roll/Pitch) 0.5 deg RMS
Static accuracy (Heading) 1 deg RMS
Dynamic accuracy (Roll/Pitch) 0.75 deg RMS
Dynamic accuracy (Heading) 1.5 deg RMS
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MTw physical properties

Table G-3: Physical properties of the Xsens MTw Awinda. Table adapted from [48].

Accelerometers MEMS solid-state, capacitive readout.
Rate gyroscope MEMS solid-state, capacitive readout.
Magnetometer Magneto-Impedance sensor elements.
Barometer Piezo-resistive sensor element.
Weight 16 [g]
Housing dimensions 47 × 30 × 13 [mm]

MTw update rates and retransmission slots

Table G-4: Update rates and available retransmission slots. Table adapted from [48].

Amount of Xsens MTw Awinda’s Update rate [Hz] Available retransmission slots
1-5 120 2
6-9 100 2
10 80 3

11-20 60 4
21-32 40 1
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