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Chapter 1. Introduction 

Maritime Autonomous Surface Ships (MASS) are increasingly regarded as a promising solution 
to enhance navigational safety and efficiency in maritime transportation. However, their 
integration into Mixed Waterborne Transport Systems (MWTS), where autonomous and manned 
vessels coexist, introduces several challenges. These include ensuring effective collision 
avoidance without direct communication between vessels, accommodating the situational 
awareness of MASS in various maritime environments, human-mimic collision avoidance 
strategies in decision-making processes, and human trust in the decision-making of MASS to 
enhance coordination between human operators and autonomous systems. Addressing these 
challenges is essential to ensure seamless interaction while maintaining both the safety and 
efficiency of the navigation in an MWTS.  

Motivated by the need to bridge these gaps, this research aims to develop a decision-making 
framework that integrates situational awareness, human-mimic navigation, and trust as key 
components. This chapter is organised as follows: Section 1.1 introduces the research context. 
Section 1.2 identifies the key challenges in mixed waterborne transport. Sections 1.3 and 1.4 
formulate the research questions and describe the methodologies adopted to address them. 
Section 1.5 specifies the research scope of the thesis, while Section 1.6 highlights the 
contributions. Finally, Section 1.7 presents the outline of the structure of the thesis. 
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1.1 Transition to Mixed Waterborne Transport 
Global shipping is the backbone of international trade, transporting 90% of goods trade by 
volume worldwide. This vital system ensures the seamless movement of essential resources, 
such as raw materials, energy, and food. Specifically, it becomes more important for the Dutch 
economy. 90% of imports and two-thirds of exports are via sea and inland shipping. These 
exports contribute more than 30% to the Dutch GDP. With a total added value of 56.5 billion 
euros and 590,000 employees, maritime is one of the largest pillars of the Dutch economy1. The 
critical role underscores the importance of shipping in maintaining the smooth functioning of 
either the international or domestic economy. Any disruption in shipping operations, including 
accidents, inefficiencies, and limitations of logistical capabilities, may lead to supply chain 
disruptions, severe threats to human lives, and significant economic losses. 

Safety remains a fundamental concern in the maritime industry, as accidents result in 
consequences for human life and economic losses. As such, when we focus on the issues of 
accidents, ensuring the safety of maritime transport is essential. According to the report 2 issued 
by the European Maritime Safety Agency (EMSA) in 2022, navigation accidents, including 
collisions, groundings, and contacts, account for 28% of all marine casualties reported in the 
European Marine Casualty Information Platform (EMCIP) database. The analysis, based on 
8,800 occurrences involving vessels flying EU Member State flags within Member States’ 
territorial waters or linked to European interests spanning 2011 to 2021, highlights critical 
safety concerns, particularly in collision-related incidents. Collisions are among the most 
frequent types of accidents, with manoeuvring and turning operations (3,108 cases) and port 
areas (711 cases) identified as high-risk contexts. Importantly, human errors contribute to 83.5% 
of collision-related events, manifesting through delayed decision-making, missed observations, 
and inadequate planning during navigation phases. These results underscore the pressing need 
for effective collision avoidance to mitigate navigational risks and enhance maritime safety. 

Efficiency, on the other hand, is equally critical in ensuring the sustainability of maritime 
operations. The optimisation of travel routes and fuel consumption not only reduces operational 
costs but also minimises environmental impact, aligning with global sustainability goals. 
Additionally, delays caused by port congestion or suboptimal routing can disrupt global supply 
chains, leading to economic losses across multiple industries. Achieving operational efficiency, 
therefore, involves both improving navigational efficiency and ensuring smooth interactions 
between vessels, particularly in high-risk areas such as ports.  

In response to these challenges, Maritime Autonomous Surface Ships (MASS) have 
emerged as a promising solution, offering the potential to reduce human error, a main cause of 
maritime accidents3, and optimise operational efficiency. Over the years, several MASS-related 
projects have been initiated globally. For example, MUNIN [175], AAWA [23], and NOVIMAR 

 
1 https://maritiemland.nl/en/maritime-master-plan/ 
2 https://www.emsa.europa.eu/newsroom/latest-news/item/4830-safety-analysis-of-emcip-data-analysis-of-
navigation-accidents.html  
3 https://www.emsa.europa.eu/safemed-iv-project/component-5-human-element-in-maritime-safety.html  

https://maritiemland.nl/en/maritime-master-plan/
https://www.emsa.europa.eu/newsroom/latest-news/item/4830-safety-analysis-of-emcip-data-analysis-of-navigation-accidents.html
https://www.emsa.europa.eu/newsroom/latest-news/item/4830-safety-analysis-of-emcip-data-analysis-of-navigation-accidents.html
https://www.emsa.europa.eu/safemed-iv-project/component-5-human-element-in-maritime-safety.html
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[77]. These initiatives underscore the growing interest in commercial autonomous shipping and 
their potential towards addressing safety and efficiency concerns. 

To ensure the integration of MASS into existing maritime frameworks, the International 
Maritime Organisation (IMO) categorizes MASS into four levels of autonomy, as shown in 
Table 1-1. This classification ranges from ships with basic automation to fully autonomous ships 
capable of making independent decisions. Besides, to meet specific needs, a more detailed Level 
of Autonomy for MASS [126] and a new classification for autonomous surface vessels [184] 
regarding the overall system and sub-systems were proposed. Importantly, the autonomy level 
of a MASS may vary across different operational phases [132]. For instance, an open sea transit 
may be fully automated, requiring minimal human intervention, while port approaches open 
require significant human oversight. These classifications underscore the challenges MASS 
face in practical applications, particularly in the interaction between vessels of varying 
autonomy levels and manned ships or operators.  

Table 1-1 Classification of the autonomy degree of maritime autonomous surface ships by IMO 

Degree in Maritime Autonomous 
Surface Ships 

Description 

1 Ship with automated processes 
and decision support 

Seafarers are on board to operate and control shipboard systems and 
functions. Some operations may be automated. 

2 Remotely controlled ship with 
seafarers on board 

The ship is controlled and operated from another location, but 
seafarers are on board. 

3 Remotely controlled ship without 
seafarers on board 

The ship is controlled and operated from another location. There are 
no seafarers on board. 

4 Fully autonomous ship  The ship’s operating system is able to make decisions and 
determine actions by itself. 

Given the background of the autonomy levels of MASS and application scenarios, mixed 
waterborne transport systems (MWTS) will become inevitable in the short future, where MASS 
and manned ships will co-exist. However, the integration of MASS into the MWTS will 
introduce new challenges regarding safety and efficiency in high-risk navigational contexts. 
Unlike fully autonomous systems capable of cooperative navigation and communication, 
MWTS may be limited in the exchange of timely and effective navigational intentions. Thus, 
MASS should be capable of not only avoiding collisions with surrounding manned vessels in 
various situations but also maintaining efficient interaction and operations in an MWTS. 

1.2 Problem statement 
Drawing on the challenges identified in the background, the thesis addresses three critical 
aspects of MASS operations: situational awareness, navigational preference-aware human-
mimic collision avoidance, and human trust. By focusing on these dimensions, the research 
seeks to design a decision-making framework for MASS that ensures safe and efficient 
navigation for MASS in an MWTS.  

First, situational awareness is crucial for the safe navigation of autonomous ships, 
involving the comprehensive capability construction of both human seafarers and autonomous 
systems to perceive, understand, and predict the maritime environment. Effective situational 
awareness requires not only sensors on board but also integrating domain knowledge and 
expertise of seafarers to build a reliable understanding of the navigational context. In this way, 
MASS can make timely decisions across various navigational scenarios. While prior studies 
have investigated framework design [68], requirements [225], sensor technologies [205], 
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computation and evaluation [163] for enhancing situational awareness, most of the studies fail 
to fully address the unique challenges of integrating MASS into mixed-traffic environments, 
particularly the transparency of MASS decision-making to human operators and surrounding 
vessels. For example, how to generate explainable actions based on multi-source data towards 
an increased transparent decision-making process remains underexplored. Addressing this gap 
is essential for fostering human trust, improving situational understanding, and ensuring safer 
navigation within an MWTS. 

Second, navigational preference-aware human-mimic collision avoidance is necessary to 
ensure that autonomous vessels can adapt to the behaviours of surrounding manned vessels for 
safe and efficient interaction. Various algorithms have been designed and developed to improve 
the safety and efficiency of autonomous ships. For example, Velocity Obstacle [91], 
reinforcement learning [223], and model predictive control [53] have greatly improved the 
evasive capabilities of autonomous vessels. However, most existing studies simulate 
surrounding vessels on fixed trajectories and focus on enhancing the evasive algorithms of 
MASS, limiting their adaptability in an MWTS. An evasive model involving the human 
navigational preferences of manned ships in collision avoidance is crucial to providing 
proactive and mutually understandable navigation strategies within the MWTS, avoiding 
potential conflicts while maintaining operational efficiency.  

Finally, human trust in autonomous systems is critical during high-risk scenarios such as 
collision avoidance. A lack of trust may lead to unnecessary interventions by operators, 
undermining the reliability of MASS in such scenarios. Recent advances in trust theories in 
human-autonomy interaction have focused on three aspects, including framework [86], 
measurement [136], investigation methods [218], and computational models [232]. In the 
maritime domain, studies have begun to explore the impact of trust on the decision-making 
process of MASS operators in a remote monitoring centre [130][132]. However, understanding 
trust dynamics during decision-making processes in collision avoidance scenarios remains 
underexplored. It is the foundation of developing and maintaining trust, which is critical for 
reliable and transparent decision-making between operators and autonomous systems.  

Overall, addressing situational awareness, human preferences, and human trust is essential 
for ensuring the safe and efficient navigation of MASS in an MWTS. By bridging the gaps in 
transparency, adaptability, and reliability, this research aims to develop a comprehensive 
decision-making framework that facilitates seamless interaction between autonomous and 
manned vessels. 

1.3 Research questions 
The main research question addressed in this thesis is: 

How can a decision-making framework for collision avoidance, incorporating situational 
awareness, human preferences, and human trust, be developed to ensure safe and efficient 
interaction between autonomous and manned vessels in mixed waterborne transport systems? 

To address the main research question, we will answer the following sub-questions: 

(1) Questions on the state of the art: 

(i) What is the state of the art on the safety and efficiency of human-MASS interaction? 
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(ii) What factors should be considered in the decision-making framework? 

(2) Questions on the situational awareness modelling: 

(iii) How can data from multiple sources be effectively integrated for situational 
awareness? 

(iv) How can a local path planning algorithm tailored to 3 degrees of freedom vessels 
be developed, integrating the results of situational awareness? 

(3) Questions on the human preferences for human-mimic collision avoidance: 

(v) How can AIS data be utilised to extract the navigational preferences of conventional 
vessels for collision avoidance? 

(vi) How can past vessels’ trajectories be used to develop a real-time movement 
prediction model with improved accuracy and interpretability based on human 
navigational preferences? 

(vii) How does the prediction result support the interactive collision avoidance of MASS 
in a mixed waterborne environment? 

(4) Questions on human trust: 

(viii) How can human trust in MASS in collision avoidance be measured, analysed, and 
modelled within controlled experimental settings? 

1.4 Research approach 
To address the research questions, this research adopts a systematic and integrated research 
approach. The proposed approach develops a decision-making framework by addressing gaps 
in situational awareness, human-mimic collision avoidance, and trust dynamics. The following 
paragraphs describe how each aspect of the framework is designed. 

To achieve situational awareness, we leveraged ontology capabilities to organise multi-
source information and developed the knowledge maps model for MASS. This model facilitates 
the perception and understanding of navigational contexts, providing real-time support for 
decision-making. To address collision avoidance, we designed a local path-planning algorithm, 
Dynamic Window Approach (DWA), tailored for 3-degrees-of-freedom (DOF) MASS. The 
rapid search capabilities enable efficient navigation in dynamic environments. Furthermore, a 
collision avoidance decision-making framework was proposed, integrating real-time results 
from knowledge maps, referred to as Knowledge Maps-based Dynamic Window Approach 
(KM-DWA), to ensure safe and informed decision-making. 

For human-mimic navigation, we utilised AIS data to detect collision candidates and 
employed an LSTM-Autoencoder to classify and analyse navigational preferences. These 
preferences were incorporated into a proposed trajectory predictor, which leverages past 
trajectories of both the vessel and surrounding ships to predict future movements. This predictor 
simultaneously forecasts the trajectories of the MASS and nearby vessels, enabling collision 
avoidance strategies that align with human navigational preferences. The proposed decision-
making framework combines these human-mimic trajectories to ensure safety with the KM-
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DWA local path planner. This integration allows real-time obstacle detection; in high-risk 
scenarios, the system executes local collision avoidance manoeuvres before returning to the 
recommended human-mimic trajectories. 

To explore trust dynamics, we conducted simulator-based experiments to investigate 
observer trust during collision avoidance scenarios. A linear mixed model was applied to 
identify the main and interaction factors influencing trust. Building on these insights, a Bayesian 
network-based trust model (TBN) was constructed to model trust dynamics across different 
stages of the collision avoidance process. This model identified critical factors affecting key 
trust, including proper avoidance timing and strategies for adherence to collision-avoidance 
regulations. These findings provide actionable insights for proactive collision avoidance 
strategies, enhancing trust between autonomous and human operators. 

In summary, this research integrates situational awareness, human-mimic navigation, and 
trust into a comprehensive decision-making framework for collision avoidance in MWTS. By 
leveraging knowledge maps, the trajectory predictor, and the trust model, the proposed 
framework provides support for safe and efficient interaction between autonomous and manned 
vessels.  

1.5 Research scope 
The scope is defined by the following considerations: 

(1) To ensure clarity, safety in this thesis refers to navigational safety, focusing on collision-
free vessel operations. Efficiency denotes the optimal utilisation of navigational 
resources, i.e., minimising voyage time. 

(2) This study focuses on Level 3 MASS, which are capable of autonomous navigation and 
collision avoidance. These vessels are supervised remotely, and shore-based operators 
are responsible for monitoring the system and taking control when necessary, especially 
in unexpected or high-risk situations. 

(3) This thesis examines the interaction between autonomous vessels and human-operated 
vessels within mixed waterborne transport where direct exchange of navigational 
intentions is not feasible. The interaction studied in this thesis is defined as a proactive 
response by autonomous vessels to ensure safety and efficiency, relying on observable 
behaviours of nearby vessels to interpret and react to the surrounding navigational 
context. 

(4) Fixed surrounding vessel behaviour: The thesis does not control surrounding vessels in 
real time but considers their interactions as part of the navigational context. Instead, the 
trajectories of surrounding vessels are predefined based on actual AIS data for 
navigation experiments or kept constant across scenarios in situation-aware decision-
making experiments and simulator-based trust studies. In all experiments, the 
surrounding vessel’s behaviour is unaffected by the changes in the autonomous vessel’s 
actions. Real-time control is limited to the autonomous vessel itself. 

1.6 Contributions 
This thesis contributes to advancing the safe and efficient integration of MASS into the MWTS 
through an integrated decision-making framework, which is summarised as follows: 
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(1) An integrated decision-making framework: This research proposes an integrated 
decision-making framework for MASS in MWTS based on a systematic literature 
review, focusing on situational awareness, navigational preference-aware human-mimic 
collision avoidance, and human trust in the decision-making of MASS. Impact: This 
work lays the foundation for coordinated collision avoidance between autonomous and 
manned vessels to reach seamless interaction in MWTS restricted by the exchange of 
navigational intentions. (The systematic literature review and decision-making 
framework design are discussed in Safety and Efficiency of Human-MASS Interactions: 
Towards an Integrated Framework (published in Journal of Marine Engineering and 
Technology [191])). 

(2) Situational awareness through knowledge maps: The thesis introduces a situational 
awareness model based on ontology-driven knowledge maps, enabling the integration 
of multi-source information for dynamic maritime environments. A DWA algorithm 
tailored for 3-DOF vessels further supports real-time collision avoidance. This work 
extends situational awareness by integrating navigational rules with reactive path 
planning, addressing transparency and decision-making challenges in autonomous 
navigation. Impact: The approach enhances MASS’s adaptability and responsiveness 
to dynamic navigational scenarios, improving safety and efficiency outcomes. 
(Methodology and results are presented in Integrating Situation-Aware Knowledge 
Maps and Dynamic Window Approach for Safe Path Planning by Maritime Autonomous 
Surface Ships (published in Ocean Engineering [192])). 

(3) Navigation preference-aware human-mimic collision avoidance: By analysing AIS 
data, the research develops a novel trajectory prediction model that incorporates human 
navigational preferences. The approach integrates past vessel trajectories into a multi-
task learning seq2seq LSTM attention framework to enable preference-aware collision 
avoidance. Impact: The results contribute to proactive and interpretable collision 
avoidance strategies, fostering seamless, safer, and more efficient interactions in MWTS. 
(This contribution is elaborated in Enhancing Collision Avoidance in Mixed Waterborne 
Transport: Human-Mimic Navigation and Decision-Making by Autonomous Vessels 
(under review)).  

(4) Trust Dynamics in Human-MASS Interaction: The thesis models trust dynamics 
between operators and MASS through a Trust Behaviour Network, informed by 
experimental findings on trust evolution during collision avoidance tasks. This work 
introduces both statistical and probabilistic approaches to understanding and modelling 
trust in collision avoidance scenarios, identifying key factors such as evasion timing and 
actions. Impact: The findings provide insights for designing MASS’s decision-making 
systems that align with human operator’s expectations. (The results are detailed in 
Experimental Trust Dynamics Modelling in the Supervised Autonomous Ship Navigation 
in Collision Avoidance Scenarios (under review)) 

1.7 Thesis outline 
The outline of this thesis is shown in Figure 1-1. This thesis is structured into six chapters, each 
addressing key aspects of the research and contributing to the development of a comprehensive 
decision-making framework for collision avoidance in an MWTS. Each chapter corresponds to 
specific research questions (RQs) as outlined below: 

Chapter 1. Systematic Literature Review (addresses RQ1-i, ii). This chapter conducts a 
systematic literature review to evaluate the current state of human-MASS 
interaction, with a focus on safety and efficiency. The analysis identifies research 
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gaps, including situational awareness, human preferences, and human trust. 
Based on these findings, a comprehensive decision-making framework is then 
proposed, integrating these three critical factors to address these gaps.  

Chapter 2. Situational Awareness through Knowledge Maps (addresses RQ2-iii, iv). This 
chapter introduces a situational awareness model based on ontology-driven 
knowledge maps, enabling the integration of multi-source information to support 
navigation decisions. An adaptive DWA local path-planning algorithm designed 
for 3-DOF vessels is developed to facilitate real-time collision avoidance in 
dynamic environments. The proposed decision-making framework incorporates 
DWA with knowledge maps-based situational awareness capabilities, ensuring 
transparent and safe collision avoidance.  

Chapter 3. Human-Mimic Navigation (addresses RQ3-v, vi, vii). This chapter focuses on 
extracting navigational preferences and predicting trajectories for human-mimic 
navigation. Using AIS data, an LSTM-autoencoder combined with K-means 
clustering is employed to classify and analyse ship manoeuvring preferences 
during collision avoidance scenarios. Furthermore, a Multi-Task Learning 
Sequence-to-Sequence LSTM model with attention (MTL-Seq2Seq-LSTM-Att) 
is developed to predict the future trajectories of both the own ship and 
neighbouring vessels. By integrating preference-aware trajectory predictions into 
the decision-making framework, the study achieves safer, more efficient, and 
proactive interactions in MWTS.  

Chapter 4. Trust Dynamics in Collision Avoidance (addresses RQ4-viii). This chapter 
investigates the dynamics of human trust in MASS during collision avoidance 
scenarios. Trust was measured through post-scenario evaluations using a 
quantitative survey and analysed with a linear mixed model to capture stage-
specific trust variations. The findings reveal distinct trust evolution patterns 
across stages, highlighting critical factors such as decision-making strategies and 
timing. A Trust Behaviour Network was developed to model trust dynamics, 
emphasising the critical role of system competence. Diagnostic analysis further 
demonstrated the importance of proactive right-turn strategies with proper 
timings in enhancing trust. These insights provide actionable guidance for 
designing transparent and trustworthy MASS systems that align with observer 
expectations.  

Chapter 5. Conclusion and Future Work. The final chapter summarises the research 
contributions, discusses the practical implications of the findings and outlines 
potential directions for future research. 

 
Figure 1-1 The outline of this thesis 
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Chapter 2. Literature Review & Decision-
Making Framework 

This chapter provides a comprehensive review of the existing research on the interaction 
between human operators and Maritime Autonomous Surface Ships (MASS), with particular 
emphasis on key factors influencing the safety and efficiency of MASS. By addressing research 
questions RQ1-i and RQ1-ii, the chapter examines the state of the art in human-MASS 
interaction and identifies the factors that should be considered in a decision-making framework. 
Building upon the insights and gaps identified in the literature, a decision-making framework 
is developed.1 The chapter is organised as follows: Section 2.1 outlines the methodology and 
approach used to conduct the review. Section 2.2 presents the results of the state-of-the-art 
research. Section 2.3 identifies the findings and gaps and proposes the decision-making 
framework. Finally, Section 2.4 summarises the conclusion.  

 
1 The contents of this chapter have been published in [191]. 
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2.1 Introduction 
The objective of this chapter is to review and discuss several key issues related to the safety and 
efficiency of MASS and the importance of carefully considering them during both the design 
and operation phases. For this purpose, the chapter starts by formulating four research questions, 
which are detailed in Table 2-1. 

Table 2-1 Research questions related to human-MASS interaction 

Questions Section 
What is the state of the art on the safety and efficiency of human-MASS interaction? 3.1 

How can situational awareness be applied to MASS safe navigation, and how can it be 
measured? 

3.2 

How can MASS make decisions to avoid collision with manned ships or ships with different 
degrees of autonomy? 

3.3 

What factors could influence human trust in MASS, and how can trust be measured? 3.4 

• Review scoping 

The process of literature review, as depicted in Figure 2-1, was conducted systematically to 
ensure a comprehensive and focused analysis of relevant studies. Initially, a detailed search was 
carried out across two databases, including Scopus and Web of Science, using carefully selected 
keywords that align with the research themes, as detailed in Table 2-2. This search, conducted 
up to May 2024, yielded a total of 209 English records (85 from Web of Science and 124 from 
Scopus). The results of this screening process, including the number of papers related to each 
topic, are summarised in Table 2-3. 

 

Figure 2-1 The flow diagram of the literature screening process 
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An eligibility assessment was then performed on the remaining records, which led to the 
exclusion of 22 studies due to reasons such as their falling outside the core research areas, not 
discussing relevant MASS safety mechanisms, or not addressing key aspects like trust or 
human-MASS interaction. 

To ensure the breadth of the literature covered, a snowballing technique was employed, 
which identified 12 additional studies that were not captured during the initial database searches. 
Ultimately, this process resulted in the selection of 105 studies for detailed analysis. These 
included both empirical studies and 12 key reports, which were then examined to address the 
research questions.  

• Structure of review 

To provide a clear picture of the interplay between these topics and human-MASS interaction, 
we first present an in-depth overview of situational awareness, decision-making strategies, and 
human trust in MASS as they relate to safety and efficiency in an MWTS. Through this 
approach, we aim to uncover the connections among these themes and highlight their 
significance. 

Additionally, we perform a detailed analysis of the relationships between the three sub-
research topics and human-MASS interaction, specifically in the context of safety and efficiency. 
This analysis provides insights into the relationship between individual research themes in 
human-ship interaction and their correspondence to the broader themes of safety and efficiency. 

The bibliometric approach is used here to investigate the relationships between key concepts 
in the literature on human interaction with MASS using the term co-occurrence analysis method. 
The visualisations presented in Figure 2-2 and Figure 2-3 demonstrate the connections between 
various research themes. 

Figure 2-2 shows a network of colours where each colour stands for a different theme: green 
for safety, yellow for efficiency, purple for human-MASS interaction, red for situational 
awareness, teal for human trust, and brown for decision-making. The width of the lines 
connecting these themes indicates how often they are mentioned together in the literature; wider 
lines mean more frequent mentions. 

Figure 2-3 zooms in on the interplay between safety and efficiency. The visual articulation, 
using the same colour coding, emphasises the substantial overlap between these directions. This 
intersection underscores a salient research trend: considerations of efficiency are rarely isolated 
from safety imperatives. The emergent pattern from this confluence indicates that safety 
considerations form the primary context within which efficiency is situated and discussed. 

From these figures, we draw two main conclusions: firstly, safety is a major concern and is 
often discussed along with efficiency, reflecting a tendency to consider them jointly rather than 
separately. Secondly, there is a noticeable gap when it comes to human trust, especially in 
connection with safety and efficiency. This gap suggests that more research is needed to 
understand how trust in autonomous systems can affect the adoption and use of MASS. 
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Figure 2-2 The visualisation of overall co-occurrence analysis of various research themes. 

 
Figure 2-3 The visualisation of co-occurrence among three directions and human-MASS interaction considering safety and 

efficiency. 

Table 2-2 Keywords corresponding to each research question 

No. Keywords Scopus  Web of Science 
1 TS = (“Human” AND (“autonomous ship*” OR “maritime 

autonomous surface ship*” OR “autonomous vessel*” OR “maritime 
autonomous surface vessel*”) AND (“interact*” OR “cooperat*”)” 

AND (“safety” OR “efficiency”)) 

46 29 

2 TS = (“Situation* awareness” AND “human” AND (“autonomous 
ship*” OR “maritime autonomous surface ship*” OR “autonomous 

vessel*” OR “maritime autonomous surface vessel*”)) 

41 30 

3 TS = ((“Autonomous ship*” OR “maritime autonomous surface ship*” 
OR “autonomous vessel*” OR “maritime autonomous surface 

vessel*”) AND (“manned ship*” OR “conventional ship*” OR “ 
manned vessel*” OR “conventional vessel*”) AND “collision 

avoidance”) 

25 28 

4 TS = (“Trust” AND ( “autonomous ship*” OR “maritime autonomous 
surface ship*” OR “autonomous vessel*” OR “maritime autonomous 

surface vessel*”)) 

28 16 

2.2 Review results 

2.2.1 Human-MASS interaction for safety and efficiency 

2.2.1.1 Human factors 

The concept of human complementary in the maritime domain has gained much attention in 
recent years. It involves the collaboration between MASS and human operators to enhance 
safety, efficiency, and overall performance in water areas. The human factor is of paramount 
importance in the successful implementation of human-MASS interaction, particularly in 
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ensuring safety. In this regard, extensive research has been conducted in this area to investigate 
the various facets of the human factor in the context of MASS operations. 

Table 2-3 The overview of the relevance between literature and research questions 

References State of the art 𝑆𝑆𝑆𝑆† 𝐶𝐶𝑆𝑆† 𝐻𝐻𝐻𝐻† 𝐻𝐻𝐻𝐻𝐻𝐻† Safety Efficiency 
[247]   ✓  ✓  
[14]   ✓ ✓ ✓  

[223][238]  ✓   ✓  
[216] [160]  ✓  ✓   

[193]  ✓  ✓ ✓  
[205]  ✓ ✓ ✓  ✓ 

[229][24] [165] ✓      
[222]  ✓     ✓ 
[89] ✓    ✓  

[202] ✓    ✓ ✓ 
[133] ✓   ✓   

[131] [55] ✓   ✓ ✓  
[70] ✓   ✓  ✓ 

[135] [73] ✓   ✓ ✓ ✓ 
[215] ✓  ✓   ✓ 
[42] ✓  ✓  ✓  

[174] [214] [209] [28] [208] [162] [3] [94] [203] [207] 
[13] ✓ ✓     

[171] [4] [83] [2] [243] [242] [227] [82] [47] [11] [154] ✓ ✓   ✓  
[213] [60] [105] [118] [225] [39] [16] [254] [168]  [188] ✓ ✓  ✓   

[163] [207] [237] [153] [172] [252] ✓ ✓  ✓ ✓  
[134] ✓ ✓  ✓ ✓ ✓ 

[212] [211] [66] [99] [101] ✓ ✓ ✓    
[166] [117] [167] [137] ✓ ✓ ✓ ✓   

[56] ✓ ✓ ✓ ✓  ✓ 
[140] [44] [230] [6] ✓ ✓ ✓ ✓ ✓  

[201] [100] ✓ ✓ ✓ ✓ ✓ ✓ 
𝑆𝑆𝑆𝑆† = situational awareness 
𝐶𝐶𝑆𝑆† = collision avoidance 
𝐻𝐻𝐻𝐻† = human trust 

(1) Frameworks for Human Involvement in MASS 

Several studies have explored the integration of humans as an essential part of MASS 
operations. A framework involving humans as one element of the system was proposed by [99] 
to improve team performance, suggesting human monitoring will be diminished to exploit the 
potential of fully autonomous MASS as trust develops. Furthermore, In the study referenced by 
[100], it is highlighted that human factors, including cultural and social aspects, may impact the 
effectiveness of remote ship operations and the interactions between operators in shore control 
centres. Specifically, these factors affecting operators responsible for MASS at Remote Control 
Centres (RCC) are identified and organised into thirteen distinct categories. 

(2) Changes in Operator Cognition & Situational Awareness 

Operator cognition and situational awareness have been studied extensively, particularly in 
challenging environments. The study [195] discussed the challenges of using the digital system 
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on the vessel in the Arctic environment and highlighted the considerations that need to be taken 
into account when designing maritime navigation systems. Additionally, the unmanned ship 
was focused on investigating possible human benefits and challenges regarding ship safety 
[216]. In this study, situational awareness was discussed, indicating the importance of proactive 
communication between MASS and manned ships in an MWTS. Furthermore, Human takeover 
times during the operation of automated ships were analysed in [188]. The study revealed that 
takeover times are often longer than expected, requiring situation-specific management 
strategies to ensure safe and autonomous operations. 

(3) Trust, Decision-Making, and Human-System Interaction 

Trust between human operators and autonomous systems has been identified as a critical 
factor for successful collaboration. In the study [4], human elements were discussed in the 
MASS, which is remotely controlled. In this study, the author argued that it is critical to keep 
aware of the situation of human operators at RCC, which directly influences the safety and 
efficiency of the MASS. Moreover, it is stressed that the behaviour of MASS would influence 
the behaviour of the conventional ships in an MWTS. Human elements were analysed by [135] 
and [134] for future autonomy, where trust, situational awareness, and training were discussed 
based on interviews. In this study, the relationships among trust, situational awareness, and 
decision-making in the autonomous system were stressed. Moreover, the relationship between 
human trust in autonomy and professional commitment was investigated by [1]. The study finds 
that higher professional commitment correlates with lower trust in autonomy. This study 
highlights the importance of addressing human factors to foster trust in autonomous systems. 

Additionally, challenges in designing the Shore Control Center (SCC) for MASS were 
addressed by [55], with a focus on human-machine interaction. The paper emphasised that 
optimising human-system interfaces is critical for operators to maintain situational awareness 
and make informed decisions in remote environments. Focusing on the mental health effects of 
humans involved in the MASS controlled remotely, the study conducted by [201] investigated 
in-depth human factors. It is found that the difference in situational awareness and trust 
discrepancy between human operators and the autonomous system could lead to high stress on 
humans and wrong decisions accordingly.  

In order to identify potential risks in the scenario of collaborative human-MASS navigating, 
a method of scenario analysis was applied on a virtual remote manoeuvring platform for MASS 
[83]. With that method, human factors related to potential risks within human-MASS interaction 
can be found effectively by observing the reaction of participants. Accordingly, decision-
making can be considered in the ship design phase in advance for remote-controlled MASS. 

(4) Risk Assessment and Operator Error Analysis 

Risk assessment and operator error analysis are critical for enhancing the safety and 
reliability of MASS. Numerous studies have explored the two aspects, aiming to develop 
models and methods that mitigate the risk of human error and improve system performance. 

In terms of risk assessment, several studies have utilised advanced analytical methods to 
evaluate the risks associated with human factors in MASS operations. For instance, The study 
by [103] applied a Bayesian network method, identifying that human factors interactions and 
operator issues are the main factors leading to accidents. Similarly, By using Evidential 
Reasoning and a Rule-based Bayesian Network, risk levels of main hazards on MASS were 
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assessed for MASS by [28]. It is stressed that the risk from the interactions for MASS within 
an MWTS and human failure on MASS should receive more attention. Additionally, the study 
by [203] evaluated the applicability of the existing 64 risk models for MASS, revealing that 
none of them are fully suitable for direct use. This study highlights the need for new models 
that incorporate multiple considerations like software performance, control algorithms, and 
human-machine interaction, as mentioned in the study, to ensure the safety of autonomous 
vessels. 

When examining operator error analysis, several studies have focused on the vulnerabilities 
and potential failures in human interactions. For example, the study by [174] explored potential 
human failure events within RCC operations, revealing that human errors can occur due to 
system alert failures, remote operations, and ship takeover processes. Furthermore, to 
investigate potential human failures in MASS during collision avoidance scenarios, a task 
analysis methodology complemented by a cognitive model is employed to outline collision 
avoidance procedures facilitated by human operators [2]. This study illustrates how the 
integration of human interventions with autonomous system capabilities can navigate threats 
effectively, emphasising the critical role of human oversight in emergency situations. Moreover, 
the potential human failures were also discussed by [173] with a method of Fault Trees, where 
failure events that occurred in human-MASS interaction could be identified and predicted. 

Additionally, the study by [118] utilised an approach of the Success Likelihood Index 
Method under interval type-2 fuzzy sets to identify the possible errors of human-MASS 
interaction with the human operator remotely and MASS. The results of the study provide 
insights into the human factors (i.e., Stress, task difficulty, level of preparation (preparation), 
experience level (experience), fatigue, event-related factors (event factors), etc.) that can 
contribute to operational errors in autonomous ships. Furthermore, techniques and challenges 
of human and organisational factors in the maritime domain were analysed by [229]. In this 
study, it is stressed that human factors that may influence ship safety would also widely exist in 
future transport. For example, the possible high stress of human operators could be caused by 
the remote supervision of multiple vessels at a time and the failure of the collaboration between 
conventional ships and MASS with different degrees of autonomy. 

Similarly, the critical role of the human element in autonomous maritime navigation was 
explored in the study [210]. The work underscores the persistence of human errors not just 
operationally but also in the design and remote control of both unmanned and manned vessels, 
highlighting the potential for autonomous ships to alter seafarer behaviour on manned ships, 
posing additional risks. Furthermore, the research by [39] examined human errors in human-
autonomy collaboration in autonomous ships, particularly in collision avoidance scenarios. 
Using the human reliability analysis method and virtual experiments, the study identifies key 
performance-shaping factors influencing human errors. It contributes to understanding human 
factors in MASS operations, which is crucial for improving safety and efficiency. 

(5) Technologies for Improving Operator’s Situational Awareness 

Various technologies have been employed to enhance operator situational awareness. It is 
pointed out by [56] that the transparency of dynamic systems varies with the levels of situational 
awareness, arguing that human trust in an autonomous system should be calibrated to reach 
efficient cooperation. In addition, in the study by [215], an Immersive Virtual Reality method 
was used to evaluate the human experience on a MASS and a manned ship. In this study, the 
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factors of trust, stress, and perceptual risk from human operators were measured under various 
scenarios regarding environmental settings by means of a post-hoc questionnaire for a 
comparison between the MASS and manned ships. Similarly, in the study by [208], Augmented 
reality and Virtual reality were explored as a means of training seafarers for the remote operation 
of autonomous ships. The study highlighted the importance of equipping operators with the 
necessary skills to manage complex systems remotely, suggesting that these training methods 
could improve safety and operational efficiency in the autonomous maritime environment. 

Research on human factors has highlighted the essential role of human oversight in MASS 
operations. This encompasses the collaboration between MASS and human operators to bolster 
safety and performance. Studies emphasise that while automation is advancing, human 
situational awareness and the establishment of trust are critical for safety. The research spans 
various dimensions, including cultural and social aspects affecting remote operations and 
emphasises the need for effective communication strategies. A key point is the evaluation and 
calibration of human trust in autonomous systems, which aligns with the enhancement of 
situational awareness and underscores the importance of incorporating human factors in the 
design phase to mitigate potential errors and stress-induced decisions. These findings highlight 
the critical nature of human oversight and the interplay between human operators and MASS. 

2.2.1.2 Available techniques supporting the autonomy of MASS 

The development of autonomous systems for MASS relies on a range of techniques to ensure 
efficient decision-making and collision avoidance. The available techniques can be broadly 
classified into two categories: sensor integration and communication for situational awareness 
and collision avoidance algorithms. Each plays a crucial role in enhancing the situational 
awareness, operational safety, and autonomy of MASS. 

(1) Sensor Integration and Communication for Situational Awareness 

Advances in sensor technology form the backbone of MASS situational awareness, 
providing essential data for navigation and operational safety. The sensors that are available for 
situational awareness of MASS were reviewed by [205], where how to fuse sensor data using 
AI technologies was discussed. Additionally, rule-based approaches represent another important 
way to improve situational awareness and further collision avoidance [88] [246]. Furthermore, 
The study by [239] focused on a rule-based method to analyse maritime traffic, which can 
enhance situational awareness among traffic service operators. Another specific method to 
enhance situational awareness is the ship domain model, which helps define safe operational 
spaces for vessels. The study by [225] introduced a model where the declarative domain 
represents a theoretically safe area, while the effective domain reflects real-time human 
decisions based on situational factors. 

Communication systems are vital to enhancing situational awareness, especially in an 
MWTS. For example, an efficient procedure of intent exchange between MASS and 
conventional ships in an MWTS was given by [153]. This paper argued that communication is 
necessary for situational awareness of ships for a clear and rule-compliant interaction when the 
collision risk is higher than the predetermined threshold that is set for triggering information 
exchange. Additionally, the study by [154] introduced a process map for collision avoidance 
based on information exchange between autonomous vessels and manned ships. The study 
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found that autonomous ships can avoid collisions more safely by exchanging navigational 
intentions with other vessels rather than acting independently. 

Moreover, e-Navigation is another critical technology for enhancing situational awareness. 
E-Navigation is the integration of navigation systems, information exchange, and 
communication technologies. The principles of e-Navigation include safety, efficiency, 
interoperability, and so on. In the study [167], e-Navigation is suggested as a way to solve the 
interaction between MASS and conventional ships in an MWTS. A novel concept of Moving 
Havens was introduced in that paper to enhance traffic safety. Besides, the study conducted by 
[6] suggested applying e-Navigation to improve the collaboration performance of ships, 
especially for collaborative collision avoidance. Based on the analysis of the benefits of e-
Navigation for conventional ships and the feature of collision avoidance between MASS, an 
innovative strategy was proposed, that is, combining those two to improve traffic safety. 

(2) Collision Avoidance Algorithms 

Various computational models and algorithms have been developed to ensure that MASS 
can autonomously avoid collisions in real-time. One of the foundational approaches to collision 
avoidance in MASS relies on traditional rule-based systems, which are often grounded in 
established maritime regulations such as COLREGs. These algorithms typically focus on 
ensuring compliance with navigational rules by encoding expert knowledge into decision-
making processes. For instance, the study by [243] proposed a ship decision-making model for 
collision avoidance by integrating expert experience and prior knowledge with a Bayesian 
Network, ensuring reliable navigation safety. Similarly, as noted by [217], the refinement of 
rule-based methods enables MASS to dynamically interpret traffic conditions, improving 
decision-making in real-time and supporting safer autonomous operations. 

To further emulate human-like decision-making, the study by [14] employed a Fuzzy Logic 
approach to evaluate compliance with COLREGs. This method allows MASS to process 
navigational situations through a human lens, enabling more flexible interpretations of the rules 
and ensuring safer navigation in complex environments. These approaches, while effective in 
structured and rule-defined scenarios, often face challenges when dealing with highly dynamic 
or multi-vessel environments. Furthermore, to investigate how human navigators interpret the 
term “safe speed” in the COLREGs, a study was conducted by [47]. This study stresses that 
navigators assess speed based on situational control rather than fixed metrics. This dynamic 
interpretation presents a challenge for autonomous ships, which must be programmed to 
understand and apply human-like decision-making to comply with maritime regulations and 
operate safely alongside conventional vessels. 

In contrast to rule-based methods, data-driven and adaptive learning approaches focus on 
the ability of MASS to learn from the environment and continuously adapt their decision-
making processes. Machine learning, particularly deep reinforcement learning, plays a key role 
in these techniques. For example, the work by [247] introduced an Artificial Potential Fields 
(APF)-Deep Reinforcement Learning (DRL) method for collision avoidance. This approach 
combines APF with an ontology-based system for classifying encounter scenarios, allowing 
MASS to optimise decision-making while remaining compliant with COLREGs. Expanding on 
the APF methodology, the study conducted by [133] used a method of modified APF for MASS. 
It was demonstrated how the algorithms performed in the scenario of encountering a single 
surrounding vessel, as well as multiple surrounding vessels, considering a COLREGs-
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constrained strategy and a reactive avoidance strategy in case of a violation from the 
surrounding vessel. Similarly, a DRL model is applied to multi-ship collision avoidance [223]. 
The study divided encounter situations into four regions based on COLREGs, transforming 
navigational goals into corresponding rewards, such as collision avoidance and path following. 
This method allows MASS to navigate safely in environments with multiple vessels, further 
highlighting the capabilities of adaptive learning systems in complex and multi-agent scenarios. 

Hybrid optimisation and predictive approaches combine the strengths of traditional rule-
based methods with advanced computational techniques to enhance decision-making in 
uncertain environments. These approaches often involve optimisation algorithms and predictive 
models that allow MASS to handle dynamic obstacles and multiple surrounding vessels 
scenarios more effectively. For instance, a greedy interval-based motion planning model was 
proposed by [66] based on the Velocity Obstacle method. This method enables MASS to 
navigate efficiently while predicting the movements of surrounding vessels, making it an 
effective solution for avoiding both stationary and dynamic obstacles in maritime traffic 
systems. 

In terms of risk-based decision-making, a risk-aware approach by incorporating a risk 
evaluation model was introduced into a DRL framework by [82]. This method enables MASS 
to balance between path-following and collision avoidance behaviours dynamically, adapting 
to the level of risk present in real-time maritime scenarios. The study showed great 
improvements in decision-making capabilities when navigating complex environments, 
particularly in high-risk situations. Additionally, to address the uncertainties present in mixed-
obstacle environments, the study [252] introduced a decision-making model that combines a 
Partially Observable Markov Decision Process (POMDP) with Proximal Policy Optimization 
(PPO). This hybrid approach proved to be more effective than conventional algorithms in 
enhancing navigational safety, as it allows MASS to make more accurate decisions in uncertain 
and partially observable environments. 

Another hybrid approach was developed by [230], who proposed a proactive decision-
making model that integrates human risk preferences into the navigation process. In this model, 
human preferences for risk, such as aggressive, neutral, or cautious approaches, can override 
autonomous decisions. This allows MASS to make flexible and adaptive decisions based on the 
risk tolerance of the human operator, ensuring that navigation is both safe and efficient under 
varying conditions. Furthermore, in scenarios where MASS operates alongside manned vessels, 
human-machine interaction becomes a key area of focus. Human-machine integration 
approaches aim to combine human judgment and preferences with the autonomous capabilities 
of MASS. For example, A study utilising a maritime simulator to evaluate the available 
algorithms was carried out by [207], where the decisions made by human navigators and the 
autonomous navigator driven by algorithms were compared. The scenarios in this study 
considered the interaction between MASS and manned ships, providing a potential approach 
for future research and testing on the interaction in an MWTS with different competencies of 
human operators. 

Additionally, the work by [47] explored the challenges of programming MASS to interpret 
and apply the concept of safe speed in the context of COLREGs. The study highlighted that 
human navigators assess speed based on situational control rather than fixed metrics, which 
presents a challenge for autonomous ships. MASS must be able to replicate this dynamic 
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decision-making process to operate safely alongside conventional vessels. Moreover, a Double 
Deep Q Network (DDQN) that integrates human experience with COLREGs was developed by 
[238] for collision avoidance. This system allows MASS to learn from human navigational 
practices, enabling rule-compliant and efficient decision-making. The DDQN model helps 
improve safety by learning how human operators react in real-world environments and applying 
similar decision-making strategies autonomously. In order to improve the capability of collision 
avoidance of MASS, the study conducted by [93] provides adaptive collision avoidance systems 
(CAS) to enable the MASS to avoid collisions with manned ships in an MWTS. By focusing 
on the surrounding vessel’s manoeuvring behaviours, particularly the manned ships, a 
simulator-based method was used to collect the navigational data that would be used to adjust 
the sensitivity of CAS collision avoidance. 

Investigations into MASS autonomy have concentrated on the development of sensor 
integration, communication systems for situational awareness, and collision avoidance 
algorithms. These tools are crucial for maintaining situational awareness and executing collision 
avoidance strategies. The analysis indicates a focus on designing algorithms that not only 
comply with maritime regulations such as COLREGs but also incorporate human operation 
practice in decision-making processes. The emerging theme is a concerted effort toward systems 
that balance autonomy with human-like responsiveness, emphasising the need for seamless 
human-machine interaction. 

2.2.1.3 System analysis and design for human-MASS interaction 

This chapter reviews the frameworks and methodologies proposed in the literature aimed at 
developing systems for human-MASS interaction. The approaches discussed cover various 
requirements of the MASS system, as well as the implementation of system designs that ensure 
both operational safety and efficiency. 

(1) Systems Analysis of MASS  

Research on the systems analysis of MASS has focused on constructing frameworks for 
human-MASS interaction. Two kinds of design in human-robot interaction (HRI) serve as the 
basis for developing frameworks for human-MASS collaboration: Human Emulation and 
Human Complementary [61]. While human emulation focuses on mimicking human decision-
making processes, human complementary approaches combine and utilise both human and 
computer abilities. MASS, regarded as a robot for executing different procedural tasks, is closer 
to the human complement [90]. There has also been some work with the human emulation 
approach, such as a human-like knowledge base for the autonomous ship on the basis of expert 
experience for autonomous ships [12] [108] [109]. It was concluded that both kinds of 
approaches are feasible for MASS. 

Several studies have explored these frameworks in detail. For instance, the study [211] used 
field study observations, semi-structured interviews, and theoretical sampling to investigate a 
design of collaboration work in the control room by advocating for a collaborative approach 
that leverages the strengths of both human and AI components. This study suggests that training 
and certification programs are necessary to equip navigators with the skills required for human-
AI collaboration. Similarly, the study by [13] developed a data-driven method to create realistic 
test scenarios for testing MASS. By using large-scale traffic data from AIS, digital maps, and 
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vessel registries, the study constructs complex navigation scenarios that simulate real-world 
conditions such as collisions, grounding risks, and vessel-to-vessel interactions. 

It is worth noting that transparency is an important factor that has been the focus of various 
studies on the framework of human-MASS interaction. A framework for human-automation 
interaction was presented in [169], focusing on automation transparency. The study proposed 
interface designs that allow operators to quickly regain situational awareness in emergencies, 
ensuring timely intervention and enhancing overall safety. Besides, Automation transparency 
was also examined by , where the authors proposed methods for MASS to communicate their 
state and intentions to nearby vessels and stakeholders. The research concluded that improving 
transparency is key to ensuring safe navigation and interaction between autonomous and 
manned vessels. The study proposed interface designs that allow operators to quickly regain 
situational awareness in emergencies, ensuring timely intervention and enhancing overall safety. 
Moreover, focusing on improving human supervision of autonomous collision avoidance 
systems by enhancing agent transparency, the study by [144] identified specific situational 
awareness requirements and cognitive activities needed to verify agent performance. 

Furthermore, safety concerns are important in autonomous system designs. In the study [44], 
a sovereign-based control system design integrates human supervision, where decision-making 
starts with situational awareness and ends with actions executed by the human operator. Other 
studies, such as [105], explored safety challenges for MASS related to the interaction between 
MASS and conventional ships with varying degrees of autonomy. For example, Technical 
challenges (malfunction, communication interference, cyber threats, as noted by [127] [24], 
environmental challenges (adverse weather, limited visibility, dynamic navigational conditions), 
and human-related challenges (responsibility confusion, human competence, human error), can 
all pose safety risks for autonomous ships in mixed navigational environments. The safety of 
interactions between humans and systems was analysed by [38] for the MASS controlled or 
supervised by the operator at the shore control centre. The study proposed an approach that 
integrates the human cognitive model and system theoretic process analysis to identify safety 
risks. 

With respect to the system analysis of ship collision avoidance, the study by [88] reviewed 
the methods of collision avoidance for ships, where the strategy discrepancy of collision 
avoidance was pointed out. It is suggested to enable the MASS to be user-friendly for human 
operators by exploring the functions in conventional vessels. In addition, a decision-making 
framework of collaborative collision avoidance for MASS and manned ships was proposed by 
[6]. The study takes advantage of the communication and cooperation between ships and the 
shore control centre to accurately predict and avoid collisions, utilising real-time data from 
various sources, including ship sensors and global navigation satellite systems, to provide a 
comprehensive view of the navigational environment. Furthermore, the paper by [104] provided 
a methodology for legally correcting collision avoidance actions according to COLREGs by 
utilising a decision-making tree and quantitative analysis methods for COLREGs. It offers a 
framework for legal compliance in collision avoidance between autonomous and manned ships. 
Besides, considering the issues of information acquisition and situational awareness that may 
arise in an MWTS, several potential proposals were discussed by [176] in relation to Vessel 
traffic management, Traffic separation schemes, etc. 
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In addition, several other approaches have also been employed for the autonomous system 
of MASS. In [165], a fuzzy logic approach was introduced to define levels of automation in 
MASS. The study aimed to address the imprecision in the current level of automation 
taxonomies and proposed a clearer framework to improve the interaction between human 
operators and autonomous systems. Furthermore, in the work by [171], the authors argued that 
the tasks of humans and the system are changeable, with the level of autonomy of the MASS 
being different. Using the human-system interaction in autonomy method, tasks involving 
monitoring ship status and surroundings and evaluating potential risks were examined for 
human-MASS collaboration in collision avoidance scenarios. Additionally, a System Theoretic 
Process Analysis was applied by [213] to determine the relationship between the hazards and 
the degree of autonomy of MASS. A key finding of this study is that situational awareness could 
fail due to the failure of the sensors, which supports that the design of humans in the loop and 
redundant sensors for situational awareness are necessary for MASS. Additionally, the 
resilience of MASS was discussed in [60], where human-MASS interaction was included. It is 
highlighted that the situational awareness of MASS contains several types: navigational 
awareness for safe navigation, operational awareness for information sharing, and distributed 
situational awareness for collaborative navigating on a remote-controlled ship. Moreover, a 
Bayesian belief network was applied in [202] to assess human-automation collaboration 
performance on unmanned underwater vehicles. In this study, the capability of situational 
awareness and the reliability of the autonomous system are suggested to support a smooth 
collaboration. 

Additionally, a human-machine model was given by [59] to evaluate seafarer competencies 
in automated systems. It emphasises the importance of training and assessing human factors to 
ensure safety in maritime operations. Functional requirements for Onshore Operation Centres 
supporting autonomous ships were outlined in [3]. The study discussed the technological, 
navigational, and operational needs of Onshore Operation Centres, concluding that robust 
communication technologies and real-time monitoring are essential for supporting safe and 
efficient vessel operations. 

Moreover, risk assessment frameworks were also proposed for MASS. In [162], a high-level 
risk analysis of autonomous vessels was conducted, combining simulation-based testing with 
safety assessments. The study demonstrated that systematic testing is vital to mitigate potential 
risks before full-scale deployment, ensuring the safety and reliability of ship automation 
systems. A framework for analysing risk coupling in different operational modes of MASS was 
proposed by [58], focusing on the interaction with the environment and internal and external 
systems related to MASS. The study identified that 15 common failure modes could be 
classified into the risk factors related to humans, organisations, ships, environments, and 
technology, with the example of grounding accidents. 

(2) Implementation of System Design 

Human-centred design methods prioritise human needs and capabilities in the design of 
MASS systems. For instance, the study conducted by [212] outlines a process that includes user 
analysis, requirements specification, system design, and evaluation, ensuring that the designs 
align with operator expectations and capabilities. Another innovative approach was the 
introduction of the “ship immune system” proposed by [214], which highlights adaptive risk 
management strategies that anticipate and mitigate potential risks in real time, supporting the 
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safety of MASS operations. Additionally, integrating AI in marine navigation is key to 
improving human-MASS collaboration. The study conducted by [211] investigated the 
integration of AI in marine navigation, underscoring the discrepancy between designers’ and 
navigators’ perspectives on human-AI collaboration. It suggests designing AI systems that 
incorporate social cues that articulate human work and that visualise computational activities to 
better support human cooperation. 

In the realm of collision avoidance, various systems have been developed by integrating 
human and machine intelligence. A collision avoidance system was designed by [88], where 
human operators playing various roles within different navigational scenarios were discussed 
in detail. This system supports the MASS in making correct and reliable decisions for 
cooperative MASS navigation. In [140], a decision-making system was also designed for safe 
and efficient navigation of MASS, consisting of five components: real-time data collection and 
processing, decision-making algorithms, human-in-the-loop decision-making, communication 
and information exchange, and human-AI collaboration. 

Literature on system design and analysis points to the importance of integrating human 
insights and advanced technology to ensure safety and efficiency. It focuses on enhancing 
transparency and situational awareness within autonomous maritime systems through the 
development of collaborative frameworks that balance human and machine capabilities. These 
systems are crucial for enabling effective communication and decision-making between 
manned and autonomous vessels, emphasising the need for adaptive risk management strategies 
and human-centred designs to address the dynamic complexities of the MWTS.  

2.2.1.4 Potential requirements for human-MASS interaction regarding regulations 

The successful implementation of MASS within existing maritime operations hinges not only 
on technological advancements but also on regulatory and human competency adaptations. 

(1) Regulatory Framework Development 

In recent years, IMO has been exploring the amendment of IMO standards for MASS based 
on the current standards. That means MASS not only pursues high efficiency and lower risks 
of navigation but should also comply with existing regulations at least as successfully as the 
conventional ship. Therefore, safety and efficiency [205] are the primary goals for MASS. 

Regarding compliance with regulatory standards, the study by [158] emphasises the 
regulatory requirements to ensure safe and secure MASS operations. 

With respect to the amendment of COLREGs, the study by [166] emphasises the ambiguity 
in terminologies within COLREGs, which may lead to discrepancies in communication 
between MASS and traditional vessels. Possible solutions, namely increasing the transparency 
of actions, were discussed, as well as improving safety and efficiency. 

(2) Human Competency and Skill Development 

Incorporating MASS into maritime operations also requires a shift in the skills and 
competencies of human operators, particularly those working in Remote Control Centres. 
Several studies highlight the need for continuous development in human oversight skills as 
automation becomes more integral to maritime navigation. 
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The study [94] emphasised the importance of human factors in MASS operations, 
identifying key skill sets required for operators managing highly automated systems. The 
research concluded that the continuous development of human competencies is essential for the 
successful integration of autonomous technologies in maritime operations. With a systematic 
literature review, several findings came up in [209]. In particular, the human operator plays the 
role of more than a backup regarding MASS safety, and new competency requirements need to 
be improved for human operators at RCC to deal with emerging issues. 

Furthermore, a study analysed and explored possible competency requirements for remote 
operators at RCC by [237]. By conducting an interview, potential threats were found, and thus, 
additional requirements were suggested to be satisfied by operators for safety-critical 
supervision of MASS. For example, the ability to recognise necessary information from a 
display of equipment and other items at RCC under restricted conditions and the ability to 
confirm the accuracy of the information obtained from restricted ship sense, radar display and 
other items. 

The successful integration of MASS into maritime operations depends on a multi-faceted 
approach that encompasses regulatory framework development, human competency 
enhancement, and improving transparency in autonomous systems. Research shows that 
updating international regulations, such as COLREGs, is crucial to ensuring the safe operation 
of MASS. Equally important is the ongoing training and development of human operators, who 
play a central role in overseeing autonomous systems. In parallel, fostering transparency in 
MASS operations, particularly in high-risk scenarios like collision avoidance, is essential for 
preventing misunderstandings and ensuring cooperative interactions between autonomous and 
manned vessels. 

Research in human-MASS interaction focuses on four domains: human factors, support for 
MASS autonomy through technological advancements, system analysis and design for human-
MASS interaction, and potential regulatory requirements. These studies highlight the necessity 
of enhancing interactions between MASS and human operators from various perspectives. 
Collectively, these studies reveal a critical perspective: It is essential to ensure safe and efficient 
collaboration between humans and autonomous systems. A detailed analysis of the research is 
given in Section 2.5.1. 

2.2.2 Focusing on situational awareness of MASS 

Ensuring safety is a major concern in the maritime industry, particularly important across 
various operational states such as underway, anchoring, or mooring. The underway state, in 
particular, requires detailed attention due to its dynamic and complex navigational challenges. 

Situational awareness is fundamental to maintaining safety under these conditions. The 
concept was proposed by [56] to describe what is happening, what it means, and what might 
happen next. This framework includes perception, comprehension, and projection as its core 
components. 

In the maritime domain, research related to situational awareness has focused on four topics, 
as presented in Table 2-4: Architecture development of SA, Investigation of SA requirements 
for MASS, Enhancement of SA comprehension and projection capabilities, and Quantification 
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of SA. Three types of methods have been employed to explore those topics, including literature 
reviews, algorithm-based approaches, and mathematical models. 

Recent research has increasingly focused on the situational awareness challenges in human-
MASS interactions, especially as human operators transition to supervisory roles over 
autonomous vessels. The study [158] investigated the challenges of the SA of MASS through a 
questionnaire that gauged seafarers’ experiences across different human operational modes. 
Focusing on a similar problem, the research [144] explored potential solutions to enhance 
human operators’ understanding of autonomous systems, advocating for greater transparency 
in autonomous behaviours to facilitate adaptation to supervisory roles. 

The studies conducted by [130][132] highlighted the importance of SA of MASS by 
drawing parallels between challenges in MASS and uncrewed aerial vehicles, suggesting that 
lessons learned in aviation could inform maritime operations. A distributed situation awareness 
framework for a mixed waterborne transport system was proposed by [194], suggesting 
improvements through the integration of service information, which could lead to a more 
interconnected navigational environment. Additionally, a study examining the impact of 
immersion levels on SA and human trust was conducted by [70] using virtual reality, revealing 
how immersion of instruments influences human operators’ perception and decision-making 
process. 

Despite extensive research into SA for both conventional and autonomous maritime vessels, 
there is a gap in foundational studies that specifically address the SA principles necessary for 
MASS operation within an MWTS. These principles are essential for the development of 
decision-support systems that support the navigational needs of MASS, including (1) 
Perception of elements in the environment within a volume of time and space, (2) 
Comprehension of their meaning for supporting MASS’ navigation, and (3) Projection of the 
situation for MASS in the context of MWTS. The need to develop comprehensive models that 
integrate all elements of situation awareness is critical for creating reliable and transparent 
systems that can support proper trust levels among human operators, MASS, and services. This 
issue, along with proposed solutions to bridge the gap, will be further discussed in Section 2.4.3. 

2.2.3 Implications on decision-making for collision avoidance 

Based on proper situational awareness, good decision-making can be obtained, as stated in [57]. 
Many studies have investigated the fully autonomous MASS decision-making [95] [20], for 
example, path planning [253] [248], ship control [80] [250], trajectory tracking [79] [249], and 
multi-vessels cooperation [30] [51] [50]. They promote the MASS to be more autonomous and 
further as a teammate of human operators in the human-MASS team to perform tasks 
independently or collaboratively.  

In terms of collision avoidance decision-making for MASS within an MWTS, a summary 
of applications is given in Table 2-5. It can be found that most studies considered the COLREGs 
to force the MASS to avoid collision with manned ships. It is worth noting that the surrounding 
vessels set in their experiments are often regarded as vessels keeping course and speed the same 
without combining the human experience, such as preference, which is unrealistic in practice. 

For this reason, some studies consider human operators’ navigational data to improve the 
capability of collision avoidance of MASS. For example, the research conducted by [93] 
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analysed and extracted seafarers’ manoeuvres and tested the collision avoidance system of the 
unmanned vessel with the extraction results. The study of extracting navigational features of 
manned ships from AIS data was investigated by [119], the results of which were applied to 
train MASS through the reinforcement learning method. These studies have contributed to the 
enhancement of MASS’s capability to avoid collisions in an MWTS. 

In the field of human-robot interaction, many scholars tried to model human behaviour for 
robot inference and prediction [206] [69] [196], which can be referenced in the context of the 
navigation of MASS in an MWTS. For example, search and rescue [21] [226], human-multi-
robots collaboration [178], and so on. Among them, the mainstream is the application of 
decision theory in economics on HRI [113]. Specifically, the focus is to obtain a suitable model 
to depict the human decision process, such as the noisily rational model [111] and the risk-aware 
model [98]. In terms of these models, there are several kinds of methods to solve, for example, 
inverse reinforcement learning [69] [157] and reinforcement learning [123] [180]. A summary 
of the results of human models for decision-making is given in Table 2-6. 

In conclusion, in current research, there is a noteworthy gap in addressing the navigational 
preferences of manned vessels within complicated maritime environments. Most studies tend 
to model surrounding vessels as operating on simulated trajectories and improve the capability 
from the perspective of evasive algorithms, which ensure navigational safety between manned 
ships and MASS. While the MASS is equipped with robust collision avoidance capabilities, the 
real challenge lies in proactive engagement during the avoidance phase. Proactive collision 
avoidance is key to maritime safety, as passive avoidance strategies may lead to 
misunderstandings of navigational intent, potentially resulting in new collision conflicts. 
Therefore, it is essential to incorporate a model of human navigational preferences and decision-
making processes. This would enable autonomous systems to predict and adapt to the 
manoeuvres of manned vessels more effectively, ensuring smoother and safer interactions. 

2.2.4 Trust in human-MASS collaborative navigation 

The introduction of MASS aims to augment maritime safety by minimising human error, a 
critical factor in maritime incidents. Nevertheless, this does not negate the essential role of 
human operators. Instead, it transforms it by positioning it as a critical overseer for autonomous 
operations. This model leverages human judgement alongside autonomous technology to 
strengthen safety protocols. Therefore, the efficacy of MASS hinges on human operators’ trust 
in these systems’ situational awareness and decision-making capabilities, ensuring they can 
intervene when unexpected challenges arise [2] [138].  

Trust in HRI is a priority topic that is gaining increasing attention in human-robot 
collaboration. With properly aligned trust, humans as supervisors can decide in time on the 
actions to be taken based on the belief in the robot. Trust is defined in [107] as a 
multidimensional latent variable that mediates the relationship between events in the past and 
the former agent’s subsequent choice of relying on the latter in an uncertain environment. Trust 
refers to the function of successful and proven operations that are assessed by human operators 
from the perspectives of social norms and technology acceptance in [134]. In that study, human 
trust is extracted through interviews about the potential impact of autonomous technologies, 
where 10 participants from both academia and industry were recruited to respond to questions 
related to their trust in autonomous ships. 
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Several studies indicated that the more human operators understand the robot’s decision-making 
process, the more properly aligned trust they have in the robot [236]. Therefore, better 
performance for MWTS can be obtained if each vessel within the current WTS can interact with 
one another to share its intentions to avoid misunderstandings. Properly aligned human trust in 
the autonomous system’s true capabilities is the foundation of high-performance human-system 
teaming. Both over-trust and under-trust are undesirable in HRI, which may lead to poor 
collaboration performance [107]. In an MWTS, likewise, there will also be the collaboration 
between humans and MASS, such as MASS auto-docking at a conventional berth, collision 
avoidance for the conventional ship and the MASS, and so on, where trust is a critical factor to 
be considered affecting the collaboration performance [209]. An overall summary of the 
research results of human trust in the autonomous system of MASS is given in Table 2-7. 

For the sake of ship safety, humans can generally take over control of the MASS in 
emergency situations that the MASS cannot handle. Due to cognitive differences, humans may 
diverge when encountering certain new situations. In addition, seafarers on board the ship and 
managers at RCC have differences in the level of trust in sensors [219], which may lead to a 
discrepancy in situational awareness. In order to obtain good and seamless collaboration and to 
further reduce the human workload, it is desirable that the MASS take reasonable and human-
satisfactory actions. That is, the autonomous system of MASS is supposed to be safe, reliable, 
and trustworthy [209]. 

Taking human trust into account, recent research has focused on the impact of human trust 
on the performance of the MASS system. As discussed in Section 3.2, the impact of human trust 
on the decision-making process of MASS and human operators is highlighted by [131], [132], 
[158], [70] and [1], which should be considered carefully in the design of MASS and seafarers 
training. The research by [25] investigated seafarers’ trust in the autonomous system of 
unmanned vessels through interviews with 100 seafarers with varying navigational experiences. 
The results indicated that trust discrepancies existed among participants, with higher-ranking 
participants having similar perceptions of autonomy as those with less experience. 

In conclusion, increasing attention is being given to the role of human trust in the context 
of human-MASS interaction, particularly regarding its integration into decision-making 
processes. However, this area of research has not yet been extensively developed and requires 
more focus. Effective integration of human trust is essential for ensuring safety and efficiency 
in the MWTS. Further research is necessary to understand and implement trust evaluation 
within MASS operations, promoting better collaboration between human operators and 
autonomous systems. 
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Table 2-5 Review of approaches of collision avoidance in an MWTS 

Ref. Method 
COLREGs-considered Human element-

considered Objects Setting 

Own 
ship 

Surrounding 
vessel 

Own 
ship 

Surrounding 
vessel Dynamic Stationary 

[223] Reinforcement learning ✓ ✓   ✓  
[230] Risk appetite-considered ✓ ✓  ✓ ✓  
[90] HMI-CAS ✓  ✓ ✓ ✓  

[238] Reinforcement learning ✓  ✓  ✓  

[66] Velocity Obstacle 
algorithm      ✓  

[133] APF ✓   ✓ ✓  

[247] APF-Deep 
Reinforcement Learning ✓    ✓ ✓ 

[93] Velocity obstacle 
algorithm ✓   ✓ ✓  

[36] Blockchain-based 
communication ✓ ✓   ✓  

[104] Decision-making tree ✓   ✓ ✓  

[119] Deep reinforcement 
learning ✓   ✓ ✓ ✓ 

[114] Firefly algorithm and ant 
colony optimisation ✓    ✓  

[35] Scan-searching method 
combined with APF ✓   ✓ ✓  

[159] Model predictive control 
and radial basis function ✓   ✓ ✓  

 

Table 2-6 Brief review of popular human decision models in HRI 

Ref. Parameters Method Outputs Setting Type 
[113] Information amount of 

decisions, time, risks, 
and corresponding 

human actions 

Cumulative 
Prospect 
Theory 

The 
probability of 

behaviours 
anticipated 

Human driver decision-
making under 

uncertainty and risks 

Risk-
aware 

[98] Subjective feeling to 
consequences; human 

detection cost 

Regret theory Risk 
awareness 

degree 

Robots ordering in 
human-multi-robots 

task allocation 

Risk-
aware 

[21] Command, geometrical 
data, robot status, etc. 

Dynamic 
Bayesian 
Network 

The 
probability of 

being involved 
in the task 

Multi-Robot Interaction 
in Search and Rescue 

Missions 

Noisy 
rational  

[180] Reward control and 
reward affect desired 

human actions 

Reinforcement 
learning 

Coordinated 
plans 

Autonomous planning 
for autonomous 

vehicles coordinating 
with human-driven cars 

Noisy 
rational  

[40] Human preference for 
trajectories 

Reinforcement 
learning 

The optimal 
strategy for 

action-taking 

Human Preferences 
learning 

Noisy 
rational  

[69] Driving behaviour 
features lane, Time-to-

collision, 
Timeheadway, etc. 

Inverse 
reinforcement 

learning 

Reward cost 
function 

Modelling driver 
behaviour 

Noisy 
rational  
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2.3 Synthesis and identified gaps 
In the context of waterborne transport, the safety of the ship is of utmost importance and must 
be prioritised over any other objective. However, to meet the expectations of various 
stakeholders such as ship companies, seafarers, and other service providers, it is also crucial to 
improve the efficiency of the system. 

Table 2-7 Overview of human trust in the autonomous system of MASS 

References Methods Parameters Outputs Setting 

[215] 

Immersive virtual 
reality & post-

session 
Questionnaires 

Beliefs and 
observations of the 

robot’s 
surroundings, goals, 

actions, etc. 

Trust values 
Evaluating human 

experience on a MASS 
and a manned ship 

[209] Literature review  
The importance of trust 
in the human-autonomy 

interaction system 

Human-autonomy 
collaboration 
performance 

[42] Survey  
The importance of trust 
in the human-autonomy 

interaction system 

Interoperability of 
multiple Unmanned 

Marine Vehicles 

[202] Bayesian belief 
network 

Object status, reward 
function 

Human interference 
rate 

Assessing human-
autonomy 

collaboration 
performance 

[135] 
[134] Interview  Potential effects of trust Exploring the potential 

effects of MASS 

[201] Survey  The impact of trust on 
human stress 

Mental health effects 
on the MASS 

[158] Questionnaires  Training needs Maritime operations, 
remote operations 

[1] Questionnaires 
Professional 

commitment, age of 
officers 

Trust values 

The relationship 
between Professional 

commitment and Trust 
in autonomy 

[132] Literature review Decision-making 
factors 

Design 
recommendations for 

MASS 

Remote Control 
Centre operations 

[131] Interview  

Key topics related to 
human trust in the 
decision-making 

process 

The decision-making 
operation of the 

MASS investigation 

[25] Interview  Trust levels The investigation of 
trust in autonomy 

[70] 
Simulated RCC 

interfaces, Virtual 
Reality 

Levels of Immersion 
in HMI Trust in systems 

The effect of 
immersion on the trust 
level of RCC operators 

[10] Interview  Passenger trust in 
ferries 

Trust in the use of 
autonomous urban 

ferries 

It is noteworthy that various research topics that were previously studied independently 
must be considered in a more holistic manner in the MWTS. These include the situational 
awareness required to support the safe navigation of MASS, navigational preference-aware 
collision avoidance of MASS and conventional ships, and the assessment of human trust in the 
autonomous systems of MASS. All of these topics are interrelated. 

There are still several findings and gaps in the existing state of the art, as well as gaps of 
knowledge, as detailed below. 
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2.3.1 Findings 

Research in human-MASS interaction is broadly categorised into four main domains: human 
factors, technologies that support MASS autonomy, system analysis and design, and potential 
regulatory requirements for interactions. Key findings from each of these areas are outlined 
below: 

• Human Factors: Studies indicate that human factors such as situational awareness and 
trust are important in MASS operations. Human errors, such as misjudgments caused 
by human errors or decreased situational awareness, can lead to operational failures. The 
establishment of trust between human operators and autonomous systems is critical for 
safe and efficient interaction, especially in remote control scenarios. 

• Technological Advancements: There have been great developments in sensor 
integration and collision avoidance algorithms, enhancing the autonomous capabilities 
of MASS, especially in terms of situational awareness. These advancements support the 
independent operation of MASS but still necessitate human oversight. 

• System Analysis and Design: There is a focus on designing human-machine 
frameworks or systems that enhance operator interaction with MASS. Clear and 
transparent system designs and well-defined human roles are crucial for maintaining 
operator situational awareness, particularly in emergency situations. Additionally, 
hybrid systems that integrate human decision-making with autonomous capabilities 
offer more reliable solutions for managing the complexities of the operational 
environment for MASS. 

• Regulatory Considerations: As the roles of human operators shift from direct control 
to supervision, monitoring, and emergency response, there is a pressing need to update 
training and certification to align with these new responsibilities. Regulations, including 
COLREGs, must evolve to address the legal and operational challenges posed by MASS, 
particularly in ensuring seamless collaboration between manned and autonomous 
vessels. 

2.3.2 Gaps 

Based on the review of current literature on human-MASS interaction within the contexts of 
safety, efficiency, and regulatory compliance, several gaps have been identified: 

(1) Situational Awareness Specific to MASS: While situational awareness has been well-
developed in maritime operations, specific applications to MASS require further 
development. Current models do not fully address the unique challenges of integrating 
MASS into mixed-traffic environments. There is a need for situational awareness 
models specifically tailored for MASS within an MWTS, which should incorporate the 
role of human operators during the human-MASS interaction process. This inclusion 
can enhance the reliability and clarity of MASS’s decision-making processes. 
Furthermore, advanced situational awareness can also support human operators, 
assisting operators in managing complex situations. This serves as an intermediate step 
from manned operations to fully autonomous MASS, ensuring a smoother transition and 
improved safety. 
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(2) Navigational Preference-aware Collision Avoidance in an MWTS: There is a gap in 
research addressing the navigational preferences of manned vessels within complicated 
maritime traffic scenarios. Most existing studies simulate surrounding vessels on fixed 
trajectories and focus on enhancing the evasive algorithms of MASS. An evasive model 
involving the navigational preferences of manned ships in collision avoidance is crucial 
for ensuring navigational safety, which can provide proactive and mutually 
understandable navigation strategies within the MWTS. 

(3) Trust evaluation and modelling in Human-MASS Interaction: Efficient 
collaboration between human operators and MASS relies on a proper level of trust. 
Current research does not sufficiently cover trust evaluation and modelling 
methodologies between human operators and MASS. Developing robust mechanisms 
for trust calibration is essential to ensure balanced human oversight and autonomous 
operation (neither under-trust nor over-trust), enhancing teamwork and safety in the 
MWTS. 

2.3.3 Limitations 

Despite the comprehensive literature review employed in this chapter, several limitations should 
be acknowledged, which may have impacted the findings and interpretations. Firstly, while a 
comprehensive keyword strategy was employed, there is always a possibility that the chosen 
keywords may have inadvertently excluded relevant studies due to variations in terminology. 
Secondly, subjectivity in the screening process, despite efforts to mitigate it through consensus 
and multiple reviewers, may have influenced study selection. Lastly, the eligibility criteria, such 
as restricting the review to English-language and peer-reviewed studies, may limit the 
generalisability of the findings. These limitations suggest that the results should be interpreted 
with caution, and future research should address these challenges. 

2.4 Integrated decision-making framework 
In this chapter, taking the research gaps discussed above, we propose an integrated 

framework for human-MASS interaction, ensuring the safety and efficiency of MASS 
navigation. Firstly, we propose a taxonomy of interactions between humans and MASS within 
an MWTS by means of 11 future scenarios shown in Figure 2-4. Furthermore, in order to gain 
insight into these interactions, the scenarios are classified into four categories based on the 
participation status of different stakeholders: MASS, manned ships, services, and RCC, divided 
into mandatory and optional participation, as presented in Table 2-8. 

The term “services” in this context refers to various supportive entities that play crucial 
roles in maritime operations. These services include but are not limited to: Traffic Management 
Services, Pilotage Services, and Search and Rescue, see examples 1, 3, 5, 6, 8, 10, and 11 in 
Figure 2-4. 
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Figure 2-4 Taxonomy of scenarios of future interaction between humans and MASS. 

2.4.1 Module Descriptions and Functions 

A diagram depicting the integrated framework for human-MASS interaction illustrates the 
critical components and their interrelationships, as shown in Figure 2-5. The framework is built 
on three key modules: situational awareness, navigation preferences of manned ships (hereafter 
referred to as “navigation preferences”) and human trust. Each module is adapted to the type of 
interaction specified in Table 2-8, with different scenarios determining the level of involvement 
of MASS, manned vessels, services and RCC. 

 

Figure 2-5 The diagram of human-MASS interaction for safe and efficient navigation. 
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Table 2-8 The classification of future human-MASS interaction 

No. Scenarios MASS Manned 
ships 

Services Remote 
control 
centre 

Interaction 
types 

1 The tasks of search and rescue * * * + Ⅰ 
2 Collision avoidance between MASS and 

conventional ships 
* * + + Ⅱ 

3 Collaboration between tug ships and 
MASS 

* * + + Ⅱ 

4 Collision avoidance between multiple 
MASS 

* * + + Ⅱ 

5 MASS crossing ice area * + * + Ⅲ 
6 The task of maintenance for MASS by 

human operators 
* + * + Ⅲ 

7 MASS avoiding stationary obstacles * +  + Ⅳ 
8 MASS interacting with rig * + * + Ⅲ 
9 The interaction between MASS and port 

authorities and services 
* + * + Ⅲ 

10 MASS being crossing bridge waterways * + * + Ⅲ 
11 The collaboration between MASS, 

services, and conventional ships in a 
sluice system 

* * * + Ⅰ 

Note: * indicates this attribute must be presented, whereas + means that this attribute is optional in this scenario. 

In this thesis, it is crucial to distinguish between “impact”, a direct and immediate effect on 
decision-making processes and “influence”, which refers to more gradual and subtle effects on 
the system’s operations. 

(1) Situational Awareness Module: This module captures real-time data from MASS 
sensors and external sources to create a comprehensive view of the surrounding 
navigational environment. The accuracy of situational awareness relies not only on the 
sophistication of the sensors for perception but also on its capability of comprehension 
and projection to the situation correctly. It considers factors including the status of the 
own ship, proximity to nearby obstacles, weather/sea conditions, regulatory 
requirements, etc. 

(2) Navigational Preferences Module: This module integrates learned preferences and 
historical patterns of manned vessels to predict the behaviours and preferences of 
manned ships in the vicinity, facilitating friendly and proactive evasive decision-making 
of MASS in an MWTS. 

(3) Human Trust Module: This module is an essential component in human-MASS 
interaction to evaluate and adjust human trust, which could be captured by analysing the 
reactions of human operators to a proper level based on the interaction types classified 
in Table 2-8. For each type of interaction, whether involving direct operational 
collaboration or more autonomous functions, the module is dynamically adjusted. This 
ensures that MASS operates in accordance with human expectations and safety 
requirements. The trust settings are related to the participation of various stakeholders 
in each scenario, influencing the decision-making process of the autonomous system of 
MASS. 

2.4.2 Decision-Making Process 

In the proposed framework (see Figure 2-5), sensor data are first processed by the situational 
awareness module to construct a semantic understanding of the navigational environment. This 
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information, modulated by human trust—which affects the extent of operator oversight—feeds 
into the identification of potential conflicts and informs the extraction of navigational 
preferences from surrounding manned ships. These two inputs jointly support the decision-
making module, which generates collision avoidance actions such as course or speed 
adjustments. The resulting navigational outputs not only guide vessel behaviour but are also 
observable to human operators, thereby influencing trust levels and completing a dynamic 
feedback loop within the system. 

The decision-making process within this framework is structured into three stages: 

(1) In the first stage, human trust and situational awareness are involved in the decision-
making of MASS. Data from various sources are processed to create a comprehensive 
understanding of the environment, which is used to assess the situation, determine the 
level of risk in the next step, and generate recommended actions to deal with it. 
The situational awareness module integrates the human trust evaluation module for safe 
and reliable situational assessment. Human trust may affect the results of the situational 
awareness module due to the cognitive discrepancy, which may be caused by the human 
operator’s experience and the degree of environmental awareness. The operator with 
high trust would give more autonomy to the vessel to be aware of the situation and plan 
further. On the contrary, humans check situational awareness from an autonomous 
system frequently and correct the results with low trust. 

Regarding the method for investigating the impact of human trust on situational 
awareness in MASS, a method based on the combination of self-reported questionnaires, 
behavioural observations, and direct inquiry could be used, aiming to capture a 
comprehensive understanding of the relationship between human trust and situational 
awareness. More specifically, this method includes: 

1) Self-reported Questionnaires: Tailored to evaluate operators’ trust towards the 
autonomous system’s capabilities, these questionnaires should focus on eliciting 
responses that reflect trust levels in various operational scenarios. 

2) Behavioural Observations: This involves monitoring operators’ interactions with 
MASS systems under simulated conditions to identify behaviours that signify trust, 
such as the frequency of system overrides or reliance on autonomous decisions. 

3) Direct Inquiry: This method allows participants, such as MASS operators or 
navigational personnel, to record their trust levels in real time based on their 
experiences or hypothetical scenarios involving autonomous systems. 

(2) In the second stage, the navigational preference module participants when there is an 
obstacle in the vicinity, which may lead to potential collision conflict justified by the 
situational awareness module. The MASS makes decisions based on a comprehensive 
understanding of the situation, factoring in both situational awareness and the 
navigational preferences of nearby vessels. With the outcome of the situational 
awareness module as input, the module, along with the situational awareness module, 
provides evasive strategies to the decision-making module to make informed decisions 
in an MWTS. 

(3) The final stage is to evaluate the performance of the MASS when considering the impact 
of human trust on its decision-making processes. In order to do that, the following steps 
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should be considered: (i) selection of performance metrics for safety & efficiency; (ii) 
designing scenarios with varying levels of risk and uncertainty and across various 
interaction types categorised in Table 2-8. (iii) data collection from ship sensors and 
cameras, human reactions, and environmental conditions; (iv) data analysis for 
comparing MASS performance under different levels of human trust; (v) evaluating 
MASS performance using the selected performance metrics. 

2.5 Conclusions 
This chapter conducted a systematic literature review of human-MASS interaction in the 
MWTS, focusing on safety and efficiency. The review addressed three critical aspects: 
situational awareness, collision avoidance, and human trust in the autonomous decision-making 
of MASS. The findings revealed that existing research is concentrated in four primary domains: 
human factors, technologies supporting MASS autonomy, system design for human-MASS 
interaction, and regulatory frameworks. These domains are interconnected and collectively 
shape the safety and efficiency of MWTS operations. 

The review identified that several gaps existed that hindered the seamless integration of 
MASS into MWTS, as listed below: 

(1) Situational awareness: Current models inadequately address the unique challenges of 
MASS in mixed-traffic environments, such as the need for transparency and adaptability 
in decision-making. 

(2) Collision avoidance: Existing approaches often neglect the navigational preferences of 
manned vessels, limiting the interpretability and proactivity of collision avoidance 
strategies. 

(3) Human trust: Limited exploration exists on trust evaluation and its incorporation into 
decision-making processes, particularly in high-risk scenarios such as collision 
avoidance. 

To address these gaps, this chapter proposed an integrated decision-making framework 
for human-MASS interaction, prioritising safety and efficiency. This framework incorporates 
three modules: situational awareness, navigational preferences, and human trust 
evaluation, which are adaptable to various interaction types in MWTS. It offers a conceptual 
foundation for enabling MASS to interact seamlessly with human-operated vessels while 
ensuring regulatory compliance and operational transparency. 

This chapter answered two sub-research questions: RQ1-i: What is the state of the art in 
human-MASS interaction? and RQ1-ii: What factors should be considered in a decision-
making framework? By identifying the research gaps and proposing a decision-making 
framework, this chapter establishes a foundation for the thesis. This chapter provides the 
foundation for subsequent chapters, with Chapters 3–5 addressing the three identified gaps 
through focused research on situational awareness modelling, human-mimic navigation, and 
trust dynamics investigation and modelling. 
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Chapter 3. Situational Awareness Modelling 
for MASS 

Building on the integrated decision-making framework proposed in Chapter 2, this chapter 
delves into the situational awareness module development for ensuring safe and efficient 
navigation of Maritime Autonomous Surface Ships (MASS). The framework outlined in Chapter 
2 includes three modules: situational awareness, navigation preferences, and human trust. 
Among these, situational awareness serves as the foundation for understanding the navigational 
context, supporting real-time decisions in dynamic navigational environments. This chapter 
focuses on developing a situational awareness model for MASS. Through an ontology-driven 
knowledge map, this model enables the integration of diverse data sources, including sensor 
inputs and domain knowledge, to construct a comprehensive situational understanding. 
Additionally, to enable the practical application of this framework, the Dynamic Window 
Approach (DWA) is introduced as the path planner to show the process from situational 
understanding to the implementation of actionable navigation decisions. By addressing 
research questions RQ2-iii and RQ2-iv, this chapter establishes a situational awareness model 
and its integration into the decision-making framework. 

The chapter is organised as follows: Section 3.1 introduces the research context. Section 3.2 
presents recent work on situational awareness and decision-making in MASS. Section 3.3 
details the methodology employed in developing the knowledge maps model and its integration 
with the adapted DWA. Section 3.4 validates the proposed model through implementation and 
comparison with the basic DWA algorithm. Section 3.5 concludes this chapter.1  

 
1 The contents of this chapter have been published in [192] and [193]. 
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3.1 Introduction 
Navigating safely and efficiently in dynamic maritime environments presents considerable 
challenges for Maritime Autonomous Surface Ships (MASS). A foundational capability 
enabling this navigation is situational awareness (SA), which allows MASS to perceive, 
comprehend, and predict their navigational context. SA supports compliance with maritime 
regulations, such as the COLREGs, and facilitates timely collision avoidance. To enable the 
practical application of situational awareness, it is necessary to introduce a decision-making 
module to achieve navigational decisions based on real-time translation of contextual 
understanding. Through the integration of the two modules, MASS can dynamically respond to 
dynamic maritime scenarios while ensuring safety, efficiency, and regulatory compliance. 

This chapter introduces the Dynamic Window Approach (DWA) as a path-planning 
mechanism designed to serve as the decision-making foundation for MASS. Originally 
developed for robotic navigation, DWA evaluates feasible trajectories by optimising safety, 
efficiency, and other goals. Its application in the maritime domain is supported by its 
adaptability to dynamic environments and compatibility with the unique motion characteristics 
of ships. By incorporating the outputs of situational awareness as constraints and objectives, 
DWA enables the transformation from contextual information to navigational actions. 

To achieve this integration, this chapter addresses the following three objectives. First, an 
ontology-based knowledge maps (KM) model is developed to provide a semantic framework 
for representing, organising, and interpreting multi-source data, such as motion constraints, 
navigational tasks, and environmental conditions. Furthermore, navigational regulations, such 
as COLREGs, are embedded into the KM model to guide decision-making processes, enabling 
MASS to construct a comprehensive understanding of its navigational environment and 
regulation requirements. Second, the classic DWA algorithm is adapted to accommodate the 
three degrees of freedom (3-DOF) motion of MASS by replacing the velocity-based sampling 
with acceleration-based velocity sampling. This adaptation enables a more realistic 
representation of the vessel’s motion capabilities. Third, the integration of the SA model with 
the adapted DWA algorithm, forming the KM-DWA framework, provides a pathway for MASS 
to interpret situational understanding into decision-making actions. 

The next section reviews the recent work in situational awareness and decision-making 
strategies for autonomous vessels, providing a foundation for the proposed approach. 

3.2 Recent work 

• Situation Awareness in the Maritime Domain 

Situational Awareness (SA) is a human cognitive function that is important for strategic 
decision-making. Its role in human performance has been explored for many years in many 
domains [56]. In MASS, SA’s role extends to integrating advanced sensor technologies, 
artificial intelligence, and knowledge maps. Since situational awareness is crucial for the safe 
navigation of unmanned vessels, the research conducted by [205] focuses on sensor technology 
and distributed SA, which are the prerequisites for unmanned vessels to sense the environment 
during navigation accurately and can provide accurate data support for the situational awareness 
of unmanned vessels.  
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Recent advancements in MASS navigation, as explored by [246], involve developing 
sophisticated collision-avoidance systems using SA. These systems predict and mitigate 
hazards, enhancing maritime safety. Knowledge maps have hereby become integral in MASS 
for decision-making and navigational accuracy. The integration of general maps and domain 
knowledge is discussed by [193], illustrating the importance of comprehensive spatial 
information for navigational systems. The research conducted by [197] applies complex 
network theory to develop indicators that evaluate marine traffic, significantly contributing to 
situational awareness and the safety and efficiency of maritime navigation. Additionally, the 
critical role of these technologies in the realm of maritime education is underscored in [43], 
highlighting their necessity for preparing the future workforce. Moreover, a quantitative model 
for situational awareness tailored to address the complexities of maritime scenarios is presented 
in [255], offering a robust framework for assessing and enhancing navigational decision-making 
processes. 

In the existing body of research on situational awareness for MASS, there is a gap in the 
deployment of the knowledge map model that is capable of understanding the context of real-
time maritime navigation. Such a model is important for the accurate interpretation of 
situational data, which, in turn, is crucial for making informed navigational decisions. However, 
most existing implementations rely on fixed-rule logic, which lacks flexibility in handling 
complex, multi-vessel, and context-dependent scenarios. To overcome these limitations, this 
study adopts an ontology-based knowledge map model that supports structured representation 
and semantic reasoning. Compared with procedural logic, this approach offers better scalability 
and adaptability, enabling MASS to interpret and apply COLREGs dynamically and 
contextually. The proposed model aims to enhance situational awareness and rule compliance 
in autonomous collision avoidance. 

• COLREGs-Compliant Decision-Making 

The advent of MASS necessitates a reevaluation of traditional maritime practices, 
particularly the application of COLREGs. These regulations for ensuring safety and preventing 
collisions must now be translated into a form comprehensible to autonomous systems. This 
section explores recent scholarly efforts in embedding COLREGs into the decision-making 
algorithms of unmanned vessels, as well as the current research needs. 

(1) Integration of COLREGs in autonomous navigational systems 

Studies conducted by [166] and [41] emphasise the necessity for autonomous systems not 
only to recognise but also to actively comply with COLREGs. The use of fuzzy logic, as 
explored in [14], presents an approach to interpreting these rules for autonomous navigation. 
Collectively, these studies demonstrate steps in integrating human-centric rules into machine-
operable directives. 

(2) Decision-making in collision avoidance scenarios 

The complexity of multi-vessel encounters under COLREGs is a focal point of several 
studies. Research conducted by [125] delves into decision-making models and cooperative 
strategies for collision avoidance. The absence of specific COLREGs provisions for such 
scenarios, as discussed by [221], highlights a significant gap in current regulations, suggesting 
a need for expansion to accommodate the intricacies of autonomous navigation. The focus of 
the study conducted by [90] is on collision avoidance systems for autonomous ships, 
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particularly considering uncertainties in ship dynamics. It highlights the challenges in parameter 
identification for ship dynamics and how these uncertainties can impact collision avoidance. 

(3) Control systems and artificial intelligence in COLREGs compliance 

A distributed control scheme for autonomous tugboats was proposed in [52] and [53] to 
ensure collision avoidance in restricted water traffic environments while complying with 
COLREGs. It contributes to the field by tackling the challenge of collision avoidance in 
complex, interconnected vessel systems, which is a critical aspect of adhering to COLREGs in 
modern maritime operations. Furthermore, a multi-agent control scheme for managing the 
speed and coordination of multiple tugboats during ship towing was introduced in [50], 
addressing the complexities of multi-vessel operations and the necessity of coordinated actions. 

The study conducted in [90] proposes a framework of human-machine interaction for 
collision avoidance. The framework is tested with respect to its compliance with COLREGs, 
i.e. the presence of oscillations when the ship is underactuated versus the behaviour of 
COLREG compliance. 

While existing research on integrating the COLREGs into autonomous maritime navigation 
systems has made great progress, particularly in compliance with power-driven vessels, they 
have tended to focus on a subset of the regulations, for example, Rules 13, 14 and 15 [52]. Such 
analyses are less concerned with including COLREGs rules for target vessel manoeuvrability 
and proactive avoidance rules in collision avoidance, which are pivotal in determining the 
priority of way and executing explicit and effective evasive manoeuvres. Our research aims to 
address this limitation by incorporating a more comprehensive interpretation of COLREGs, 
including consideration of target vessel manoeuvring capabilities, vessel type, and proactive 
collision avoidance strategies in different encounter scenarios, into the decision-making 
frameworks. 

• DWA-based Path-Planning in MASS 

DWA, a seminal concept in robotics introduced for robotics navigation by [63], selects the 
optimal velocity of a robot from a set of feasible velocities within a “dynamic window” based 
on the robot’s current state and a cost function evaluating safety, efficiency, and goal reachability. 
The process ensures real-time collision avoidance and goal-oriented movement by continuously 
updating the robot’s trajectory. Its core advantage lies in its computational efficiency and 
adaptability to rapid changes, making it very suitable for dynamic environments. 

DWA’s journey from theory to wide-ranging applications reflects its robustness and 
versatility. Its application in high-speed navigation was demonstrated in [18], revealing its 
capacity for quick adaptation in fast-paced scenarios. Its scope with an adaptive variant was 
expanded in [46], highlighting its customizability to diverse robotic architectures. Its real-world 
feasibility through practical application in robotic navigation was underscored in [139] by 
testing the effectiveness of a proposed collision-checking algorithm combined with the DWA 
algorithm. 

The transition of DWA into maritime domains, particularly in MASS, marks a new chapter 
in its application. DWA’s role in enhancing navigational safety in autonomous maritime systems 
was highlighted in [156]. The integration of DWA with a Shark-Inspired Algorithm by [34] and 
its fusion with the A-Star algorithm by [71] demonstrate its adaptability in maritime 
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environments, blending traditional algorithms with advanced techniques for optimal path 
planning. Its adaptability to environments with dynamic obstacles was emphasised in [37]. 

DWA is an efficient algorithm for real-time collision avoidance and path optimisation in 
robotics, with the advantage of adapting to dynamic changes. However, its application within 
the maritime domain faces challenges due to the unique kinetics and physical constraints 
required for MASS movement. This necessitates modifications to the DWA algorithm in order 
to ensure it aligns with maritime navigation, indicating a gap between its current capabilities 
and the demands of maritime application. 

3.3 Situational awareness modelling 

3.3.1 Development of the knowledge maps model 

The ontology-based knowledge maps model is developed to enhance the situational awareness 
of MASS. The map is a semantic graph formed by multiple entities and the relationships among 
them. The knowledge map model integrates various maritime navigation rules and 
environmental factors, specifically focusing on COLREGs. The model provides the following 
three capabilities to support the safe navigation of MASS: 

1. Task awareness refers to high-level information from maritime regulations, collision 
avoidance, planned long- and short-term routes, communications with authorities and 
surrounding ships, etc., which serve as inputs to the ship’s KM comprehension module. 
It is compiled and interpreted in a semantic format to support the MASS’s decision-
making. See the example presented in Figure 3-1, where MASS is aware of the 
destination by understanding the route first via “#MASS” “#has_planned_routes” 
“Planned_route”, and then finalise the understanding of its destination via “#destinationLoc” 
as an instance of “#Planned_route”. The awareness results are organised in an XML format 
to facilitate knowledge management by MASS. 

 
Figure 3-1 Representation of task awareness in the knowledge map model using XML format 

2. Control system constraints: The control system of MASS receives the outputs of the 
knowledge maps model as constraints, such as the situational information provided by 
the KM and the decision actions suggested by the COLREGs in the collision avoidance 
scenarios, where the situational information includes the type of scenario encountered 
such as crossing, and the suggested actions include turning to the starboard side or going 
straight ahead. These outputs serve as constraints for the controller or planner, such as 
the space available for acceleration and turn rate at the next moment, which affects the 
subsequent decision actions of the ship. 
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3. Navigational status synthesis involves the aggregation of basic navigational and 
environmental data surrounding the vessel. These two pieces of data are continuously 
fed into the perception of the KM model for data processing as well as relationship 
formulation and further fed into the comprehension module to form semantic 
information that facilitates the real-time construction of situational awareness semantic 
graphs. The capability of Navigational Status Synthesis supports the representation of 
the key concepts and relationships related to navigation at the current moment or over a 
period of time. 

An enhanced ontology-based knowledge maps model is presented in this study, building 
upon a foundational knowledge maps model introduced in [193]. In that prior work, a 
Situational Awareness-based KM model was developed for MASS, aiming at creating a 
comprehensive, real-time knowledge base. This base was designed to encapsulate both external 
information and internal data, including the control system, navigational tasks, and status, with 
its comprehensive details documented in [193]. 

The construction of the KM model employs ontology tools grounded in a thorough analysis 
of situational requirements. This process involved identifying key navigation-related elements 
of MASS and categorising them into classes, object properties, and data properties. Initially 
validated through basic scenario tests, the model has now been enhanced to address real-world 
applications. This enhancement includes the integration of an enriched KM model within the 
path planner. This model incorporates a broader spectrum of rules for collision avoidance, 
including the conversion and coordination of multiple COLREGs rules, elements not previously 
considered in our initial model. 

Our aim is to incorporate more COLREGs rules in our model so that MASS can be better 
adapted to the various navigational environments, especially in those areas full of COLREGs, 
for example, the harbour area, traffic separation area, etc. In order to incorporate collision rules 
in the knowledge map, we introduced Semantic Web Rule Language (SWRL) in the model, 
which provides a convenient way to convert statements into machine-readable language. 
Specifically, key collision avoidance rules for ships in sight of one another in COLREGs are 
considered in this chapter, incorporating Rules 11, 13, 14, 15, 16, 17(a(i), a(ii), b, d), 18(a,b,c). 

The translation details of COLREGs rules based on SWRL are given in Table 3-2. 

3.3.2 Adapted DWA designed for MASS 

The classic DWA algorithm is mostly used for two-wheel robot navigation. For MASS, 
especially for the three degrees of freedom (3DOF) MASS, which has not only the force from 
the X axis and the moment from the Z axis but also the force from the Y axis, the DWA needs 
to be adapted. 

3.3.2.1 Acceleration-based velocity sampling 

To better consider the motion characteristic of MASS, the sampling method proposed in 
[146], which uses an acceleration-sampling method, is introduced here. The illustration for 
sampling acceleration in DWA can be seen in Figure 3-2, where 𝑉𝑉𝑠𝑠, 𝑉𝑉𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑑𝑑 represent the space 
of possible velocities, the space of possible velocities constrained by its acceleration, and the 
intersection of the restricted areas, namely 𝑉𝑉𝑠𝑠, and 𝑉𝑉𝑟𝑟. By incorporating the vessel’s dynamic 
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capabilities, velocities obtained based on acceleration sampling are computed from the vessel’s 
current velocity: [𝑎𝑎𝑢𝑢_𝑚𝑚𝑚𝑚𝑎𝑎, 𝑎𝑎𝑢𝑢_𝑚𝑚𝑎𝑎𝑚𝑚], [𝑎𝑎𝑣𝑣_𝑚𝑚𝑚𝑚𝑎𝑎, 𝑎𝑎𝑣𝑣_𝑚𝑚𝑎𝑎𝑚𝑚] and [𝑎𝑎𝜔𝜔_𝑚𝑚𝑚𝑚𝑎𝑎, 𝑎𝑎𝜔𝜔_𝑚𝑚𝑎𝑎𝑚𝑚], where 𝑎𝑎𝑢𝑢_𝑚𝑚𝑚𝑚𝑎𝑎 , 𝑎𝑎𝑣𝑣_𝑚𝑚𝑚𝑚𝑎𝑎, 
𝑎𝑎𝜔𝜔_𝑚𝑚𝑚𝑚𝑎𝑎 refer to the minimum accelerations from the direction of surge, sway, and yaw axis, 
respectively, while 𝑎𝑎𝑢𝑢_𝑚𝑚𝑎𝑎𝑚𝑚, 𝑎𝑎𝑣𝑣_𝑚𝑚𝑎𝑎𝑚𝑚, 𝑎𝑎𝜔𝜔_𝑚𝑚𝑎𝑎𝑚𝑚 refer to the maximum accelerations along the 
directions of surge, sway, and yaw, respectively. Thus, new velocities 𝑢𝑢𝑡𝑡+Δ𝑡𝑡, 𝑣𝑣𝑡𝑡+Δ𝑡𝑡, and 𝜔𝜔𝑡𝑡+Δ𝑡𝑡 are 
derived using: 𝑢𝑢𝑡𝑡+Δ𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝑎𝑎𝑢𝑢⋅Δ𝑡𝑡, 𝑣𝑣𝑡𝑡+Δ𝑡𝑡 = 𝑣𝑣𝑡𝑡 + 𝑎𝑎𝑣𝑣⋅Δ𝑡𝑡, and 𝜔𝜔𝑡𝑡+Δ𝑡𝑡 = 𝜔𝜔𝑡𝑡 + 𝑎𝑎𝜔𝜔⋅Δ𝑡𝑡, where Δ𝑡𝑡 is the 
time step, 𝑢𝑢𝑡𝑡 and 𝑎𝑎𝑢𝑢 are current surge velocity and acceleration, 𝑣𝑣𝑡𝑡 and 𝑎𝑎𝑣𝑣 are current sway 
velocity and acceleration, 𝜔𝜔𝑡𝑡 and 𝑎𝑎𝜔𝜔 are current yaw velocity and acceleration. The velocity 
space is discretised into potential velocities, constrained within the vessel’s maximum and 
minimum speed limits, forming a cubic space: 𝑉𝑉𝑠𝑠 = {[𝑢𝑢min, 𝑢𝑢max], [𝑣𝑣min, 𝑣𝑣max], [𝜔𝜔min,𝜔𝜔max]}, 
where 𝑢𝑢min, 𝑣𝑣min, and 𝜔𝜔min refer to the minimum velocities from the direction of surge, sway, 
and yaw axis, respectively, while 𝑢𝑢max, 𝑣𝑣max, 𝜔𝜔max refer to the maximum velocities along the 
directions of surge, sway, and yaw, respectively. Additionally, during the vessel’s navigation, 
each velocity pair (𝑢𝑢, 𝑣𝑣, 𝜔𝜔) within this space is evaluated for feasibility based on the cubic space 
constraints, and optimality is evaluated based on the total benefit of cost functions determined 
by sampling the velocity pairs. 

 
Figure 3-2 The schematic for sampling accelerations in the surge, sway, and yaw directions in the DWA algorithm 

Key differences and advantages of acceleration-based sampling over velocity-based 
sampling in the maritime context include the following: 

(1) Acceleration-based sampling aligns with the vessel’s current motion state, offering 
realistic velocity options that reflect the vessel’s physical capability for speed and 
directional changes. 

(2) Acceleration-based sampling models more accurately the vessel’s motion than the 
velocity-based sampling method, accounting for realistic acceleration and deceleration 
rates, which are important in dynamic maritime environments. 

3.3.2.2 Prediction of MASS movement in DWA 

In this part, the focus shifts to predicting the movement of MASS using the DWA. The 
introduction of a force along the Y-axis adds complexity to the predicted motion trajectory of 
the object. Unlike the classic DWA algorithm, which primarily relies on linear and angular 
velocities to predict linear or circular motion, the presence of Y-axis linear velocity introduces 
additional dimensions to the motion trajectory analysis. This change has resulted in the 
prediction of vessel motions that will not be conventional linear or circular paths. In order to 
simplify this problem, assuming the MASS will still do the circular movement during a small 
period, we revise the algorithm by amending the centre of rotation by moving it from the 
original point (𝐶𝐶𝑡𝑡_𝑥𝑥0, 𝐶𝐶𝑡𝑡_𝑦𝑦0) to the current one (𝐶𝐶𝑡𝑡_𝑥𝑥1, 𝐶𝐶𝑡𝑡_𝑦𝑦1) because of the influence of the sway 
velocity. The scheme diagram is shown in Figure 3-3 - (a) when the yaw velocity 𝜔𝜔𝑡𝑡 does not 
equal 0, where (𝜑𝜑𝑡𝑡) and (𝜑𝜑𝑡𝑡 +𝜔𝜔𝑡𝑡 ⋅Δ𝑡𝑡) represent the original angle at time 𝑡𝑡 and the angle after 
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moving, respectively. 𝑢𝑢𝑡𝑡 and 𝑣𝑣𝑡𝑡 represent the surge and sway velocity at time 𝑡𝑡, which do not 
change during the small period. Point (𝐶𝐶𝑡𝑡_𝑥𝑥0, 𝐶𝐶𝑡𝑡_𝑦𝑦0) is the original rotation centre, and point 
(𝐶𝐶𝑡𝑡_𝑥𝑥1, 𝐶𝐶𝑡𝑡_𝑦𝑦1) is the new rotation centre, which moves from the former to the current one under 
the influence of the sway velocity. 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑡𝑡

′ are calculated based on the classic DWA algorithm 
and simplified extensive DWA tailored for MASS. Additionally, (𝑚𝑚𝑡𝑡, 𝑦𝑦𝑡𝑡) and (𝑚𝑚𝑡𝑡+∆𝑡𝑡, 𝑦𝑦𝑡𝑡+∆𝑡𝑡) refer 
to the start point and the predicted point after Δ𝑡𝑡, respectively. The equations for calculating 
them are as follows: 

𝑅𝑅𝑡𝑡 = 𝑢𝑢𝑡𝑡
𝜔𝜔𝑡𝑡

; 𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 + 𝑣𝑣𝑡𝑡 ∙ ∆𝑡𝑡 

𝐶𝐶𝑡𝑡_𝑥𝑥0 = 𝑚𝑚𝑡𝑡 − 𝑅𝑅𝑡𝑡 ∙ sin(𝜑𝜑𝑡𝑡); 𝐶𝐶𝑡𝑡_𝑦𝑦0 = 𝑦𝑦𝑡𝑡 + 𝑅𝑅𝑡𝑡 ∙ cos(𝜑𝜑𝑡𝑡) 

𝐶𝐶𝑡𝑡_𝑥𝑥1 = 𝐶𝐶𝑡𝑡_𝑥𝑥0 + 𝑣𝑣𝑡𝑡 ∙ ∆𝑡𝑡 ∙ cos(𝜑𝜑𝑡𝑡); 𝐶𝐶𝑡𝑡_𝑦𝑦1 = 𝐶𝐶𝑡𝑡_𝑦𝑦0 − 𝑣𝑣𝑡𝑡 ∙ ∆𝑡𝑡 ∙ sin(𝜑𝜑𝑡𝑡) 

𝑚𝑚𝑡𝑡+∆𝑡𝑡 = 𝐶𝐶𝑡𝑡_𝑥𝑥1 − 𝑅𝑅𝑡𝑡
′ ∙ cos(𝜑𝜑𝑡𝑡 + 𝜔𝜔𝑡𝑡 ∙ ∆𝑡𝑡); 𝑦𝑦𝑡𝑡+∆𝑡𝑡 = 𝐶𝐶𝑡𝑡_𝑦𝑦1 + 𝑅𝑅𝑡𝑡

′ ∙ sin(𝜑𝜑𝑡𝑡 + 𝜔𝜔𝑡𝑡 ∙ ∆𝑡𝑡) 

 
(a) Assumption of MASS for circular motion         (b) Extended DWA algorithm with collision avoidance prediction 

Figure 3-3: The schematic diagram of the revised DWA algorithm for MASS 

Regarding collision avoidance between ships, the collision prevention distance determined 
according to the classic DWA algorithm is different from the complex motion and longer 
stopping distances of MASS, influenced by maritime forces and vessel inertia. Thus, we extend 
the classic algorithm to a predicted collision avoidance algorithm, as seen in Figure 3-3 - (b). 
The sampling trajectories of the own ship touching the safety buffer of the predicted motion of 
the surrounding vessel will be removed. The core principle of DWA involves the generation of 
a velocity space, considering a robot’s current velocity and acceleration limits. The following 
equations define the velocity space: 

𝑉𝑉𝑠𝑠 = {(𝑢𝑢, 𝑣𝑣, 𝜔𝜔)|𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑣𝑣 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 , 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜔𝜔 ≤ 𝜔𝜔𝑚𝑚𝑚𝑚𝑥𝑥}, 

𝑉𝑉𝑑𝑑 =
�(𝑢𝑢, 𝑣𝑣, 𝜔𝜔)�𝑢𝑢 ∈ [𝑢𝑢𝑡𝑡 − 𝑎𝑎𝑢𝑢 ∙ ∆𝑡𝑡, 𝑢𝑢𝑡𝑡 + 𝑎𝑎𝑢𝑢 ∙ ∆𝑡𝑡], 𝑣𝑣 ∈ [𝑣𝑣𝑡𝑡 − 𝑎𝑎𝑣𝑣 ∙ ∆𝑡𝑡, 𝑣𝑣𝑡𝑡 + 𝑎𝑎𝑣𝑣 ∙ ∆𝑡𝑡], 𝜔𝜔 ∈ [𝜔𝜔𝑡𝑡 − 𝑎𝑎𝜔𝜔 ∙ ∆𝑡𝑡, 𝜔𝜔𝑡𝑡 + 𝑎𝑎𝜔𝜔 ∙ ∆𝑡𝑡]�, 

where 𝑉𝑉𝑠𝑠 represents the set of all achievable velocities, 𝑢𝑢 is the surge velocity, 𝑣𝑣 is the sway 
velocity, 𝜔𝜔 is the yaw velocity, and 𝑉𝑉𝑎𝑎 is the dynamic window, which considers the MASS’s 
acceleration limits. 
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The algorithm evaluates each acceleration pair (𝑎𝑎𝑢𝑢, 𝑎𝑎𝑣𝑣, 𝑎𝑎𝜔𝜔) within the reachable velocity 
range (𝑢𝑢, 𝑣𝑣, 𝜔𝜔) using a comprehensive cost function. This cost function incorporates several 
objectives, including goal-reaching, obstacle avoidance, path-keeping, time to the goal, and 
compliance with COLREGs compliance. The optimal set of acceleration (𝑎𝑎𝑢𝑢

∗ , 𝑎𝑎𝑣𝑣
∗ , 𝑎𝑎𝜔𝜔

∗ )  and 
optimal velocity (𝑢𝑢∗, 𝑣𝑣∗, 𝜔𝜔∗) that minimise this cost function are then chosen for execution; see 
Equations (3-1) and (3-2). The cost function for each acceleration vector denoted as 
𝐶𝐶(𝑎𝑎𝑢𝑢, 𝑎𝑎𝑣𝑣, 𝑎𝑎𝜔𝜔), is weighted by coefficients iα , which reflect the importance of various objectives 
such as safety, efficiency, and rule adherence. 

(𝑎𝑎𝑢𝑢
∗ , 𝑎𝑎𝑣𝑣

∗ , 𝑎𝑎𝜔𝜔
∗ ) = arg min

(𝑚𝑚𝑢𝑢,𝑚𝑚𝑣𝑣,𝑚𝑚𝜔𝜔)∈𝑚𝑚𝑑𝑑&𝑚𝑚𝑠𝑠
𝐶𝐶(𝑎𝑎𝑢𝑢 , 𝑎𝑎𝑣𝑣 , 𝑎𝑎𝜔𝜔), 𝐶𝐶(𝑎𝑎𝑢𝑢 , 𝑎𝑎𝑣𝑣 , 𝑎𝑎𝜔𝜔) = 𝜎𝜎�∑ 𝛼𝛼𝑚𝑚𝑚𝑚=1 ∙ 𝐶𝐶𝑚𝑚(𝑎𝑎𝑢𝑢 , 𝑎𝑎𝑣𝑣 , 𝑎𝑎𝜔𝜔)� (3-1) 

(𝑢𝑢∗, 𝑣𝑣∗, 𝜔𝜔∗) = (𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡 , 𝜔𝜔𝑡𝑡) + (𝑎𝑎𝑢𝑢
∗ , 𝑎𝑎𝑣𝑣

∗ , 𝑎𝑎𝜔𝜔
∗ ) ∙ ∆𝑡𝑡 (3-2) 

To implement the DWA algorithm on MASS using an acceleration-based sampling 
technique, the algorithm compares various combinations of accelerations within a discretised 
sampling space. This procedure entails enumerating potential acceleration vectors that are 
feasible within the dynamic limitations of the vessel and environmental constraints. For each 
sampled acceleration vector, the algorithm calculates the resultant velocities.  

Subsequently, the acceleration vector (𝑎𝑎𝑢𝑢
∗ , 𝑎𝑎𝑣𝑣

∗ , 𝑎𝑎𝜔𝜔
∗ ) that yields the lowest cumulative cost, 

indicative of the optimal trajectory under current conditions, is selected. This optimal 
acceleration vector is then utilised to derive the corresponding optimal velocity (𝑢𝑢∗, 𝑣𝑣∗, 𝜔𝜔∗), 
which guides the MASS towards its goal while prioritising safety, efficiency, and regulatory 
compliance. Furthermore, this selection process is iterative. By systematically analysing the 
cost associated with each pair of acceleration and velocity, the algorithm ensures that the MASS 
can adapt its navigation strategy in real time, optimising for the most favourable outcome based 
on the current situational context. 

3.3.3 Integrating the KM model into decision-making 

3.3.3.1 System architecture 

The KM-DWA architecture consists of three modules: knowledge maps, DWA path planner, 
and trajectory generator. The formation process of the knowledge maps is presented in 
Algorithm 3-1. Before processing real-time data, the KM, an XML file used to represent 
ontology-based KM, needs to be aware of tasks, including route, departure, destination, etc. The 
XML file contains the concepts and relationships involved in ship navigation, encoded into 
various classes and properties. 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌, 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓, 𝐈𝐈𝐈𝐈𝐓𝐓𝐈𝐈𝐓𝐓𝐈𝐈𝐈𝐈𝐞𝐞, and 𝐎𝐎𝐎𝐎𝐎𝐎𝐞𝐞𝐈𝐈𝐈𝐈 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐞𝐞𝐏𝐏𝐈𝐈𝐏𝐏, representing 
the operators of the ontology, namely classes, instance, and objective property, etc., used to 
instantiate and transform the navigation-related information into the ontology. The own ship 
[𝑂𝑂𝑆𝑆], i-th task [𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚] and the relationship between the own ship and 𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚: {ℎ𝑎𝑎𝑠𝑠𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚} are 
the results of the instantiation. In addition, SWRL is used here to convert COLREGs into 
machine-understandable rules, that is, the rules that ships need to comply with and the actions 
recommended by the rules if they satisfy a specific set of conditions. At this point, the generated 
KM file will be used for real-time situational understanding. First, the KM module continuously 
receives environmental information 𝐸𝐸𝐻𝐻𝑡𝑡, such as visibility, surrounding vessel information etc., 
and navigation information 𝑁𝑁𝐻𝐻𝑡𝑡  generated by the trajectory generator, such as the position, 
speed, and heading of the own ship. These data are fed into the Perception module of the KM 
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model, where data processing is performed to generate parameter information used for situation 
analysis, which will be passed to the Projection module and Comprehension module for further 
analysis. Specifically, Projection performs the task of risk evaluation, which is to determine 
whether there is a potential collision risk based on whether DCPA and TCPA reach the pre-set 
thresholds. Then, the risk estimate generated by Projection is passed into the Comprehension 
module to update the situational information in the ontology file, including repeating the 
ontology operation instantiation process as in steps 6 to 7 in Algorithm 3-1 to generate the 
situational information at time t. Then, the Pellet inference engine is called to reason about the 
parameter information obtained by the Perception module and the risk assessment results of the 
Projection, the tasks, and the rules that need to be followed to clarify the rules that need to be 
obeyed, encounter scenarios and other information of 𝑆𝑆𝑆𝑆𝐻𝐻𝑎𝑎𝑆𝑆𝑆𝑆𝑡𝑡, details can be seen in Figure 
3-4. Then, situation information and tasks are passed into the planner as constraints, and the 
planner evaluates the optimal accelerations through sampling. The optimal acceleration 
obtained will be input into the trajectory generator to update the motion parameters at the next 
moment, including speed, heading, position and other information. The above process is 
repeated until the goal is achieved or a collision occurs. 

Algorithm 3-1: Formation Of Knowledge Maps For Supporting Safe Navigation Of MASS 
Input: Navigational Rules, Tasks, Environment information (𝐸𝐸𝐻𝐻𝑡𝑡), Navigational information (𝑁𝑁𝐻𝐻𝑡𝑡) of MASS(OS) 
Output: Real-time knowledge maps in the form of situational semantic network 
 Step 1: Task awareness 
1: Initialise the Knowledge Maps as an XML file. 
2: Formulate the Knowledge Maps: 𝐾𝐾𝐻𝐻 ← �{𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠, 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑚𝑚𝑜𝑜𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑜𝑜𝑝𝑝𝑡𝑡𝑚𝑚𝑜𝑜𝑠𝑠}, ⋯ �  
3: Transform and add the task-related information, e.g., planned routes, waypoints, etc.  
4: Initialise the own ship: 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: [𝑂𝑂𝑆𝑆] ← (𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌{𝑂𝑂𝑆𝑆}, 𝐃𝐃𝐓𝐓𝐈𝐈𝐓𝐓𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐞𝐞𝐏𝐏𝐈𝐈𝐃𝐃𝐞𝐞𝐓𝐓{𝑂𝑂𝑆𝑆}) 
5: for each task 𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚 do 
6:  𝐈𝐈𝐈𝐈𝐓𝐓𝐈𝐈𝐓𝐓𝐈𝐈𝐈𝐈𝐞𝐞: [𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚] ← (𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓{𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚}, 𝐃𝐃𝐓𝐓𝐈𝐈𝐓𝐓𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐞𝐞𝐏𝐏𝐈𝐈𝐃𝐃𝐞𝐞𝐓𝐓{𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚}) 
7:  𝐎𝐎𝐎𝐎𝐎𝐎𝐞𝐞𝐈𝐈𝐈𝐈 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐞𝐞𝐏𝐏𝐈𝐈𝐏𝐏{ℎ𝑎𝑎𝑠𝑠𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚} ← ([𝑂𝑂𝑆𝑆], [𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚]) 
8:  Task = {[𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇𝑚𝑚], ⋯ } 
9: Interpret navigational rules (COLREGs) as executable orders (turning to port or starboard) and add them to KM. 
10
 

for each rule 𝑅𝑅𝑢𝑢𝑐𝑐𝑜𝑜𝑥𝑥, do: 
11
 

 𝑅𝑅𝑢𝑢𝑐𝑐𝑜𝑜𝑥𝑥, 𝑅𝑅𝑜𝑜𝑐𝑐𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎𝑎𝑎𝑆𝑆𝑐𝑐𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑘𝑘 ← 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆�𝑠𝑠ℎ𝑚𝑚𝑝𝑝, 𝑐𝑐𝑆𝑆𝑎𝑎𝑎𝑎𝑚𝑚𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑗𝑗 , 𝑐𝑐𝑆𝑆𝑎𝑎𝑎𝑎𝑚𝑚𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑗𝑗+1, ⋯ � 
12
 

 Rule = {(𝑅𝑅𝑢𝑢𝑐𝑐𝑜𝑜𝑥𝑥, 𝑅𝑅𝑜𝑜𝑐𝑐𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎𝑎𝑎𝑆𝑆𝑐𝑐𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑘𝑘), ⋯ } 
13
 

Store the Knowledge Maps file. 
 Step 2: Real-time situation understanding 
14
 

While not colliding or reaching the destination, do: 
  // Navigational Status Synthesis 
15
 

 Obtain navigational information 𝑁𝑁𝐻𝐻𝑡𝑡 and environment information 𝐸𝐸𝐻𝐻𝑡𝑡 
16
 

 Initialise: 𝑁𝑁𝐻𝐻𝑡𝑡 ← (𝑃𝑃𝑆𝑆𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑡𝑡, 𝑉𝑉𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡, 𝐻𝐻𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝐻𝐻𝑡𝑡), 𝐸𝐸𝐻𝐻𝑡𝑡 ← (𝑉𝑉𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡, 𝑡𝑡𝑎𝑎𝑝𝑝𝐻𝐻𝑜𝑜𝑡𝑡𝑉𝑉𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑠𝑠𝑡𝑡, ⋯ ) 
17
 

 Perception 
18
 

 𝑆𝑆𝑚𝑚𝑡𝑡𝑢𝑢𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑎𝑎𝑐𝑐𝑃𝑃𝑎𝑎𝑝𝑝𝑎𝑎𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝𝑠𝑠𝑡𝑡: {𝐸𝐸𝑎𝑎𝑐𝑐𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑎𝑎𝑎𝑎𝐻𝐻𝑐𝑐𝑜𝑜, 𝐷𝐷𝐶𝐶𝑃𝑃𝑆𝑆, 𝐻𝐻𝐶𝐶𝑃𝑃𝑆𝑆, ⋯ } ← SA(𝑁𝑁𝐻𝐻𝑡𝑡, 𝐸𝐸𝐻𝐻𝑡𝑡) 
19
 

 Projection (risk evaluation): 𝑅𝑅𝑚𝑚𝑠𝑠𝑇𝑇𝑡𝑡 ← Situational parameters 
20
 

 Comprehension:  
21
 

 Update KM: Add Instances, Object Properties, and Data Properties to KM as the steps: 𝟔𝟔 → 𝟕𝟕 
22
: 

 𝑆𝑆𝑆𝑆𝐻𝐻𝑎𝑎𝑆𝑆𝑆𝑆𝑡𝑡: {𝑅𝑅𝑜𝑜𝐻𝐻𝑢𝑢𝑐𝑐𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎 𝑐𝑐𝑆𝑆𝑚𝑚𝑝𝑝𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎𝑐𝑐𝑜𝑜, 𝐸𝐸𝑎𝑎𝑐𝑐𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑦𝑦𝑝𝑝𝑜𝑜, 𝐶𝐶𝑂𝑂𝑆𝑆𝑅𝑅𝐸𝐸𝐶𝐶𝑠𝑠 𝑝𝑝𝑆𝑆𝑐𝑐𝑜𝑜, 𝐶𝐶𝑆𝑆 𝑎𝑎𝑚𝑚𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑜𝑜, 𝑅𝑅𝑜𝑜𝑐𝑐𝑆𝑆𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎} ← 
Reasoning_PelletReasoner{Situational parameters, 𝑅𝑅𝑚𝑚𝑠𝑠𝑇𝑇, Task, Rule}  

  // Navigational Status Synthesis 
23
: 

 Constraints of the Planner: 𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑝𝑝𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑚𝑚𝑝𝑝𝑐𝑐𝑚𝑚𝑎𝑎𝐻𝐻𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑜𝑜𝑡𝑡+1 ← {𝑆𝑆𝑆𝑆𝐻𝐻𝑎𝑎𝑆𝑆𝑆𝑆𝑡𝑡 , 𝐻𝐻𝑎𝑎𝑠𝑠𝑇𝑇} 
24
: 

 Optimise accelerations: 𝑂𝑂𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑝𝑝𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑠𝑠𝑡𝑡+1 ← 𝐷𝐷𝑆𝑆𝑆𝑆𝑃𝑃𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝(𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑝𝑝𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑚𝑚𝑝𝑝𝑐𝑐𝑚𝑚𝑎𝑎𝐻𝐻𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑜𝑜𝑡𝑡+1) 
25
: 

 Update velocities and heading: 𝑉𝑉𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡+1, 𝐻𝐻𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝐻𝐻𝑡𝑡 , ← 𝑉𝑉𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡, 𝑂𝑂𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑝𝑝𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑠𝑠𝑡𝑡+1 
26
: 

 Update position: 𝑃𝑃𝑆𝑆𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑡𝑡+1 ← (𝑃𝑃𝑆𝑆𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎𝑡𝑡, 𝑉𝑉𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡, 𝐻𝐻𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝐻𝐻𝑡𝑡 , 𝑉𝑉𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦𝑡𝑡+1, 𝐻𝐻𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝐻𝐻𝑡𝑡) 
 End 
27 Return Real-time knowledge maps to provide guided information for the planner 
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Figure 3-4 The diagram of the KM-DWA decision-making framework based on the knowledge maps and DWA algorithm 

3.3.3.2 Integrated collision avoidance scheme 

The safe navigation of MASS hinges on their ability to accurately identify current situations 
and make decisions compliant with the COLREGs. Our methodology, derived from [152], 
enables MASS to identify encounter scenarios through the calculation of encounter angles and 
relative bearings when a surrounding vessel enters the detection range. The calculations of the 
Encounter angle (𝜙𝜙) and Relative bearing (α) (see Figure 3-5 (a)) are as follows. 

𝛼𝛼 =
𝜋𝜋
2

− 𝑎𝑎𝑝𝑝𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎 �
(𝑦𝑦𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑡𝑡)
(𝑚𝑚𝑜𝑜𝑜𝑜 − 𝑚𝑚𝑡𝑡)� − 𝜑𝜑𝑡𝑡; 𝜙𝜙 = 𝜑𝜑𝑜𝑜𝑜𝑜𝑡𝑡 − 𝜑𝜑𝑡𝑡 − 𝜋𝜋 

where 𝜑𝜑𝑜𝑜𝑜𝑜𝑡𝑡  represents the heading of the surrounding vessel at time 𝑡𝑡, 𝑃𝑃�⃗  𝑆𝑆𝑜𝑜 = (𝑚𝑚𝑜𝑜𝑜𝑜 , 𝑦𝑦𝑜𝑜𝑜𝑜 ) 
represents the position of the surrounding vessel at time 𝑡𝑡.  

Based on the six small circles divided into different coloured sections determined by the 
encounter angle and relative bearing, the type of encounter, such as “crossing”, and the 
navigational priority of my ship, such as “give-way”, can be determined, details can be seen in 
Figure 3-5 (b). The six small circles in the figure are the division of the encounter angle, where 
different colours indicate different scenarios. The divisions in the blue zone are the sections of 
the relative bearing of the surrounding vessel relative to the own ship, and the dotted circles 
indicate three distances for collision avoidance, including proactive distance, defensive, and 
collision distances. Specifically, the proactive distance is the distance at which a “give-way” 
vessel is required to take collision avoidance action, while the “stand-on” vessel is required to 
maintain course and speed in accordance with the rules. The defensive distance is the distance 
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at which the “stand-on” vessel is required to take evasive action when the “give-way” vessel 
does not take evasive action from the proactive distance to the defensive distance or when the 
evasion task cannot be accomplished by the “give-way” ship alone. The collision distance is 
the distance at which a collision between ships occurs. 

Additionally, in order to address the need for effective collision avoidance, the three-tier 
safety buffer, i.e. proactive, defensive, and collision distances, is embedded within the DWA 
algorithm (see Algorithm 3-2) to satisfy the requirements of Rule 8 of COLREGs, that is the 
action taken should be positive, made in ample time, and large enough to be readily apparent 
to another vessel observing visually or by radar. COLREGs dictate distinct actions and timings 
for vessels operating as either the give-way vessel or the stand-on vessel. 

 
(a) Encounter angle and relative bearing 

 
(b) Encounter scenarios determination based on the encounter angle and the relative bearing 

Figure 3-5: The illustration of sector division for collision scenario recognition 

Distance Closest Point of Approach (DCPA) and Time Closest Point of Approach (TCPA) 
are further incorporated into the algorithm, ensuring that avoidance manoeuvres are not solely 
based on physical proximity but also on the timing of potential vessel convergence. Should 
either DCPA or TCPA fall below their respective thresholds, namely 3 meters for DCPA and 10 
seconds for TCPA with respect to our model ship, the algorithm triggers the necessary avoidance 
manoeuvres, offering a dynamic and responsive framework for collision avoidance. 
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3.3.3.3 KM-DWA algorithm 

The overarching goal of the KM-DWA algorithm is to obtain the best velocities for the 
action in the next time step. The best velocities can be calculated by the highest cost score by 
calculating different kinds of cost functions involving safety (collision avoidance), 
efficiency(Goal achievement, Path keeping, Time to goal, Stability), and rule compliance 
(COLREGs), as seen in Figure 3-4. The details of the algorithm can be seen in Algorithm 3-3. 

Algorithm 3-2: Determination Of Collision Avoidance Distance And Action For MASS 
Input: DCPA_threshold, TCPA_threshold, 𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚, 𝐷𝐷𝑝𝑝𝑟𝑟𝑜𝑜, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 
Output: Distance and recommended action to avoid collision 
 Get current distance 𝑎𝑎𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑡𝑡 , 𝐷𝐷𝐶𝐶𝑃𝑃𝑆𝑆, 𝐻𝐻𝐶𝐶𝑃𝑃𝑆𝑆 
1: if 𝑎𝑎𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑡𝑡 < 𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚 then 
2:  Trigger: Imminent collision avoidance, none 
3: else if 𝑎𝑎𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑡𝑡 < 𝐷𝐷𝑝𝑝𝑟𝑟𝑜𝑜 then 
4:  if Own_action = “give_way” then 
5:   Trigger: Proactive collision avoidance, take evasive action 
6:  else if Own_action = “stand-on” then 
7   Trigger: Proactive collision avoidance, maintain course and speed 
8: else if 𝑎𝑎𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑡𝑡 < 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 then 
9:  if Own_action = “stand-on” and (DCPA < DCPA_threshold and TCPA< TCPA_threshold) then 
10   Trigger: Defensive collision avoidance, initiate independent action 
11:  else  
12   Continue: Proactive collision avoidance, maintain course and speed 
13: else  
14:  if DCPA < DCPA_threshold and TCPA< TCPA_threshold then 
15   Trigger: Collision avoidance, none 
16:  else  
17   Monitor: Normal navigation, none 
18 Return Distance and recommended action to avoid collision 

 

Algorithm 3-3: KM-DWA FOR PATH-PLANNING OF MASS 
Input: (𝑚𝑚𝑡𝑡, 𝑦𝑦𝑡𝑡) (𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡, 𝜔𝜔𝑡𝑡) , 𝜑𝜑𝑡𝑡, 𝐏𝐏𝐎𝐎, 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚, 𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝑤𝑤𝑜𝑜𝑚𝑚𝐻𝐻ℎ𝑡𝑡𝑠𝑠, 𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚, 𝐷𝐷𝑝𝑝𝑟𝑟𝑜𝑜, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 
Output: Optimal path 
1: Get current distance 𝑎𝑎𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑡𝑡 , 𝐷𝐷𝐶𝐶𝑃𝑃𝑆𝑆, 𝐻𝐻𝐶𝐶𝑃𝑃𝑆𝑆 
2: Function 𝑆𝑆𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 = �𝑝𝑝𝑆𝑆𝑠𝑠, 𝐏𝐏𝐎𝐎, 𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝑤𝑤𝑜𝑜𝑚𝑚𝐻𝐻ℎ𝑡𝑡𝑠𝑠, 𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚, 𝐷𝐷𝑝𝑝𝑟𝑟𝑜𝑜, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑� 
3:  return: Total cost 
4: Function 𝑆𝑆𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑_𝑜𝑜𝑜𝑜 = (𝐏𝐏𝐎𝐎, 𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜) 
5:  return: Predicted positions of obstacles after time 
6: Function 𝑆𝑆𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑_𝑜𝑜𝑠𝑠 = (𝑝𝑝𝑆𝑆𝑠𝑠, 𝑣𝑣𝑜𝑜𝑐𝑐𝑆𝑆𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦, ℎ𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝐻𝐻, 𝑎𝑎𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑝𝑝𝑎𝑎𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎, 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚) 
7:  return: The predicted position of the own ship after time 
8: Function 𝑆𝑆𝑝𝑝𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 = (𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝐏𝐏𝐎𝐎, 𝑚𝑚𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚) 
9:  Initialise Optimal Cost: 𝐶𝐶∗ ← −∞,  
10:  SampleNum← 8  //Number of samples of each acceleration  
11:  for each acceleration combination (𝑎𝑎𝑢𝑢, 𝑎𝑎𝑣𝑣, 𝑎𝑎𝜔𝜔) do 
12:   𝑎𝑎𝑐𝑐 ← (𝑎𝑎𝑢𝑢, 𝑎𝑎𝑣𝑣, 𝑎𝑎𝜔𝜔) 
13:   (𝑚𝑚𝑡𝑡+∆𝑡𝑡 , 𝑦𝑦𝑡𝑡+∆𝑡𝑡) ← 𝑆𝑆𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑_𝑜𝑜𝑠𝑠(𝑚𝑚𝑡𝑡, 𝑦𝑦𝑡𝑡 , 𝑢𝑢𝑡𝑡, 𝑣𝑣𝑡𝑡 , 𝜔𝜔𝑡𝑡, 𝜑𝜑𝑡𝑡 , 𝑎𝑎𝑐𝑐 , 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚) 

14:   �𝑚𝑚𝑜𝑜𝑜𝑜𝑡𝑡+∆𝑡𝑡 , 𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡+∆𝑡𝑡� ← 𝑆𝑆𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑_𝑜𝑜𝑜𝑜(𝐏𝐏𝐎𝐎, 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚) 
15:   Cost 𝐶𝐶 ← 𝑆𝑆𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡�𝑚𝑚𝑡𝑡+∆𝑡𝑡 , 𝑦𝑦𝑡𝑡+∆𝑡𝑡 , 𝑚𝑚𝑜𝑜𝑜𝑜𝑡𝑡+∆𝑡𝑡 , 𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡+∆𝑡𝑡 , 𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝑤𝑤𝑜𝑜𝑚𝑚𝐻𝐻ℎ𝑡𝑡𝑠𝑠, 𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚, 𝐷𝐷𝑝𝑝𝑟𝑟𝑜𝑜, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑� 
16:   if 𝐶𝐶 > 𝐶𝐶∗ then 
17:    𝐶𝐶∗ ← 𝐶𝐶 
18:    𝑎𝑎∗ ← 𝑎𝑎 
19:    𝑣𝑣∗ ← 𝑣𝑣 
20:  Return 𝑣𝑣∗ 
21: While the goal is not true do: 
22:  Optimal velocities 𝑣𝑣∗ ← 𝑆𝑆𝑝𝑝𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝐏𝐏𝐎𝐎, 𝑚𝑚𝑡𝑡 , 𝑦𝑦𝑡𝑡, 𝐻𝐻ℎ𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚) 
23:  Update the next optimal position 
24: Return Optimal path 
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The mathematical expressions to calculate the total benefit cost at the next time step 𝑡𝑡+Δ𝑡𝑡 
in a discrete space are as follows, where the accelerations (𝑎𝑎𝑢𝑢 , 𝑎𝑎𝑣𝑣 , 𝑎𝑎𝜔𝜔) are constant during Δ𝑡𝑡. 

1. Goal achievement cost function: 

𝐶𝐶𝑝𝑝𝑜𝑜𝑚𝑚𝑐𝑐(𝑡𝑡 + Δ𝑡𝑡) = �𝑃𝑃�⃗𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑 − 𝑃𝑃�⃗𝑝𝑝𝑜𝑜𝑚𝑚𝑐𝑐� (3-3) 

where 𝑃𝑃�⃗ 𝑡𝑡 = (𝑚𝑚𝑡𝑡, 𝑦𝑦𝑡𝑡) represents the position of MASS at time 𝑡𝑡, 𝑃𝑃�⃗ 𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐 = (𝑚𝑚𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐, 𝑦𝑦𝐻𝐻𝑆𝑆𝑎𝑎𝑐𝑐) represents 
the goal position to be reached by MASS, 𝑃𝑃�⃗ 𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎 = (𝑚𝑚𝑡𝑡+Δ𝑡𝑡, 𝑦𝑦𝑡𝑡+Δ𝑡𝑡) represents the predicted position. 

2. Obstacle avoidance cost function: 

𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑(𝑡𝑡 + Δ𝑡𝑡) = �𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐷𝐷𝑜𝑜𝑜𝑜𝑠𝑠 𝑚𝑚𝑆𝑆 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐷𝐷𝑜𝑜𝑜𝑜𝑠𝑠
0 𝑆𝑆𝑡𝑡ℎ𝑜𝑜𝑝𝑝𝑤𝑤𝑚𝑚𝑠𝑠𝑜𝑜

 (3-4) 

where 𝐷𝐷𝑆𝑆𝑜𝑜𝑠𝑠 is the distance to the nearest obstacle on the predicted trajectory at time 𝑡𝑡+Δ𝑡𝑡; 𝐷𝐷𝑚𝑚𝑚𝑚𝑎𝑎 
is the minimum safe distance at time 𝑡𝑡+Δ𝑡𝑡, which is set to be four times the length of the ship 
hull. 

3. Path keeping cost function: 

𝐶𝐶𝑝𝑝𝑚𝑚𝑡𝑡ℎ𝐾𝐾𝑑𝑑𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝(𝑡𝑡 + Δ𝑡𝑡) = 𝑜𝑜𝑝𝑝𝑚𝑚𝑡𝑡ℎ (3-5) 

where 𝑜𝑜𝑝𝑝𝑚𝑚𝑡𝑡ℎ is the deviation distance from the candidate point to the planned path. 

4. Time to goal cost function: 

𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑚𝑚𝑐𝑐(𝑡𝑡 + Δ𝑡𝑡) = �
�𝑃𝑃�⃗𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑 − 𝑃𝑃�⃗𝑝𝑝𝑜𝑜𝑚𝑚𝑐𝑐�

�𝑢𝑢𝑐𝑐
2 + 𝑣𝑣𝑐𝑐

2 + 𝜀𝜀
� (3-6)  

where 𝑢𝑢𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑐𝑐 are the candidate surge and sway velocities 𝑡𝑡+Δ𝑡𝑡, respectively. 

5. Navigation stability cost function: 

𝐶𝐶𝑠𝑠𝑡𝑡𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦(𝑡𝑡 + Δ𝑡𝑡) = �𝜑𝜑𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑 − 𝜑𝜑𝑡𝑡�2
 (3-7) 

where φ𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎 refers to the predicted heading angle after ∆t, φ𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎 – φ𝑡𝑡 is the change in heading 
angle. 

6. COLREGs compliance cost function: 

𝐶𝐶𝑐𝑐𝑜𝑜𝑐𝑐𝑟𝑟𝑑𝑑𝑝𝑝𝑠𝑠(𝑡𝑡 + Δ𝑡𝑡)

= �

𝑚𝑚𝑚𝑚𝑎𝑎(0, −𝜔𝜔𝑐𝑐) 𝑚𝑚𝑆𝑆 𝐸𝐸𝑎𝑎𝑐𝑐𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑦𝑦𝑝𝑝𝑜𝑜 = "𝐶𝐶𝑝𝑝𝑆𝑆𝑠𝑠𝑠𝑠𝑚𝑚𝑎𝑎𝐻𝐻" 𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑤𝑤𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎 = "𝐻𝐻𝑚𝑚𝑣𝑣𝑜𝑜 − 𝑤𝑤𝑎𝑎𝑦𝑦
|𝑢𝑢𝑐𝑐 − 𝑢𝑢𝑡𝑡| + |𝑣𝑣𝑐𝑐 − 𝑣𝑣𝑡𝑡| + |𝜔𝜔𝑐𝑐| 𝑚𝑚𝑆𝑆 𝐸𝐸𝑎𝑎𝑐𝑐𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑦𝑦𝑝𝑝𝑜𝑜 = "𝐶𝐶𝑝𝑝𝑆𝑆𝑠𝑠𝑠𝑠𝑚𝑚𝑎𝑎𝐻𝐻" 𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑤𝑤𝑎𝑎 𝑎𝑎𝑐𝑐𝑡𝑡𝑚𝑚𝑆𝑆𝑎𝑎 = "𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝑎𝑎

𝑚𝑚𝑚𝑚𝑎𝑎(0, −𝜔𝜔𝑐𝑐)
0

𝑚𝑚𝑆𝑆 𝐸𝐸𝑎𝑎𝑐𝑐𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝 𝑡𝑡𝑦𝑦𝑝𝑝𝑜𝑜 = "𝐻𝐻𝑜𝑜𝑎𝑎𝑎𝑎 − 𝑆𝑆𝑎𝑎"
𝑆𝑆𝑡𝑡ℎ𝑜𝑜𝑝𝑝𝑤𝑤𝑚𝑚𝑠𝑠𝑜𝑜 

 
(3-8

) 

where 𝑢𝑢𝑐𝑐 , 𝑣𝑣𝑐𝑐 , 𝜔𝜔𝑐𝑐  represent candidate surge, sway, and yaw velocities, respectively. 𝑢𝑢𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑡𝑡 
denote the current surge and sway velocities, respectively. 

The overall benefit function is then defined as a weighted sum of the individual cost 
functions from Equation (3-3) through to Equation (3-8), which is minimised to select the 
smallest combination of accelerations, as shown in Equation (3-1). 

𝐶𝐶(𝑡𝑡 + Δ𝑡𝑡) = 𝜎𝜎 �𝛼𝛼 ∙ 𝐶𝐶𝑝𝑝𝑜𝑜𝑚𝑚𝑐𝑐(𝑡𝑡 + Δ𝑡𝑡) + 𝛽𝛽 ∙ 𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑(𝑡𝑡 + Δ𝑡𝑡) + 𝛾𝛾 ∙ 𝐶𝐶𝑝𝑝𝑚𝑚𝑡𝑡ℎ𝐾𝐾𝑑𝑑𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝(𝑡𝑡 + Δ𝑡𝑡) + 𝛿𝛿

∙ 𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑚𝑚𝑐𝑐(𝑡𝑡 + Δ𝑡𝑡) + 𝜂𝜂 ∙ 𝐶𝐶𝑐𝑐𝑜𝑜𝑐𝑐𝑟𝑟𝑑𝑑𝑝𝑝𝑠𝑠(𝑡𝑡 + Δ𝑡𝑡) + 𝜅𝜅 ∙ 𝐶𝐶𝑠𝑠𝑡𝑡𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦(𝑡𝑡 + Δ𝑡𝑡)� 
(3-9) 
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where 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜂𝜂, 𝜅𝜅 are the weighting factors for each cost function. In this chapter, a 
combination of empirical testing and consideration for the importance of each function in 
relation to the overall goal of the algorithm was employed.  

In adjusting the weighting factors, all weights were initially set to 1 to test if the vessel could 
successfully avoid collisions. It was observed that the vessel adhered too strictly to its planned 
route and failed to manoeuvre adequately, leading to collisions. This issue was evident with the 
weights 𝛾𝛾, 𝛿𝛿 set to 1, causing the vessel to prioritise efficiency over safety. Additionally, the 
MASS maintained its heading rigidly with 𝜅𝜅 set to 1, hindering its ability to turn to avoid 
collisions. Therefore, 𝛾𝛾, 𝛿𝛿, 𝜅𝜅 were incrementally reduced from 1, while 𝛼𝛼 and 𝛽𝛽 remained at 1 
for efficiency and safety. Through this iterative process, the weights were fine-tuned to 𝛼𝛼 = 1, 
𝛽𝛽 = 1, 𝛾𝛾 = 0.2, 𝛿𝛿 = 0.1, 𝜅𝜅 =0.01. This adjustment set a baseline to ensure the MASS maintains 
its planned route while successfully avoiding collisions without considering COLREGs.  

Subsequent fine-tuning focused on the parameter 𝛿𝛿, which influences the rule adherence. 
To isolate the impact of 𝜂𝜂 on the system’s ability to conform to COLREGs, we conducted tests 
with its values varied across a discrete set: 0, 0.3, 0.6, and 1, while other parameters remained 
unchanged. 

3.4 Case study 

3.4.1 Simulation environment 

The implementation and testing phase of this chapter established a simulation environment 
featuring the TU Delft-developed Tito-Neri model vessel [81]. This model simulates maritime 
dynamics, coexisting with surrounding vessels that maintain consistent behaviour across 
scenarios. An interface was designed for simulation, including three proximity levels using 
concentric circles: proactive avoidance marked in blue (5 times the length of the ship hull), 
defensive avoidance marked in green (3 times the length of the ship hull), and collision radius 
marked in red (the length of the ship hull). The details are shown in Figure 3-6. 

Moreover, the interface incorporates a situational understanding module in the middle of 
the right part of the interface, which invokes the designed knowledge maps ontology by calling 
Python’s owlready2 package for real-time reasoning. This module provides insights into the 
operational status of the MASS, including the algorithm currently in use, the vessel’s mission 
objectives, and the navigation goal. In scenarios where the MASS encounters another vessel, 
the module delineates the type of the encounter, assigns roles as defined by the COLREGs, and 
stipulates the corresponding actions along with their timings. In addition, various performance 
indicators of the DWA algorithm are shown in the interface, such as distance to goal, obstacles, 
path keeping, etc. These metrics monitor the parameters of the KM-DWA algorithm. 

The computational platform for these simulations was Python 3.10, running on an 11th Gen 
Intel(R) Core(TM) i7-1185G7 @ 3.00GHz 1.80 GHz system. 
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3.4.2 Scenario-based testing 

Testing was organised into the following scenarios: 

(1) Head-on: Assessing the system’s course and speed adjustments as guided by COLREGs 
Rule 14. 

(2) Crossing: Evaluating the system’s decision-making process in scenarios where 
surrounding vessels approach from lateral directions, with a focus on varying ship types 
and manoeuvrability. 

(3) Overtaking: Testing the system’s ability to safely and efficiently navigate overtaking 
manoeuvres in compliance with COLREGs Rule 13. 

 
Figure 3-6 The interface designed for simulation in the collision avoidance scenarios. 

Specifically, the following experimental control variables were designed in the test scenario, 
including the manoeuvrability of the surrounding vessel, traffic complexity, and the impact of 
COLREG compliance. These variables are presented in detail in subsections 4.2.1 through 4.2.3 
below. 

3.4.2.1 Manoeuvrability of the surrounding vessel 

Surrounding vessel types categorised by COLREGs priorities include Power-driven vessels, 
Type I, Type II, and Type III. Specifically, their corresponding ship type or manoeuvrability is 
listed below: 

• Type I: Sailing vessel; 

• Type II: Engaged in fishing; 

• Type III: Vessel constrained by her draught, Restricted in her ability to manoeuvre, and 
Vessel not under command 
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3.4.2.2 Traffic complexity 

(1) Individual vessel encounters: These scenarios examine the autonomous system’s 
response to the individual vessel, testing its decision-making process and compliance 
with the applicable COLREGs rules. 

(2) Multi-vessel encounters: This scenario involves multiple vessels considering their 
manoeuvrability, which requires the MASS to make decisions considering multiple 
COLREGs rules simultaneously. 

Figure 3-7 illustrates four classic scenarios on which our algorithm will be tested to evaluate 
the system’s performance and COLREG compliance. Table 3-1 offers an overview of 
surrounding vessels’ motion characteristics in both individual and multi-vessel encounters. 

Table 3-1 Overview of the motion characteristics of surrounding vessels 

No. X0 Y0 Vx Vy Scenario 
1 28 18 -0.4 -0.01 Crossing-starboard side 
2 10 10 0.1 0.1 Overtaking 
3 6 18 0.3 -0.3 Crossing-port side 
4 30 30 -0.1 -0.1 Head-on 

 
(a) Crossing from the port side        (b) Crossing from the starboard side 

 

(c) Head-on                                (d) Overtaking 

Figure 3-7: The illustration of scenario setup for experimental verification 

3.4.2.3 The Impact of COLREGs Compliance 

The algorithm’s performance was tested under varying COLREGs compliance weights (0, 0.3, 
0.6, 1) to assess how strict or flexible adherence impacts navigation efficiency and safety. This 
approach allows the evaluation of the KM-DWA algorithm. 
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3.4.2.4 Performance evaluation metrics 

This section outlines the performance outcomes from simulations designed to assess the 
integrated ontology-based knowledge maps with DWA for path-planning in MASS. The 
performance of the system was evaluated based on navigation safety, efficiency, and adherence 
to COLREGs. 

• Safety: Whether or not there was a collision, the minimum DCPA, TCPA, and the 
minimum distances to be maintained from other vessels. 

• Efficiency: Assessment of the path efficiency in terms of travel path length and travel 
time, as well as deviations from the optimal path. 

• COLREGs compliance: The distance at which the MASS begins to take proactive or 
defensive manoeuvres and whether the MASS complies with the rules for taking evasive 
actions in various scenarios, i.e., the consistency between the action recommended by 
the COLREGs and the action actually taken. 

3.4.3 Results  

3.4.3.1 Encountering individual vessels 

The simulation results for the basic DWA and KM-DWA algorithms across four scenarios—
overtaking, head-on, crossing from starboard, and crossing from port—were analysed. In 
crossing with overtaking, head-on, and starboard side approaching vessel scenarios, the 
performance metrics were evaluated for surrounding vessels with power-driven capabilities, 
and those with restricted manoeuvring were classified as type I, II, and III. The performance 
curves are shown in  

Figure 3-8, Figure 3-11, and Figure 3-12, respectively, and it is found that the algorithmic 
performance data are the same for the same encounter type. Therefore, we first present here 
three figures that are representative of the performance of all surrounding vessel types in those 
encounter scenarios. 

In the case of the vessel approaching on the port side, the execution of the algorithm notably 
differs because COLREGs require different manoeuvring performances depending on the 
vessel’s navigational priorities. Thus, two separate performance graphs were analysed: one 
where the surrounding vessel was a power-driven vessel, as shown in Figure 3-14, and the other 
where the surrounding vessel’s manoeuvring ability was classified as type I, II, or III, as shown 
in Figure 3-13. More detailed analysis of the performance of algorithms in different scenarios 
are described below: 

(1) Overtaking: The basic DWA algorithm collides with the surrounding vessel in the 
overtaking scenario, as reflected by the broken red curves of the basic DWA algorithm 
in the subplots in Figure 3-8. This indicates insufficient safety distances, according to 
the COLREGs, highlighting deficiencies in safety. Conversely, the other curves 
representing the KM-DWA variants avoid collisions altogether, reflecting a commitment 
to safety, with longer travel times as a trade-off. 

(2) Head-on: For head-on encounters, the basic DWA algorithm continued to result in 
collisions, while KM-DWA variants perform collision-free navigation, reflected by the 
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broken red curves of the basic DWA and other curves of KM-DWA variants in the 
subplots in Figure 3-11. As shown in the Heading Difference Comparison subplot of 
Figure 3-11, the KM-DWA variants execute right-turn manoeuvres as required by 
COLREGs rules, leading to longer buffering distances, presented in the Distance to 
Obstacle, DCPA, and TCPA subplots, reducing collision risks and ensuring vessel’s 
successful arrival at the destination, though resulting in a deviation from the optimal 
path (see Path Deviation Comparison subplot), signalling a strategic shift toward 
compliance with COLREGs over navigational efficiency. 

(3) Crossing: In scenarios involving crossing from the starboard and port sides, the KM-
DWA variants adhered closely to COLREGs, initiating a right-turn manoeuvre for 
positive avoidance, unlike the basic DWA algorithm, which performed non-compliant 
left-turn actions in starboard crossing scenarios (see Heading Difference Comparison 
subplot of Figure 3-12). In port-side crossings, responses varied with the surrounding 
vessel’s type/manoeuvrability. When encountering power-driven vessels, the own vessel 
maintained its course and speed for a period as per rule 17 of COLREGs, beginning a 
right-turn manoeuvre only when the surrounding vessel entered a pre-set defensive 
avoidance distance. When the surrounding vessel had inferior manoeuvrability, the own 
vessel took proactive right-turn manoeuvres to avoid the approaching vessel from the 
port side. Nevertheless, the basic DWA algorithm, while also successfully avoiding 
collisions, exhibited a gap in compliance (see Figure 3-13 and Figure 3-14) 

 
Figure 3-8: Performance comparison when MASS is overtaking the surrounding vessel with manoeuvrability, including 

power-driven ship type, type I, type II, and type III 

(4) Comparative performance analysis 
1) Proximity to obstacles: While the basic DWA algorithm maintains closer, 

consistent proximity to obstacles, reflecting a reactive stance, the KM-DWA 
algorithms demonstrate an evolution towards proactive avoidance. The transition 
from reactive to proactive is gradual with increasing COLREGs weights, 
underscoring a strategy that deliberately favours safety over directness towards 
the goal. 

2) Risk assessment (DCPA and TCPA): The riskier navigational choices of the basic 
DWA are highlighted by its uniformly lower DCPA values. In contrast, the KM-
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DWA algorithms, particularly at higher COLREGs weights, reveal a trend of 
earlier and more decisive manoeuvres to increase the distance of the closest 
approach, signifying a preference for safety. 

3) Navigational path and heading adjustments: The minimal path deviations and 
heading changes with the basic DWA suggest a preference for efficiency and direct 
routes. Conversely, the KM-DWA algorithms, especially with higher weights, 
accepted greater deviations and more significant heading adjustments to enhance 
collision avoidance and adherence to COLREGs. 

 
Figure 3-9: The overall performance comparison between DWA and KM-DWA algorithms with different COLREGs weights 

(5) Weighted Performance of KM-DWA 
1) Low COLREGs weight (0.3): The algorithm began integrating COLREGs into 

decision-making, slightly increasing the distance to obstacles, indicating a 
proactive approach while maintaining a course relatively direct towards the goal. 

2) Medium COLREGs weight (0.6): With a greater emphasis on safety, the vessel 
initiates avoidance of manoeuvres earlier, increasing path deviation and heading 
variation to ensure regulatory compliance, signalling a clear preference for safety 
over directness. 

3) High COLREGs weight (1.0): At this setting, the algorithm exhibits a marked 
preference for safety, significantly altering the vessel’s trajectory to avoid 
potential collisions. The substantial distance maintained from obstacles and the 
pronounced course corrections reflect the implementation of the principle of 
“early and broad” in COLREGs. 

Additionally, the data representation shown in Figure 3-9 provides a comprehensive 
overview of the algorithmic performances across various scenarios, illustrating distinct patterns 
in DWA and KM-DWA algorithms. The analysis of plotted metrics reveals that the KM-DWA 
algorithms consistently demonstrated longer trajectories than the basic DWA. This trend is 
evident in the cross-encounter scenarios (short paths in overtaking and head-on scenarios end 
early due to collisions), where basic DWA has shorter paths but can be more risky, as the 50% 
collision rate in these overtaking and head-on scenarios suggests. These findings underscore the 
potential risk of basic DWA, prioritising efficiency over safety. 
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Conversely, the KM-DWA variants result in longer durations, as they take more cautious 
routes to ensure full compliance with COLREG, as evidenced by the 100% compliance rate. 
This planning is evident in scenarios requiring right-crossing manoeuvres, where KM-DWA 
algorithms comply with COLREGs to avoid collisions, unlike the basic DWA, which made left-
turn decisions that may lead to higher navigational risk, achieving only a 25% COLREGs 
compliance rate. These findings highlight the robustness of KM-DWA in safely navigating 
collision avoidance scenarios and explain the extended travel times and paths observed. 

The experiments indicate that the KM-DWA algorithm adjusts its behaviour to 
accommodate these vessels’ limited manoeuvrability, thus reinforcing a safety-first approach. 
Fundamentally, while the basic DWA algorithm prioritises path efficiency—reflected in shorter 
travel times and minimal deviations—it often fails to navigate safely across various scenarios. 
The improved safety measures of the KM-DWA algorithm, such as increased distances from 
obstacles and full compliance with COLREGs, are achieved through the acceptance of longer 
travel times and greater path deviations. 

3.4.3.2 Encountering multiple vessels 

Considering the good COLREGs compliance of the KM-DWA algorithm in single-vessel 
encounter scenarios, particularly with encountering power-driven vessels and surrounding 
vessels with poor manoeuvrabilities, it is demonstrated that KM-DWA variants can account for 
the manoeuvrabilities of the surrounding vessel during collision avoidance. Therefore, this 
section focuses on whether the variant algorithms are still capable of achieving COLREGs-
compliant multi-vessel collision avoidance when considering the surrounding vessel’s 
manoeuvrabilities and approaching vessels from multiple directions simultaneously.  

For this purpose, we selected Type II as the manoeuvrability of surrounding vessels, namely, 
engaged in fishing, in a multi-vessel encounter scenario to verify whether the MASS driven by 
the KM-DWA algorithm is able to accomplish autonomous safe collision avoidance in multi-
vessel encounters. Error! Reference source not found. visualises the collision avoidance 
trajectories of MASS driven by the basic DWA algorithm and KM-DWA variants with Type II 

surrounding vessels. The whole process for collision avoidance of MASS is detailed below:  

As shown in Error! Reference source not found., KM-DWA variants demonstrate an early 
initiation of avoidance manoeuvres compared to the basic DWA algorithm, indicating a 
proactive approach to collision avoidance. KM-DWA variants differ from the basic DWA 
algorithm in the timing of manoeuvres for the initial encounter (port side crossing) with the 
surrounding vessel TS1. KM-DWA algorithms initiate the proactive avoidance manoeuvre 
earlier than the DWA algorithm and take action at the proactive avoidance distance. This 
indicates that the KM-DWA variant algorithm accounts for the manoeuvrability of the 
surrounding vessel and takes proactive actions, while the basic DWA algorithm ignores this 
situation.  

Subsequently, KM-DWA employs a course adjustment to avoid collision as it passes the 
surrounding vessel TS4, which is informed by a comprehensive evaluation based on criteria 
including collision avoidance, DCPA, and TCPA metrics. After the adjustment, the KM-DWA 
algorithm encounters another vessel, the TS2, on its starboard side, necessitating a moderate 
starboard turn in line with proactive collision avoidance strategies. This action ensures 
compliance with situational requirements and avoids excessive path deviation. The algorithm 
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then corrects its heading to pass the surrounding vessel safely, the TS3, subsequently resuming 
its original course towards the destination. These actions adhere to regulations for head-on 
encounters, including executing a starboard turn to mitigate collision risk. Upon clearing 
potential collision threats, the vessel returns to a standard navigational state and reaches its 
destination, guided by various cost functions. 

In contrast, the trajectory governed by the basic DWA algorithm exhibits fewer course 
adjustments, lacking the secondary manoeuvres evident in the KM-DWA’s initial and 
subsequent encounters. While remaining regulatory compliant, the basic DWA algorithm 
maintains closer proximity to the surrounding vessel, increasing navigation risk. Figure 3-15 
demonstrates the performance of the basic DWA algorithm and the KM-DWA variants in 
accomplishing collision avoidance in the same multi-ship encounter scenario, which is analysed 
as follows: 

(1) Distance to Obstacle and Goal 
1) DWA: Demonstrates a consistent but risk-tolerant navigational approach towards 

obstacles, e.g., lower DCPA and TCPA, and disregard when the surrounding 
vessel’s poor manoeuvrability, showing a tendency towards efficiency over safety. 

2) KM-DWA 0.3: Begins to integrate a proactive collision avoidance strategy, 
showing a slight increase in the distance to obstacles while still maintaining 
efficiency. 

3) KM-DWA 0.6 and 1.0: These settings result in a marked increase in the distance 
to obstacles, indicating a strong preference for safety. The performance curves for 
these two weights overlap, suggesting that beyond a certain threshold, increasing 
the weight assigned to COLREGs compliance does not significantly alter the 
behaviour of the algorithm under the tested conditions. 

(2) DCPA and TCPA 
1) DWA: Lower DCPA values indicate a riskier, closer approach to obstacles. 

2) KM-DWA 0.3: Shows improved safety margins with slightly higher DCPA values. 

3) KM-DWA 0.6 and 1.0: Both exhibit higher DCPA values, with a significant 
emphasis on safety and compliance, as reflected by the early transition of TCPA 
from positive to negative. The similarity in their performance curves suggests that 
both settings prioritise safety to a similar extent. 

(3) Path Deviation and Heading Difference 
1) DWA: Minimal path deviation and heading variation indicate a straightforward 

but less cautious approach. 

2) KM-DWA 0.3: Increased path deviation and heading changes indicate a shift 
towards a more safety-compliant navigation strategy. 

3) KM-DWA 0.6 and 1.0: Display the highest path deviations and heading changes, 
showcasing adherence to proactive collision avoidance. The convergence of their 
performance curves indicates a shared strategy for safety, suggesting a plateau in 
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the enhancement of safety measures when the COLREGs weight is increased 
beyond 0.6 under the tested scenarios. 

In summary, the above findings emphasise the need for an algorithmic balance between 
efficiency, safety, and regulatory compliance. The system effectively integrated data from the 
knowledge maps with the DWA in multi-vessel scenarios, demonstrating: first, the MASS 
successfully navigated complex multi-vessel encounters by prioritising actions based on safety 
and COLREGs compliance. Second, in situations with rule conflicts, KM-DWA demonstrated 
a high capability to resolve conflicts and choose the safest navigational action. Third, KM-DWA, 
particularly with higher COLREGs weights, consistently maintain safer distances from 
obstacles, suggesting a prioritisation of collision avoidance over route directness. Finally, KM-
DWA exhibit prolonged travel times, likely a reflection of their circuitous routes to ensure 
compliance with maritime rules. 

3.4.4 Discussion 

This chapter evaluates DWA against its ontology-based knowledge maps model integrated 
enhancement for MASS navigation. By embedding a knowledge maps model, the resulting 
KM-DWA algorithm aims to augment path planning with increased safety, efficiency, and 
regulatory compliance. Compared to other previous studies, the KM-DWA algorithm 
demonstrates its capability to avoid collisions while complying with COLREGs in both 
individual vessel and multi-vessel encounter scenarios.  

The trade-off between safety and efficiency: A trade-off between safety and efficiency is 
evident. As the weight of rule compliance increases, the safety level of a vessel increases while 
its efficiency decreases relatively, and vice versa. Therefore, it is necessary for MASS to set the 
weight flexibly to achieve a balance between safety and efficiency in real navigation.  

Comparison with existing studies: In this chapter, we build upon the previous studies, 
such as [193], [205], and [246], which highlighted the importance of situational awareness in 
MASS navigation. We extend the previous work [193] by constructing structured knowledge 
maps for MASS navigation that continuously update the situational information with real-time 
navigational and environmental data, thereby enhancing situational awareness. Additionally, 
our research broadens the interpretation of COLREGs by extending the scope of earlier studies 
by [41] to include a broader range of rules, scenarios, and proactive collision avoidance 
strategies. We also adapt the DWA algorithm for a 3-DOF MASS model, originally proposed 
for robotics by [63] and further applied in the maritime domain by [18]. By integrating it with 
our knowledge maps model and extended COLREGs interpretation mechanism, we enhance its 
capability of scenario recognition and COLREGs compliance. 

3-tier collision avoidance distance: The implementation of this concept provides a rule-
compliant approach to avoid collisions. The three tiers serve as triggers for initiating collision 
avoidance manoeuvers, with specific distances set for different roles under COLREGs. The 
chapter proves that vessels correctly trigger different avoidance distances based on their role—
defensive avoidance distance when acting as the stand-on vessel and active avoidance distance 
when acting as the give-way vessel. This mechanism assists vessels in integrating COLREGs 
into their collision avoidance behaviour to clarify their intentions to manned ships. 



60 Chapter 3 Situational Awareness Modelling for MASS 

 

Encountering with surrounding vessels: In individual vessel encounters, the basic DWA 
tends to prioritise direct routes, potentially compromising safety margins and COLREGs 
adherence. In contrast, the KM-DWA algorithm variants demonstrate a commitment to safety 
and regulatory compliance, even if it means accepting longer travel times and paths. 
Simulations for MASS with Type II surrounding vessels in multi-vessel encounter scenarios 
demonstrate that KM-DWA algorithms adapt their behaviour to accommodate the constrained 
manoeuvrability of these vessels (i.e., Type I, Type II, and Type III), reinforcing the safety-first 
approach. In essence, while the basic DWA algorithm prioritises path efficiency, reflected in 
shorter travel times and minimal deviation, it frequently fails to navigate safely across various 
scenarios. The KM-DWA algorithm’s safety measures, such as increased distances to obstacles 
and full compliance with COLREGs, are achieved by accepting a trade-off in the form of longer 
travel and greater path deviations. Nonetheless, the current local planner remains reactive and 
short-term in nature. In multi-vessel situations involving sequential or cascading interactions, a 
more foresighted planning mechanism—integrating global trajectory intent—may be necessary. 
Future work should consider coupling the local planner with long-horizon predictors to better 
handle temporally extended COLREGs compliance and reduce cumulative path inefficiencies. 

In summary, the KM-DWA algorithm maintains safety and navigational efficiency while 
complying with COLREGs, suggesting its potential for operational development in autonomous 
navigation. Its adaptability, allowing for flexible weight configurations to balance efficiency, 
safety, and rule compliance, is crucial. The 3-tier collision avoidance distance strategy further 
ensures that vessels can integrate COLREGs effectively, enhancing both proactive and 
defensive collision avoidance. 

3.5 Conclusions 
This chapter introduced the development of a situational awareness model designed for MASS, 
focusing on the integration of multi-source data into structured decision-making processes. The 
primary motivation behind this work was to address the challenge of translating situational 
understanding into actionable navigation strategies in dynamic and various maritime 
environments. To achieve this, an ontology-based knowledge maps model was developed as a 
semantic framework for organising and interpreting navigational data. This model provides 
MASS with enhanced situational understanding by synthesising navigational status, ensuring 
task awareness, and formulating constraints derived from motion characteristics and regulations 
such as COLREGs. 

Building upon this situational awareness foundation, the KM model was integrated with an 
adapted DWA, forming the KM-DWA framework. The framework addresses the motion 
constraints of 3-DOF MASS and replaces traditional velocity-based sampling of DWA with 
acceleration-based sampling, allowing for a more realistic representation of vessel dynamics. 
Furthermore, it incorporates 3-tier collision avoidance strategies into real-time path planning. 
This integration realises the transformation from situational awareness to decision-making, 
supporting MASS to navigate in a safe, efficient, and rule-compliant way in various contexts. 

The contributions of this chapter are twofold: first, the development of the KM model that 
facilitates the interpretation of multi-source navigational data, and second, the implementation 
of the KM-DWA path planner, which connects the situational awareness module with a 
decision-making mechanism for MASS. These efforts directly address the two questions: RQ2-
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iii: How can data from multiple sources be effectively integrated for situational awareness? and 
RQ2-iv: How can a local path-planning algorithm tailored to 3-DOF vessels be developed, 
integrating the results of situational awareness? By providing a foundation of situational 
awareness and its integration into decision-making, this chapter establishes a key component of 
the thesis framework. The subsequent chapter builds on this framework by introducing human-
mimic navigation strategies, leveraging navigational preferences to enhance collision avoidance 
in mixed waterborne environments. 
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Figure 3-11: Performance comparison when MASS encounters the surrounding vessel with manoeuvrability, including 

power-driven ship type, type I, type II, and type III and forming the head-on situation 

 
Figure 3-12: Performance comparison when MASS encounters the surrounding vessel with manoeuvrability, including 

power-driven ship type, type I, type II, and type III approaching from the starboard side 

 
Figure 3-13: Performance comparison when MASS encounters the surrounding vessel with manoeuvrability, including type I, 

type II, and type III approaching from the port side 
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Figure 3-14: Performance comparison when MASS encounters the surrounding vessel with the ship type of power-driven 

approaching from the port side 

 
Figure 3-15: Performance comparison between different algorithms in the multi-vessel encounter scenario 



 

65 

Chapter 4. Human-Mimic Navigation and 
Decision-making by MASS  

Building on the decision-making framework proposed in Chapter 2 and enriched with the 
situational awareness module developed in Chapter 3, this chapter focuses on extending the 
framework by addressing human-mimic navigation of Maritime Autonomous Surface Ships 
(MASS) in Mixed Waterborne Transport Systems (MWTS). Incorporating human navigational 
preferences into autonomous decision-making can help manned vessels better understand the 
intentions of MASS, thereby supporting smoother interaction and ensuring both safety and 
operational efficiency. To achieve this, a preference-aware trajectory predictor is developed, 
using historical movement data to generate recommended routes aligned with human 
navigational tendencies during vessel encounters. This proactive mechanism improves 
interaction fluidity by predicting collision-free paths that align with human expectations. 
Meanwhile, the reactive path-planning method (KM-DWA) from Chapter 3 remains active as a 
safety guarantee, ensuring local refinement in high-risk scenarios when immediate evasive 
actions are necessary. By integrating these proactive and reactive strategies, this chapter 
addresses research questions RQ3-v, RQ3-vi, and RQ3-vii, further enhancing the decision-
making framework to support navigational safety, efficiency, and interaction smoothness of 
autonomous vessels in MWTS. 

This chapter is organised as follows: Section 4.1 introduces the research context. Section 4.2 
reviews existing methodologies for collision avoidance and highlights the gaps in handling 
human-MASS interaction dynamics. Section 4.3 describes the development of the preference-
aware trajectory prediction model and its integration into the decision-making framework. 
Section 4.4 evaluates the predictor’s performance and validates the proposed framework 
through simulation experiments. Finally, Section 4.5 concludes this chapter. 
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4.1 Introduction 
Navigating safely and efficiently in mixed waterborne transport systems (MWTS) requires 
Maritime Autonomous Surface Ships (MASS) to interact seamlessly with human-operated 
vessels. Current collision avoidance methods primarily focus on algorithmic capabilities such 
as deterministic path planning and optimisation algorithms that prioritise minimising travel time 
or fuel consumption [5] while maintaining navigational safety and complying with International 
Regulations for the Prevention of Collisions at Sea (COLREGs). These methods often use pre-
defined rules or optimisation criteria to generate collision-free paths for vessels. However, most 
of these models typically overlook the dynamic and interactive behaviours of surrounding 
vessels. Human-operated ships tend to adjust their manoeuvres based on the perceived 
intentions of neighbouring vessels, a behaviour that is not accounted for in many algorithmic 
models. This oversight can lead to less accurate and interpretable predictions in real-time 
collision scenarios.  

Additionally, existing models often fail to incorporate dynamic manoeuvres such as high 
speed with a small starboard side turn and a minor acceleration. These navigational behaviours, 
typically exhibited by human operators to ensure efficient and safe navigation, highlight the 
importance of mimicking human-like decision-making behaviours, which will be referred to in 
the present research as ‘human preferences’. By incorporating such human-mimic behaviours, 
future models could better capture human operators’ adaptive and flexible nature, improving 
MASS’s accuracy and safety in a mixed waterborne environment. 

To bridge this gap, it is essential to incorporate human navigational preferences into 
predictive modelling and decision-making frameworks. By leveraging Automatic Identification 
System (AIS) data, which captures vessel interactions and manoeuvres, it is possible to extract 
meaningful insights into human decision-making dynamics in collision avoidance scenarios. 
Integrating these insights into the decision-making framework enables MASS to predict the 
intentions and trajectories of human-operated vessels, fostering safer and more efficient 
interactions.  

This chapter addresses the need for preference-aware navigation by developing a predictive 
trajectory model based on the identification of human navigational preferences. Specifically, a 
two-step approach is adopted: (1) extracting navigational preferences from AIS data using an 
LSTM-autoencoder and K-means clustering to model manoeuvring behaviours, and (2) 
developing a Multi-Task Learning (MTL) Sequence-to-Sequence LSTM model with an 
attention mechanism (MTL-Seq2Seq-LSTM-Att) to predict the trajectories of both own and 
neighbouring ships. These preference-aware predictions are integrated into the decision-making 
framework, proposed in Chapter 2 and enriched with a situational awareness module in Chapter 
3, extending its capabilities to enable smoother and more interpretable interactions in MWTS.  

4.2 Recent work 
In the crucial domain of maritime navigation, the detection of collision conflicts has evolved 
greatly, incorporating state-of-the-art big data analytics, predictive modelling, and 
computational techniques to improve the safety navigation of MASS, by enhancing MASS’s 
situational awareness, predictive capabilities, and further decision-making. 
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• Collision conflict detection 

A study by [33] utilises AIS data to analyse collision risks dynamically by using a velocity 
obstacle approach, highlighting the necessity of timely and accurate risk assessments. Similarly, 
research conducted by [124] applied spatial clustering and analytical methods to manage 
collision risks. Additionally, an investigation by [231] estimates collision risk among multiple 
vessels and leverages spatiotemporal patterns and a two-stage Monte Carlo simulation 
algorithm, thereby enhancing prediction accuracy and efficiency for potential collision 
scenarios. Research conducted by [120] and [177] focused on identifying high-collision 
potential areas and analysing ships’ reactions in near-collision scenarios. Additionally, the 
studies by [241] and [67] employed geometric and operational parameter analyses to aid 
proactive collision avoidance. These studies contributed to improved targeted interventions and 
collision conflict detection capabilities.  

The concept of ship domain and the Collision Threat parameter area method have been 
extensively studied by [198] and [200]. These approaches integrate environmental factors and 
ship stability considerations, supporting navigators executing informed collision avoidance 
manoeuvres.  

Studies by [224] and [92] have examined the impact of maritime traffic complexity and the 
application of Velocity Obstacle algorithms on collision conflict detection, respectively. By 
addressing the limitations of traditional techniques and introducing methods that consider non-
linear and time-dependent ship trajectories, these studies offer more realistic solutions for 
collision avoidance and reducing false alarms. Furthermore, the application of knowledge 
graphs has been demonstrated to uncover correlations between critical factors in ship collision 
scenarios [64], enabling the identification of causal relationships and supporting decision-
making in collision avoidance scenarios.  

These efforts highlight the evolution of maritime collision avoidance strategies, showcasing 
innovative methods that integrate dynamic risk assessments, spatial clustering, and simulation 
algorithms to improve safety and decision-making in complex maritime environments. While 
these approaches are well-established, our study presents a method aimed at extracting 
trajectory conflict pairs from AIS data. By focusing on identifying vessel trajectory pairs at risk 
of collision and defining relevant navigational parameters, this method provides a tailored 
approach for detecting potential collisions for further navigational preferences extraction. 

• Intention identification 

In maritime navigation, the key task of predicting vessel intentions to enhance safety and 
prevent collisions has seen great advancements through innovative methodologies.  

Research by [149] introduced trajectory prediction for autonomous vessels, emphasising the 
need for ships to anticipate neighbouring movements for collision avoidance. This foundational 
work underscores the importance of predictive analytics in autonomous maritime navigation. 
Expanding on predictive approaches, the investigation by [48] focused on situational awareness 
by estimating intentions of give-way and stand-on ships, enabling vessels to make informed 
decisions and enhance proactive safety measures. 

The study by [87] applied semantic analysis and topic modelling borrowed from Natural 
Language Processing to maritime trajectory data. By identifying mobility patterns, this work 
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contributed to route discovery and anomaly detection. The study by [199] utilised the ship 
domain concept to precisely predict time avoidance manoeuvres and improve decision-making 
accuracy in critical scenarios. Additionally, environmental factors that influence vessel 
behaviour are important to be considered in intention identification. For example, the spatio-
temporal correlation between tides and ship movements in estuarine ports [187]. 

In leveraging AIS, the research presented by [240] developed a knowledge-based decision 
support system using AIS data to guide ship collision avoidance, including encounter 
identification, behaviour extraction, and scenario matching to generate safe navigation paths. 
Additionally, research presented by [244] introduced a dynamic system for multi-ship collision 
avoidance, focusing on predicting vessel intentions through an iterative observation-inference-
prediction-decision model.  

The approach developed by [30] investigated the cooperative control of autonomous vessels, 
particularly in the formation and maintenance of a “vessel train.” This study highlights the 
significance of coordinated behaviour and communication among vessels to improve 
navigational safety and respond effectively to dynamic maritime environments. 

While existing studies have made much progress in intention identification and enhancing 
situational awareness, many approaches focus on specific scenarios or utilise methods that may 
not fully capture the sequential features of time-series navigational data. For example, directly 
applying clustering techniques to high-dimensional trajectory data may be a challenge due to 
the complexity and temporal dependencies inherent in such data. This suggests a need for 
methods that can better account for these temporal dynamics, allowing for a more detailed 
analysis of vessel intentions during the interaction.  

• Trajectory prediction 

LSTM networks are increasingly recognised for their effectiveness in sequence prediction, 
making them particularly well-suited for forecasting vessel trajectories using AIS data. 
Research has consistently highlighted LSTM’s capability to handle the sequential nature of AIS 
data, such as the work by [204] which focuses on dynamically adapting to the most recent 
known positions.  

Building on the foundational strengths of LSTM, recent research has introduced hybrid 
models that combine LSTM’s predictive capabilities with other computational techniques to 
better address the particularities of the maritime environment. For example, the study by [122] 
leveraged the learning capacity of LSTM within an IoT framework to promote smart traffic 
services, demonstrating high accuracy and robustness in predicting vessel trajectories. 
Furthermore, the research by [121] proposed an interactive vessel trajectory prediction 
framework, embedding the Quaternion Ship Domain into LS and addressing dynamic 
interactions between neighbouring vessels. It has demonstrated better performance than existing 
methods. 

Moreover, integrating LSTM with emerging technologies like graph convolutional 
networks and context-aware systems underscores a potential trend in maritime traffic 
management. Research presented by [65] utilised an LSTM within a spatiotemporal edge and 
node attention graph convolutional network for handling multi-ship encounters. Additionally, 
research by [245] proposed a Dynamic Spatio-Temporal Graph Attention Network 
incorporating LSTM for short-term motion pattern perception. Additionally, the study 



4.3 Navigational preference modelling and extraction 69 

 

conducted by [220] introduced a deep attention-aware spatiotemporal graph convolutional 
network, including an LSTM module for motion feature extraction, improving prediction 
accuracy in complex sea areas. In addition, the incorporation of contextual information into 
LSTM models has also been shown to enhance prediction outcomes. The study by [142] 
designed a context-aware LSTM framework that integrates contextual information such as wind, 
wave size, and current, showing an improvement in accuracy over standard LSTM approaches.  

Additionally, the application of LSTM in conjunction with clustering techniques has proven 
effective in enhancing situational awareness of autonomous ships and aiding proactive collision 
avoidance strategies. Research by [151] implemented clustering techniques combined with 
LSTM for extracting trajectory segments from historical AIS data. Another study by [235] 
developed a model combining the DBSCAN algorithm and LSTM, which cluster vessel tracks 
before prediction. The study presented by [7] enhanced short-term vessel trajectory prediction 
by clustering routes and using Random Forest algorithms, demonstrating accuracy 
improvements for heterogeneous and multi-modal movement patterns. 

Seq2seq models have also been introduced into maritime trajectory prediction. A multi-task 
learning model based on the attentional seq2seq framework was proposed by [97], jointly 
learning route patterns and future trajectories. The study by [54] employed encoder-decoder 
architectures for ship trajectory prediction using AIS data and achieved an accurate prediction. 

The application of LSTM and its variants in vessel trajectory prediction has demonstrated 
much progress in accuracy and reliability. By integrating LSTM with clustering techniques, 
context-aware frameworks, graph convolutional networks, and other models, researchers have 
developed various methods that address the prediction of ship trajectories. The adaptability of 
LSTM makes it an essential technology in vessel trajectory prediction. 

4.3 Navigational preference modelling and extraction 
This section presents the methodological approach to model human navigational preferences in 
collision avoidance scenarios. We detail the process from navigational preference definition to 
collision conflict pairs extraction and preference extraction based on an LSTM-autoencoder. 

Understanding and predicting the relative dynamic relationship between two vessels is 
crucial in vessel collision avoidance decision-making, especially in relatively open waters, such 
as the open sea or port areas. In these environments, geographical constraints on vessel 
movement are minimal, and collision avoidance decisions primarily depend on relative motion 
parameters. This study examines navigation preferences in these scenarios with minimal 
geographical constraints. 

Definition: Human Navigational preference refers to the decision-making tendencies and 
behavioural patterns exhibited by a vessel within the relative motion space based on the 
dynamic relationship between two vessels. This preference is generally independent of absolute 
position and heading, reflecting the vessel’s operators’ choices in collision avoidance through 
relative motion. 

Symbols: 

SOG1, SOG2: the speeds over ground of the own and the neighbouring ships, respectively; 
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ROT1, ROT2: Rates of turn of the own ship and the neighbouring ship, respectively; 

ACC1, ACC2: Acceleration of the own ship and the neighbouring ship, respectively; 

𝛼𝛼, 𝜙𝜙: Relative bearing and encounter angle ; 

DCPA: Distance closest point of approach; 

TCPA: Time closest point of approach. 

The features presented in Table 4-1 for modelling navigational preferences are selected to 
identify the preference required for collision avoidance. 

Table 4-1 Features selected for preference identification in collision avoidance scenarios 

Variables Explanation of selection 
SOG1, SOG2 Indicate the rates at which two vessels are approaching or moving away from each other. 
ROT1, ROT2 Indicate the rates at which two vessels change their headings. 
ACC1, ACC2 Indicate the rates at which two vessels change their speeds. 

𝛼𝛼, 𝜙𝜙 Uniquely determine the encounter situation and navigational priority between vessels. 
DCPA, TCPA Denotes the minimum distance and time until the vessels reach the closest point of approach. 

4.3.1 Collision conflict pairs extraction 

In order to collect information from ship movement for further investigation, we propose an 
algorithm to extract collision conflict pairs from raw AIS data (see Algorithm 4-1). The 
algorithm focuses on identifying instances where vessels come within a pre-defined proximity 
threshold, thereby filtering out irrelevant data and concentrating on encounters that may call for 
navigational adjustments. This procedure ensures that only noticeable events are analysed for 
potential collision risks. This algorithm employs geohashing to facilitate quick spatial 
comparisons, ensuring the efficiency of detecting potential collisions. 

The detection process begins with preprocessing raw AIS data to ensure high-quality and 
reliable input. This includes interpolating missing data, detecting and removing outliers, and 
sampling the data for efficient processing. Trajectories are segmented based on a time threshold 
∆𝑡𝑡 , set at three minutes, to differentiate continuous from discontinuous vessel movements. 
Geohashes are then calculated for each segment, converting geographic coordinates into 
compact alphanumeric strings. This encoding method allows for rapid spatial comparisons 
within the same geohash bucket [148], identifying potential collision pairs based on spatial 
proximity and temporal overlap. 

Finally, the dataset is prepared and indexed by {(𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1), (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2)}  of 
potentially colliding ship pairs. Here, 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1 represents the MMSI number (Maritime Mobile 
Service Identity) of the first ship in the pair, and 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1 refers to the 𝑠𝑠1-th trajectory segment of 
that ship. Similarly, 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2  correspond to the MMSI number and trajectory 
segment of the second ship. Additionally, critical navigational parameters, such as DCPA, TCPA, 
𝛼𝛼, 𝜑𝜑 , Encountered situations (ES), and navigational priorities (NP), are calculated for each 
identified potential collision pair. This data provides a foundation for further data-driven 
preferences investigation. 
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4.3.2 LSTM-Autoencoder for preference extraction 

To capture and represent navigational preferences, we employed an LSTM-based autoencoder 
architecture, as illustrated in Figure 4-1. The process begins with an input sequence 𝑚𝑚, which 
consists of multiple interaction features (SOG1, SOG2, ACC1, ACC2, ROT1, ROT2, DCPA, 
TCPA, 𝛼𝛼 and 𝜙𝜙) that characterise the dynamic interaction between vessels over time. 

Algorithm 4-1: POTENTIAL COLLISION CONFLICT PAIRS DETECTION AND CONTEXTUAL INFO ANNOTATION 
Input: Raw AIS data 
Output: List of potential collision pairs 
 Step 1: Preprocess the AIS data 
1: Apply interpolation, outlier detection, and sampling on AIS data. 
 Step 2: Trajectory Segmentation 
2: for each mmsi 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚in AIS data do 
3:  Segment trajectories based on time intervals exceeding ∆𝑡𝑡 (𝑜𝑜. 𝐻𝐻. , 3 𝑚𝑚𝑚𝑚𝑎𝑎𝑢𝑢𝑡𝑡𝑜𝑜𝑠𝑠). 
4:  Trajectory segmentation and storage: 𝐻𝐻𝑝𝑝𝑎𝑎_𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚,𝑠𝑠  ←  (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠) 
 Step 3: Compute Geohashes for Trajectory Segments 
5 Initialise dictionary GeohashBuckets. 
6 for each (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠) do 
7  Calculate geohashes for each position (𝑐𝑐𝑎𝑎𝑡𝑡𝑚𝑚𝑡𝑡𝑢𝑢𝑎𝑎𝑜𝑜, 𝑐𝑐𝑆𝑆𝑎𝑎𝐻𝐻𝑚𝑚𝑡𝑡𝑢𝑢𝑎𝑎𝑜𝑜) in (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠) 
8  Store (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠) in GeohashBuckets under its geohash. 
 Step 4: Identify Potential Collision Pairs 
9 Initialise set PotentialCollisions. 
10 for each bucket in GeohashBuckets do 
11  if length of bucket > 1 then 
12   for all unique pairs {(𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1), (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2)} with (𝑚𝑚1 ≠ 𝑚𝑚2) in bucket 

do 
13    if time windows of {(𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1), (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2)} overlap then 
14     Add {(𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1), (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2)} to PotentialCollisions. 
 Step 5: Calculate Navigational Parameters 
15 for each pair in PotentialCollisions do 
16  Compute DCPA, TCPA, Encounter angle, and Relative bearing. 
17  Identify encounter scenarios and navigational priorities. 
18 Results: 
 Index: {(𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠1), (𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑜𝑜𝐻𝐻𝑠𝑠2)} 
 Manoeuvring Info: {𝑆𝑆𝑂𝑂𝐶𝐶1, 𝑅𝑅𝑂𝑂𝐻𝐻1, 𝑆𝑆𝐶𝐶𝐶𝐶1, 𝑆𝑆𝑂𝑂𝐶𝐶2, 𝑅𝑅𝑂𝑂𝐻𝐻2, 𝑆𝑆𝐶𝐶𝐶𝐶2, 𝛼𝛼, 𝜙𝜙} 
 Contextual Info: {DCPA, TCPA, ES, 𝑁𝑁𝑃𝑃1, 𝑁𝑁𝑃𝑃2} 
Return List of potential collision pairs with contextual information 

 
Figure 4-1 The scheme of LSTM-Autoencoder for compressing sequence manoeuvres data. 

LSTM-Encoder (f): The LSTM-Encoder, represented by the function f, processes this input 
sequence 𝑚𝑚  to generate a compressed low-dimensional representation known as the 
Representation Vector. This vector refers to the latent space representation of the original 
feature sequence, serving as a compact representation of the vessel’s interactive actions. 

LSTM-Decoder (g): The latent vector, that is, the representation vector, is then fed into the 
LSTM-Decoder, denoted by the function g, which attempts to reconstruct the original 
interaction sequence 𝑚𝑚�. The objective of this autoencoder is to minimise the difference between 
the original input 𝑚𝑚  and the reconstructed output 𝑚𝑚� , ensuring that the representation vector 
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accurately captures the relevant features of the interaction sequence. The loss function of the 
autoencoder is represented by: 

𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠_𝑎𝑎𝑢𝑢𝑡𝑡𝑆𝑆𝑜𝑜𝑎𝑎𝑐𝑐𝑆𝑆𝑎𝑎𝑜𝑜𝑝𝑝 =
1
𝑁𝑁

�‖𝑥𝑥𝑖𝑖 − 𝑥𝑥� 𝑖𝑖‖2
𝑁𝑁

𝑚𝑚=1

 (4-1) 

Subsequent to the autoencoding process, the Representation Vector is subjected to K-
means clustering for preference extraction. This step groups similar vectors together, identifying 
distinct navigational preferences. These preferences are derived from patterns within the 
interaction sequences and provide valuable insights into the types of interactive manoeuvres in 
collision avoidance scenarios. 

4.4 Preference-based trajectory prediction 

4.4.1 Movement predictor design 

The movement predictor proposed for trajectory prediction, that is, a multi-task learning 
Sequence-to-Sequence LSTM model, enhanced with the Luong attention mechanism [129], 
which aligns and weighs the importance of different input sequence elements, is employed to 
predict vessels’ future movement in collision avoidance scenarios. An LSTM classifier is 
employed to predict the preference based on the same features as the input features of the 
LSTM-autoencoder. Furthermore, the navigational preferences serve as the specific tasks to 
supervise the predictive process, ensuring the prediction accuracy and stability.  

The model consists of the following elements, as illustrated in Figure 4-2. 

 
Figure 4-2 The diagram of preference-based movement predictor for trajectory prediction 

(1) Encoder 
The encoder utilises an LSTM network to process a historical data sequence over a defined 

time window as the input, including the positions of both the own and the neighbouring ships, 
the encountered scenario, and navigational priority. The LSTM then generate a series of hidden 
states that capture temporal dependencies and contextual features of vessel interactions. These 
representations are essential for the decoder to generate context-aware future trajectories. The 
mathematical representation of the encoder is given by: 

(𝐡𝐡𝑡𝑡
𝑑𝑑𝑚𝑚𝑐𝑐 , 𝐈𝐈𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰) = LSTM(𝑚𝑚𝑡𝑡 , 𝐡𝐡𝑰𝑰−𝟏𝟏
𝑰𝑰𝑰𝑰𝑰𝑰 , 𝐈𝐈𝑰𝑰−𝟏𝟏

𝑰𝑰𝑰𝑰𝑰𝑰), (1 ≤ 𝑡𝑡 ≤ 𝐻𝐻𝑠𝑠) (4-2) 

where 𝑚𝑚𝑡𝑡  is the input feature vector at time t, 𝐻𝐻𝑠𝑠  refers to the length of the input sequence, 
𝐡𝐡𝑡𝑡

𝑑𝑑𝑚𝑚𝑐𝑐 and 𝐈𝐈𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰 are the hidden and the cell states of the LSTM at time t. 𝐡𝐡𝑰𝑰−𝟏𝟏

𝑰𝑰𝑰𝑰𝑰𝑰 and 𝐈𝐈𝑰𝑰−𝟏𝟏
𝑰𝑰𝑰𝑰𝑰𝑰 represent 

the hidden and cell states from the previous time step, respectively. 
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(2) Classifier 
The preference is recognised by an LSTM classifier, which receives the same features as 

the LSTM-autoencoder with the time length of 𝐻𝐻𝑠𝑠 to predict the preference. The representation 
is given by: 

ypref = softmax�𝐖𝐖pref𝐡𝐡𝑡𝑡𝑠𝑠
𝑰𝑰𝑰𝑰𝑰𝑰 + 𝐎𝐎pref� (4-3) 

where ypref represents the navigational preference class of prediction, 𝐖𝐖𝐏𝐏𝐏𝐏𝐞𝐞𝐩𝐩, 𝐎𝐎𝐏𝐏𝐏𝐏𝐞𝐞𝐩𝐩 refer to the 
weights and bias vectors, respectively. 

(3) Task-specific decoder 
The preference predicted by the classifier is then transmitted into the MTL-Seq2Seq-LSTM-

Att model, where the preference is taken as the specific task to decode the input sequences to 
ensure the alignment between realistic navigational strategies. 

𝐡𝐡𝑡𝑡+1
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, 𝐈𝐈𝑡𝑡+1

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 = LSTM�𝐏𝐏𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, 𝐡𝐡𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, 𝐈𝐈𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕� (4-4) 

here 𝐏𝐏𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 is the input to the decoder at time step t, and 𝐡𝐡𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 and 𝐈𝐈𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 are the hidden state and 

cell state of the decoder, respectively. 

(4) Attention mechanism 
The Luong attention is employed in our model to enhance the relevance and precision of 

the generated sequences. At each time step t, the decoder utilises a task-oriented attention 
mechanism to weigh the encoder outputs, producing the corresponding context vector 𝐈𝐈𝑡𝑡. This 
process aligns the decoders’ focus with the most relevant features of the input sequence, thereby 
ensuring that subsequent interactive manoeuvres can be captured based on the ship trajectories 
over a given timeframe. 

𝛼𝛼𝑡𝑡(𝑠𝑠) = softmax �score�𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, �̅�𝐡𝑠𝑠�� =

exp �score�𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, �̅�𝐡𝑠𝑠��

∑ exp �score�𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, �̅�𝐡𝑠𝑠′��𝑠𝑠′

 (4-5) 

𝑠𝑠𝑐𝑐𝑆𝑆𝑝𝑝𝑜𝑜�𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, �̅�𝐡𝑠𝑠� = 𝐡𝐡𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕𝑡𝑡𝑾𝑾𝑚𝑚�̅�𝐡𝑠𝑠 (4-6) 

𝐈𝐈𝑡𝑡 = � 𝛼𝛼𝑡𝑡
𝑠𝑠

(𝑠𝑠) ∙ �̅�𝐡𝑠𝑠 (4-7) 

where 𝛼𝛼𝑡𝑡(𝑠𝑠)  refers to the attention weight for encoder state s at time t, �̅�𝐡𝑠𝑠  represents each 
encoder’s hidden state, and the score �𝐡𝐡𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, �̅�𝐡𝑠𝑠� is the score function that measures the match 
between the decoder state 𝐡𝐡𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 and the encoder state �̅�𝐡𝑠𝑠 through the trainable weight matrix 
𝑾𝑾𝑚𝑚. 

The attentional state of the decoder ℎ�𝑡𝑡 is updated through: 

ℎ�𝑡𝑡 = tanh�𝑆𝑆𝑐𝑐 ∙ concat(𝑐𝑐𝑡𝑡; ℎ𝑡𝑡
′ )� = tanh(𝑆𝑆𝑐𝑐 ∙ [𝑐𝑐𝑡𝑡; ℎ𝑡𝑡

′ ]) 

with 𝑆𝑆𝑐𝑐 being a trainable parameter matrix with the dimension of [𝑎𝑎ℎ × 2𝑎𝑎ℎ] transforms the 
context vector 𝑐𝑐𝑡𝑡 and decoder hidden state ℎ𝑡𝑡

′  into an attentional hidden state. 

(5) Output layer 

(𝐡𝐡𝑡𝑡
𝑑𝑑𝑚𝑚𝑐𝑐 , 𝐈𝐈𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰) = LSTM(𝑚𝑚𝑡𝑡 , 𝐡𝐡𝑰𝑰−𝟏𝟏
𝑰𝑰𝑰𝑰𝑰𝑰 , 𝐈𝐈𝑰𝑰−𝟏𝟏

𝑰𝑰𝑰𝑰𝑰𝑰), (1 ≤ 𝑡𝑡 ≤ 𝐻𝐻𝑠𝑠) (4-8) 
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𝐏𝐏𝑡𝑡
𝑡𝑡𝑚𝑚𝑠𝑠𝑘𝑘 = 𝐖𝐖𝒐𝒐𝒐𝒐𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕�𝐈𝐈𝑡𝑡; 𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕� + 𝐎𝐎𝒐𝒐𝒐𝒐𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 (4-9) 

where 𝐖𝐖𝒐𝒐𝒐𝒐𝒐𝒐
𝒐𝒐𝒕𝒕𝒕𝒕𝒕𝒕 is the weight matrix for the linear transformation of the specific task, 𝐎𝐎𝒐𝒐𝒐𝒐𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 is the 
bias vector for a specific task. 

4.4.2 Extended KM-DWA decision-making 

In order to ensure safe and efficient navigation in mixed waterborne transport environments, 
this study proposes a decision-making framework for MASS by integrating the predictive 
model above with previous work. This section details how our framework employs the 
predictive model introduced in the previous section and integrates it with Knowledge Maps 
(KM) developed in our previous work [193] and Local Planner Dynamic Window Approach 
(DWA) proposed in a subsequent study [192]. The framework is illustrated in Figure 4-3. 

 
Figure 4-3 The diagram of the decision-making framework based on trajectory prediction 

The core components and their interactions are outlined as follows: 

(1) Knowledge Maps (KM): The module processes real-time environmental data and 
historical movement trajectories to support other modules. It provides inputs for the 
Movement Predictor and decision-making algorithms by transferring relevant 
requirements to executable actions. This module updates continuously, ensuring the 
system operates with accurate context-aware information, as detailed in [193]. 

(2) Movement Predictor: When surrounding vessels are detected, this module employs the 
prediction model to forecast the trajectories of both the own and neighbouring ships. 
Based on these predicted trajectories, the module constructs the reference path, a human-
preferred evasive route for the own ship in the current collision avoidance scenario. This 
reference path ensures that the MASS behaves in a manner that is predictable and 
comprehensible to human operators on nearby vessels, reducing the potential for 
misinterpretation of the MASS’s intentions.  

(3) Risk Assessment: Risk Assessment evaluates potential collision risks based on pre-
defined safety thresholds, such as DCPA and TCPA, considering the manoeuvrability of 
the own ship. As shown in the bottom-right part of Figure 4-3, if any risk is detected, 
the local planner (KM-DWA) proposed by [192] implements the local planning task for 
refining the reference path. Conversely, if no risks are detected, the vessel continues to 
follow the reference path. This mechanism ensures the navigational safety of MASS in 
dynamic environments. 

(4) Local Planner - KM-DWA: If a collision risk is detected, the Local Planner module is 
activated. Using the KM-DWA algorithm, this module refines the reference path by 
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making localised adjustments to mitigate collision risks. This refinement does not 
involve generating a completely new path; instead, it focuses on fine-tuning the existing 
reference path to adhere closely to human navigational preferences. The updated 
reference path ensures that the MASS avoids collisions while navigating in a manner 
that remains predictable and understandable to human operators on surrounding vessels. 

(5) Path Tracking: This module ensures accurate execution of the reference path. A non-
linear model predictive control (MPC) algorithm proposed by [250] is employed in this 
decision-making framework to track the reference path. 

4.5 Model parameters 
(1) LSTM-autoencoder 

1) Model Structure: The LSTM-Autoencoder consists of an encoder and a decoder, 
each comprising two LSTM layers. The encoder compresses the input sequence 
with a hidden dimension of 128 into a lower-dimensional latent representation 
with a dimension of 64 while the decoder reconstructs the sequence from this 
compressed form. 

2) Training: The training process utilises the AdamW optimiser with a learning rate 
of 0.001, balancing effective learning and regularisation. Additionally, a 
ReduceLROnPlateau scheduler is applied, reducing the learning rate when the 
model’s performance plateaus and helping to fine-tune the model over training 
epochs. 

(2) MTL-Seq2Seq-LSTM-Att model 
1) Model Structure: The encoder and decoder consist of two LSTM layers and a 

hidden dimension of 128. The encoder processes the input sequence to capture 
temporal patterns and compresses this information into a context vector, while the 
decoder outputs the corresponding future trajectories based on the given sequence. 

A custom loss function was implemented to handle the multi-output nature of the 
task, particularly focusing on the accuracy of predicted trajectories for both the 
own vessel and the neighbouring vessel. 

2) Loss function: The primary goal of trajectory prediction is to ensure that the 
predicted trajectories of each vessel closely match the actual observed trajectories 
throughout the sequence. Average Displacement Error (ADE) and Final 
Displacement Error (FDE) are employed together to achieve this alignment. ADE 
measures the average deviation between the predicted and actual positions over 
the entire trajectory, ensuring that the model tracks the vessel’s movement across 
all time steps. FDE targets the accuracy at the final position of the trajectory, 
ensuring that the final point of the predicted trajectory is as close as possible to 
the actual final one, which is critical for the overall fidelity of the trajectory 
prediction.  

The total loss is a weighted sum of the ADE and FDE for both the own vessel and 
the neighbouring vessel, weighed by pre-defined parameters ade_weight and 
fde_weight, as shown in Equation (4-10).  



76 Chapter 4 Human-Mimic Navigation and Decision-making by MASS 

 

𝐻𝐻𝑆𝑆𝑡𝑡𝑎𝑎𝑐𝑐 𝑐𝑐𝑆𝑆𝑠𝑠𝑠𝑠 =  𝑎𝑎𝑎𝑎𝑜𝑜_𝑤𝑤𝑜𝑜𝑚𝑚𝐻𝐻ℎ𝑡𝑡 × (𝑆𝑆𝐷𝐷𝐸𝐸_𝑆𝑆𝑤𝑤𝑎𝑎 + 𝑆𝑆𝐷𝐷𝐸𝐸_𝑡𝑡𝑎𝑎𝑝𝑝) + 𝑆𝑆𝑎𝑎𝑜𝑜_𝑤𝑤𝑜𝑜𝑚𝑚𝐻𝐻ℎ𝑡𝑡 × (𝐹𝐹𝐷𝐷𝐸𝐸_𝑆𝑆𝑤𝑤𝑎𝑎 + 𝐹𝐹𝐷𝐷𝐸𝐸_𝑡𝑡𝑎𝑎𝑝𝑝) (4-10) 

In this study, the weights ade_weight = 0.6 to and fde_weight = 0.4 are chosen to 
balance trajectory accuracy and destination precision. The choice of 0.6 for ADE 
prioritises the accuracy of the entire trajectory, which is critical for real navigation 
and safety. By assigning 0.4 to FDE, we ensure that destination precision remains 
essential but without overemphasising the endpoint at the expense of intermediate 
accuracy. This ratio was chosen based on preliminary experiments, which 
indicated that a higher weight on FDE could lead to less accurate trajectory 
predictions, while this balance yielded more reliable overall performance. 

3) Runtime performance: This module operates as a real-time part of the decision-
making framework, predicting vessel trajectories in the next few minutes. 
Runtime performance is critical for ensuring the system’s feasibility in real-time 
scenarios, which is evaluated by measuring average runtime across multiple trials 
with an 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz processor. 

Several metrics were used to assess the model’s performance: 

(i) Root Mean Squared Error (RMSE): RMSE was calculated to measure the average 
magnitude of reconstruction errors, with a lower RMSE indicating better model 
performance. 

𝑅𝑅𝐻𝐻𝑆𝑆𝐸𝐸 =  �
1
𝑎𝑎

�(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2

𝑚𝑚

𝑚𝑚=1

 

where, 𝑦𝑦𝑚𝑚 represents the actual value, 𝑦𝑦�𝑚𝑚 represents the predicted value, and n is 
the number of data points.  

(ii) Mean Squared Error (MSE): MSE was calculated to measure the average 
magnitude of the squared reconstruction errors, with a lower MSE indicating 
better model performance. 

𝐻𝐻𝑆𝑆𝐸𝐸 =
1
𝑎𝑎

�(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2
𝑚𝑚

𝑚𝑚=1

 

(iii) Mean Absolute Error (MAE): MAE provided another measure of reconstruction 
accuracy, focusing on the absolute differences between the actual and predicted 
values. 

𝐻𝐻𝑆𝑆𝐸𝐸 =
1
𝑎𝑎

�|𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚|
𝑚𝑚

𝑚𝑚=1

 

(iv) R-Squared (𝑅𝑅2 ): 𝑅𝑅2  was used to quantify how well the model captured the 
variance in the data, with a value closer to 1 indicating better explanatory power. 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2𝑚𝑚

𝑚𝑚=1
∑ (𝑦𝑦𝑚𝑚 − 𝑦𝑦�)2𝑚𝑚

𝑚𝑚=1
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where, 𝑦𝑦� is the mean of the actual values. 

(v) Variance: Variance was used to measure the spread of the prediction errors, 
denoted by 𝑉𝑉𝑎𝑎𝑝𝑝. It indicates the degree to which the predicted values differ from 
the mean of the actual values. Lower variance suggests more consistent model 
predictions.  

𝑉𝑉𝑎𝑎𝑝𝑝 =
1
𝑎𝑎

�(𝑦𝑦𝑚𝑚 − 𝑦𝑦�)2
𝑚𝑚

𝑚𝑚=1

 

(vi) Explained Variance Score (EVS): EVS was calculated to assess the proportion of 
variance explained by the model and the model’s overall effectiveness. 

𝐸𝐸𝑉𝑉𝑆𝑆 = 1 −
𝑉𝑉𝑎𝑎𝑝𝑝(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)

𝑉𝑉𝑎𝑎𝑝𝑝(𝑦𝑦𝑚𝑚)
 

(3) Decision-making framework 
MPC: The MPC framework is designed to ensure trajectory tracking a set of waypoints, 

with intermediate positions interpolated to generate a smooth trajectory. The prediction horizon 
is set to N = 15 steps, with a control horizon of Nc = 3 steps and a sampling time (dt) of 0.1s. 
The maximum control inputs are constrained to 𝜏𝜏𝑥𝑥 , 𝜏𝜏𝑦𝑦 , and 𝜏𝜏𝑜𝑜 , as shown in Table 4-2. The 
vessel’s dynamics are modelled using the 3 degrees of freedom model, shown by Equations 
(4-11) and (4-12). The equations governing the vessel’s motion are discretised using the fourth-
order Runge-Kutta method during the simulation. 

1) 3-DOF ship motion model 

The continuous-time state-space representation is given by the following equations: 

η̇=R�𝜓𝜓(t)�𝒗𝒗(t) (4-11) 
𝐻𝐻�̇�𝒗(𝑡𝑡) + 𝐶𝐶(𝒗𝒗(𝑡𝑡))𝒗𝒗(𝑡𝑡) + 𝐷𝐷(𝒗𝒗(𝑡𝑡))𝒗𝒗(𝑡𝑡) = 𝝉𝝉(𝑡𝑡) (4-12) 

where 𝜂𝜂 = [𝑚𝑚, 𝑦𝑦, 𝜓𝜓]T represents the position and heading of the vessel, 𝒗𝒗 = [𝑢𝑢, 𝑣𝑣, 𝑝𝑝]T denotes 
the velocities in surge, sway, and yaw, and 𝝉𝝉 = �𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦, 𝑁𝑁�

T
corresponds to the control inputs 

(forces and moment). 

The rotation matrix 𝑹𝑹(𝜓𝜓(𝑡𝑡)) that transforms velocities from the body-fixed frame to the 
inertial frame is expressed by Equation (4-13). Additionally, the state-output relationship is 
defined by the output Equation (4-14). 

𝑹𝑹(𝜓𝜓(𝑡𝑡)) = �
𝑐𝑐𝑆𝑆𝑠𝑠(𝜓𝜓(𝑡𝑡)) −𝑠𝑠𝑚𝑚𝑎𝑎(𝜓𝜓(𝑡𝑡)) 0
𝑠𝑠𝑚𝑚𝑎𝑎(𝜓𝜓(𝑡𝑡)) 𝑐𝑐𝑆𝑆𝑠𝑠(𝜓𝜓(𝑡𝑡)) 0

0 0 1
� 

(4-13) 

𝑦𝑦(𝑡𝑡) = 𝑪𝑪 ∙ [𝜂𝜂(𝑡𝑡)T, 𝑣𝑣 (𝑡𝑡)T]T; 𝑪𝑪 = �1 0 0 0 0 0
0 1 0 0 0 0� (4-14) 

In this framework, the MPC optimisation problem seeks to minimise the cost function 𝐽𝐽, 
presented by Equation (4-15), penalising deviations from the interpolated reference trajectory 
and the magnitude of control inputs.  
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𝐽𝐽 =  � ��𝑦𝑦(𝑇𝑇 + 𝑎𝑎) − 𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑(𝑇𝑇 + 𝑎𝑎)�
T

𝑄𝑄 �𝑦𝑦(𝑇𝑇 + 𝑎𝑎) − 𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑(𝑇𝑇 + 𝑎𝑎)��
𝑁𝑁

𝑚𝑚=1

+ � 𝑢𝑢(𝑇𝑇 + 𝑎𝑎)T𝑅𝑅 𝑢𝑢(𝑇𝑇 + 𝑎𝑎)
𝑁𝑁−1

𝑚𝑚=0
 

(4-15) 

𝑄𝑄 = �100 0
0 100� , 𝑅𝑅 = �1 0

0 1� (4-16) 

where 𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑(𝑇𝑇 + 𝑎𝑎)  represents the interpolated reference trajectory at future time steps, 
𝑢𝑢(𝑇𝑇 + 𝑎𝑎) represents the magnitude of control inputs, and 𝑄𝑄 and 𝑅𝑅 are weighting matrices, see 
Equation (4-16). These matrices prioritise minimising the tracking error while keeping the 
control inputs within practical limits. 

2) KM-DWA: the KM-DWA algorithm uses a set of the same weights as the setting 
in [192] to balance different objectives during navigation, including obstacle 
avoidance, pathkeeping, heading stability, etc. The DCPA and TCPA thresholds 
are set at 10 meters and 50 seconds to trigger evasive actions when necessary.  

4.6 Experiment 

4.6.1 Dataset preparation and simulation setting 

The dataset used in this study is derived from Dutch maritime traffic data within the Rotterdam 
port area, covering the period from 00:00 UTC on 1 October 2023 to 00:00 UTC on 15 October 
2023. The data was collected through VesselFinder and includes detailed vessel movement 
information within the geographical coordinates of 51.833° to 52.167° latitude and 3.167° to 4° 
longitude. This dataset specifically focuses on three high-risk areas within the Rotterdam port 
region, selected for their higher potential for navigational conflicts, as illustrated in Figure 4-4. 

Through the conflict pairs extraction algorithm, Algorithm 4-1, proposed in Section 4.3.2, 
we identified and extracted 1,587 potential conflict pair sequences from the original dataset. 
These sequences were subsequently used for preference extraction and trajectory prediction 
model training and validation. During the preprocessing phase, numerical features were 
normalised and categorical features were encoded to ensure consistency and facilitate their 
utilisation by the models. 

Specifically, the preference extraction was conducted on the entire dataset, using the LSTM-
Autoencoder for feature compression and clustering to identify the full spectrum of the 
navigational preferences. Furthermore, to ensure the generalisability of the trajectory prediction 
model, the data was divided into a training set and a test set using an 80/20 split. In this 
case,1,269 conflict pairs were allocated for training, while the remaining 318 conflict pairs were 
reserved for further testing and validation. 

A simulation was implemented in Area 1 of Rotterdam Port to validate the proposed 
decision-making framework. The goal of the simulation was to evaluate the ability of a tugboat 
to navigate safely along predetermined routes while avoiding collisions with neighbouring 
vessels. For this purpose, we utilised Tito-Neri, a 1:30 scale model of a tug boat developed by 
TU Delft [78]. The parameters of Tito-Neri are provided in Table 4-2. These parameters can be 
converted according to the Froude scaling of various physical quantities [147]. 
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Figure 4-4 The focused areas in the port of Rotterdam in the experiment 

Table 4-2 The parameters of the Tito-Neri ship model 

Quantity Length Width Thruster forces Mass  Actuators 

 

0.97 m 0.30 m 𝜏𝜏𝑥𝑥 = [-5, 5], (N) 
𝜏𝜏𝑦𝑦 = [-5, 5], (N) 

𝜏𝜏𝑜𝑜 = [-2.5, 2.5] (N·m) 

16.9 kg 1) Two stern azimuth thrusters 
2) One bow thruster 

In this experiment, we selected a navigational scenario from real AIS data where the own 
ship acts as the stand-on vessel, while the neighbouring vessel is the give-way vessel. Figure 
4-5 presents not only the predicted and actual trajectories for both the own and the neighbouring 
ships on the left side but also DCPA and TCPA variation during this interaction on the right side. 
In this case, the own ship (represented by red and blue markers) acts as the stand-on vessel, 
while the neighbouring ship (represented by green and cyan markers) is the give-way vessel. 
The predicted trajectories for the own ship and neighbouring ship are shown in blue and purple, 
respectively. Additionally, the variation of motion characteristics, including SOG, COG, DCPA 
and TCPA, are given in the right panel. As shown in Figure 4-5. DCPA decreases as the vessels 
approach each other, reaching their lowest point near zero before increasing as they move apart. 
The TCPA similarly decreases, hitting zero at the closest point of approach, and becomes 
negative as the vessels begin to separate. This situation requires the own ship to be vigilant for 
imminent evasive actions. 

 
 

Figure 4-5 Trajectory prediction vs actual trajectory for ships in a crossing scenario 
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4.6.2 Results 

4.6.2.1 Preference extraction results 

The performance of the LSTM-autoencoder model was evaluated by several key metrics: the 
RMSE of 0.048 and the MAE of 0.0284, indicating a high degree of accuracy in the model’s 
reconstruction capabilities. Additionally, the model achieved an 𝑅𝑅2 value of 0.936 and an EVS 
of 0.936, reflecting its effectiveness in capturing the underlying variance in the data. 

Furthermore, we applied K-means to the encoded data produced by the LSTM-autoencoder 
model to identify the optimal number of clusters with identified manoeuvring preferences. The 
evaluation was based on three key metrics: Sum of Squared Errors (SSE), Silhouette Score, and 
Davies-Bouldin Index, as illustrated in Figure 4-6. The selection of 4 clusters reflects a balanced 
consideration of these metrics. While the SSE curve shows diminishing improvements beyond 
4 clusters, suggesting limited benefits from additional clusters. Additionally, although the 
Silhouette Score does not reach its maximum at 4 clusters, it remains relatively high, indicating 
a balance between intra-cluster cohesion and inter-cluster separation. Furthermore, while the 
lowest value of the Davies-Bouldin Index occurs at 2, the index at 4 clusters is relatively low 
compared to other numbers, further supporting this as the most effective configuration.  

Based on this cluster selection, Figure 4-7 and Figure 4-8 illustrate the results of our 
collision avoidance experiment in port water areas, showing vessel interaction trends across the 
four identified manoeuvring preferences. Each trend represents specific behaviours in terms of 
the features of navigational preferences, including SOG, ACC, ROT, and other variables. The 
four clusters represent distinct vessel interaction preferences, summarised in Table 4-3. 

 
Figure 4-6 The illustration of optimal clustering number investigation 
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Figure 4-7 Experiment of MASS in port water areas 

 
Figure 4-8 Experiment of MASS in port water areas 

Each cluster represents a different manoeuvring pattern in collision avoidance: Cluster 0 
exhibits a cautious and stable interaction pattern, where vessels maintain low speeds and straight 
courses with minimal adjustments. Cluster 1 reflects a proactive strategy of accelerating 
through encounter points, with vessels making significant speed and course adjustments near 
the encounter, indicating a preference for rapid passage through potential collision areas. 
Cluster 2 represents a gradual adjustment strategy, with slow changes in speed and heading, 
indicating a preference for steady navigation in low-risk scenarios. Cluster 3 demonstrates a 
response to potentially hazardous situations, with vessels significantly increasing speed and 
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making large course adjustments near the encounter point, suggesting a reactive strategy to 
avoid imminent collisions. 

4.6.2.2 Trajectory prediction results 

(1) Preference prediction 
An LSTM classifier was trained and evaluated to predict navigational preferences. As 

shown in Figure 4-9, the model achieved strong performance on the training set, with accuracy 
at 0.9179, precision at 0.9163, recall at 0.9179, and an F1 score of 0.9165. The slightly lower 
validation metrics—accuracy of 0.8460, precision of 0.8614, recall of 0.8460, and an F1 score 
of 0.8498—indicate minor overfitting. Nevertheless, the model demonstrates reasonable 
generalisation capability, which forms a solid foundation for subsequent trajectory prediction 
tasks. 

 
Figure 4-9 Training metrics of the preference prediction classifier 

(2) Trajectory prediction 
The proposed movement predictor, utilising the MTL-Seq2Seq-LSTM-Att model, was 

designed to integrate the results of preference prediction into the trajectory prediction process. 
Figure 4-10 shows the training and validation loss curves for the trajectory prediction model 
over three prediction horizons: 10 minutes, 15 minutes, and 20 minutes. The validation loss 
follows a similar trend, stabilizing slightly above the training loss, which suggests good 
generalisation. In terms of runtime performance, the module completed each trajectory 
prediction in an average of 12.8 ms, meeting real-time requirements in dynamic collision 
avoidance scenarios.  

 

Figure 4-10 Training loss of the MTL-Seq2Seq-LSTM-Att model for prediction of future length 
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(3) Comparative performance analysis 
We compared the performance of the proposed predictive model with the following baseline 

methods over different forecasting horizons (10min, 15min, and 20min): (1) Basic Seq2Seq 
RNN (2) Basic Seq2seq attention LSTM (3) Basic Seq2Seq LSTM (4) Bi-LSTM, see Table 4-4 
for details. These baseline models were selected because they represent different levels of 
complexity commonly used in sequence-to-sequence prediction. The Basic Seq2Seq RNN 
serves as a basic model for comparison, while the Basic Seq2Seq LSTM improve upon it by 
handling long-term dependencies, and the Basic Seq2seq attention LSTM and the Bi-LSTM 
further enhance the ability to focus on important parts of the sequence or process data in both 
directions. The metrics used include MSE, MAE, 𝑅𝑅2, variance, evaluating the models’ ability 
to predict future trajectories of the own ship and a neighbouring ship based on initial five-minute 
trajectory data.  

Table 4-4 The prediction results of the proposed method and other baseline predictive methods 

T Metric
s 

Predictive models 
MTL-Seq2Seq-

LSTM-Att 
Basic Seq 2 Seq 

RNN 
Basic Seq2seq 

attention LSTM 
Basic Seq2Seq 

LSTM 
Bi-

LSTM 

10mi
n 

MSE 0.0003 0.0003 0.0004 0.0002 0.0005 
MAE 0.0113 0.0106 0.0129 0.0097 0.0156 

𝑅𝑅2 99.2% 99.2% 98.6% 99.2% 98.5% 
var 0.0003 0.0003 0.0004 0.0002 0.0005 

15mi
n 

MSE 0.0036 0.0042 0.0046 0.0048 0.0039 
MAE 0.0389 0.0414 0.0435 0.0408 0.0381 

𝑅𝑅2 89.4% 87.8% 86.7% 86.19% 88.7% 
var 0.0036 0.0042 0.0045 0.0048 0.0039 

20mi
n 

MSE 0.0060 0.0117 0.0105 0.0103 0.0100 
MAE 0.0488 0.0754 0.0612 0.0564 0.0566 

𝑅𝑅2 85.2% 71.0% 74.23% 74.5% 75.4% 
var 0.0060 0.0116 0.0102 0.0102 0.0098 

1) 10-Minute Forecasting Horizon: The Basic Seq2Seq LSTM model shows the 
lowest MSE (0.0002) and MAE (0.0097), indicating slightly better short-term 
prediction accuracy. However, the proposed MTL-Seq2Seq-LSTM-Att model 
also demonstrates acceptable performance with an MSE of 0.0003 and a high 𝑅𝑅2 
of 99.2%, comparable to the best-performing models. 

2) 15-Minute Forecasting Horizon: Extending the horizon to 15 minutes, the 
proposed model continues to perform competitively with an MSE of 0.0036 and 
an 𝑅𝑅2  of 89.4%. These results suggest that the model retains a good balance 
between accuracy and variance explanation. Although the Bi-LSTM model 
exhibits a lower MAE, the proposed model maintains robust overall performance. 
Notably, the Basic Seq2seq LSTM with Attention and without attention models 
show a reduction in 𝑅𝑅2 to 86.7% and 86.19%, respectively, along with higher MSEs 
and MAEs, indicating a decrease in predictive accuracy over longer horizons. 

3) 20-Minute Forecasting Horizon: For the 20-minute horizon, the performance of 
the models diverges more noticeably. The proposed model achieves the lowest 
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MSE of 0.0060 and a relatively high R² of 85.2%, suggesting it remains effective 
for longer-term predictions compared to other models. 

The proposed MTL-Seq2Seq-LSTM-Att model demonstrates consistent performance 
across different prediction horizons. While some baseline models exhibit strengths in specific 
metrics at certain horizons, the proposed model provides a reliable balance between accuracy 
and variance explanation, particularly in long-term prediction scenarios. 

(4) Visual analysis of prediction results 
The prediction results are further visualised in Figure 4-13, Figure 4-14, and Figure 4-15, 

showcasing the model’s performance over 10-minute, 15-minute, and 20-minute horizons, 
respectively.  

For the 10-minute horizon, the model generally captures the trajectory trends but exhibits 
deviations in certain cases, such as case 3 and case 4, indicating difficulties in handling short-
term dynamics. In contrast, the 15-minute horizon provides the most accurate predictions, with 
a close alignment between predicted and actual trajectories, demonstrating the model’s ability 
to balance global trends with local details. At the 20-minute horizon, while overall trends are 
still captured, slight distortions and deviations appear, particularly in more complex scenarios, 
reflecting a decrease in prediction precision as the forecast period extends. 

The visualisation results suggest that the model performs best at the 15-minute horizon, 
where it achieves an optimal balance between accuracy and stability. The 10-minute predictions, 
though capturing general trends, reveal shortages in capturing fine-grained and foreseeable 
predictions. The 20-minute horizon, on the other hand, shows the model’s reduced precision 
over longer periods, likely due to increased uncertainty and cumulative errors. Overall, the 15-
minute horizon is the most suitable for practical decision-making, balancing immediate 
accuracy and longer-term trend stability. 

4.6.2.3 Decision-making results  

To anticipate the future positions of the vessels involved in the scenario, we employed the 
developed movement predictor in the decision-making framework, shown in Figure 4-3. This 
model leverages historical 5-minute AIS data to forecast the future paths of the vessels over the 
selected horizon of 15 minutes. By predicting the future trajectories, we could determine the 
optimal waypoints for safe navigation of the own ship. Based on the predicted trajectories, we 
established a series of turning points that the vessel should follow to avoid collisions based on 
human-preference-aware paths. These turning points were then fed into the MPC framework, 
which was tasked with tracking the desired trajectory while performing local collision 
avoidance. The MPC was configured to optimise the vessel’s control inputs, ensuring that it 
adhered to the reference path while dynamically adjusting to any emerging threats. 

While in many studies – including our previous work [192], it is assumed that neighbouring 
vessels maintain their speed or course during interactions, this study focuses on validating the 
proposed predictive model in a situation where the own ship’s trajectory tracking is performed 
based on the future trajectory points of both the own ship and the neighbouring vessels, as 
predicted by our model. Moreover, we also address situations where the predicted reference 
path of a neighbouring vessel poses a collision risk to the own ship. In such cases, we validated 
the intervention of the KM-DWA local planner to facilitate decision-making throughout the 
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collision avoidance process. This approach was integral in demonstrating the effectiveness of 
our proposed model in handling dynamic maritime scenarios involving potential collision risks. 

 
Figure 4-11 Demonstration of path tracking based on predictive trajectory results 

 
Figure 4-12 Demonstration of path tracking based on refined path results 

The simulation results are illustrated in Figure 4-11 and Figure 4-12, where the blue arrows 
indicate the moving direction of the own vessel, while the yellow arrows indicate the moving 
direction of the neighbouring vessel. Figure 4-11 illustrates the path-tracking results without 
the local KM-DWA intervention, while Figure 4-12 shows the path-tracking results with KM-
DWA intervention. In the left panel of the two figures, the reference path is depicted as a red 
dashed line, the path generated by the MPC controller is represented as a solid blue line, and 
the yellow line illustrates the predicted trajectory of the neighbouring vessel. A close alignment 
between the reference path and the MPC tracking path demonstrates effective path-following 
control, ensuring the vessel adheres closely to the desired trajectory. The right panel presents 
the ship motion parameters during the avoidance process, such as speed, heading, and relative 
motion characteristics between the vessels, with a focus on DCPA and TCPA. The own vessel 
maintains stability by controlling the surge speed throughout the tracking process. Meanwhile, 
the sway and yaw speeds remain near zero as the ship adjusts its heading to follow the desired 
trajectory. The observed trend of DCPA initially decreasing and then increasing, along with 
TCPA continuously decreasing, reflects the scenario where the two vessels approached each 
other before reaching the closest point of approach and then diverged in opposite directions. 
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Figure 4-12 presents the path-tracking results where the knowledge maps-based DWA path 
planner is applied. In this case, the DWA was triggered upon the DCPA and TCPA values 
reaching the set thresholds of 50 meters and 20 seconds, respectively. As shown in the blue 
tracking path in the left panel, the vessel makes an early right turn at t = 61s in response to the 
detected risk. This manoeuvre, reflected in changes to sway and yaw speeds, adjusts the COG1 
and gradually increases the DCPA. As shown in the right panel, the minimum DCPA improves 
from 21.59 to 24.67 after intervention, indicating a safer distance between the vessels. 

The results from these simulations underscore the importance of the proposed decision-
making framework for autonomous vessel navigation. While the MPC is capable of tracking 
the reference path well, the inclusion of KM-DWA enhances the safety of the navigation by 
responding dynamically to emerging collision risks by taking account of the ship’s 
manoeuvrability. This approach underscores the potential of combining MPC and KM-DWA to 
ensure precise path following, collision avoidance, and operational efficiency in real-world 
maritime navigation. 

4.6.3 Discussion 

This study aimed to develop a human-preferences-aware trajectory prediction model, which 
serves as the foundation for a decision-making framework aimed at enabling autonomous 
vessels to perform human-mimic navigation during collision avoidance in a mixed waterborne 
environment. The results demonstrated that the proposed framework successfully extracted 
navigational preferences from AIS data, predicted future trajectories with high accuracy, and 
enhanced collision avoidance strategies by incorporating these predictions into the decision-
making process. 

4.6.3.1 Interpretation of Results 

The extraction of navigational preferences using the LSTM-autoencoder and K-means 
clustering revealed four distinct clusters representing different manoeuvring patterns during 
vessel encounters. Each cluster provided insights into how vessels adjust their speed, 
acceleration, and rate of turn in response to potential collision scenarios. For instance, Cluster 
0 reflected a cautious and stable interaction pattern, while Cluster 3 demonstrated a more 
reactive strategy involving significant course adjustments and speed variations. These human 
preference patterns were critical in improving the accuracy and interpretability of the trajectory 
predictions, allowing the MTL-Seq2Seq-LSTM-Att model to capture the dynamic interactions 
between vessels more effectively. Additionally, with an average prediction time of 12.8 ms on 
a standard computation platform, the module ensures the real-time requirement for collision 
avoidance. 

The predictive performance of the trajectory prediction model is related to the roles of its 
components. The encoder captures temporal dependencies by transforming historical trajectory 
data into latent representations, which preserve critical information for accurate predictions. 
The decoder integrates navigational preferences to generate future trajectories that align with 
specific manoeuvring patterns, while the attention mechanism dynamically weighs input 
features to focus on relevant aspects of vessel interactions. These components collectively 
contribute to reducing prediction errors and exhibit good performance across various time 
horizons, particularly at the 15-minute horizon. The model effectively balanced global trend 
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capture with local detail fidelity, demonstrating that the inclusion of human navigational 
preferences enhances the credibility and accuracy of trajectory predictions. This improved 
accuracy is crucial for the subsequent decision-making processes, where these predictions 
inform both the own ship’s and the neighbouring ship’s future paths.  

The extension of the decision-making framework with the predicted trajectories allowed for 
more context-aware navigation. Unlike previous approaches, which assumed constant speed 
and course for neighbouring vessels, this study leveraged the trajectory prediction model to 
proactively anticipate and react to potential collision risks. By integrating real-time human-
preference-aware predictions into the decision-making framework, the framework facilitated 
avoidance manoeuvres and enabled local path-planning adjustments based on real-time DCPA 
and TCPA evaluations. This dual approach ensures that both navigational preferences and safety 
considerations are addressed. 

The primary innovation lies in the predictor model, which integrates navigational 
preferences extracted from AIS data to predict future trajectories. The decision-making 
framework, designed around this prediction model, incorporates the KM-DWA module for local 
path refinement and the MPC module for trajectory tracking. The integration demonstrates the 
feasibility of combining human-preference-aware trajectory predictions with established 
decision-making methods, serving as the practical foundation for achieving human-mimic 
navigation during the interactive collision avoidance process in a mixed waterborne 
environment. 

4.6.3.2 Practical Implications 

By providing a more accurate prediction of both the own ship’s and the neighbouring 
vessel’s trajectories, the framework supports safer and more human-friendly navigation in 
mixed waterborne environments. This approach allows for more proactive collision avoidance 
strategies that account for the movement of surrounding vessels rather than relying on static 
assumptions.  

Furthermore, maintaining mutual trust between autonomous vessels and human-operated 
ships becomes critical in environments where direct communication between vessels is limited 
or nonexistent. This study acknowledges that autonomous ships while making independent 
navigational decisions, must also act in predictable and trustworthy ways to human operators—
both those on neighbouring vessels and those supervising the autonomous ships. By adhering 
to predictable navigational patterns and demonstrating an understanding of navigational 
preferences, autonomous vessels can foster trust [164], reduce uncertainty, and improve safety 
in mixed waterborne scenarios. 

While the study successfully demonstrates the integration of a trajectory prediction model 
with established decision-making methods, several limitations must be acknowledged.  

(1) Data limitations: The dataset, while detailed, was limited to the Rotterdam port area 
and a specific timeframe. This geographic and temporal restriction may limit the 
generalisability of the findings to other maritime navigational environments. 

(2) Scope of vessel interactions: The study primarily focused on two-vessel interactions, 
simplifying the real-world complexity of maritime navigation where multiple vessels 
often interact simultaneously. While the KM-DWA provides local path refinement to 
ensure safety, it is designed for pairwise interactions and does not address the interactive 
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effects of the movements of multiple vessels in congested environments. In multi-vessel 
scenarios, the interdependence of vessels’ trajectories requires dynamic conflict 
modelling, which was not explored in this work. 

(3) Consideration of environmental factors: The current simulations do not consider 
environmental factors such as wind, waves, currents, or restricted visibility, which 
directly affect vessel manoeuvring and collision avoidance. 

(4) Computational complexity: The integration of multiple predictive and decision-
making models increases the computational complexity, which may affect real-time 
performance in high-density traffic scenarios or when deployed on vessels with limited 
processing capabilities. 

(5) Human-mimic navigation patterns: While incorporating human-mimic navigation is 
important for coordination in the mixed waterborne transport, such patterns may contain 
suboptimal decisions. Therefore, further behavioural filtering and evaluation are needed 
to ensure safety and consistency when mimicking real-world behaviours. 

(6) Human trust dynamics: While the framework accounts for the navigational 
preferences of both the own ship and the neighbouring ship, it does not fully model the 
dynamics of trust between human operators/supervisors and MASS. In scenarios where 
direct communication is limited, autonomous ships must behave in a way that earns and 
maintains the trust of human operators. This aspect of human-autonomous interaction is 
crucial for ensuring safe and coordinated manoeuvres in mixed environments. 

4.7 Conclusions 
This chapter contributes to enhancing the proposed decision-making framework for MASS by 
integrating a trajectory predictor based on the identification of human navigational preferences. 
This integration enhances the ability of MASS to interact safely, efficiently and smoothly with 
human-operated vessels in the MWTS. By addressing key challenges in modelling and 
predicting human-preference-based manoeuvres, this study bridges the gap between 
conventional path planning and adaptive, context-aware collision avoidance. 

The primary contributions of this chapter are threefold: 

(1) Human navigational preference extraction: Developed a methodology to extract 
navigational preferences based on ship conflict pairs extracted from AIS data through 
an LSTM-autoencoder and K-means clustering. 

(2) Trajectory prediction model: Designed and validated an MTL-Seq2Seq-LSTM-Att 
model to predict ship trajectories considering extracted human navigational preferences 
for improved accuracy. 

(3) Framework enhancement: Enhanced the decision-making framework with the trajectory 
predictor, extending its capabilities to generate preference-aware trajectories. This 
framework, modularised with the previously developed KM-DWA and trajectory 
predictor in this chapter, demonstrates its potential to support proactive, seamless, and 
safe interaction in collision avoidance scenarios. 

This chapter directly addresses RQ3-v: How can AIS data be utilised to extract the 
navigational preferences of conventional vessels for collision avoidance? RQ3-vi: How can 
past vessels’ trajectories be used to develop a real-time movement prediction model with 
improved accuracy and interpretability based on human navigational preferences? and RQ3-
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vii: How does the prediction result support the interactive collision avoidance of MASS in a 
mixed waterborne environment? By integrating a trajectory predictor module into the proposed 
decision-making framework, this chapter facilitates a safer, more efficient, and seamless 
interaction in collision avoidance in the MWTS. In the subsequent chapter, experimental human 
trust in the decision-making of MASS in collision avoidance is investigated and discussed. 
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(5) Case 5 (6) Case 6 
Figure 4-13The visualisation results for the prediction horizon of 10min 
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(9) Case 9 (10) Case 10 
Figure 4-14 The visualisation results for the prediction horizon of 15min 
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(9) Case 9 (10) Case 10 
Figure 4-15 The visualisation results for the prediction horizon of 20min 
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Chapter 5. Experimental Trust Dynamics 
Modelling in Autonomous Ship 
Navigation 

The previous chapters established the foundational elements of the integrated decision-making 
framework for Maritime Autonomous Surface Ships (MASS) in Mixed Waterborne Transport 
Systems (MWTS). Chapter 2 identified situational awareness, navigation preferences, and 
human trust as key components for ensuring safe and efficient navigation. Chapters 3 and 4 
addressed the module development on situational awareness and human-preference-aware 
navigation, ensuring a safe, efficient, and seamless interaction between autonomous and 
manned vessels. This chapter addresses the trust module investigation by focusing on the 
dynamics of human trust in MASS during collision avoidance scenarios, a critical aspect for 
ensuring safe and efficient human-system interaction. By addressing research question RQ3-
viii, this chapter investigates trust dynamics across navigation stages in collision avoidance 
(CA) scenarios and identifies key impact factors. Through this, this chapter aims to support the 
design of MASS systems that foster human trust and optimise decision-making in high-risk 
maritime contexts. 

This chapter is structured as follows: Section 5.1 introduces the research context. Section 5.2 
reviews prior research on human-autonomy trust and its significance in maritime operations. 
Section 5.3 outlines the experimental design and presents the findings of influencing factors 
through a linear mixed model (LMM) method. Section 5.4 employs a Bayesian Network method 
to model and investigate trust dynamics. Finally, Section 5.5 concludes this chapter. 



94 5.1 Introduction 

 

5.1 Introduction  
Maritime Autonomous Surface Ships (MASS) are being increasingly recognised for their 
potential to enhance operational efficiency and safety within the maritime industry. Advances 
in automation technology enable ships to perform navigation tasks autonomously, reducing the 
need for constant human control. However, human supervision will remain important in the 
near future [155], as autonomous systems may require monitoring and necessary intervention 
to ensure safe operations, especially in complicated navigational environments, e.g., for 
collision avoidance (CA) scenarios. In such situations, human supervisors are important in 
overseeing the system’s actions and intervening when necessary. 

Trust in autonomous systems is a key factor in ensuring safe and efficient collaboration 
between autonomous systems of MASS and human operators [191]. A proper level of trust 
facilitates human operators to confidently delegate navigational tasks to these systems in 
specific scenarios. Trust affects how operators perceive the system’s actions, their willingness 
to rely on the system, and their readiness to intervene when required. In addition, trust is not 
static [106]; it fluctuates based on factors such as system performance, environmental 
conditions, and operator characteristics [164]. Understanding the dynamics of trust in MASS 
operations, particularly with CA scenarios, is foundational for developing systems that maintain 
suitable trust levels. 

Despite advances in automation, the dynamics of trust in human-supervised autonomous 
ship navigation, especially in CA contexts, remain underexplored. In CA scenarios, compliance 
with the Convention on the International Regulations for Preventing Collisions at Sea 
(COLREGs) is legally required for safe navigation. Human trust in autonomous systems likely 
depends on how consistently the system adheres to these regulations, particularly in terms of its 
evasion strategies and the timing of evasive actions. Studying these dynamics, however, is 
challenging due to the limited availability of real-world interaction data between MASS and 
manned vessels, which restricts empirical insights and limits data-driven model development. 

Given these constraints, this chapter addresses RQ4 - viii: How can human trust in MASS 
be measured, analysed, and modelled within controlled experimental settings? Addressing this 
problem is important for understanding how operators interact with MASS, as trust dynamics 
directly influence operator confidence, intervention likelihood, and overall system performance. 

This study makes the following contributions:  

(1) Design simulator-based experiments to simulate CA scenarios between MASS and 
conventional ships, enabling the controlled collection of trust-related data.  

(2) Explore how human trust varies over time in CA situations through a linear mixed model 
(LMM), identifying and quantifying the influence of key factors, such as evasion 
strategies and timings, on trust dynamics.  

(3) Develop a Trust Bayesian Network (TBN) model to further analyse and predict human 
trust dynamics in CA scenarios, focusing on diagnostic analysis informed by sensitivity 
analysis and predictive reasoning. 

The following section reviews recent work in trust modelling and experimental approaches, 
providing the context for the methodologies employed in this study. 
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5.2 Recent work 
In recent years, the study of human trust in human-autonomy interaction has gained much 
attention, particularly in critical domains such as autonomous navigation [15]. The reason is 
that trust influences the safety and efficiency of these interactions through its effect on operator 
behaviour: appropriate trust reduces unnecessary intervention while maintaining adequate 
oversight. In this section, we will explore the nature of trust in the human-autonomy interaction, 
the methods used to measure and investigate trust, and various approaches to modelling trust. 

5.2.1 Trust in human-autonomy interaction 

5.2.1.1 Nature of trust 

In human-autonomy interaction, trust is commonly defined as a user’s willingness to be 
vulnerable to the actions of an autonomous system based on positive expectations of its 
performance. A widely referenced conceptualisation of trust was proposed in [141], which 
characterises trustworthiness through three critical dimensions: ability, benevolence, and 
integrity. In this model, ability refers to the system’s competence in fulfilling tasks, benevolence 
captures the alignment of the system’s goals with those of the user, and integrity reflects the 
system’s adherence to acceptable standards.  

In [116], a definition of trust drawn from previous studies is the attitude that an agent will 
help achieve an individual’s goals in a situation characterised by uncertainty and vulnerability. 
It is pointed out that proper trust calibration prevents overtrust (misuse) and undertrust (disuse) 
by ensuring that user trust corresponds to the system’s real-world performance. Furthermore, 
this definition was used by [72] to investigate the evolution of trust within human-computer 
interaction, categorising users into Bayesian decision-makers, oscillators, and disbelievers, each 
reflecting unique patterns of trust adjustment.  

Expanding further, focusing on the factors that may have an impact on trust, a meta-analytic 
framework is presented by [74], which provides an empirical perspective by examining human, 
robot, and environmental factors affecting trust in human-robot interaction. Their meta-analysis 
concludes that robot performance and attribute-based factors are significant contributors to trust 
development, while environmental factors play a moderate role.  

Trust is dynamic and responsive to changes in the operational environment [161] and system 
performance [9]. Moreover, dynamic models, such as OPTIMo proposed by [232], 
conceptualise trust as a probabilistic and context-sensitive belief that adapts in real-time to 
fluctuations in system performance. Trust is viewed as continually updated based on system 
behaviour, contrasting with static measures that provide only a momentary view. 

A three-layered trust model comprising dispositional, situational, and learned trust was 
proposed by [84] to better understand trust in human-automation interactions. In this model, 
dispositional trust is an individual’s inherent tendency to trust or distrust automation, situational 
trust arises from contextual elements like task complexity and perceived risk, and learned trust 
builds through prior experiences with the system. This layered approach integrates individual, 
contextual, and experiential factors, illustrating that trust varies independently across these 
layers and is influenced by the dynamic interplay between user expectations and real-time 
system feedback.  
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Recently, frameworks like IMPACTS proposed by [86] have extended these trust 
considerations to encompass practical characteristics essential for building trust in autonomous 
systems. The model identifies seven characteristics, including intention, measurability, 
performance, adaptivity, communication, transparency, and security, as crucial for establishing 
and sustaining trust in autonomy. This model emphasises adaptability and real-time feedback 
mechanisms, aligning with dynamic models while providing actionable insights for designing 
trust-supportive systems. Its practical relevance is notable in high-stakes domains, where 
decision-making must be precise, transparent, and adaptive to changing conditions, 
underscoring trust as a dynamic, context-sensitive construct. 

Additionally, key factors that may influence trust evolvement were investigated by [8], 
including reliability, predictability, and dependability. Further, studies by [9] focused on the 
accumulation and decay of trust, identifying that trust can be asymmetrical in response to 
system performance: while reliability is crucial in building trust, its erosion is more pronounced 
when systems fail, particularly in high-risk environments. 

In summary, while existing studies provide insights into the nature, dimensions, and 
dynamics of trust in human-autonomy interaction, their application to MASS remains limited, 
particularly during critical operational scenarios like collision avoidance. In this chapter, we 
address this gap by incorporating both the dynamic and its multidimensional characteristics, 
such as reliability, predictability, and safety. Building on established theories, we aim to 
understand trust dynamics and characteristics in MASS in CA scenarios. 

5.2.1.2 Trust measurement and investigation 

In the study of trust dynamics within human-autonomy interaction, researchers utilise a diverse 
array of measurement methods, including subjective, objective, and hybrid techniques.  

Subjective methods, such as self-report questionnaires [136], allow operators to directly 
express their perceived trust levels. For instance, frequent trust measurement intervals have 
been used to observe how trust levels shift in response to interaction quality and timing [96]. A 
subjective trust measurement scale tailored to human-robot interaction was developed and 
validated by [234], exploring how dispositional and history-based trust components influence 
user trust in varying contexts.  

In contrast, objective methods provide physiological indicators of trust fluctuations during 
task execution. For instance, using psychophysiological data, such as heart rate variability, 
electrodermal activity, and Electroencephalography (EEG), offers insights into trust dynamics 
within virtual environments by identifying immediate physiological responses associated with 
trust levels [29]. Among these, EEG signals capture the brain’s immediate response under 
conditions of trust and thus have been used as a more objective physiological indicator 
[218][233]. In addition, eye tracking, another measurement method, has been employed to infer 
trust levels. For example, it was combined with Bayesian models to be used to estimate the 
workload of operators in real time [128]. 

To provide a more comprehensive view of trust, hybrid measurements have emerged, 
integrating both subjective and objective data. The study [110] proposed a toolkit for trust 
measurement in human-autonomy teams, combining self-report, behavioural indicators (e.g., 
reliance, compliance, eye-tracking), and physiological data (e.g., heart rate variability) to 
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capture dynamic trust levels. Furthermore, the study [85] examined how cognitive fatigue, robot 
reliability, and operator gender impact trust in collaborative robots, where both physiological 
(performance, heart rate variability) and subjective measures (surveys) were employed. 

In exploring trust dynamics, statistical methods are commonly employed to analyse how 
trust varies under different conditions. Techniques like ANOVA and Signal Temporal Logic 
(STL) are utilised to assess environmental impacts on trust, examining factors such as alarm 
types or task conditions [186]. Multi-factor analysis, including t-tests and correlation, further 
reveals how interaction levels and workspace settings impact trust, supporting a nuanced 
understanding of trust fluctuations [29]. In addition, Linear Mixed Models have been 
instrumental in capturing trust dynamics over time. For example, exploring specific EEG 
frequencies (Delta and Gamma) associated with trust fluctuations [218] and investigating the 
variables of time and frequency, showing the accumulation effect of the frequency of positive 
interactions on trust [96]. 

Overall, trust measurement methods include subjective, objective, and hybrid approaches, 
each with advantages and limitations. Subjective methods are straightforward but are prone to 
bias. Objective methods provide real-time insights but require complex tools. Hybrid methods 
are comprehensive but costly. Among statistical approaches, LMM excels at capturing 
dynamics while accounting for individual differences, whereas traditional methods like 
ANOVA are limited in handling repeated measures and complex hierarchical data. This chapter 
uses subjective measurements to gather trust data and apply LMM to analyse its dynamic 
evolution in MASS collision avoidance scenarios. 

5.2.1.3 Trust computational models 

In the field of trust modelling for human-autonomy interaction, research has developed multiple 
approaches to address the dynamic nature of human trust in autonomous systems, each 
categorised by distinct modelling techniques. Probabilistic models are widely applied in trust 
modelling. Bayesian inference with a Beta distribution was employed in [72] to capture trust 
adjustments following successful or unsuccessful robotic tasks, emphasising time dependency 
and the impact of negative experiences. Their findings categorised users into types (e.g., rational, 
oscillating, disbeliever), enabling real-time trust updates tailored to individual preferences. The 
OPTIMo model by [232] combines dynamic Bayesian networks (DBNs) with feedback to 
estimate trust continuously in high-risk, multi-task settings. In multi-robot environments, 
Bayesian optimisation and state-space equations are used for trust modelling [251], applying 
Markov Chain Monte Carlo and Bayesian Optimization Experimental Design to enhance task 
allocation. Additionally, a DBN-based model with Boltzmann machines was used in [62] to 
explore trust in multi-robot settings, parameterised by an Expectation-Maximization (EM) 
algorithm, which aids operators in trust allocation across multiple autonomous agents. These 
probabilistic models provide high interpretability and adaptability, making them ideal for the 
real-time demands of human-autonomy interaction operations. 

Time-series models further deepen trust modelling by analysing historical trust trends, 
enabling accurate predictions of future trust levels in sustained human-robot collaboration. 
Time-series data is leveraged to study trust’s self-reinforcing effects and sensitivity to negative 
feedback [72]. The time-series method is combined with neural networks to dynamically adjust 
robot speed in response to human feedback [181].  
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Decision-theoretic models apply structured frameworks, such as Markov Decision 
Processes (MDP) and Partially Observable MDPs (POMDP), to manage trust by integrating 
trust as a decision variable in task optimisation. An MDP-based trust model is developed to 
optimise trust through dynamic task allocation [228], which aligns with the safety-critical needs 
of MASS operations. Treating trust as a hidden variable within a POMDP enables trust inference 
and decision optimisation [31] [32].  

Machine learning and hybrid models offer enhanced predictive power and flexibility for 
managing complex, nonlinear trust dynamics. Recurrent Neural Networks are combined with 
Gaussian processes to capture trust shifts across tasks [189], providing adaptability for multi-
task contexts. In the customer experience domain, Partial Least Squares Structural Equation 
Modelling is integrated with Artificial Neural Networks to analyse trust’s nonlinear effects 
[179], highlighting trust’s role in complex and interactive settings. Sparse Gaussian processes 
and deep neural networks are employed to estimate uncertainty in trust [115], making their 
model suitable for decision-making in complex environments. Together, machine learning 
models address the need for precision and responsiveness in trust modelling, enabling 
autonomous systems to adjust to diverse operator requirements effectively. 

Trust modelling methods, including probabilistic models, time-series analyses, and 
machine-learning techniques, offer different strengths for capturing trust dynamics. Among 
these, Bayesian networks excel in representing trust evolution and real-time updates. In this 
chapter, a Bayesian network-based approach is used to model trust dynamics in MASS collision 
avoidance scenarios, enabling the integration of trust changes with system performance across 
navigation stages. 

5.2.2 Trust consideration in MASS navigation 

Following general theories of human-robot interaction, trust in MASS demands particular 
consideration of the multi-stakeholder context and the dynamic nature of maritime 
environments. In both Remote Control Centres (RCCs) for fully autonomous ships and in 
human-autonomy collaborative navigation scenarios, trust is essential for operators who must 
rely on indirect data transmission and operational feedback without direct physical control [145] 
[191].  

It is emphasised by [145] that in RCC settings, trust is closely linked to the reliability of 
data transmission and cybersecurity, both of which are critical for maintaining the situational 
awareness needed for safe supervision. Therefore, it is crucial to maintain network security and 
ensure the reliability of information transmission. Additionally, the study conducted by [70] 
observed that high levels of VR immersion may introduce complexities, such as increased 
motion sickness and slower situational awareness response times, which, if left unchecked, 
could impact operator trust and decision-making. 

Furthermore, a Schema World Action Research Method (SWARM) was employed by [130] 
and [132] to explore the decision-making process of MASS operators in a remote monitoring 
centre and to analyse the impact of trust on their operations in conjunction with the Trust 
Module, revealing that trust in high-automation settings relies heavily on precise feedback and 
transparent system behaviour.  
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By combining both quantitative and qualitative methods (questionnaires, interviews, and 
technician logs), a mixed-methods approach was used by [10] to triangulate findings on public 
trust and system performance, showing that trust can fluctuate based on perceived system 
reliability and interaction context.  

A decision-making framework designed for MASS was given by [191], where human trust 
was considered a key element that influences situational awareness and safe navigation of the 
decisions made by autonomous systems. The trust module of this framework can be modulated 
by taking human reactions as input during the interaction between human operators and MASS. 

Trust within MASS is also recognised as extending beyond individual operators, 
encompassing collective trust across a mixed waterborne system in which autonomous and 
conventional ships co-exist [135]. In such an environment, trust among stakeholders becomes 
essential to facilitate safe and coordinated operations. Additionally, research conducted by [134] 
examined the changing role of human operators in autonomous maritime systems, noting that 
trust is influenced by operators’ understanding and control over system decisions. Trust is 
presented as vital for system predictability and reliability, especially as traditional seafaring 
skills become less relevant.  

While progress has been made in exploring trust within MASS systems, critical gaps remain, 
particularly regarding trust dynamics in collision avoidance scenarios. To address these gaps, 
this chapter employs an empirical approach to investigate trust dynamics and develops a 
Bayesian network-based model to capture the evolution of trust across different navigation 
stages. By incorporating trust’s multidimensional characteristics into the dynamic model, this 
chapter seeks to provide insights into the understanding of trust in MASS decision-making in 
CA scenarios. 

5.3 Trust data collection and dynamics analysis 
Definitions: Human trust in the context of MASS’s autonomous navigation systems can be 
narrowly defined as the belief that humans hold to the autonomous system’s capability of 
situational awareness and appropriate task implementation [191]. The trust is dynamic, evolving 
across different stages of navigation and influenced by factors such as compliance with 
COLREGs, decision-making strategies, and the timing of evasive actions. Furthermore, trust 
levels and evasion timings are defined as follows: 

(1) Trust levels: human trust in MASS reflects their confidence in the system’s autonomous 
performance. Higher trust means a stronger observer’s confidence in MASS’s abilities 
to perform tasks successfully, while lower trust refers to more frequent manual checks 
and doubts about the capabilities of MASS’s decision-making system. 

(2) Evasion timings: This refers to the latency between the identification of a potential 
collision object and the initiation of an evasive manoeuvre by MASS. It is categorised 
into three key timing windows in this chapter, listed below: 

1) Standard: a range where manoeuvres are typically expected to take place based 
on conventional practices and safety standards. This is a dynamic window that 
adjusts based on the operational context, allowing for sufficient time to assess the 
situation and respond appropriately. 
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2) Early: initiating manoeuvres earlier than typically expected, providing additional 
safety margin. This timing anticipates potential risks and acts before the standard 
window. 

3) Imminent: the very last feasible moment when collision avoidance must be 
executed. This timing is used as a last resort when all prior opportunities to 
mitigate the situation have passed. 

Building on the foundational concepts of trust levels and evasion timing, this chapter 
formulates three hypotheses to examine the dynamics of human trust in MASS during CA 
scenarios: 

(1) Hypothesis 1 (H1): Human trust in MASS will fluctuate, including trust accumulation 
and dissipation, depending on the system’s compliance with COLREGs rules, in 
particular Rules 15, 16, and 17, and the timing of evasive manoeuvres such as early and 
imminent moments. 

(2) Hypothesis 2 (H2): Right-turn evasion strategies will lead to a higher trust of the 
participant than left-turn strategies in the scenario where a vessel approaches from the 
starboard side, assuming the importance of COLREGs compliance. 

(3) Hypothesis 3 (H3): Early evasion actions and imminent action in general risk situations 
for the COLREGs-aware MASS with a “give-way” role will lead to lower trust levels 
of human observers, assuming the importance of proper evasive timing. 

5.3.1 Experiment design 

This chapter investigates the dynamics of observer trust in MASS during collision avoidance 
scenarios. The experiment was conducted in two phases to examine both the evolution of trust 
and the impact of different factors influencing trust, such as compliance with COLREGs and 
timing of evasive actions. Participants observed simulated scenarios and evaluated their trust 
levels in a controlled environment where MASS executed various collision avoidance strategies 
in response to an approaching vessel from the starboard side. 

Participants: The experiment engaged 26 participants recruited through maritime channels, 
including captains and officers, ensuring diverse professional experience levels. Each 
participant voluntarily took part in the experiment, and all had prior experience with ship 
navigation but with various experiences ranging from <5 years to >8 years. The experiment 
took place over two phases, lasting approximately 30 minutes per participant. 

Apparatus: The experiment was conducted using the NT-PRO 5000 ship manoeuvring 
simulator, a full-task ship navigation simulator that provides a realistic maritime environment. 
The simulator was designed to replicate a standard open-sea navigation scenario where an 
autonomous vessel encounters a conventional vessel from the starboard side. Table 5-1 presents 
the initial parameters of both the own and surrounding ships. The ships were set to start each 
scenario with identical positions, speeds, and headings, with the surrounding ship serving as a 
constant movement while the own ship executing predefined CA strategies. 

To simulate the decision-making capabilities of MASS, an experienced ship operator 
controlled the vessel behind the scenes, following predetermined decision-making logic that 
emulated the behaviour of an autonomous system. As shown in Figure 1, the logic included two 
key strategies: (1) Left-turn and right-turn manoeuvres performed at standard timing, 
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representing compliance and deviation from COLREGs. (2) In the right-turn condition, 
additional strategies involving early and imminent evasive actions were implemented to 
examine the effect of manoeuvre timing. Figure 5-1 illustrates the vessel trajectories under all 
experimental conditions, demonstrating the behaviours of the own ship in response to the 
behaviours of the surrounding ship, as defined by the initial conditions in Table 5-1. 

Participants’ task in the experiment was to observe the scenarios and evaluate their trust 
levels in the MASS at various navigation and collision avoidance stages. They were instructed 
to focus on the system’s decision-making behaviour, including evasive actions and timing. This 
approach ensured consistent and reproducible implementation of CA strategies, including 
compliance with or deviation from COLREGs, while the target vessel maintained course and 
speed as required by the regulations. 

Table 5-1 Initial parameters of the own and surrounding ships in the experimental scenarios 

Vessel Ship type Ship length Width Speed  Heading 
The own vessel Bulk carrier 225 m 32.3 m 10.5kn 090° 

The surrounding vessel Container ship 190 m 30.0 m 12.0 kn 000° 

 
Figure 5-1 Trajectories of the own and surrounding ships under varying conditions. 

Experimental Design and Conditions: The experiment followed a two-phase structure, as 
shown in Figure 5-2. The condition setting is presented in Table 5-2. The experiment consisted 
of two distinct phases: Phase 1, which explored trust levels associated with left-turn and right-
turn strategies, and Phase 2, which examined trust differences between early and imminent 
manoeuvre responses in the right-turn condition. Participants were divided into two groups 
within each phase, experiencing the scenarios in reverse order.  

To ensure experimental consistency and operational realism, the evasive manoeuvre timings 
were defined using fixed-distance thresholds, based on expert consultations and navigational 
practices. Specifically, right-turn evasive actions were initiated at three distances: 2 nm (early), 
1 nm (standard), and 0.5 nm (imminent). A left-turn strategy was also applied at 1 nm to 
represent a COLREGs-deviating yet safe manoeuvre. These conditions reflect typical judgment 
points in the current scenario and were validated by experienced mariners. 
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Phase 1 – COLREGs compliance consideration: Participants observed the MASS 
navigating under two conditions: one in which the autonomous vessel complied with COLREGs 
by altering course to the starboard side to avoid the collision, and another where it neglected 
COLREGs with a left-turn strategy but still successfully avoided a collision. In both scenarios, 
MASS takes CA manoeuvres at standard timings, as previously defined, where manoeuvres are 
typically expected to take place based on conventional practices and safety standards. 

Phase 2 – Evasion timing consideration: In the second phase, the focus was on the timing 
of CA strategies. Participants were exposed to two conditions: one where the MASS took early 
evasive action and another where it took an imminent strategy.  

In the two phases, trust dynamics were captured through post-scenario questionnaires after 
each run and were evaluated across five key stages, details presented below: 

• Initial Trust: At the beginning of the navigation process. 

• Trust During Regular Navigation: Before any collision-avoidance decisions are made. 

• Trust During Decision-Making for Collision Avoidance: As the ship initiates 
avoidance strategies. 

• Trust During Collision-Avoidance Execution: When the ship performs the manoeuvre 
after deciding on the CA strategy. 

• Final Trust: At the conclusion of the scenario, after the whole CA process has been 
completed. 

Hereafter, these five stages are denoted as Trust1 (Initial Trust), Trust2 (Trust During 
Regular Navigation), Trust3 (Trust During Collision-Avoidance Execution), Trust4 (Trust 
During Collision-Avoidance Execution), and Trust5 (Final Trust) for brevity and consistency 
in the subsequent analysis. 

In addition to the stage-based trust assessments, trust was also measured across five key 
dimensions after each scenario, using specific questions designed to capture different aspects 
of trust. These dimensions were as follows: 

• Dependability: Assessed by asking participants to rate how confident they were in the 
MASS’s ability to avoid collisions (e.g., “To what extent can you count on the MASS 
to avoid collisions in this scenario?”). 

• Predictability: Evaluated based on how predictable the autonomous vessel’s behaviour 
was according to standard maritime practices (e.g., “To what extent did you think the 
behaviour of the MASS was predictable based on standard maritime practices?”). 

• Anthropomorphism: Related to the interpretation of non-human things or events in 
terms of human characteristics and measured by comparing the MASS’s behaviour to 
that of a well-trained human operator (e.g., “How consistent was the MASS’s behaviour 
with how a well-trained human operator would have acted?”). 

• Faith: Captured by asking participants about their belief in the MASS’s ability to handle 
future collision scenarios (e.g., “To what extent do you believe the MASS will be able 
to cope with all collision situations?”). 
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• Safety: Rated by asking how safe participants felt during the collision avoidance process 
(e.g., “How much do you feel unsafe in the whole process of autonomous collision 
avoidance?”). 

Data collection: Trust scores were collected through quantitative trust ratings in the post-
scenario questionnaires administered via the Qualtrics platform, which allowed participants to 
reflect on their trust levels across various stages after each scenario. Trust scores across both 
the dynamic stages and dimensions were gathered, enabling further analysis of how trust 
evolved under different experimental conditions. 

Procedure: participants were briefed on the experimental setup and provided with a 
demonstration of the ship manoeuvring simulator. A pre-experiment survey was administered 
to collect demographic information. After familiarising themselves with the simulator, 
participants proceeded with the scenarios in both phases. In each scenario, the participant 
observed an autonomous ship’s behaviour varied according to the experimental conditions as 
the autonomous vessel encountered an approaching conventional vessel from the starboard side. 
The participants’ views on engaging in simulator experiments are shown in Figure 5-3. 

 
Figure 5-2 Illustration of experimental procedure for collecting observers’ trust in CA scenarios 
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Figure 5-3 Participants’ view on engaging in simulator experiments 

Table 5-2 Experimental groups and conditions. COLREGs-aware: succeeds with collision avoidance while complying with 
COLREGs. COLREGs-neglected: succeeds with collision avoidance but neglects COLREGs. Early: taking actions earlier 

than at the standard time that the corresponding action occurs. Imminent: taking imminent actions. 

First phase – COLREGs compliance 
B

reak &
 

random
isation 

Second phase – Timings 

Group No. 
Trust dynamics 

Group No. 
Trust dynamics 

First run Second run First run Second run 
G01 (N = 

20) COLREGs-aware COLREGs-
neglected 

Group G1 (N = 
20) Early Imminent 

G02 (N = 
20) 

COLREGs-
neglected 

COLREGs-
aware 

Group G2 (N = 
20) Imminent Early 

After data collection, statistical analysis was performed to compare trust dynamics across 
the different experimental conditions, focusing on how trust evolved over time and how 
collision avoidance strategies and timings impact human trust. 

5.3.2 Exploratory Analysis 

Data were collected via Qualtrics from a sample of 26 seafarers (hereafter referred to as 
“observers”) with diverse backgrounds in terms of navigation experience, vessel types, 
positions, and age groups, enabling exploratory analysis of trust dynamics in autonomous 
navigation. The participants ranged from 29 to 55, with a majority falling between 30 and 35. 
In terms of position, the sample included captains (15.4%), first officers (30.8%), second 
officers (30.8%), third officers (7.7%), and pilots (15.4%). Experience levels varied, with 50% 
of participants reporting over eight years of maritime experience, 30.8% between five to eight 
years, and 19.2% with less than five years of experience. The types of vessels that the observer 
was familiar with were also diverse, including general vessels (65.4%), tankers (23.1%), and 
special-purpose vessels (11.5%). Trust ratings were measured across five stages, with mean 
scores ranging from 3.62 to 3.94 (standard deviations of approximately 1.4 to 1.6). 

Furthermore, a repeated measures analysis was conducted to investigate the dynamics of 
trust ratings across experimental stages. The result revealed significant variability in trust levels 
between participants, as indicated by the significant main effect of individual differences 
(p<0.001). This result underscores the presence of underlying factors contributing to differences 
in trust across individuals. To further investigate the trust dynamics and account for both fixed 
effects (e.g., experimental conditions) and random effects (e.g., variability across participants), 
LMM was employed. This method is suitable for analysing repeated measures data while 
capturing individual differences.  
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5.3.2.1 LMM model development 

Mann-Whitney U tests were first employed to evaluate trust differences across experimental 
orders within each phase to determine whether the order influenced participants’ trust. The 
results indicated that for both the left-right strategy comparison and the early-imminent timing 
comparison, there were no significant differences in trust levels across any of the five measured 
trust dimensions (trust1 through trust5). Specifically, the p-values were 0.604 (Trust1), 0.672 
(Trust2), 0.765 (Trust3), 0.443 (Trust4), and 0.852 (Trust5), all above the 0.05 threshold, 
suggesting that the sequence of presentation had no significant impact on trust ratings. Thus, 
the sequence of scenario presentation was considered to have a negligible impact on trust ratings. 
Consequently, sequence effects were excluded from the LMM to concentrate on primary factors 
of interest.  

Given these findings, the LMM model includes the condition, trust moment (defined by the 
five key stages in Sec. 5.3.1), and demographic variables (e.g., experience, vessel type, position, 
age) as fixed effects, while individual participant differences were treated as random effects to 
account for variability in trust responses. Model performance was evaluated using multiple 
metrics. The model’s marginal 𝑅𝑅2 of 0.338 indicated that fixed effects alone explained 33.8% 
of the variance, while the conditional 𝑅𝑅2 reached 0.771, signifying that the combined influence 
of fixed and random effects accounted for 77.1% of the overall variance. Subsequent analyses 
focus on significant main and interaction effects, providing insights into trust dynamics across 
various factors. 

The statistical results of the main and interaction effects for trust are presented in Table 5-3, 
highlighting key factors influencing trust dynamics. The analysis reveals that trust moment and 
condition are significant predictors of trust, indicating that both the stages of navigation and the 
conditions influenced participants’ trust in the autonomous system. Additionally, interaction 
effects between age, vessel type, and experience with trust moment suggest that trust evolved 
differently based on participants’ maritime backgrounds and professional experience. These 
findings underscore the importance of operational context and individual characteristics in 
shaping trust, setting the stage for a more detailed examination of how these factors influence 
trust in autonomous navigation. 

Table 5-3 Type III Tests of Fixed Effects Dependent Variable 

Factors Source F Sig. 

Main effects 

Intercept 137.462 <0.001 
Position  0.421 0.826 

Experience  1.558 0.245 
Vessel type 2.736 0.099 

Trust moment 2.840 0.024 
Condition  5.117 0.002 

Age 0.654 0.535 

Interaction 
effects 

Trust moment * age 5.723 <0.001 
Trust moment * condition 0.728 0.725 
Vessel type * trust moment 2.075 0.037 
Experience * trust moment 2.102 0.034 

Position * trust moment 0.653 0.872 
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5.3.2.2 Main effects analysis 

Figure 5-4 presents the mean trust scores across five distinct stages of the navigation process, 
illustrating how trust levels evolve as the MASS progresses through various CA stages. Stage 
1 (Initial Trust): Trust is measured at the outset, representing baseline confidence in the system 
before any navigation manoeuvres. Participants’ trust at this stage serves as a reference level 
and shows relatively high stability. Stage 2 (Trust During Regular Navigation): Trust is assessed 
during standard navigation, prior to any collision-avoidance decisions. Here, trust levels remain 
close, with a slight increase to the initial levels, indicating that participants maintain a relatively 
steady trust during routine navigation without imminent risks. Stage 3 (Trust During Decision-
Making for Collision Avoidance): Trust is recorded as the autonomous system initiates 
collision-avoidance strategies and timings. This stage shows a shape decline in trust compared 
to both Stage 1 (p=0.01) and Stage 2 (p=0.035), suggesting that participants’ confidence 
diminishes when the system shifts from routine navigation to making critical decisions. Stage 
4 (Trust During Collision-Avoidance Execution): Trust is further evaluated as the system 
performs the avoidance strategies. Another decline in trust is observed, with significant 
differences between Stage 1 and Stage 4 (p=0.036) and Stage 2 and Stage 4 (p=0.01), indicating 
increased participant uncertainty or caution during the strategy execution. Finally, at Stage 5 
(Final Trust), Trust is assessed at the conclusion of the scenario after all manoeuvres have been 
executed. Trust levels partially recover at this stage but do not fully return to initial levels, 
suggesting residual caution even after observing the system’s successful task completion. 

 
Figure 5-4 The illustration of trust scores across all stages based on linear mixed models 

Figure 5-5 displays the mean trust levels across four conditions: Early/Starboard, 
Imminent/Starboard, Standard/Port, and Standard/Starboard. This comparison highlights how 
variations in collision-avoidance timing (early vs. imminent) and direction (starboard vs. port) 
affect trust in the autonomous system. A statistically significant difference between conditions 
is noted, with Standard/Starboard showing a higher mean trust than Standard/Port (p <0.001). 
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Figure 5-5 The illustration of trust scores comparison between different conditions based on linear mixed models 

5.3.2.3 Interaction effects analysis 

 

(a) Trust scores across 5 stages 
under different vessel types 

(b) Trust scores across 5 stages 
under different experience levels  

(c) Trust scores across 5 stages 
under different ages  

Figure 5-6 Trust dynamics across five navigation stages in relation to vessel type, experience level, and age. 

As presented in Table 5-3, the significance test results indicate that trust dynamics vary 
significantly across navigation stages depending on observers’ Vessel Type (p = 0.037), 
Experience Level (p = 0.034), and Age (p < 0.001). Given the lack of significance for other 
interactions, such as trust moment with condition (p = 0.725) and position (p = 0.872), the 
subsequent analysis focuses on these significant effects to provide a targeted exploration of trust 
dynamics across various stages. Thus, we analysed how trust scores varied across the five 
navigation stages (from initial to final trust) under specific demographic factors that have 
significant impacts. Figure 5-6 illustrates these variations concerning three demographic 
variables: Vessel Type, Experience Level, and Age. Each subplot provides a focused view of 
how these demographic factors interact with trust dynamics, revealing distinct trends and 
potential influences at each stage. 

For vessel type, as shown in Figure 5-6(a), participants navigating tankers generally 
exhibited higher trust levels across all stages, while those associated with special-purpose ships 
showed a notable decline in trust from Stages 2 to 4.  

In terms of experience level, as shown in Figure 5-6(b), participants with less than 5 years 
of experience displayed consistently high and relatively stable trust levels across stages. 
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Participants with 5-8 years of experience displayed more variability, with trust peaking at the 
beginning and decreasing notably by the collision-avoidance stages. Conversely, those 
observers with over 8 years of experience started lower and exhibited a slight downward trend. 

Finally, the age-based interaction highlights that participants over 40 years old exhibited 
relatively stable and higher trust scores (see Figure 5-6(c)), while those younger than 30 had 
more pronounced declines, particularly from Stages 2 to 4. Together, these interaction effects 
emphasise that trust is not only influenced by system actions but also by demographic 
characteristics.  

5.3.2.4 Five dimensions of trust 

To gain insight into the key dimensions shaping observers’ trust in MASS’s navigation, we 
conducted a factor analysis on five trust-related metrics: Dependability, Predictability, 
Anthropomorphism, Faith, and Safety. Preliminary tests confirmed that the dataset was suitable 
for factor analysis, with a Kaiser-Meyer-Olkin (KMO) value of 0.843 (indicating sampling 
adequacy) and a significant Bartlett’s Test of Sphericity was significant (𝜒𝜒2 = 365.757, p < 
0.001). The factor analysis yielded a two-factor solution, explaining 88.16% of the variance, 
indicating a stable structure in trust assessments (see Figure 5-7). Factor 1 accounts for 67.6% 
of the variance and includes Dependability, Predictability, Anthropomorphism, and Faith, while 
Factor 2 explains an additional 20.6% and is represented solely by Safety. The extracted factors 
reveal that observers assess trust along two distinct dimensions: general System Competence 
and Situational Safety. 

 
Figure 5-7: The illustration of the factor analysis on five trust-related dimensions 

Specifically, the first factor, which we labelled “System Competence”, aggregates four 
dimensions: Dependability, Predictability, Anthropomorphism, and Faith. As shown in Figure 
5-7, each of these dimensions has a strong loading on Factor 1. Dependability and Predictability 
capture the reliability and consistency of the MASS’ navigation, while Anthropomorphism and 
Faith add human likeness and forward-looking trust, respectively. The second factor, labelled 
“Situational Safety”, is defined exclusively by the safety-related dimension, which loads solely 
on this factor. Unlike the broad reliability-based attributes found in Factor 1, Safety reflects 
observers’ perceptions of safety during collision avoidance. 
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5.3.2.5 Correlation analysis of trust dimensions and two related factors 

Following the factor analysis, a correlation analysis was conducted to further investigate the 
relationships between the two key factors of trust and trust levels across different operational 
stages. This analysis aimed to understand how perceptions of trust evolve during the stages of 
navigation and how they correlate with the two identified trust factors.  

Using Pearson’s correlation coefficients, we assessed the strength and direction of 
relationships between the five trust stages and the two factors identified in the factor analysis. 
Only significant correlations were visualised in the matrix, with non-significant cells left blank 
to emphasise meaningful associations. As illustrated in Figure 5-8, The correlation matrix 
presents a series of moderate to strong positive correlations among trust scores across various 
stages. Additionally, trust scores between adjacent stages show the highest correlations, such as 
Trust1 and Trust2 (0.69) and Trust3 and Trust4 (0.90), indicating that trust levels evolve 
sequentially as participants progress through the stages. 

System competence exhibited moderate positive correlations with trust scores across various 
stages (ranging from 0.51 to 0.64), underscoring the consistent influence of perceived 
competence on participants’ trust. In contrast, Situational safety displayed no significant 
correlations with the trust scores at stages other than the trust at stage 1. This result aligns with 
the earlier factor analysis, where Situational safety emerged as a distinct factor.  

 
Figure 5-8: The correlation analysis between trust scores across each stage and the two identified components 

Building on the insights from our exploratory analysis, which highlighted key demographic 
and experimental conditions influencing trust, we propose a Bayesian network model for trust 
to capture these complex dynamics. This model formalises the relationships among System 
Competence, Situational Safety, stage-specific trust levels, and demographic and situational 
variables (strategies and timings), allowing us to quantify the influence of each factor on trust 
formation and development. 
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5.4 Trust model design  

5.4.1 Bayesian network construction for trust 

The exploratory analysis revealed that trust in the autonomous system of MASS evolves 
dynamically across various stages in the CA process. Additionally, trust is influenced by 
condition, demographic characteristics, system competence, and situational safety. Therefore, 
the objective of constructing this Bayesian network is to capture the progression of trust by 
modelling the probabilistic relationships among trust stages while integrating various factors 
that shape trust outcomes. 

5.4.1.1 Node definition and network structure 

The Bayesian network incorporates five sequential trust nodes, each representing trust at a 
specific stage, from InitialTrust to FinalTrust. This structure leverages the Markov property, as 
was considered in [107], where each trust stage depends solely on the trust level of its immediate 
predecessor. By adopting this assumption, the model focuses on the local dependencies in trust 
evolution, simplifying the structure while preserving the temporal dynamics of trust 
development. FinalTrust serves as the node that represents the cumulative confidence built 
throughout the CA process. It reflects how trust, as it propagates through the stages, aggregates 
into an overall assessment of the navigational performance of the autonomous system.  

In addition to temporal dependency, trust varies among participants across various 
backgrounds, such as age, experience, and vessel types. Thus, this model integrates 
demographics that were identified as key factors, including age, experience, and vessel type, as 
parent nodes to InitialTrust, reflecting their role in shaping baseline trust levels. These factors 
account for inherent individual differences in trust propensity, as indicated by the exploratory 
findings. Furthermore, situational factors such as Strategies and Timings are introduced as 
parent nodes to Trust 3, representing the influence of CA decisions on trust in the decision-
making stage. This structure ensures that the model captures both individual propensity and 
situational factors on trust transitions. 

To capture the multidimensional evaluation of trust, the model incorporates two extracted 
components: System competence and Situational Safety. System Competence reflects 
perceptions of dependability, predictability, human likeness, and forward-looking beliefs, while 
Situational Safety focuses on safety evaluations during collision avoidance. These dimensions 
are linked directly to FinalTrust, representing their role in shaping the overall trust in the 
autonomous system. This framework lays the groundwork for further analysis, including 
diagnostic analysis informed by sensitivity analysis, predictive reasoning, and causal inference, 
to explore trust mechanisms in depth. 

Figure 5-9 illustrates the staged trust formation process of MASS in the CA process, 
showing the interaction between performance, real-time beliefs, and stage-specific trust across 
navigation phases. Trust evolves sequentially, starting with initial trust (𝐻𝐻0) and baseline beliefs 
(𝐵𝐵0 ), and progressing through key stages, including 𝐻𝐻1  (routine navigation), 𝐻𝐻𝑠𝑠  (strategy and 
timing decisions), 𝐻𝐻2 (CA execution), and final trust  𝐻𝐻𝑑𝑑. At each stage, real-time beliefs (𝐵𝐵𝑘𝑘) 
are updated dynamically based on ongoing system performance 𝑃𝑃𝑘𝑘, which directly shape staged 
trust. During CA execution, the system’s manoeuvres (e.g., CA strategies and timing) are 
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captured in performance nodes (𝑃𝑃𝑠𝑠), which influence 𝐻𝐻𝑠𝑠 via updated beliefs (𝐵𝐵𝑠𝑠). Throughout 
the process, observer evaluations of System Competence (𝑆𝑆𝐶𝐶) and Situational Safety (𝑆𝑆𝑆𝑆) are 
integrated into final trust judgments. These two dimensions are critical to linking specific 
system performance to comprehensive trust evaluations at the final stage. This framework 
highlights the interplay of system performance, real-time beliefs, stage trust, and trust-related 
factors assessment in trust formation. Given the uniformity of vessel performance and the 
controlled nature of the experimental scenarios, performance variability was minimal. As such, 
the model excludes explicit performance nodes, focusing instead on Strategy and Timing as key 
situational factors of trust.  

 
Figure 5-9 Development of a human trust model with Bayesian Networks for MASS operation 

5.4.1.2 Parameter setting and model training 

The constructed trust Bayesian network is shown in Figure 5-10, where InitialTrust serves 
as the baseline trust level influenced by demographic factors, including age and vessel type, 
which were derived from maritime industry reports1,2. For example, age distributions (below 
30: 16%, 30–40: 29%, above 40: 55%) and vessel type (General: 63%, Tanker: 13%, and 
Special-purpose ships: 25%). For factors lacking statistical support, such as Strategy and 
Timing, prior probabilities were estimated based on domain expertise. For instance, left-turns 
(25%) and right-turns (75%) were assigned probabilities reflecting standard maritime practices 
under COLREGs, while collision-avoidance timing was set as standard (70%), early (15%) and 
imminent (15%). Additionally, System Competence and Situational Safety were discretised into 
low, medium, and high categories using tertile thresholds (0.33 and 0.66) derived from factor 
analysis scores, while trust ratings (1–7) were similarly classified into low (1–2), medium (3–
5), and high (6–7). The prior probabilities of other nodes and conditional probabilities were 
calculated by using the trust data collected from our survey through the GeNIe software.  

5.4.2 Application 

Following the construction of the TBN model, its utility was evaluated through targeted 
applications. These included diagnostic analysis informed by sensitivity insights and 
predictive reasoning. Diagnostic analysis, built on sensitivity analysis methods, aims to 

 
1 https://www.statista.com/statistics/264024/number-of-merchant-ships-worldwide-by-type/ 
2 https://www.gov.uk/government/statistical-data-sets/seafarer-statistics-sfr#certificated-officers-and-trainees-
sfr02  

https://www.statista.com/statistics/264024/number-of-merchant-ships-worldwide-by-type/
https://www.gov.uk/government/statistical-data-sets/seafarer-statistics-sfr#certificated-officers-and-trainees-sfr02
https://www.gov.uk/government/statistical-data-sets/seafarer-statistics-sfr#certificated-officers-and-trainees-sfr02
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identify the most influential factors contributing to a specific observed outcome. Predictive 
inference estimates future trust levels based on current conditions, aiding in proactive 
management. 

5.4.2.1 Diagnostic analysis 

To evaluate the robustness and identify critical determinants of the trust model, we 
conducted a diagnostic analysis informed by sensitivity insights targeting the Trust5=high 
outcome. A 30% parameter spread, reflecting realistic variability in parameters, was 
implemented to simulate realistic uncertainties, visualising results using a tornado diagram (see 
Figure 5-11), where the top ten bars represent the factors contributing most significantly to the 
variability of the outcome. 

As shown in Figure 5-11, the tornado diagram highlights the diagnostic results of 
Trust5=high to variations in key parameters, demonstrating how trust outcomes respond to 
changes in the TBN. Competence=high exhibits the most significant positive influence, aligning 
with its direct pathway to FinalTrust and underscoring its central role in trust formation. 
Sequential trust stages, such as Trust4=high | Trust3=high, reveal cascading effects, 
emphasising the importance of consistent trust-building across stages. Together, the insights 
emphasise the interplay between System Competence and sequential trust evolution, offering 
actionable guidance for enhancing user trust in autonomous navigation systems. 

 
Figure 5-10: Trust model design for autonomous decision-making of MASS in CA scenarios  
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Figure 5-11: Diagnostic analysis visualisation results for Trust5(Final Trust)=high 

 
Figure 5-12: Diagnostic analysis visualisation results for Trust3(TrustStrategy)=high 

In TBN, Trust 3 represents a critical stage where trust is influenced by the prior trust level, 
that is, TrustPreCA, and situational factors (e.g., Strategies, Timings). This node is important to 
explore because it indirectly impacts FinalTrust, as identified in Figure 5-11 (The second most 
important impact factor: Trust4=high|Trust3=high). In addition, it is the key stage in the whole 
process at which the Strategy and Timing were imposed. Thus, the diagnostic analysis for 
Trust3=high was conducted further, as shown in Figure 5-12. Specifically, the analysis reveals 
that Trust2=medium, conditional on Trust1=medium, exerts the strongest influence, with a steep 
negative derivative (-0.207), indicating that small changes in Trust2 greatly impact Trust3. 
Similarly, the interaction between Timing=Standard and Strategy=TurnRight demonstrates a 
marked influence on Trust3=medium, evidenced by its contribution and derivative (-0.133). 
Notably, the direct influence of Timing=Standard (ranked 5th) compared to its interaction with 
Strategy (ranked 2nd and 3rd) highlights the compounding effect of navigation strategies on 
trust. This aligns with the finding that Strategy=TurnRight combined with a higher trust level 
in Trust2 contributes positively to Trust3=high (derivative: +0.276). Furthermore, while other 
factors also show the impact on Trust3, such as vessel type = General, their effects are weaker, 
underscoring the dominance of imminent variables such as situational factors over demographics. 
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Figure 5-13 Diagnostic analysis visualisation results for Trust1(InitialTrust)=high 

Similarly, a diagnostic analysis on Trust1=high was also conducted, as shown in Figure 5-13. 
The results reveal that Vessel Type exhibits the strongest influence on Trust1, particularly for 
general vessels showing a negative relationship (derivative: -0.170) and tanker vessels with a 
positive influence (derivative: +0.206), indicating a higher trust dependency on vessel types. 
Other demographic factors such as Experience and Age demonstrate moderate but substantial 
effects, with experienced participants (rated as “good”) and those aged 30–40 exhibiting 
negative impacts on Trust1=high. Conversely, specific combinations of demographic features 
(e.g., good experience and vessel type “tanker”) highlight positive influence, reflecting that 
senior, experienced personnel on takers enhance InitialTrust. This analysis underscores the 
importance of tailoring strategies to specific observer profiles to foster trust in autonomous 
systems from the outset. 

5.4.2.2 Predictive reasoning 

Following the diagnostic analysis, we conducted predictive reasoning to estimate the trust 
dynamics under the variations in Strategies and Timings, particularly focusing on critical trust 
nodes, such as FinalTrust and TrustEvasion, see Figure 5-14. As shown in Figure 5-14 (a), 
medium trust consistently dominates, with the Right & Early strategy achieving the highest 
proportion (60%). High trust levels are, although relatively low, peak in Right & Standard 
(28%), indicating its effectiveness in maintaining trust during the evasive stage. Conversely, 
low trust is most prevalent in Left & Standard (33%), suggesting its potential drawbacks in 
trust-sensitive scenarios. Similarly, the FinalTrust subplot, as shown in Figure 5-14 (b), shows 
medium trust as the dominant outcome across all strategies, with Right & Early achieving the 
highest proportion (64%) and Left & Standard again exhibiting higher low trust levels (27%). 

These findings underscore the diagnostic finding of trust outcomes to operational strategies, 
highlighting Right & Standard, Right & Early, and Right & Imminent as favourable strategy 
combinations for sustaining trust during the entire CA process. 
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(a) Trust Evasion under Different Collision Avoidance 
Strategies 

(b) Final Trust under Different Collision Avoidance 
Strategies 

Figure 5-14 Predictive reasoning on trust evasion and final trust under different CA Strategies 

5.4.3 Discussion 

Trust was measured using post-scenario evaluations collected via Qualtrics, where participants 
rated their trust after observing specific collision avoidance manoeuvres. The use of simulated 
navigation videos embedded within Qualtrics ensured that participants evaluated the 
autonomous system’s performance in controlled, consistent scenarios, capturing trust 
fluctuations across distinct navigation stages. Furthermore, the analysis, conducted using LMM, 
uncovered trust dynamics across navigation stages. Firstly, consistent with H1, trust in the 
MASS fluctuated throughout the CA process. Participants’ trust varies significantly across 
several stages (e.g., TrustPreCA vs TrustStrategy) but partially recovered during the final stage, 
see Figure 5-4. This fluctuation reflects increased scrutiny during high-stakes manoeuvres and 
a gradual convergence towards a calibrated level of trust as participants gained a deeper 
understanding of the system. However, the final trust levels did not return to their initial levels, 
suggesting residual caution or incomplete trust recovery even after successful task completion. 
Secondly, trust levels exhibit slight increases during the early stages (Trust1 to Trust2), 
reflecting trust accumulation, but a shapely decrease in Trust3 and Trust4, underscoring the 
asymmetric nature of trust formation versus erosion, followed by partial recovery at the final 
stage (Trust5). The initial slight increase may result from the system’s adherence to stable 
navigation practices and predictable behaviour. The abrupt decline likely corresponds to 
participants’ heightened scrutiny during strategies/timings selection and execution stages, 
where system limitations or perceived inefficiencies become more evident. Trust recovery at 
the final stage suggests an accumulation effect, where the overall performance in earlier stages 
is synthesised into a final trust judgment. This pattern aligns with trust accumulation, typically 
requiring consistent system performance over time, while dissipation can occur rapidly due to 
a single negative event.  

Furthermore, trust in the Right&Standard scenario differs significantly from the Left & 
Standard scenario, as shown in Figure 5-5, suggesting participants’ preference for manoeuvres 
that align more closely with COLREGs. This result, aligning with H2, may turn out that in CA 
scenarios, where a vessel is approaching from her starboard side, right-turn strategies may have 
been perceived as more consistent with standard maritime practices to accumulate trust, while 
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left-turn strategies might have been interpreted as riskier or less conventional to dissipate trust. 
Finally, aligning with H3, while proactive responses aligned with standard timings were 
associated with higher trust levels, actions that were “too early” or “too late” demonstrated 
suboptimal outcomes, see Figure 5-5. The findings imply that MASS systems must balance 
evasion strategies and proper timings, avoiding evasions that are either too proactive or overly 
reactive. 

Overall, these two factors reveal that observers differentiate between general System 
Competence and Situational Safety when forming trust in autonomous navigation systems. This 
insight emphasises the need for MASS designs to address both Competence and Safety to ensure 
reliability and promote trust in dynamic navigational environments. 

In terms of demographic factors consideration, the inclusion of participants with diverse 
professional backgrounds aimed to ensure the representativeness of trust dynamics across 
various groups. This diversity allowed to identify the overall trend in trust evolution while also 
capturing the variability that emerges when demographic factors interact with other factors. The 
results indicate while the main effects analysis revealed that trust dynamics were primarily 
influenced by navigational stages and conditions, interaction effects highlighted subtle 
differences based on experience level, vessel type, and age during specific CA stages, as shown 
in Figure 5-6. These differences were not the primary focus of this study but provided 
supplementary insights into how trust responses may vary in certain CA scenarios. Such insights 
highlight the need for context-specific considerations when evaluating trust in MASS 
navigation in CA scenarios. 

Regarding the dimensional structure of trust, trust was found to encompass two overarching 
dimensions: System Competence and Situational Safety. The linkage between System 
Competence and Situational Safety and FinalTrust demonstrates the multidimensional nature 
of trust. This finding highlights that observers evaluate trust both as a comprehensive judgment 
of the system’s competence and as a context-specific assessment of safety. Additionally, System 
competence exhibited moderate positive correlations with trust scores across various stages 
(ranging from 0.51 to 0.64), underscoring the consistent influence of perceived competence on 
participants’ trust. This result suggests that observers’ perceptions of the MASS’s navigational 
reliability, human likeness, and forward-looking beliefs contribute continuously to their trust 
across all stages, indicating their foundational role in trust formation. In contrast, situational 
safety was primarily linked to InitialTrust. Its influence on subsequent trust stages was limited. 
This may reflect the controlled nature of the experimental design, in which participants were 
implicitly assured of the system’s safety. In other words, in this context, Safety might become a 
“given” in participants’ minds, leading them to assume that the MASS will handle high-risk 
scenarios adequately. As a result, Safety ratings might remain stable across different conditions, 
especially if no unexpected behaviours challenge this expectation. However, this does not imply 
that situational safety is irrelevant in real-world applications. Instead, it suggests that observers’ 
perceptions of safety are formed early and remain stable unless disrupted by unexpected system 
failures or high-risk scenarios. 

With respect to TBN, this model captures the staged progression of trust in MASS, 
integrating temporal dynamics, demographics, and situational factors. This structured approach 
is essential for understanding how trust evolves and identifying the determinants of trust-
building at different stages of the CA process. Firstly, the sequential trust nodes represent a 
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staged process of trust evaluation from InitialTrust to FinalTrust. The Markov property 
simplifies the model by assuming that each stage depends primarily on the previous one, which 
is consistent with the exploratory analysis showing strong correlations between consecutive 
trust ratings, see Figure 5-8. Secondly, baselined trust levels (InitialTrust) are influenced by 
demographic variables, such as vessel type, age, and experience (see Figure 5-13 and Figure 
5-6(a)).  

Focusing on the results of diagnostic analysis informed by sensitivity insights, two aspects 
of insights can be drawn. (1) The tornado diagram for Trust5=high (Figure 5-11) indicates that 
System Competence exerts the most significant positive influence on FinalTrust. It underscores 
that perceptions of dependability, predictability, human likeness, and forward-looking beliefs 
of the autonomous system in the entire CA process are critical for building overall trust. (2) The 
cascading influence of earlier trust stages on later outcomes (e.g., Trust4=high | Trust3=high) 
emphasises the cumulative nature of trust (Figure 5-11). The significant impact of TrustStrategy 
(Trust3) on FinalTrust highlights the critical role of decision-making strategies and timings in 
the trust pathway. Furthermore, TrustStrategy (Trust3) was found to be influenced not only by 
situational factors (e.g., strategy and timing) but also by the trust level in the preceding stage 
(TrustPreCA). This sequential dependency supports the hypothesis that trust evolves 
progressively, with earlier stages laying the foundation for subsequent evaluations. The findings 
support the need for consistent trust-building throughout all stages of interaction. 

Finally, the following key takeaways can be derived regarding the results of predictive 
reasoning: (1) strategies involving Right & Early, Right & Imminent, and Right & Standard 
manoeuvres consistently achieve higher levels of trust compared to Left strategies, as shown in 
Figure 5-14, also aligning with the hypothesis of H3. (2) Despite variations during evasive 
actions, trust partially stabilises at the FinalTrust stage. This indicates that the system’s overall 
performance, which affects the system competence of the autonomous system, can mitigate 
earlier fluctuations, reinforcing the importance of holistic trust-building efforts. 

Overall, the results have the following two implications for the design and operation of 
autonomous navigation systems. 

(1) Prioritising competence in system design: System Competence was underscored, 
comprising reliability, predictability, anthropomorphism, and forward-looking decision-
making, as the most critical factor influencing observer overall trust in the entire CA 
process. MASS systems should prioritise performance consistency and predictability, 
especially in CA scenarios. To achieve this, developers must enhance the transparency 
of system behaviour by incorporating real-time feedback mechanisms that clarify 
decision rationales, particularly during unconventional manoeuvres such as left-turn 
strategies. Additionally, to maintain trust consistently, MASS systems must focus on 
early-stage performance to prevent dissipation that could propagate through later 
evaluations. 

(2) Optimising evasion strategies and timing: The study highlights the importance of proper 
evasive strategy and timing. While proactive responses are generally associated with 
higher trust levels, actions that are too early or too delayed can dissipate observer trust. 
To address this, MASS systems should incorporate adaptive algorithms that optimise 
the timing of evasive manoeuvres with compliance with regulations like COLREGs. 
Furthermore, autonomous systems should focus on transparency, particularly in 
explaining the decision logic in scenarios where deviations from observer expectations 
(e.g., delayed or unconventional manoeuvres) occur. As suggested by [192], observer 
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trust in autonomous navigational decisions can be strengthened when the regulations are 
involved in the decision-making mechanism, which can improve the system’s 
transparency. 

In terms of comparison with prior research, the findings align with previous studies on trust 
in automation, particularly the dynamic nature of trust, accumulation and dissipation [9], and 
its dependence on system performance [232]. In the maritime domain, this research, which is 
different from [164], investigates observer trust in the autonomous decision-making system of 
MASS across several stages in a CA process instead of real-time measurement. However, this 
research expands the understanding of trust in autonomous systems by introducing the dual 
dimensions of competence and situational safety, providing an in-depth understanding of trust 
in the autonomous system of MASS in an MWTS. 

5.5 Conclusions 
This chapter addresses the research question RQ4- viii: How can human trust in MASS be 
measured, analysed, and modelled within controlled experimental settings?, contributing to a 
deeper understanding of trust dynamics in human-supervised autonomous navigation. The 
dynamics of observer trust in MASS during CA scenarios are investigated in this chapter, 
combining quantitative trust measurement, exploratory analysis using LMM, and predictive 
reasoning via the proposed TBN model. 

Trust was measured through post-scenario evaluations collected via Qualtrics, allowing 
participants to rate their trust in MASS after observing simulated navigation videos. These 
measurements captured stage-specific fluctuations, which were analysed using LMM to identify 
key patterns: slight and gradual trust accumulation during routine navigation and sharp 
dissipation during the CA strategies and timings selection and execution stages. Trust at the 
final stage, that is, overall trust, is partially recovered, underscoring the cumulative influence 
of prior stages. Trust dynamics varied significantly by demographic factors, such as experience 
and vessel type. Moreover, left-turn strategies were associated with lower trust compared to 
right-turn strategies, reflecting observer preferences for COLREGs-compliant evasion 
strategies. Factor analysis identified two trust dimensions, including System Competence and 
Situational Safety, with System Competence strongly correlating with trust across all stages. 
The Markov-like stage correlations further supported the sequential nature of trust evolution. 

Building on these findings, the TBN model quantified trust dynamics, highlighting the 
dominant role of System Competence in shaping final trust and the cascading influence of 
intermediate stages. Diagnostic analysis informed by sensitivity analysis emphasised the critical 
importance of decision-making strategies and timely actions, while predictive reasoning 
demonstrated the positive impact of proactive right-turn manoeuvres. While the model captures 
key drivers of trust in controlled scenarios, it does not yet account for continuous operator 
feedback or real-time trust adaptation, which limits its applicability in dynamic, operational 
environments. Future extensions could incorporate physiological or behavioural indicators to 
enable real-time trust calibration. Nevertheless, the results of this chapter provide actionable 
guidance for designing MASS systems that align with observer expectations, improve 
transparency, and optimise CA strategies. 



 

119 

Chapter 6. Conclusions and Future 
Research 

This thesis aims to address the challenges posed by integrating Maritime Autonomous Surface 
Ships (MASS) into Mixed Waterborne Transport Systems (MWTS), with a specific focus on 
ensuring safety and efficiency in collision avoidance scenarios. To achieve this, we developed 
a decision-making framework incorporating situational awareness, human-mimic navigation, 
and human trust as its core components. This framework offers a potential solution to support 
safer and more effective interactions between autonomous and manned vessels within MWTS. 

This chapter concludes the thesis by summarising the findings and addressing each research 
question in Section 6.1. Section 6.2 outlines potential future research directions to address the 
limitations and new research opportunities identified in this thesis. 



120 6.1 Conclusions 

 

6.1 Conclusions 
This section summarises the responses to the sub-questions presented throughout the thesis, 
demonstrating how each contributes to addressing the main research question:  

How can a decision-making framework for collision avoidance, incorporating situational 
awareness, human preferences, and human trust, be developed to ensure safe and efficient 
interaction between autonomous and manned vessels in mixed waterborne transport systems? 

In order to answer the main research question, we first elaborate on the answers to each sub-
question. 

(1) Answers to the questions on the state of the art: 

(i) What is the state of the art on the safety and efficiency of human-MASS interaction? 

The systematic literature review in Chapter 2 investigated current research on human-
MASS interaction, with a focus on safety and efficiency in an MWTS. The review highlighted 
four key areas: human factors, autonomous system technologies, system analysis and design, 
and regulatory frameworks. For safety, progress in sensor technologies and collision avoidance 
algorithms has improved the ability of autonomous vessels to identify and respond to potential 
hazards. However, situational awareness, a critical component of safe navigation, continues to 
present challenges, particularly as errors in situational assessment remain a common cause of 
maritime incidents. Efficiency has primarily been approached through route optimisation and 
fuel consumption reduction, but existing methods rarely account for the dynamic behaviours of 
manned vessels in mixed-traffic environments. Trust, identified as a key factor, especially in 
remote supervision, directly influences how human operators perceive and respond to 
autonomous decisions. Current systems, however, remain constrained by the need for human 
oversight, particularly in dynamic and complex navigational environments. 

The review results show that despite great progress in this domain, several gaps remain in 
the state of the art. First, situational awareness models specifically designed for autonomous 
vessels in MWTS are underdeveloped. Existing models often fail to consider the complexities 
of mixed traffic environments, where autonomous and manned vessels co-exist and interact. 
Second, collision avoidance research frequently assumes fixed or constant movement for 
manned vessels, overlooking their navigational preferences during interactions, which limits 
the practical applicability of these models. Finally, while trust is widely acknowledged as a 
critical aspect of human-autonomous interaction, empirical studies examining its evolution and 
impact factors in human-supervised decision-making, particularly in collision scenarios, are 
scarce. The absence of trust models for evaluating and maintaining a proper level of trust in 
existing frameworks represents limitations in supporting safe and efficient human-MASS 
interaction. 

This review established a clear foundation for the research by identifying these gaps and 
demonstrating the need for an integrated approach. While great progress has been made in 
individual components, the literature lacks an integrated framework that addresses the interplay 
between situational awareness, navigational preferences, and human trust. The insights gained 
from the review informed the development of this thesis, which seeks to enhance safety and 
efficiency in MWTS by addressing these challenges in a structured and comprehensive manner. 
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(ii) What factors should be considered in the decision-making framework? 

As discussed in response to the previous question, the decision-making framework for 
collision avoidance in MWTS should account for three important and interrelated factors 
identified through the systematic literature review in Chapter 2: situational awareness, human 
navigational preferences, and trust dynamics. Situational awareness involves processing real-
time data from sensors, external sources, and domain knowledge to build a comprehensive 
understanding of the navigational context , including both the surrounding traffic environment 
and the vessel’s own states (e.g., manoeuvrability). This forms the basis for autonomous 
decision-making and ensures the interpretability of actions for human supervisors. Human 
navigational preferences are essential to accommodate the behaviours and manoeuvring 
tendencies of manned vessels, providing cooperative and predictable interactions within MWTS. 
Finally, trust dynamics emphasise the need to maintain a proper level of human trust in the 
decision-making system by addressing human supervisors’ perceptions of system capabilities 
during collision avoidance scenarios. The integration of these factors into the decision-making 
framework ensures that autonomous vessels navigate safely and efficiently in an MWTS by 
building seamless interactions with human-operated vessels, addressing the identified gaps in 
current approaches. 

(2) Answers to the questions on the situational awareness modelling: 

(iii) How can data from multiple sources be effectively integrated for situational awareness? 

Chapter 3 of this thesis examined the integration of multi-source data to enhance situational 
awareness in MASS operating in MWTS. The chapter proposed an ontology-driven knowledge 
map model to systematically integrate sensor data, maritime regulations, and contextual 
information, providing a structured representation of the navigational environment. 

Furthermore, the ontology-driven knowledge map was designed to process real-time data 
from sensors, such as obstacle detection and vessel tracking, and to combine this information 
with domain knowledge, including COLREGs and behavioural codes. This integration aimed 
to create a comprehensive understanding of the surrounding maritime environment, enabling 
MASS to recognise potential risks and evaluate decision-making options. By incorporating such 
diverse sources of information, the model offered an improved foundation for navigation and 
collision avoidance. An advantage of this model was its ability to respond dynamically to sensor 
inputs and changing conditions in real time, providing robust abilities in ensuring navigational 
safety and rule compliance for MASS in various environments. Simulation studies 
demonstrated that the model could deal with multi-source data effectively, providing actionable 
support for real-time decision-making in various environments. 

In conclusion, the ontology-driven knowledge map provided a promising approach for 
integrating multi-source data to support informed decision-making by providing MASS with 
timely and effective situational awareness. By linking sensor observations with maritime 
regulations and contextual data, the model contributed to improved safety and operational 
efficiency. However, further refinements are needed to incorporate environmental factors and 
to validate the system in real-world contexts, ensuring its readiness for deployment in complex 
and dynamic maritime environments. 

(iv) How can a local path planning algorithm tailored to 3 degrees of freedom vessels be 
developed, integrating the results of situational awareness? 



122 6.1 Conclusions 

 

Chapter 3 addressed this sub-question by developing and evaluating a local path-planning 
algorithm tailored to the dynamics of 3-degrees-of-freedom (3-DOF) vessels, which include 
surge, sway, and yaw motions. The Dynamic Window Approach (DWA), originally designed in 
robotics, was adapted and integrated with the ontology-based knowledge map model to enable 
real-time path planning for MASS in the MWTS. 

The modified DWA algorithm accounted for the kinematic and dynamic constraints of 3-
DOF vessels, such as their limited manoeuvrability. The integration of situational awareness 
outputs from the ontology-driven knowledge map provided the algorithm with a comprehensive 
understanding of the surrounding navigational environment. This included proximity to 
obstacles, COLREGs compliance requirements, and dynamic updates on the positions of other 
vessels. Simulation results demonstrated the effectiveness of the adapted DWA in handling 
high-risk navigational contexts. The algorithm consistently generated collision-free paths while 
maintaining regulatory compliance. It also showed adaptability to congested and dynamic 
environments, supporting efficient interaction between MASS and manned vessels. However, 
these achievements came with trade-offs; the algorithm’s emphasis on safety occasionally 
resulted in increased travel distances and longer voyage times. 

In conclusion, the tailored DWA, supported by outputs from the ontology-driven situational 
awareness model, provided a robust framework for local path planning in 3-DOF vessels. By 
addressing the unique constraints of maritime navigation and incorporating regulatory 
compliance, the approach contributed to safer and more effective navigation for autonomous 
vessels in MWTS. However, further validation and refinements are required to ensure the 
algorithm’s performance in real-world maritime operations. 

(3) Answers to the questions on the human preferences for human-mimic collision 
avoidance: 

(v) How can AIS data be utilised to extract the navigational preferences of conventional 
vessels for collision avoidance? 

Chapter 4 addressed this sub-question by developing a methodology to extract navigational 
preferences from Automatic Identification System (AIS) data, which provided crucial insights 
into how conventional vessels behave during potential collision scenarios. The process involved 
analysing ship conflict pairs to identify patterns in speed, acceleration, and course adjustments. 

To achieve this, the research developed a methodology to process AIS data using an LSTM-
autoencoder combined with K-means clustering. The approach involved detecting ship pairs in 
potential collision scenarios and analysing their trajectories to categorise behavioural patterns. 
The LSTM-autoencoder extracted latent features from historical AIS data in Port of Rotterdam, 
capturing key navigational behaviours, while the K-means clustering algorithm grouped these 
behaviours into distinct categories. The resulting clusters provided a deep understanding of 
navigational preferences, such as cautious adjustments, reactive manoeuvres, and standard 
operational responses. 

The results demonstrated the effectiveness of this approach. The model identified four 
distinct clusters of navigational behaviours, each representing a specific strategy employed by 
human-operated vessels. For instance, cautious patterns were characterised by minimal course 
adjustments, while reactive patterns showed significant and rapid changes in heading and speed. 
These clusters provided interpretable insights into how human-operated vessels navigate during 
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potential collision scenarios. Furthermore, the ability of the model to process large AIS datasets 
with high computational efficiency ensured its applicability in real-time maritime operations, 
enhancing the predictive capacity of autonomous decision-making systems. 

In summary, the extraction of navigational preferences from AIS data establishes a 
foundation for integrating human-like navigation into the autonomous decision-making 
framework. By aligning with the behaviours of manned vessels, this approach promotes safety, 
predictability, and mutual understanding in mixed waterborne environments. Future research 
could extend these findings by incorporating broader datasets and exploring the integration of 
additional behavioural and environmental factors to refine the model further. 

(vi) How can past vessels’ trajectories be used to develop a real-time movement prediction 
model with improved accuracy and interpretability based on human navigational 
preferences? 

Understanding and predicting the future movements of vessels in a mixed waterborne 
environment is important for safe and efficient collision avoidance. Chapter 4 addressed this by 
developing a movement prediction model that integrates human navigational preferences 
derived from past movements. By capturing the dynamic interactions and behavioural 
tendencies of manned vessels, this model offers a predictive capability that not only enhances 
accuracy but also improves the interpretability of predictions.  

The methodology leveraged historical AIS trajectory data, processed using a Multi-Task 
Learning Sequence-to-Sequence LSTM model with attention mechanisms (MTL-Seq2Seq-
LSTM-Att). The model incorporates the navigational preference clusters identified earlier, 
embedding these preferences into its predictive framework. The encoder-decoder architecture 
captured temporal dependencies within trajectory data, while the attention mechanism 
prioritised critical behavioural features relevant to specific navigational scenarios. This multi-
task approach allowed simultaneous prediction of the future trajectories of the autonomous 
vessel and neighbouring manned vessels, ensuring consistency and mutual awareness. 
Evaluation of the model demonstrated improvements in both prediction accuracy and 
interpretability. The integration of navigational preferences reduced prediction errors. These 
results were validated across various time horizons, with particularly strong performance for 
15-minute predictions. Limitations included the computational complexity associated with real-
time implementation in high-density traffic and the reliance on AIS data, which may not capture 
all contextual factors such as environmental conditions or operator intent. Additionally, the 
model’s performance in highly congested scenarios involving multiple vessels requires further 
exploration. 

In summary, the movement prediction model presented in this thesis bridges the gap 
between accuracy and interpretability by embedding human navigational preferences into real-
time trajectory prediction. This innovation provides a foundation for autonomous decision-
making systems, enabling them to anticipate and respond to various vessel interactions 
proactively.  

(vii) How does the prediction result support the interactive collision avoidance of MASS in 
a mixed waterborne environment? 

Accurate trajectory predictions are a basis of safe and efficient interaction in collision 
avoidance scenarios, particularly in an MWTS where autonomous vessels are suggested to 
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proactively respond to the movements of manned vessels to ensure seamless interactions in the 
presence of limited communication. Chapter 4 explored how integrating prediction results into 
a decision-making framework enhances collision avoidance strategies. By transforming human-
preference-aware trajectory predictions to human-recommended routes, the framework enables 
MASS to avoid collisions in a human-like manner while keeping navigational safety with the 
KM-DWA planner in emergency situations, ensuring safe and efficient interactions with 
surrounding vessels. 

The methodology involved embedding the prediction results from the MTL-Seq2Seq-
LSTM-Att model into the proposed decision-making framework. These predictions were used 
to dynamically inform the KM-DWA path-planning module and an MPC trajectory-tracking 
module. The KM-DWA module utilised predicted trajectories to refine path planning, taking 
into account dynamic collision scenarios based on the DCPA and TCPA metrics. Simultaneously, 
the MPC module ensured the vessel could accurately follow its planned trajectory while 
remaining responsive to real-time updates from the prediction model. This dual integration 
allowed the framework to prioritise safety and efficiency while maintaining navigational 
predictability for human-operated vessels. The results demonstrated that the use of prediction 
results improved the framework’s performance in collision avoidance tasks. Autonomous 
vessels could proactively adjust their paths as “manned vessels recommend” to avoid conflicts, 
aligning with navigational preferences and behaviours observed in manned vessels. Simulations 
indicated that the framework reduced the severity of near-collision scenarios. However, 
limitations were noted, including the computational demands of real-time integration and the 
reliance on AIS data, which may not fully capture unforeseen navigational behaviours or 
environmental disruptions. The model also required further validation in high-density traffic 
scenarios involving multi-vessel interactions to ensure robustness and scalability. 

In summary, the integration of prediction results into the collision avoidance framework 
enhances the decision-making capabilities of MASS in mixed environments. By leveraging 
trajectory predictions informed by human navigational preferences, the framework fosters safer 
and more cooperative interactions between autonomous and manned vessels.  

(4) Answers to the questions on human trust: 

(viii) How can human trust in MASS in collision avoidance be measured, analysed, and 
modelled within controlled experimental settings? 

Trust plays an important role in ensuring seamless human-MASS interaction, especially 
during high-risk scenarios where human supervision is necessary, such as collision avoidance. 
Chapter 5 focused on understanding and evaluating trust dynamics in collision avoidance 
scenarios involving MASS, with human supervisors acting as observers to evaluate their trust 
in various navigational stages of collision avoidance scenarios. By investigating trust dynamics 
across different stages, this chapter aimed to identify factors influencing trust and to develop a 
trust model that could be integrated into MASS systems to enhance their safety and reliability. 

The methodology involved conducting a simulator-based experimental study with 
participants observing MASS performing collision avoidance manoeuvres. Trust was measured 
using self-reported questionnaires administered post-scenario, capturing stage-specific trust 
levels. The trust dynamics were analysed using a linear mixed model (LMM) to identify patterns 
of trust evolution over time, and factor analysis was conducted to explore the underlying 
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dimensions of trust. Subsequently, a Bayesian network model was developed to capture the 
sequential dependencies of trust across navigation stages and to quantify the influence of 
situational and demographic factors on trust levels. 

The results revealed that trust is not static but evolves dynamically across different 
navigation stages. Trust gradually accumulated during routine navigation stages but greatly 
decreased during the decision-making and execution of collision avoidance strategies regardless 
of evasive strategies. Trust partially recovered during the final stages of navigation. Factor 
analysis consolidated trust dimensions into two main components: System Competence, 
representing the system’s reliability, predictability, and perceived capabilities, and Situational 
Safety, capturing the observer’s perception of safety under specific conditions. The Bayesian 
network model further quantified the influence of these dimensions on overall trust, 
highlighting the importance of timely and COLREGs-compliant actions in maintaining trust. 
Despite its insights, the study faced limitations, including the reliance on simulated scenarios 
that may not fully replicate real-world complexities and the exclusion of real-time physiological 
measures of trust. 

To sum up, Chapter 5 provided a systematic approach to measure, analyse, and model 
human trust in MASS during collision avoidance scenarios. By identifying key factors 
influencing trust dynamics and quantifying their impact through a Bayesian network model, the 
study offers actionable insights for designing trust-aware decision-making systems for MASS. 
Future research should explore real-world validation, extend trust modelling to operational 
contexts with higher complexity, and incorporate real-time trust monitoring techniques, such as 
physiological data collection, to enhance the robustness and applicability of the findings. 

Returning to the main research question of the thesis, it is addressed through the 
development of an integrated framework that integrates three key elements: situational 
awareness, human-preference-aware navigation, and trust model. Situational awareness 
provides the foundation for interpreting the navigational context by integrating sensor data and 
regulatory knowledge, enabling autonomous vessels to make informed decisions. Human 
preferences are incorporated to align autonomous navigation with the behaviours of manned 
vessels, enhancing predictability and cooperation. Trust modelling ensures that human 
supervisors maintain a proper trust level in autonomous decision-making, especially during 
high-risk scenarios such as collision avoidance. The framework is designed for MASS to 
operate within MWTS, fostering safe, efficient, and interpretable interactions between 
autonomous and manned vessels. 

The datasets supporting the findings of this study, including Qualtrics data and AIS data 
from Vesselfinder, are available upon request by contacting the author.  

6.2 Future research 
While this research provides a robust foundation for human-MASS interaction in MWTS, 
several limitations and future directions merit attention: 

1. Expanding the situational awareness model 
Expanding the role of stakeholders: Situational awareness mechanisms should be 
extended to accommodate the needs of multiple stakeholders, such as port authorities, 
traffic management centres, and search-and-rescue teams. Future research could explore 
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methods for meeting situational awareness outputs to various stakeholder requirements, 
enabling efficient communication and coordination. For example, stakeholders may 
require specific insights into a vessel’s operational intentions, compliance with 
regulations, or situational risks. Developing adaptive information-sharing frameworks 
will enhance collaboration and improve overall safety and efficiency in MWTS. 

2. Enhancing the human-mimic navigation model 
(1) Developing and comparing predictive models developed for various navigational 
environments for human-mimic navigation considering multiple factors, such as local 
regulations, traffic density, and ship static information. Future work should prioritise the 
development and comparative evaluation of predictive models tailored to a range of 
navigational environments. This thesis primarily focuses on isolated conditions, 
neglecting regional variabilities such as local maritime regulations, traffic density, or 
ship-specific attributes (e.g., size and manoeuvrability). By incorporating these factors 
into the model design, predictive accuracy can be enhanced across diverse maritime 
scenarios. 

(2) Preference modelling considering the effects of multi-vessel scenarios: The current 
approach to preference modelling primarily addresses pairwise vessel interactions, 
limiting its utility in real-world multi-vessel environments. Expanding the framework to 
consider the influence of multiple vessels on navigational decisions is a critical next step. 
Multi-vessel scenarios inherently introduce higher levels of complexity, requiring the 
model to dynamically account for interactions between multiple actors. For example, a 
vessel’s decision to turn or adjust speed may not only depend on the closest vessel but 
also on its relative position and alignment with other nearby ships. Moreover, while 
preference-based path prediction enhances safety and coordination, it may in some cases 
result in overly conservative manoeuvres. Future work should incorporate adaptive 
balancing mechanisms to manage this trade-off, ensuring proportional risk-taking and 
avoiding unnecessary deviations. By integrating data-driven techniques with dynamic 
conflict modelling, future studies could enhance the system’s capacity to navigate 
congested or constrained waterways effectively. 

3. Further investigation and modelling on human trust 
(1) Real-time evaluation of trust: Another critical avenue is the development of real-time 
trust monitoring and adaptive mechanisms. While existing studies have successfully 
modelled trust dynamics using post-scenario evaluations and Bayesian networks, these 
approaches are static and retrospective. Future research should explore the integration of 
real-time physiological and behavioural data, such as heart rate variability, eye-tracking, 
or EEG, to enable continuous trust assessment. These data streams could inform adaptive 
system responses, such as adjusting the level of system autonomy or providing additional 
explanations during critical decision-making stages, ensuring trust remains balanced and 
appropriate. 

(2) Trust-aware decision-making: The unidirectional evaluation of trust in existing studies 
represents a limitation. Operators currently engage as passive observers without 
opportunities to influence system outputs actively. Future research should focus on 
developing adaptive situational awareness systems that calibrate trust levels through 
iterative feedback. This entails transitioning the operator’s role from observer to 
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participant, where trust calibration mechanisms adjust system autonomy based on trust 
assessments. For example, during high-stakes collision scenarios, an adaptive system 
might offer more detailed explanations or revert to safer, operator-aligned decisions when 
trust levels are low. Conversely, higher trust could lead to reduced human involvement, 
optimising system efficiency. Future research should transition from static trust 
evaluation to adaptive trust calibration mechanisms. Situational awareness systems must 
actively respond to trust levels by modifying autonomy or providing explanations in 
critical scenarios. This shift would involve operators more directly in decision-making 
processes, fostering balanced trust and optimising system reliability. 

(3) Trust calibration mechanism: The development of trust-driven decision-making 
frameworks represents another avenue for research. Current trust studies, including those 
presented in this thesis, focus primarily on evaluating trust levels through observational 
methods. However, integrating trust as a core component of decision-making processes 
could significantly improve the adaptability and reliability of autonomous systems. For 
instance, decision algorithms could incorporate trust as a dynamic input, modulating 
actions to align with the operator’s trust state. Trust calibration mechanisms would aim to 
balance human trust with system performance, preventing overtrust or undertrust. By 
transitioning the operator’s role from observer to operator, the interplay between trust 
dynamics and operational outcomes should be investigated in greater depth.  

4. Strengthing the interrelationship among the three factors 
(1) Establishing dynamic links between trust and situational awareness: Current 
situational awareness systems support decision-making but inadequately address their 
impact on trust dynamics. Future work should develop frameworks where situational 
awareness actively shapes and adapts to trust levels. For instance, transparent systems 
could dynamically adjust the detail and frequency of information presented to operators 
based on real-time trust assessments. This bidirectional feedback loop would ensure the 
trust is both monitored and leveraged to enhance decision-making. 

(2) Integration of navigational preferences with trust: While navigational preferences 
provide an essential basis for human-mimic navigation, integrating these with trust 
dynamics offers significant potential to improve decision-making transparency and 
operator confidence. Operators’ trust in autonomous vessels often depends on the 
predictability and consistency of their actions, particularly in complex scenarios. A 
combined model that incorporates both navigational preferences and trust levels could 
dynamically adjust the system’s behaviour based on operator expectations. 

5. System resilience under disruptions 
The current framework assumes normal conditions. However, real-world MASS 
operations are subject to unexpected disruptions such as sensor failure, communication 
loss, or extreme environmental conditions. Future research should investigate resilience-
enhancing mechanisms, including fallback decision modes, partial situational awareness 
handling, and escalation to human supervision. Integrating robustness metrics and 
adaptive planning strategies will be essential to ensure safe and continuous operation in 
uncertain and degraded scenarios. 
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Glossary 

List of symbols and notations 

𝑎𝑎𝑢𝑢_𝑚𝑚𝑚𝑚𝑎𝑎 , 𝑎𝑎𝑣𝑣_𝑚𝑚𝑚𝑚𝑎𝑎, 𝑎𝑎𝜔𝜔_𝑚𝑚𝑚𝑚𝑎𝑎 Minimum accelerations from the directions of surge, sway, and 
yaw axis 

𝑎𝑎𝑢𝑢_𝑚𝑚𝑎𝑎𝑚𝑚, 𝑎𝑎𝑣𝑣_𝑚𝑚𝑎𝑎𝑚𝑚, 𝑎𝑎𝜔𝜔_𝑚𝑚𝑎𝑎𝑚𝑚 Maximum accelerations along the directions of surge, sway, and 
yaw axis 

𝑎𝑎𝑢𝑢
∗ , 𝑎𝑎𝑣𝑣

∗ , 𝑎𝑎𝜔𝜔
∗  Optimal set of acceleration 

𝐶𝐶𝑝𝑝𝑜𝑜𝑚𝑚𝑐𝑐 Goal achievement cost function 
𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑 Obstacle avoidance cost function 
𝐶𝐶𝑝𝑝𝑚𝑚𝑡𝑡ℎ𝐾𝐾𝑑𝑑𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝 Path keeping cost function 
𝐶𝐶𝑡𝑡𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜𝑚𝑚𝑐𝑐 Time to goal cost function 
𝐶𝐶𝑠𝑠𝑡𝑡𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦 Navigation stability cost function 
𝐶𝐶𝑐𝑐𝑜𝑜𝑐𝑐𝑟𝑟𝑑𝑑𝑝𝑝𝑠𝑠 COLREGs compliance cost function 
𝑐𝑐𝑡𝑡 Context vector gengerated by LSTM-encoder 
f Function of LSTM-Encoder 
g Function of LSTM-Decoder 
𝐡𝐡𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰, 𝐈𝐈𝑰𝑰
𝑰𝑰𝑰𝑰𝑰𝑰 Hidden and cell states of the LSTM at time t 

𝐡𝐡𝑡𝑡
𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕, 𝐈𝐈𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 Hidden and cell states of the Task-specific decoder 
�̅�𝐡𝑠𝑠 Each encoder’s hidden state 
ℎ�𝑡𝑡 Attentional state of the decoder 
𝐽𝐽 The cost function of the tracking problem 
p-value/p/Sig. The significance level of a statistic value 
𝑹𝑹 Rotation matrix 
𝐻𝐻𝑠𝑠 The length of the input sequence of LSTM-Encoder 
𝑢𝑢𝑡𝑡 , 𝑎𝑎𝑢𝑢 Current surge velocity and acceleration 
𝑢𝑢∗, 𝑣𝑣∗, 𝜔𝜔∗ Optimal set of velocity 
𝑢𝑢max, 𝑣𝑣max, 𝜔𝜔max Maximum velocities along the directions of surge, sway, and yaw, 

respectively 
𝑢𝑢(𝑇𝑇 + 𝑎𝑎) The magnitude of control inputs 
𝒗𝒗 = [𝑢𝑢, 𝑣𝑣, 𝑝𝑝]T The velocities of a vessel in surge, sway, and yaw 
𝑣𝑣𝑡𝑡 , 𝑎𝑎𝑣𝑣 Current sway velocity and acceleration 
𝑉𝑉𝑠𝑠, 𝑉𝑉𝑟𝑟 , 𝑉𝑉𝑑𝑑 Space of possible velocities, possible velocities constrained by its 

acceleration, and the intersection of the restricted areas 
𝜔𝜔𝑡𝑡 , 𝑎𝑎𝜔𝜔 Current yaw velocity and acceleration 
𝑾𝑾𝑚𝑚 Trainable weight matrix of the Attention mechanism 
𝐖𝐖𝐏𝐏𝐏𝐏𝐞𝐞𝐩𝐩, 𝐎𝐎𝐏𝐏𝐏𝐏𝐞𝐞𝐩𝐩 Weights and bias vectors of the LSTM classifier 

𝐖𝐖𝒐𝒐𝒐𝒐𝒐𝒐
𝒐𝒐𝒕𝒕𝒕𝒕𝒕𝒕, 𝐎𝐎𝒐𝒐𝒐𝒐𝑰𝑰

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 The weight matrix and the bias vector for the linear transformation 
of the specific task 

𝑚𝑚 Input sequence of LSTM-Encoder 
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𝑚𝑚� Output sequence of LSTM-Decoder 
𝑦𝑦𝑚𝑚 The actual value 
𝑦𝑦�𝑚𝑚 The predicted value 
𝑦𝑦� The mean of the actual values 
ypref The navigational preference class of LSTM classifier 
𝐏𝐏𝑡𝑡

𝑰𝑰𝑰𝑰𝑰𝑰𝒕𝒕 The input to the decoder at time step t 
𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑(𝑇𝑇 + 𝑎𝑎), 𝑢𝑢(𝑇𝑇 + 𝑎𝑎) The reference trajectory and control inputs at future n time steps 
α Relative bearing 
𝛼𝛼𝑡𝑡(𝑠𝑠) The attention weight for encoder state s at time t 
𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜂𝜂, 𝜅𝜅 Weighting factors for each cost function 
𝜂𝜂 = [𝑚𝑚, 𝑦𝑦, 𝜓𝜓]T The position and heading of the vessel 
𝜙𝜙 Encounter angle 
𝜑𝜑 Heading of the own vessel 
𝜑𝜑𝑜𝑜𝑜𝑜𝑡𝑡 Heading of the surrounding vessel 

𝝉𝝉 = �𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦, 𝜏𝜏𝑜𝑜�
T
 The control inputs of a vessel (forces and moment) 

Δ𝑡𝑡 The time step 
 

 

 

List of abbreviations 

ACC Acceleration 
ADE Average Displacement Error 
ANOVA Analysis of variance 
APF Artificial Potential Fields 
CA collision avoidance 
CAS collision avoidance systems 
COG Course over ground 

COLREGs Convention on the International Regulations for Preventing Collisions at Sea, 
1972 

DBNs Dynamic Bayesian networks 
DCPA Distance closest point of approach 
DDQN Double Deep Q Network 
DOF Degrees-of-freedom 
DRL Deep Reinforcement Learning 
DWA Dynamic Window Approach 
EEG Electroencephalography 
EM Expectation-Maximization 
EMCIP European Marine Casualty Information Platform 
EMSA European Maritime Safety Agency 
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ES Encountered situations 
EVS Explained Variance Score 
FDE Final Displacement Error 
HRI Human-robot interaction 
IMO International Maritime Organisation 
KM Knowledge maps 
LMM Linear Mixed Model 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MASS Maritime Autonomous Surface Ships 
MDP Markov Decision Processes 
MMSI  Maritime Mobile Service Identity 
MPC Model predictive control 
MSE Mean Squared Error 
MTL Multi-Task Learning 

MTL-Seq2Seq-LSTM-Att Multi-Task Learning Sequence-to-Sequence LSTM model 
with an attention mechanism 

MWTS Mixed waterborne transport systems 
NP Navigational priorities 
OS The own ship 
POMDP Partially Observable Markov Decision Process 
PPO Proximal Policy Optimization 
𝑅𝑅2 R-Squared 
RCC Remote Control Centres 
RMSE Root Mean Squared Error 
RNN Recurrent neural networks 
ROT Rate of turn 
SA Situational awareness 
SC System Competence 
SCC Shore Control Center 
Seg Segment 
SOG Speed over ground 
SS Situational Safety 
SSE Sum of Squared Errors 
SWRL Semantic Web Rule Language 
TBN Bayesian network-based trust model 
TCPA Time closest point of approach 
TS The surrounding ship 
UTC Coordinated Universal Time 
Var  Variance 
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Summary  

This thesis explores the integration of Maritime Autonomous Surface Ships (MASS) into Mixed 
Waterborne Transport Systems (MWTS), addressing critical challenges in ensuring 
navigational safety and operational efficiency. Recognising the complexities of interactions in 
MWTS, especially in scenarios without direct communication between vessels, the research 
develops a decision-making framework that integrates situational awareness, human-
preference-aware navigation, and trust dynamics. These components collectively aim to support 
seamless interactions between autonomous and manned vessels, ensuring safe and efficient 
navigation in the MWTS. 

The proposed framework builds on a systematic exploration of key challenges in MASS 
operations. For situational awareness, an ontology-driven knowledge maps model is introduced, 
enabling MASS to integrate multi-source data and maritime regulations. This model is further 
combined with a Dynamic Window Approach (DWA) path planner, allowing for real-time 
compliance with COLREGs and proactive collision avoidance. The research also advances 
human-preference-aware navigation by extracting and modelling navigational behaviours of 
manned vessels using AIS data. An LSTM-autoencoder with clustering methods is utilised to 
identify navigational preferences, which are then incorporated into a trajectory prediction model 
based on Multi-Task Learning Sequence-to-Sequence LSTM with attention (MTL-Seq2Seq-
LSTM-Att) architectures. This integration enhances MASS decision-making by aligning 
manoeuvring strategies with human operators’ expectations, reducing the likelihood of 
misinterpretation in mixed traffic scenarios. 

Additionally, the dynamics of human trust in MASS are explored through experimental 
studies and modelled using a Bayesian Network. The analysis reveals how trust evolves across 
navigation stages, influenced by decision-making strategies and timing, and demonstrates the 
cascading effects of intermediate trust levels on overall operator confidence. The model offers 
guidance for designing transparent and dependable MASS behaviour to support adoption. 

The research underscores the dual priorities of safety and efficiency throughout the 
framework. Safety is addressed by ensuring effective situational awareness and collision 
avoidance capabilities, while efficiency is enhanced by optimising travel time, reducing 
resource consumption, and minimising navigational delays. Together, these contributions offer 
a foundation for improving MASS operations in MWTS. 

Despite its contributions, the research has limitations. The validation primarily relies on 
simulation-based experiments, which may not fully capture the complexities of real-world 
maritime conditions, such as varying sea states and traffic densities. Additionally, the 
geographic scope and vessel types analysed are restricted, and computational challenges in 
high-density scenarios remain underexplored. Future work should involve field trials, broader 
operational scenarios, and refinement of trust models with physiological feedback. 

In summary, this thesis proposes an integrated decision-making framework that addresses 
the critical aspects of situational awareness, human preferences, and trust in autonomous 
navigation. By bridging key gaps in transparency, adaptability, and reliability, the research lays 
a solid foundation for safe, efficient, and collaborative MASS operations in MWTS, supporting 
the maritime industry’s transition towards more autonomous and intelligent systems. 
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Samenvatting 

Dit proefschrift onderzoekt de integratie van Maritieme Autonome Oppervaartschepen (MASS) 
in gemengde watertransport systemen (Mixed Waterborne Transport Systems, MWTS) en richt 
zich op kritieke uitdagingen om navigatieveiligheid en operationele efficiëntie te waarborgen. 
Rekening houdend met de complexiteit van interacties in MWTS, vooral in scenario’s zonder 
directe communicatie tussen schepen, ontwikkelt het onderzoek een besluitvormingskader dat 
situationeel bewustzijn, navigatie met oog voor menselijke voorkeuren en vertrouwen 
dynamiek integreert. Deze componenten ondersteunen naadloze interacties tussen autonome en 
bemande schepen, en zorgen voor veilige en efficiënte navigatie in MWTS. 

Het voorgestelde kader is gebaseerd op een systematische verkenning van belangrijke 
uitdagingen bij MASS-operaties. Voor situationeel bewustzijn wordt een op ontologie 
gebaseerd kenniskaartmodel geïntroduceerd, waarmee MASS gegevens uit meerdere bronnen 
en maritieme regelgeving effectief kan integreren. Dit model wordt gecombineerd met een 
Dynamic Window Approach (DWA) padplanner, waarmee realtime naleving van de COLREGs 
wordt bereikt en proactieve aanvaringsvermijding wordt mogelijk gemaakt. Het onderzoek 
bevordert ook navigatie met oog voor menselijke voorkeuren door het extraheren en modelleren 
van navigatiegedrag van bemande schepen met behulp van AIS-gegevens. Een LSTM-
autoencoder met clusteringmethoden wordt toegepast om navigatievoorkeuren te identificeren, 
die vervolgens worden geïntegreerd in een trajectvoorspellingsmodel op basis van Multi-Task 
Learning Sequence-to-Sequence LSTM with attentie (MTL-Seq2Seq-LSTM-Att) architecturen. 
Deze integratie verbetert de besluitvorming van MASS door manoeuvreerstrategieën af te 
stemmen op de verwachtingen van menselijke operators, waardoor misinterpretaties in 
gemengd verkeer worden verminderd. 

Bovendien worden de dynamiek van menselijk vertrouwen in MASS onderzocht door 
middel van experimentele studies en gemodelleerd met een Bayesian Network. De analyse laat 
zien hoe vertrouwen zich ontwikkelt in verschillende navigatiefasen, beïnvloed door 
besluitvormingsstrategieën en timing, en toont de cascade-effecten van tussentijdse 
vertrouwensniveaus op het algehele operatorvertrouwen. Het model biedt richtlijnen voor het 
ontwerpen van transparant en betrouwbaar gedrag van autonome schepen (MASS) ter 
ondersteuning van de adoptie. 

Het onderzoek benadrukt de dubbele prioriteiten van veiligheid en efficiëntie in het hele 
kader. Veiligheid wordt gewaarborgd door effectief situationeel bewustzijn en mogelijkheden 
voor aanvaringsvermijding, terwijl efficiëntie wordt verbeterd door reistijd te optimaliseren, 
hulpbronnen te besparen en navigatievertragingen te minimaliseren. Samen bieden deze 
bijdragen een basis voor het verbeteren van MASS-operaties in MWTS. 

Ondanks de bijdragen kent het onderzoek beperkingen. De validatie is voornamelijk 
gebaseerd op simulatie-experimenten, die mogelijk niet volledig de complexiteit van echte 
maritieme omstandigheden weerspiegelen, zoals wisselende zeestaten en verkeersdichtheden. 
Daarnaast zijn de geografische reikwijdte en de geanalyseerde scheepstypen beperkt, en blijven 
computationele uitdagingen in situaties met hoge dichtheid onderbelicht. Toekomstig 
onderzoek zou veldproeven, bredere operationele scenario’s en verfijning van 
vertrouwensmodellen met fysiologische feedback moeten omvatten. 
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Samenvattend stelt dit proefschrift een geïntegreerd besluitvormingskader voor dat de 
kritieke aspecten van situationeel bewustzijn, menselijke voorkeuren en vertrouwen in 
autonome navigatie aanpakt. Door belangrijke hiaten in transparantie, aanpasbaarheid en 
betrouwbaarheid te overbruggen, legt het onderzoek een solide basis voor veilige, efficiënte en 
samenwerkende MASS-operaties in MWTS en ondersteunt het de overgang van de maritieme 
industrie naar meer autonome en intelligente systemen. 
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