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Abstract

In recent years, the increase in brain research led to the development of large-scale brain
imaging techniques. With large-scale brain imaging techniques, such as functional mag-
netic resonance imaging (fMRI), functional connectivity analyses have shown altered
connectivity patterns in humans and mice with neurobiological disorders, such as autism
spectrum disorder (ASD). To further investigate different mutations that contribute to
ASD, a behavioral neuroscientific experiment has been performed at the neuroscientific
department of Erasmus MC. During the trial, brain activity in groups of wild-type
and homozygous mice is measured using functional ultrasound (fUS) while allowing
for spontaneous behaviors of mice. The homozygous mice lack the SHANK2 protein,
resulting in hyperactivity and autistic-like behavioral alterations associated with ASD
in humans. Understanding the origin of ASD is key to providing effective treatment.
However, with the introduction of novel large-scale brain imaging techniques such as
fUS, new methods have to be developed that enable functional connectivity analyses.
Furthermore, new insights might also be acquired from dynamic functional connectivity
analyses, in which changes in functional connectivity over time are evaluated. Subse-
quently, the question remains if it is possible to unravel differences in brain dynamics
between wild-type and homozygous mice using a dynamic functional connectivity anal-
ysis.

First, an fUS data model is developed to model how fUS signals arise from a genera-
tive perspective. This model comprises a combination of a convolutive and a state-space
model. Subsequently, inference of functional networks and their temporal dynamics can
be performed. Also, a pre-processing pipeline for experimental fUS data is designed
to reduce problem complexity and data cleaning. The performance of the developed
methods is evaluated on the experimental data set, where a difference in brain dynamics
between wild-type and homozygous mice is investigated.

It is found that a deconvolution procedure using the non-negative least absolute
shrinkage and selection operator (NNLASSO) is necessary to reconstruct the underlying
activity of neural populations. After that, using the hidden Markov model (HMM) as a
state-space model, it is found that functional networks and their temporal dynamics can
be learned from fUS data using expectation maximization (EM). It has been discovered
that the developed methods consistently decompose reconstructed neural activity into
biologically plausible functional networks from experimental fUS data. Also, with 96%
certainty, a difference in brain dynamics between wild-type and homozygous mice is
found using this method.

In summary, in this thesis, novel methods are developed to perform a dynamic
functional connectivity analysis on experimental fUS data. Also, by performing such
dynamic functional connectivity analysis for the first time on fUS data, a consistent
decomposition of reconstructed neural activity into biologically plausible functional net-
works and a possible difference in brain dynamics between wild-type and homozygous
mice are found. This research highlights the potential of fUS as a large-scale brain imag-
ing technique in the quest to understand the origin of ASD and other neurobiological
disorders.
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Introduction 1
It is perhaps the most undiscovered and complex system known on earth. Recently,
the quest to understand the human brain has led to an increase in brain research and
the development of brain activity recording techniques. As technology advances, more
precise measurement equipment becomes available, providing the capability to gain
more knowledge about the brain. Whereas a few decades ago, scientists were only able
to measure the activity of a few brain cells, nowadays, thousands of neurons can be
measured simultaneously [1]. Combined with advanced signal processing techniques,
these technological developments contribute to visualizing the brain structure and large-
scale brain function at higher spatiotemporal resolution than ever before. Subsequently,
a better understanding of the complex organization of the brain is desired.

In neuroimaging, two imaging categories can be considered: structural and func-
tional brain imaging. By using structural imaging methods, anatomical properties of
the brain are visualized. However, in structural imaging, brain function is not mea-
sured. Functional imaging focuses on revealing physiologic activities and the underlying
processes within the brain. With the use of functional imaging techniques, the notion of
functional connectivity has been developed. Functional connectivity can be defined as
the connectivity between anatomically distinct brain regions, measured by the statisti-
cal relationship between the time courses measured at each region of interest. Multiple
regions that are functionally connected comprise a so-called functional network. Until
recently, the stationarity of these networks was assumed. However, it is found that
the structure of these networks is changing dynamically in time. This discovery led
to the development of dynamic functional connectivity, in which changes in functional
connectivity of networks are measured. Measures of (dynamic) functional connectivity
have proven useful in characterizing abnormalities in brain connectivity. For exam-
ple, altered connectivity patterns in disorders such as autism spectrum disorder (ASD)
have been identified in humans and mice [2, 3]. Identifying disorder-specific functional
connectivity alterations can help understand the origin of such disorders to improve
effective treatment.

With the introduction of a relatively new brain imaging technique called functional
ultrasound (fUS), the brain can be imaged at a higher spatiotemporal resolution than
before. Currently, fUS is mainly a 2D imaging technique, although some 3D implemen-
tations are deployed. The fUS imaging technique measures the cerebral blood volume
(CBV) in the brain. It thereby is an indirect method of recording the activity of neural
populations, as the underlying activity of neural populations is coupled with the CBV
through the neurovascular coupling (NVC).

With the development of new neuroimaging techniques, also issues arise regarding
the reliability and reproducibility of results. For example, a popular, well-established
neuroimaging technique called functional magnetic resonance imaging (fMRI) requires
extensive workflows, including many parameters. Recent research discovered that this
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analytic flexibility manifests itself in significantly varying outcomes among different
researchers [4], and severe artifacts [5]. Thus, with the introduction of the novel large-
scale fUS recording technique, reliable signal processing methods have to be developed
that can infer networks of functional connectivity and their temporal dynamics.

In this thesis, a signal model for fUS data is developed, and a subsequent state-
space inference approach is leveraged to analyze dynamic functional connectivity in
mice fUS data. The developed technique is applied to a specific neuroscientific exper-
iment, explained in Sec. 1.1. Subsequently, the problem statement that arises from
the experiment is treated in Sec. 1.2. Next, the outline of the thesis is presented in
Sec. 1.3. This thesis is performed in collaboration with the Center for Ultrasound
and Brain imaging at Erasmus MC (CUBE) and the Department of Neuroscience at
Erasmus MC in Rotterdam, Netherlands.

1.1 Experiment

The behavioral neuroscientific experiment at hand consists of two groups of mice. The
first group is the control group composed of four wild-type (WT) mice, and the other
group is the mutated group consisting of four homozygous (HOM) mice. The mutated
mice lack the SHANK2 protein, resulting in hyperactivity and autistic-like behavioral
alterations. At the CUBE, 2D recordings consisting of power Doppler images (PDIs) of
a slice of the mouse brain have been made at a sampling rate of 4 Hz. Each recording
lasts 12 minutes, resulting in 2880 successive images per recording. Specifically, the
brain section containing the thalamus and motor cortex has been imaged. This section,
related to the movement behavior of mice [2], is of particular interest considering the
measurement setup and the goal of the experiment. The mice are placed on top of a
squirrel cage with their heads fixed by a metal plate, such that their position is fixed
and reliable imaging can be performed. Also, the fUS recording is performed in a dark
room, so no visual impulses are present during the experiment. The data set is a semi-
resting-state data set since the mice are free to show behavioral activity, such as, e.g.
movement on top of the squirrel cage, grooming, sniffing, or whisker movement. The
fUS data contains approximately similar amounts of sustained movement periods for
each mouse. Extra recordings were made if a mouse did not move much during a single
recording. This process repeated until a mouse had walked for a significant period,
typically resulting in double and triple recording sessions. Also, simultaneously with
the fUS data acquisition, the movement of the mouse is recorded by video.
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1.2 Problem statement

Concerning the problem statement, a differentiation is made between engineering re-
search questions (ERQs) and neuroscientific research questions (NRQs). By starting
with the ERQs, the first question is as follows:

ERQ 1. How can functional networks and their temporal dynamics be learned from
fUS data?

Once a method is found that can learn those functional networks, also called brain
states, and their temporal dynamics, the specific method can be applied to the experi-
mental fUS data set. Before applying these techniques, the experimental data requires
a pre-processing stage, in which data complexity must be reduced while maintaining a
certain desired level of detail. This results in ERQ 2:

ERQ 2. What pre-processing techniques are necessary to reduce problem complexity?

Furthermore, it is of interest to analyze the influence of noise on the inference methods,
as in real-world systems, noise will undoubtedly be present. This interest leads to
posing ERQ 3:

ERQ 3. How do different noise intensities influence the inference of temporal dynam-
ics?

In order to answer this question, synthetic data is generated, and different noise inten-
sities are imposed on the clean synthetic data to analyze the influence on the inference
of temporal dynamics. After artificial data analysis, the experimental data is pre-
processed, and subsequently, functional networks and their dynamics can be learned
from fUS data using the developed methods of ERQ 1. However, having inferred the
parameters of interest, it is unknown whether the learned functional networks and their
dynamics are reliably and consistently estimated, leading to ERQ 4.

ERQ 4. How consistent are the inferred functional networks and their temporal dy-
namics?

Now, transitioning from the engineering research questions to the neuroscientific
research questions, the first neuroscientific research question, NRQ 1, concerns the
biological plausibility of inferred functional networks:

NRQ 1. Are the networks of functional connectivity meaningful from a neuroscientific
perspective?

Finally, the last NRQ concerns the ability to reveal any differences between WT and
HOM mice, based on dynamic functional connectivity

NRQ 2. Is it possible to differentiate normal and mutated mice based on the temporal
dynamics of functional networks?
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1.3 Outline

First of all, the preliminaries, state-of-the-art methods for dynamic functional connec-
tivity analysis, and the novel contribution of this thesis are treated in Ch. 2. Then,
a signal model for fUS data is constructed in Ch. 3, to understand how fUS signals
arise from a generative perspective. Having a signal model, the methods required to
learn the functional networks and their dynamics from experimental data are outlined
in Ch. 4. After that, in Ch. 5 a simulation is created to analyze the performance of the
methods on synthetic data. Next, the methods are applied to the experimental data
set, and the results are illustrated in Ch. 6. Finally, the experimental data analysis
results are discussed in Ch. 7, and conclusions are drawn in Ch. 8.
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Literature review 2
This chapter reviews relevant basic ideas and presents an overview of state-of-the-art
methods for analyzing dynamic functional connectivity. The literature review has been
performed as part of the extra project course ET4399. First of all, the physiological
principles used to measure brain activity are treated in Sec. 2.1. Then, the functional
ultrasound (fUS) imaging technique is explained in Sec. 2.2. By having the capabil-
ity of measuring large-scale brain activity using fUS imaging, methods often used for
analyzing dynamic functional connectivity in similar brain imaging techniques are re-
viewed in Sec. 2.3. Finally, in Sec. 2.4, the contribution of this thesis to the field of
brain research, and to be specific, dynamic functional connectivity, is discussed.

2.1 Physiological principles

In this literature review, two fundamental physiological principles, which enable brain
activity measurement, are evaluated. Brain activity can directly be measured by record-
ing the electrical activity generated by neural interactions or indirectly by measuring
the hemodynamic response due to the neurovascular coupling (NVC) [6]. Another
method for measuring brain activity is via metabolism, performed in positron emission
tomography (PET). This method requires the injection of a foreign substance that is
subsequently detected. Due to relatively slow image acquisition and thus not being
suitable for dynamic functional connectivity analysis, this method is left unexplored.

2.1.1 Electrical activity

According to literature, Richard Caton was the first person to measure electrical ac-
tivity in rabbit and monkey brains using a galvanometer in 1874. Electrical activity in
the human brain was first measured by German scientist Hans Berger using electroen-
cephalography (EEG), published in 1929 [7]. More than half a decade later, theories
on the physiology of this phenomenon were developed [8]. Electrical activity in the
brain is exploited by techniques such as EEG and magnetoencephalography (MEG).
However, these techniques are not used for measuring brain activity in this thesis and
are thus not explained in detail.

2.1.2 Neurovascular coupling (NVC)

The neurovascular coupling (NVC), also known as functional hyperemia, refers to the
mechanism that serves the increase in blood flow and volume in regions of heightened
neural activity. For the past 25 years, there has been extensive research into the
underlying mechanism of the NVC. These efforts are, amongst others, due to the clinical
use of blood oxygen level dependent (BOLD) functional magnetic resonance imaging
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(fMRI), which is built on the local hemodynamic response caused by the activation
of the NVC. While the exact mechanism of the NVC is partly unknown, it is known
to consist of a complex interplay between cellular and metabolic processes. These
processes contribute to vasodilation and vasoconstriction, which regulate the increase
in blood flow and volume in regions of heightened neural activity.

It is believed that due to a lack of energy, oxygen and glucose are delivered to
activated brain areas by an increased blood flow. Blood support can sustain neural
activity and clear toxic by-products from metabolic processes. Thereby, the homeostasis
of the cerebral micro-environment can be maintained [9].

The coupling between neural activity and the corresponding change in blood flow is
governed by the interaction of neurons and astrocytes with smooth muscle cells in the
wall of arteries and arterioles. Astrocytes are star-shaped glial cells, collectively named
astroglia. Neurons can directly contribute to a hemodynamic response by releasing
two potent vasodilators: nitric oxide (NO) and prostaglandin (PG). During a stimulus,
also astrocytes can contribute to vasodilation via one or a combination of NO, PG,
epoxyeicosatrienoic acids (EET), and potassium (K+). Also, astrocytes can produce
arachidonic acid (AA), which can contribute to vasoconstriction [10]. Besides interac-
tion with smooth muscle cells, also pericytes are believed to contribute to vasodilation
in capillaries, which are the smallest blood vessels in the body, conveying blood from
arterioles to the venules. The exact mechanism and contribution of capillary pericytes
to regional blood flow changes remains controversial [10]. However, it is shown that
functional hyperemia starts in capillaries due to oxygen depletion [11].

2.2 Functional ultrasound (fUS)

The functional ultrasound (fUS) imaging method is a relatively new technique that
measures hemodynamic changes proportional to the cerebral blood volume (CBV) [12].
Using the µDoppler sequence, fUS is able to image the brain at a high spatiotemporal
resolution and high SNR, without the use of contrast agents [6]. Now, 2D fUS imaging
techniques are primarily used to image rodent or human brains. For rodent functional
imaging, often, the skull is removed or thinned with a drill to ensure the penetration of
transmitted ultrasound waves. Human brain imaging is less common and is performed
intracranially. In contrast, imaging in infants can be performed directly through the
fontanel.

2.2.1 Signal acquisition

In conventional ultrasound imaging, focused beam scanning is used. However, this
technique is too slow to acquire brain images at the rate necessary for a functional
evaluation. Therefore, the µDoppler sequence has been developed to improve the spa-
tiotemporal resolution of ultrasound imaging. Tilted plane-wave illumination is used
as part of the µDoppler sequence, as plane-wave illumination is faster than focused
beam scanning. Also, higher resolution and lower noise characteristics are obtained by
summing the resulting images of back-scattered tilted plane waves, resulting in a com-
pound image. The number of tilted plane waves used to construct a single compound
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image is restricted by the attenuation time of a previously emitted plane wave [13].
In Doppler imaging, blood flow is measured by comparing variations in ultrasonic

energy back-scattered by red blood cells. After rejecting tissue signals by the use
of a high-pass filter, the filtered signal sF (u, v, ti) at pixel location (u, v) with time
ti = 1, ..., Ns is obtained. From the high-pass filtered signal, two parameters can be
computed. First, the velocity of blood flow can be calculated. In fUS, however, the
power Doppler signal is computed, which is proportional to the CBV and provides
no information on the blood flow velocity. The power Doppler signal at time t is
the average squared pixel intensity I(u, v) at pixel location (u, v) over Ns samples,
calculated according to Eq. 2.1 [13]:

I(u, v) =
1

Ns

Ns∑
i=1

|sF (u, v, ti)|2, (2.1)

To reduce the influence of noise, Ns must be increased, while accounting for the under-
lying dynamics of the measured signal. Another important parameter is the Doppler
frequency fD, given in Eq. 2.2:

fD =
2fuswv

c
, (2.2)

where fus is the emitted ultrasound frequency, wv is the velocity of red blood cells along
the beam axis, and c is the speed of sound. To prevent aliasing, ultrasound systems
sample at twice the Doppler frequency fD [6].

2.2.2 Performance

Currently, ultrafast ultrasound imaging systems are available with probes operating in
the order of MHz, resulting in spatial resolutions in the order of 100 µm × 100 µm. As
there are summation and averaging steps involved in the process of obtaining a single
power Doppler image (PDI), the resulting whole-brain imaging rate is in the order of a
few Hz [13]. As previously mentioned, primarily 2D imaging techniques are available.
However, recently measurements have been performed with 3D fUS imaging systems
[14], using a matrix probe, which could open up a wide range of possibilities and new
insights into dynamic functional connectivity.

2.3 Methods for dynamic functional connectivity analysis

The assumption of stationarity of brain networks and subsequent static functional con-
nectivity analyses provided insight into the functional connectivity of large-scale brain
networks. However, methods analyzing static functional connectivity do not account
for changes in functional connectivity over time, referred to as dynamic functional con-
nectivity. Previously found static functional networks can change both strength and
directionality, being a change in polarity of correlation of functional connections over
time [15, 16]. Also, functional networks can be spatially overlapping, where the time
series of a single node or region in a functional network can partially be correlated
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with the time series of multiple networks [15]. Or seen from another perspective, nodes
or regions of a large-scale static network can become uncorrelated in specific periods.
This work aims to quantify changes in functional connectivity metrics over time, as
functional connectivity changes according to external and internal processes affecting
the brain [15, 17].

In this section, methods for resolving dynamic functional connectivity networks are
discussed. Although not explicitly mentioned, many of these techniques are applied in
the well-researched field of fMRI. The first method discussed in Sec. 2.3.1 is the sliding
window method, in which measurement data is windowed for subsequent analysis. Also,
methods such as temporal independent component analysis (tICA) and co-activation
patterns (CAPs), that evaluate functional connectivity dynamics at a finer temporal
scale, are reviewed in Sec. 2.3.2 and Sec. 2.3.3. Dynamic functional network interactions
and transitory roles are typically investigated by modeling latent brain states, discussed
in Sec. 2.3.4.

2.3.1 Sliding window analysis

Sliding window analysis is often used to capture temporal changes in functional connec-
tivity. Here, functional connectivity metrics are computed by choosing a fixed-length
time window and computing the desired metric in this window. Subsequently, the time
window is shifted with some overlap to capture temporal variations in functional con-
nectivity [15]. By correlating the windowed time series of regions of interest (ROIs),
a correlation or covariance matrix can be established, measuring the functional con-
nectivity between the selected ROIs. Correlation matrices originating from applying
multiple successive sliding windows can be grouped using clustering methods, iden-
tifying repeating transient patterns of functional connectivity. A cluster containing
multiple correlation matrices with similar characteristics is often called a brain ’state’
or ’functional network’.

There are, however, some issues regarding sliding window analysis. First of all, the
window length is set more or less arbitrary and is not necessarily suitable for analyzing
the data, as relatively long or short changes in functional connectivity could be ignored
[18]. Also, a small window size can lead to noisy estimates. It is thus essential to note
that the notion of ’functional networks’ in sliding window analysis is elusive, as it is
dependent on the time scale of evaluation.

Another option is time-frequency analysis with wavelets, similar to applying multiple
sliding windows with varying lengths, and thus captures changes at different time scales
[19]. Higher frequencies are captured with relatively shorter time windows, whereas
low frequencies are captured with relatively longer windows. However, such a time-
frequency analysis leads to an explosion in the amount of data, and a selection of
suitable parameters should be performed [15].

2.3.2 Temporal independent component analysis (tICA)

For dynamic functional connectivity analysis, also temporal independent component
analysis (tICA) can be applied to single-subject data, which assumes temporal inde-
pendence, in contrast to the spatial independence encouraging variant of ICA, named
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spatial independent component analysis (sICA). Thus, tICA produces spatially over-
lapping sources that are independent in time, also called temporal functional modes
(TFMs) [20]. Therefore, tICA can detect smaller functional networks that are part of
larger static functional networks and analyze the dynamics of these sub-networks within
the larger functional network found in static functional connectivity analyses. Some-
times, also sICA can be applied prior to tICA to find a set of ROIs and subsequently
analyze the temporal characteristics of the regions [21].

However, tICA is likely to suffer from noise in fMRI applications, as there are a
relatively small number of time points. Also, similar to sICA, model order selection
affects the parcellation of networks. Therefore, tICA is less commonly used for dynamic
functional connectivity analysis.

2.3.3 Co-activation patterns (CAPs)

Another view on brain function is that monitored activity primarily originates from
separate spontaneous events. These events all produce a hemodynamic response that
can be measured by techniques such as fMRI and fUS. Perhaps the most basic method
to detect an event is thresholding on the amplitude of a voxel or ROI, also known as
point process analysis (PPA).

Another approach for detecting brain activity is to deconvolve a measured time se-
ries with a hemodynamic response function. The deconvolution procedure reconstructs
the underlying events that trigger a hemodynamic response [22]. For deconvolution ap-
proaches, knowledge of the hemodynamic response function (HRF) is required. Since
the deconvolution procedure is sensitive to data noise, sparse regularizers are often
deployed to obtain a better solution. It is common to enforce sparsity on the activity-
inducing signal directly or on the first-order derivative of the activity-inducing signal,
often referred to as paradigm free mapping (PFM) and total activation (TA), respec-
tively. These forms of regularization lead to a sparse and a more piece-wise constant
activity-inducing signal for PFM and TA, respectively. The complexity of event analysis
approaches drastically increases for multiple ROIs or whole-brain imaging. Therefore,
spatial configurations of simultaneously activating ROIs, called co-activation patterns
(CAPs), can be detected based on PFM and TA activity-inducing signals [16].

The technique of CAPs reveals dynamic functional networks by clustering the co-
activation and co-deactivation patterns of regions that behave similarly. The work of
[16] demonstrates that seed-based correlated or sICA-derived static resting-state net-
works are a temporal average of CAPs, showing that functional connectivity networks
are not static but varying in time. This method thus emphasizes the non-stationary
nature of the brain, i.e., the variability in interactions between brain regions. To detect
CAPs, the previously discussed PPA on seeds is applied in [16]. In the study of [23],
this method is extended beyond a seed-based approach to a data-driven approach, us-
ing k-means clustering of time points with similar spatial distributions of activity. In a
more recent study using TA, the first-order derivative of deconvolved fMRI data, called
the innovation signal, was used to cluster and recover spatial activity patterns, called
innovation-driven co-activation patterns (iCAPs) [20]. Thus, similar to TFMs, CAPs
temporally segregate brain data.
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2.3.4 State-space approaches

A brain ’state’ can be defined as a relatively stable spatial activity pattern in time [19].
A difficulty encountered in modeling states in the brain is the choice of metric. Brain
states can be clustered based on the amplitude of ROIs such as in CAPs, or based
on correlation or coherence of the time courses of ROIs or sICA-derived time courses
with the use of sliding windows. Also, tICA could be applied to evaluate the temporal
variations and reveal temporally independent functional networks or states.

Finally, state-space models can be used, such as hidden Markov models (HMMs),
which incorporate first- and second-order moments and provide a spatiotemporal insight
into the recurring activity of and transitional roles between dynamic functional brain
networks. These so-called state-space models alleviate the issue regarding choosing
sliding window size for correlation of ROIs or sICA-derived time courses and the need
for many time samples in tICA. Also, from a neuroscientific point of view, a state-space-
based approach is feasible, as the spatial distribution of neural activation in the mice
brain varies during vision, choice, action and behavioral engagement [24]. In the work
of [24], it is also found that neural activity is globally distributed through the brain
during action engagement, following [25]. In contrast, visual and choice engagement
signals only concern a subset of brain regions.

In literature, HMMs have been applied to fMRI data to find relatively stable spatial
activity patterns [26, 27, 28]. The samples belonging to a certain state are often modeled
to be generated from a multivariate Gaussian distribution. This state-specific multi-
variate Gaussian distribution is described by a mean, encoding the average amplitude
of the observed activity, and a covariance matrix, containing the covariance between
ROIs. This method could thus be described as an automated windowing method in
which the window width is adapted based on data. However, a changing correlation
pattern between time courses of fixed mean activation is hard to identify. Essentially,
this requires the separation of two multivariate Gaussian distributions with the same
mean activation.

2.4 Contribution

This thesis brings a novel contribution to the field of brain research, and specifically
dynamic functional connectivity, by investigating the combination of a deconvolution
procedure and an HMM on fUS data. By introducing a deconvolution procedure, the
aim is to recover the underlying activity of neural populations of ROIs and subsequently
learn networks of functional connectivity and the temporal dynamics of the underlying
activity from data. In this way, it is possible to investigate brain activity at a finer
temporal scale, overcoming the issue of changing correlation patterns at longer time
scales. Furthermore, to the best of the authors’ knowledge, this is the first time that dy-
namic functional connectivity has been analyzed on fUS data. Finally, a neuroscientific
contribution is made, as biologically plausible networks of functional connectivity are
revealed, which play a role in the spontaneous motor behavior of mice. Also, a potential
difference in brain dynamics between wild-type and homozygous mice is revealed.
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Signal model 3
In this chapter, the fUS signal model is discussed. The signal model is constructed to
create or use methods that can answer ERQ 1, which is as follows:

ERQ 1. How can functional networks and their temporal dynamics be learned from
fUS data?

By constructing a signal model, insight can be given into how the fUS signals arise
from a generative perspective. Although it is unknown how the signals are exactly
generated, the signal model might still be useful for inference of networks of functional
connectivity and their temporal dynamics.

The signal model consists of two components. First, a convolutive model, described
in Sec. 3.1, is constructed for an fUS time series of a region of interest (ROI). The
convolutive model relates the underlying activity of neural populations to the measured
fUS signals by simulating the effects of the neurovascular coupling (NVC). Secondly,
to investigate dynamic functional connectivity, state-space models are deployed. In
particular, the hidden Markov model (HMM) is chosen as a generative model for the
underlying activity signals produced by certain subsets of neural populations. The
signal model of the HMM is explained in Sec. 3.2.

3.1 fUS data model

Let the fUS time course of an ROI be a vector fm ∈ RN×1, where m ∈ {1, ...,M} is
the region index. Each discrete time point is denoted by fn,m, where n ∈ {1, ..., N} is
the discrete time index. This signal is modeled as the linear convolution between the
hemodynamic response function (HRF) hm and the activity inducing signal ym. This
model is chosen with the support of [29], as it is found that a measured fUS signal can
be related to neural activation via the hemodynamic response function:

fn,m =
L−1∑
k=0

hk,myn−k,m, (3.1)

or in a more compact form, using matrix-vector multiplication:

fm = Hmym

f1,mf2,m
...

fN,m

 =

hL−1,m . . . h0,m 0 . . . 0
0 hL−1,m . . . h0,m . . . 0
... 0

. . . . . . 0
0 . . . 0 hL−1,m . . . h0,m



y−L+2,m

...
y1,m

...
yN,m

 , (3.2)
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where L is the length of the HRF. As the behavior and brain activity of mice are
recorded simultaneously, only recovering the yn,m with n ∈ {1, ..., N} is of interest,
coinciding with video. Also, it should be noted that the convolution matrix Hm is
truncated and thus wide, as the observed data is only a portion of a longer continuous
stochastic process. Now, extending Eq. 3.2 to cover M selected ROIs, the matrix
Y ∈ RN×M is created:

Y = [y1 y2 . . . yM ] . (3.3)

Assuming the same HRF for each ROI m, a generic convolution matrix H can be
constructed. This results in the following multivariate signal model:

F = HY, (3.4)

where the fUS ROI time series fm are also stacked column-wise in F. By adding a noise
matrix with independent columns, each following an i.i.d. Gaussian white noise process

N = [ε1 ε2 . . . εM ] with εn,m ∼ N (0, σ), (3.5)

the resulting convolutive signal model is equal to

F = HY + N. (3.6)

3.2 State-space model

Now, by transposing matrix Y, each column yn ∈ RM of YT contains an activity-
inducing signal at discrete time n for each of the M ROIs. Then, yn can be considered
a multivariate random variable, and it can be noticed that matrix YT actually contains
the realization of a stochastic process Y . The distribution, from which each ’obser-
vation’ yn is generated, can change across time, leading to a non-stationary process.
It is reasonable to assume non-stationarity for yn, since certain brain regions can be
activated or not. Regions activating approximately simultaneously, i.e., within a time
window of 250 ms determined by the sampling rate, are said to be functionally con-
nected. It is thus assumed that the process is stationary within the duration of one
power Doppler image (PDI) and that the underlying activity originates from directly
or indirectly interacting neural populations between these regions. Now, the latent
sequence Z, which indicates the presence of a certain activity pattern, can be modeled
as a stochastic process as well

Z = {zn : n ∈ N},

where zn is a realization of Z at time instant n. The observed activity patterns yn with
n = {1, ..., N}, can be assigned to a set of K discrete hidden states S = {1, ..., K},
called the state space, governing and labeling different brain activation patterns. As
only one state zn ∈ S can be active at a time, and the state transition probability
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does only depend on the present state, this process can be recognized as a first-order
discrete-time Markov chain. The state transitions are governed by a state transition
probability matrix A containing elements aij:

aij = P (zn+1 = j|zn = i). (3.7)

With this discrete-time Markov chain, the hidden Markov model (HMM) framework
establishes itself by relating the random vector yn with observed output variables to
the hidden process Z that must be learned from data. The HMM model framework is
illustrated in Fig. 3.1.

Figure 3.1: Graphical model of the HMM, where white and grey circles are the latent and
observed stochastic process, respectively.

For the Gaussian HMM, i.e. an HMM where each state generates emissions from
a state-specific multivariate Gaussian distribution, simultaneous observations yn are
conditionally independent of the past states given zn:

p(yn|zn = i) ∼ N (µzn ,Σzn), (3.8)

where µzn ∈ RM and Σzn ∈ RM×M . This means that the functional connectivity
pattern is captured by the mean µzn of the multivariate Gaussian distribution. Thus,
this finally results in a mixture of multivariate Gaussian distributions for all possible
states in S, and only one state and thus one multivariate Gaussian distribution can be
active at a time. All state-specific emission distributions are collected in the emission
distribution set B = {Bi : i ∈ S} with Bi = {µi,Σi}. Finally, the last parameter of the
HMM is the initial state probability distribution π = {π1, ..., πK}. The HMM model
parameters are collected in θ = {π,A,B}.

13



14



Methods 4
This chapter treats the methods to learn the functional networks and corresponding
temporal dynamics. First, a pre-processing pipeline for the experimental fUS data is
developed in Sec. 4.1. Following the previously constructed signal model, it is evident
that subsequent deconvolution and HMM inference procedures are required to learn
the functional networks and corresponding temporal dynamics from the pre-processed
experimental data, treated in Sec. 4.2 and Sec. 4.3, respectively. The deconvolution
procedure aims to reconstruct the underlying activity of neural populations from the
fUS data. Subsequently, an HMM inference procedure is applied to the reconstructed
underlying activity of neural populations to learn the activity patterns in the mice brain
from the data.

4.1 Pre-processing

In this section, the pre-processing techniques applied to the fUS data are explained,
following the structure of Fig. 4.1. This chapter aims to answer ERQ 2:

ERQ 2. What pre-processing techniques are necessary to reduce problem complexity?

Since the dimensionality of fUS data is high, the data complexity must be reduced. A
complexity reduction step is necessary for ease of data interpretation and functionality
of the methods, to be discussed in Sec. 4.2 and Sec. 4.3. Furthermore, there is significant
variability in the blood vessel structure of mice. Thus, a reliable dynamic functional
connectivity analysis on relatively small neural populations is not considered possible.
Therefore, the activity of neural populations is evaluated at a somewhat larger scale,
namely on the level of anatomical regions. An analysis of the activity in anatomical
regions enables a reliable comparison between mice and still maintains enough detail
to perform a meaningful study.

However, since fUS measures blood volume, no anatomical regions are apparent in
the data. Therefore, the anatomical areas have to be identified. Identification can be
done by applying a blind source separation technique called spatial independent com-
ponent analysis (sICA), explained in Sec. 4.1.1. Since the decomposition of spatially
independent sources in sICA is dependent on the model order, there can be different
anatomical regions overlapping, or a single anatomical region can decompose. There-
fore, the Paxinos brain atlas is warped upon the mouse brain using landmarks. The
warping procedure is performed by the Department of Neuroscience at Erasmus MC.
Then, both the sICA extracted regions and the Paxinos brain warp are combined to
identify the anatomical regions, referred to as regions of interest (ROIs), as described
in Sec. 4.1.2. Furthermore, global noise reduction steps are required due to scattering
artifacts on the data, as described in Sec. 4.1.3. Also, dimensionality reduction is ap-
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plied as outlined in Sec. 4.1.4. Finally, drift correction and offset removal are applied,
as treated in Sec. 4.1.5 and Sec. 4.1.6, respectively. In the remainder of this section,
a recording labeled with the number 890 and section number 3 will be used for visual
illustrations.

Figure 4.1: Pre-processing pipeline

4.1.1 Spatial independent components analysis (sICA)

A blind source separation technique called spatial independent component analysis
(sICA) is used, which uses higher-order statistics to separate spatial sources in data.
For this sICA procedure, the sklearn.decomposition.FastICA package is used to
perform the sICA procedure in Python.

Now, let the fUS data be a 3D matrix I, where an fUS data point is denoted by
In(u, v), with n ∈ {1, ..., N} being the discrete time index and (u, v) the pixel location.
An image at discrete time n is indicated by In, dropping the pixel location. A pixel
time course is indicated by I(u, v), dropping the discrete time index.

Before applying sICA the data is log-transformed and each pixel time course I(u, v)
in the fUS video is standardized temporally. Subsequently, the images In are centered
by subtracting the spatial mean. By vectorizing each image In, a matrix X ∈ RN×W

can be created, with N discrete time samples and W = UV voxels. In sICA, this
matrix is decomposed into

X =

− vec(I1) −
− vec(I2) −

...
− vec(IN) −

 =

d1,1 d1,C
... . . .

...
dN,1 dN,C


− vec(S1) −
− vec(S2) −

...
− vec(SC) −

 = DS, (4.1)

where D ∈ RN×C is called the mixing matrix, containing C time courses of the inde-
pendent spatial components located in the rows of matrix S, where Sc ∈ RC×W denotes
each spatial component with c ∈ {1, ..., C}. In order to simplify the problem of solv-
ing the decomposition of Eq. 4.1, principal component analysis (PCA) is often used
as a pre-processing step prior to sICA [30]. In PCA, the data is whitened and data
dimensionality is reduced. PCA can be performed via the singular value decomposition
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(SVD)

X = UΣVT , (4.2)

where U ∈ RN×N is a matrix where each column is a left eigenvector of X. Also,
Σ ∈ RN×N is a diagonal matrix containing the singular values ordered from largest to
smallest, corresponding to the eigenvectors in U. Finally, VT ∈ RN×W is a matrix with
orthogonal spatial components of each eigenvector in U, which are temporal compo-
nents. Data dimensionality reduction is performed by setting all singular values after
the first C singular values to zero, leading to reduced matrices Ur ∈ RN×C , Σr ∈ RC×C ,
and VT

r ∈ RC×W .

The data can be decorrelated and subsequently whitened by transforming the data
via rotation UT

r and scaling
√
N − 1Σ−1r , respectively:

Xw =
√
N − 1Σ−1r UT

r X =
√
N − 1VT

r . (4.3)

By computing the covariance of Xw, it can be shown that the transformed data is now
whitened:

1

N − 1
XwXT

w = VT
r Vr = Σ−1r UT

r XXTUrΣ
−1
r = I. (4.4)

Thus, sICA is performed on whitened data Xw, resulting in the following decompo-
sition:

Xw = DwSw. (4.5)

By looking at the original problem

√
N − 1Σ−1r UT

r X︸ ︷︷ ︸
Xw

= Σ−1r UT
r D︸ ︷︷ ︸

Dw

√
N − 1S︸ ︷︷ ︸

Sw

, (4.6)

it appears that an approximation of matrix D and S can be found back:

D̃ = UrΣrDw (4.7)

S̃ =
1√

N − 1
Sw. (4.8)

Now, biologically plausible spatial configurations can be manually identified from S̃.
For handling the manual labor and interpretability of spatial components, the number
of components is set to C = 25.
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4.1.2 Warp thresholding

As mentioned before, solely trusting sICA extracted regions is not possible due to the
possibility of having overlapping or separating spatial sources. Also, larger anatomical
areas have to be considered to compare the brain dynamics between the two groups of
mice. For this purpose, sICA extracted regions and the atlas warp are used together
to extract ROIs.

On the left of Fig. 4.2, the Paxinos atlas is warped upon a logarithmic mean image
of the brain over time. Since the Paxinos atlas contains many subdivisions of an
anatomical region, a tool is created to connect all small sub-regions within a larger
anatomical area. Specifically, a flood-filling algorithm labels all pixels in specific sub-
regions belonging to a larger anatomical region. Then, the morphological operations
dilation and erosion are applied successively, using a structuring element of 3 by 3 pixels,
connecting all sub-regions with the same label, resulting in one complete anatomical
region. The result of applying the tool to all anatomical ROIs is visualized on the right
of Fig. 4.2. Note that the thalamus area is not selected, as this anatomical region could
only be identified in half of the mice. Hence, the thalamus is left out of the analysis.

Filled brain warp of recID 890

Figure 4.2: Left: Paxinos atlas warped upon a logarithmic mean image of the brain over
time. Right: Masks of anatomical ROIs: anterior cingulate area (purple), motor area (blue),
somatosensory area (green).

As a next step, a part of the sICA components is assigned to a specific region in
the atlas warp, illustrated on the left of Fig. 4.3. Then, the sICA component pixels
are threshold within the particular anatomical area, visualized on the right of Fig. 4.3,
to obtain pixels that are part of the anatomical ROI. The threshold is set to 50%
between the maximum pixel intensity in the sICA component and the mean background
intensity. The background is found by a procedure described in Sec. 4.1.3.
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Figure 4.3: Left: Border of the regional mask. Right: Thresholded pixels within the regional
mask.

It should be noted that the sign of sICA components is ambiguous. Thus, the sign
of each component is manually inverted or not, such that regions that are believed to
be active in the sICA component have a positive sign. Next, an sICA component is
rescaled to a maximum value of 1, and the background, containing no blood vessels, is
set to a value of 0. Values below -1 are clipped if there are such low values to ensure the
same color space for visual comparison. The ROI detection of the other two anatomical
areas can be found in Sec. B.3.

4.1.3 Global noise reduction

Furthermore, in the fUS data, a shifting mean of the image in regions without any
blood vessels can be recognized. This artifact is best described as a scattering arti-
fact, thus also influencing pixels in ROIs. The scattering artifact could be originating
from movement artifacts or earlier pre-processing steps in the fUS acquisition pipeline.
Tracing the exact origin of this artifact is viewed outside the scope of this thesis. For-
tunately, there are methods to cope with the artifact in an ad hoc manner. In this
case, the blood vessels are masked based on the pixel variance over time, as visualized
in Fig. 4.4. Then, the spatial mean of the pixels that fall outside the spatial mask can
be computed and subtracted from each image. In this way, the brain areas containing
no blood vessels are corrected to the same (noisy) baseline. To detect the background,
a percentage threshold between the maximum and minimum logarithmic pixel variance
is heuristically determined for each recording. Generalization of this threshold is not
possible due to the scattering artifact being not homogeneous towards the edges of the
images in some recordings, also slightly visible in Fig. 4.4. Consequently, choosing a
single percentage threshold leads to mixed quality of background detection.
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Figure 4.4: Left: Log pixel variance over time. Right: Thresholded mask

4.1.4 Dimensionality reduction

Since the fUS data is high-dimensional, data dimensionality reduction is considered.
An effective method is to compute the mean time series fm of the set of pixels in an
anatomical ROI, denoted by Rm. The mean fUS signal at a discrete-time point n,
indicated by fn,m, is computed by:

fn,m =
1

|Rm|
∑

{u,v}∈Rm

In(u, v). (4.9)

where m ∈ {1, ...,M} is the ROI index. The choice to take the mean of an anatomical
ROI Rm is further supported by the work of [29], where it is shown that the underlying
neural populations largely activate synchronously in an anatomical ROI.

4.1.5 Baseline drift

After the dimensionality reduction step, it is noted that a relatively slow drift is present
in some time courses. As an example, the original fUS mean time course of the motor
area is depicted in Fig. 4.5. Removing this drift is essential for subsequent processing
steps, as will become clear later in Sec. 4.2.

To estimate the signal drift present in the fUS mean time course, linear regression is
performed on the time course. However, before applying linear regression, the baseline
in the time course has to be detected. For this purpose, movement information is used.
Each short period of movement is extended with the approximate duration of the HRF,
that is 8 seconds [29]. However, only using movement information is insufficient since
other behaviors and internal processes in the brain could also invoke a hemodynamic
response, leading to a wrong drift estimation. Therefore, a sliding window with a
heuristically determined length of 15 seconds is moved over the time course. In each
window, the variance is calculated. Then, a mask is created by thresholding based on a
percentage difference between the maximum and minimum variance within the sliding
window over the entire time course. The selected percentages per ROI can be found
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in Sec. B.2. Next, a brain activity mask is created by combining the variance-based
mask and mice movement information. This activity mask, as depicted in black in
Fig. 4.5, thus encapsulates more data points than the movement mask, created from
video extracted movement behavior of the mouse, solely. Then, linear regression is
applied only on data points that fall outside the activity mask, depicted in white in
Fig. 4.5, which are data points belonging to the baseline.
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Figure 4.5: Detrending of the motor area time course. Movement of the mouse is depicted in
salmon color. Detected hemodynamic activity is depicted in black in the activity mask.

In order to ensure reliable drift estimation, it is required that there are at least
30 data points on which linear regression is applied with a minimum separation of
800 samples, being 200 seconds. In case of too few data points, no drift correction
is applied. In Sec. B.4, two cases can be found where no baseline could be detected.
However, the effect of not detrending these time courses is considered small, as (almost)
no drift correction is necessary in these cases. Also, changing the chosen percentage
thresholds would result in more unreliability in baseline detection in time courses of
other fUS recordings.

4.1.6 Offset removal

As a final step, the detrended and non-detrended time course baselines have to be
shifted to a value of 0 for the method described in Sec. 4.2. Since the activity mask
does not perfectly cover some data points corresponding to intrinsic activity, an offset
removal step must be performed on the detrended time courses as well. In order to
remove the offset, the same sliding window of a heuristically determined size of 15
seconds is applied to the detrended and non-detrended time courses. Then, a region-
specific time course is shifted by the smallest mean value within the sliding window.
Removing the offset results in the pre-processed time courses illustrated in Fig. 4.6.
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Figure 4.6: Final time courses after the pre-processing stage. The movement of the mouse is
depicted in salmon color.

The set of finally obtained time series {fm : m = 1, ...,M}, stacked column-wise in
matrix F, is used for subsequent signal processing techniques, discussed below.

4.2 Deconvolution

For convenience, the signal model of Eq. 3.6 is repeated:

F = HY + N. (4.10)

The goal of the deconvolution procedure is to reconstruct matrix Y. For this purpose,
the hemodynamic response function hn, embedded in the convolution matrix H, is
assumed. The HRF is generated through the following function, a modified version of
the HRF used in [31]:

hn = p3

(
(tn)p1−1pp12 e

−p2tn

Γ(p1)

)
, (4.11)

where tn = nTs with Ts being the sampling period. Furthermore, parameters p1 and
p2 determine the shape of the HRF, and p3 scales the HRF. The HRFs is scaled to
unit amplitude without loss of generality. The parameters used for creating the HRF
presented in Fig. 4.7 are p1 = 4.00, p2 = 1.50, and p3 = 2.98, chosen such that the HRF
shape is similar to the one presented in [29]. The resulting HRF is shown in Fig. 4.7.
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Figure 4.7: Hemodynamic response function used in the convolution matrix H.

With the assumed HRF, the problem of reconstructing matrix Y, containing the
underlying activity ym of each region m, can be solved by minimizing the noise term
for each region m:

ŷm = arg min
ym

||fm −Hym||22. (4.12)

However, minimizing the least squares problem is ill-posed due to H being wide. A
popular choice in fMRI analyses is to add constraints or so-called regularizers that either
enforce sparsity (PFM) or piece-wise constant (TA) solutions [22]. However, in TA,
rapid changes on a short time scale in the activity-inducing signal are not emphasized.
In PFM, these rapid changes are promoted by sparse regularization, assuming only a
few entries of the activity-inducing signal are non-zero. However, PFM allows for both
positive and negative activation, not in accordance with the biological functioning of
neurons. Therefore, in this work, a constraint on the non-negativity of the solution
is imposed. Now, including non-negativity without sparse regularization, the problem
can be solved using non-negative least squares (NNLS):

ŷm = arg min
ym

||fm −Hym||22

s.t. ym ≥ 0.
(4.13)

where the constraint implies non-negativity for each element in vector ym.
Furthermore, by penalizing the number of non-zero entries by enforcing a sparsity

regularizer in the cost function using the non-negative least absolute shrinkage and
selection operator (NNLASSO), the notion of PFM is expanded:

ŷm = arg min
ym

1

2N
||fm −Hym||22 + λ||ym||1

s.t. ym ≥ 0.
(4.14)

The addition of the regularizer supporting sparsity can be regarded as an adjustable
addition to the cost function to force the solution in the desired direction, in this case,
a more sparse solution. For each mouse and time course fm of an ROI, the sparsity
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can be different, as it is dependent on the amount of activity over time, as well as
the true level of sparsity during activity. Therefore, the regularization parameter λ
used for deconvolution with NNLASSO is selected per mean time course fm. The
regularization parameter is selected so the reconstruction error RE is not significantly
enlarged. This reconstruction error is measured by the MSE between the observation
fm and the reconstructed observation f̂m = Hŷm:

RE(λ) =
1

N
||fm − f̂m||22. (4.15)

To be specific, λ is set such that the relative RE between a non-sparse, essentially an
NNLS solution, and a very sparse, essentially an all-zero solution, does not exceed a
certain percentage. This way, the imposed sparsity levels are similar across the different
optimization problems. In this case, the regularization parameter is selected such that
the relative error introduced by the sparsity constraint does not exceed 1%, visualized
in Fig. 4.8.
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Figure 4.8: Determination of regularization parameters. Dotted lines represent the chosen
value for λ for each ROI m, for which the relative reconstruction error does not exceed 1%.

This results in the following deconvolved time courses, being a reconstruction of the
underlying activity of neural populations, depicted in Fig. 4.9. As visible, the recon-
structed underlying activities follow the mouse movement closely but are not solely
dependent on the movement. Since the hemodynamic response is a slow response to
the underlying activity, it is also expected that the underlying activity follows the be-
havior of the mouse more closely. In the deconvolution procedure, the first and last
L− 1 indices of the underlying activity ym cannot be estimated accurately. Therefore,
these indices are discarded afterward, losing L− 1 samples from the original data. Ef-
fectively, the last L − 1 reconstructed underlying activity samples and corresponding
video samples are lost. The first L − 1 samples, corresponding to a short time before
the beginning of the fUS acquisition, are already not of use, as the fUS data and mouse
video are recorded simultaneously.
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Figure 4.9: Deconvolved time courses. The movement of the mouse, extracted from the video
recording, is depicted in salmon color.

4.3 HMM inference

Once the deconvolution procedure has been performed, functional networks and their
dynamical properties must be learned from the deconvolved data. In this section, the
inference methods accompanying the HMM are explained. The software for HMM
inference of [32] is used.

The methods for the HMM are evaluation, decoding, and learning. The evaluation
and decoding methods, described in Sec. 4.3.1 and Sec. 4.3.2, are used for solving the
learning problem of Sec. 4.3.3.

Furthermore, it is convenient to introduce the following notation at this point.
Having an fUS data recording, let the ’observation’ Y denote the realization of the
multivariate stochastic process Y as described in Sec. 3.2, where thus each column
yn ∈ RM of YT is a realization of Y at discrete time index n = {1, ..., N}. Also,
let vector z, containing the set of elements {z1, ..., zN}, denote the realization of the
stochastic process Z.

4.3.1 Evaluation

In this section, the evaluation problem is discussed, following the structure of [33, 34].
The evaluation problem concerns the computation of the probability of an observed

25



sequence Y, given the model parameters θ = {π,A,B},

P (Y|θ) =
∑
z

P (Y, z|θ) =
∑
z

P (z1|θ)
N−1∏
n=1

P (zn+1|zn,θ)
N∏

n=1

P (yn|zn,θ), (4.16)

which requires the summation over all possible hidden state sequences z, leading to
KN summations. Instead, the probability of an observed sequence can be computed
recursively, via

P (Y|θ) =
∑
j

P (Y, zN = j|θ) =
∑
j

αj
N , (4.17)

where j ∈ S, and the forward variable αj
n describes the joint probability of partial

observations up until discrete time n and state zn = j, given the model θ. This leads
to the discussion of the forward algorithm.

Forward algorithm

The forward variable is updated in a recursive fashion according to:

αj
n+1 =

[
K∑
i=1

αi
naij

]
bj(yn+1), (4.18)

where bj(yn+1) describes the emission probability of yn+1 in state j. The algorithm is
initiated by

αi
1 = πibi(y1), (4.19)

and finally terminated by

P (Y|θ) =
K∑
i=1

αi
N . (4.20)

For the derivation of Eq. 4.18, Eq. 4.19 and Eq. 4.20, the reader is referred to Sec. C.1.

4.3.2 Decoding

The second problem concerns the decoding problem. The goal is to compute the state
that maximizes the posterior probability:

zn = arg max
i
P (zn = i|Y,θ). (4.21)

By defining γin, the forward algorithm can be used to compute a part of the denominator
of Eq. 4.22:

γin = P (zn = i|Y,θ) =
P (Y, zn = i|θ)

P (Y|θ)
. (4.22)
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The computation of P (Y, zn = i|θ) can efficiently be performed by the forward-
backward algorithm:

P (Y, zn = i|θ) = P (y1, ...,yn, zn = i|θ)P (yn+1, ...,yN |zn = i,θ) = αi
nβ

i
n, (4.23)

where βi
n is the backward variable, defined as:

βi
n = P (yn+1, ...,yN |zn = i,θ). (4.24)

The backward algorithm characterizes itself by initialization of βi
N :

βi
N = 1, ∀i ∈ S, (4.25)

and the updates, of which the proof can be found in Sec. C.2, are given by:

βi
n =

N∑
j=1

βj
n+1bj(yn+1)aij. (4.26)

Finally, writing Eq. 4.22 in full:

γin =
P (Y, zn = i|θ)

P (Y|θ)
=

αi
nβ

i
n∑N

i=1 α
i
nβ

i
n

, (4.27)

where both the forward and backward algorithms can be used to efficiently calculate
αi
n and βi

n. Then, solving Eq. 4.21 results in a sequence of states that are optimal
on individual discrete time instances n. Thus, the expected number of correct states
is maximized. However, the sequence consisting of individually most probable states
may not be the most probable sequence. Therefore, the Viterbi algorithm has been
developed, and this decoding algorithm is treated in the next section.

Viterbi decoding

In this section, the Viterbi algorithm is discussed, following the structure of [34]. In
the Viterbi algorithm, the goal is to find the most probable state sequence, given data
and the model parameters collected in θ:

z∗ = arg max
z
P (z|Y,θ), (4.28)

and the highest probability along a single path, ending in state j ∈ S is computed by:

δjn = max
z1,...,zn−1

P (z1, ..., zn−1, zn = j,Y|θ). (4.29)

The procedure is as follows. First, an initialization step is applied:

δj1 = πjbj(y1) (4.30)

ψj
1 = 0, (4.31)
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where ψj
n tracks the most probable path. Then, the following recursion is applied:

δjn+1 = max
i∈S

δinaijbj(yn+1) (4.32)

ψj
n+1 = arg max

i∈S
δinaijbj(yn+1). (4.33)

Thus, ψj
n+1 is the most probable next state j, and tracks the most probable path.

Thereafter, the termination step is applied:

q∗ = max
i∈S

δiN (4.34)

z∗N = arg max
i∈S

δiN . (4.35)

To obtain the Viterbi path, backtracking from the solution obtained in Eq. 4.35 has to
be performed. This is illustrated in Eq. 4.36:

z∗n = ψn+1(z
∗
n+1), n = N − 1, N − 2, ..., 1. (4.36)

4.3.3 Learning

The final problem encountered is the learning problem. In the learning problem, the
HMM parameters have to be learned from data. As seen before, an HMM is charac-
terized by a set of parameters θ = {π,A,B}. The problem encountered is that having
observations Y, the hidden states z and parameters θ are unknown. Thus maximizing
p(Y, z|θ) is a difficult procedure, as it requires marginalization over the hidden states
z. Therefore, an iterative method is used called expectation maximization (EM). For
the inference of HMM parameters, the Baum-Welch algorithm is commonly used and
is an instance of the EM algorithm. It consists of the expectation step (E-step) and
the maximization step (M-step). In the E-step, the following conditional expectation
with respect to the hidden states z is computed [33], based on HMM parameters θold:

Q(θ,θold) = E[log(p(Y, z|θ))|Y,θold] (4.37)

Thus, in the E-step the parameters θold are fixed and the expected state assignments
are computed. Thereafter, the M-step is performed, in which the state assignments are
fixed and the parameters are updated, according to:

θ = arg max
θ

Q(θ,θold) (4.38)

This iteration is repeatedly performed until a maximum number of iterations is
achieved, or the model log-likelihood exceeds a certain threshold. It is important to
note that the solution produced by the Baum-Welch algorithm is not guaranteed to
converge to the global maximum; instead, it often converges to a local maximum.
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E-step

In the E-step, the conditional expectationQ(θ,θold) is computed such that subsequently
in the M-step, the parameters θ can be estimated relatively easy. For the computation
of Q(θ,θold), the computation of two probabilities is required, as derived in Sec. C.3
[33]. First, γin, that is the probability of having zn = i, given observations Y, has to be
computed. As encountered in Sec. 4.3.2, the forward-backward algorithm can be used
to compute γin in Eq. 4.27. Secondly, the joint probability of the system being in state
i at discrete time n and state j at discrete time n+ 1, given the observations Y has to
be computed [34]:

ξijn = P (zn = i, zn+1 = j|Y,θ) =
P (zn = i, zn+1 = j,Y|θ)

P (Y|θ)

=
αi
naijbj(yn+1)β

j
n+1∑K

i=1 α
i
nβ

i
n

.

(4.39)

Both γin and ξijn will play a crucial role in the maximization of Q(θ,θold), as discussed
in next section.

M-step

In the M-step, the state assignments are fixed and the parameters in θ are updated.
The derivations of the update equations presented below can be found in Sec. C.3 [33].
First of all, the initial state probabilities π = {πi, ..., πK}, that are the probabilities of
being in state i at discrete time n = 1, are updated by:

πi =
γi1∑K
j=1 γ

j
1

(4.40)

Then, the transition probabilities aij, that is the transition from state i to state j, are
given by:

aij =

∑N−1
n=1 ξ

ij
n∑N−1

n=1 γ
i
n

(4.41)

For the Gaussian HMM, i.e. an HMM with state-specific Gaussian distributed emission
distributions fBi

(yn) = N (µi,Σi) with B = {Bi : i ∈ S} and Bi = {µi,Σi}, the
parameter updates are as follows:

µ̂i =

∑N
n=1 γ

i
nyn∑N

n=1 γ
i
n

(4.42)

Σ̂i =

∑N
n=1 γ

i
n(yn − µ̂i)(yn − µ̂i)

T∑N
n=1 γ

i
n

(4.43)
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4.3.4 Practical EM implementation

The EM algorithm is initialized as follows. First, the observations are clustered using
the K-means algorithm. From this clustering result, a one-hot encoding of the state
sequence z is made. Subsequently, the state-specific observation distributions fBi

(yn)
with i ∈ S are initialized by performing the M-step once. Furthermore, the initial
probabilities π and state transition probability matrix A are uniformly initialized.

For the EM procedure, a total of 50 iterations are used to learn the model parame-
ters, which turns out to be sufficient in terms of convergence of the model log-likelihood
in practice. Finally, Viterbi decoding is applied to infer the most probable state se-
quence z.

4.4 Evaluation metrics

It is important to define metrics that measure the temporal dynamics of functional
networks, such that NRQ 2 can be answered.

NRQ 2. Is it possible to differentiate normal and mutated mice based on the temporal
dynamics of functional networks?

For this purpose, four different metrics have been chosen to possibly reveal group
differences between the mice, and these metrics are discussed below.

Inferred state transition probability matrices

The first and perhaps most straightforward parameter for evaluating group differences
is the inferred state transition probability matrix A. To analyze group differences, two
HMM inference procedures can be applied to the subsets of the data, created based on
the phenotype of the mice. The resulting difference between the inferred state transition
probability matrices AWT and AHOM can be measured by computing the MSE:

MSE(AWT ,AHOM) =
1

K2
||AWT −AHOM ||22. (4.44)

However, solely investigating this metric is not informative. To test whether an effect is
measured, the mice phenotype labels are shuffled randomly, and the MSE is repeatedly
computed. Then, by visualizing the distribution of the computed MSEs, it can be
determined whether an actual effect is measured.

Fractional occupancy

The second metric is the fractional occupancy of states, measuring the fraction of time
a state k ∈ S = {1, ..., K} is active:

fractional occupancyl(k) =
1

N

N∑
n=1

(zn = k), (4.45)

where l specifies the specific mouse and N is the total discrete-time samples per mouse.
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Mean state life time

The third metric is the mean state life time, that is the average duration of a state
zn = k.

Mean inter state time

The last metric used is the mean inter state time, measuring the elapsed time between
two consecutive occurrences of the same state zn = k.
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Simulation 5
In this chapter, it is explained how synthetic data is generated and analyzed to support
answering ERQ 3:

ERQ 3. How do different noise intensities influence the inference of temporal dynam-
ics?

To be specific, the influence of noise on the state transition probability matrix is ana-
lyzed in this chapter. The advantage of having synthetic data is that certain parameters,
such as the HRF parameters and the number of states K of the HMM, can be held equal
to the true parameters to isolate the errors purely introduced by noise. For the purpose
of analyzing the influence of noise, four different simulation cases with different state
transition probability matrices have been created to measure the performance of the
applied methods across different scenarios. For every simulation case, different noise
intensities are tested. Furthermore, the performance of both NNLS and NNLASSO
deconvolution methods are tested.

The layout of this chapter is as follows. First, the generation of synthetic data is
discussed in Sec. 5.1. Subsequently, the deconvolution and HMM inference procedures,
as described in Sec. 4.2 and Sec. 4.3, are applied to the synthetic data. The results
of the analyses are found in Sec. 5.2. After that, a discussion on the results is held in
Sec. 5.3

5.1 Synthetic data generation

Synthetic data is generated following the signal model of Ch. 3. Thus, synthetic data is
generated through the convolution of binary impulse sequences, representing the under-
lying neural population activity, and the HRF. The impulse sequences are a multivariate
binary sequence following a Markov process and thus a probability transition matrix.
Also, each state has a specific binary activation pattern in which each of the ROIs is
active or not. Furthermore, a state included in which no ROIs are active. Although it
is unlikely that there is no activity in the entire brain, this situation is considered since
only a 2D slice of the brain is imaged. For visual explanation purposes, the generation
of synthetic data generation for the first simulation case, having sticky transitions and
no off-diagonal transitional preferences, is shown in this section.

Binary impulse sequences

The binary impulse sequences are generated via three activity patterns, or functional
networks, including a no-activity state, depicted in Fig. 5.1a. Thus, the number of
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states is equal to K = 3. Those functional networks follow a state transition probability
matrix A, shown in Fig. 5.1b.
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Figure 5.1: (a) True functional networks. (b) True state transition probability matrix.

For the first simulation case, the binary impulse sequences, generated following the
functional networks and their transition probabilities, are shown in Fig. 5.2.
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Figure 5.2: Binary impulse sequence representing underlying neural activity.

Synthetic fUS data

To create synthetic data, the binary impulse sequence and the HRF of Fig. 4.7 are
convolved and Gaussian white noise is added to the clean fUS signals, according to the
signal model described in Sec. 3.1. This results in the following synthetic fUS time
courses for a noise intensity σ = 0.1, depicted in Fig. 5.3.
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Figure 5.3: Noisy synthetic fUS data with noise intensity σ = 0.1

5.2 Results

In this section, the results of the synthetic data simulation are presented. After the
methods described in Ch. 4 are applied to the synthetic data, a comparison between
the NNLS and NNLASSO deconvolution methods is made. Subsequently, the influence
of noise on the inference of the temporal dynamics is evaluated.

5.2.1 Comparison between NNLS and NNLASSO deconvolution methods

After generating synthetic data, a subsequent deconvolution procedure is applied on
the time courses of each region m separately, using NNLS and the NNLASSO. For the
first simulation case, this results in the following deconvolved time courses for NNLS,
depicted in Fig. 5.4. For the NNLASSO deconvolution procedure, the regularization
parameter is chosen such that the reconstruction error RE(λ) per time course is not
larger than 1%. The result of deconvolution using the NNLASSO can be found in
Sec. A.2.
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Figure 5.4: Deconvolved synthetic fUS data using NNLS for noise intensity σ = 0.1.
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Subsequently, an HMM inference procedure is applied to the deconvolved data. For
the first simulation case, using NNLS as deconvolution method, the true state sequence
and the most probable state sequence obtained using Viterbi decoding are shown in
Fig. 5.5:
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Figure 5.5: True and inferred state sequence after Viterbi decoding, using NNLS deconvolution
for time courses with noise intensity σ = 0.1.

It can be noticed that the states with one or more active regions are inferred relatively
often compared to the true state sequence. It is observed that using NNLS as a deconvo-
lution method in combination with the HMM leads to a significant amount of spurious
activations. Now, using the fact that these ’observations’ yn are two-dimensional, the
correct and inferred state classifications are shown in Fig. 5.6.
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Figure 5.6: True and inferred state classification using NNLS for noise intensity σ = 0.1.

Here, a significant result can be found regarding the HMM model assumptions and in-
ference procedure. It can be observed that spurious activations are not classified in the
correct cluster, mainly due to the Gaussian HMM being not able to deal with truncated
distributions. The likelihood of a ’spurious’ sample under the actual functional network
distribution is small, as this ’spurious’ sample has a less sparse activity pattern than
the functional network that generated the sample, leading to the wrong classification
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of the sample. However, the opposite case is observed, where samples with a more
sparse activity pattern than the functional network generating the sample can be clas-
sified correctly if such a wrong transition is unlikely under the inferred state transition
probability matrix. Thus, a classification bias is present toward more densely activated
functional networks. On the positive side, although the Gaussian HMM cannot deal
with truncated distributions, it might still be useful, as the clusters already overlap
significantly, and classifying such samples seems a rather challenging task. Also, it can
be noted that the functional networks are inferred correctly.

Now, performing an NNLASSO deconvolution procedure on the same time courses
and subsequently applying Viterbi decoding, the most probable state sequence is ob-
tained and visualized in Fig. 5.7:
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Figure 5.7: True and inferred state sequence using the NNLASSO for noise intensity σ = 0.1.
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Figure 5.8: True and inferred state classification using the NNLASSO for noise intensity
σ = 0.1.

where it can be noted that the inferred state sequence zinferred matches the true state
sequence ztrue better compared to using NNLS. This similarity is mainly due to the first
state (blue) being selected more often due to the sparse regularization, which suppresses
spurious activations and better matches the ground truth. This can also be observed
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on the left of Fig. 5.8, where more data points yn are now approximately on location
(0,0).

Finally, the resulting reconstruction of the temporal dynamics captured by A using
NNLS or the NNLASSO is considered. The results of learning matrix A from decon-
volved time courses with noise intensity σ = 0.1 using NNLS and the NNLASSO are
shown in Fig. 5.9 and Fig. 5.10, respectively.
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Figure 5.9: True and inferred state transition probability matrix using NNLS for noise inten-
sity σ = 0.1.
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Figure 5.10: True and inferred state transition probability matrix using the NNLASSO for
noise intensity σ = 0.1.

From visual observation, it is clear that NNLS is unable to recover the structure of
the temporal dynamics. On the other hand, using the NNLASSO, the dynamics are
recovered relatively accurately, maintaining a large part of the structure in matrix
A. However, the first significant difference can be observed in the state self-transition
probability, also called the state stickiness, which is significantly reduced. In the de-
convolved time courses, it is observed that reconstruction errors are made during long
periods of sustained activity, resulting in less state stickiness. Also, a slight bias can
be noticed from state 2 to state 3. This bias can be explained by considering the func-
tional network pattern of state 2, where a single error in one of the two deconvolved
time courses leads to a self-transition or a transition to state 3.
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5.2.2 Noise influence

As a next step, the influence of noise is further tested by measuring the ability to recover
the underlying dynamics of the functional networks, expressed in the state transition
probability matrix A. A total of four simulation cases have been constructed, covering
a wide range of possible brain dynamics and noise intensities σ ∈ {0.1, 0.3, 0.5}, where
the noise intensity of experimental fUS data is considered to vary between σ = 0.3
and σ = 0.5. The transition probability matrices of the four simulation cases are
constructed such that the resulting time courses resemble a realistic fUS time course,
listed in Sec. A.1 for σ = 0.5, where the functional networks remain the same as before.
For all results shown in the sections below, a total of 8 chunks consisting of 720 seconds
of deconvolved data are concatenated for robust inference of matrix A under noise
intensity σ = 0.5. The convergence of the inferred matrix A to the true matrix A
is evaluated in Sec. A.3 for varying synthetic data lengths. In the remainder of this
chapter, only results will be presented that use the NNLASSO deconvolution method,
as this technique outperforms NNLS in terms of reconstruction of A.

Sticky states, no transitional preferences

The first simulation case, already shown before, has a state transition probability matrix
A that has no clear structure, i.e., a state transition probability matrix without off-
diagonal transition probabilities. This simulation case is constructed to show whether
no structure is learned from data if there truly is no transitional structure in the under-
lying activity. Furthermore, it should be noted that the state transition probabilities
are rather sticky, i.e., a high preference for self-transitions. The result of inferring
matrix A is shown in Fig. 5.11.
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Figure 5.11: Inference of A with sticky states under noise intensity σ = 0.5.

It can be noted that a significant transition bias is present toward state 1, due to
reconstruction errors introduced during the deconvolution procedure.

Sticky states, transitional preference towards sparse activation patterns

The second simulation case concerns a state transition probability matrix A having a
transitional preference from state 2 to state 3. It can be observed that the inferred A

39



does maintain the structure by a small portion for noise intensity σ = 0.5.
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Figure 5.12: Inference of A with transitional preference under noise intensity σ = 0.5.

Sticky states, transitional preference towards dense activation patterns

As a third simulation, the reverse situation of the previous simulation has been created.
Now, a preference to transition from state 3 to state 2 is present. Also, in this case,
the inferred A only partly maintains the structure between the states having at least
one region active. However, it should be noted that the state transition from state 3
to state 2 is more likely than the reverse, matching ground truth.
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Figure 5.13: Inference of A with transitional preferences under noise intensity σ = 0.5.

No sticky states, transitional preference towards sparse activation patterns

Finally, a situation is tested with less state stickiness, of which the result of inferring
A for σ = 0.5 can be found in Fig. 5.14. It becomes apparent that the developed
techniques cannot restore any structure of Atrue. First of all, having non-sticky state
self-transitions, and thus a more sparse activation pattern, leads to an increase in
errors introduced by inferring the exact activation timing. Especially for larger noise
intensities, estimating the exact timing appears to be a difficult task.
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Figure 5.14: Inference of A without sticky states under noise intensity σ = 0.5.

5.3 Discussion

First of all, from the first simulation case, it becomes clear that performing a deconvo-
lution using the NNLASSO outperforms NNLS. However, since sparsity is enforced in
the reconstruction of ym, very sticky self-transitions are not favored. This effect is also
clearly visible in the results of all simulation cases, where the diagonal elements of the
inferred matrix A have a lower probability value. The introduced errors by deconvolu-
tion mainly consist of finding a solution that is too sparse and timing the exact moment
of activation. Setting the regularization parameter λ at a reconstruction error of 1% is
a trade-off between detecting genuine and spurious activations. Therefore, a less sparse
solution effectively results in deconvolution using NNLS, which performs significantly
worse. Furthermore, estimating the exact timing of underlying activity is an issue and
manifests itself in not inferring the correct temporal dynamics of functional networks.

On the positive side, it is found empirically that the method can infer the actual
functional networks relatively often for all simulation cases, knowing the true HRF
and number of states K. Also, the overall activation pattern of the inferred state
sequence z seems to match the ground truth closely from visual observations. Thus,
the method for setting the regularization parameter, as described in Sec. 4.2, seems to
be a good trade-off between detecting spurious and true activations. However a solid
analysis on choosing the regularization parameter is lacking. Furthermore, for more
sticky state transition probability matrices, the introduced state transition preferences
are still visible, despite the errors introduced in the state transition probability matrix.
For lower noise intensities, improved results are found for reconstructing transition
preferences. However, it appears that no clear structure can be learned for less sticky
state self-transitions due to the difficulty of inferring the exact timing of underlying
activity in noisy conditions.

Although significant errors are introduced, a relative comparison of the inferred
state transition probability matrices of each group of mice could still disclose group
differences for the experimental data analysis. However, care must be taken when
interpreting the learned state transition probabilities, as the state transition probability
matrix is affected by reconstruction errors.
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Results 6
In this chapter, the results of the experimental data analysis are presented. After
applying a deconvolution procedure using the NNLASSO on each time course, a few
challenges must be tackled. First, the number of states K is determined for applying
the HMM inference methods. Secondly, the consistency of functional network inference
is evaluated. Finally, differences between groups of mice are analyzed. These challenges
are solved by starting at a high-level analysis, where all deconvolved time courses of
the two groups of mice are concatenated. Subsequently, an HMM inference procedure
is applied. Here, it is thus assumed that the functional networks are similar in the two
groups of mice. The difference between the two groups of mice, measured by metrics
such as the fractional occupancy, mean state life time, and mean inter-state time, is
evaluated in the high-level analysis to avoid the possibility of differences introduced by
local minima of the EM algorithm.

After the high-level analysis, a group-level analysis is performed by training two
HMMs on the concatenated data of the group of wild-type (WT) and homozygous
(HOM) mice, respectively. It is verified whether functional networks are altered be-
tween the two groups of mice. Also, the temporal dynamics of functional networks are
evaluated by investigating the inferred state transition probability matrices.

As a final step, applying a separate HMM inference procedure on each mouse would
be desirable. In the case of consistent functional networks, the dynamics of functional
networks can be evaluated at a subject level, and the consistency of these dynamics can
be investigated. However, it is found that the amount of data points per mouse is too
few for the HMM inference procedure to learn consistent functional networks reliably.

6.1 High-level analysis

Before diving into the results of learning functional networks and their temporal dy-
namics, it is crucial to analyze global differences between the two groups of mice. For
this purpose, it is analyzed whether the hyperactivity is translated into more movement
by computing the fraction of time the mice are moving. Also, it is analyzed what frac-
tion of time any brain region is active and whether there are group differences in the
amount of global brain activity. As visible in Fig. 6.1, the two groups of mice cannot
be separated based on their movement or global brain activity. As no apparent global
differences are found, it is necessary to decompose the brain activity into networks of
functional connectivity by applying an HMM with K > 2.
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Figure 6.1: Final time courses after the pre-processing stage.

6.1.1 Determination of the number of states

In order to determine the number of states K, the uniqueness of functional networks,
differences in the mean fractional occupancy of states per group of mice, and the bi-
ological plausibility of functional networks are investigated. One of the outcomes of
the HMM inference procedure is a set of state vectors, where each state vector µz in-
dicates whether a certain ROI is active or not. The uniqueness of these state vectors,
or functional networks, is evaluated against the number of inferred states. In Fig. 6.2,
the number of unique functional networks is thus plotted against different values for
K, and it is visible that only a unique decomposition of activity can be made up to
K = 5.
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Figure 6.2: Number of unique functional networks versus the number of states.

Introducing a larger number of states, K > 2, leads to a subdivision or decomposition
of the activity patterns in the brain, with thus a maximum of five unique functional
networks. For these varying numbers of states, the fractional occupancy of the two
groups is evaluated. It is found that no clear distinction can be made using this specific
metric.
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Moving on to the biological plausibility of the functional network decomposition, for
K = 4, an interesting set of functional networks is found. By plotting the inferred mean
µz of the multivariate Gaussian distributions, the functional networks are visualized in
Fig. 6.3. It is shown that brain activity consists of brain states having activity in all
three regions, both the motor and somatosensory area, or only the anterior cingulate
area. This finding is in correspondence with literature [24], where it is also demon-
strated that neural activity in the anterior cingulate area does not always follow neural
activation of the motor or somatosensory area. In contrast, activity in either the motor
or somatosensory area is not independently observed. This finding motivates the choice
of K = 4 for further analyses.
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Figure 6.3: Visualization of inferred func-
tional networks for K = 4.
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Figure 6.4: Consistency of inferred functional
networks for K = 4.

6.1.2 Consistency of functional network inference

In order to evaluate the consistency of the found functional network decomposition for
K = 4, the data is subsampled. Subsampling of the data is performed by leaving out
some recordings. Subsequently, the functional networks for K = 4 are inferred from
the reduced data set. By reducing data size and performing 100 Monte Carlo runs per
number of recordings that are left out, the consistency of functional network inference is
analyzed by computing the relative frequency of occurrence of the functional network
decomposition of Fig. 6.3. As visible in Fig. 6.4, even for half the amount of data,
the functional network decomposition of Fig. 6.3 is inferred the most times. Also, it
can be noted that for the full data length, different K-means initializations of the EM
algorithm do not affect functional network inference.

6.1.3 Comparison of WT and HOM mice

To compare the temporal dynamics of WT and HOM mice, the fractional occupancy,
mean state life time, and mean inter-state time, as described in Sec. 4.4, are computed.
The mean fractional occupancy of the groups of mice is shown in Fig. 6.5.
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Figure 6.5: Fractional occupancy of states.

Although small group differences in mean fractional occupancy can be noticed, the
WT and HOM mice cannot be separated due to the individual differences in fractional
occupancy. The fractional occupancy per mouse can be found in Fig. B.4.

Now, the mean state life time is computed for each mouse, visualized in Fig. 6.6.
Again, no clear differences are found, except for a small difference in the state life
time of the first state, corresponding to no brain activity. Furthermore, it can be seen
that the mean inter-state times of states containing brain activity are rather low, and
intra-group differences are also relatively small. The sparse regularization potentially
introduces this effect, not favoring state stickiness, also observed in the simulations in
Ch. 5.
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Figure 6.6: Mean state life time for mice of group (a) WT (b) HOM. Legends contain labels
of animals in correspondence with Tab. B.1.

As the last metric, the mean inter-state time is computed per mouse, as illustrated
in Fig. 6.7. Also, in this case, the individual differences are significant, and overlap
between the groups of mice is present.
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Figure 6.7: Mean inter state time for mice of group (a) WT (b) HOM. Legends contain labels
of animals in correspondence with Tab. B.1.

6.2 Group-level analysis

Now, possible differences between the two groups of mice are analyzed on a group level
by training two HMMs using K = 4 on the concatenated data of the group of normal
and mutated mice, respectively. It is found that the functional networks are not altered
and consistently learned, also for multiple initializations of the EM algorithm, as visible
in Sec. B.5. While having these consistent functional networks, the state transition
probability matrices of the WT and HOM mice are displayed in Fig. 6.8, where these
matrices are computed on Na = 4 animals per group. It can be observed that the
dynamics of the groups of mice are different regarding the transition probabilities to
state 3, i.e., the state in which both the motor and somatosensory are active.
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Figure 6.8: State transition probability matrices per group of mice: (a) WT (b) HOM.
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To analyze whether a genuine effect is measured, the labels of recordings are inter-
changed, as described in Sec. 4.4. Subsequently, the MSE(AWT ,AHOM) is computed
between the inferred state transition probability matrices AWT and AHOM of the WT
and HOM mice, respectively. Performing 200 Monte Carlo runs, the result of the
measured effect versus the distribution of random effects is illustrated in Fig. 6.9a.

Now, it should be noted that the transition probability matrix measures two quanti-
ties simultaneously. First, the tendency to and the sustainment of any brain activation
are measured by the transition probabilities in the first row and column, respectively.
Second, the transitional structure between states that contain any activity is measured.
As previously illustrated in Fig. 6.1, the WT and HOM cannot be separated based on
the amount of brain activity. Therefore, the first row and column are excluded from the
state transition probability matrix. As there are also no clear effects on the dynamics
of the fourth state, the fourth state is also excluded. For this analysis of the partial
state transition probability matrices, the transition probabilities are recalculated, and
a similar procedure as before is followed. The results are shown in Fig. 6.9b.
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Figure 6.9: Distribution of MSEs on the (a) full and (b) partial transition probability matrices
computed from random phenotype assignments (blue) versus the true partial MSE (solid
red). Stability of the true MSE is evaluated by showing 95% confidence intervals (stipled
red) established through performing 200 Monte Carlo runs on the initialization of the EM
algorithm.

As can be seen, it cannot be fully established whether the observed difference in the
state transition probability matrix is a coincidence or not. However, with ∼ 96% of
the random groups of recordings resulting in lower differences, it can be claimed that
a genuine effect is measured with the risk of 4% of being wrong. Performing analyses
with a restriction on the minimum number of interchanged phenotypes leads to similar
results for both approaches. Also, performing similar analyses interchanging the labels
of mice instead of recordings lead to similar results, although it should be noted that
fewer random combinations are possible.
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Discussion 7
In this chapter, a discussion on the results is held. It is evaluated how the results
answer the engineering and neuroscientific research questions in Sec. 7.1 and Sec. 7.2,
respectively.

7.1 Engineering reseach questions

Inference of functional networks and temporal dynamics

Concerning the inference of functional networks and temporal dynamics of these func-
tional networks, it is found that a signal model is required to model the data from
a generative perspective. The signal model is composed of two components, namely
a convolutive fUS data model and a state-space model, being the HMM. After con-
structing this signal model, it is found that methods such as deconvolution using the
NNLASSO and EM are necessary to learn networks of functional connectivity from fUS
data. For the deconvolution procedure, also NNLS is considered in combination with
the HMM inference procedure, which leads to a significant increase in inferred spurious
activations.

Pre-processing

Before directly applying the methods to experimental data, a pre-processing stage is
designed. The pre-processing stage reduces problem complexity and performs data
preparation for the developed methods.

As there is significant variability in the blood vessel structure of mice, a dynamic
functional connectivity analysis on very small neural populations is not considered
possible in a reliable manner. Thus, the choice is made to consider the activity of neural
populations at a larger scale, namely on the level of anatomical regions. Since fUS data
only contains blood vessels, and thus no anatomical regions are visible, these regions
have to be detected. Using a combination of sICA and warping the Paxinos brain
atlas on the blood vessels, anatomical regions in fUS data can be detected successfully.
However, this method requires expert knowledge for placing landmarks used in the brain
atlas warping stage, which also appeared to be difficult for anatomical regions, such as
the thalamus, located deeper in the brain. Next, a data dimensionality reduction step
is performed. Here, by computing the mean fUS time course of each anatomical region,
it is found that enough detail is maintained, and problem complexity is successfully
reduced.

Concerning data preparation, it is found that fUS data requires a global noise re-
duction step. The developed method can significantly reduce the observed scattering
artifacts. However, the assumption is made that the global noise is homogeneous across
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the 2D fUS images, which did not hold for all mice. After the earlier described data
dimensionality reduction step, drift correction is applied by performing linear regres-
sion on the baseline activity of a mean fUS time course. Finally, the possible offset in
the mean fUS time course can quite easily be removed. It should be noticed that the
performance and selected thresholds of all involved pre-processing methods are subject
to data interpretation. However, using video recordings showing the behavior of mice
as prior knowledge, it is believed that reliable thresholds are established.

Noise influence

The influence of noise is analyzed by performing several simulation cases with increasing
levels of advanced state transition probability matrices. Concerning the inference of the
state transition probability matrix under noisy conditions, it is found that the general
structure of the matrix is affected by a combination of timing and sparsity errors, which
are introduced by the deconvolution procedure. The true structure appeared to be less
recoverable for increasing noise intensities, although, for relatively large state-stickiness,
the signature of the true structure is still visible. Furthermore, it must be noted that
it is hard to quantify the noise intensity present in experimental data due to varying
signal power.

Consistency

The functional networks for the three identified ROIs and K = 4 states are inferred in a
relatively consistent manner within the two groups of mice. Across several subsampled
data sets, the demonstrated decomposition of brain activity is inferred the most often.
However, the functional networks for four regions, including the thalamus, could not be
consistently inferred. This inconsistency is mainly due to a significant data loss, as the
thalamus is not identified in half of the total number of recordings. Furthermore, due
to a lack of data per mouse, the reproducibility of functional networks and consistency
of inference in each mouse could not be evaluated. Also, it is found that during the
simulations the method can relatively consistently infer the actual functional networks
that generated the synthetic fUS data.

7.2 Neuroscientific reseach questions

Biologic plausibility

The consistent decomposition of brain activity into a functional network comprising
the motor and somatosensory area, and a functional network in which only the anterior
cingulate area is active, is consistent with literature [24]. This finding shows that the
developed methods can reveal functional networks in a relatively consistent manner
and that fUS does indirectly measure the activity of underlying neural populations.
Also, in the work of [24, 25], it is found that neural activity related to behavior is
spread through the entire brain. This result is consistent with the identification of a
brain state in which all regions are active. However, it is impossible to verify if this
state is identified purely based on the actual underlying activity of neural populations
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or whether the global blood supply in the brain also induces an all-active brain state.
Also, it must be noted that it is unknown and hard to verify whether any artefacts
contribute to the reconstructed neural activity in the mice brain.

Differentiation of mice

A possible difference in brain dynamics between WT and HOM mice is demonstrated
using the developed method. The choice is made to use metrics that measure the
temporal dynamics of functional networks independently from the amount of movement,
as several types of behaviors could invoke activity in neural populations. First of
all, no differentiation can be made between the groups of mice using the fractional
occupancy and mean inter-state time, as there are significant intra-group differences.
These differences are likely induced by the variability of spontaneous behaviors a mouse
can perform in combination with a relatively short recording time. The variability in
brain activation due to spontaneous behavior might thus cause the inability to separate
classes using these metrics. Also, the mean state life time seems to be affected by the
combination of noise and sparse regularization, as expected from simulation results.
However, it is unknown if the brain states truly last as short as reconstructed, even
during long periods of sustained movement, as the ground truth is unknown.

Concerning the state transition probability matrices, a transitional bias towards the
functional network containing the motor and somatosensory area is observed in HOM
mice. By creating groups with randomly assigned recordings, the significance of the
observed transitional effect is measured. Although a smaller effect is measured for ∼
96% of the random combinations, it cannot be fully established whether the observed
effect is a coincidence or not. However, the effect is statistically significant enough
to claim a difference in brain dynamics, with the risk of 4% being wrong. As a few
random combinations result in a larger difference, an overlap between the groups of mice
in brain dynamics is expected. Performing the Monte Carlo analysis on the measured
effect using phenotype groups of randomly assigned animals is, in principle, preferred
over recording-wise randomization. However, significantly fewer random combinations
can be made with a few animals, and a robust statistical analysis cannot be performed.
Also, the group overlap effects cannot be mitigated by inserting a limit on the minimum
number of interchanged phenotypes at this low number of animals and recordings.
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Conclusion 8
First of all, it is concluded that, by the use of a signal model, a method consisting
of a deconvolution procedure in combination with a state-space inference approach
has successfully been constructed for dynamic functional connectivity analysis on fUS
data. For the deconvolution procedure, the NNLASSO is deployed to suppress spurious
activations. As an unsupervised machine learning method to learn functional networks
and their temporal dynamics, EM for HMMs is leveraged.

In order to reduce problem complexity, the fUS data is interpreted on the level of
anatomical regions. The anatomical regions are successfully identified using a com-
bination of sICA and warping a brain atlas on top of the fUS blood vessels. It is
established that this reduction of complexity still preserves enough detail to discover
biologically plausible functional networks and their dynamics. For data preparation,
first, a global noise reduction step involving recording-dependent thresholds. Also,
region-wise thresholds are involved in the drift correction step, dependent on the vari-
ability of brain activity. It is found that, although these thresholds are necessary for
the developed methods to function, generalization across several recordings and larger
data sets is expected to be difficult and must be executed carefully.

From synthetic data simulations, it can be concluded that the developed meth-
ods struggle under noisy conditions, as reconstructing the exact timing of the activity
of neural populations is more complicated. Also, due to sparse regularization, state
stickiness is less preserved. However, transitional dynamics captured by the state tran-
sition probability matrices are still inferred, although the impact of noise is significantly
present.

After all, an interesting decomposition of brain activity into biologically plausible
functional networks is found in correspondence with literature. These functional net-
works are inferred relatively consistent across different subsampled fUS data sets. Also,
a transitional bias towards the functional network comprising the motor and somatosen-
sory area is observed in HOM mice. This effect can be related to a difference in mice
phenotype with 96% certainty.
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8.1 Future work

Pre-processing pipeline

Several improvements can be made to establish a more robust pre-processing pipeline.
These improvements are firstly concerned with improving data quality. Tracing the ori-
gin of the observed scattering effects and extremely slow drifts and subsequently miti-
gating their presence would eventually result in a robust pipeline with fewer thresholds.

However, besides improving data quality, the currently used methods can also be
improved. Several thresholds are present in the pre-processing pipeline, leading to
much analytic flexibility in the pipeline, which is not desired. Where most of the
thresholds could be generalized across different recordings, the threshold for global noise
reduction, although dynamic already, requires a manual determination per recording.
A different approach using wavelets could improve the global noise reduction step by a
more accurate determination of the global noise present in the fUS data.

Furthermore, as previously discussed, the atlas warping procedure is a labor-
intensive and challenging procedure, as the warping is performed using manually iden-
tified landmarks. However, these landmarks are not clear for deeper located regions
such as the thalamus, resulting in less accurate brain atlas warping and anatomical
region detection. In order to improve, a joint MRI and fUS setup could be considered
to more clearly map the non-linear deformation of the mice brain and subsequently
identify blood vessels surrounding anatomical regions of interest.

Experimental data analysis

First, more measurements are desired for a more robust statistical experimental data
analysis. In order to reduce intra-group differences, more measurements per mouse
should be performed. Also, more mice should be added to the analysis to reveal more
robust inter-group differences. Furthermore, gathering more data would enable the
ability to include the thalamus in the analysis.

Second, the detection of mouse behavior could be expanded with automated identi-
fication of, e.g., whisker movement, grooming, and other behaviors. Improved behavior
tracing would subsequently enable the improvement of metrics evaluating the tempo-
ral dynamics of functional networks, leading to more specific analyses of the temporal
dynamics with respect to behavioral treats. For now, the metrics could already be
expanded by accounting for the movement of the mice.

Furthermore, the influence of selecting the regularization parameter could be ana-
lyzed in further detail. The chosen method to select the regularization parameter, such
that the relative reconstruction error does not increase by more than 1%, is a trade-off
between recovering genuine and spurious activations. Although the ground truth is
unknown, it should be analyzed how varying this threshold affects the final results.
Apart from sparse regularization on the underlying activity directly, sparse regulariza-
tion on the first-order derivative of the underlying activity could be considered as well,
resulting in more piece-wise constant solutions.

Finally, it should be analyzed how variability in the HRF influences the finally
inferred results. To start with, this could be analyzed by means of a simulation.
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[12] T. Deffieux, C. Demené, and M. Tanter, “Functional Ultrasound Imaging: A New
Imaging Modality for Neuroscience,” pp. 110–121, 10 2021.

[13] E. Mace, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, “Functional
ultrasound imaging of the brain,” Nature Methods, vol. 8, no. 8, pp. 662–664, 8
2011.

[14] C. Rabut, M. Correia, V. Finel, S. Pezet, M. Pernot, T. Deffieux, and M. Tanter,
“4D functional ultrasound imaging of whole-brain activity in rodents,” Nature
Methods, vol. 16, no. 10, pp. 994–997, 10 2019.

[15] R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun,
M. Corbetta, S. Della Penna, J. H. Duyn, G. H. Glover, J. Gonzalez-Castillo, D. A.
Handwerker, S. Keilholz, V. Kiviniemi, D. A. Leopold, F. de Pasquale, O. Sporns,
M. Walter, and C. Chang, “Dynamic functional connectivity: Promise, issues, and
interpretations,” NeuroImage, vol. 80, pp. 360–378, 10 2013.

[16] X. Liu and J. H. Duyn, “Time-varying functional network information extracted
from brief instances of spontaneous brain activity,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 110, no. 11, pp. 4392–
4397, 3 2013.

[17] X. Di and B. B. Biswal, “Dynamic brain functional connectivity modulated by
resting-state networks,” Brain Structure and Function, vol. 220, no. 1, pp. 37–46,
1 2015.

[18] P. Tewarie, L. Liuzzi, G. C. O’Neill, A. J. Quinn, A. Griffa, M. W. Woolrich, C. J.
Stam, A. Hillebrand, and M. J. Brookes, “Tracking dynamic brain networks using
high temporal resolution MEG measures of functional connectivity,” NeuroImage,
vol. 200, pp. 38–50, 10 2019.

[19] S. Keilholz, C. Caballero-Gaudes, P. Bandettini, G. Deco, and V. Calhoun, “Time-
Resolved Resting-State Functional Magnetic Resonance Imaging Analysis: Current
Status, Challenges, and New Directions,” pp. 465–481, 10 2017.

[20] F. I. Karahanoglu and D. Van De Ville, “Transient brain activity disentangles fMRI
resting-state dynamics in terms of spatially and temporally overlapping networks,”
Nature Communications, vol. 6, 7 2015.

[21] V. D. Calhoun, J. Liu, and T. Adali, “A review of group ICA for fMRI data and
ICA for joint inference of imaging, genetic, and ERP data,” NeuroImage, vol. 45,
no. 1 Suppl, 2009.
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Synthetic data analysis A
In this chapter, supplemental material on the synthetic data analysis is presented. For
each simulation case, the noisy fUS time courses are shown for σ = 0.5. Furthermore,
deconvolution using the NNLASSO for synthetic data with noise intensity σ = 0.1 is
shown. Also, the convergence of inferring A is illustrated by means of a simulation
with varying length of the concatenated data.

A.1 Synthetic noisy fUS time courses

0

10
f1

0 100 200 300 400 500 600 700
Time [s]

0

10
f2

Noisy fUS time courses fm

A
m

pl
itu

de

(a)

0

10
f1

0 100 200 300 400 500 600 700
Time [s]

0

5f2

Noisy fUS time courses fm

A
m

pl
itu

de

(b)

59



0

10
f1

0 100 200 300 400 500 600 700
Time [s]

0

5

10

f2

Noisy fUS time courses fm
A

m
pl

itu
de

(c)

0

10

f1

0 100 200 300 400 500 600 700
Time [s]

0

5f2

Noisy fUS time courses fm

A
m

pl
itu

de

(d)

Figure A.1: Noisy synthetic fUS data with noise intensity σ = 0.5. (a) Sticky states, no
transitional preferences. (b) Sticky states, transitional preference towards sparse activation
patterns. (c) No sticky states, transitional preference towards sparse activation patterns. (d)
No sticky states, transitional preference towards sparse activation patterns.
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A.2 Deconvolution of noisy synthetic fUS data
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Figure A.2: Deconvolved synthetic fUS data using the NNLASSO for noise intensity σ = 0.1.
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A.3 Convergence of inferring A

To determine the consistency of inferring A, the convergence of the MSE is evaluated
in Fig. A.3a for varying lengths of concatenated deconvolved data, using a recording
duration, equal to the experimental data, of 720 seconds. The reconstruction error
between the true and inferred state transition probability matrix A is measured by the
MSE:

MSE =
1

K2
||Atrue −Ainferred||2F . (A.1)
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Figure A.3: Convergence of the MSE. For each noise intensity σ, 5 Monte Carlo runs are per-
formed from which 95% confidence intervals are constructed. (a) Sticky states, no transitional
preferences. (b) Sticky states, transitional preference towards sparse activation patterns. (c)
No sticky states, transitional preference towards sparse activation patterns. (d) No sticky
states, transitional preference towards sparse activation patterns.
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Experimental data analysis B
In this appendix, all additional information and figures of the experimental data anal-
ysis can be found.

B.1 Recording table

Table B.1: fUS recordings

recID sectionID animalID phenotype

830 3 20-MI13812-01 WT

890 3 20-MI13812-01 WT

1002 3 20-MI14269-04 HOM

1181 3 20-MI10570-05 WT

1033 3 20-MI14190-01 WT

1124 3 20-MI16625-01 HOM

959 4 20-MI14269-01 WT

959 6 20-MI14269-01 WT

1102 1 20-MI17304-03 HOM

1105 1 20-MI17304-03 HOM

1181 1 20-MI10570-05 WT

1124 1 20-MI16625-01 HOM

1184 1 20-MI17306-08 HOM

1033 2 20-MI14190-01 WT

1181 23 20-MI10570-05 WT

B.2 Intrinsic activity detection thresholds

In Tab. B.2 below, the relative tresholds are listed for detecting data points correspond-
ing to intrinsic activity, that should not be included in the linear regression. For the
anterior cingulate area, a slightly higher threshold is chosen, since the signal-to-noise
ratio is lower for anatomical regions that are located deeper in the brain.
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Table B.2: Relative thresholds per region

Region Anterior cingulate Motor Somatosensory

Threshold [%] 5 3 3

B.3 Detection of other anatomical ROIs
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Figure B.1: ROI detection of (a) anterior cingulate area and (b) motor area. Left: Border
of regional mask. Right: Thresholded pixels within regional mask.
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B.4 Unsuccessful detrending of time courses
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Figure B.2: Unsuccessful detrending of time course belonging to (a) anterior cingulate area
(b) motor area.
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B.5 Consistency of functional network inference
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Figure B.3: Consistency of functional network inference per group of (a) WT (b) HOM mice.

B.6 Fractional occupancy of states per mouse
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Figure B.4: Individual fractional occupancies of (a) WT (b) HOM mice. Legends contain
labels of animals in correspondence with Tab. B.1.
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Mathematical derivations C
C.1 Forward algorithm

In this section, the initialization step, recursive step and termination step of the forward
algorithm are derived.

C.1.1 Initialization

Initialization step for forward variable αi
1.

αi
1 = P (y1, z1 = i|θ)

= P (y1|z1 = i,θ)P (z1 = i|θ)

= bi(y1)πi

C.1.2 Recursion

Recursive computation of αj
n. Let j ∈ S = {1, ..., K}, where K is the number of states.

αj
n+1 = P (y1, ...,yn+1, zn+1 = j|θ)

=
∑

z1,...,zn

P (y1, ...,yn,yn+1, z1, ..., zn, zn+1 = j|θ)

=

[ ∑
z1,...,zn

P (y1, ...,yn, z1, ..., zn, zn+1 = j|θ)

]
P (yn+1|zn+1 = j,θ)

=

[
K∑
i=1

∑
z1,...,zn−1

P (y1, ...,yn−1,yn, z1, ..., zn−1, zn = i, zn+1 = j|θ)

]
bj(yn+1)

=

[
K∑
i=1

∑
z1,...,zn−1

P (y1, ...,yn, z1, ..., zn−1, zn = i|θ)P (zn+1 = j|zn = i,θ)

]
bj(yn+1)

=

[
K∑
i=1

P (y1, ...,yn, zn = i|θ)aij

]
bj(yn+1)

=

[
K∑
i=1

αi
naij

]
bj(yn+1)
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C.1.3 Termination

Termination step to compute P (Y|θ).

P (Y|θ) = P (y1, ...,yN |θ)

=
K∑
i=1

P (y1, ...,yN , zN = i|θ)

=
K∑
i=1

αi
N

C.2 Backward algorithm

Recursive computation of βn.

βi
n = P (yn+1, ...,yN |zn = i,θ)

=
K∑
j=1

P (yn+1, ...,yN , zn+1 = j|zn = i,θ)

=
K∑
j=1

P (yn+2, ...,yN |yn+1, zn+1 = j, zn = i,θ)P (yn+1, zn+1 = j|zn = i,θ)

=
K∑
j=1

P (yn+2, ...,yN |yn+1, zn+1 = j, zn = i,θ)P (yn+1|zn+1 = j, zn = i,θ)

P (zn+1 = j|yn+1, zn = i,θ)

=
K∑
j=1

P (yn+2, ...,yN |zn+1 = j,θ)P (yn+1|zn+1 = j,θ)P (zn+1 = j|zn = i,θ)

=
K∑
j=1

βj
n+1bj(yn+1)aij

C.3 EM algorithm for the Gaussian HMM

In this section, the EM algorithm of the HMM is derived following [33].

C.3.1 E-step

As described before, Q(θ,θold) is computed as follows:

Q(θ,θold) = E[log(p(Y, z|θ))|Y,θold].
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Using the HMM factorization:

log p(Y, z|θ) = log p(z1|θ) +
N−1∑
n=1

log p(zn+1|zn,θ) +
N∑

n=1

log p(yn|zn,θ)

=
K∑
i=1

1(z1 = i) log πi +
N−1∑
n=1

K∑
i=1

K∑
j=1

1(zn = i, zn+1 = j) log aij+

N∑
n=1

K∑
i=1

1(zn = i) log fBi
(yn)

where fBi
(yn) = N (µi,Σi) with B = {Bi : i ∈ S} and Bi = {µi,Σi}. Now, taking

the expectation with respect to z given the observations Y, resulting in taking the
expectation of the indicator functions only. This is equal to the probability of the
event in the indicator function.

Q(θ,θold) =
K∑
i=1

P (z1 = i|Y) log πi +
N−1∑
n=1

K∑
i=1

K∑
j=1

P (zn = i, zn+1 = j|Y) log aij+

N∑
n=1

K∑
i=1

P (zn = i|Y) log fBi
(yn)

Now, Eq. 4.27 and Eq. 4.39 can be recognized and computed to provide an analytical
expression for Q(θ,θold). Substitution leads to:

Q(θ,θold) =
K∑
i=1

γi1 log πi +
N−1∑
n=1

K∑
i=1

K∑
j=1

ξijn log aij +
N∑

n=1

K∑
i=1

γin log fBi
(yn)

C.3.2 M-step

First, the following maximization problem is established to maximize HMM parameter
π = {π1, ..., πK}:

max
π

Q(θ,θold), s.t.
K∑
i=1

πi = 1

Using Lagrange multipliers:

∂

∂πi

(
Q(θ,θold)− λ(

K∑
j=1

πj − 1)

)
= 0
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gives

πi =
γi1
λ
−→ λ =

K∑
i=1

γi1

resulting in

πi =
γi1∑K
j=1 γ

j
1

For the maximization of parameter A containing elements aij, that are transition
probabilities, again the Lagrange multipliers are used to compute:

max
A

Q(θ,θold), s.t.
K∑
j=1

aij = 1 ∀i ∈ S.

Using Lagrange multipliers:

∂

∂aij

(
Q(θ,θold)− λ(

K∑
j=1

aij − 1)

)
= 0

gives

aij =

∑N−1
n=1 ξ

ij
n

λ
−→ λ =

N−1∑
n=1

K∑
j=1

ξijn ,

resulting in

aij =

∑N−1
n=1 ξ

ij
n∑N−1

n=1

∑K
j=1 ξ

ij
n

=

∑N−1
n=1 ξ

ij
n∑N−1

n=1 γ
i
n

.

Finally, the last parameters captured by B have to be updated. To maximize with
respect to the parameters bi of state i, the derivative of Q(θ,θold) with respect to Bi is
computed and set equal to zero:

∇Bi
Q(θ,θold) =

N∑
n=1

γin(∇Bi
log fBi

(yn)) = 0.

First, maximizing for µi gives:

∂

∂µi

Q(θ,θold) =
N∑

n=1

γin(
∂

∂µi

log fBi
(yn)) = 0.

Now, neglecting the terms in log fBi
(yn)) independent of µi and

∂

∂µi

log fBi
(yn) =

∂

∂µi

(−1

2
(yn − µi)

TΣ−1i (yn − µi)) = Σ−1(yn − µi).
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Substitution gives

N∑
n=1

γin(
∂

∂µi

log fBi
(yn)) =

N∑
n=1

γinΣ
−1
i (yn − µi) = 0,

from which the new estimate of µi can be obtained:

µ̂i =

∑N
n=1 γ

i
nyn∑N

n=1 γ
i
n

Now, maximizing for Σi gives:

∂

∂Σi

Q(θ,θold) =
N∑

n=1

γin(
∂

∂Σi

log fBi
(yn)) = 0.

Now, neglecting the terms in log fBi
(yn) independent of Σi, using Σ−1 = K and the

fact that log(|K−1|) = log(|K|−1) = − log(|K|):

∂

∂Ki

log fBi
(yn) =

∂

∂Ki

(−1

2
(yn − µi)

TKi(yn − µi)−
1

2
log |K−1|)

= −1

2
(yn − µi)(yn − µi)

T +
1

2
Σi

Substitution gives

N∑
n=1

γin(
∂

∂µi

log fBi
(yn)) =

N∑
n=1

γin(−1

2
(yn − µi)(yn − µi)

T +
1

2
Σi) = 0,

from which the new estimate of Σi can be obtained, using the new estimate µ̂i:

Σ̂i =

∑N
n=1 γ

i
n(yn − µ̂i)(yn − µ̂i)

T∑N
n=1 γ

i
n
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