
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2018

MSc THESIS

Multi-way Hash Join Based on FPGAs

Kangli Huang

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2018-03

The multi-way hash join is one of the commonly used and time-
consuming database operations. Many algorithms have been devel-
oped to accelerate this operation, some of which use accelerators
such as field programmable gate arrays (FPGAs). However, most of
the previous work was focused on computation-intensive operations
such as (de)compression, because the interface between the FPGA
and the host can only provide relatively low bandwidth.
However, new generation high-bandwidth, low-latency interfaces to
interconnect host processors and accelerators such as the open coher-
ent accelerator processor interface(OpenCAPI) provide FPGAs with
new opportunities to accelerate database operations. In this the-
sis, we explore the potential of using OpenCAPI-attached FPGAs
to accelerate multi-way joins. Via the OpenCAPI, the FPGA can
obtain a high-bandwidth communicating with CPUs and the main
memory at 25.6GB/s. We first investigate the previous research in
software-based multi-way joins and observe that this operation is
limited by the bandwidth of main memory. Thus, the main chal-
lenge of designing the accelerator emerges as avoiding unnecessary
memory accesses. We partition the build relations into the size that
can build a hash table in Block RAMs (BRAMs), and avoid multiple-

pass memory accesses. In our design, the intermediate join phase is pipelined with a partition phase to
reduce the size of the intermediate results. The proposed design is configurable for the attached bandwidth,
and it can achieve a throughput of 5 GB/s when a 25.6 GB/s bandwidth is provided.

Multi-way Hash Join Based on FPGAs

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Kangli Huang
born in Wuhan, Hubei, China

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Multi-way Hash Join Based on FPGAs

by Kangli Huang

Abstract

The multi-way hash join is one of the commonly used and time-consuming database oper-
ations. Many algorithms have been developed to accelerate this operation, some of which use
accelerators such as field programmable gate arrays (FPGAs). However, most of the previous
work was focused on computation-intensive operations such as (de)compression, because the
interface between the FPGA and the host can only provide relatively low bandwidth.

However, new generation high-bandwidth, low-latency interfaces to interconnect host pro-
cessors and accelerators such as the open coherent accelerator processor interface(OpenCAPI)
provide FPGAs with new opportunities to accelerate database operations. In this thesis, we ex-
plore the potential of using OpenCAPI-attached FPGAs to accelerate multi-way joins. Via the
OpenCAPI, the FPGA can obtain a high-bandwidth communicating with CPUs and the main
memory at 25.6GB/s. We first investigate the previous research in software-based multi-way joins
and observe that this operation is limited by the bandwidth of main memory. Thus, the main
challenge of designing the accelerator emerges as avoiding unnecessary memory accesses. We
partition the build relations into the size that can build a hash table in Block RAMs (BRAMs),
and avoid multiple-pass memory accesses. In our design, the intermediate join phase is pipelined
with a partition phase to reduce the size of the intermediate results. The proposed design is
configurable for the attached bandwidth, and it can achieve a throughput of 5 GB/s when a 25.6
GB/s bandwidth is provided.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-03

Committee Members :

Advisor: Prof. Dr. H. P. Hofstee, CE, TU Delft

Chairperson: Prof. Dr. H. P. Hofstee, CE, TU Delft

Member: Dr. Ir. R. F. Remis, CAS, TU Delft

Member: Prof. Dr. Ir. A. J. H. Hidders, CS, VUB

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Context . 1

1.2 Motivation and Problem Statement . 1

1.3 Methodology and Project Goals . 3

1.4 Thesis Outline . 4

2 Background 5

2.1 FPGA . 5

2.2 OpenCAPI . 6

2.3 Relational Database . 6

2.4 Hash Join . 7

2.4.1 Nested-loop Join and Sort-merge Join 8

2.4.2 Introduction of Hash Join . 8

2.4.3 Hash Join Algorithms . 9

2.5 Multi-way Join . 11

2.5.1 Multiple Relations Join on A Common Key 11

2.5.2 Multiple Relations Join on Keys from Different Relations 12

2.5.3 Star Join . 13

3 Multi-way Join Analysis 17

3.1 Hash Teams . 17

3.2 SHARP . 19

3.3 No-partitioning Multi-way Hash Join . 22

3.4 Partitioning Multi-way Hash Join . 23

3.5 Quantitative Comparison . 25

3.5.1 Memory Access Analysis of SHARP 26

3.5.2 Memory Access Analysis of No-partitioning Multi-way Hash Join . 26

3.5.3 Memory Access Analysis of Partitioning Multi-way Hash join . . . 27

3.5.4 Summary . 28

3.6 Case Study of TPC-H . 30

3.7 Summary . 31

v

4 Implementation 33
4.1 Data Format of Target Query Relations 33
4.2 Top-level Design . 34
4.3 Partitioner . 36

4.3.1 16-Byte Partitioner . 36
4.3.2 32-Byte Partitioner . 37

4.4 Joiner . 37
4.4.1 Possible Designs of Joiner . 37
4.4.2 Join Engine . 41
4.4.3 Memory Request Module . 45

4.5 Integration . 46

5 Measurement 49
5.1 Measurement Setup and Method . 49
5.2 Resource Utilization and Operating Frequency 49

5.2.1 Selection of Configuration . 49
5.2.2 Synthesis Results . 52

5.3 Execution Cycles for Different Cases . 52
5.3.1 Reset Cycles Measurement . 53
5.3.2 Uniform Input Measurement . 57
5.3.3 TPC-H Measurement . 59
5.3.4 Throughput . 60

5.4 Conclusion . 61

6 Summary, Conclusions and Future Work 63
6.1 Summary . 63
6.2 Conclusions . 64
6.3 Future Work . 64

Bibliography 68

vi

List of Figures

1.1 Comparison between multiple binary joins and multi-way joins 2

2.1 Join between two tables . 7

2.2 Query for multiway-join on a common key 11

2.3 Multi-way join on on a common key . 12

2.4 Topology of multi-way join on a common key 12

2.5 5-relation join query . 13

2.6 5-way join data . 13

2.7 5-way join topology . 13

2.8 3-way star join query . 14

2.9 Star join of three relations . 14

2.10 Star join topology . 14

2.11 Comparison between star and mesh topology join 15

3.1 Query for hash teams . 18

3.2 Example data for hash teams . 18

3.3 Partitions of R, S and T in hash teams example 19

3.4 Join results of hash teams . 20

3.5 Query for SHARP . 20

3.6 Example Data for SHARP . 20

3.7 Partitions of Course . 21

3.8 Partitions of Student . 21

3.9 Partitions of Namelist . 21

3.10 Results of SHARP Join . 22

3.11 Example query for partitioning multi-way hash join 23

3.12 Example data for partitioning multi-way join 23

3.13 Partitions of intermediate results . 24

3.14 Partitions of S and I, and the final results 24

3.15 Example query of the quantitative comparison 25

3.16 Star join among TPC-H relations . 31

4.1 Target Query . 33

4.2 Top-level design . 34

4.3 Input, output, and operator of each step 35

4.4 16-byte partitioner[1] . 36

4.5 32-byte partitioner[1] . 37

4.6 Join engine . 38

4.7 The first solution of 4-engine design . 39

4.8 The second solution of 4-engine design 39

4.9 Hash Table Structure . 41

vii

4.10 White blocks represent signals while blue blocks represent the hardware
component. The blue square is the component of build engine, and the
blue ellipse is the component of other modules. 42

4.11 Build the hash table . 42
4.12 Hash collisions solution . 43
4.13 White blocks represent signals while blue blocks represent the hardware

component. The blue square is the component of probe engine, and the
blue ellipse is the component of other modules. 44

4.14 Probe example . 45
4.15 Read request arrangement . 45
4.16 Respond data assignment . 46
4.17 Integration of the whole system . 47

5.1 Execution cycles of the designs with a single BRAM array and multiple
BRAM arrays hash table of different settings of hash bits. 53

5.2 Join engine reset time portion of the execution time 54
5.3 Experiments results of different sizes inputs 56
5.4 Measurement results of 1k uniform inputs 57
5.5 Measurement results of 2k uniform inputs 58
5.6 Measurement results of 4k uniform inputs 59
5.7 Measurement results of 8k uniform inputs 59
5.8 Measurement results based on 1MB TPC-H inputs 60

viii

List of Tables

3.1 Basic attributes about relations . 25
3.2 Summary of notations used . 26
3.3 Summary of memory access time . 28
3.4 Summary of memory access data size after simplification 29
3.5 TPC-H 1GB Relation Sizes . 31
3.6 Memory access data sizes of TPC-H case study 31

4.1 Build Relation Tuple Data Format . 34
4.2 Probe Relation Tuple Data Format . 34
4.3 Intermediate Relation Tuple Data Format 34
4.4 Final Result Relation Tuple Data Format 34

5.1 Notations used in the configuration design analysis 50
5.2 Configuration Settings . 52
5.3 Hardware resource utilization . 52
5.4 Notations used in the analysis of reset cycles 54
5.5 Summary of selections of hash entries in different cases 56
5.6 Cycles consumed in each phase when #partitions is 32 and 64 58
5.7 Information about the TPC-H inputs . 60
5.8 Throughput for different inputs . 60

ix

x

Acknowledgements

There are a number of people that helped and supported me during the course of my
thesis project. First of all, I wish to extend my heartfelt gratitude to my supervisor Prof.
dr. H. P. Hofstee, for granting me the opportunity to work on this project. Although
I have very limited background knowledge about this project and often have difficulty
in English, he is always patient with me and willing to help me out. During the course
of this project, if I met any problems in my project, he never hesitated to arrange time
for me even to spend his holidays on the discussion. It is my luck and honor to be his
master student.

Thank Dr. ir. R. F. Remis and Prof. dr. ir A. J. H. Hidders for attending my thesis
defense as the core members of the committee.

I also want to express my thanks to my daily supervisor Jian Fang. He spent a lot
of time on my thesis and gave me many helpful suggestions when I was confused. I have
learned a lot from his rigorous attitude toward research, and he always reminds me of
the importance of details.

I want thank Jinho Lee and Yvo Mulder, they gave me a better understanding of
FPGAs-based designing and details about interconnects.

My special thanks goes to Xianwei Zeng and Yang Qiao, who are my lab mates. We
all started at the same time working on FPGA-based acceleration and accompanied each
other during our master period. I cherish every moment that I spent with you, and you
are my family and friends away from home. I want to say thank you for everything.

In addition, I want to thank my friends in Delft : Yixin Shi, Bo Jiang, Xuefei You,
He Zhang, Guanchu Wang, Xuyang Li, Xiaoyi Yao, Jiang Gong, Xiao Wang, Dezhi Lin,
Mengyu Zhang, He Cheng. They gave me lots of happiness and left a lot of cherished
memory during my master period.

Finally, I want to thank my beloved family, my parents. They have given me the
love and support necessary for me to overcome difficulties in my life. I treasure their
unfailing love and endless support.

Kangli Huang
Delft, The Netherlands
January 23, 2018

xi

xii

Introduction 1
This thesis describes an MSc project that aims to study field programmable gate arrays
(FPGAs) to accelerate multi-way join operations for relational databases. In this chapter,
context and motivation behind this project are presented first. Subsequently, the problem
statement and project goals are discussed, and then the methodology to achieve project
goals is explained. Finally, the last part provides the outline of this thesis report.

1.1 Context

Businesses with large databases demand large amounts of query operations on databases,
such as select, project, sort, aggregation, join and so on. As the size of datasets has shown
an astronomic increase, these query operations become very time and power consuming.
Performing these operations fast and efficiently becomes very challenging. One way to
handle this challenge is to use reconfigurable acceleration; IBMs Netezza and Teradatas
Kickfire adopted FPGAs to accelerate these operations.

Using FPGAs to accelerate operations within relational databases is one of the re-
search topics of the Computer Engineering (CE) group of TU Delft. One project is
focused on feeding high-bandwidth streaming-based FPGA accelerators [2], and other
projects are focused on accelerating operations in databases such as sort [3], decompress
[4] and join. This thesis project is carried out in the context of this larger topic. In
this project, the focus is on join operations among relations. Simply put, a join matches
tuples from one table with tuples in other tables that have the same join key. Rela-
tional join is one of the most time-consuming, yet most commonly used operations in
databases. In a database, the naive way to perform joins is to take the first tuple from
the first relation and mark the value of the attribute to be joined on. Then look up
the other relation to finding all the tuples that have the same value for the attribute.
There are various kinds of algorithms to implement join, such as nested-loop join, sort-
merge join, and hash join. Recently, a series of papers have focused on using FPGAs
to accelerate binary hash join of relations [5, 6], while there is much less research about
multi-way hash join based on FPGAs. In this project, a multi-way hash joins among
relations is implemented on FPGAs to improve the performance of databases, which is
a unique innovation of this thesis project, and cannot be found in any other existing
implementation on FPGAs.

1.2 Motivation and Problem Statement

Multi-way join operations are widely used in databases, and accelerating multi-way joins
can improve the performance of databases significantly. Multi-way join queries can be

1

2 CHAPTER 1. INTRODUCTION

handled with a variety of methods, but all these methods could be divided into two
groups: multiple binary join operators and a multi-way join operator. For example,
as illustrated in figure 1.1, if three tables R1, R2 and R3 are to be joined on a single
common column, traditional multiple binary join operators will finish this query in a
sequential processing fashion as shown in figure 1a. A repeated binary join will first join
relations R1 and R2 to get the intermediate result, and then use this intermediate result
to join with the R3. In contrast, a multi-way join operator always does this operation in
a pipelined processing fashion as shown in figure 1b. It will start using R1 probing R2,
and keep a pointer to the matched tuple and proceed to probe R3. Then it will write
the final output to the main memory. Thus, a multi-way join operator avoids memory
accesses caused by intermediate results.

Figure 1.1: Comparison between multiple binary joins and multi-way joins

Among various kinds of algorithms, hash join is an efficient way to perform equi-joins1

due to its constant time complexity. Furthermore, hash join has excellent potential to
exploit parallelism, while other join algorithms such as sort-merge join do not have this
natural attribute of high parallelism. The FPGAs, given the larger degree of parallelism,
may offer a better potential improvement for the hash join. As a result, there are some
recent efforts to use FPGAs to accelerate this operation. However, this prior work on
FPGAs is always limited to binary hash join. Some prior work on GPU-based accelera-
tion of join operations shows that GPUs outperform the CPUs for star schema queries.
However, the performance improvement varies depending on datasets characteristics and
configuration setup of the system. GPUs and FPGAs both are good at execution in par-
allel, and binary hash join is accelerated with the help of FPGAs in related work, so it is
reasonable that multi-way hash join could be accelerated by using FPGAs. The problem
statement of this thesis is:

How to design and implement a proper multi-way hash join algorithm on
FPGAs?

This is a very high-level description of the problem. To tackle this problem, some
goals are set. A more detailed description of methods adopted to achieve this goal is
discussed in Section 1.3.

1Equi-join is a specific type of comparator-based join, which uses only equality comparisons in the
join-predicate.[7]

build 0.18

1.3. METHODOLOGY AND PROJECT GOALS 3

1.3 Methodology and Project Goals

To solve this problem, a good starting point is to investigate what solutions already
exist and which of them is the most suitable and powerful method to be implemented
on FPGAs. Since there is limited work on multi-way hash joins on FPGAs, it is more
efficient to start with multi-way join algorithms implemented in software. These algo-
rithms can be classified into two classes, one is a cascade of binary joins, and the other
one is multi-way join. Among these algorithms, one should be chosen to be a prototype
of the final design, which leads to the following goals of this project:

1. Compare different algorithms existing on software and select one to be implemented
on FPGAs. The criterion for selection of the algorithm is based on analysis of these
factors below:

• The potential degree of parallelism.

• The complexity of control units.

• The performance on software.

• What type of multi-way join this method can achieve and how common this
type of join query be used.

After the thorough investigation, and a software algorithm and type of multi-way
join has been selected, then this will be treated as a starting of the project. Next,
the algorithm on FPGAs needs to be considered. Thus the next goal of this project
emerges:

2. Design and implement corresponding multi-way join algorithm on FPGAs. To
achieve this goal, following approach is taken:

• Choose one type of multi-way join as the target query.

• Design an optimized algorithm taking account of hardware resource on FP-
GAs and the bandwidth provided by OpenCAPI (a recently introduced, high-
bandwidth interface).

As the algorithm based on FPGAs has been implemented, we need to estimate
how this implementation performs, which leads to the last goal of this project:

3. Test, evaluate and analyze the performance of the implementation. Tackling this
goal, the following factors need to be taken into consideration:

• Execution time of different problem sizes.

• Which factors influence the performance?

• How these factors make the performance different?

build 0.18

4 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

In chapter 2, background topics and related work are presented. Chapter 3 presents
an analysis of multi-way join algorithms. Chapter 4 details the design of algorithm
implemented on FPGAs. Chapter 5 shows the estimated result and the performance
analysis. At last, Chapter 6 summarizes the project, lists conclusions of this project and
suggests future work.

build 0.18

Background 2
In this chapter, some topics are introduced as these topics are necessary for understanding
the goals and background of this project.

In section 2.1, Field Programmable Gate Arrays (FPGAs) will be introduced in brief.
This technology is used as the accelerator in this project. In section 2.2, OpenCAPI is
discussed, which is an Open Interface Architecture used to connect FPGAs, CPUs and
main memory in this project. After that, section 2.3 will introduce the definition of
Relational Database in brief. Then the last two sections will discuss the basics of hash
join and multi-way hash join respectively.

2.1 FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be
hardware-programmed to fulfill customer-specified tasks. This technology allows de-
signer describe specified circuits using a hardware description language (HDL) such as
VHDL or Verilog.

FPGAs evolved from programmable hardware devices such as Programmable Array
Logic (PAL), Generic Array Logic (GAL) and Complex Programmable Logic Device
(CPLD). FPGAs fill the performance gap between Application-Specific Integrated Cir-
cuits (ASICs) and software that is being run on a general purpose processor. ASICs al-
ways have the best performance both on speed and power consumption, and they are the
fastest solution for computationally intensive applications because they are full-custom
design ICs. They can utilize more parallelism than a general purpose device and are op-
timized for the specified task. However it always takes a long time to develop the design
of an ASIC, and their production is only affordable if they are produced in large volumes
because of high initial manufacturing cost. On the contrary, software solutions are cheap
and easy to develop, but they are very slow in comparison with hardware solutions due
to their sequential nature. To combine the parallel nature of ASICs with the ease of de-
velopment of software, FPGAs came into being. However, FPGAs cannot always replace
software or ASICs due to some drawbacks. As a consequence of being reconfigurable,
FPGAs need on average 40 times as much as area, draw 12 times as much dynamic power
and run at one third the speed of corresponding ASICs implementations[8]. When com-
pared with software solutions, FPGAs achieve better performance based on the price of
more expensive ICs and higher development cost.

Based on these characteristics of FPGAs, they are often used for prototyping verifi-
cation when designing ASICs, and to accelerate software solutions. In that case, compu-
tationally intensive parts of the application are run by the FPGAs while the other parts
are run by the general purpose processor.

5

6 CHAPTER 2. BACKGROUND

2.2 OpenCAPI

This project is inspired by OpenCAPI [9] which provides much higher bandwidth for ac-
celerators. OpenCAPI is an Open Interface Architecture that allows any microprocessor
to attach to coherent user-level accelerators and I/O devices, advanced memories accessi-
ble via reads/write or user-level DMA semantics and agnostic to processor architecture.
OpenCAPI has four key attributes:

• A high-bandwidth, low-latency interface optimized to enable streamlined imple-
mentation of attached devices. OpenCAPI can provide 25Gbps per lane while
PCI-E 3.0 is only able to provide 8 Gbps per lane.

• It allows attached devices to fully participate in the application without kernel
involvement/overhead. Attached devices operate within an application’s userspace
and operate coherently with processors.

• Flexibility. OpenCAPI supports a wide range of devices such as hardware acceler-
ators, high-performance I/O devices and advanced memories.

• Open to companies and organizations.

2.3 Relational Database

The relational database is a collection of related data that is organized into tables. It is
the mainstream of database applications, and many database management systems are
developed based on relational model.

The relational model was first proposed by Edgar Frank Codd in 1970. The relation
between entities can be described by the relational model. This model assigns data into
one or more tables (or ”relations”) of columns and rows, with a unique key identifying
each row. Columns are called attributes and rows are called tuples or records. Each
table/relation represents one ”entity type” (such as customer or product), while the
rows represent instances belonged to that type of entity (such as ”Steven” or ”table”)
and the columns representing values attributed to that instance (such as address or
price). [10]

The following is an introduction to other main concepts in the relational database:

• Domain
A domain is a constraint on the possible value of the attribute. It describes the set
of possible values for the specified attributes or columns in the database. It means
that any value of this attributes must be one element in this set.

• Primary key
A primary key uniquely specifies a tuple within a table. For an attribute to be a
good primary key, it must not repeat. While natural attributes (attributes used
to describe the data being entered) are sometimes good primary keys, surrogate
keys are often used instead. A surrogate key is an artificial attribute assigned
to an object which uniquely identifies it (for instance, in a table of information

build 0.18

2.4. HASH JOIN 7

about students at a school, they might all be assigned a student ID in order to
differentiate them). The surrogate key has no intrinsic (inherent) meaning, but
rather is useful through its ability to uniquely identify a tuple.[10]

• Foreign key
In a relation, a foreign key matches the primary key of another relational table.
Foreign keys are used to relate a relation to another in a relational database. They
do not need to be unique in the referencing relation, but they should be unique in
the referenced table. Furthermore, if there are no related tuples in the referenced
relation, then foreign key also can be ”Null”.

After giving a brief introduction of what relational databases look like and the main
associated concepts, we now consider basic query operations in databases:

• Selection: choose rows or tuples based given conditions.

• Projection: choose columns or attributes under specified requirements.

• Aggregation: gather multiple rows to express in a summary form on certain criteria.

• Groupby: group the result-set by one or more columns, and often used in combi-
nation with aggregation.

• Sort: order the rows based on specified criteria.

• Join: combine rows from two or more tables based on a related column between or
among them.

2.4 Hash Join

Hash join is a method to complete the join operation. The database can combine the data
from its tables to provide different views of data, and the operation of the combination
is called join.

Figure 2.1: Join between two tables

For example, figure 2.1 shows how join works. In figure 2.1, the first table contains the
information about Students’ name and ID, and the second table contains the information

build 0.18

8 CHAPTER 2. BACKGROUND

about Students’ ID and the course taken. When these two tables are joined on the
Student ID attribute, the output will be the third table. As shown in the last table, it
combines the information of tuples in both relations that have the same value of Student
ID. The output table has three attributes Student ID, Name and Course.

There are three mainstream algorithms to perform join in databases. They are
nested-loop join, sort-merge join and hash-join. In this section, these three classes of
algorithms will be discussed.

2.4.1 Nested-loop Join and Sort-merge Join

The naive way to perform this operation is nested-loop join. In this method, first take
the first tuple from the first relation and mark the value to be joined on. Then scan
the tuples in the other relation to find the tuples have the same value of key as the
marked value. After scanning all tuples in the second relation, then this process will
be repeated for each tuple in the first relation. Although nested-loop join is the most
straightforward method to join relations and efficient in some certain cases, it is usually
the slowest solution as its time complexity is O(n2) where n is the number of tuples in
relations to being joined.

The second algorithm to finish join is sort-merge join. It first sorts tuples from both
relations based on the value of the key to being joined. After sorting, both relations will
be scanned alternating the input from which it takes tuples. As both relations have been
sorted in some specified order, tuples that have same join attributes in both relation
will appear at the same time during scanning. This allows sort-merge join to finish
merge phase in one-pass scanning over both sorted tables. Sort-merge join has a large
advantage if the relations to be joined have been sorted already. For the case that input
relations are not sorted, the time complexity of sort phase is O(nlogn), and the merge
step runs in linear time.

2.4.2 Introduction of Hash Join

Hash join is a two-phase operation. The first phase is called build phase and the second
phase is called probe phase. To perform a hash join, the first step is to select one relation
as the build relation and the other one as probe relation. During the build phase, each
tuple in build relation will be scanned and then inserted into an in-memory hash table.
As the hash table will be built in memory, the build relation is always chosen to be the
smaller of the two relations. After hash table being built, tuples from probe relation will
start to be scanned. These tuples will be used to probe the built-in-memory hash table
to find matches. Only the tuples that have same hash value will be compared.

2.4.2.1 Hash Functions

A hash function is any function that can be used to map a large set of arbitrary size
input data to a set of fixed size output data. The values returned by a hash function are
called hash values. The input dataset is called the keys while the smaller output dataset
is called values. For instance, we can use a function i = k MOD x to map an integer
primary key relation to x hash buckets. In this function, i is the index of the bucket, k is

build 0.18

2.4. HASH JOIN 9

the value of the primary key attribute for one tuple. Because the number of hash buckets
is smaller than the number of input tuples, multiple tuples will have the same hash value
and be mapped to the same hash bucket. The situation that multiple tuples map to
the same hash bucket is called hash collision. It is necessary to take this limitation into
account when selecting a hash function and be aware of how to accommodate it during
the build phase. A basic criterion of selection of hash function is that the function should
provide a uniform distribution of hash values. A non-uniform distribution increases the
number of collisions and the cost of resolving them.[11]

2.4.2.2 Hash Tables

Hash table is the data structure used to store the tuples from the build relation and their
corresponding hash values and it can map keys to values. To deal with hash collisions,
one common method is Separate chaining. In this method, each bucket is an independent
linked list, as in this way, it is possible for one bucket to hold more than one entry. To
achieve the most efficient use of the table, it can make the number of hash buckets is
equal to or even larger than the number of tuples that need to be stored in the hash table.
However, the occurrence of hash collisions cannot be avoided, and it is still possible that
multiple tuples are mapped to one hash bucket, or many of the tuples are mapped to
a small portion of hash buckets. In these cases, separate chaining keeps the hash table
efficient. Ideally, the hash function will assign each tuple to a unique bucket, and then
the time complexity of one lookup is O(1) On the contrary, in the worst case, all of the
tuples will insert into the same hash bucket, then the whole hash table is one linked list.
As a result, the time complexity of one lookup increases to O(n) where n is the number
of tuples stored in the hash table.

After the hash table being built, it comes to the probe phase. The tuples from the
probe relation are scanned to probe the hash table and find matches. We will apply
the same hash function used during the build phase on the join attribute of each probe
tuple. Then the hash value will be used to find the corresponding bucket stores the
tuples from the build relation that have the same hash value. Because of the possibility
of hash collisions, we have to evaluate every tuple in the hash bucket by traversing the
linked list. If they match, we can output a new tuple. As for the time complexity, the
simple in-memory hash join is expected to run in linear time.

2.4.3 Hash Join Algorithms

2.4.3.1 Classic Hash Join

When the memory available for the join is large enough, the classic hash join algorithm
can perform an in-memory join of two relations. First build a hash table of the smaller
relation, the build relation. Looking up the hash table is much quicker than scanning the
original tuples because we can access the tuples we want by applying the hash function
on the attribute to be joined. Getting the hash value, it can be used to access the
corresponding entries directly. The phase of building hash table is usually called the
”build phase”. After building the hash table, it starts to scan the larger relation, the
probe relation, to find matches by looking up the hash table, and then outputs the

build 0.18

10 CHAPTER 2. BACKGROUND

matches as join results. This phase of scanning larger relation and probing hash table is
called ”probe phase”.

This algorithm performs an in-memory style when the smaller join relation is small
enough to fit in memory. However, sometimes it is not this case. If the build relation
is too large to build one in-memory hash table, there is a simple approach to handling
this situation by scanning the probe phase more times. The database loads tuples from
the build relation as much as it can insert into the in-memory hash table, and then
scans the tuples of the probe relation to find matches. Once scanning the probe relation
is finished, the in-memory hash table will be flushed and load as much of tuples from
the rest of build relation into the hash table. Then scan the probe relation again, and
repeat the steps until all of the tuples from the build relation have been inserted into the
in-memory hash table. In this way, the probe relation will be scanned many times and
the probe relation is always the larger relation, then it means that there will be much
more workload of data accessing in this method.

2.4.3.2 Grace Hash Join

The Grace Hash Join (GHJ) [12] was proposed by Masaru Kitsuregawa, Hidehiko Tanaka,
Tohru Moto-Oka in 1983. GHJ avoids rescanning the entire probe relations by partition-
ing the build relation into multiple memory sized partitions by applying a hash function
on the attribute to be joined on. The probe relation will be partitioned using the same
hash function, and the numbers of partitions of both relations are equal. Using the hash
function, a hash value is calculated for each tuple and this value will determine which
partition this tuple belongs to. Since all tuples that have the same hash value have been
placed in to the same partition, only the tuples from the same partition of each relation
have the possibility to be matched pairs. For instance, only the tuples from the first
partition of probe relation could find matches in the first partition of build relation.

The algorithm then joins each pair of partitions. It first loads the partition from the
build relation and builds the in-memory hash table, and then loads the probe partition to
scan tuples in it and look up the in-memory hash table to find matches. It works similar
to in-memory classic hash join. These steps will repeat until each pair of partitions has
been processed.

In the preparatory work before partitioning the relations, it is very essential to de-
termine how many partitions relations need to be divided into. To get this number, we
should have an idea about how much memory is available for building the hash table,
how many tuples can be placed in a hash table of this size and how many tuples there
are in a partition of the build relation. After getting these numbers, then the number of
partitions can be roughly calculated as dividing the number of tuples in build relation
by the number of tuples in the hash table. However, since the tuples from the build
relation are often not uniformly distributed among the possible values for partitions,
there might be some larger partition and smaller partition, and the hash table of larger
partitions might not be able to fit in the available memory. To deal with this case, the
chosen number of partitions could be larger than the quotient calculated up front. If
some partitions are still larger than the available size, they will be recursively partitioned
again until they become small enough to allow in-memory hash tables to be built for

build 0.18

2.5. MULTI-WAY JOIN 11

them.

2.4.3.3 Hybrid Hash Join

Hybrid Hash Join (HHJ)[13] was invented by DeWitt et al in 1984. This is a refinement
of Grace Hash Join which takes advantage of more available memory. It improves the
I/O performance of GHJ by utilizing the memory available for join. Although the build
relation may be too large to fit in memory as a whole, some tuples could be fit in memory.
During the partitioning phase, this algorithm uses memory for two purposes:

1. Hold one partition in-memory which is usually called as ”partition 0”.

2. As a buffer for the output page of each partition except partition 0.

As HHJ keeps the first partition instead of writing it back to the disk and then reading
it back, HHJ typically performs fewer I/O operations than GHJ. Disk access is many
orders of magnitude slower than memory access, which leads to the worse performance of
GHJ in comparison with HHJ. Except for holding one partition in memory, HHJ works
in the same way as GHJ.

2.5 Multi-way Join

Multi-way join is the operation that joins three or more relations. For multi-way join, it
may perform as multiple relations join on one common key, or multiple relations join on
multiple keys. In this section, we will introduce three kinds of multi-way join that have
different kinds of topology.

2.5.1 Multiple Relations Join on A Common Key

The multiple-relation join on a common key has the simplest topology among all classes
of multi-way joins. For example, we may want to do a multi-way join as shown in figure
2.2. In figure 2.3, relations A, B and C join on the common key a. The first relation
A has the only key a, which is its primary key. The primary key of the relation B is b
while the primary key of C is c. Both B and C have the foreign key a. The results of
joining A, B and C are shown in the relation named ABC.

Figure 2.2: Query for multiway-join on a common key

build 0.18

12 CHAPTER 2. BACKGROUND

Figure 2.3: Multi-way join on on a common key

If we connect the relations that have the same join key using a line, then we will get
a schema like figure 2.4. To some extent, the topology of this multi-way join is similar
to the bus topology in networks. Each relation holds the common key to be joined.

Figure 2.4: Topology of multi-way join on a common key

2.5.2 Multiple Relations Join on Keys from Different Relations

The multiple-relation join on multiple keys from several relations is the most general
and complex kind of multi-way joins. It is fair to say that any multi-way joins can be
regarded as one of this topology. We illustrate how this kind of join works using a five-
relation join as the example. The query to be done is described in figure 2.5. The data
in each relation are presented in figure 2.6. Relation A has the primary key a and one
foreign key c, relation B has the primary key b and two foreign keys a and e, C also has
one primary key c and one foreign key d, and both D and E only hold their primary
keys. The result of this join operation is described in the relation ABCDE.

build 0.18

2.5. MULTI-WAY JOIN 13

Figure 2.5: 5-relation join query

Figure 2.6: 5-way join data

Connecting the relations hold the same key to be joined, we can get the topology in
figure 2.7. As though the number of relations is limited, it can be observed that this
topology is a bit like the mesh topology in networks.

Figure 2.7: 5-way join topology

2.5.3 Star Join

The star join is a set of multi-way joins that all tables join on several keys from one
relation. The table that has all the keys to be joined on is called fact table, and the
other relations are called dimension tables. Star joins are very common in databases,
which means designing one multi-way join algorithm in order to accelerate these joins is
meaningful for databases. The query in figure 2.8 is a star join of three relations.

As shown in figure 2.9, these three tables A, B and C are joined on the keys Student
ID and Course ID. A contains the information about the student, Student ID, and name,
while B contains the data about course including Course ID and Course Name. Both

build 0.18

14 CHAPTER 2. BACKGROUND

Figure 2.8: 3-way star join query

A and B are the dimension tables of the star join. Table C contains two foreign keys
Student ID and Course ID, which are the keys to be joined on. C is the fact table. The
join results are shown in table ABC, from these results we can find which course is the
most popular among students and who is the student takes the most classes.

Figure 2.9: Star join of three relations

Linking the relations have the same key to be joined again, we get the topology in
figure 2.10. In this topology, the dimension tables are around the fact table which is like
the star topology while the dimension tables are hosts and the fact table is the hub.

Figure 2.10: Star join topology

build 0.18

2.5. MULTI-WAY JOIN 15

Figure 2.11: Comparison between star and mesh topology join

Comparing the star join with the join in figure 2.5 in section 2.5.2, we can find that
join could be performed by a cascade of multiple star joins in the way shown in figure
2.11. The mesh topology join of five relations is divided into two star joins of three
relations in cascading. In the first gray block is star join 1 and the second star join is
in the other one. Tables A and E are the dimension tables in the first star join while
B is the fact table, then the join result table ABE will be one of the dimension tables
of the second star join. The other one dimension table in the star join two is D, and
the fact table is C. After these two star joins, the final result ABCDE is produced.
Furthermore, it is not possible to finish this mesh topology join using the bus topology
method mentioned in section 2.5.1 because the bus topology method can not join three
or more relations on different keys. From this example, it is easy to find that all kinds
of mesh topology join could be performed by multiple star joins in cascading. However,
the joins that bus topology method can perform are more limited. Furthermore, the bus
topology multi-way joins also belong to one subset of star topology joins. As a summary,
it is fair to say that star joins can be used to deal with any topology of multi-way joins
to some extent. Therefore, it is very meaningful to find a method to perform this type
of join.

build 0.18

16 CHAPTER 2. BACKGROUND

build 0.18

Multi-way Join Analysis 3
The traditional algorithms to handle the multi-way join are based on a cascade of binary
operators, which means these algorithms always design a plan or a tree of binary joins,
and divide the multi-way join into multiple binary joins. Right-deep trees, left-deep
trees, bushy trees [14], segmented right-deep trees [15] and zig-zag trees [16] belong to
this type of algorithms. the l For example, if there are three relations to be joined, it
needs to combine two binary joins to finish it. The first join operator joins the first two
relations and materializes the intermediate result. The second join operator joins the
intermediate result with the third relation and produces the final result.

The other way to tackle with the multi-way join is based on n-ary operator where n
is the number of input relations of the join. For different types of multi-way joins, there
are different corresponding algorithms. As for the multi-way join on one common key
described in section 2.5.1, which is called the bus topology join, Microsoft invented the
Hash Teams [17] to deal with this class of joins and implemented it in Microsoft SQL
Server 7.0 in 1998. Because Hash Teams can only be used to join multiple relations as
long as they are joining on a common attribute, there are only a very small number
of joins that can be handled by this algorithm. More details about this algorithm are
shown in section 3.1

As mentioned in section 2.5.3, the star join is another type of multi-way joins which
is more common in data warehousing. Furthermore, it can be extended to other types
of multi-way joins. To deal with this class of multi-way joins, another algorithm named
Streaming, Highly Adaptive, Run-time Planner (SHARP) [18] was invented by Pedro
Bizarro and David DeWitt at the University of Wisconsin-Madison in 2006.

Since star joins are common and have excellent extensibility, the main focus of this
project is on this set of multi-way joins. Except for SHARP which will be presented
in section 3.2, there are other methods to handle star join. The first method is called
No-partitioning Multi-way Hash Join, and it will be discussed in section 3.3. The second
method is called Partitioning Multi-way Hash Join, which is optimized based on Grace
Hash Join to apply to star joins. More information about this method will be presented
in section 3.4. In section 3.51, we present a bandwidth-driven quantitative comparison
among these methods aiming at star joins. In section 3.6, a case study about TPC-H is
presented. The last section of this chapter is a summary of these algorithms.

3.1 Hash Teams

Hash teams [17] are used to perform a multi-way join on one common key. A hash team
consists of two components, the team manager and the hash operator.

13.5 is joint work with Jian Fang, Tu Delft

17

18 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

The tasks of hash operators are the followings:

• Consuming input records and producing matched output records.

• Managing the hash tables and overflow files.

• Requesting memory grants from the team manager.

• Flushing partitions out of memory and reloading them into memory on request
from the team manager.

A hash team has multiple hash operators but only one team manager. The team manager
is responsible for these tasks below:

• Mapping hash values to buckets.

• Mapping buckets to partitions.

• Granting memory requests of hash operators.

• Requesting to spill and to restore from the entire team.

The following is one example that shows how this algorithm works. In the query in figure
3.1 we join three relations on one common key r. Relation R has the primary key r while
S and T both have r as foreign keys.

Figure 3.1: Query for hash teams

Figure 3.2: Example data for hash teams

In figure 3.2, data of these relations are presented. The first step is partitioning
these tables based on r. In this example, we do partition using the hash function i = r
MOD 3 where r is the value of key, i is the index of partitions. Therefore, each table

build 0.18

3.2. SHARP 19

is divided into three partitions as shown in figure 3.3. After partitioning, we load the
first partition of both R and S, R1 and S1 into the memory and build hash tables for
them. Then read tuples from T1 to probe the hash table of R1. If the operator finds a
match, instead of writing the intermediate match result back directly it will probe the
hash table of S1 to find the matches for this pair of tuples. Then the operator will write
the matched results among three relations back as the output, as table RST shown in
figure 3.4. Once all tuples from the first partition of each table have been joined, the
hash team will read next set of corresponding partitions from three relations and repeat
until all sets of partitions have been joined.

Figure 3.3: Partitions of R, S and T in hash teams example

Hash teams can get performance gain up to 40% as reported in [17]. However,
because this algorithm only can deal with joins on one common key, there are a very
limited number of joins can get this performance gain by applying this method.

3.2 SHARP

Streaming, Highly Adaptive, Run-time Planner (SHARP) was invented by Pedro Bizarro
and David DeWitt at the University of Wisconsin-Madison in 2006[18]. This algorithm
can only be applied to star-joins. To introduce how SHARP performs a star join, an
example is shown in the following part. The example query is described in figure 3.5. As
for the input relations of SHARP, the dimension tables of the star join are also called
”build relations” because they are used to build hash tables, while the fact table is called
”probe relation” because tuples of this table will be used to probe the hash tables during
the join. In this example, three tables Course, Student and Namelist will be joined.
Both Course and Student are build relations, and their primary keys are C-id and S-id
respectively. Namelist is the probe relation that holds two foreign keys C-id and S-id.
The data of these tables are shown in figure 3.6.

build 0.18

20 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

Figure 3.4: Join results of hash teams

Figure 3.5: Query for SHARP

Figure 3.6: Example Data for SHARP

SHARP handles with multi-way join by performing multidimensional partitioning on
the probe relation, which is Namelist in the example. Originally SHARP intended to
divide the build relations into partitions that small enough to fit in the memory space
allocated for each input relation. In our project, the main memory is large enough to

build 0.18

3.2. SHARP 21

store all the data of relations to be joined, so these build relations are partitioned into
the size that can fit in the Block RAM (BRAM) on FPGAs now.

At first, the build relations, Course and Student are partitioned on their primary
keys respectively. As shown in figure 3.7, Course is partitioned on C-id into 2 partitions.
Student is partitioned on S-id into 3 partitions as shown in figure 3.8. Then the probe
relation Namelist is partitioned simultaneously by two dimensions on (C-id,S-id). The
number of partitions of probe relations should be the product of the number of partitions
in each build relation. As Course has 2 partitions while Student has 3 partitions,
Namelist should be divided into 2 ∗ 3 = 6 partitions as shown in figure 3.9.

Figure 3.7: Partitions of Course

Figure 3.8: Partitions of Student

Figure 3.9: Partitions of Namelist

After partitioning, we first load the first partition of both Course and Student into
the BRAMs and build hash tables for both partitions. Then probe partition (1,1) of
Namelist. Next, we keep the first hash table of Course remained in the BRAMs and
substitute second partition of Student for the first partition. Then probe with partition

build 0.18

22 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

Figure 3.10: Results of SHARP Join

(1,2) of Namelist. Next, we replace partition 2 of Student with partition 3 and probe
with partition (1,3) of Namelist.

Having probed all the partitions of Namelist could join with the first partition, of
Course, we load the second partition of Course into the BRAMs and each partition of
Student again as done before and probe the partition (2,1), (2,2) and (2,3) of Namelist.
During the probe phase, each partition of Course and Namelist is read once while each
partition of Student has been read twice. The final results are shown in 3.10. If we
join three relations R, S and T where R, S are build relations and T is probe relation.
R and S are divided into m and n partitions respectively. Assuming one tuple from T
will probe the partition of R at first and then probe the partition of S, each partition
of S will be probed for m times because the whole relation S needs to be probed when
one partition of R is probed. This algorithm read the partitions of probe relation once
and partitions of build relation i a number of times equal to

∏i−1
j Xj , where Xj is the

number of partitions for build relation j [19].

3.3 No-partitioning Multi-way Hash Join

No-partitioning Multi-way Hash Join is a more straightforward way to perform a star
join. For example, a three-way join among relations R, S, and T , where R and S are
the build relations, and T is the probe relation. This algorithm will first scan tuples in
R and S, then build hash tables for them. In our case, the database is in memory, then
both of these hash tables will be stored in memory. The next phase is probe phase. We
will scan tuples in T , and probe the hash table of R at first. The matches will be used
to probe the hash table of S. If there is at least one match in both hash tables, the
combined result will be written to the final results.

The main advantage of this method is that it saves the memory accesses caused by
the intermediate result I = R ./ T , comparing with the cascade of binary hash joins.

build 0.18

3.4. PARTITIONING MULTI-WAY HASH JOIN 23

This method also saves memory access during partitioning in comparison with SHARP.
However, the main disadvantage of this method is that cache line granularity effect [20].
During the build phase, scanning every tuple of R and S is in sequential, so there is no
granularity effect. However, if we want to insert one tuple into the corresponding hash
bucket, then we have to write one whole cache line to the memory, no matter what is
the size of tuple. Therefore, we may write more data than necessary. Furthermore, if it
does not write one whole cache line, it will read one extra cache line to keep the data
that are not overwritten stay unchanged. During the probe phase, for the same reason,
there is no granularity effect when scanning tuples in T . When probing hash tables of
R and S, each time of probing one hash bucket will request one cache line while one
bucket might just have only one tuple. Hence, the granularity effect will lead to a waste
of memory access again.

3.4 Partitioning Multi-way Hash Join

Another algorithm aiming at star joins is the partitioning multi-way join. This method
is different from the cascade of binary partitioning hash joins and SHARP. This method
joins multiple relations by performing several times of one-dimensional partitioning on
the probe relation instead of multi-dimensional partitioning in SHARP. For the star join
case shown in figure 3.11, three relations R, S and T are to be joined. The data of three
relations are shown in figure 3.12. R and S are the build relations, and their primary
keys are r and s respectively. Expect primary key, R also holds the value of a and S
holds the value of b. T is the probe relation which holds two foreign keys r and s.

Figure 3.11: Example query for partitioning multi-way hash join

Figure 3.12: Example data for partitioning multi-way join

At first, R and T are partitioned based on the value of r as shown in the left part of
figure 3.13, and then load the first partition of R into the BRAMs on FPGA, and build
the hash table of it. When the hash table of this partition is already, it will scan the

build 0.18

24 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

tuples in the first partition of T and probe the hash table. If there is a match result,
instead of writing it back directly to the memory, this result will be partitioned on the
value of s, and written to the corresponding space on main memory. Once completed
the join of this pair, it will start to load next partition of R and build the hash table
for this partition, and then scan the next partition of T as well to find matches. These
steps will be repeated until the last pair of partitions has been joined. The intermediate
result I = R ./ T is partitioned before writing to the memory as shown in the right part
of figure 3.13.

Figure 3.13: Partitions of intermediate results

As presented in figure 3.14, since the intermediate relation I has been already parti-
tioned, the next step is to partition the relation S and perform the same steps as before.
Read partitions of S into the BRAM, build hash tables and scan the partitions from I
to get to final match results RST .

Figure 3.14: Partitions of S and I, and the final results

The main advantage of this method is avoiding cache line granularity effect in com-
parison with the no-partitioning method, but it costs more memory operation caused by

build 0.18

3.5. QUANTITATIVE COMPARISON 25

partitioning the relations. Comparing with SHARP, it saves multiple reads and writes
accesses of build relations, but it will write the intermediate results into memory that
leads to extra memory accesses.

3.5 Quantitative Comparison

In this section, a quantitative bandwidth-driven comparison among multi-way join al-
gorithms is presented. As all these algorithms are memory-intensive applications, the
amount of memory access is crucial, and it is the main factor of our analysis. To cal-
culate the data size of memory access, we also need to take cache line granularity into
consideration as discussed in [20]. All the analyses are under these conditions:

1. The cache line of POWER 9 is 128 Byte.

2. The target query is a star query shown in figure 3.15, while R and S are the
dimension or build relations and T is the fact or probe relation. I = R ./ T is the
intermediate result.

3. All tuples of build relations from raw data will be transferred into 16B tuples (8B
key and 8B payload), while tuples of probe relation will be converted into 32B
tuples (8B key1, 8B key2, 8B payload and 8B padding).

4. All algorithms run on a non-shared memory channel machine, and the read band-
width equals to the write bandwidth.

5. All the memory write accesses of final result are not included in the calculation, as
they are same for all these algorithms.

Figure 3.15: Example query of the quantitative comparison

In Table 3.1 the information about relations involved is presented:

Table 3.1: Basic attributes about relations

Relation Tuple Size # Tuples Key

R 16B |R| r

S 16B |S| s

T 32B |T | r,s

I 32B |I| s

In Table 3.2, the notations used for calculation in this chapter are shown:

build 0.18

26 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

Table 3.2: Summary of notations used

Notation Description

NPH No-partitioning Multi-way Hash Join
PH Partitioning Multi-way Hash Join
B Memory bandwidth

m,n #partitions of R and S
k ratio between R and T
G granularity(size of cache line)

Tmem total memory access time
Ti memory access time of each phase
Dr data amount for read
Dw data amount for write
Wb tuple size of build relations
Wp tuple size of probe and intermediate relations

3.5.1 Memory Access Analysis of SHARP

SHARP can be divided into two phases, partition and join. During the partition phase,
both build relations R and S are partitioned on their primary keys, and the probe relation
T is partitioned on multi-dimension. Each relation will be read and write once. We can
calculate the memory access time of this phase:

Dr = Dw = Wb(|R|+ |S|) + Wp(|T |) (3.1)

Tpartition = max
{Dr

B

Dw

B

}
=

Wb(|R|+ |S|) + Wp|T |
B

(3.2)

After the partition phase, it is the join phase. In this phase, first the corresponding
partitions of each build relations will be read, then hash tables of these partitions are
built in the BRAM. Then the tuples belong to the related partitions of the probe relation
will be read and used to probe the hash table built. The join strategy is shown in section
3.2. The first build relation |R| and the probe relation |T | only need to be read once.
The second build relation |S| needs to be read m times as R is divided into m partitions.
Because each partition of S will be accessed once during joining one partition of R. The
memory access time of this phase is:

Tjoin =
Wb|R|+ Wp|T |+ mWb|S|

B
(3.3)

The total memory access time for SHARP is:

TSHARP = Tpartition + Tjoin =
2(Wb|R|+ Wp|T |) + (1 + m)Wb|S|

B
(3.4)

3.5.2 Memory Access Analysis of No-partitioning Multi-way Hash Join

There are two phases of this algorithm, the build phase and the probe phase. During the
build phase, all the tuples in R and S will be scanned to build the hash table. The mem-
ory access of scanning is sequential read. There is no granularity effect. After scanning,

build 0.18

3.5. QUANTITATIVE COMPARISON 27

every tuple will be inserted into the corresponding hash bucket with granularity effect.
Therefore, each insertion of the hash table needs one cache line of write. Furthermore,
because this write-only changes a part of the whole cache line, it needs another extra
read to keep the rest data of the cache line unchanged. Assuming there are no or few
hash collisions, then each hash bucket only holds one tuple. Hence the memory access
time of the build phase could be calculated as followings:

Dr = Wb(|R|+ |S|) (3.5)

Dw = (Wb + G)(|R|+ |S|) (3.6)

Tbuild = max
{Dr

B
,
Dw

B

}
=

(Wb + G)(|R|+ |S|)
B

(3.7)

Now we start to consider the probe phase. All the tuples in probe relation |T | will be
scanned and used to probe the hash table, and this scanning is sequential reads without
granularity effect. As we assumed, each hash bucket only holds one tuple from build
relations, so one hash bucket is accessed for one tuple from T , and one cache line is
accessed for one hash bucket because of granularity. As there are two hash tables to
be probed, so two cache lines will be accessed for one tuple probe in total. Then the
memory access time of this probe phase is:

Tprobe =
(Wp + 2G)|T |

B
(3.8)

The total memory access time for no-partitioning multi-way hash join is:

TNPH = Tbuild + Tprobe =
(Wb + G)(|R|+ |S|) + (Wp + 2G)|T |

B
(3.9)

3.5.3 Memory Access Analysis of Partitioning Multi-way Hash join

We can divide the whole process of the partitioning multi-way hash join into 4 phases.
They are the first partition phase, the first join phase, the second partition phase and
the second join phase. In the first partition phase, relations R and T are partitioned
based on the values of r, and the time of memory access is calculated as below:

Dr = Dw = Wb|R|+ Wp|T | (3.10)

T1stpartition = max
{Dr

B
,
Dp

B

}
=

Wb|R|+ Wp|T |
B

(3.11)

Then it comes to the first join phase. In this phase, the partition-pairs of R and T
will be loaded and joined one by one to get the intermediate result I = R ./ T . Next, I
will be partitioned on the values of s and written back to the main memory. Assuming
each tuple in T can find at most one match in build relations, then the size of I should
be no larger than T . Then we can calculate the memory access time of this phase:

Dr = Wb|R|+ Wp|T | (3.12)

Dw = Wr|I| < Wb|R|+ Wp|T | (3.13)

build 0.18

28 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

T1stjoin = max
{Dr

B
,
Dw

B

}
=

Wb|R|+ Wp|T |
B

(3.14)

Next phase is the second partition phase, in which S is partitioned on s. The memory
access time of this phase is:

Dr = Dw = Wb|S| (3.15)

T2ndpartition = max
{Dr

B
,
Dw

B

}
=

Wb|S|
B

(3.16)

The last phase is the second join phase. In this phase, pair-partitions from S and I
are joined to get the final result. Both S and I are read twice during this phase. Then
we can calculate the memory access time for this part :

T2ndjoin =
Wb|S|+ Wp|I|

B
(3.17)

The total memory access time of partitioning multi-way hash join is:

TPH = T1stpartition + T1stjoin + T2ndpartition + T2ndjoin

=
2(Wb|R|+ Wb|S|+ Wp|T |) + Wp|I|

B

(3.18)

3.5.4 Summary

In this section, we will compare the performance of different multi-way join methods,
and find how their performance will change in different cases. In table 3.3, a summary
of memory access time of all algorithms is shown.

Table 3.3: Summary of memory access time

Join Algorithm Memory Access Time

SHARP
2(Wb|R|+ Wp|T |) + (1 + m)Wb|S|

B

No-partitioning Multi-way Hash Join
(Wb + G)(|R|+ |S|) + (Wp + 2G)|T |

B

Partitioning Multi-way Hash Join
2(Wb|R|+ Wb|S|+ Wp|T |) + Wp|I|

B

To compare the performance of these methods, we have done some simplifications
for the calculation:

1. As the bandwidth is same for each method, we just need to take care of the size
of memory access data.

2. The cache line is 128B, Wb is 16B and Wp is 32B. Hence, we substitute G using
8Wb and Wp using 2Wb.

build 0.18

3.5. QUANTITATIVE COMPARISON 29

3. Assuming |R| is equal to |S|.

4. Assuming |I| is equal to |T |.

The summary after simplification are shown in table 3.4.

Table 3.4: Summary of memory access data size after simplification

Join Algorithm Memory Access Data Size

SHARP [(m + 3)|R|+ 4|T |]Wb

No-partitioning Multi-way Hash Join (18|R|+ 18|T |)Wb

Partitioning Multi-way Hash Join (4|R|+ 6|T |)Wb

As shown in the table above, it is obvious that No-partitioning Multi-way Hash Join
needs more memory access than Partitioning Multi-way Hash Join. However, when they
are in comparison with SHARP, the situation becomes a bit more complex. At first, we
can do the comparison between SHARP and No-partitioning Multi-way Hash Join. The
difference between two memory access data sizes is:

∆ = [(m + 3)|R|+ 4|T |]Wb − (18|R|+ 18|T |)Wb = [(m− 15)|R| − 14|T |]Wb (3.19)

From this equation, we can find that the performance of both algorithms are determined
by the number of partitions of R| and the size ratio between |R| and |T |. Assuming the
size ratio between |R| and |T | is k, which means |T | = k|S|. Then formula 3.19 becomes:

∆ = (m− 15− 14k)Wb (3.20)

Then the conclusion will be different in different cases as below:

1. If m < 15 + 14k, then ∆ < 0, which means SHARP has less memory access and
better performance.

2. If m > 15 + 14k, then ∆ > 0, which means No-partitioning Multi-way Hash Join
has better performance.

3. If m = 15 + 14k, then ∆ = 0, which means both algorithms have similar memory
access and performance.

After comparing the performance between SHARP and No-partitioning Multi-way
Hash Join, we start to compare SHARP with Partitioning Multi-way Hash Join. At first,
we also calculate the difference between two memory access data sizes:

∆ = [(m + 3)|R|+ 4|T |]Wb − (4|R|+ 6|T |)Wb = (m− 1)|R|Wb − 2|T |Wb (3.21)

Substituting |T | for k|R|, the formulation 3.21 becomes:

∆ = (m− 1− 2k)|T | (3.22)

From the equation above, it is obvious that the result will differ as the value of k changes.
The result is discussed in these sub cases:

build 0.18

30 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

1. If m < 2k + 1, then ∆ < 0, which means SHARP has less memory access and
better performance.

2. If m > 2k + 1, then ∆ > 0, which means Partitioning Multi-way Hash Join has
better memory access performance.

3. If m = 2k + 1, then ∆ = 0, which means both algorithms have similar memory
access and performance.

After doing the comparison of all algorithms, we can summarize the conclusion under
three sub-cases:

1. If m ≤ 2k + 1, then SHARP is the best one, next one is Partitioning Multi-way
Hash Join, and No-partitioning Multi-way Hash Join is the last one.

2. If 2k + 1 < m ≤ 14k + 15, then the best one is Partitioning Multi-way Hash Join,
the next one is SHARP, and No-partitioning Multi-way Hash Join is the last one.

3. If m > 14k + 15, then Partitioning Multi-way Hash Join still has the best perfor-
mance while the second one becomes to No-partitioning Multi-way Hash Join, and
the SHARP is the worst one.

3.6 Case Study of TPC-H

In this section, we will discuss the performance of the algorithms in the last section
when they are used to deal with a star join query in TPC-H Benchmark [21]. The
introduction of TPC-H will be presented first, and then is a quantitative analysis of these
algorithms based on a specific case. As this query from TPC-H will be our target query
of this project, these analyses help us determine which algorithm will be implemented
on FPGA.

The TPC BenchmarkTMH (TPC-H) is a decision support benchmark. It consists
of a suite of business oriented ad-hoc queries and concurrent data modifications. The
queries and the data populating the database have been chosen to have broad industry-
wide relevance. This benchmark illustrates decision support systems that examine large
volumes of data, execute queries with a high degree of complexity, and give answers to
critical business questions.[21]

In this project, a star join among the relations Part, Orders, and Lineitem from
TPC-H is executed as shown in figure 3.16. In table 3.5, the number of tuples in each
relation is shown when setting the TPC-H benchmark scale factor as 1 GB. Then we can
substitute R, S and T in the analysis in section 3.5 using Part, Orders and Lineitem.
In this query, each tuple in Lineitem will find one match in Part relation, so the size of
the intermediate relation I is equal to the size of |T | which is relation Lineitem in this
case. Then |R| = 200, 000, |S| = 1, 500, 000 = 7.5|R| and |T | = |I| = 6, 000, 000 = 30|R|
and k = |T |/|R| = 30. Then we can do the similar calculation in section 3.5. Table
3.6 shows the final results about the memory access data sizes of algorithms represented
using |R|, Wb and |m|.

build 0.18

3.7. SUMMARY 31

Figure 3.16: Star join among TPC-H relations

Table 3.5: TPC-H 1GB Relation Sizes

Relation #Tuples

PART 200,000
ORDERS 1,500,000
LINEITEM 6,000,000

Table 3.6: Memory access data sizes of TPC-H case study

Join Algorithm Memory Access Data Size

SHARP (129.5 + m)Wb|R|
No-partitioning Multi-way Hash Join 616.5Wb|R|
Partitioning Multi-way Hash Join 197Wb|R|

From the table above, it is obvious that Partitioning Multi-way Hash Join is always
better than the no-partitioning one, so we just need to select one from SHARP and
Partitioning Multi-way Hash Join. The decision depends on the value of m, and the
break-even value of m is 67.5. As m is the number of partitions of R which means it has
to be one integer. Hence, the value of m cannot be 67.5; then we only need to divide the
analysis into two sub-cases:

1. If m < 67.5, which means SHARP will have smaller memory access data size and
it will be the better choice.

2. If m > 67.5, then Partitioning Multi-way Hash Join has less memory access than
SHARP so that it will be the selected.

In our case, the number of partitions of |R| is always a larger number than 67.5 so we
select Partitioning Multi-way Hash Join as the algorithm to be implemented on FPGA.

3.7 Summary

In this chapter, several kinds of multi-way join algorithms have been introduced, and
they will be adapted to different classes of joins. Hash teams only adapt to multi-way join
on one common key, while other algorithms are aiming at star joins. In general, SHARP
will have better performance if the build relations have smaller numbers of partitions
and the probe relation is much larger than build relations. Although No-partitioning

build 0.18

32 CHAPTER 3. MULTI-WAY JOIN ANALYSIS

Multi-way Hash Join shows less competitiveness in the comparison in this chapter, it
will have better performance if the granularity effect can be reduced or the tuple size is
larger. In our case, Partitioning Multi-way Hash Join has the best performance, but its
performance depends on the size of the intermediate result. If the intermediate result is
much larger than we assumed, then its performance will degrade dramatically. After all,
we decide to implement the partitioning method on FPGA as our selection to deal with
the target query.

build 0.18

Implementation 4
In previous chapters, concepts regarding to Multi-Way Joins and reasons choosing the
Partitioning Multi-way Hash Join were given. In this chapter, all the implementation
and the detailed design of the algorithm are described. This algorithm is the first design
for multi-way hash join based on FPGAs.

In the first section of this chapter, the basics of target query relations are described.
Then the top-level design of the algorithm is presented in Section 4.2, which shows the
architecture of the whole system in brief. After that, the details about the implementa-
tion of both the 16-Byte-Tuple partitioner and the 32-Byte-Tuple partitioner are shown.
The 16 Byte-Tuple partitioner only works during the partition phase while the 32-Byte-
Tuple partitioner will work during both the partition and join phase. Subsequently, the
implementation of the joiner is described in detail in section 4.4. This chapter concludes
with the description about how to combine these operators into a whole system.

4.1 Data Format of Target Query Relations

The target query is a star join as shown in the figure 4.1. R and S are build relations,
and their primary keys are r and s respectively. T is the probe relation and it holds
both r and s. As mentioned in section 3.4, there will be an intermediate result relation
I = R ./ T in Partitioning Multi-way Hash Join, and we call the final output relation as
RST .

To perform this query, we store the tuples from R, S as 16-byte tuples that consist of
an 8-byte key and an 8-byte payload. The key saves the value of r or s, while the payload
stores the data such as an index or a pointer of the tuple, and this payload is used for
materialization. As for tuples from the probe relation T , it is a bit more complex. Each
tuple from T is stored as a 32-byte tuple. In one such 32-byte tuple, starting from the
lowest bit to the highest bit, the first 8 bytes are used to hold the value of r, while the
next 8 bytes are used to store the value of s. Then the third 8 bytes are the payloads
used for final materialization, and the last 8 bytes are padding bits that make the tuple
size be a power of two. Data formats of tuples from input relations are shown in table
4.1 and 4.2.

Figure 4.1: Target Query

33

34 CHAPTER 4. IMPLEMENTATION

Table 4.1: Build Relation Tuple Data Format

Tuples of Build Relation

8 Byte 8 Byte

Payload Primary Key

Table 4.2: Probe Relation Tuple Data Format

Tuples of Probe Relation

8 Byte 8 Byte 8 Byte 8 Byte

Padding Payload s r

As for output relations, the data formats are different. Both the intermediate results
and final results are stored as an array of 32-byte tuples. The tuples of intermediate
relation I should store both payloads from matched pair tuples of R and T as well as
the value of s which is to be joined in the following steps. Hence, the lowest 8 bytes are
used to store s. Then the next two 8 bytes are used to store two payloads of R and T .
The last 8 bytes are padding bits. The final output relation RST should keep all the
payloads of three relations, so each tuple of it consists of three 8-byte payloads and one
8-byte padding. Data formats of tuples from these two output relations are shown in
table 4.3 and 4.4.

Table 4.3: Intermediate Relation Tuple Data Format

Tuples of Intermediate Results

8 Byte 8 Byte 8 Byte 8 Byte

Padding Payload of R Payload of T s

Table 4.4: Final Result Relation Tuple Data Format

Tuples of Final Results

8 Byte 8 Byte 8 Byte 8 Byte

Padding Payload of S Payload of R Payload of T

4.2 Top-level Design

Before presenting details of all the implementation, there is a need to describe a top-level
design of the whole system. The whole process of target query can be divided into seven
steps as shown in figure 4.2:

Figure 4.2: Top-level design

build 0.18

4.2. TOP-LEVEL DESIGN 35

1. Partition T based on values of r.

2. Partition R based on values of r.

3. Build hash table of R based on values of a.

4. Read tuples from partitioned T and probe the hash table of R to join R and T . At
the same time, the intermediate result will be partitioned on the values of b instead
of writing back directly. After this step, the intermediate result I is partitioned.

5. Partition S based on b.

6. Build hash table of S based on b.

7. Read tuples from partitioned I and probe the hash table of S to get the final result.

Figure 4.3: Input, output, and operator of each step

To perform these steps, we design three main operators. The first one is the 16-byte
partitioner which is used to partition the build relations. The second one is the 32-byte
partitioner used to partition the probe relation and intermediate results. The last one is
called the joiner, and it is used for performing hash joins of the partition-pairs. It will
load the partition-pairs and join them. For a better understanding of how they finish
the target query, figure 4.3 describes what is the input, output and what operators are
used during each step:

• In step 1, T is partitioned based on a using the 32-byte partitioner, then get the
partitioned relation T named Tp.

• During step 2, R will be partitioned using the 16-byte partitioner, and the output
is partitioned R named Rp. At the same time, the 32-byte partitioner is reset.

• Step 3 and four are operated using a combination of the joiner and the 32-byte
partitioner. Rp is the first input of the joiner, and Tp is the second input. Tuples
of Rp are loaded, and the joiner builds the hash table of Rp. After finishing the
build phase, the second input Tp will be scanned to probe the matches. Every
match result will be sent to the 32-byte-partitioner directly instead of writing back
to main memory, that is why I is rounded by the dotted line in the figure. Then
the partitioned relation I called Ip is written back to the main memory. At the
same time, the 16-byte partitioner is reset.

• In step 5, Relation S is partitioned last, and it is partitioned based on the key by
using the 16-byte partitioner. The 32-byte partitioner is reset again.

build 0.18

36 CHAPTER 4. IMPLEMENTATION

• The last two steps are completed using the joiner. The joiner reads tuples from Sp

at first and build the hash table for Sp. Then scans the tuples from Ip and find
match results to write back to main memory directly.

4.3 Partitioner

To take advantage of high bandwidth that OpenCAPI provides, we need to achieve a
high-throughput design. Kaan Kara, Jana Giceva and Gustavo Alonso from ETH Zürich
have designed a partitioner based on FPGAs in [1]. We extend it to be more adaptive
to our project, and these extensions will be mentioned in the following part. As we keep
the main part of partitioner from [1], the design of partitioner will be discussed in brief.

4.3.1 16-Byte Partitioner

As for build relations R and S, the tuple size is 16-byte, therefore, we need a 16-byte
partitioner for them. The top-level design of this component is shown in figure 4.4.
There are eight threads in one partitioner, and each thread can consume one 16-byte
tuple per cycle, then 8 threads can handle with 128 bytes data per cycle. As the target
frequency is 200 Mhz, the throughput is 25.6 GB/s in theory. In this part, we extend the
original design to support 128-byte cache line machine. Each thread has two function
modules. The first one is hash function module which calculates the hash bits based on
the value of the key. And these hash values will determine these tuples belong to which
partitions. The output of this module is a combination of N-bit hash value with the
original tuple and will be stored in the FIFO. The second module is the write combiner
which is responsible for assigning 8 tuples that have the same hash value into one cache
line. Once 8 tuples have been combined into one cache line, this cache line with the
common hash value bits will be stored in the output FIFO of the write combiner. The
last stage of this partitioner is the write-back module. This part will read the output
FIFO of each write combiner in a round-robin style, then calculate the addresses to write
these cache lines and send the write requests.

Figure 4.4: 16-byte partitioner[1]

build 0.18

4.4. JOINER 37

4.3.2 32-Byte Partitioner

The design of the 32-byte partitioner is a bit different from 16-byte one. The main
part of them are similar, as shown in figure 4.4 and 4.5. In 32-byte one, it only has 4
threads that are enough for consuming the target bandwidth, and the output of the hash
function is a combination of hash value bits and tuple without padding bits instead of
the original tuple in the design of 16-byte partitioner. Because write combiners consume
most BRAM resource of the partitioner, it is critical to shrink the data size stored in
write combiners. Therefore, the hash function module generates data without padding
bits and saves around one-quarter of data size. Finally, these padding bits will be added
when the write-back module is sending the write request.

Figure 4.5: 32-byte partitioner[1]

4.4 Joiner

In this section, the design of the joiner will be discussed. The first subsection will present
two solutions to build the joiner and a comparison between them. Then we will discuss
the details of the join engine which is responsible for a join of one partition-pair. The
last part will describe the design of the memory request module.

4.4.1 Possible Designs of Joiner

The main challenge of the design of joiner is how to take advantage of the bandwidth
that Open-CAPI can provide. As the memory bandwidth is 25.6 GB/s per channel,
the design of the joiner must be high-throughput.The target frequency of this project
is 200MHz, so we need to consume 128B data per cycle. To cope with such a high
bandwidth, it is necessary to handle multiple tuples per cycle. The tuple size of build
relations is 16B while the tuple size of the probe relation is 32B, which means we should
operate 8 tuples from build relations or 4 tuples from the probe relation in parallel to
use up the bandwidth.

A hash join is divided into 2 phases, the build phase, and the probe phase. In our
case, the hash table of one partition will be built in BRAMs during the build phase, and
then this table will be probed. We call the component used to build the hash table ”build
engine”, while the component used to probe the hash table is named ”probe engine”,

build 0.18

38 CHAPTER 4. IMPLEMENTATION

and each engine can deal with one tuple per cycle. We configure the BRAMs in Simple
Dual-Port RAM mode, meaning only one read port and one write port but a maximum
72 bits width. Because one hash table requires one BRAM array, we need to store hash
tables in multiple BRAM arrays, whose number should be equal to the number of build
engines and that of the probe engines to guarantee each engine has its own read port and
own write port. The combination of corresponding hash table, build engine and probe
engine is called one join engine, as shown in the figure 4.6.

Figure 4.6: Join engine

Regarding the build phase, to fulfill the requirement of throughput, we need to im-
plement 8 join engines to consume 8 tuples from build relations per cycle. When it
comes to the probe phase, we only need 4 join engines to achieve the target throughput.
The former will have a better performance on throughput, while it will consume twice
more hardware resource than the later. Since then, a trade-off between performance and
resource usage emerges. In a star join, the build relations are always much smaller than
the probe relation, and therefore the build phase always spends much less time than
probe phase. Hence, the performance of the probe phase is much more important than
the build phase, so we select the 4-engine implementation to save hardware resource.

To implement a 4-engine design, there are two possible solutions. The first one is to
build 4 independent hash tables for one partition from the build relation. Once 4 engines
have built the hash tables, the tuples from the corresponding partition of probe relation
will be loaded and assigned to 4 probe engines to probe the hash tables. The second
solution is to load 4 partitions from the build relation at the same time and build their
hash tables respectively. Once a build engine has built its table, the probe engine in the
same join engine will start to scan the corresponding partition of probe relation to look
up the table. In brief, the former solution builds 4 hash tables for one partition while
the later builds 4 hash tables for 4 partitions.

In the figure 4.7, it shows how the first solution works. First, the joiner will read
four tuples from the partition Rn which is one partition of the build relation R. Then
these tuples will be applied on the same hash function, and the hash values will be sent
to the arbitrator, then the arbitrator will determine these tuples belong to which queues
based on the hash values. The tuples have the same hash value will be sent to the same
FIFO. The four build engines will load tuples from input FIFOs, and build their hash
tables. As these tuples are divided into 4 queues based on the hash values, these four
hash tables are independent. Once all the build engines have built their hash tables,
then it will come to the probe phase. Similarly, the joiner loads four tuples from the

build 0.18

4.4. JOINER 39

Figure 4.7: The first solution of 4-engine design

partition Tn and applies the same hash function to divide these tuples into four queues.
Therefore, only the tuples in the same queue from both relations will be matched. Once
all probe engines have finished probing, then the joiner will load next pair of partitions
and join them in the same way. All these steps will be repeated until the last pair of
partitions has been joined.

Figure 4.8: The second solution of 4-engine design

In figure 4.8, the second solution is shown. In this design, four join engines will
perform joins of 4 partition-pairs in parallel. Each join engine consists of three parts:
the hash table, the build engine, and the probe engine.For example, the first join engine
is combined with build engine 0, probe engine 0 and hash table 0, and we call it join

build 0.18

40 CHAPTER 4. IMPLEMENTATION

engine 0. Similarly, join engine i is combined with build engine i, probe engine i and
hash table i. As shown in figure 4.8, join engine i is performing the join between Ri and
Ti. Once an engine has finished its current join operation, it will start to join next pair
of partitions until all the pairs have been joined.

To determine which solution will be implemented as the final selection, we compare
these two solutions in the following fields:

1. Throughput

These two designs have the same theoretic throughput, 12.8GB/s during the build
phase and 25.6 GB/s during the probe phase. However, they will stall under
different conditions.

The first one will stall under two situations: 1. The engines have finished the task
of building or probing have to wait for the final one to finish its task, and then it
is allowed continue its work. 2. There is a transient data distribution skew of the
input tuples. The transient data distribution skew means that during a period,
some queues have different input tuples. For example, the total numbers of tuples
in each queue are the same, but the first input 100 tuples belong to the queue 0,
and all of these tuples are stored in FIFO 0. Then the other 3 engines will do
nothing during the first 100 cycles.

The second design will stall during the joins of the last few partition-pairs. The
common case is that three engines have to wait for the last one to finish its join of
its last partition-pair.

In our project, the number of partitions is always a relatively large number so that
the second one could have fewer stalls, but the conclusion is very dependent on the
data distribution.

2. Hardware Resource Usage

In this part, we will mainly focus on the usage of the BRAM because it is the
main limitation of the hardware resource in my design. Before the comparison, we
assume that each partition of the build relation is of the same size, and the size of
the hash table is same for every partition. As for the first solution, we need to deal
with the worst case that all the tuples of one partition belong to the same queue.
Therefore, the size of BRAM used by each hash table component of join engine
is the size of the hash table of partition. There are 4 join engines, so its usage of
BRAM is 4 times of the size of one hash table.

The second one needs store 4 hash tables in total, so its usage of BRAM is also 4
times of the size of one hash table. Hence, both solutions use the same resource of
the BRAM.

3. Control complexity

As for control complexity, the first one needs to implement one arbitrator to assign
the input tuples into different queues. The second method just needs to implement
a control logic to determine which engine should send the read request, and it can
perform as sending the request for each engine by turns. It is obvious that the
second one has simpler control logic than the first one as well.

build 0.18

4.4. JOINER 41

To sum up, the second method can achieve high throughput in more common case, and
its control complexity is simpler, while it uses the same BRAM resource as the first one.
Hence, it is more reasonable to select the second method as the final implementation.

4.4.2 Join Engine

4.4.2.1 Hash Table Structure

The structure of the hash table stored in BRAMs is introduced in this section. The hash
table consists of two smaller tables named ”Entries Table” and ”Linked List”. As shown
in figure 4.9, there are two color parts in each table. The gray parts mark the addresses
of rows while the blue parts are data stored in tables. In the entries table, it stores the
entry pointers of hash buckets. For example, the entry pointer of the hash bucket whose
hash value is n will be stored in the row whose address is n. The linked list is used
to tackle hash collisions. The address of linked list equals to the CountID of the input
tuple. CountID marks the order of the input tuple. For example, the CountID of the
first input tuple will be marked as 1, the second will be marked as 2, and the nth input
tuple will be marked as n. Therefore, the CountID is similar to a pointer and we can
find a tuple by it. There are two columns in the linked list. The first column is used to
store the original tuples from the build relation, and the second column is used to store
the CountID of next tuple in the same hash bucket. The row at address 0 stores NULL
as an end flag used during probe phase. We will discuss how this hash table works in
next sections.

Figure 4.9: Hash Table Structure

4.4.2.2 Build Engine

Before starting building the hash table, the entries table will be initialized to be an
all-zero table, so all the entry pointers are 0. Then the build engine starts to load tuples
from the build relation. As shown in figure 4.10, the tuple is applied with the hash
function to get the hash value, and the counter assigns a CountID to the tuple. Then
we get the hash value, the CountID and the original tuple. Using these outputs, we can

build 0.18

42 CHAPTER 4. IMPLEMENTATION

build the hash table as shown in the figure 4.11. Assuming the hash value is i, then it
reads the pointer at address i of the entries table. As the BRAM supports Read-Before-
Write mode 1, we can write the CountID into the same address at the same cycle. After
getting the output pointer, we write the original tuple and the output pointer into the
linked list at the row whose address equals to the CountID. The second write needs to
wait for the output pointer, but since it is pipelined, the throughput remains one tuple
per cycle.

Figure 4.10: White blocks represent signals while blue blocks represent the hardware
component. The blue square is the component of build engine, and the blue ellipse is
the component of other modules.

Figure 4.11: Build the hash table

To illustrate how this build engine handles hash collisions, an example is shown in
the figure 4.12. It shows three insertions of tuples whose hash values are equal to n.
CountIDs of these three tuples are k1, k2 and k3, and we name them as Tuple k1, Tuple
k2 and Tuple k3 respectively. As shown in step 0 in the figure, the value of entry pointer
at address n is 0 because there is no tuple in this hash bucket before. In step 1, it shows
the insertion of Tuple k1. Firstly, the build engine reads the original entry pointer at the
address n from the entries table, and overwrites this pointer with the CountID of Tuple
k1. Then Tuple k1 and the original entry pointer ”0” are written into the linked list.

1In Read-Before-Write mode, data previously stored at the write address appears on the output
latches, while the input data is being stored in memory.[22]

build 0.18

4.4. JOINER 43

The data modified are marked as orange in the tables. Next, it comes to the insertion
of Tuple k2. Similarly, read the original entry pointer of the hash bucket and write the
new CountID ”k2” into that cell.Then write Tuple k2 and the readout of entry pointer
into the linked list at address k2. The data changed in step 2 are marked as green. Last,
repeat these steps during the insertion of Tuple k3 and the data are written are marked
as yellow in the figure.

In this way, we can probe every tuple in the hash bucket under the help with the
entry pointers and the pointers in the linked list. In next section, it will show how to
probe these tables.

Figure 4.12: Hash collisions solution

4.4.2.3 Probe Engine

Once the hash table has been built, the probe engine will start to work. As shown in
figure 4.13, the probe engine will read the tuple from the probe relation if the Probe
FIFO is not almost full. The input tuple will be stored in the Tuple Buffer, and processed
by the hash function to get the hash value. Then the hash value will be used to look up
the entries table to find the entry pointer of the corresponding hash bucket. Then this
pointer and the original tuple in the buffer will be combined as a pair and written into
the Probe FIFO. The output pair of the Probe FIFO will be used to traverse the list to
find the matches. Then two branches will emerge:

1. The pointer at the reading row is not all-zero one, which means it is not the end

build 0.18

44 CHAPTER 4. IMPLEMENTATION

flag, and then it will probe the next tuple in the row whose address is the pointer.

2. The pointer at the reading row is an all-zero pointer, which means the tuple in this
row is the last one of this hash bucket. So it will read next pair from the Probe
FIFO, and next read address of linked list will be the entry pointer of next pair.

These steps will be repeated until the last one tuple from the probe relation has been
operated. Furthermore, to avoid stalls led by branch judgment, the control unit here is
implemented by the combinational logic circuit.

Figure 4.13: White blocks represent signals while blue blocks represent the hardware
component. The blue square is the component of probe engine, and the blue ellipse is
the component of other modules.

For example, as shown in figure 4.14, Pair n is the operating pair, and its data are
Tuple Pn and Entry pointer n. Assuming Entry pointer n is k3, then the probe engine
will read the row at k3 to compare Tuple k3 and Tuple Pn to judge if they are matched,
and read the Pointer value to find next row. As k2 is not the end flag pointer, it continues
to compare Tuple Pn with the tuple at address k2. Then the pointer value k1 will be
read and it is not the end flag pointer either, so the probe engine continues to find next
one row at the address k1 and do the comparison between Tuple k1 and Tuple Pn. As
the pointer at the row stored Tuple k1 is all-zero one, it means Tuple k1 is the last tuple
in this hash bucket so that it will read the row indicated by next pair from the Probe
FIFO. Assuming Entry pointer (n+ 1) is i, then next tuple to be read will be the row at
address i rather the row at 0. Furthermore, Pair (n+ 1) will replace Pair n and become
the Operating Pair at the same time.

build 0.18

4.4. JOINER 45

Figure 4.14: Probe example

4.4.3 Memory Request Module

To make four join engines work together, we need one module to request and assign data
to these four engines. This module is named memory request module. The two main
functions of this module are:

1. Arrange the read request of each engine.

2. Assign the read response data to each join engine.

The design of this part depends on the characteristics of the interface. In our case, we
assume that if we send one request this cycle, then we will get the respond cache line in
the next cycle. Figure 4.15 shows how this module sends the read request. There are
two tables to store the base addresses of partitions of the build relation and the probe

Figure 4.15: Read request arrangement

build 0.18

46 CHAPTER 4. IMPLEMENTATION

Figure 4.16: Respond data assignment

relation respectively. Then there are four pairs of registers to store the base addresses
of the partitions being joined by the corresponding join engines. Next, there are eight
buffers used to store response data, and record how many cache lines have been read
during the build or probe phase of the corresponding join engines. These 8 buffers are
divided into two groups as build buffers and probe buffers. Because the tuple size of
relations are different, so we design these two kinds of buffers to store the input data.
With the counter and the base address, the buffer can calculate the next read address of
the corresponding join engine. The selection signal of the MUX on the left of the counter
is determined by which phase is the join engine performing. Because the engines will
send the read request in the Round-Robin style, so MUX4 works in the Round-Robin
style as well.

The second function of this module is described in figure 4.16. Just as their names
imply, the build buffer stores the tuples from the build relation while the probe buffer
stores the tuples from the probe relation. Although the response data will be connected
to each buffer, there is only one buffer will be set as write enabled by the state machine
in one cycle. Of course, the selection of reading buffer is determined by which engine
has sent read request last cycle and what phase it is performing. Furthermore, if the
response data are not in order, we also can determine the selection based on the respond
address of the cache line. However, our design assumes an in-order response.

4.5 Integration

As the previous sections have described the modules will be implemented, in this section,
we will show how to configure them to create a whole system. As shown in figure 4.17,
there will be other components in the whole system to make the partitioners and the
joiner work together. The most complicated and important one is the state machine
part, as it will send and receive control signals in the whole system. The read request
module is responsible for sending read request for partitioners and the joiner. The read
response module will receive the response data and other read response signals and assign
these signals to partitioners and the joiner. Then these three components will determine
if they will read the data in under the control of the state machine. The output buffer

build 0.18

4.5. INTEGRATION 47

after joiner is a four-write-port but one-read-port FIFO. Its input element is 256-byte,
but it sends out a whole cache line data as its output. Therefore, it is used to combine
4 tuples together as a whole cache line and send them to the main memory and only
works during the last join pass. If the join phase is finished, it will be flushed out if the
last elements cannot fill up one cache line, while the flushing signal is sent by the joiner.
Then, the MUX on the top of 32-byte partitioner determines the input of the partitioner
is the respond cache line or the data from the joiner. The selection of the MUX is also
determined by the state machine. The write request module is responsible for sending
the write request for two partitioners, and the selection of write request is also under
the control of the state machine.

Figure 4.17: Integration of the whole system

build 0.18

48 CHAPTER 4. IMPLEMENTATION

build 0.18

Measurement 5
In this chapter, the measurement method and result are discussed. The goal of this chap-
ter is to validate that this algorithm works as intended and to measure its performance.

The measurement setup and method are described in section 5.1. Subsequently, the
selection of the configuration, the resource usage, and the operating frequency are shown.
Next, in section 5.3 the execution cycles for processing different inputs are reported. The
last section proposes the conclusion based on these measurement results.

5.1 Measurement Setup and Method

To test the performance of this algorithm, the behavioral simulation software used is
Questasim-10.5, and the synthesis tool is Vivado HLx Editions 2017.1. The target FPGA
model is xcku15p-ffve1760-3-e. Two workloads are tested during the measurements. The
first one is the uniform input. The data in both build and probe relations are consecutive
natural numbers, and the number of tuples in one relation differs from 1k to 8k., while the
other one is the TPC-H benchmark [21]. As the TPC-H datasets show obvious data skew
after being applied with the hash function selected, it leads to a huge memory resource
usage during the simulation, only the 1-MB size datasets are performed. In TPC-H case,
the build relations are Part and Orders while the probe relation is LineItem. Their
numbers of tuple are 200, 1500 and 6000 respectively.

Both workloads are tested in different settings of configurations such as the number
of partitions, the size of the hash table, and the size of the input. The execution cycles of
different cases are recorded, and the operating frequency is obtained by synthesis. Then
the execution time of each case can be calculated. With these results, some analyses will
be presented.

5.2 Resource Utilization and Operating Frequency

In this section, the reasons behind the selections of configurations are discussed first,
and then the synthesis results of these configuration settings are shown.

5.2.1 Selection of Configuration

For different input datasets, which configuration is best will differ. However, the original
target of this project is to deal with big data, and thus, the configuration is designed to
handle the largest problem size. With this in mind, a quantitative analysis is necessary.
The main hardware resource limitation of this project is the usage of BRAMs, so how to
utilize BRAMs efficiently is one key point. Only the data produced during the partition
and build phase will be stored in BRAMs, and the amount of these data is determined

49

50 CHAPTER 5. MEASUREMENT

by build relations and the number of partitions. Thus, the basic criterion of the con-
figuration is to handle the largest build relation using these available BRAMs. In the
following calculation, some notations in table 5.1 are used.

Table 5.1: Notations used in the configuration design analysis

Notation Description

S size of the build relation
SBRAM available size of BRAMs

Np #partitions of the build relation
Sh size of one hash table
Sp expected size of one partition
F ratio between the hash table size and the expected partition size
C size of cache line

Bp16 BRAMs usage of the 16-Byte Partitioner
Bp32 BRAMs usage of the 32-Byte Partitioner
Bj BRAMs usage of the Joiner
Bt total BRAMs usage

To simplify the analysis, the size of each partition from the build relation is assumed
to be equal. Then the size of the build relation can be calculated as:

S = NpSp (5.1)

As for the partitioners, the usage of BRAMs is determined by the number of partitions.
Because each write combiner module needs one cache line per partition, this requires the
largest amount of BRAMs in the partitioner. For the 16-Byte Partitioner, there are 8
write combiner modules, while the 32-Byte Partitioner only has 4 write combiners. All
the relations will be divided into the same number of partitions. Therefore the BRAM
usage of the partitioners is calculated as:

Bp16 = 8NpC (5.2)

Bp32 = 4NpC (5.3)

For the joiner, the linked list table drives the largest demand on BRAM utilization. The
linked list needs to store all the tuples and corresponding pointers from one partition.
Furthermore, the Entries Table also consumes some BRAM resource, so the BRAMs
used by the joiner is a value larger than the expected size of one partition. As assumed,
the size ratio between the hash table and the partition size is F where F > 1. A joiner
has 4 join engines, and each of them holds one hash table, as then the BRAM usage is:

Bj = 4FSp (5.4)

Now that we know the BRAM usage of each component, the total BRAM utilization
emerges as:

Bt = Bp16 + Bp32 + Bj = 12NpC + 4FSp (5.5)

build 0.18

5.2. RESOURCE UTILIZATION AND OPERATING FREQUENCY 51

As for real numbers a and b, (a−b)2 ≥ 0 which means a2+b2 ≥ 2ab, so a2+b2+2ab ≥ 4ab
and then the following formula can be deduced:

ab ≤ (a + b)2

4
(5.6)

Applying the formula 5.6 on equation 5.1, then the largest size of build relation can be
calculated as:

S = NpSp =
1

12C ∗ 4F
12NpC4FSp ≤

1

48CF

(12NpC + 4FSp)
2

4
=

B2
t

192CF
(5.7)

As Bt should be smaller than SBRAM , then the following formula is deduced:

S ≤ B2
t

192CF
≤

S2
BRAM

192CF
(5.8)

The maximum value of S is
S2
BRAM
48CF where the values of 12NpC and 4FSp are equal and

Bt is as large as SBRAM . In our case, the available size of BRAM is around 4MB, and
the size of cache line is 128Byte, while the ratio F is about 1.5. Hence, substituting the
value of SBRAM , C and F using 4MB, 128B and 1.5, the maximum input build relation
is:

S =
16M2

192 ∗ 128 ∗ 1.5
B = 455MB (5.9)

As the tuple consists of one 8-byte key and one 8-byte payload, then the number of
tuples that this design is able to perform is calculated as:

#Tuples =
455MB

(8 + 8)B
= 28.4M (5.10)

Thus the theoretical maximum number of tuples that this method can handle is 28.4M.
However, in our design, to deal with data skew, padding is added to each partition. The
padding size is as same as the average size of one partition while the average size is
calculated as Sp. With this padding size, the largest doable partition size is 2Sp. If one
partition has too many tuples and exceed its arranged size, some other techniques need
to be implemented such as building a histogram or increasing the padding size, but this
case will not be considered in the following analysis. Because the largest doable size of
one partition is 2Sp now, the maximum number of tuples in one partition becomes twice
as the original value as well. The hash table also needs to be twice as big as it was to
handle such a number of tuples. Therefore, the size of hash table is 3 times of the average
partition size which means F becomes 3 now. Besides, some FIFOs are also built using
the BRAM resource, and they consume about 1MB BRAMs. Thus the available BRAM
resource shrinks to 3MB. Replacing F and SBRAM using 3 and 3MB, the calculation
steps can be repeated, and the final results of maximum values of the input build relation
size and #Tuples are:

S = 128M (5.11)

#Tuples = 8M (5.12)

build 0.18

52 CHAPTER 5. MEASUREMENT

These maximum values can be obtained where 12NpC = 4FSp and 12NpC + 4FSp =
SBRAM . Then substituting C, F and SBRAM using 128B, 3 and 3MB, the number of
partitions and the size of one hash table can be deduced:

Np = 1024 (5.13)

Sh = 3Sp = 384kB (5.14)

Because the size of hash table is 384kB, the number of tuples stored in the each linked
list should be around 384/(16 ∗ 1.5) = 16k, which is twice the expected number of tuples
in one partition. The final configurations are shown in the table below:

Table 5.2: Configuration Settings

Configuration Setting Value

#Partitions 1k
Depth of the linked list 16k
Depth of the entries table 16k

5.2.2 Synthesis Results

With the configuration settings in table 5.2, the operating frequency is 360MHz, and the
following table shows the utilization of hardware resource in the synthesis report.

Table 5.3: Hardware resource utilization

Resource Available Utiliazation

LUT 522720 24%
FF 165670 16%

BRAM 984 100%
DSP 1968 1%

5.3 Execution Cycles for Different Cases

In this section, the execution results for the different cases are shown. First, one problem
caused by resetting is discussed. The hash table needs to be reset after each completion
of one partition-pair join. Because a BRAM array only has one write port, only one
address can be reset in one cycle. Therefore, if the number of entries in the hash table is
n, the time consumed by reset will be n cycles. The time to reset the design will increase
as the size of the hash table becomes bigger. To reduce the time spent on resetting, a
hash table consisting of multiple BRAM arrays is designed. The depth of one BRAM
array is at least 512, which implies that if the hash table has more entries than 512,
it will need at least 512 cycles to be reset unless some BRAMs capacity is wasted and
never used. For example, if only the first 256 addresses of each BRAM are used to store
data, then the reset time can be reduced to 256. However, this design has an obvious

build 0.18

5.3. EXECUTION CYCLES FOR DIFFERENT CASES 53

drawback in the BRAM utilization factor. Therefore, we only design the hash table that
can be reset in 512 cycles when its number of addresses is larger than 512, and keep
the original design if the hash entries is fewer than 512. In the first subsection, some
experiments are conducted to show how this technique improves the performance.

5.3.1 Reset Cycles Measurement

In the first measurement, the performances of the design with a single BRAM array hash
table and the design with multiple BRAM arrays hash table are compared.

Figure 5.1: Execution cycles of the designs with a single BRAM array and multiple
BRAM arrays hash table of different settings of hash bits.

In figure 5.1, the execution cycles of two designs are presented. In this measurement,
the workload is the uniform one, and the number of tuples in each relation is 1024
while the number of partitions is set to 32. With different values of hash entries, these
two curves are obtained. If the reset time is not considered, then the execution cycles
should always reduce when the number of hash bits increases. However, it is obvious
that the performance in this figure does not obey this tendency. Both designs have the
best performance when the hash bits is set to 5. It means there are some other rules
that the performance will obey when the reset time is considered. When the number of
hash bits is larger than 9, these two curves split up, and the single BRAM array design
takes almost twice the time to finish the multi-way join than the multiple BRAM arrays
design.

In figure 5.2, the curves show which fraction of execution time is spent resetting with
different settings of the hash bits in the two designs. Both curves show an increasing
tendency when the number of hash bits gets larger, but the orange one keeps stable when
the value of hash bits is larger than 9. As mentioned before, the reset cycles of one hash
table will be 512 when the number of hash bits is larger than 9, so at last the execution
cycles of the design using multiple BRAM arrays stay unchanged. Because the multiple

build 0.18

54 CHAPTER 5. MEASUREMENT

BRAM arrays design will have a distinct advantage caused by stable reset cycles when
the value of hash bits is bigger than 9, the remaining measurements are all based on this
kind of design.

Figure 5.2: Join engine reset time portion of the execution time

If the reset time is considered, then another rule will emerge when the size of hash bits
changes. A brief analysis to determine when the system can obtain the best performance
is presented in the rest of this section. Some notations will be used during the calculation,
and they are shown in table 5.4. The following assumptions are made to simplify the
problem:

• Only one partition-pair join is considered.

• The tuples from both build and probe relation are distributed evenly.

• The probe relation has more tuples than the build relation.

• The time cost of build phase will be the same if the build relation size is unchanged.
Therefore, only the time cost by the probing and resetting should be compared.

Table 5.4: Notations used in the analysis of reset cycles

Notation Description

#Cycles of probing and resetting T
#Hash entries E
#Tuples in one partition of the probe relation N
#Tuples in one partition of the build relation M

build 0.18

5.3. EXECUTION CYCLES FOR DIFFERENT CASES 55

The analysis needs to consider two cases. In the first case, the number of tuples in
the build relation is not larger than 512. In the other case, M is larger than 512. There
are three subcases of the first case:

1. If E ≤M < 512, then the average hash collisions of each bucket should be M
E , and

the cycles consumed by probing and resetting can be calculated as

T =
M

E
N + E (5.15)

Applying a + b ≥ 2
√
ab, we can find the minimum value T = 2

√
MN is obtained

where E =
√
MN . However, as E ≤ M <

√
MN , the minimum value calculated

cannot be obtained. Then the minimum value in the range from 0 to M needs to
be determined. The derivative of T (E) is 1− MN

E2 , which is obviously negative in
the range from 0 to M , so the minimum value of T is obtained where E = M as:

T = N + M (5.16)

2. If M < E < 512, there are few hash collisions, and the value of T approximately
equals to:

T = N + E (5.17)

3. If E ≥ 512, then E > M , and there should be few hash collisions. Same as above,
the time is calculated to be:

T = N + 512 (5.18)

After obtaining these equations, it is obvious that the join engine performs best when E =
M . The conclusion for this case can be made: If M < 512, then the best performance is
obtained when E = M , and the number of cycles spent on probing and resetting is:

T = N + M (5.19)

Next, the other case that M > 512 is discussed. Similarly, there are three subcases
in this part as well:

1. If E ≤ 512, then T = MN
E + E.

2. If 512 < E < M , then T = MN
E + 512.

3. If E ≥M , then T = N + 512.

It is obvious that the last subcase consumes less time than the second one.The analysis
of the first subcase is similar to the analysis of formula 5.15, then its minmum value is:

T =
MN

512
+ 512 > N + 512 (5.20)

Then, it is obvious that the best setting of the number of hash bits should be not smaller
than M . Table 5.5 sums up the conclusions in both cases:

build 0.18

56 CHAPTER 5. MEASUREMENT

Table 5.5: Summary of selections of hash entries in different cases

Subcase #Hash Entries #Minimum Cycles

M < 512 M N + M
M ≥ 512 not smaller than M N + 512

Figure 5.3: Experiments results of different sizes inputs

Some experiments based on the join engine are conducted to verify these conclusions.
As the input data should be evenly distributed, uniform data is adopted in these exper-
iments. Figure 5.3 shows results of these experiments. In all of these experiments, the
sizes of inputs and the numbers of hash entries are changed. In the first experiment, the
number of tuples in the build relation and the probe relation are both set to 128. As
shown in the figure, when the number of hash entries is set to 128, the consumed cycles
are the fewest. In the second one, the numbers of tuples are set to 256, and the fewest
execution time is obtained when the hash entries are set to 256. Results of the first two
experiments validate the conclusion of the case in which M < 512. The next experiment

build 0.18

5.3. EXECUTION CYCLES FOR DIFFERENT CASES 57

shows the performance while M = 512. The curve decreases at first and then becomes
stable when the number of hash entries is larger than 29. In the last experiment, the
input sizes are set as 1024, and the curve also shows the similar outline as the curve in
the third figure. However, the best performance is obtained when the number of hash
entries is larger than 1024 rather than 512 in the third one. The last two experiments
validate the conclusion of the second case.

5.3.2 Uniform Input Measurement

In this part, only the uniform workloads are used as the input relations. The execu-
tion cycles are measured in different configurations of the numbers of hash entries and
partitions. If the number of hash entries is adjusted, then the number of partitions will
be kept as 32. In the other group of measurements, the number of hash entries will be
fixed as 32 while the number of partitions is changed. Four sets of measurements are
performed in this subsection. The numbers of tuples are respectively set as 1024, 2048,
4096 and 8192.

Figure 5.4 shows the measurement results of 1k uniform inputs. If the number of
partitions is maintained unchanged, the fewest execution cycles will be obtained when
the number of hash entries is 32. As the number of hash entries is fixed, then the best
result shows if the number of partitions is set as 32. Furthermore, the performance
obviously degrades when the number of partitions increases, because the number of hash
entries becomes larger than the number of tuples in one partition, and the resetting
cycles occupy a larger portion of the execution cycles.

Figure 5.4: Measurement results of 1k uniform inputs

In figure 5.5, if the number of partitions is fixed to 32, then the best selection of hash
entries should be 26, and this result is in accord with the previous analysis. However,
if the number of hash entries is kept as 32, the best performance is obtained when the
number of partitions is 32. If the previous analysis is applied, the best choice of the
number of partitions should be 64 rather than 32, as in that case, the number of hash
entries will be equal to the number of tuples in one partition.

build 0.18

58 CHAPTER 5. MEASUREMENT

Figure 5.5: Measurement results of 2k uniform inputs

To find the reason behind this result, the cycles consumed by each phase are recorded
respectively, setting the number of partitions as 32 and 64 and the hash entries as 32. In
table 5.6, the recorded results show that the 64 partitions method consumes more cycles
than the 32 one during each phase of the whole process. First is the initialization phase,
as the number of partitions increases, the number of counters to record the number of
cache lines of each partition increases as well and they are built using BRAMs. Therefore,
the cycles used for initialization increases as well. The cycles used during partition phase
is also related to setting of the number of partitions. When the number of partitions
becomes larger, the time to gather one whole cache line containing 8 tuples that have
the same hash value will be longer, and it will reduce the performance of partitioning.
As the 32-byte partitioner also affords workloads during phase of joining R and T, then
the 64-partition setting design consumed more cycles. When it comes to the phase of
final join, there is little difference between the two design settings, but the 32-partition
one still performs better than the 64-partition one. The reason is that the joiner in the
64-partition design needs to deal with more partition pairs, and reset more times. The
penalty caused by resetting in the 64-partition design is heavier than the penalty caused
by hash collisions in the 32-partition one.

Table 5.6: Cycles consumed in each phase when #partitions is 32 and 64

#Partitions Initialization Partition T Partition R Join RT Part S Final Join

32 32 675 425 2201 424 2082
64 64 731 559 2247 483 2088

In figure 5.6 and figure 5.7, the measurement results based on 4k inputs and 8k inputs
are shown. As shown in these figures, the best performance point is moving to the right
in both figures. From these four sets of measurements based on different input sizes, it
is reasonable to say that there is no setting of configuration can always show the best
performance in every case. However, if the input size becomes much larger, then the
design with more hash entries and partitions will perform better in more cases.

build 0.18

5.3. EXECUTION CYCLES FOR DIFFERENT CASES 59

Figure 5.6: Measurement results of 4k uniform inputs

Figure 5.7: Measurement results of 8k uniform inputs

5.3.3 TPC-H Measurement

In this section, the data from the TPC-H are used as the inputs. Because the simulation
is very hardware-consuming, only the 1MB input is measured. The number of partitions
is set to 32 while the number of hash entries is adjusted. The information about the
relations joined is shown in the table 5.7. The build relations are Part and Orders while
the probe relation is Lineitem. The performance measurement results are shown in the
figure 5.8. When the number of hash entries is set to 256, the fewest execution cycles is
obtained.

build 0.18

60 CHAPTER 5. MEASUREMENT

Table 5.7: Information about the TPC-H inputs

Relation #Tuples

Part 200
Orders 1500
Lineitem 6000

Figure 5.8: Measurement results based on 1MB TPC-H inputs

5.3.4 Throughput

With the operating frequency and the execution cycle, the execution time can be calcu-
lated. The operating frequency is 360 MHz, but the target frequency of this project is
200 MHz and it will be used in the calculation. The throughput of a multi-way join is
calculated as:

Throughput =
Size of R + Size of S + Size of T

Execution time
(5.21)

The throughput results are shown in table 5.8, and only the best results in different cases
are included.

Table 5.8: Throughput for different inputs

Input Throughput

Uniform 1k 3.77GB/s
Uniform 2k 4.67GB/s
Uniform 4k 5.31GB/s
Uniform 8k 5.70GB/s
TPC-H 1MB 2.38GB/s

build 0.18

5.4. CONCLUSION 61

From the table, it can be concluded that the throughput increases as the input size
becomes larger when the input is uniform. The throughput shows a significant decrease
in the case of TPC-H because there is a lot of data skew in this measurement. As there
are three quarters of the partitions are empty, this results in massive degradation in the
performance. The hash function applied in this project is one modulo function, and it
is very sensitive to these data skew. If another proper hash function is used, then the
results will be better.

5.4 Conclusion

As though there are only limited experiments conducted, these results are enough to
show that different configurations are preferred for different inputs. When it comes to
the throughput, for the partition phases, each partitioner can achieve a throughput about
25GB/s, and the build phase can consume four tuples from the build relation per cycle
without stalls, achieving 12GB/s throughput on average. If there is no hash collision,
the probe phase is able to handle one cache line per cycle, and the peak rate of the
throughput is 25GB/s as well. Because of the resetting of join engines, the limited sizes
of simulated inputs, and the definition of throughput calculation formula, the measured
throughput is about only 5 GB/s finally.

build 0.18

62 CHAPTER 5. MEASUREMENT

build 0.18

Summary, Conclusions and
Future Work 6
In this chapter, the first section summarizes the previous chapters of this thesis, while
conclusions are listed in section 6.2, followed by the future work discussed in section 6.3.

6.1 Summary

The problem statement of this thesis project was:

How to design and implement a proper multi-way hash join algorithm on FPGAs?

To answer this question, the following three goals were established:

1. Compare different algorithms existing on software and select one to be implemented
on FPGAs.

2. Design and implement corresponding mutli-way join algorithm on FPGAs.

3. Test, evaluate and analyze the performance of the implementation.

To reach these goals of this project, we first investigated the previous research on binary
hash joins and multi-way hash joins. Subsequently, we selected three algorithms as the
candidates and made a quantitative comparison among them based on memory access
amount. Because these candidates have different performance for different inputs, the
final selection depends on the input. The TPC-H dataset was selected as the target
input, and a case study of it was discussed. Based on this case study, the partitioning
multi-way hash join was selected.

Once the algorithm was selected, we turned to design of the hardware. The main
components of the multi-way joiner are the 16-byte partitioner, the 32-byte partitioner,
and the joiner. Both the partitioners are built based on ETH’s work. The 16-byte
partitioner can handle eight tuples from the build relations per cycle, and the 32-byte
partitioner can consume four tuples from the probe relation per cycle. The throughput of
each partitioner is 25 GB/s, and they utilize about 65% of the available BRAM resource.
The joiner consists of four join engines, and each engine can perform the join for one
partition pair. Therefore, the joiner can handle four tuples per cycle during both the
build and probe phase. The build phase can consume 64-byte data per cycle while the
probe phase can handle 128-byte data per cycle. This component requires around 35%
of BRAM resource. To save some memory access caused by the intermediate results, we
pipeline the intermediate join and partition phases.

The experiments are conducted to estimate the performance of our design. Based on
these measured results, we analyze how the performance differs when the configurations
and inputs change.

63

64 CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK

6.2 Conclusions

In this project, an innovative multi-way join algorithm based on FPGAs is proposed.
The throughput of this design can reach 5 GB/s, and its largest doable size of the build
relation is 256MB or 16M tuples. From our analyses and the measured results, the
following conclusions are obtained:

1. For the on-disk database, using the operator such as the SHARP which joins mul-
tiple relations in one phase often performs faster than the cascading of binary
join operators because it can save IOs caused by intermediate results. When the
database is moved from disk to main memory, the result becomes different. Because
the size of the on-chip memory is much smaller than the size of main memory, the
build relation has to be partitioned into a smaller size to build the hash table in the
on-chip memory. If the size of each partition is smaller, the number of partitions
will become greater, and increasing number of partitions leads to repeated read-
ing of the build relations. Thus, the performance will degrade dramatically. On
the contrary, the performance of the cascading of binary operators is more stable
when the database is moved from disk to memory. Therefore, the latter has better
performance in our case.

2. FPGAs can accelerate the multi-way join operation for small inputs effectively, but
it is very challenging to handle larger size input using FPGAs because the on-chip
memory size is limited. However, we can utilize the larger off-chip memory, but
the limitation will still bound the doable problem size.

3. The hash entries table reset time is not negligible in the design. Because a BRAM
array only has one write port, and the time spent on resetting is proportional to
the number of hash entries. Therefore, in some cases, the performance could be
worse when the number of hash entries becomes larger. However, we can build
the hash entries table using multiple BRAM arrays to avoid the penalty when the
number of hash entries is larger than 512.

4. Similarly, in some cases, the hash collisions can be reduced by dividing the input
into more partitions, but the performance of the join phase decreases, because each
engine needs to handle more partition pairs and needs to be reset more often. This
result implies the penalty caused by the increased reset time of the join engines is
sometimes greater than the penalty caused by more hash collisions.

6.3 Future Work

As the design has not yet been tested on hardware, the first future work is to implement
this algorithm on an FPGA board, and measure the actual execution time. The simula-
tion is hardware-consuming and the measurements in Chapter 5 are limited. With the
implementation on an FPGA, more experiments using big size inputs can be conducted,
such as 5GB TPC-H. The hash function is just one modulo operation in this project,
and it is sensitive to data skew, so measurements based on different hash functions will
be conducted as well.

build 0.18

6.3. FUTURE WORK 65

The limited BRAM resource bounds the problem size that this design can solve. One
future option is to replace the BRAM with High Bandwidth Memory(HBM) [23]. The
bandwidth of HBM is 460GB/s which is about 20 times higher than the bandwidth of
the main memory, and the available size of HBM is much larger than the available size
of BRAM on FPGAs. With a larger storage space, the sizes of each partition and the
hash table can be increased to much larger values. On the target FPGA model, there are
only 4MB available BRAMs, while the typical depth of the HBM on Virtex UltraScale+
FPGAs is 8GB. Hence, HBM provides the potential to extend the doable problem size
of this design. Except using HBM, there is another way to increase the doable size of
the input. Based on the method in figure 4.7, it is possible to make these four engines
work together to build one hash table, then the BRAM usage during join phase will be
cut down to one quarter. However, the penalties are the increased complexity of control
logic, utilization of LUTs, and the loss of operating frequency.

build 0.18

66 CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK

build 0.18

Bibliography

[1] K. Kara, J. Giceva, and G. Alonso, “Fpga-based data partitioning,” in Proceedings
of the 2017 ACM International Conference on Management of Data. ACM, 2017,
pp. 433–445.

[2] Y. Mulder, “Feeding high-bandwidth streaming-based fpga accelerators,” Master’s
thesis, Delft University of Technology, Delft, 2018.

[3] X. Zeng, “Fpga-based high throughput merge sorter,” Master’s thesis, Delft Uni-
versity of Technology, Delft, 2018.

[4] Y. Qiao, “An fpga-based snappy decompressor-filter,” Master’s thesis, Delft Uni-
versity of Technology, Delft, 2018.

[5] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “Fpga-based mul-
tithreading for in-memory hash joins,” in CIDR, 2015.

[6] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, S. Asaad, and
B. Iyer, “Accelerating join operation for relational databases with fpgas,” in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st Annual In-
ternational Symposium on. IEEE, 2013, pp. 17–20.

[7] Wikipedia, “Join(sql),” https://en.wikipedia.org/wiki/Join (SQL)#Equi-join,
2017, accessed December, 29, 2017.

[8] ——, “Field-programmable gate array,” https://en.wikipedia.org/wiki/
Field-programmable gate array, 2017, accessed December, 17, 2017.

[9] O. Consortium, “Opencapi overview,” http://opencapi.org/about/, Oct. 2016, ac-
cessed December, 29, 2017.

[10] Wikipedia, “Relational database,” https://en.wikipedia.org/wiki/Relational
database, 2017, accessed December, 17, 2017.

[11] ——, “Hash table,” https://en.wikipedia.org/wiki/Hash table#cite
note-chernoff-7, 2017, accessed December, 17, 2017.

[12] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application of hash to data base
machine and its architecture,” New Generation Computing, vol. 1, no. 1, p. 10,
Mar 1983. [Online]. Available: https://doi.org/10.1007/BF03037022

[13] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. A. Wood, “Implementation techniques for main memory database systems,” in
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’84. New York, NY, USA: ACM, 1984, pp. 1–8. [Online].
Available: http://doi.acm.org/10.1145/602259.602261

67

https://en.wikipedia.org/wiki/Join_(SQL)#Equi-join
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://opencapi.org/about/
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Hash_table#cite_note-chernoff-7
https://en.wikipedia.org/wiki/Hash_table#cite_note-chernoff-7
https://doi.org/10.1007/BF03037022
http://doi.acm.org/10.1145/602259.602261

68 BIBLIOGRAPHY

[14] D. A. Schneider and D. J. DeWitt, Tradeoffs in processing complex join queries via
hashing in multiprocessor database machines. University of Wisconsin-Madison,
Computer Sciences Department, 1990.

[15] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young, “Using segmented right-deep
trees for the execution of pipelined hash joins,” in VLDB, 1992, pp. 15–26.

[16] M. Ziane, M. Zäıt, and P. Borla-Salamet, “Parallel query processing in dbs3,” in
Parallel and Distributed Information Systems, 1993., Proceedings of the Second In-
ternational Conference on. IEEE, 1993, pp. 93–102.

[17] G. Graefe, R. Bunker, and S. Cooper, “Hash joins and hash teams in microsoft sql
server,” in VLDB, vol. 98, 1998, pp. 86–97.

[18] P. Bizarro and D. DeWitt, “Adaptive and robust query processing with sharp,”
Tech. Rep. 1562, University of Wisconsin–Madison, CS Dept, Tech. Rep., 2006.

[19] M. Henderson, “Multi-way hash join effectiveness,” Ph.D. dissertation, Ph. D. dis-
sertation, University of British Columbia, 2013.

[20] J. Fang, J. Lee, P. Hofstee, and J. Hidders, “Analyzing in-memory hash joins: Gran-
ularity matters,” in Proc. 8th International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Storage Architectures, Mu-
nich, Germany, September 2017.

[21] T.-H. Benchmark, “Technical report,” Tech. Rep.

[22] XILINX, “7 series fpgas memory resources user guide,” https://www.xilinx.com/
support/documentation/user guides/ug473 7Series Memory Resources.pdf, 2016,
accessed December, 29, 2017.

[23] A. T. Mike Wissolik, Darren Zacher and B. Day, “Virtex ultrascale+ hbm fpga: A
revolutionary increase in memory performance,” https://www.xilinx.com/support/
documentation/white papers/wp485-hbm.pdf, 2017, accessed Jan, 21, 2017.

build 0.18

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Context
	Motivation and Problem Statement
	Methodology and Project Goals
	Thesis Outline

	Background
	FPGA
	OpenCAPI
	Relational Database
	Hash Join
	Nested-loop Join and Sort-merge Join
	Introduction of Hash Join
	Hash Join Algorithms

	Multi-way Join
	Multiple Relations Join on A Common Key
	Multiple Relations Join on Keys from Different Relations
	Star Join

	Multi-way Join Analysis
	Hash Teams
	SHARP
	No-partitioning Multi-way Hash Join
	Partitioning Multi-way Hash Join
	Quantitative Comparison
	Memory Access Analysis of SHARP
	Memory Access Analysis of No-partitioning Multi-way Hash Join
	Memory Access Analysis of Partitioning Multi-way Hash join
	Summary

	Case Study of TPC-H
	Summary

	Implementation
	Data Format of Target Query Relations
	Top-level Design
	Partitioner
	16-Byte Partitioner
	32-Byte Partitioner

	Joiner
	Possible Designs of Joiner
	Join Engine
	Memory Request Module

	Integration

	Measurement
	Measurement Setup and Method
	Resource Utilization and Operating Frequency
	Selection of Configuration
	Synthesis Results

	Execution Cycles for Different Cases
	Reset Cycles Measurement
	Uniform Input Measurement
	TPC-H Measurement
	Throughput

	Conclusion

	Summary, Conclusions and Future Work
	Summary
	Conclusions
	Future Work

	Bibliography

