<]
TUDelft

Delft University of Technology

Guard-NoC
A protection against side-channel attacks for MPSoCs

Reinbrecht, Cezar; Aljuffri, Abdullah; Hamdioui, Said; Taouil, Mottagiallah; Forlin, Bruno E.; Sepulveda,
Johanna

DOI
10.1109/ISVLSI149217.2020.000-1

Publication date
2020

Document Version
Accepted author manuscript

Published in
2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

Citation (APA)

Reinbrecht, C., Aljuffri, A., Hamdioui, S., Taouil, M., Forlin, B. E., & Sepulveda, J. (2020). Guard-NoC: A
protection against side-channel attacks for MPSoCs. In L. O'Conner (Ed.), 2020 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI): Proceedings (pp. 536-541). Article 9154989 (2020 IEEE COMPUTER
SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020)). IEEE.
https://doi.org/10.1109/ISVLSI49217.2020.000-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISVLSI49217.2020.000-1
https://doi.org/10.1109/ISVLSI49217.2020.000-1

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Guard-NoC: A protection against
Side-Channel Attacks for MPSoCs

Cezar Reinbrecht, Abdullah Aljuffri,
Said Hamdioui, Mottaqgiallah Taouil

Delft University of Technology
Faculty of EE, Mathematics and CS
m.taouil @tudelft.nl

Abstract—Multi-Processor System-on-Chips (MPSoCs) are
popular computational platforms for a wide variety of appli-
cations due to their energy efficiency and flexibility. Like many
other platforms they are vulnerable to Side Channel Attacks
(SCAs). In particular, Logical SCAs (LSCAs) are very powerful
as sensitive information can be retrieved by simply observing
system properties that depend on the victim’s software execution
on the MPSoC. Unfortunately, many of the current protection
mechanisms are either platform dependent or are effective only
against a reduced set of attacks. In this work, we present
Guard-NoC, a secure Network-on-Chip (NoC) architecture able
to protect MPSoCs against a wide variety of LSCAs. The secure
NoC employs three application-independent strategies to hide
and isolate sensitive information: i) blinding the execution time
of operations; ii) masking the execution time of operations; and
iii) dual communication strategy (i.e., use packet and circuit
switching simultaneously). Our results show that our secure
NoC is resilient against practical LSCAs and leaks almost no
information while having a minimal area and power overhead.

Index Terms—Network-on-Chip, Countermeasure, Side-
Channel Attack, Hardware Security

I. INTRODUCTION

Multi-Processors System-on-Chips (MPSoCs) play a major
role in many electronic devices such as servers, smartphones
and many other Internet-of-Things devices. The wide spread
adoption of MPSoCs in critical applications has turned them
into an interesting attack target. Attackers might exploit one
or more of the following main components of MPSoCs [1]:
node, communication, and interface. Each component present
vulnerabilities that can be used by the so-called side-channel
attacks (SCAs) [2]. SCAs are successful attack techniques
whose goal is to retrieve secret data by analyzing physi-
cal (e.g., power dissipation) or logical effects (e.g., timing)
produced during the normal operation of the system. Today,
logical SCAs (LSCAS) are a major threat in the semiconductor
industry as they can be performed completely in software, and
often remotely [3]. Besides, they are hardly detectable because
these attacks only observe the system’s behavior.

A great number of hardware and software countermeasures
have been proposed to avoid LSCAs in MPSoCs. With respect
to MPSoC node protection, most software countermeasures
have focused on the avoidance of timing leakage. In [4], the
authors modified an implementation of Advanced Encryption
System (AES) to hide the time behavior of cache misses.
In [5], the authors presented an instruction scheduler as part
of a compiler to prevent timing leakage of cache-dependent
operations. In [6], the authors proposed the concept of static
and dynamic software diversification to prevent timing and
access leakage. On a similar line of thought, the authors in [7]
added random permutations during AES encryption to mask
the cache access patterns. On the other hand, the hardware

Bruno E. Forlin

Universidade Federal do Rio Grande do Sul
Instituto de Informatica
bruno.eforlin @inf.ufrgs.br

Johanna Sepulveda

Airbus Defense and Space
Munich, Germany
johanna.sepulveda@airbus.com

countermeasures for node protection are based typically on
isolation strategies. In [8], the authors use cache partitioning
to dedicate (parts of) caches for secure computation. The in-
dustry further advanced this concept by creating secure zones,
also known as Trust Execution Environments (TEE), which
isolate the sensitive tasks completely; examples are Arm Trust
Zone [9], Intel SGX [10], and Sanctum (RISC-V distribution)
enclave [11]. Recently, the authors in [12] and [13] have used
machine learning techniques trained with high-performance
counters to detect a specific set of cache access attacks, while
the authors in [14] used attack models to build a lightweight
hardware detector. With respect to MPSoC communication,
only hardware solutions have been presented. In [15] and [16],
the authors proposed different protection mechanisms against
NoC timing attacks. The former one integrates Quality-of-
Service (QoS) mechanisms to isolate sensitive traffic, while
the latter one adds random arbitration of packet switching
and adaptive routing to mask the communication leakage.
In [17], the authors proposed an MPSoC with several security
mechanisms inside the NoC. Their NoC targets to secure the
communication of the system by having dynamic configuration
of secure zones, trusted routing, and some cryptographic
capabilities to the network interface. As they only focus on
communication, the nodes are still vulnerable to LSCAs. With
respect to the MPSoC inferface, no logical attacks have been
reported so far. However, attacks on JTAG and test interfaces
of integrated circuits already were published in [18, 19]. The
above countermeasures against logical attacks targeting node
and communication clearly are limited. They either focus on
a subset of logical attacks and in addition are typically design
dependent or application dependent. Therefore, there is a clear
need for an efficient solution that is able to protect all parts
of an MPSoC against LSCAs.

In this paper, we propose to embed countermeasures for the
whole MPSoC in the communication infrastructure, referred to
Guard-NoC. The main contributions of the paper are:

o The design of a unique router which embeds blinding and
masking strategies in the network interface to protect the
nodes against processor and cache attacks.

o The usage of dual switching mode to protect the commu-
nication infrastructure against NoC timing attacks.

o The evaluation of the proposed NoC against popular
LSCAs in a hardware emulation platform (FPGA).

o Trade-off analysis considering performance and hardware
overheads when using Guard-NoC.

This paper is organized as follows. Section II presents in-
formation regarding NoCs and LSCAs. Section III introduces
Guard-NoC. Section IV presents the experiments and results.
Finally, Section V concludes this paper.

II. BACKGROUND

In this section, we present background information regard-
ing Networks-on-Chips and Logical Side-channel attacks.

A. Network-on-Chip (NoC)

The NoC transmits packets between a source IP (which
injects the packet) and destination IP (which receives the
packet). Routers are used to move the packets through the
network. Each processing node communicates with a router
through a network interface (NI). The NI implements the
communication protocol and wraps information into packets
during sending and unwraps them during receiving. The intra-
chip communication has a tremendous impact on overall
system performance and area and power costs [20]. It has
a central role in the system, which makes the NoC also an
attractive component to implement security mechanisms. The
NoC comprises four main parameters [20]:

i) Topology, defines the way the routers are interconnected;

ii) Routing, specifies the routing of packets between a
sender (source) and a receiver (destination);

iii) Switching mode, defines the commutation of informa-
tion. There are two possible switching modes in an NoC,
circuit switching and packet switching. In circuit switching,
a dedicated path is created from the source node to the
destination node by pre-configuring all the routers in the
path before the packet injection to the NoC. All remaining
communication flows are unable to use the pre-defined route.
Resources can only be released when the information reaches
the destination. On the other hand, in packet switching, the
message transverses into small parts (defined as flits). Each
flit travels separately in the NoC, following the path of the
header. The routers configure the switches only when headers
pass. In this strategy, the paths are created on the fly during
the transmission, which results in less performance penalties;

iv) Flow control, synchronizes the transmissions between
routers.

In this work, we target to protect a NoC that uses mesh
topology, deterministic XY routing algorithm, dual switching
mode (packet and circuit switching), and handshake flow
control. The flit granularity is 32 bits. Our target NoC-based
MPSoC is shown in Fig. 1.

B. Logical Side-channel Attacks

Based on the leakage source, the authors in [21] classified
logical side-channel attacks into three types: a) timing; b)
access; and c) trace.

a) Timing Attacks: The authors in [22] pioneered in
1996 the concept of using different timing responses of
chip components to infer hidden information. Only in 2005,
Bernstein was able to perform a practical remote timing attack
on servers running AES [3]. An improvement of such an attack
was introduced by the authors in [23], the so-called cache
collision attack. The attacker manipulates the input message of
the encryption algorithm to force collisions of cache addresses
(cache hits) when the key hypothesis is correct. In [21], the
authors proposed a variation of this attack called differential
collision cache attack. It analyzes a pair of encryptions, where
the collision effects are exploited of the second run of each
pair. In addition to the cache, the floating point unit of the
processor has been targeted by timing attacks as presented
in [24]. With respect to communication, the authors in [15]

Fig. 1: Reference MPSoC Architecture.

and [16] proposed NoC attacks. NoC attacks are triggered by
an attacker injecting messages in the NoC. As the routers are
shared, the communication collisions between malicious and
sensitive traffic may reveal information of the system (e.g.,
component location, network topology) and application (e.g.,
communication affinity, transmission pattern, communication
volume). Recent work, like [25], has applied such technique
to realize a timing practical attack based on cache collision.

b) Access Attacks: At the moment, access attacks are
only applied to caches by observing the cache addresses used
by a sensitive operation of the victim. The first access attacks
were presented in [26]. Among them, the Prime+Probe attacks
are still popular today. These attacks consist of three steps:
i) Prime - attacker fills (parts of) the cache with data; ii)
attacker triggers a sensitive operation (e.g. encryption); and
iii) Probe - attacker reads the data written in the Prime
step and evaluates which addresses were used by the victim
based on the observation of cache misses. A limitation of
Prime+Probe is that it can only be successfully applied when
the attacker has good control of the addresses accessed in
the shared cache, which is not a realistic assumption for
all systems, such as virtualized platforms. To deal with this
limitation, new attacks were proposed where a lower degree
of cache control is required. Examples are Flush+Reload [27]
and Flush+Flush [28] attacks. In contrast to Prime+Probe,
these attacks perform the prime step by cleaning the data of
the cache rather than filling it with own data by e.g. using
the CLFLUSH instruction in x86 architectures. Regarding
communication attacks, in [29], the authors demonstrated that
it is possible to use an NoC timing attack to identify the end
time of each AES round, and subsequently, apply Prime+Probe
at the end of the first round to improve the attack considerably.

c) Trace Attacks: In trace attacks, an adversary obtains
a profile of the resource activity of the target platform and
deduce sensitive information from it, as described in [30]. This
information is most commonly collected by special monitors
inside the system like High Performance Counters. If the
MPSoC has well-established security policies, this attack is
not practical, and hence not considered in this work.

III. GUARD-NOC

Guard-NoC is a secure NoC against LSCAs. In this section
we motivate the use of a secure NoC as a protection for
an MPSoC, followed by the threat model adopted in this

paper. Thereafter, we describe the proposed NoC architecture.
Finally, the protection mechanisms are described.

A. Motivation

The Network-on-Chip is a central component of an MPSoC
architecture which handles all communication between the
nodes. MPSoCs usually integrate security features such as
cryptographic hardware cores for supporting confidentiality
and authentication services. However, during the operation of
a cryptographic core (trusted element), the secret key may
passively be revealed through LSCA. In case an MPSoC
application secures data by using the embedded cryptographic
core, both plaintext and ciphertext information is exchanged
through the NoC. Depending on the type of security function,
part of the execution of the cryptographic task (e.g., an
AES encryption) will use the NoC to accesses some valuable
information stored in the main memory (e.g., S-Box data).
In summary, the NoC is part of critical operations in the
system, from memory accesses by the elements to specialized
service requests/responses. Therefore, this work proposes an
NoC architecture that affects the relation between nodes to
hide potential timing leakages. We achieve this by applying
blinding and masking countermeasures in the router. In ad-
dition, we adopt dual switching to avoid attackers infering
timing information. In the following subsections, we provide
more details.

B. Threat Model

Guard-NoC considers the following threat model:

o There are trusted and non-trusted nodes in the system.

o Trusted nodes run inside a secure zone and have their own
isolated local resources (similar to ARM Trust zone [9]).
IPs 8,9, 12 and 13 are used as trusted nodes (see Fig. 1),
but in general any other mapping is possible.

« Sensitive applications are only executed on trusted nodes.
Oppositely, external applications can only run on non-
trusted nodes, as they may contain malicious intentions.

o The last level cache is shared between the trusted and
non-trusted nodes and is the gateway to the main memory
of the system. Our target platform has level 2 as last level.

« System monitors and debug information contain sensitive
and therefore can only be accessed by trusted nodes.

C. Hardware Architecture

Fig. 1 shows the MPSoC platform considered in this paper.
It consists of 16 nodes interconnected by a 4x4 grid of routers.
Of those nodes, 14 contain a RISC-V processor (RISCY core
from Pulpino platform [31]), one shared L2 cache (node
IP 0) and one UART for external communication (node IP
3). The NoC configuration follows the description given in
subsection II-A, with the only difference that Guard-NoC
routers can handle both circuit and packet switching (i.e.,
dual switching). In addition, they include an extra component
responsible for the security of the nodes called Obfuscation
Function (see Fig. 2).

D. Protecting Nodes

The protection of the nodes is provided by the obfuscation
module block which is shown in more details in Fig. 2. It is a
dedicated hardware unit that is included between the network
interface and local input channel (IC local) of each router

[IC Local
valid_i 4 ack_i

packet_i

valid_o

request
detector

response
detector

random

!

ack_ip

MASKING

.| | shift_en L L lFs:‘“
e 88T Eaas

‘ Network Interface

Fig. 2: Obfuscation Module.

valid_ip packet_ip

that obfuscates the timing. By altering the delay of pack-
ets, different timing behavior of cache memories, hardware
accelerators or even applications running in processors will
be observed by the attacker, making the attacks much harder.
The obfuscation module has two strategies, which are blinding
and the masking. Blinding focuses on mitigating the leakage
behavior, while masking aims to hide it by adding random
noise. Each strategy is described in more details next.

1) Blinding Strategy: The blinding strategy manipulates the
response time of the node and tries to make this constant.
We propose three blinding techniques referred to as average,
bucket [32], and worst-case.

Average Blinding: This technique averages the response time
of the previous four responses (See t1 till t4 in Fig. 2). This
blinding strategy is composed of three phases: i) Initialization:
during this phase, an incoming packet asks for a service
identified by signal valid_o (i.e., valid_o signal is high at local
output channel of the router). This operation triggers the start
of a counter and forward the request to the node. ii) Update:
the response packet is ready to transmit when the encryption
is completed, i.e., valid_ip from network interface is high. The
value of the counter will be stored and a new average response
time will be calculated based on the last 4 services, which are
the last four encryptions for this node. iii) Wait+Release: When
the counter reaches the average time the packet is released to
the network and the counter is reset, with the exception when
the operation time is higher than the average.

Bucket Blinding: Bucket blinding was initially proposed by
Kopf et al. in [32], but only a theoretical model has been
presented. Our solution is the first practical implementation
of such strategy. It defines a set of fixed time responses and
selects one as actual response time. For example, if eight
buckets are defined, the time behavior will vary only between
these eight possibilities. The drawback of this method is that
designers must know in advance which applications will run
on the node to have meaningful bucket values.

Worst-case Blinding: This method uses the worst case timing
as a fixed response time. Each time an encryption takes
longer than the worst execution time, the network interface
will update this as the new worst-case time. For applications
where the worst and best case timings are close, it can be an
interesting alternative.

2) Masking Strategy: The masking countermeasure delays
the responses by a random amount of time and hence can be
seen a noise source. One of the best sources to achieve ran-
domness is to use True Random Number Generators [33]. Due
to its high cost, we rather propose the usage of pseudo-random
generators in hardware. These pseudo-random algorithms can
be implemented by a Linear Feedback Shift Register (LFSR).
An LFSR circuit is composed of a cyclic shift register and

exclusive-or operations, as shown in the masking module in
Fig. 2. The masking strategy works in a similar way as the
blinding strategy, but without the initialization phase. During
the update phase, a random value is generated by computing
the XOR of the outputs of two LFSRs (i.e., LFSR1 and LFSR2
in the Fig. 2). Two LFSRs increases the period of the generated
random numbers as described in [34]. Based on the desired
amount of noise, only parts of the LFSR bits are used. Once
the counter that is activated in the update phase reaches the
generated random value, the packet will be released into the
network ending the Wait+Release phase.

E. Protecting the Communication

Communication attacks are prevented in Guard-NoC by
the usage of different switching mechanism. Although dual
switching has been previously used in NoCs to achieve a
high throughput [35], the usage of this technique for security
purposes is novel. The idea is to use packet switching for
secure packets and circuit switching for common packets.
Secure packets are required when a node inside the Secure
Zone communicates to a node outside this zone. In packet
switching, the message is divided in flits (small parts) and
transmitted independently router by router. Hence, this traffic
has a minimal impact on traffic generated by other nodes in
the NoC. On the other hand, circuit switching configures the
network in such a way that the whole message is transmitted
at once; therefore, it needs to reserve all the routers on the
communication path upfront. The fine grained information
transmitted in packet switching mode allows the attacker
to understand precisely when traffic is passing through the
local router. Consequently, by forcing attackers to use circuit
switching this can be prevented. Overall, circuit switching
affects performance-wise the remaining traffic much more, but
security-wise it makes it much harder for the attacker to get
any timing related information.

IV. EXPERIMENTAL RESULTS

This section describes the experiment setup and evaluates
the security, performance and hardware overhead.

A. Setup

The platform used in the experiments is based on the
MPSoC architecture presented in Fig. 1. It integrates a memory
node (I Fy), an UART interface (I P;) and fourteen processing
nodes, each consisting of a RISC-V processor and a private 8
kB direct-mapped cache with 4 bytes cache lines. Processing
node [P35 executes a software implementation of the AES
encryption algorithm (i.e., T-table AES). The shared L2 cache
located at node I P, is a 16-way 256kB set-associative cache
with a line size of 16 bytes. All these nodes are interconnected
though a mesh-based 4 x4 NoC. All security and performance
evaluations were obtained through RTL simulations, while the
hardware costs were obtained by synthesizing the designs with
Cadence Design System tools (i.e, Genus Synthesizer) using
65 nanometer technology. Three different types of attacks were
used to analyze the efficiency of Guard-NoC under different
countermeasures. The rank analysis is the chosen metric for
comparison, which evaluates how far is the guessed key from
the correct key. According to the security policies presented
in the subsection III-C, malicious applications can not run in
trusted nodes where secret information resides. An attacker,

however, may attack the services that are provided by these
trusted elements instead. Therefore, we provide three attack
use cases. For the sake of brevity, we describe one attack use
case for each LSCA type:

Case 1 - Node-based Attack for Processors (Timing Attack
of Bernstein): IP 1 requests encryption services from IP 13
and records the execution time of each encryption. IP 13 takes
different times to compute AES when different inputs are
applied because it uses look-up tables stored in memory. As
the L1 cache memory is not large enough to store the AES T-
tables completely, IP 13 exchanges messages with the shared
cache L2 located at IP 0. IP 1 can observe the impact of the
memory hierarchy on the overall encryption time. Hence, the
adversary can perform Bernstein‘s attack [3]. We selected this
attack to represent timing attacks as most timing attacks are
derived from this one. As the victim in this case 1 is processor
IP 13, the blinding and masking evaluations considers the
protection on its router.

Case 2 - Node-based Attack for Caches (Access Attack
Prime+Probe): IP 1 requests encryption services from IP 13.
Before any request, an array with enough size to fill completely
the set of cache L2 (IP 0) is read by IP 1 to prepare the cache,
known as prime phase. After the encryption is finished by node
IP 13, the same array is read again, and the time to access each
L2 cache address is observed. In case the response time is slow,
i.e., a cache miss occurred, the attacker knows that the memory
position was used by the encryption algorithm on IP 13. This
process is repeated until enough information is collected to
successfully get the key. The Prime+Probe attack requires that
an attacker has many privileges in the system. Therefore, if
this attack does not succeed due to our countermeasures, other
attacks like Flush+Reload [36] or Flush+Flush [28] will also
likely fail as they target more restricted environments (i.e.
less privilege such as virtualized machines). As the victim in
this case 2 is the cache L2 (IP 0), the blinding and masking
evaluations considers the protection on its router.

Case 3 - Communication-based Attack for NoCs (NoC
Timing Attack): IP 1 requests encryption services from IP 13.
Meanwhile, IP 1 starts injecting dummy packets to IP 5 and
monitors the transmission delay. Since there is an interaction
between the shared cache L2 (IP 0) and the crypto-processor
(IP 13), a delay in the transmission can be observed by the
attacker when the shared cache replies (i.e. send the data asked
by IP 13). This provides the attacker additional information
(such as the duration of each encryption round).

B. Security Evaluation

In this experiment, we analyze the security of the MPSoC
for blinding, masking and dual switching schemes.

1) Blinding Analysis: Here, we evaluate the three blind-
ing strategies. They are average, bucket, and worst-case. As
blinding focuses only on protecting the nodes, only attack
cases 1 and 2 are considered. Fig. 3(a) shows the results
of blinding for the first attack case, i.e., the timing attack
of Bernstein. The graph compares the rank evolution of the
unprotected (grey line) against each countermeasure (colored
lines). In the unprotected scenario, the rank decreases as more
traces are provided. This means that the attacker is getting
closer to guessing the correct key. However, for the bucket
and worst-case blinding strategies the rank evolution results
are not conclusive. The countermeasures can be considered

Unprotected ¢ Average = Bucket « Worst-case

Traces (x1000)

(a) Blinding
Unprotected Mask 13-bits = Mask 14-bits » Mask 15-bits

/,

v \/ *v\/
20 30 40 50
Traces (x1000)

"" ». mw"““

(b) Masking
Fig. 3: Key-rank analysis of Bernstein attack.

secure although their ranking analysis indicate that an attack
may be theoretically possible (i.e., smooth decrease in the
curves). In particular, the average blinding represents the
weakest protection, as the key rank converges to a very low
value; although it did not reach 1 it can be brute-forced.

Similarly, Fig. 4(a) shows the results of blinding for the
second attack case, i.e., the Prime+Probe access attack. In
this case, the attacker eliminates candidates after each en-
cryption performed, and hence the key rank decreases much
faster. However, since the countermeasures lead to misinter-
pretation by the attacker regarding the used cache lines, the
Prime+Probe methodology can fail and the attacker could
completely ignore the correct key. When this happened in the
experiments, we restarted the processes starting from a rank of
255. The average blinding countermeasure was unsuccessful
in avoiding the attack; it only made it harder when compared to
the unprotected case. The other two countermeasures were able
to successfully prevent the attack. The bucket countermeasure
confuses the attacker in deciding which accesses resulted in
cache misses and hits. As a result, the analysis restarted several
times. In the worst-case blinding, all accesses were observed
as cache misses and hence could not be used in the attack.
Therefore, we can conclude that the bucket and worst-case
countermeasures can fully prevent Prime+Probe attacks, while
the average countermeasure only makes the attack harder.

2) Masking Analysis: Fig 3(b) shows the rank analysis of
Bernstein’s attack for three different masking configurations;
they are 13-bit, 14-bit, and 15-bit. The masking strategy
was only able to protect against the masking of 14 or 15
bits. Comparing with blinding, masking is a more powerful
protection, but requires a high amount of noise to work
properly. Hence, it will affect the overall performance more.

Fig 4(b) presents the rank analysis of all masking variations
for attack case 2 (prime+probe). We evaluate the masking with
lower values based on 6, 7, or 8 bits random noise. Similarly

Unprotected ¢ Average - Bucket + Worst-case

\ \
£ \ ’ \ |
@ I !\ |
4 ' \ \
> \ \
©) \ \ ‘
4 A \ |
\| ‘
50 > \
"“‘,.\"‘.‘“ osen, \\' “
0 el tese0e
10 20 30 40 50

Traces (x1000)

(a) Blinding
Unprotected ¢ Mask 6-bits = Mask 7-bits « Mask 8-bits

Key Rank

Traces (x1000)

(b) Masking

Fig. 4: Key-rank analysis of Prime+Probe attack.

as observed for attack case 1, the randomization causes many
difficulties to the attacker. The three options resulted in several
restart operations in the Prime+Probe analysis. The portions
of the graph where the rank is low, do not represent a threat.
The attacker never knows when he is close to the result and
when a false positive is reached. Therefore, we can conclude
that the three solutions are secure and prevent Prime+Probe
attacks. It is difficult to conclude if the smaller version (6-bit)
is secure enough when compared to the other two options.
3) Dual-switching Analysis: The third attack case, i.e., the
communication-based NoC attack, evaluates the countermea-
sure that protects the communication. In this attack scenario,
the attacker performs an NoC timing attack to understand the
communication behaviour (i.e., when accesses occur) between
the secure node performing AES encryptions and the shared
cache L2. Our tests on the unprotected NoC revealed that
the attacker has a 100% accuracy in guessing when the
accesses took place in a controlled environment (i.e., no other
background traffic is used as this causing noise to the mea-
surements). When background traffic is considered (i.e., 5% of
the bandwidth used by third-party traffic in the attacked path),
the attacker accuracy reduced to 45%. However, the work in
[29] stated that an accuracy of at least 25% is enough to
perform some logical attack successfully. The tests on Guard-
NoC showed a drop in the accuracy to only 1% in a controlled
environment. Therefore, Guard-NoC successfully avoids NoC
timing attack by using the dual-switching countermeasure.

C. Performance and hardware overheads

Table I presents the performance, hardware area and power
overhead of the countermeasures. We analyzed the perfor-
mance overhead of all countermeasures using AES-128. These
results, in addition to the security evaluation results, could be
used by a designer to evaluate the best trade-off between se-
curity and performance/area/power. The performance overhead

TABLE I: Evaluation of Guard-NoC Countermeasures.

Performance Overhead
Countermeasure AES encryption | Countermeasure | AES encryption
Average 2.77% 13-bit 6.7%
Blinding Bucket 4.25% Masking | 14-bit 13.45%
Worst-case 12.61% 15-bit 26.94%
Hardware Overhead

Component Area Power

Guard-NoC Router 16% 18%

MPSoC with Guard-NoC 0.8% 0.9%

of the blinding schemes is marginal, except for the worst-case
blinding countermeasure. However, this 12.6% overhead is still
reasonable. The performance overhead of the masking depends
on the size of the random noise source. However, as 14-bit (see
previous subsections) is sufficient also the overhead of 13.45%
is very acceptable. The area overhead is marginal as well and is
calculated by adding the extra area of the obfuscation module
to the router (see Figures 4 and 5). Note therefore that this
is not the area overhead with respect to the whole platform.
In case the whole MPSoC is considered, the overhead of the
obfuscation module is less than 0.8%. Similarly, the power
overhead is 0.9% of the complete platform. Note that this
number is also pessimistic, as it assumes the case where the
protection schemes are always running.

V. CONCLUSION AND DISCUSSION

This paper presented Guard-NoC, a secure NoC resilient
against logical side channel attacks that protects MPSoCs.
The countermeasures are especially desirable for platforms
like servers, where resources are shared among different users.
From our work we conclude the following:

Time-to-market: By embedding the security in the NoC,
designers do not have to change/modify the nodes (IPs) and
only focus on the design of the routers. This facilitates the
integration process, since design companies create complex
MPSoCs by employing several third-party components (IPs).

Security Updates: Security upgrades can be executed and
evaluated more easily as only the routers have to be modified.
For example, in case the system has to be protected against
other threats such as malware, intelligent intrusion detection
systems can be embedded in the routers.

Adaptive Security: During run-time, the system manager
(often an operating system) could set different security poli-
cies for each node. For example, define average blinding
for the non-sensitive processors and mask [14-bits for the
AES processor. Ideally, the performance degradation of the
countermeasures should affect only non-trustable applications.

System Protection: Contrary to previous Networks-on-
Chip security solutions [15, 17], Guard-NoC is capable of
not only protecting the intra-chip communication, but also the
whole computational platform including processors, accelera-
tors and memories.

Crypto-libraries: Guard-NoC has demonstrated that even
a naive software implementation of AES encryption can be
secure. Hence, the system can avoid complex software libraries
for security, such as the ones mentioned in [37]; then saving
performance and memory space.

ACKNOWLEDGMENTS

This work was labelled by the EUREKA cluster PENTA and
funded by Dutch authorities under grant agreement PENTA-
2018e-17004-SunRISE.

(1]
(2]

(3]
[4]
[5]
[6
(71
(8]
(91
[10]
[11]
[12]

=

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]
(371

REFERENCES

A. Vajda, Multi-core and Many-core Processor Architectures., 2011.

T. Kim and et al., “STEALTHMEM: System-level protection against
cache-based side channel attacks in the cloud,” in USENIX, 2012.

D. J. Bernstein, “Cache Timing Attacks on AES,” Available at:
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf, April 2005.

C. Rebeiro, M. Mondal, and D. Mukhopadhyay, ‘“Pinpointing cache
timing attacks on aes,” in VLSID, 2010.

D. Stefan and et al., “Eliminating Cache-Based Timing Attacks with
Instruction-Based Scheduling,” in ESORICS, 2013.

S. Crane and et al., “Thwarting Cache Side-Channel Attacks Through
Dynamic Software Diversity,” in NDSS, 2015.

E. Brickell et al., “Software mitigations to hedge AES against cache-
based software side channel vulnerabilities.” in JACR Archive, 2006.
H. Yun and P. Valsan, “Evaluating the Isolation Effect of Cache
Partitioning on COTS Multicore Platforms,” in OSPERT, 2015.

B. Ngabonziza and et al., “Trustzone explained: Architectural features
and use cases,” in CIC, 2016.

M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
intel SGX,” CoRR, 2019.

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX, 2016.

M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Appl.
Soft Comput., 2016.

M. Mushtaq and et al., “Nights-watch: A cache-based side-channel
intrusion detector using hardware performance counters,” in HASP,
2018.

C. Reinbrecht et al., “LiD-CAT - A Lightweight Detector for Cache
Attacks,” in ETS, 2020.

W. Yao and E. Suh, “Efficient timing channel protection for on-chip
networks,” in NOCS, 2012.

J. Sepulveda et al., “NoC-Based Protection for SoC Time-Driven At-
tacks,” IEEE ESL, 2015.

M. A. Kinsy et al., “Hermes: Secure heterogeneous multicore architec-
ture design,” in HOST, 2017.

B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architec-
ture for crypto chips,” IEEE TCAD, 2006.

J. Da Rolt et al., “New security threats against chips containing scan
chain structures,” in HOST, 2011.

N. E. Jerger and L.-S. Peh, On-Chip Networks.
2009.

A. Bogdanov et al., “Differential Cache-Collision Timing Attacks on
AES with Applications to Embedded CPUs,” in CT-RSA, 2010.

P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO, 1996.

J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks Against
AES,” in CHES, 2006.

M. Andrysco and et al., “On Subnormal Floating Point and Abnormal
Timing,” in /EEE SP, 2015.

C. Reinbrecht et al., “Earthquake - A NoC-based Optimized Differential
Cache-collision Attack for MPSoCs,” in DATE, 2018.

D. Osvik and et al., “Cache attacks and countermeasures: The case of
aes,” in Topics in Cryptology - CT-RSA 2006, 2006.

Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack,” in USENIX, 2014.

D. Gruss, C. Maurice, and K. Wagner, “Flush+Flush: A Stealthier Last-
Level Cache Attack,” CoRR, 2015.

C. Reinbrecht et al., “Timing attack on NoC-based systems:
Prime+Probe attack and NoC-based protection,” MICPRO, 2017.

0. Aciigmez and C. Kog, “Trace-Driven Cache Attacks on AES,” in
ICICS, 2006.

M. Gautschi et al., “Near-threshold risc-v core with dsp extensions for
scalable iot endpoint devices,” IEEE TVLSI, 2017.

B. Kopf and M. Diirmuth, “A provably secure and efficient countermea-
sure against timing attacks,” in CSF, 2009.

G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in DAC, 2007.

G. Xiao-chen and Z. Min-xuan, “Uniform Random Number Generator
Using Leap Ahead LFSR Architecture,” in ACM CCS, 2009.

M. B. Stuart, M. B. Stensgaard, and J. Sparsg, “The ReNoC Reconfig-
urable Network-on-Chip: Architecture, Configuration Algorithms, and
Evaluation,” ACM TECS, 2011.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games - Bringing
Access-Based Cache Attacks on AES to Practice,” in IEEE SP, 2011.
G. Irazoqui et al., “Did we learn from LLC side channel attacks? A
cache leakage detection tool for crypto libraries,” CoRR, 2017.

Morgan and Claypool,

