
Program Matching with Semantic
Patterns

Version of April 8, 2025

Pepijn Vunderink

Program Matching with Semantic
Patterns

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Pepijn Vunderink
born in Den Haag, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2025 Pepijn Vunderink.

Program Matching with Semantic
Patterns

Author: Pepijn Vunderink
Student id: 4913841

Abstract

Current tools for pattern matching computer programs often operate on abstract syn-
tax trees or other static representations of programs. These approaches, though efficient,
are fundamentally limited when it comes to capturing the dynamic behavior of programs.
For example, it is not always possible to express (concise) syntactic patterns that capture
programs which are semantically equivalent but differ in their syntactic representation.
A tool that takes into account the behavior (or dynamic semantics) of programs would
be able to capture programs that are semantically equivalent in a more concise manner
with a single pattern. Additionally, taking into account program behavior leads to more
precise pattern matching, by excluding unreachable paths of computation.

In this thesis, we explore a novel method, based on behavioral models of programs,
that allows patterns to take into account the dynamic semantics of a program. We pro-
pose the DYNO pattern language, in which concrete object language syntax can be used to
express intuitive semantic patterns of programs. Pattern matching is performed by trans-
lating DYNO patterns to μ-calculus formulas and model checking these formulas against
models extracted from object programs.

Because our method is based on dynamic models of programs, we are fundamentally
limited by the halting problem. In favor of precision, our method compromises on effi-
ciency and termination guarantees. In particular, termination is not guaranteed when
the extracted model of a program has infinitely many states. To recover termination in
some cases, we provide the facility to express bounds on input parameters, limiting the
search space while compromising on soundness.

We recognize some limitations in our work, including a lack of match evidence (e.g.
the location of a match in the object program’s syntax tree), as well as holes in DYNO’s
expressiveness. To address the latter issue, we suggest operators that could be added to
DYNO in the future.

Thesis Committee:

Chair: Dr. J.G.H. (Jesper) Cockx, Faculty EEMCS, TU Delft
Committee Member: Dr. B. (Burcu) Özkan, Faculty EEMCS, TU Delft
Committee Member: Ir. L. (Luka) Miljak, Faculty EEMCS, TU Delft
University Supervisor: Ir. L. (Luka) Miljak, Faculty EEMCS, TU Delft

p.j.vunderink@student.tudelft.nl

Preface

The journey of this thesis began with a project under the supervision of Casper Bach Poulsen,
focused on developing a Haskell-based clone of the program transformation tool Coccinelle.
After completion of the project, I asked Casper if he would be interested in supervising my
master thesis, and if he had a topic in mind. He expressed interest in formalizing program
transformations using modal μ-calculus. Together with Luka Miljak, one of Casper’s PhD
students, we proceeded with initial exploration of this topic. Shortly after, Casper had to
abandon his supervisory role in this project due to moving back to Denmark with his fam-
ily, which meant Luka would be taking over the main supervision of my thesis. With Casper
gone, we struggled continuing the project and decided to shift to a new topic. Luka suggested
it might be interesting to focus on pattern matching, a precursor to program transformation,
and in particular explore pattern matching based on the dynamic semantics (i.e. behavior)
of programs. I agreed, and thus the definitive topic for my thesis was established.

Research is never conducted in a vacuum. Many people have contributed to this thesis, ei-
ther directly or indirectly. I would like to express my gratitude to everyone involved in this
project, with special thanks to those who played a particularly significant role:

I am grateful to Luka for offering invaluable feedback throughout this project, and provid-
ing guidance during our weekly meetings. I also sincerely appreciate the detailed feedback
from Jesper on multiple drafts of this thesis, including the suggestions he himself referred
to as ‘nitpicks.’ Their combined insights have been instrumental in shaping this thesis into
its current form. I thank Flip and Jan Friso for expressing interest in my work and guiding
me through the ins and outs of the mCRL2 toolset. I am grateful for the love and support
of my parents, not only during my work on this thesis, but throughout the entirety of my
studies and everything that came before. Even – or perhaps especially – during tougher times
I could count on their support, and for that I am forever grateful. Furthermore, I thank my
roommates for putting up with my prickly nature during stressful times. I thank Fernão for
cooking an extra time on my behalf during particularly busy weeks. I thank Roeland and
Reinier for their enthusiasm and waiting patiently for a copy of this thesis, even after many
inquiries.

Finally, I extend my gratitude to you, the reader, for engaging with this thesis.

Pepijn Vunderink
Delft, the Netherlands

April 8, 2025

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Modal μ-calculus and mCRL2 5
2.1 Labeled transition systems . 5
2.2 Hennessy-Milner logic . 7
2.3 The modal μ-calculus . 9
2.4 Modeling processes with mCRL2 . 12
2.5 Modal μ-calculus with data . 19

3 Overview of the pattern language: DYNO 23
3.1 Defining an object language: IMP . 23
3.2 Introducing DYNO . 26
3.3 Practical examples of DYNO patterns . 31

4 Extracting models from IMP programs 37
4.1 First steps toward state space extraction . 37
4.2 Improved state space extraction . 41
4.3 Extending state spaces with internal computation 48

5 Translation of DYNO to μ-calculus 59
5.1 Translating DYNO operators to μ-calculus formulas 59
5.2 A complete translation of DYNO to μ-calculus 65
5.3 Implementation in Spoofax . 69

6 Limitations and future work 71
6.1 Infinite state spaces . 71
6.2 Lack of evidence in match results . 72
6.3 Inexpressible patterns and additional operators 72
6.4 Application to a real programming language 74
6.5 Performance study . 75
6.6 A different approach to the parameter space problem 75
6.7 Program transformation . 75
6.8 DYNO as a property language . 76

7 Related work 77

v

CONTENTS

7.1 Coccinelle . 77
7.2 Semi-automatic extraction of formal models . 79
7.3 Concrete syntax metapatterns . 79
7.4 Abstract interpretation . 79

8 Conclusion 81

Bibliography 83

Acronyms 85

A mCRL2 code 87

vi

Chapter 1

Introduction

Program matching is the process of searching for code fragments or subprograms that ad-
here to a specific pattern. Applications of program matching include program comprehen-
sion, bug detection, optimization and refactoring. A rudimentary form of program matching
is plain-text search, which is an indispensable feature in any integrated development envi-
ronment and even simple text editors typically support it. In these same tools, more often
than not it is possible to specify syntactic patterns in the form of regular expressions, as a
means to capture code fragments more flexibly. Still, one needs to be mindful of details such
as comments, whitespace and formatting in general. A next step would be search based on
abstract syntax trees (ASTs), to match code more precisely and take code formatting out of
the equation.

There are situations, however, where approaches based merely on (abstract) syntax are
simply inadequate. What if, for example, one wants to find code that spans multiple function
bodies or some behavioral pattern that occurs in a program, regardless of its precise syntac-
tic form? As an example, say we want to find occurrences of a use-after-free bug, where a
resource is accessed that has previously been invalidated. Such a query could be expressed
with the following pseudo-pattern:

Example 1.1. A pattern expressing a use-after-free bug.

1 free(@m)
2 ...[!alloc(@m)]
3 access(@m)

free(@m) captures the freeing of resource @m, ...[!alloc(@m)] matches arbitrary code se-
quences that are not (re-)allocations of @m and access(@m) captures accesses to resouce @m.
Such a query is hard to encode in a sound manner using purely syntax-based pattern match-
ing, because its occurrence can take on many, distinct, syntactic forms and trying to capture
all possibilities would result in an impractically large pattern.

As another example, consider the following pattern for searching infinite loops.

Example 1.2. A pattern that finds loops of which the condition always evaluates to true. In
this pattern, @e->true means “an arbitrary expression that evaluates to true.”

1 ...
2 while(@e->true) {
3 ...
4 }

Expressing the above pattern requires reasoning about the runtime value of the loop con-
dition, which is beyond the capabilities of purely syntactic pattern matching tools.

1

1. INTRODUCTION

Lastly, consider a scenario where we aim to find an expression that is semantically equiv-
alent to a given formula, without worrying about its precise syntactic representation. For
instance, take the following pattern:

Example 1.3. !@e || @e'

The goal is to match all expressions that are semantically equivalent to this pattern. For
example, the following expressions should all match:

• !x || y

• x || !y

• !(x && !y)

Using a purely syntactic pattern matching tool, one would have to enumerate all possible
syntactic variations. This is not only cumbersome but becomes infeasible when there are
infinitely many equivalent forms, as is the case in this example.

To express the previous examples concisely, we must move beyond syntactic pattern
matching. A key insight is that these examples depend on the behavior (or dynamic seman-
tics) of a program. Thus, a pattern matching tool capable of expressing such patterns must
be able to reason about program behavior.

This thesis proposes a new pattern matching language: DYNO, designed to express be-
havioral patterns to match against the fictional imperative-style programming language IMP.
While preserving the ability to match programs syntactically, DYNO matches against behav-
ioral models of programs, instead of syntax trees or other static representations of programs.

Using this new language, a pattern such as the aforementioned use-after-free pattern can
be expressed concisely and captures occurrences of the use-after-free bug more precisely –
reporting fewer false positives – than syntactic or static pattern matching could.

Accounting for dynamic semantics inherently comes with limitations, however. Unless
the object language is completely trivial, it is not possible to match arbitrary semantic pat-
terns against arbitrary programs in finite time. In general, semantic properties of programs
are undecidable, as a result of Rice’s theorem (Rice 1953). An implication of this is that we
cannot dynamically match on execution paths of arbitrary programs while preserving termi-
nation. In our case, the problem originates from the use of behavioral models of programs
that represent all possible executions of a program. Sometimes, such behavioral models are
infinitely large. To recover termination in the scenario where unknown input parameters
cause the behavioral model to be infinite, we provide the ability to bound input parameters
of a program. When input parameters are bounded, the behavioral model only represents
a subset of all possible executions, implying a compromise on soundness. Unbounded in-
put parameters are not the only cause of infinitely large behavioral models. For instance, a
non-converging infinite loop in a program also causes the resulting behavioral model to be
infinitely large. We do not guarantee termination of pattern matching in such scenarios.

We implement DYNO as a translation to μ-calculus formulas. Pattern matching is per-
formed by model checking the resulting formulas against the behavioral models of IMP pro-
grams. The translation to μ-calculus doubles as a definition of DYNO’s semantics. The pipeline
of our implementation is best summarized by the diagram in Figure 1.1.

Concretely, the main contributions of this thesis are as follows.

• In Section 3.2 we introduce a new pattern matching language (DYNO) that is designed
to express behavioral patterns of IMP programs, while supporting concrete object lan-
guage syntax.

2

program
compiler

model
boilerplate

pattern
compiler

IMP program

DYNO pattern

behavioral
model

μ-calculus
formula

model
checker

match
result

Figure 1.1. An overview of how DYNO patterns are compiled and matched against an input
program. The output is a boolean value indicating whether the input pattern matches the
input program.

• In Section 3.3 we demonstrate DYNO’s expressiveness by discussing examples of practi-
cally applicable patterns.

• We define a method for extracting behavioral models from IMP programs in Chapter 4,
which is implemented as a process specification using the mCRL2 toolset (Bunte et al.
2019).

• We provide a translation of DYNO into μ-calculus formulas in Chapter 5. This transla-
tion not only serves as an implementation but also as a formal semantic definition of
DYNO.

• We provide a full implementation of the compilation pipeline shown in Figure 1.1 us-
ing the Spoofax language workbench (Kats and Visser 2010). This implementation is
discussed in Section 5.3.

• We validate the correctness of our implementation of DYNO using an automated test
suite, as discussed in Section 5.3.1.

• In Chapter 6 we discuss limitations in our approach and the current state of DYNO.
Notably, we identify holes in expressiveness, which we suggest fixing in Section 6.3, by
adding new operators to the language.

The remainder of this thesis is laid out as follows. In Chapter 2 we formally introduce the
modal μ-calculus, labeled transition systems (LTSs) and the mCRL2 specification language.
Chapter 3 commences with a definition of the object language (IMP) that we design our pat-
tern language around in Section 3.1. In Section 3.2 we introduce the DYNO pattern language
and explain each of its operators with examples, continuing with some practical examples
in Section 3.3. We then show how to extract behavioral models from IMP programs using an
mCRL2 specification in Sections 4.1 and 4.2 and how to extend this model with syntactic in-
formation of internal computation in Section 4.3 to facilitate pattern matching. In Chapter 5
we discuss the translation of DYNO into μ-calculus formulas, starting with examples for each
operator in Section 5.1, followed up by a complete overview in Section 5.2. We briefly dis-
cuss the Spoofax implementation of DYNO and IMP compilation in Section 5.3, including an
overview of the test suite used to verify its correctness. We discuss limitations of our work
and how DYNO can be improved upon in future work in Chapter 6. In Chapter 7 work related
to this thesis is discussed. The thesis concludes with a brief summary and closing remarks
in Chapter 8.

3

Chapter 2

Modal μ-calculus and mCRL2

An important goal of this thesis is to make use of existing software to perform pattern match-
ing. Not only does this relieve us of the burden of having to develop a completely new al-
gorithm for pattern matching, but it also allows us to relate the problem of semantic pattern
matching to a well-studied logic: the modal μ-calculus.

This chapter offers an introduction to labeled transition systems (LTSs), the modal μ-
calculus, as well as the mCRL2 specification language. Although we go into some depth, we
focus on the theory required for this thesis. For a more comprehensive introduction to these
topics, the book Modeling and Analysis of Communicating Systems is advised (Groote and
Mousavi 2014), of which in particular chapters 2, 3, 4, 6 & 15 are relevant to this thesis.

We start by introducing labeled transition systems in Section 2.1. In Section 2.2 we in-
troduce Hennessy-Milner logic (HML), a precursor to modal μ-calculus. We show that by
extending HML with fixed point operators we arrive at the modal μ-calculus in Section 2.3.
Section 2.4 contains an introductory tutorial on how to model processes in mCRL2, using
custom data types, rewrite rules and process equations. We return to the μ-calculus in Sec-
tion 2.5, where we extend the μ-calculus to be able to deal with the data that we define in
mCRL2 specifications.

2.1 Labeled transition systems
To facilitate pattern matching we model object programs using labeled transition systems
(LTSs). LTSs are directed graphs with labeled edges and they can be used to model system
behavior (Groote and Mousavi 2014). An example of an LTS with three states is depicted
below.

Example 2.1. A simple LTS with three states and two actions: a and b. The left-most state is
the initial state, indicated by the incoming arrow.

a b

LTSs can be used to model systems. In particular, they model the possible states that a
system can be in, as well as what actions are possible in each state and how they lead to new
states. Consider the following example of a platform that can be raised and lowered.

Example 2.2. An LTS modeling a platform with two actions: lower and raise. The platform
has 3 levels (modeled as states): low, mid and high.

raise raise

lower lower

5

2. MODAL μ-CALCULUS AND MCRL2

We are interested in modeling programs. To illustrate one might represent a program
using an LTS, consider the following sequential program:

1 x = 0;
2 y = x + 1;
3 print(y)

Which we encode as follows:

[x=0] [x=0;y=1] [x=0;y=1]

x = 0 y = x + 1 print(y)

The LTS nicely reflects the linear nature of this program. We have annotated the states
with their environments, which are the mappings of variables to values. These annotations
are normally not part of an LTS, but they provide an intuition to what the states might rep-
resent: the state of a program after having taken a trail of actions to get there. In this case
“taking an action” might be interpreted as evaluating an expression. An example of a pro-
gram that results in non-linear behavior would be a program with a loop, e.g.:

1 x = 0;
2 while (true) {
3 print(x);
4 }

An LTS that represents this program might look like this:

[x=0] [x=0]

x = 0 while(true)

print(x)

Having seen some examples of labeled transition systems, let us now give their formal
definition.

Definition 2.1. A labeled transition system (LTS) is a tuple M = (S,Act, t
a
ÝÝÑuaPAct, s0) where

• S is a set of states.

• Act is a set of actions.

• @a P Act.
a
ÝÝÑ Ď S ˆ S is a transition relation describing which states are connected by

action a. We use s
a
ÝÝÑ s1 as shorthand for (s, s1) P

a
ÝÝÑ.

• s0 P S is the initial state.

Knowing what LTSs are and that we can use them to represent programs, let us remind
ourselves of what we actually wanted to do: perform pattern matching on programs. To this
end we need to be able to reason about LTSs of programs. There happens to be a logical
framework that, among other things, allows us to reason about LTSs. This framework is
called modal logic. We are going to use a specific modal logic, the modal μ-calculus, to
reason about the programs that we encode as LTSs. First we discuss a simpler modal logic,
after which we build up to the more expressive μ-calculus.

6

2.2. Hennessy-Milner logic

2.2 Hennessy-Milner logic

Hennessy-Milner logic (HML) is a modal logic introduced by Hennessy and Milner (1980).
As we will see in the next section, it is a simpler and less expressive subset of modal μ-
calculus. Both logics are part of a larger family of modal logics. Modal logics, according to
Blackburn and Benthem (2007) have been developed as tools for reasoning about time, beliefs,
computational systems and necessity and possibility. But more important for our purpose is
that modal logics can be thought of as logics for reasoning about labeled transition systems.
While no prior knowledge of modal logics is assumed, to be able to follow the coming sections
it is helpful to have a basic understanding of first-order logic.

Now, let us define the syntax of Hennessy-Milner logic formulas.

Definition 2.2. Syntax of HML formulas. Here a represents actions from the action set of
some LTS: a P Act.

HML ϕ ::= J constant (true)
| K constant (false)
| ␣ϕ negation
| ϕ_ ϕ disjunction
| ϕ^ ϕ conjunction
| xayϕ diamond
| [a]ϕ box

Just like propositional logic, HML has negation, disjunction and conjunction. What sets
HML apart are the box and diamond operators. These are so-called modality operators. They
allow us to reason about transitions and what happens after a transition. The diamond
modality, xayϕ, informally means “there is a transition a to some state whereϕholds.” Whereas
the box modality, [a]ϕ, means “all a-transitions should result in a state where ϕ holds.”

As promised, we can use HML formulas to reason about LTSs. In fact the semantics of a
HML formula are usually defined over them. We give the semantics of HML in terms of the
set of states in which a formula holds.

Definition 2.3. Given an arbitrary LTS M = (S,Act, t
a
ÝÝÑuaPAct, s0), the semantics of HML

formulas are defined by the equations below. The notation JϕK means “the states where
formula ϕ holds.” We consider formula ϕ valid for an LTS if it is valid in its initial state, i.e.
s0 P JϕK. JJK = SJKK =HJ␣ϕK = SzJϕKJϕ1 ^ ϕ2K = Jϕ1KX Jϕ2KJϕ1 _ ϕ2K = Jϕ1KY Jϕ2KJxayϕK = ts P S | Ds1 P S s.t. s a

ÝÝÑ s1 and s1 P JϕKuJ[a]ϕK = ts P S | @s1 P S s.t. s a
ÝÝÑ s1 implies s1 P JϕKu

Let us have a look at an example. Consider the formula xayJ, which means “there is an
a-action that leads to a state where J holds”. The following is an example of an LTS where
this formula holds.

Example 2.3. Example of an LTS where xayJ holds.

s0 s1 s2
a b

7

2. MODAL μ-CALCULUS AND MCRL2

To build intuition we give some more examples of formulas, together with their informal
meanings and the states where they hold in the LTS of Example 2.3. The reader is encouraged
to verify the following examples:

• ␣xbyJ: “There is no b transition.” (s0,s2)

• [b]K: “There is no b transition.” (s0, s2)

• [a]xbyJ: “After all a transitions, a b transition follows.” (s0, s1, s2)

• [a]K^ [b]K: “There are no a transitions and no b transitions.” (s2)

The first two formulas reveal an interesting correspondence between the box and dia-
mond modalities, indeed the examples have the exact same meaning. This correspondence
can be attributed to the duality between the two modalities. It turns out we can express one
in terms of the other (and vice versa): xayϕ = ␣[a]␣ϕ.

It is often useful to be able to reason about more than one action at the same time. For this
we introduce new syntax that allows sets of actions to be used within modality operators.

Definition 2.4. Syntax of action formulas.

ActionFormula α ::= a regular action
| J any action
| K no action
| α complement
| αY α union
| αX α intersection

Action formulas should be interpreted as sets of actions. For example, J represents all
actions in the action set of some LTS, while K represents the empty set. We formalize this
notion by defining the semantics of action formulas as a translation to sets.

Definition 2.5. Semantics of action formulas. Using double bracket notation (J¨KAct), rules
for translating action formulas into sets of actions are defined as follows. Act represents the
action set of a given LTS. JaKAct = tauJJKAct = ActJKKAct =HJαKAct = ActzJαKActJα1 Y α2KAct = Jα1KAct Y Jα2KActJα1 X α2KAct = Jα1KAct X Jα2KAct

As an example, the HML formula xJyJ, means “there is an action that leads to a state
where J holds,” or more briefly “there is an action.” Another example is [J]K, meaning “all
actions lead to a state where K holds,” in other words “there is no action.”

Instead of redefining HML, we show how to desugar modalities with action formulas
into the core HML syntax defined in Definition 2.2.

Definition 2.6. Desugaring action formula modalities. Using double bracket notation (J¨KAct),
rules for translating action formulas into sets of actions are defined as follows. Act represents
the action set of a given LTS. JxαyϕKAct =

ł

aPJαKAct

xayϕ

J[α]ϕKAct =
ľ

aPJαKAct

[a]ϕ

8

2.3. The modal μ-calculus

To illustrate how the desugaring works, consider an LTS with two actions: Act = ta, bu.
Then desugaring xJyϕ goes as follows:

JxJyϕKAct =
ł

aPJJKAct

xayϕ

=
ł

aPAct

xayϕ

= xayϕ_ xbyϕ

Intermezzo. A different way to look at HML. We have described HML as a language for ex-
pressing properties about LTSs. From a different perspective, HML can be thought of as a
basis for characterizing LTSs. By looking at the sets of HML formulas that are true for different
LTSs, we can compare their meanings. In particular, if the same formulas hold for two LTSs,
they are considered equivalent through the lens of HML. This perspective of providing a
notion of equivalence is close to the original purpose of HML, as Hennessy and Milner de-
veloped HML to reason about non-deterministic and concurrent programs and equivalence
between them. This perspective is valid for any modal logic, not just HML, and different
modal logics result in different notions of equivalence. Although we will not use this prin-
ciple directly, it does relate to the application of pattern matching, where we are interested
in (sub)programs that are equivalent with respect to some pattern. This might give insight
into why translating patterns into modal formulas to perform pattern matching is not such
a wild idea.

While HML is a great starting point, it does lack expressivity and flexibility. We might
want to express that something will happen in the future, while not knowing exactly how
many, or even which, actions it takes to get there. If we allowed regular expressions as actions,
for example, we could express that something happens after zero or more actions: e.g. xa*yϕ
(“ϕ is true after zero or more a actions.”).

2.3 The modal μ-calculus
In this section we will show that by adding fixed point operators to HML, we obtain a logic that
is much more expressive. In particular the resulting logic allows for expressing recursion in
formulas. The logic is called μ-calculus and was first introduced by Kozen (1983).

The syntax of modal μ-formulas is defined in Figure 2.1.

μ-formula ϕ ::= J constant (true)
| K constant (false)
| ␣ϕ negation
| ϕ_ ϕ disjunction
| ϕ^ ϕ conjunction
| xayϕ diamond
| [a]ϕ box
| µX.ϕ least fixed point
| νX.ϕ greatest fixed point
| X variable

Figure 2.1. Syntax of the modal μ-calculus.

Comparing this syntax to HML, we see that three syntactic additions have been made.
Two new operators were added: µX.ϕ and νX.ϕ, respectively the least and greatest fixed
point operators. There is also syntax for referencing variables which are bound by the fixed
point operators.

9

2. MODAL μ-CALCULUS AND MCRL2

In essence, fixed points allow us to express iteration in our modal formulas. Consider the
following formula as an example.

µX.xayJ _ xbyX

Informally, this formula expresses “there is a path of b actions that leads to an a action.” If we
do not care what actions are taken before the a action is reached, we could use the following
formula.

µX.xayJ _ xJyX

An example of an LTS where both of these formulas hold in the initial state is the follow-
ing.

b b

a

b

If instead we wanted to express that all subsequent paths should eventually have an a
action, we could use the following formula with a box modality.

µX.xayJ _ ([J]X ^ xJyJ)

Note that we use xJyJ to exclude paths that end in a deadlocked state – i.e. a state without
outgoing actions. This formula does not hold for the above LTS, because there is a path
with only b actions that ends in a deadlocked state. The following formula without xJyJ to
exclude deadlocks does hold for the above LTS.

µX.xayJ _ [J]X

To understand the difference between the least fixed point (µ) and the greatest fixed point
(ν), we consider the following LTS with a loop.

a

a b

Now we want to answer the following question about this LTS: “is it always possible to
eventually perform a b action?” We might be tempted to model this using the following least
fixed point formula.

µX.xbyJ _ [J]X

However, this formula does not hold for the above LTS. Intuitively this is because for least
fixed points we are only allowed to “pass through” the fixed point variable (X) a finite
amount of times. The problem is that in the above LTS, the a action can be taken infinitely
many times. This means we pass through X infinitely often on the path that contains an
infinite amount of a actions. If we replace the least fixed point with the greatest fixed point,
we obtain a formula that does hold for the above LTS:

νX.xbyJ _ [J]X

This formula holds because the greatest fixed point can pass through the fixed point variable
an infinite amount of times. Therefore, the formula holds even on the path with infinite a
actions. A caveat of the latter formula is that for LTSs with infinite loops it can ignore the left-
hand side of the disjunction entirely. For example, the formula also holds for the following
LTS, even though it does not have a b action at all.

10

2.3. The modal μ-calculus

a

To exclude such LTSs, we should additionally assert that an action b can in fact be taken
eventually. Thus, to properly answer the question “is it always possible to eventually perform
a b action?”, we could use the following formula.

νX.xbyJ _ ([J]X ^ µY.xbyJ _ xJyY)

Having built an intuitive understanding of fixed point formulas, we now define their
semantics formally.

Definition 2.7. Given an arbitrary LTSM = (S,Act, t
a
ÝÝÑuaPAct, s0) and a fixed point variable

valuation ρ, that maps variables to sets of states, the semantics of μ-calculus formulas are
defined by the equations below. The notation JϕKρ means “the states where formula ϕ holds,
given valuation ρ.” We consider formula ϕ valid for an LTS if it is valid in its initial state, i.e.
s0 P JϕKρ. JJKρ = SJKKρ =HJ␣ϕKρ = SzJϕKρJϕ1 ^ ϕ2Kρ = Jϕ1Kρ X Jϕ2KρJϕ1 _ ϕ2Kρ = Jϕ1Kρ Y Jϕ2KρJxayϕKρ = ts P S | Ds1 P S s.t. s a

ÝÝÑ s1 and s1 P JϕKρuJ[a]ϕKρ = ts P S | @s1 P S s.t. s a
ÝÝÑ s1 implies s1 P JϕKρuJXKρ = ρ(X)JµX.ϕKρ =

č

RĎS

JϕKρ[X ÞÑR]

JνX.ϕKρ =
ď

RĎS

JϕKρ[X ÞÑR]

Note that the first seven equations, defining HML formulas, are the same as in Defini-
tion 2.3 modulo passing on of valuation ρ. The last three equations define the semantics of
fixed point variables, least fixed point formulas and greatest fixed point formulas, respec-
tively.

From the semantics we can derive a relation between the least and greatest fixed point
formulas. Because the greatest fixed point is defined as a union over subsets of S and the
least fixed point is defined as an intersection over the same subsets of S, we know that the
following relation holds. JµX.ϕKρ Ď JνX.ϕKρ
In other words, if the least fixed point of a formula holds then the greatest fixed point of the
same formula also holds. Or more succinctly put:

µX.ϕ implies νX.ϕ

To conclude our introduction to the fixed point operators it should be pointed out that
fixed point formulas do not always have a solution. Whenever a variable X occurs under the
scope of an uneven amount of negations, as in µX.␣X and νX.␣([a]␣X _X) for example,
there may not be a solution. For this reason we require fixed point variables to occur under
an even amount of negations, or put more formally, in all fixed point formulas µX.ϕ and
νX.ϕ, X must occur positively in ϕ.

11

2. MODAL μ-CALCULUS AND MCRL2

2.4 Modeling processes with mCRL2

We want to model programs as LTSs to be able to verify properties about them using μ-
calculus formulas. To do this we will be using the mCRL2 toolset (Bunte et al. 2019). This
section provides an introduction to a subset of the mCRL2 language and is mainly intended
to be used as a reference when the meaning of syntax used in Sections 4.1 to 4.3 is unclear.
At minimum, to get an idea of what mCRL2 specifications look like, we encourage reading
Section 2.4.1. For a more extensive overview of mCRL2, refer to Groote and Mousavi (2014).
The online documentation of mCRL2 is also a helpful resource1.

2.4.1 Process specifications

In mCRL2, we cannot specify an LTS directly. Instead, a process is described using a process
specification. mCRL2 then allows us to verify properties about this process using μ-calculus
or generate an LTS of the process to visualize it. Let us start with the following example of a
process specification in mCRL2 syntax.

Example 2.4. An mCRL2 model of a platform with two actions: Raise and Lower. The plat-
form has three possible states: Low, Mid and High. The platform starts in the Low position.
The result is a process that corresponds to the LTS in Example 2.2.

1 sort Level = struct Low ? is_low | Mid ? is_mid | High ? is_high;
2

3 map raise: Level -> Level;
4 eqn raise(Low) = Mid;
5 raise(Mid) = High;
6

7 map lower: Level -> Level;
8 eqn lower(Mid) = Low;
9 lower(High) = Mid;

10

11 act Raise, Lower;
12

13 proc Platform(lvl: Level) =
14 is_low(lvl) -> Raise . Platform(raise(lvl))
15 + is_mid(lvl) -> (Lower . Platform(lower(lvl))
16 + Raise . Platform(raise(lvl)))
17 + is_high(lvl) -> Lower . Platform(lower(lvl));
18

19 init Platform(Low);

The above example contains all ingredients of a process specification. It has a single
sort specification, declaring the sort Level as a struct with three constructors: Low, Mid and
High. The functions is_low, is_mid and is_high can be used to distinguish between these
constructors.

The example also specifies two mappings from Level to Level named lower and raise.
Each of these mappings have two rewrite rules associated with them that specify how to go
from a Level to the one below or above.

Two actions are specified in this example: Lower and Raise. These actions are used in the
specification of the single process defined in the example. The process is named Platform and
has a single parameter lvl of sort Level. The values of the parameters of a process dictate

1https://mcrl2.org/web/user_manual/language_reference/

12

https://mcrl2.org/web/user_manual/language_reference/

2.4. Modeling processes with mCRL2

what state it is in. The process consists of a couple of rules that are used to determine what
actions are possible in the current state. For example the first rule is:

1is_low(lvl) -> Raise . Platform(raise(lvl))

This rule tells us that if the platform is currently in the Low state, a Raise action can be
taken to end up in the state above Low, i.e. Mid, since raise(Low) == Mid. Finally, the init
Platform(Low) line specifies that the platform starts in the Low state.

An overview of mCRL2 specification syntax is given in Figure 2.2

mCRL2Spec spec ::= sort_spec spec sort specification
| map_spec spec mapping
| eqn_spec spec rewrite rule
| act_spec spec action
| proc_spec spec process specification
| init proc initial process

sort_spec ::= Figure 2.4
map_spec ::= Figure 2.5
eqn_spec ::= Figure 2.5
act_spec ::= Figure 2.6
proc_spec ::= Figure 2.7
proc ::= Figure 2.7

Figure 2.2. An overview of mCRL2 specification syntax.

The next subsections explain the mCRL2 concepts we just introduced in more detail. Start-
ing with sorts and data expressions in Section 2.4.2. Followed by rewrite rules in Section 2.4.3.
Wrapping up with actions and processes in Section 2.4.5. In Section 2.5 we discuss how
mCRL2 extends μ-calculus with parameterized fixed points and quantifiers to deal with
data expressions. This flavor of μ-calculus can be used to verify properties about the pro-
cesses defined in mCRL2 specifications. It is also the flavor of μ-calculus we use to define
and implement our pattern matching language.

2.4.2 Sorts and data expressions

In mCRL2, data expressions are used to manipulate data. We define only the subset of
mCRL2 data expressions used in this thesis. The syntax of data expressions is defined in
Figure 2.3. For the full set of available data expressions, the mCRL2 documentation should
be consulted2.

Data expressions are strongly typed. Default types include integers, booleans, lists and
functions. The usual operators on numbers and booleans are available. There are also some
predefined operators on lists. The unary operator ‘#’ counts elements in a list. Operator ‘in’
checks for the existence of an element in a list, ‘|>’ prepends an element to a list and ‘++’
concatenates two lists.

Example 2.5. We can create a list using the list constructor syntax.

1 [0,1,2]

We can prepend elements to a list using the cons operator.

1 3 |> [0,1,2] == [3,0,1,2]

And we can concatenate lists.
2mCRL2 data expressions: https://mcrl2.org/web/user_manual/language_reference/data.html

13

https://mcrl2.org/web/user_manual/language_reference/data.html

2. MODAL μ-CALCULUS AND MCRL2

DataExpr e ::= x variable
| n numeric constant
| true true constant
| false false constant
| [e,. . . ,e] list
| e[e->e] update mapping
| e(e,. . . ,e) application
| !e not
| -e minus sign
| #e element count
| lambda x: sort . e lambda expression
| e || e or
| e && e and
| e == e equals
| e != e not equals
| e < e less than
| e > e greater than
| e + e add
| e - e subtract
| e in e list containment
| e |> e prepend list element
| e ++ e concatenate lists

SortExpr sort ::= Bool booleans
| Nat natural numbers
| Pos positive integers
| Int integers
| List(sort) lists
| x custom types
| sort -> sort function types
| sort # sort product of sorts
| struct constr | . . . | constr structs

ConstrExpr constr ::= x(x: sort,. . . ,x: sort) constructor
| x(x: sort,. . . ,x: sort) ? x constructor

Figure 2.3. mCRL2 syntax of data expressions.

1 [0,1,2] ++ [3,4,5] == [0,1,2,3,4,5]

There are also two operators on lists that are not defined in the syntax above: head and
tail. head returns the first element of a list and tail returns all but the first element of a list.
We show an example of applying head and tail to a list.

Example 2.6. Using head and tail.

1 head([0,1,2]) == 0
2 tail([0,1,2]) == [1,2]

If we apply head or tail to an empty list, the rewriter gets stuck.

1 head([]) == head([])
2 tail([]) == tail([])

Lambda expressions define a mapping from inputs to outputs. These input/output map-
pings can be updated using the update operator (e[e->e]). The output corresponding to

14

2.4. Modeling processes with mCRL2

some input can be looked up using e(e). In mCRL2, lambda expressions can be considered
functions that can be passed around and updated on the fly.

Example 2.7. Using lambda expressions. We define a function that maps all integers to 0.

1 lambda x: Int . 0

We can update this function such that 1 maps to 42.

1 (lambda x: Int . 0)[1->42]

When we apply the resulting function with 1 as the argument we get 42.

1 ((lambda x: Int . 0)[1->42])(1) == 42

All other number still map to 0, e.g.

1 ((lambda x: Int . 0)[1->42])(3) == 0

It is possible to define new data types using the sort keyword. The proper syntax for
defining new sorts is shown in Figure 2.4.

SortSpec sort_spec ::= sort x = sort;

Figure 2.4. mCRL2 syntax for defining new sorts.

An inductive data structures can be created using the struct keyword. We show an ex-
ample of defining a custom list datatype.

Example 2.8. Definition of a custom list type.

1 sort ConsList = struct Nil | Cons(value: Int, tl: CustomList)

In the next subsection we will see that we can pattern match on ConsList expressions. If we
want a way to distinguish between Nil and Cons without pattern matching we can change
our definition as follows:

1 sort ConsList = struct Nil ? is_nil
2 | Cons(value: Int, tl: CustomList) ? is_cons

is_nil and is_cons are functions of type ConsList -> Bool. is_nil(x) is true if x is Nil, or
false otherwise. is_cons(x) is true if x is a Cons constructor, or false otherwise. The names
of the constructor arguments can be used to get their values:

1 value(Cons(42, Nil)) == 42
2 tl(Cons(42,Nil)) == Nil
3 tl(Cons(42,Cons(0,Nil))) == Cons(0,Nil)
4 value(tl(Cons(42,Cons(0,Nil)))) == 0

In the previous example we used the syntax sort x = sort to introduce a new sort named
x. We have not properly defined this syntax yet, but now would be a good time to do so.

2.4.3 Rewrite rules

Rewrite rules are an important part of mCRL2 specifications. They fulfill the role that is
often served by function definitions in other programming languages. Rewrite rules tell the
rewriter how to rewrite expressions into other expressions, which are usually simpler. The
rewriter is a part of mCRL2 that, during model checking or LTS generation, applies rewrite
rules to expressions until they reach their simplest form. The following is a rewrite rule that,
when applied, rewrites an integer into its successor.

15

2. MODAL μ-CALCULUS AND MCRL2

Example 2.9. Example of a simple rewrite rule in mCRL2.

1 map successor: Int -> Int;
2 var n: Int;
3 eqn successor(n) = n + 1;

A couple of things are happening in this example. First we declare the name of a successor
function of sort Int -> Int. Then we declare a single rewrite rule with one integer variable
n. The var syntax serves the purpose normally served by function parameters to declare free
variables.

The syntax for mappings and rewrite rules is formally defined in Figure 2.5.

MapSpec map_spec ::= map x : sort;
EqnSpec eqn_spec ::= var_decl˚ eqn_decl+

VarDecl var_decl ::= var x,. . . ,x : sort; variable declaration
EqnDecl eqn_decl ::= eqn e = e; equation

| eqn e -> e = e; equation with condition

Figure 2.5. mCRL2 syntax for defining new mappings and rewrite rules.

We can use pattern matching on the left-hand side of a rewrite equation, to deconstruct
an inductive structure. This works similarly to pattern matching in functional programming
languages. Consider the following example.

Example 2.10. Destructuring the custom inductive type ConsList, from Example 2.8, using
rewrite rules.

1 map sum: ConsList -> Int;
2 var n: Int;
3 cl: ConsList;
4 eqn sum(Nil) = 0;
5 sum(Cons(n, cl)) = n + sum(cl);

Finally, it is possible to provide a condition that needs to hold for a rewrite rule to ap-
ply. Variables that are captured on the left-hand side of a rewrite equation can occur in the
condition expression. The following example shows how to use conditions to implement a
function that computes the Fibonacci sequence.

Example 2.11. Using conditions on rewrite rules.

1 map fib: Int -> Int;
2 var n: Int;
3 eqn n <= 1 -> fib(n) = n;
4 n > 1 -> fib(n) = fib(n-1) + fib(n-2)

The two rewrite rules are preceded by e -> syntax, where e is a boolean expression.

2.4.4 Actions

Actions are the main building block of mCRL2 processes and represent their observable be-
havior. They are the same actions that LTSs are made out of. There is one major difference
between mCRL2 actions and the actions we have seen so far: mCRL2 actions can be param-
eterized by data. Figure 2.6 formally defines syntax for specifying actions.

The following examples show how to declare actions with and without data parameters.

Example 2.12. Actions without data parameters.

16

2.4. Modeling processes with mCRL2

ActSpec act_spec ::= act x,. . . ,x; action
| act x,. . . ,x : sort; action with data

Figure 2.6. mCRL2 action specification syntax.

1 act Raise, Lower;

Example 2.13. Actions with data parameters. Both the buy and the sell action have two
parameters of types: Product and Int. Product is a custom sort.

1 sort Product = struct Chocolate | Milk;
2

3 act Buy, Sell: Product # Int;
4 act Discard: Product;

By using data parameters we essentially declare a whole set of actions that range over the
elements of their parameter sets. For example, the Discard action can be seen as a shortcut
for the actions DiscardChocolate and DiscardMilk. Using parameters, however, makes for
much more concise notation. Especially if the parameters have many possible values. Note
that there are infinitely many Buy and Sell actions, because it has an integer parameter and
the set of integers is infinitely large.

2.4.5 Processes

The final part of an mCRL2 specification is where everything comes together. Process spec-
ifications are used to define processes, they are composed of actions and sub-processes. Ac-
tions and sub-processes can be composed in two ways: sequentially or using a choice opera-
tor. In Figure 2.7 we define mCRL2 process syntax formally.

ProcSpec proc_spec ::= proc x = proc_expr; process
| proc x(x:sort,. . . ,x:sort) = proc; process with data

ProcExpr proc ::= act action
| delta deadlock process
| tau transparent action
| x process call
| x(e,. . . ,e) process call with data
| proc . proc sequence
| proc + proc choice
| sum x:sort,. . . ,x:sort . proc choice over data
| (e) -> proc guard
| (e) -> proc <> proc guard with else

Action act ::= x action
| x(e,. . . ,e) action with data

Figure 2.7. mCRL2 process syntax.

We show an example of a process that consists of two actions in sequence.

Example 2.14. A process P, that consists of two actions a and b in sequence. The process
implicitly ends in deadlock, because after action b there are no more actions to be taken.

1 act a, b;
2 proc P = a . b;

17

2. MODAL μ-CALCULUS AND MCRL2

We use the choice operator if we want to specify that, at a certain point in a process,
multiple actions can be taken. Consider the following example.

Example 2.15. A process Q where, after action a, it is possible to either take action b or action
c.

1 act a, b, c;
2 proc Q = a . (b + c);

We can also call sub-processes within process expressions. An example use case of this
is to represent a process that repeats infinitely.

Example 2.16. A process R that possibly recurses infinitely if the b action is taken. Note that
the process terminates implicitly after taking the c action.

1 act a, b, c;
2 proc R = a . ((b . R) + c);

It is good practice to use the special delta process to indicate termination. The delta
process is sometimes the deadlock process, as it represents a state where no actions are pos-
sible. Using delta instead of terminating implicitly helps mCRL2 with linearization. The
next example shows how we improve the processes from previous examples by explicating
deadlocks.

Example 2.17. Improved versions of processes from Examples 2.14 to 2.16, by making dead-
locks explicit.

1 act a, b, c;
2 proc P = a . b . delta;
3 proc Q = a . (b + c) . delta;
4 proc R = a . ((b . R) + (c . delta));

If we want to express choice over all values of a datatype we can use the sum operator.
Consider the following example over natural numbers.

Example 2.18. Choice over natural numbers. We specify a process where in the initial state
there is an action a(n) for all natural numbers n.

1 act a: Nat;
2 proc P = sum n: Nat . a(n) . delta;
3 init P;

The above process provides choice between an infinite amount of actions, since the set
of natural numbers is infinitely large. This has some interesting implications. First, it is not
possible to generate the full state space (i.e. LTS) of this process in finite time. Since the
full state space would be infinitely large. It also means that not all μ-formulas can be model
checked on this process. Interestingly, for some μ-formulas it remains possible to model
check them. For example, xa(0)yJ can be verified, because it does not require generation
of the full state space. However, a formula such as @n : Nat.xa(n)yJ cannot be verified in
finite time. We have not introduced universal quantification (@) over data as an operator in
μ-calculus yet. This will be formally introduced in Section 2.5. Informally the meaning of
the previous formula is “there is an action a(n) for all natural numbers n.”

Often, it makes sense to limit the values a process can choose from, to make sure the state
space of the process is finite. This can be done using the guard operator. It has two varieties,
one with, and one without an alternative option (i.e. ‘else branch’). Consider the following
two examples.

18

2.5. Modal μ-calculus with data

Example 2.19. Using a guard operator to limit the state space of a process.

1 act a: Nat;
2 proc P = sum n: Nat . (n < 10) -> a(n) . delta;
3 init P;

Example 2.20. Using a guard operator with an alternative. The process represents a person
who is able to do two things: earn money and buy stuff. The guard operator is used to check
if the person has enough money to buy a certain product. If they do not have enough money
for a product, the else branch of the guard presents the option to earn money.

1 sort Product = struct Computer | Food;
2

3 map price: Product -> Nat;
4 eqn price(Computer) = 1000;
5 price(Food) = 5;
6

7 act EarnMoney: Int;
8 act BuyProduct: Product;
9

10 proc P(money: Nat) =
11 sum p: Product . (money >= price(p))
12 -> BuyProduct(p) . P(abs(money - price(p)))
13 <> EarnMoney(100) . P(money + 100);
14

15 init P(0);

To find out if it is possible to buy a computer at some point, we could use the following
μ-formula.

νX.xBuyProduct(Computer)yJ _ xJyX

2.5 Modal μ-calculus with data

In the previous section we have seen how to specify processes with data. We can define cus-
tom (inductive) data types, rewrite rules and actions with data. To be able to state properties
about these processes, the μ-calculus as previously defined is not sufficient. mCRL2 extends
the μ-calculus with constructs to reason about data. In this section we define an extension
of the μ-calculus from Section 2.3 with data quantifiers and a data evaluation construct. The
result is a logic sometimes referred to as first-order modal μ-calculus.

The constructs we add are universal quantification, existential quantification and an eval-
uation operator that evaluates arbitrary boolean mCRL2 data expressions to a boolean con-
stant (J or K). The extended syntax is defined in Figure 2.8.

μ-formula ϕ ::= . . . syntax from Figure 2.1
| val(e) data expression evaluation
| @x P sort.ϕ universal quantification
| Dx P sort.ϕ existential quantification

Figure 2.8. Extension of μ-calculus syntax with data operators.

In Figure 2.8, x, sort and e are respectively identifiers, sorts and data expressions from
mCRL2 specification syntax. The semantics of μ-calculus formulas with data operators are
defined as follows.

19

2. MODAL μ-CALCULUS AND MCRL2

Definition 2.8. Given an arbitrary LTS M = (S,Act, t
a
ÝÝÑuaPAct, s0), a fixed point variable

valuation ρ that maps variables to sets of states, and a valuation σ that maps quantified vari-
ables to values, the semantics of μ-calculus formulas are defined by the equations below.
The notation JϕKρ,σ means “the states where formula ϕ holds, given valuations ρ and σ.” We
consider formula ϕ valid for an LTS if it is valid in its initial state, i.e. s0 P JϕKρ,σ. We use
V (sort) to denote the set of values of belonging to sort. The notation JeKσ is used for the
evaluated value of an mCRL2 data expression e under valuation σ. Finally, ϕ[d/x] is used to
denote the formula ϕ where all occurrences of x are substituted by d.

JJKρ,σ = SJKKρ,σ =HJ␣ϕKρ,σ = SzJϕKρ,σJϕ1 ^ ϕ2Kρ,σ = Jϕ1Kρ,σ X Jϕ2Kρ,σJϕ1 _ ϕ2Kρ,σ = Jϕ1Kρ,σ Y Jϕ2Kρ,σJxayϕKρ,σ = ts P S | Ds1 P S s.t. s a
ÝÝÑ s1 and s1 P JϕKρ,σuJ[a]ϕKρ,σ = ts P S | @s1 P S s.t. s a
ÝÝÑ s1 implies s1 P JϕKρ,σuJXKρ,σ = ρ(X)JµX.ϕKρ,σ =

č

RĎS

JϕKρ[X ÞÑR],σ

JνX.ϕKρ,σ =
ď

RĎS

JϕKρ[X ÞÑR],σ

J@x P sort.ϕK = č

dPV (sort)

Jϕ[d/x]Kρ,σ[x ÞÑd]

JDx P sort.ϕK = ď

dPV (sort)

Jϕ[d/x]Kρ,σ[x ÞÑd]

Jval(e)K = #

S if JeKσ = true,
H if JeKσ = false.

In the above definition, the LTS and available sorts are defined by an mCRL2 specification.
We do not define how to get from an mCRL2 specification to a LTS, as this translation lies
outside the scope of this thesis. Additionally, the availability of a relation that evaluates
data expressions (JeKσ) is assumed. Refer to Chapter 15 of (Groote and Mousavi 2014) for a
complete definition of this relation.

An example of a formula with a quantification over data defined in Example 2.13 is the
following.

@x P Product.xBuy(x)yJ

This formula asserts the existence of a Buy action for every type of product. A similar formula
can assert the existence of a Buy action for some product, using existential quantification:

Dx P Product.xBuy(x)yJ

For an example usage of the data expression evaluation operator, consider the following
mCRL2 specification.

1 act a: Int;
2 proc P = sum i: Int. (i >= 0 && i <= 2) -> a(i) . delta;
3 init P;

This specification results in the following LTS.

20

2.5. Modal μ-calculus with data

a(0)

a(1)

a(2)

We can use the evaluation operator to check for the existence of an action a(i) where
i ą 0, as follows:

Di P Int.xa(i)yval(i > 0)

21

Chapter 3

Overview of the pattern language:
DYNO

In this chapter we introduce the DYNO pattern language. The aim is to build an intuition of
how patterns work and what we can do with them. We do this by defining DYNO syntactically
and giving characteristic examples of patterns. Before we can discuss DYNO, however, we
need to establish an object language that can be pattern matched against.

We establish a programming language that we use as the object of pattern matching in
Section 3.1. The language, which we call IMP, is designed to exhibit typical features of an im-
perative programming language, such as if statements, loops and modifiable state. Then, in
Section 3.2 we introduce DYNO’s syntax and discuss example patterns. Finally, in Section 5.3
we discuss our Spoofax implementation of translations of DYNO patterns to μ-calculus for-
mulas and IMP programs to mCRL2 specifications.

3.1 Defining an object language: IMP

Before designing the pattern language, we need to have a programming language that we
can pattern match on. We call this language the object language. To avoid the complexity
of dealing with a full-fledged programming language, we instead define a simple toy lan-
guage. While it should be simple, we want it to have characteristic features of real world
programming languages. As such, the language will have constants, variables, unary and
binary operators, a branching construct, a looping construct and functions. It is designed to
be reminiscent of imperative-style languages like C and hence name it IMP. Programs writ-
ten in the IMP language have a global state consisting of global variable assignments. When
global state is used, an IMP program can be thought of as a class instance where the global
variables model class member variables. The syntax of the language is defined in Figure 3.1.

A simplification we make is to not have functions as first-class citizens, i.e. they cannot
be passed around as values. Functions can only be referred to directly, using their name.
Furthermore, function calls are statements instead of expressions. This simplifies the design
of the mCRL2 specification in Section 4.1 somewhat. We introduce an additional call assign
statement to make sure the return value of a function call can be captured in a variable. Note
that we require functions to be annotated with a return type and also require their parameters
to be annotated with types. While we do not concern ourselves with defining type checking
rules, these annotations later help us infer bounds to limit a program’s state space while
pattern matching.

Since the semantics of IMP are quite standard and not of special concern, we do not for-
mally define them here. Instead, we rely on an indirect definition of semantics in our model
extraction method discussed in Chapter 4.

23

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

Type t ::= bool | int | void
Value v ::= b boolean

| n integer
| void void

Expr e ::= v constant
| x variable
| global x global variable
| -e negation
| !e not
| e + e addition
| e - e subtraction
| e && e and
| e || e or
| e == e equals
| e != e not equals
| e < e less than
| e > e greater than

Stmt s ::= e expression
| x = e assignment
| global x = e global assignment
| if (e) s else s if statement
| if (e) s if statement (empty else)
| while (e) s while loop
| x([e,]˚) function call
| x = x([e,]˚) call + assignment
| { [s;]˚ } block
| return e return
| return return void

FunDef f ::= fn x([x : t,]˚) -> t s

ExtFunDef ef ::= fn x([_,]˚) -> t

Decl decl ::= private f˚ private functions
| public f˚ public functions
| external ef˚ external functions
| global [x = e]˚ global assignments

Program p ::= decl˚ program

Figure 3.1. Syntax of the IMP programming language. An IMP program (p) consists of a list
of function and global variable declarations (decl). Functions can be public, private or external.
Function bodies are composed of statements (s) which are in turn composed of expressions
e. Expressions can be of integer or boolean type. We use x˚ or [x]˚ to denote zero or more
occurrences of x and [e,]˚ to denote zero or more occurrences of e, separated by commas.
Similarly, x? denotes zero or one occurrence of x.

Some IMP syntax is desugared into a core subset of IMP. Refer to Figure 3.2 for a complete
overview of desugaring rules. While we only consider the core subset of IMP in the remain-
ing chapters, pattern matching can be applied to the full language by applying the defined
desugaring rules when appropriate.

24

3.1. Defining an object language: IMP

JreturnK = return voidJif (e) sK = if (e) s else {}Jx([e,]˚)K = dummy = x([e,]˚)

Figure 3.2. Desugaring rules for IMP syntax. Return values of function calls are assigned to
a reserved identifier called dummy.

3.1.1 Examples of IMP programs

To get a feeling for what an IMP program looks like, we give some examples of IMP programs.
The following program showcases most of IMP’s features. In particular, it has two public
functions, a private function and global state variables.

Example 3.1. A program representing a vending machine that initially holds 4 chocolates
and 0 coins. Extra coins can be inserted up to the amount of chocolates and chocolates can
be ejected, provided there are enough chocolates and coins in the machine.

1 global
2 coins = 0
3 chocolates = 4
4

5 public
6 fn insert(amount: int) -> int {
7 max = global chocolates - global coins;
8 diff = min(amount,max);
9 global coins = global coins + diff;

10 return diff
11 }
12

13 fn eject() -> bool {
14 if (global chocolates > 0 && global coins > 0) {
15 global chocolates = global chocolates - 1;
16 global coins = global coins - 1;
17 return true
18 };
19 return false
20 }
21

22 private
23 fn min(a: int, b: int) -> int
24 if (a < b) return a
25 else return b

The following is an example of a program with an external function. External functions
are abstract, in the sense that we do not know their implementation.

Example 3.2. A program with a main function that calls an external print function.

1 public
2 fn main() -> void
3 print(42)
4

25

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

5 external
6 fn print(_) -> void

3.2 Introducing DYNO

In this section we introduce the pattern language DYNO. The pattern language is designed
to facilitate pattern matching on the models we extract from IMP programs using the mCRL2
specification built in the previous section. We strive for a pattern language that is as intuitive
as possible, and therefore support the use of concrete object language syntax inside patterns.
Figure 3.3 shows the syntax of DYNO.

Identifier id ::= x regular variable
| @x metavariable

MetaType τ ::= statement
| expression
| identifier
| value

MetaVarDecl mv ::= var @x : τ metavariable declaration
Pattern p ::= {{ s }} concrete syntax

| [...] ellipsis (‘forall’)
| <...> ellipsis (‘exists’)
| assert e assertion
| id([v,]˚) function call
| id([v,]˚) -> v function call capture
| !p negation
| p p sequential composition

Dyno dyno ::= mv˚ p DYNO pattern

Figure 3.3. Definition of DYNO pattern syntax.

A DYNO pattern consists of a series of operators that describe a sequential pattern. The
operators have the following informal meanings.

• The concrete syntax operator ({{ s }}) is used to match exact syntax of the underlying
IMP program.

• Ellipses operators ([...] and <...>) are used to match arbitrary sequences of a program.
There are two variants, the forall variant ([...]) is used if all subsequent runtime need
to satisfy the remaining pattern, whereas the exists variant (<...>) is used if at least one
subsequent runtime path has to satisfy the remaining pattern. If only a single runtime
path exists the two are equivalent. Note that we sometimes call the exists and forall
ellipses diamond and box ellipses, respectively.

• The assertion operator (assert e) can be used to assert that some proposition holds at a
certain point in the program. The assertion operator is especially useful to assert things
about captured runtime values.

• Function call operators are used to match function calls. While function calls can also
be matched syntactically using the concrete syntax operator, a dedicated function call
operator is needed to match function calls that do not occur syntactically in a program.
An example of this is calls to entry point functions. There are two variants, one that
captures the returned value (id([v,]˚) -> v) and one that does not (id([v,]˚)).

26

3.2. Introducing DYNO

• Negation is used to express that the subsequent pattern should not occur.

In addition to the aforementioned operators, DYNO offers metavariables as a means to
capture arbitrary statements, expressions, identifiers and runtime values. Metavariables are
declared at the top of a DYNO pattern. To support metavariables we augment the syntax of
IMP. In Figure 3.4 we show how IMP syntax is extended with DYNO metavariables, as well
as capture constructs. The capture operators can be used to capture the runtime values of
expressions and the return values of function calls.

Value v ::= . . . Figure 3.1 definitions
| @x metavariable

Expr e ::= . . . Figure 3.1 definitions
| global id global variable
| e -> v value capture

Stmt s ::= . . . Figure 3.1 definitions
| id = e assignment
| global id = e global assignment
| id([e,]˚) call
| id = id([e,]˚) call + assign
| id([e,]˚) -> v call value capture
| id = id([e,]˚) -> v call + assign value capture

Figure 3.4. Updated IMP syntax with DYNO metavariables and constructs for capturing run-
time values.

3.2.1 Examples of DYNO patterns

We will now show simple examples of DYNO patterns that show how each of the operators
work, and how the operators can be combined sequentially.

Example 3.3. A pattern that matches concrete syntax sequentially.

1 {{ x = 0 }}
2 {{ print(x) }}

The above example expresses that an assignment of 0 to x should be immediately followed
by a print(x) statement. A program where this pattern might be expected to hold is the
following.

1 public
2 fn main() -> void {
3 x = 0;
4 print(x)
5 }
6

7 external
8 fn print(_) -> void

However, as the pattern is currently written it does not match the above program. In fact,
it cannot match any program, because a program never starts with an assignment statement,
but with a call to an entry point function. Therefore, DYNO patterns typically start with an
ellipsis operator. For the above example, this results in the following pattern.

27

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

1 <...>
2 {{ x = 0 }}
3 {{ print(x) }}

Using the diamond ellipsis the meaning of the pattern becomes “there is a runtime path
to x = 0, directly followed by a print(x) call.” This pattern correctly matches the above pro-
gram.

As an example of how DYNO differs from purely syntactic pattern matching, consider the
following program.

1 public
2 fn main() -> void
3 if (false) {
4 x = 0;
5 print(x)
6 }
7

8 external
9 fn print(_) -> void

Now, the question is whether our previous pattern matches the above program. If we
were to pattern match purely syntactically, a match should indeed be found. However, DYNO
takes into account the runtime semantics of a program, thereby figuring out that the code in
the if statement can never be reached. So our DYNO pattern from above does not match this
program.

The next example shows a use case of metavariables.

Example 3.4. A pattern with metavariables that matches an arbitrary while loop.

1 var @e: expression
2 var @s: statement
3 <...>
4 {{ while(@e) @s }}

This pattern can be used to find occurrences of while loops in a program. If a program
contains at least one while loop, the pattern matches.

We can use the call operator to match function calls. Consider the following example.

Example 3.5. A pattern that matches a specific function call that returns a specific value.

1 foo() -> 4

The above pattern matches programs where a public function foo() is available, that re-
turns 4 in the initial state.

Note that the call operator differs slightly from the concrete syntax operator. For example,
the following pattern, though similar to the example above, has a different meaning.

1 {{ foo() -> 4 }}

This pattern looks for the occurrence of a syntactic occurrence of a foo() function call that
returns 4, which never occurs in the initial state.

Concretely, the latter pattern fails for the following program, while the former succeeds.

1 public
2 fn foo() -> int
3 return 4

28

3.2. Introducing DYNO

Next, we discuss the negation operator. When a negation operator is added in front of a
pattern, it flips its meaning. That is, if a pattern matched a certain program before negating,
it no longer matches after negating, and vice versa. More interesting are patterns where
a negation occurs in the middle, or at least not at the very front. Consider the following
example that detects a variable assignment that remains unused.

Example 3.6. A pattern that uses the negation operator.

1 var @x: identifier
2 var @e: expression
3 <...> {{ @x = @e }} !<...> {{ @x }}

The following is an example that uses the assertion operator to reason about a captured
runtime value. The pattern matches if a print call is made with a value greater than 4.

Example 3.7. A pattern with an assertion operator.

1 var @v: value
2 <...>
3 print(@v)
4 assert @v > 4

Using the concrete syntax operator and expression value capture we can express roughly
the same pattern:

1 var @e: expression
2 var @v: value
3 <...>
4 {{ print(@e -> @v) }}
5 assert @v > 4

The two formulations only differ in the scenario where the print call is the result of an
external program calling the public function print.

Lastly, we show two examples to highlight the difference between the ‘exists’, (or ‘dia-
mond’) ellipsis and the ‘forall’ (or ‘box ellipsis’).

Example 3.8. An example of using diamond ellipsis to find the occurrence of a function call.

1 <...>
2 {{ foo() }}

Example 3.9. An example of using box ellipsis to find the occurrence of a function call on all
paths of computation.

1 [...]
2 {{ foo() }}

An example of a program that matches the diamond ellipsis, but not the box ellipsis
variant is the following.

1 public
2 fn main() -> void
3 foo()
4 fn bar() -> void {}
5 private
6 fn foo() -> void {}

29

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

3.2.2 Limiting input parameter spaces using function bounds

IMP programs do not necessarily have a single entry point. Instead, we assume that any
public function is an entry point and can be called by an external program at any time after
the program is instantiated. One can think of an IMP program as an instance of a class of an
object-oriented program.

Whenever a public function with integer and/or boolean parameters is called, its param-
eters can take on any combination of values from the value sets of its parameters. When the
parameters are all booleans this means the amount of possible combinations is 2n, where n
is the amount of boolean parameters. Thus, the input space grows exponentially with the
number of boolean parameters. Moreover, when there is even only a single integer parame-
ter, the set of possible input values is already infinite. While during normal execution this is
not a concern, as the input values are always known, and we do not care about the other val-
ues a parameter could have taken on. However, when we are pattern matching on a program,
we do not know what the actual inputs to a program are. To be able to match on execution
traces of a program, we then need to consider all possible inputs. Since this is infeasible if
the input space is infinite, we need a way to limit the input space if we want to be able to
pattern match in finite time.

To this end we extend IMP with bound syntax in Figure 3.5. These bounds should not be
considered part of IMP, but rather as a part of DYNO. Bound syntax is provided for bounding
the input values of (internal) functions of the form bound x => e, where x is the parameter to
be bounded and e a boolean expression bounding x. Similar syntax is provided for bounding
the return values of external functions: bound out => e, where out is the only variable in
scope of e and represents the return value.

FunDef f ::= fn x([x : t,]˚) -> t s ib˚

ExtFunDef ef ::= fn x([_,]˚) -> t ob?

InputBound ib ::= bound x => e

OutputBound ob ::= bound out => e

Figure 3.5. Extending IMP function definitions with bound syntax. The notation x? means
zero or one occurrence of x, and x˚ means zero or more occurrences of x.

Consider the following IMP program as an example.

Example 3.10. A program with a public function that has bounded input parameters.

1 public
2 fn add(x: int, y: int) -> int
3 return x + y
4 bound x => x >= -5 && x <= 5
5 bound y => y >= -5 && y <= 5

Without bounds on the input parameters, pattern matching might fail due to the state
space of the program being infinite. The downside of this is that we only consider a subset of
the state space. An example of a pattern that can be expressed about the following program
is the following.

1 var @v: value
2 var @v': value
3 var @v'': value
4 [...]
5 add(@v,@v') -> @v''
6 assert @v'' == (@v + @v')

30

3.3. Practical examples of DYNO patterns

This pattern asserts that all calls to the add function do indeed return the sum of the
arguments.

We can also bound the values returned by external functions, this might be necessary if
an external function returns an integer. Consider the following example.

Example 3.11. A program where the return value of an external function is bounded.

1 public
2 fn main() -> void {
3 x = random();
4 print(x)
5 }
6

7 external
8 fn print(_) -> void
9 fn random() -> int

10 bound out => out >= -10 && out <= 10

3.3 Practical examples of DYNO patterns
In the previous section we have seen some initial examples of simple DYNO patterns. In this
section we focus on more practical examples of patterns that can be expressed with DYNO.
We show examples of checking pre- and post-conditions of function calls Section 3.3.1. Pat-
terns for finding (in)correct resource usage are discussed in Section 3.3.2. We wrap up with
Section 3.3.3, which discusses a pattern that detects infinite loops.

3.3.1 Checking pre- and post-conditions of function calls

As the first set of examples we devise patterns for checking pre-conditions and post-conditions
of functions. In other words patterns that assert conditions on the input values or output val-
ues of function calls. A simple example of a post-condition check is a pattern that asserts a
condition on the return value of a function call.

Example 3.12. A pattern that expresses a condition on the return value of a function.

1 var @v: value
2 var @r: value
3 <...>
4 foo(@v) -> @r
5 assert @r >= 0 && @r <= 42

In practice, one might be more interested in the negated variant of the above pattern.
Such a pattern could be used to check whether all calls of a specific function return a value
within certain bounds. For example, if we wanted to check whether foo never returns a value
greater than 10, in a certain program, we could use the following pattern.

1 var @v: value
2 var @r: value
3 !<...>
4 foo(@v) -> @r
5 assert @r > 10

One might be tempted to implement the above pattern without negation by using a box
ellipsis instead, for example:

31

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

1 var @v: value
2 var @r: value
3 [...]
4 foo(@v) -> @r
5 assert @r <= 10

This would work if the meaning of the pattern was “all foo calls return a value of at most
10.” However, this is not the actual meaning of the pattern. A correct reading of its meaning
would be “all execution paths starting in the initial state lead to a foo call that returns a value
of at most 10.” It might be, for example, that on a certain path a foo call occurs that returns 8,
while afterwards on the same path a call occurs that returns 11. This second call would not
be considered by the box pattern variant, because it already found a satisfactory function call
along the path. If one wants to assert something about all function calls, the negated pattern
above should be used instead.

Pre-condition patterns are very similar, but instead operate on function arguments. Con-
sider the following example that checks whether foo is called with the value true.

1 <...>
2 foo(true)

To check whether an argument passed to the foo function always lies within a certain
range we could use the following pattern.

1 var @v: value
2 <...>
3 foo(@v)
4 assert @v < 10 || @v > 20

Note that such a pattern only makes sense for private or external functions. Public func-
tions usually need to be bounded by the user, and if the asserted range completely overlaps
with the bounds, the pattern always trivially matches the program, or mismatches otherwise.

3.3.2 Correct use of resources with a limited lifetime

We can devise patterns that check whether a resource is used correctly. Consider a resource
that is available for a limited timespan during a program’s execution. From a certain point
onwards, the resource is available and can be interacted with, until it is destroyed and be-
comes unavailable. A real-world example of such a resource is pointers to (heap) memory in
a language like C. After allocation, a pointer can be used to access the underlying memory.
When memory is freed, however, the pointer is invalidated and should no longer be used.
Attempting to access memory that has been freed is known as a use-after-free bug. While we
do not have pointers in IMP, we can still devise an example that demonstrates how we can
express a use-after-free pattern in DYNO to search for occurrences of such a bug. Consider
the following program that manages a resource with limited lifespan.

1 public
2 fn access() -> void
3 use()
4

5 fn destroy() -> void
6 free()
7

8 external
9 fn use() -> void

10 fn free() -> void

32

3.3. Practical examples of DYNO patterns

The program provides access and destroy functions as a public interface to interact with
a resource. The external functions use and free represent the functions that actually interact
with the underlying resource. We now want to check whether this interface prevents use-
after-free bugs, using the following pattern.

Example 3.13. A pattern that expresses the absence of use-after-free bugs.

1 !<...>
2 free()
3 <...>
4 use()

However, if we match this pattern against the above program, we get false as result. In-
deed, it is possible for a use to occur after a free, because the program does nothing to prevent
that from happening. We could solve this by adding a global flag that records whether the
resource has been freed and checking the flag before calling use. The result is the following
program.

1 global
2 destroyed = false
3

4 public
5 fn access() -> void
6 if (!global destroyed) use()
7

8 fn destroy() -> void {
9 global destroyed = true;

10 free()
11 }
12

13 external
14 fn use() -> void
15 fn free() -> void

The use-after-free pattern now successfully matches, indicating that no use-after-free
bugs occur.

Another pattern we might want to express is one that asserts that a resource is always
disposed of after allocation. This might be useful for checking if file streams are always
properly closed, for example. Consider the following example program.

1 public
2 fn main() -> void {
3 file = 0;
4 open(file);
5 a = read(file);
6 b = read(file);
7 c = read(file);
8 print(a+b+c);
9 close(file)

10 }
11

12 external
13 fn open(_) -> void
14 fn read(_) -> int

33

3. OVERVIEW OF THE PATTERN LANGUAGE: DYNO

15 bound out => out >= 0 && out <= 10
16 fn close(_) -> void
17 fn print(_) -> void

The program opens a file, reads some integers and closes it after printing the sum of the
integers. Note that we need to bound the output of the read function to ensure a finite state
space. To assert that files are always closed after opening them we use the following pattern,
containing a box ellipsis and a double negation.

Example 3.14. A pattern that checks for the proper disposal of resources.

1 var @v: value
2 !<...>
3 open(@v)
4 ![...]
5 close(@v)

A variant without the double negation that uses two box ellipses instead would not work.
This is explained in Section 3.3.1, where we discuss another pattern where it is tempting to
replace a negated diamond ellipsis with a box ellipsis.

3.3.3 Detecting an infinite loop

An interesting pattern that we can express in DYNO is one that looks for infinite while loops.
The pattern is as follows.

1 var @e: expression
2 var @s: statement
3 <...>
4 {{ while(@e) @s }}
5 assert false

To understand why this works, we first consider what happens when the pattern encoun-
ters a while loop that terminates. In that case we hit the ‘assert false’ line which always
fails, resulting in a mismatch. However, when an infinite loop is encountered we never exit
the loop and the ‘assert false’ part of the pattern is ignored.

Note that this pattern only works if the while loop does not induce an infinite state space.
This happens if the loop reaches a stable state after a finite amount of iterations, after which
every iteration is the same. An example of a program that matches the above pattern is the
following.

1 public
2 fn main() -> void
3 while(true) {}

A peculiar side effect

The above pattern unveils a peculiar side effect of using a greatest fixed point operator in the
compilation of while loop concrete syntax. While this allows us to match infinite loops, as
previously shown, it also means that any sub-pattern after the ‘{{ while(@e) @s }}’ part of
a pattern holds if there is an infinite loop in a program.

Consider the following example of a pattern with a while loop.

1 var @e: expression
2 var @s: statement
3 <...>

34

3.3. Practical examples of DYNO patterns

4 {{ while(@e) @s }}
5 {{ print(x) }}

If a program contains an infinite loop, this pattern matches, even if no print statement oc-
curs afterwards. One who writes such a pattern likely does not expect this to be its behavior,
because it might match programs that have no print call after a while loop. We would like to
remark however, that if the above pattern is of interest, then infinite loops themselves might
be an unwanted side effect. Therefore, one could always run the infinite loop pattern first to
check for infinite loops, before running other patterns with while loops.

35

Chapter 4

Extracting models from IMP programs

Before pattern matching can be applied to programs, they need to be represented in a form
that can be readily analyzed. Because we aim to implement DYNO patterns as μ-calculus
formulas, this means programs should be represented in some form that μ-formulas can rea-
son about. In this chapter we achieve this by building an mCRL2 specification that extracts
models from IMP programs. In Section 4.1 we show how to represent IMP abstract syntax
trees (ASTs) in mCRL2 and follow up with a first attempt at translating IMP programs into
LTSs. Learning from observations made in Section 4.1, we devise an improved mCRL2 spec-
ification in Section 4.2, based on a model extraction technique pioneered by Spaendonck
(2024). Finally, in Section 4.3 we show how the specification can be extended with informa-
tion about internal computation. We end up with a representation of IMP programs suitable
for pattern matching with μ-calculus formulas. In Chapter 5 we show how DYNO patterns
can be compiled to such formulas.

4.1 First steps toward state space extraction

In the previous chapter we defined the syntax and semantics of our object language: IMP.
Eventually we want to pattern match on IMP programs using μ-calculus. To do this, however,
we first need to figure out a way to generate LTSs of programs in a way suitable for pattern
matching. More specifically, we want to be able to find patterns in runtime traces of programs
using concrete syntax. We will be using mCRL2 to specify processes that turn IMP programs
into LTSs. Before we get there, however, we need to be able to represent programs in mCRL2.

4.1.1 Representing IMP programs in mCRL2

To represent IMP programs in mCRL2 we define a set of data types to hold their ASTs. In List-
ing 4.1 we list mCRL2 code that implements the necessary data types. We use Val, Stmt and
Expr to represent values, statements and expressions of IMP programs, respectively. These
data types closely match the syntactic definitions from Figure 3.1. Only the syntax that is
desugared – see Figure 3.2 – has no mCRL2 counterpart. Unary operators are concisely rep-
resented using a single unop constructor combined with a dedicated data UnOp struct that
determines the type of unary operator. We do the same for binary operators with the binop
constructor and BinOp struct.

Some constructors have parameters of type Id, a type we have not defined yet. Since
mCRL2 has no support for strings, we create a custom data type that contains a constructor
for each identifier that occurs in a program. This data type therefore depends on the program.
If a program contains a function named print and a variable x, for example, the Id struct
would be defined as:

1 sort Id = struct print | x;

37

4. EXTRACTING MODELS FROM IMP PROGRAMS

1 sort Val = struct BoolV(get_bool: Bool) ? is_bool
2 | IntV(get_int: Int) ? is_int
3 | VoidV ? is_void;
4

5 sort Stmt = struct assign(get_var: Id, get_expr: Expr) ? is_assign
6 | glob_assign(get_var: Id,
7 get_expr: Expr) ? is_glob_assign
8 | ite(get_cond: Expr,
9 get_then: Stmt,

10 get_else: Stmt) ? is_ite
11 | expr(get_expr: Expr) ? is_expr
12 | return(get_expr: Expr) ? is_return
13 | while(get_cond: Expr, get_body: Stmt) ? is_while
14 | call(get_var: Id,
15 get_fun: Id,
16 get_args: List(Expr)) ? is_call
17 | blk(get_stmts: List(Stmt)) ? is_blk;
18

19 sort Expr = struct constant(get_val: Val) ? is_constant
20 | variable(get_id: Id) ? is_variable
21 | glob_variable(get_id: Id) ? is_glob_variable
22 | unop(get_unop: UnOp, get_expr: Expr) ? is_unop
23 | binop(get_binop: BinOp,
24 get_left: Expr,
25 get_right: Expr) ? is_binop;
26

27 sort UnOp = struct Not | Neg;
28 sort BinOp = struct And | Or | Eq | Neq | Add | Sub | Lt | Lte | Gt | Gte;

Listing 4.1. mCRL2 data structures representing the abstract syntax of IMP programs.

To illustrate how these data types can be used to represent the AST of an IMP program,
we give an example.

Example 4.1. A program that we want to represent in mCRL2 using the data types from
Listing 4.1.

1 {
2 x = 0;
3 while (x < 3) {
4 x = x + 1
5 }
6 }

The AST that corresponds to this program is given in the next example.

Example 4.2. An AST that corresponds to the program from Example 4.1.

1 sort Id = struct x;
2 blk([
3 assign(x, constant(0)),
4 while(binop(Lt, variable(x), constant(3)),
5 blk([

38

4.1. First steps toward state space extraction

6 assign(x, binop(Add, variable(x), constant(1)))
7]))
8])

4.1.2 A first attempt at extracting LTSs from programs

There are multiple ways to approach the problem of transforming programs into LTSs. In this
section we explore a method that translates programs to LTSs in a relatively direct manner.
The idea is to devise an mCRL2 process that recursively traverses the AST of a program while
transforming nodes into sequences of actions. For example, consider the following mCRL2
specification.

Example 4.3. A process that unfolds expressions into a sequence of actions.

1 act start: Expr;
2 end: Expr;
3 proc Unfold(e: Expr) =
4 (is_constant(e)) -> start(e) . end(e)
5 + (is_variable(e)) -> start(e) . end(e)
6 + (is_unop(e)) -> start(e) . Unfold(get_expr(e)) . end(e)
7 + (is_binop(e)) -> start(e)
8 . Unfold(get_left(e))
9 . Unfold(get_right(e))

10 . end(e)

Using Unfold from the above definition we can turn expressions into LTSs. Consider the
following example

Example 4.4. Unfolding binop(Add, variable(x), constant(1)) using Unfold results in the
following LTS. We abbreviate the binary operator with +, the variable with x and the constant
with 1.

start(+) start(x) end(x) start(1) end(1) end(+)

We can use this LTS to find syntactic patterns in code. Consider the following μ-calculus
formula.

xstart(+)yxstart(x)yxend(x)yxstart(1)yxend(1)yxend(+)yJ

It looks for an expression of the form x + 1 and matches the LTS from Example 4.4 exactly.
What if we want to match an expression at an arbitrary location in a program? We could use
a formula with a fixed point operator to achieve this. For example, the following formula
looks for the occurrence of a 1 constant somewhere in the LTS.

µX.xstart(1)yxend(1)yJ _ xJyX

One might wonder why we decided to represent expressions using a start and an end
action, instead of a single expr action. The main reason for this is that we need delimiting
actions to facilitate metavariables. For example, say we want to look for an arbitrary expres-
sion, directly followed by another expression. Such a pattern could be expressed as ‘@e 1’,
where @e represents an arbitrary expression and 1 the constant ‘one’. We do not know a pri-
ori what @e looks like, and whether it has sub-expressions. Because of this we once again
resort to the expressive power of the fixed point operator to express the pattern ‘@e 1’ using

39

4. EXTRACTING MODELS FROM IMP PROGRAMS

μ-calculus. We additionally use existential quantification to capture the AST node of the
arbitrary expression.

De P Expr.xstart(e)yµX.xend(e)yxstart(1)yxend(1)yJ _ xJyX

This formula also matches the above LTS, where e binds to the expression x. Remember
that we are using abbreviated action labels, so if we want to be precise, then we should say
that e binds to variable(x).

While the process Unfold provides a simple and intuitive translation from expressions
to LTSs, it has a practical problem. It turns out that the Unfold process from Example 4.3
is not regularly linearizable. The root of the problem is the occurrence of end actions after
the recursive invocations to the Unfold process. In the following subsection we briefly go
into linearization and regular linearizability. Ultimately we consider this limitation a sign
that, while the Unfold process is simple and intuitive, it might be the wrong approach. We
therefore turn our attention to a different approach in Section 4.2.

Linearization

As a first step towards model checking or LTS generation, process equations have to be lin-
earized. That is, processes are translated into a simpler form known as linear processes. A
linear process, P , is a process that consists of a sequence of summands with each a single
sum operator, having zero or more variables, one condition, one action and one recursive in-
vocation of the process P . When all processes of an mCRL2 specification are in linear form it
is called a linear process specification (LPS). Consider the following example that we borrow
from the mCRL2 documentation1.

Example 4.5. Example of a process Buffer and its linear form.

1 proc Buffer = sum m:Nat.read(m).send(m).Buffer;
2 init Buffer;

This process is not linear, as it contains two actions before the recursive invocation of Buffer.
An example of the same process in linear form is the following.

1 proc Buffer(b: Bool, n: Nat) = sum m: Nat. b -> read(m).Buffer(!b,m)
2 + !b -> send(n).Buffer(!b,n);
3 init Buffer(true,0);

The mCRL2 toolset offers different ways to linearize a process specification. The default
is ‘regular’ linearization, which leads to linear processes that are simple enough for further
analysis or processing. In particular, many optimizations rely on regular linearization. The
downside of regular linearization is that it cannot linearize every process that is expressible
syntactically. Some processes with actions after (recursive) process invocations, i.e. processes
that are not tail-recursive, are not regularly linearizable. In particular, our Unfold process from
above is such a process. mCRL2 offers an alternative mode of linearization, called ‘stack’
linearization. Using stack linearization, any syntactically correct process can be linearized.
However, processes linearized using this method lead to complex linear forms that are hard
to process further. As a result, most optimizations cannot be applied to these processes.

1mCRL2 documentation on linear process specifications: https://www.mcrl2.org/web/user_manual/
language_reference/lps.html

40

https://www.mcrl2.org/web/user_manual/language_reference/lps.html
https://www.mcrl2.org/web/user_manual/language_reference/lps.html

4.2. Improved state space extraction

Stable
global xi = vi

p p

call

...

return

Figure 4.1. Abstract representation of a model extracted from an IMP program.

4.2 Improved state space extraction
In our next approach to LTS extraction from programs we take inspiration from existing
research. Spaendonck (2024) presents a technique for extracting behavioral models from C++
programs. They build an mCRL2 specification to achieve this. In this specification, processes
are defined that evaluate C++ statement by statement and record the function calls that occur
as actions. This essentially results in a LTS that represents the external behavior of a program.

In this section, we take inspiration from their approach and build a process specification
that is very similar to theirs. The result is a specification that extracts a behavioral model
from IMP programs. Figure 4.1 shows an abstract representation of what such an extracted
model looks like. We distinguish between two kinds of states: stable states and processing
states. Each stable state represents a different assignment of global variables. From a stable
state public functions can be called arbitrarily. Whenever a function is called the system
enters a sequence of processing states, where each subsequent function call leads to a new
processing state. When the originally called function returns, the system returns to a stable
state – possibly with a different assignment to global variables.

In the next section, we modify the specification to also report internal computations be-
tween processing states, which is necessary to perform syntax-based pattern matching.

4.2.1 Extracting behavioral models from IMP programs

The behavior of programs is modeled using only two actions: call and ret. Function calls
are modeled using the call action. Returning of functions is represented using the ret action.
Both are defined in Listing 4.2.

1 act call: Id # List(Val);
2 ret: Id # Val;

Listing 4.2. Definition of a call and return action.

The call action has a parameter that holds the function name of the called function, as
well as a parameter that contains the list of argument values.

The first process we define is the process that evaluates function calls. This process is
defined in Listing 4.3. The process takes as parameters the function name (pid), the func-
tion body (body), the initial function environment (env) containing bindings of the function
parameters and the global environment (genv).

The P_callprocess invokes another process called P_frame, which processes the call frame.
The definition of this process is shown in Listing 4.4. A call frame (Frame) consists of the name
of the called function, the remaining statements to be processed, the current local environ-
ment and the name of the variable that holds the return value of the called function. The first
parameter of P_frame specifies the name of the function at the bottom of the call stack – i.e.
the function that was called first. The next four parameters (cid,body,env,ret_var) specify the
stack frame that is currently under evaluation. The last parameter (stack) stores the previous

41

4. EXTRACTING MODELS FROM IMP PROGRAMS

1 sort Env = Id -> Val;
2

3 proc P_call(pid: Id, body: Stmt, env: Env, genv: Env) =
4 P_frame(pid, pid, [body], env, dummy, genv, []);

Listing 4.3. Definition of an mCRL2 process that evaluates a function call. Env : Id -> Val
is a mapping from identifiers to values.

1 sort Frame =
2 struct F(get_pid: Id, get_body: List(Stmt), get_env: Env, get_ret_var: Id);
3

4 proc P_frame(pid: Id,
5 cid: Id,
6 body: List(Stmt),
7 env: Env,
8 ret_var: Id,
9 genv: Env,

10 stack: List(Frame)) =
11 (#body == 0) -> P_return(pid, cid, stack, genv, ret_var, VoidV)
12 <> (
13 is_return(head(body)) -> ...
14 + is_expr(head(body)) -> ...
15 + is_assign(head(body)) -> ...
16 + is_glob_assign(head(body)) -> ...
17 + is_blk(head(body)) -> ...
18 + is_ite(head(body)) -> ...
19 + is_while(head(body)) -> ...
20 + (is_call(head(body)) && !is_external(get_fun(head(body))))
21 -> ...
22 + (is_call(head(body)) && is_external(get_fun(head(body))))
23 -> ...
24);

Listing 4.4. Partial definition of an mCRL2 process P_call that processes a call frame.

call frames. The P_frame process first checks if there is anything left to evaluate, using #body
== 0. If there are no statements left the function has been fully evaluated without encoun-
tering a return statement, so void is returned with an invocation of P_return. The process
P_return, which we discuss in more detail shortly, can be found in Listing 4.5. If there are
remaining statements to evaluate, the next statement (head(body)) is processed. The imple-
mentation details of statement evaluation have been elided from Listing 4.4. Next, we fill in
the elided details of statement evaluation for each type of statement, starting with the return
statement (return e).

1 is_return(head(body)) -> P_return(pid,cid,stack,genv,ret_var,
2 eval(get_expr(head(body)),env,genv))

We first process the return statement’s expression using a call to the eval : Expr ˆ Env
ˆ Env -> Val function. This function takes an expression, a local environment and a global
environment and returns a value. It directly implements the semantics for expression im-
plementation. The full implementation of eval can be found in Appendix A. The value of
the expression is then returned using the P_return process. This process is defined in List-

42

4.2. Improved state space extraction

ing 4.5. When it is invoked, it first leaves behind a ret action indicating that function cid has
returned value ret_val – i.e. the value of the returned expression. Then, one of two things
happens. If the stack is not empty, P_frame is invoked to process the next stack frame. If the
stack is empty, the function that was called originally has finished execution, and we return
to the stable state with the current global environment Stable(genv). The Stable process
represents the state from which all public functions can be called non-deterministically. We
later define it more formally.

1 proc P_return(pid: Id,
2 cid: Id,
3 stack: List(Frame),
4 genv: Env,
5 ret_var: Id,
6 ret_val: Val) =
7 ret(cid, ret_val)
8 . (#stack > 0)
9 -> P_frame(pid,

10 get_pid(head(stack)),
11 get_body(head(stack)),
12 get_env(head(stack))[ret_var->ret_val],
13 get_ret_var(head(stack)),
14 genv,
15 tail(stack))
16 <> Stable(genv);

Listing 4.5. Definition of an mCRL2 process that handles returning from a function.

Next, we look at evaluation of the expression statement (e), which simply holds an ex-
pression and does nothing with it.

1 is_expr(head(body)) -> tau . P_frame(pid,cid,tail(body),env,ret_var,genv,stack)

The expression is simply ignored and an invocation to P_frame is made to process the
remainder of the function body. Note the use of the tau action before the recursive call. The
tau action is essentially a ‘do nothing’ action. We need it here to ensure linearization of the
process, since the linear form of a process always needs an action before recursive invoca-
tions.

Let us have a look at the implementation of the assign statement (x = e).

1 is_assign(head(body)) -> tau
2 . P_frame(pid,cid,tail(body),
3 env[get_var(head(body)) ->
4 eval(get_expr(head(body)),env,genv)],
5 ret_var,genv,stack)

The inner expression of the assignment is evaluated using eval and assigned to x in the lo-
cal environment env. Using the updated local environment P_frame evaluates the remainder
of the function body.

The implementation for global assignments (global x = e) is very similar. However, in-
stead of updating the local environment, it updates the global environment genv.

1 is_glob_assign(head(body)) -> tau
2 . P_frame(pid,cid,tail(body),env,ret_var,
3 genv[get_var(head(body)) ->
4 eval(get_expr(head(body)),env,genv)],

43

4. EXTRACTING MODELS FROM IMP PROGRAMS

5 stack)

A block of statements ({ [s ;]˚ }) is simply evaluated by unwrapping its list of state-
ments and prepending it to the remainder of the function body. P_frame then processes the
updated function body.

1 is_blk(head(body)) -> tau . P_frame(pid,cid,
2 get_stmts(head(body)) ++ tail(body),
3 env,ret_var,genv,stack)

Somewhat more interesting is the evaluation of if statements (if (e) s else s). First, the
branching condition is evaluated. If it evaluates to true, we go on to process the then branch,
otherwise we process the else branch.

1 is_ite(head(body)) ->
2 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
3 tau . P_frame(pid,cid,[get_then(head(body))] ++ tail(body),
4 env,ret_var,genv,stack)
5 <> tau . P_frame(pid,cid,[get_else(head(body))] ++ tail(body),
6 env,ret_var,genv,stack)

Similarly, we implement evaluation of while loops (while (e) s).

1 is_while(head(body)) ->
2 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
3 tau . P_frame(pid,cid,[get_body(head(body)), head(body)] ++ tail(body),
4 env,ret_var,genv,stack)
5 <> tau . P_frame(pid,cid,tail(body),env,ret_var,genv,stack)

If the loop condition evaluates to true, the loop body is processed followed by a repetition
of the while loop. When the loop condition is not true we simply continue evaluating the
remainder of the function body.

Implementation of function calls (x = x([e ,]˚)) is split up into two cases, depending
on whether the function is defined as external or not. We use is_external to determine this.
For functions that are not external, i.e. have a concrete implementation within our program,
we have the following implementation.

1 (is_call(head(body)) && !is_external(get_fun(head(body))))
2 -> call(get_fun(head(body)),evals(get_args(head(body)),env,genv))
3 . P_frame(pid,
4 get_fun(head(body)),
5 [func_body(get_fun(head(body)))],
6 make_env(
7 func_args(get_fun(head(body))),
8 evals(get_args(head(body)),env,genv)),
9 get_var(head(body)),

10 genv,
11 F(cid, tail(body), env, ret_var) |> stack)

First we mark the calling of a new function with a call action. The call action contains the
name of the called function and the values of the call arguments. Instead of calling P_frame to
process the remainder of the current frame, we build a new frame for the called function. The
new frame consists of the name of the called function, its body, a fresh environment, where
the values of the argument expressions are mapped to their corresponding identifiers, and
the name of the variable to which the return value should be assigned in the calling frame’s
environment. We use evals to evaluate multiple expressions at once and make_env to instanti-
ate a new environment with bindings. The func_body function maps function names to their

44

4.2. Improved state space extraction

bodies and func_args maps function names to a list containing names of their arguments in
order. Refer to Appendix A for implementations of evals and make_env.

We turn our attention to external function calls, of which evaluation is defined follows.

1 (is_call(head(body)) && is_external(get_fun(head(body))))
2 -> call(get_fun(head(body)),evals(get_args(head(body)),env,genv))
3 . sum v: Val . bound(get_fun(head(body)),dummy,v)
4 -> ret(get_fun(head(body)), v)
5 . P_frame(pid, cid, tail(body),
6 env[get_var(head(body))->v],
7 ret_var, genv, stack)

The call action is exactly the same as for regular functions. However, since we do not
know what the implementation of the external function is, we cannot know the return value.
Instead, we provide non-deterministic choice over all possible values using the sum operator.
We then use the bound function to bound the return value using bounds supplied by the user.
Lastly, for each return value a recursive invocation of P_frame is made where the return value
is assigned to the appropriate variable in the calling function’s environment.

That concludes the definition of the P_frame process.

4.2.2 Encoding function definitions and bounds

Up until now, all processes we defined are generic in the sense that they are applicable to all
IMP programs. Next, we will show how we can instantiate concrete programs by encoding
function definitions, global variable assignments and bounds in our mCRL2 specification.

It has already been discussed how we build the Id data type in Section 4.1.1, using all
identifiers that occur in an IMP program. We do something similar for function definitions,
which are defined using four different mCRL2 functions: func_args, func_body, is_external
and bound.

Consider the following example IMP program.

Example 4.6. A program that we use for example definitions of func_args, func_body, is_external
and bound.

1 global
2 x = 0
3

4 public
5 fn foo(a: int) -> void
6 baz(a)
7

8 fn bar(b: int) -> int {
9 global x = b;

10 return b
11 }
12 bound b => b == 10
13

14 private
15 fn baz(a: int) -> void
16 print(a)
17

18 external
19 fn print(_) -> void
20 fn random() -> int

45

4. EXTRACTING MODELS FROM IMP PROGRAMS

21 bound out => out >= 0 && out <= 42

For this program, the func_args function is instantiated as follows.

1 map func_args: Id -> List(Id);
2 eqn func_args(foo) = [a];
3 func_args(bar) = [b];
4 func_args(baz) = [a];

Note that we do not specify arguments of external functions, as those are ignored. The
func_body function is defined like this.

1 map func_body: Id -> Stmt;
2 eqn func_body(foo) = call(baz, [variable(a)]);
3 func_body(bar) = blk([glob_assign(x, variable(b)),
4 return(variable(b))]);
5 func_body(baz) = call(print, [variable(a)]);

Next, we define the function that indicates which functions are external.

1 map is_external: Id -> Bool;
2 eqn is_external(foo) = false;
3 is_external(bar) = false;
4 is_external(baz) = false;
5 is_external(print) = true;
6 is_external(random) = true;

In this case, print and random are external functions. To finalize the specification of func-
tion definitions we provide a bound function. This function takes the name of a function as
first parameter, the name of a bounded argument second and the value to check as the last
parameter.

1 map bound: Id # Id # Val -> Bool;
2 var v: Val;
3 eqn (is_int(v)) -> bound(foo, a, v) = true;
4 (!is_int(v)) -> bound(foo, a, v) = false;
5 (is_int(v)) -> bound(bar, b, v) =
6 get_bool(eval(binop(Eq,variable(b),constant(IntV(10))),
7 empty_env[b->v],
8 empty_env));
9 (!is_int(v)) -> bound(bar, b, v) = false;

10 (is_int(v)) -> bound(baz, a, v) = true;
11 (!is_int(v)) -> bound(baz, a, v) = false;
12 (is_void(v)) -> bound(print, dummy, v) = true;
13 (!is_void(v)) -> bound(print, dummy, v) = false;
14 (is_int(v)) -> bound(random, dummy, v) =
15 get_bool(eval(
16 binop(And,
17 binop(Gte,variable(out),constant(IntV(0))),
18 binop(Lte,variable(out),constant(IntV(42)))),
19 empty_env[out->v],empty_env));
20 (!is_int(v)) -> bound(random, dummy, v) = false;

Each internal function has two rules per argument – so a function with 3 arguments
would have 6 rules. If the input value does not match the type of the argument, the bound
function always returns false. If the types do match, we do one of two things. The bound

46

4.2. Improved state space extraction

function always returns true if there is no bound associated with the argument. If the types
do match, the bound associated with the argument is evaluated using the eval function. Note
that empty_env is an alias for lambda id: Id . VoidV, i.e. the function that maps all variables
to the void value.

For external functions, instead of bounding arguments, the return values are bounded.
Since the argument parameter is unused for external functions, we use a placeholder dummy
value as the second argument to the bound function. Otherwise, bounds of external functions
work exactly the same as bounds of internal functions.

Before we can instantiate the process we need one more piece of data, which is the ini-
tialization of the global environment. In our example, there is only a single global variable
x, which is initialized to 0.

1 map glob_init: Env;
2 eqn glob_init = empty_env[x->eval(constant(IntV(0)),empty_env,empty_env)];

Now we define the stable state process as the non-deterministic choice between the stable
states of all public functions.

1 proc S(pid: Id, genv: Env) =
2 sum vals: List(Val) .
3 (is_within_bounds(pid, vals)) ->
4 call(pid, vals)
5 . P_call(pid,func_body(pid),make_env(func_args(pid),vals),genv);
6

7 proc Stable(genv: Env) = S(foo,genv)+S(bar,genv);

The is_within_bounds function is a helper function that checks the bounds of all argu-
ments of a function at once. The S process leaves behind a call action and an invocation of
P_call for all input combinations of the function that are within bounds.

Finally, the program can be instantiated as follows.

1 init Stable(glob_init);

4.2.3 Example of extracting a model from a program

To conclude this subsection, we show what the behavioral model of the following program
looks like when extracted using the above mCRL2 specification.

Example 4.7. Example program of which we extract a behavioral model. The LTS corre-
sponding to the extracted model of this program is shown in Figure 4.2.

1 global
2 level = 0
3 public
4 fn raise() -> bool
5 if (global level < 2) {
6 global level = global level + 1;
7 return true
8 } else return false
9 fn lower() -> bool

10 if (global level > 0) {
11 global level = global level - 1;
12 return true
13 } else return false

47

4. EXTRACTING MODELS FROM IMP PROGRAMS

call(lower)

ret(false)

call(r
aise) ret(true)

call(l
ower)ret(true)

call(r
aise) ret(true)

call(l
ower)ret(true)

call(raise)

ret(false)

Figure 4.2. Labeled transition system corresponding to the program of Example 4.7. For
brevity, argument lists are omitted from call actions and function names are omitted from
return actions. Stable states are colored black, and processing states are colored gray.

4.3 Extending state spaces with internal computation

With the mCRL2 specification devised in the previous section, a behavioral model can be
extracted from programs. While it is possible to reason about the external behavior of pro-
grams, there is not yet a way to reason about the internal computations. In order to pattern
match using concrete syntax, on top of function calls, we also need to report the internal com-
putations that happen within functions. In this section the P_frame and P_return processes
defined in Section 4.1 will be modified to include actions that make internal computations
visible in the extracted model. Particularly, we add actions that contain the AST information
of statements and expressions in order of evaluation.

In Section 4.3.1 we add a new process P_expr for unfolding expressions. Section 4.3.2
modifies the mCRL2 specification to support actions for statements in the extracted model.
Finally, in Section 4.3.3 we address an issue caused by nested function calls that leads to
ambiguities when pattern matching.

4.3.1 Adding support for expression syntax

Whenever a statement is encountered that has sub-expressions, we want to unfold those sub-
expressions into actions. We define the following actions for expressions.

1 act start_expr: Expr;
2 end_expr: Expr # Val;

The start_expr action only holds the AST information of an expression, whereas the
end_expr additionally holds the value that the expression evaluates to.

Now consider the expression statement, which consists of a single sub-expression. The
current evaluation rule for expression statements is as follows.

1 is_expr(head(body)) -> tau
2 . P_frame(pid,cid,tail(body),env,ret_var,genv,stack)

Assuming we have a process P_expr at our disposal, we could simply place an invocation
to P_expr right before P_frame.

1 is_expr(head(body)) -> tau
2 . P_expr(get_expr(head(body)))
3 . P_frame(pid,cid,tail(body),env,ret_var,genv,stack)

This, however, leads to a process that is not regularly linearizable, as we have seen in
Section 4.1.2. In this case the cause of the problem is the invocation of P_expr before P_frame.
We therefore propose a different formulation, where we replace the P_frame invocation with
a P_expr invocation, as follows.

1 is_expr(head(body)) -> tau
2 . P_expr([get_expr(head(body))],
3 pid,cid,tail(body),env,ret_var,genv,stack)

48

4.3. Extending state spaces with internal computation

Here, in addition to the stack frame parameters that would otherwise be passed to P_frame,
we pass a stack of expressions as the first argument to P_expr. The idea is that P_expr first
processes the expression stack, and once it is done it hands control back over to the P_frame
process. In Listing 4.6 we define the scaffolding of the P_expr process.

1 proc P_expr(exprs: List(Expr),
2 pid: Id, cid: Id, body: List(Stmt), env: Env,
3 ret_var: Id, genv: Env, stack: List(Frame)) =
4 (#exprs == 0) -> P_frame(pid,cid,body,env,ret_var,genv,stack) <>
5 (
6 (is_constant(head(exprs))
7 || is_variable(head(exprs))
8 || is_glob_variable(head(exprs))) -> ...
9 + is_unop(head(exprs)) -> ...

10 + is_binop(head(exprs)) -> ...
11);

Listing 4.6. Partial definition of an mCRL2 process that processes expressions.

The process first checks whether there are any expressions left to process using #exprs
== 0, if not, control is immediately handed back over to the P_frame process. If there is an
expression left, we distinguish between three cases. The expression has no sub-expressions,
i.e. is a constant or a (global) variable, the expression has a single sub-expression (unary
operators) or it has two sub-expressions (binary operators).

The first case is the simplest, and we implement it as follows.

1 (is_constant(head(exprs))
2 || is_variable(head(exprs))
3 || is_glob_variable(head(exprs)))
4 -> start_expr(head(exprs))
5 . end_expr(head(exprs),eval(head(exprs),env,genv))
6 . P_expr(tail(exprs),pid,cid,body,env,ret_var,genv,stack)

The atomic expression is unfolded into a start_expr action, directly followed by an end_expr
action. Note that the end_expr action also holds the value that the expression evaluates to. A
recursive invocation of P_expr processes the remaining expressions on the stack.

Expressions with sub-expressions are more involved. Because we have to make sure
the process linearizes, we cannot simply nest a recursive call in-between the start_expr and
end_expr actions, such as:

1 start_expr(_) . P_expr(_) . end_expr(_)

Instead, we propose a solution that postpones the end_expr action to a new evaluation
step. To achieve this we add a new auxiliary constructor to the Expr data type.

1 sort Expr = struct ...
2 | end_expr'(get_expr: Expr) ? is_end_expr';

The constructor is marked with an apostrophe to emphasize that it is not an actual expres-
sion. Using this auxiliary constructor we can define the rule for unary operators as follows.

1 is_unop(head(exprs)) -> start_expr(head(exprs))
2 . P_expr([get_expr(head(exprs)),
3 end_expr'(head(exprs))] ++ tail(exprs),
4 pid,cid,body,env,ret_var,genv,stack)

49

4. EXTRACTING MODELS FROM IMP PROGRAMS

After the start_expr action, a recursive invocation of the P_expr is made. In this invoca-
tion, the inner expression is added to the stack, as well as the auxiliary end_expr' constructor.

An additional rule needs to be defined to process this auxiliary constructor. We use
the following implementation for this rule, that simply translates the constructor into the
end_expr action.

1 is_end_expr'(head(exprs)) -> end_expr(get_expr(head(exprs)),
2 eval(get_expr(head(exprs)),env,genv))
3 . P_expr(tail(exprs),pid,cid,body,env,
4 ret_var,genv,stack)

The rule for binary operators is similar to the rule for unary operators, and is defined as
follows.

1 is_binop(head(exprs)) -> start_expr(head(exprs))
2 . P_expr([get_left(head(exprs)),
3 get_right(head(exprs)),
4 end_expr'(head(exprs))] ++ tail(exprs),
5 pid,cid,body,env,ret_var,genv,stack)

Having defined the P_expr process, we continue updating the evaluation rules for state-
ments. The only statement without sub-expressions is the block statement, so we can leave
its rule untouched. In all other rules, we substitute the P_frame invocation for a P_expr in-
vocation with a list of all sub-expressions as the first argument. For assign statements, this
leads to the following rule.

1 is_assign(head(body)) -> tau
2 . P_expr([get_expr(head(body))],
3 pid,cid,tail(body),
4 env[get_var(head(body))->
5 eval(get_expr(head(body)),env,genv)],
6 ret_var,genv,stack)

There is a subtle problem with this rule. We pass the wrong environment to the P_expr
process. The inner expression of the assignment needs to be evaluated in the environment
before the environment is updated. However, currently the updated environment is passed
to the P_expr process. A solution to this is to split evaluation of the assign statement into two
phases. First process the inner expression of the assignment, then process the assignment
itself. We implement this by adding an auxiliary constructor to the Stmt data type.

1 sort Stmt = struct ...
2 | assign'(get_var: Id, get_expr: Expr) ? is_assign';

The first phase of assignment evaluation now becomes:

1 is_assign(head(body)) -> tau
2 . P_expr([get_expr(head(body))],pid,cid,
3 assign'(get_var(head(prog)),
4 get_expr(head(prog)))
5 |> tail(body),
6 env,ret_var,genv,stack)

Here we invoke the P_expr process and prepend the auxiliary assign' constructor to the
body to kick off the second phase. The second phase is defined as follows.

1 is_assign'(head(body)) -> tau
2 . P_frame(pid,cid,tail(body),
3 env[get_var(head(body))->

50

4.3. Extending state spaces with internal computation

4 eval(get_expr(head(body)),env,genv)],
5 ret_var,genv,stack)

Note that the is_assign' rule is exactly the same as the old version of the is_assign rule.
We can apply exactly the same trick to the is_glob_assign rule, by adding a glob_assign'
constructor and splitting evaluation into two phases. For if statements and while loops we
can simply replace the P_frame call by a P_expr call to process their condition expressions.

A few more rules remain to be updated, namely those for return statements and internal
and external function calls. We first address function calls. Because we want the actions for
the argument expressions of function calls to appear before the call action, we also need to
split up the evaluation rules for function calls into two phases. The first phase processes the
argument expressions and is the same for internal and external calls.

1 (is_call(head(body))) -> tau
2 . P_expr(get_args(head(body)),pid,cid,
3 [call'(get_var(head(body)),
4 get_fun(head(body)),
5 get_args(head(body)))] ++ tail(body),
6 env,ret_var,genv,stack)

This rule processes the argument expressions and replaces the call constructor with the
auxiliary call' constructor to proceed to the second phase. The rules for the second phase
(is_call') of external and internal calls are simply copies of their old is_call counterparts.

Finally, we address the rules for return statements, making sure its inner expression is
properly represented in the LTS. To achieve this, we once again split up its evaluation into
two phases. The first phase handles the expression, while the second phase invokes the call
to the P_return process.

1 is_return(head(body)) -> tau
2 . P_expr([get_expr(head(body))],
3 pid,cid,
4 [return'(get_expr(head(body)))] ++ tail(body),
5 env,ret_var,genv,stack)
6

7 is_return'(head(body)) -> P_return(pid,cid,stack,genv,ret_var,
8 eval(get_expr(head(body)),env,genv))

4.3.2 Adding support for statement syntax

To support statement syntax, we introduce two new actions: start_stmt and end_stmt. These
actions carry the AST information of the statements that are encountered during the evalua-
tion of function bodies.

1 act start_stmt, end_stmt: Stmt;

Next, we incorporate these actions into the P_frame process, starting with the evaluation
rule for expressions statements is_expr. For the start action, we can simply replace the tau
action with a start_stmt. The result is as follows.

1 is_expr(head(body)) -> start_stmt(head(body))
2 . P_expr([get_expr(head(body))],
3 pid,cid,tail(body),env,ret_var,genv,stack)

To ensure actions appear in evaluation order, we want the end_stmt action to appear after
the actions of the inner expression. For this we need one last auxiliary statement constructor,
similar to the auxiliary end_expr' constructor.

51

4. EXTRACTING MODELS FROM IMP PROGRAMS

1 sort Stmt = struct ...
2 | end_stmt'(get_stmt: Stmt) ? is_end_stmt'

Now, an end_stmt' can be prepended to the remainder of the body in the invocation of
P_expr. Resulting in the following rule.

1 is_expr(head(body)) -> start_stmt(head(body))
2 . P_expr([get_expr(head(body))],pid,cid,
3 end_stmt'(head(body)) |> tail(body),
4 env,ret_var,genv,stack)

An additional rule is necessary to deal with the auxiliary constructor. We define it as
follows.

1 is_end_stmt'(head(body)) -> end_stmt(get_stmt(head(body)))
2 . P_frame(pid,cid,tail(body),env,ret_var,genv,stack)

For the assignment statement we can use the two phase evaluation to our advantage. In
the first phase, we replace tau by a start_stmt action and in the second phase, which occurs
after processing the expression, we replace tau by an end_stmt.

1 is_assign(head(body)) -> start_stmt(head(body))
2 . P_expr(...)
3 is_assign'(head(body)) -> end_stmt(assign(get_var(head(body)),
4 get_expr(head(body))))
5 . P_frame(...)

Note that we make sure to use the assign node as argument to the end_stmt action, instead
of the auxiliary assign' node. This saves us some headaches with pattern matching later
down the line.

Exactly the same can be done for global assignments:

1 is_glob_assign(head(body)) -> start_stmt(head(body))
2 . P_expr(...)
3 is_glob_assign'(head(body)) -> end_stmt(glob_assign(get_var(head(body)),
4 get_expr(head(body))))
5 . P_frame(...)

The rule for block statements is updated by substituting tau for a start_stmt and adding
an auxiliary end_stmt' before the remaining body in the recursive invocation of P_frame.

1 is_blk(head(body)) -> start_stmt(head(body))
2 . P_frame(pid,cid,
3 get_stmts(head(body))
4 ++ [end_stmt'(head(body))]
5 ++ tail(body),
6 env,ret_var,genv,stack)

While perhaps not obvious, this rule for blocks has a problem. The root of the problem
lies in the possibility of early termination due to return statements. If somewhere in the block
a return statement occurs, the end_stmt' constructor is never reached, and we end up with
an unmatched start_stmt action. This is problematic for pattern matching. The solution
we propose is to modify the signatures of P_frame, P_return, P_expr and the frame data type
Frame to include a list of unclosed statements. We do this by adding the end_stmts parameter
to the aforementioned processes:

1 P_frame(..., end_stmts: List(Stmt)) = ...
2 P_return(..., end_stmts: List(Stmt)) = ...
3 P_expr(..., end_stmts: List(Stmt)) = ...

52

4.3. Extending state spaces with internal computation

Additionally, we add the following parameter to the Frame data type constructor.

1 sort Frame = struct F(..., get_end_stmts: List(Stmt));

We update the P_return process such that it closes all statements in the end_stmts list
before returning. The implementation is as follows:

1 proc P_return(..., end_stmts: List(Stmt)) =
2 (#end_stmts > 0)
3 -> end_stmt(head(end_stmts))
4 . P_return(..., tail(end_stmts))
5 <> ret(cid, ret_val)
6 . (#stack > 0)
7 -> P_frame(..., get_end_stmts(head(stack)))
8 <> Stable(genv);

Details that remain unchanged are omitted and abbreviated using ‘...’.
Whenever the is_end_stmt' rule is applied, the first statement has to be removed from

the end_stmts list:

1 is_end_stmt'(head(body)) -> end_stmt(get_stmt(head(body)))
2 . P_frame(..., tail(end_stmts))

The new version of the block statement evaluation rule now becomes:

1 is_blk(head(body)) -> start_stmt(head(body))
2 . P_frame(..., head(body) |> end_stmts)

In general, every rule that uses a recursive call where the auxiliary end_stmt' constructor
appears, also needs to prepend the corresponding statement to the end_stmts list.

Of the previously mentioned rules in this section that is only the is_expr rule. We modify
it as follows.

1 is_expr(head(body)) -> start_stmt(head(body))
2 . P_expr(..., head(body) |> end_stmts)

Next, we modify the rule for if statements, such that it has statement actions.

1 is_ite(head(body)) ->
2 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
3 start_stmt(head(body))
4 . P_expr(...,
5 [get_then(head(body)), end_stmt'(head(body))] ++ tail(body),
6 ...,
7 head(body) |> end_stmts)
8 <> start_stmt(head(body))
9 . P_expr(...,

10 [get_else(head(body)), end_stmt'(head(body))] ++ tail(body),
11 ...,
12 head(body) |> end_stmts)

In the implementation above we add a start_stmt action and make sure it is eventu-
ally properly matched using the end_stmt' auxiliary and by prepending the if statement
(head(body)) to the end_stmts list.

The evaluation rule for while loops has to be split up into two phases. This is because
we only want start_stmt and end_stmt actions to appear once per while loop, not for every
iteration of the loop. The first phase then takes care of evaluating the loop condition, the
first loop iteration and arranging start_stmt and end_stmt actions. The second phase is then
used for subsequent iterations of the for loop. The result is as follows.

53

4. EXTRACTING MODELS FROM IMP PROGRAMS

1 is_while(head(body)) ->
2 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
3 start_stmt(head(body))
4 . P_expr([get_cond(head(body))],
5 ...,
6 [get_body(head(body)),
7 while'(get_cond(head(body)), get_body(head(body))),
8 end_stmt'(head(body))] ++ tail(body),
9 ...,

10 head(body) |> end_stmts)
11 <> start_stmt(head(body))
12 . P_expr([get_cond(head(body))],
13 ...,
14 end_stmt'(head(body)) |> tail(body),
15 ...,
16 head(body) |> end_stmts)
17 is_while'(head(body)) ->
18 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
19 tau
20 . P_expr([get_cond(head(body))],
21 ...,
22 [get_body(head(body)), head(body)] ++ tail(body),
23 ..., end_stmts)
24 <> tau
25 . P_expr([get_cond(head(body))],
26 ..., end_stmts)

Note that in the second phase there are still tau actions. We do not replace them with more
concrete actions, they simply remain to ensure linearization is possible. When implementing
while loop pattern matching we must remember to account for these tau actions.

Next, we augment the call rules to account for statement actions. Once more, we replace
a tau action by a start_stmt action and make sure it is properly closed off using an end_stmt'
and by prepending to the end_stmts list. This is done for the is_call rule.

1 (is_call(head(body))) -> start_stmt(head(body))
2 . P_expr(get_args(head(body)),
3 ...,
4 [call'(get_var(head(body)),
5 get_fun(head(body)),
6 get_args(head(body))),
7 end_stmt'(head(body))] ++ tail(body),
8 ...,
9 head(body) |> end_stmts)

In the is_call' rules, we make sure to properly propagate the end_stmts parameter.

1 (is_call'(head(body)) && !is_external(get_fun(head(body))))
2 -> ...
3 . P_frame(..., F(..., end_stmts) |> stack, end_stmts)
4

5 (is_call'(head(body)) && is_external(get_fun(head(body))))
6 -> ...
7 . P_frame(...,end_stmts)

54

4.3. Extending state spaces with internal computation

Lastly, we update the rules for return statements to include statement actions and cor-
rectly propagate the end_stmts list.

1 is_return(head(prog)) -> start_stmt(head(prog))
2 . P_expr(..., head(prog) |> end_stmts)
3 is_return'(head(prog)) -> P_return(..., end_stmts)

4.3.3 Addressing pattern matching issues

Our mCRL2 specification is almost ready for pattern matching. We are left with one last
problem to contend with. Eventually when we model metavariables to match arbitrary state-
ments, we need to find matching start_stmt and end_stmt actions. We do this with a fixed
point, similar to the one seen before in Section 4.1:

Ds P Stmt.xstart_stmt(s)yµX.xend_stmt(s)yJ _ xJyX

This formula matches any statement, no matter how many nested statements or sub-
expressions it has. On issue with this formula is that it is possible to match the wrong
end_stmt action while still evaluating to true. For example, consider the following IMP snip-
pet.

1 {
2 x;
3 x
4 }

If we leave out expression actions and abbreviate expr(variable(x)) as x, the LTS that
corresponds to the inner part of the block statement is as follows.

start_stmt(x) end_stmt(x) start_stmt(x) end_stmt(x)

The formula above correctly matches the first start_stmt action, binding s to the state-
ment expr(variable(x)). The problem is that, due to the fixed point and particularly the
xJyX part, it is possible to ‘step over’ the first end_stmt and match the second end_stmt(x)
action instead.

A solution to this problem is to, instead of allowing any action before the fixed point re-
cursion on the right-hand side of the disjunction, we allow all actions not equal to the end_stmt
action that we are looking for. A formula that expresses this is the following.

Ds P Stmt.xstart_stmt(s)yµX.xend_stmt(s)yJ _ xend_stmt(s)yX

This formula correctly only matches the first end_stmt(x). We can use an analogous for-
mula to match arbitrary expressions.

While fixing this issue required no changes to the mCRL2 specification, the next problem
does. The issue is similar in nature, in that it involves an ambiguity when searching for a
matching end_stmt. The ambiguity arises due to the presence of function calls. Consider the
following IMP snippet as an example.

1 f(true)

With function f defined as follows:

1 fn f(b: bool) -> void
2 if (b) f(!b)

The, simplified, LTS corresponding to this snippet takes the following form.

55

4. EXTRACTING MODELS FROM IMP PROGRAMS

start_stmt(f(true)) call(f, [true]) start_stmt(if(b)) start_stmt(f(!b))

call(f, [false])

start_stmt(if(b))end_stmt(if(b))ret(f)end_stmt(f(!b))

end_stmt(if(b))

ret(f) end_stmt(f(true))

There are two ambiguities in this LTS. The first one has to do with there being two pairs of
start_stmt(if(b)) and end_stmt(if(b)) actions. There is no way to distinguish between the
two. And in fact, if we use the following modal μ-formula to find an arbitrary if-statement,
it will match, but in doing so matches the wrong end_stmt.

µX0.ϕ_ xJyX0

Where

ϕ := De P Expr.xstart_stmt(if(e))yµX1.xend_stmt(if(e))yJ _ xend_stmt(if(e))yX1

The μ-formula has been split up into an outer and an inner part, such that it is easier to digest.
The outer part models what we call an ellipsis pattern, it steps through the LTS until ϕmatches.
The inner part (ϕ) is a formula that matches an arbitrary if-statement.

We find that this formula has two matches, but we consider only one of these matches to
be correct. The correct match is the inner if-statement in the LTS: the second start_stmt(if(b)),
followed directly by the first end_stmt(if(b)). This is the if-statement of the second call to
the f function. The wrong match is the outer if-statement. While it correctly matches the first
start_stmt(if(b)), the wrong end_stmt(if(b)) is matched. This is because ϕ always finds
the first matching end_stmt(if(b)), which in this case is the end_stmt corresponding to the
inner if-statement.

In essence, the root of the problem is the indistinguishability of the end_stmt(if(b)) ac-
tions. Due to this, we find that attempting to change the μ-formula does not lead to an elegant
solution. The only way to find the right end_stmt is by keeping count of nested start_stmt
actions.

Instead of changing the formula, we propose to update the mCRL2 specification one last
time. To be able to distinguish identical nested statements, we add an integer as identifier to
statement actions, as follows.
1 act start_stmt, end_stmt: Stmt # Int;

Now the question is, what values to assign as identifiers to get rid of the ambiguity de-
scribed above. We recall that this ambiguity is caused by nested function calls, and therefore
propose the identifier to be a counter that increases every time a nested function call is made.
Instead of introducing a new parameter to our processes, we realize that an excellent candi-
date for this counter is the existing stack parameter. This parameter keeps track of the stack
frames corresponding to nested function calls. It is an excellent candidate to be our counter,
because its size increases every time a nested function call is made and decreases every time
a function returns.

To accommodate the new start_stmt and end_stmt actions we change every occurrence
of start_stmt in P_frame as follows.

start_stmt(_) => start_stmt(_,#stack)

Likewise, we change every occurrence of end_stmt in P_frame and P_return as follows.

end_stmt(_) => end_stmt(_,#stack)

56

4.3. Extending state spaces with internal computation

After these changes the LTS of our previous example changes to the following.

start_stmt(f(true),0) call(f,[true]) start_stmt(if(b),1) start_stmt(f(!b),1)

call(f,[false])

start_stmt(if(b),2)end_stmt(if(b),2)ret(f)end_stmt(f(!b),1)

end_stmt(if(b),1)

ret(f) end_stmt(f(true),0)

Accounting for the new identifiers, we update our formula to find arbitrary if-statements as
follows.

µX0.(ϕ)_ xJyX0

Where

ϕ := De P Expr, i P Int.xstart_stmt(if(e),i)y

µX1.xend_stmt(if(e),i)yJ _ xend_stmt(if(e),i)yX1

With that, our mCRL2 specification is almost finished. There is a final ambiguity issue
to solve, which is closely related to the one we just fixed. This ambiguity is also related to
nested function calls and in fact is also present in the example above. The problem is that we
do not know which ret(f) action belongs to which call(f,_) action. To fix this, we use the
same solution we used for disambiguating statement actions. We add an integer identifier
to call and ret actions:

1 act call: Id # List(Val) # Int;
2 ret: Id # Val # Int;

The call action for internal functions in P_frame is changed to call(_,_,#stack). The ret
action in P_return is changed to ret(_,_,#stack-1). Here we subtract one from the stack
size, because the stack size of the calling function, which is one step up the call-hierarchy,
was used as identifier for the matching call action. Finally, we add an identifier to the pair
of call and return actions for external function calls. External function calls are not subject
to the ambiguity, since they never occur nested in one another. We arbitrarily choose 0 as the
identifier for external function calls.

We have solved the last remaining ambiguity and with that, our mCRL2 specification is
finished. Refer to Appendix A for the complete implementation details of the specification.

57

Chapter 5

Translation of DYNO to μ-calculus

In previous chapters we gave an overview of DYNO and showed how a model can be extracted
from an IMP program, representing its state space. This chapter focuses on translating DYNO
patterns into μ-calculus formulas that operate on these extracted models. The translation
is designed to match the intuitive meanings given to DYNO patterns in Chapter 3. In Sec-
tion 5.1 we show how each of DYNO’s pattern constructs can be translated to corresponding μ-
calculus formulas through examples. A complete, formal, translation of DYNO to μ-formulas
is given in Section 5.2. In Section 5.3 we wrap up by discussing our implementation of DYNO
using the Spoofax language workbench.

5.1 Translating DYNO operators to μ-calculus formulas
In the following subsections we go through examples of each of DYNO’s constructs and show
how they can be translated to μ-calculus formulas. The aim is to provide μ-formulas that
are true for the extracted model of a program if and only if the corresponding DYNO pattern
matches the corresponding program.

5.1.1 Concrete syntax

The syntax for concrete syntax patterns is {{ s }}, where s is any IMP statement. The follow-
ing is an example of such a pattern.
1 {{ 0 }}

This syntactic pattern matches the constant 0. We can represent it using the following μ-
calculus formula.

xstart_expr(e)yDv P Val.xend_expr(e,v)yJ

where e := constant(NumV(0))

Since we are only matching syntax, we do not care about the value of the expression. We
model this using an existential quantification to capture the value of the expression. Similar
is the next pattern that matches a variable x.
1 {{ x }}

With the following μ-calculus formula.

xstart_expr(e)yDv P Val.xend_expr(e,v)yJ

where e := variable(x)

In general, translations of atomic expressions follow the exact same structure with dif-
ferent values for e. Next, we show an example of an expression with sub-expressions, the
addition operator.

59

5. TRANSLATION OF DYNO TO μ-CALCULUS

1 {{ x + y }}

In this case, we have to represent the expression itself, as well as its sub-expressions, in the
μ-formula.

xstart_expr(e)y

xstart_expr(el)yDvl P Val.xend_expr(el,vl)y

xstart_expr(er)yDvr P Val.xend_expr(er,vr)y

Dv P Val.xend_expr(e,v)yJ

where e := binop(Add,el,er)

el := variable(x)

er := variable(y)

Similarly, for statements we should translate the statement itself, as well as its sub-expressions
and sub-statements. Consider the assignment statement for example.

1 {{ x = 0 }}

We translate it to μ-calculus as follows.

Di P Int.xstart_stmt(s,i)yxstart_expr(e)y

Dv P Val.xend_expr(e,v)y

xend_stmt(s,i)yJ

where s := assign(x,e)

e := constant(NumV(0))

We use an existential quantification to catch the numeric identifier of the assignment. It does
not matter what it is, as long as it is the same for the start_stmt and end_stmt actions.

Next, we look at an example of a pattern that matches a function call syntactically.

1 {{ foo(x) }}

The pattern matches a call to function foo with the variable x as its only parameter. We first
desugar the function call into an assign function call, such that it becomes dummy = foo(x).
The μ-calculus formula to match this (desugared) function call is:

Di P Int.xstart_stmt(s,i)yxstart_expr(e)yxend_expr(e)y

Dvarg P Val.xcall(foo,[varg],i)yµX.(

Dvr P Val.xret(foo,vr,i)yxend_stmt(s,i)yJ

)_ @vr P Val.[ret(foo,vr,i)]X ^ xret(foo,vr,i)yJ

where s := call(dummy,foo,e)

e := variable(x)

We not only include start_stmt and end_stmt, but also call and ret actions. This is not
strictly necessary, but it is more consistent with the formula for function call patterns in
Section 5.1.4. We use a fixed point, because we neither know nor care about what the internal
computation of the function looks like. Since we are not capturing the return value, we
do not care what exact value it takes on and therefore abstract it away using an existential
quantification. On the right-hand side of the disjunction we use universal quantification due
to the action in the modality being negated. A box modality ([ret(foo,vr,i)]X) is used here,
because multiple internal computation paths might exist, for example if a call to an external
function occurs. The box modality ensures that eventually the end of the function call is
reached on all branches. Additionally, the subformula xret(foo,vr,i)yJ is needed to ensure

60

5.1. Translating DYNO operators to μ-calculus formulas

the formula does not trivially hold due to the box modality when a ret(foo,vr,i) action is
encountered.

The translation of if-statements is more complex, because we do not always know a priori
whether the then-branch or the else-branch will be taken during execution. An example of a
concrete syntax pattern matching an if-statement is the following.

1 {{ if (x) x else y }}

The trick we use to devise a pattern that matches the if-statement, regardless of whether the
then-branch or the else-branch is taken during computation, is as follows. First, we capture
the value of the value of the condition. Then, we use a disjunction to distinguish between
the ‘true’ and ‘false’ case and continue the pattern accordingly. For the if-statement above
this leads to the following μ-formula.

De P Expr, i P Int.xstart_stmt(ite(e,s1,s2),i)yxstart_expr(e)yµX.(

Dv P Val.xend_expr(e,v)yval(e==x)^
(val(v==true)^ ϕ1xend_stmt(ite(e,s1,s2),i)yJ_

val(v==false)^ ϕ2xend_stmt(ite(e,s1,s2),i)yJ)

)_ @v P [end_expr(e,v)]X ^ xend_expr(e,v)yJ

where x := variable(x), s1 := expr(x), s2 := expr(variable(y))

ϕ1 := Di1 P Int.xstart_stmt(s1,i1)y . . . xend_stmt(s1,i1)y

ϕ2 := Di2 P Int.xstart_stmt(s2,i2)y . . . xend_stmt(s2,i2)y

A lot is going on in this formula. Subformulas ϕ1 and ϕ2 simply match the then-branch
and false-branch of the if-statement, respectively. Using val(v==true) and val(v==false) we
check whether the condition value, which is captured with v, is true or false. Depending
on which case holds either the then-branch or the else-branch subsequently needs to match.
The last important detail is that we replaced the if-statement condition with an existentially
quantified variable e. We then assert that e needs to be the same as the actual if-statement
condition x. While in this case we could have gotten away with directly using the real if-
statement condition instead of substituting it, this formulation is more general. In particular
when the condition is a value capture expression this substitution is necessary to preserve
the value capture.

The last concrete syntax pattern we discuss is one that matches a while loop. Take the
following example.

1 {{ while(true) {} }}

This pattern matches an infinite while loop with an empty body. To implement this pattern
as a μ-calculus formula, the formula should somehow match the loop structure. The start of
the pattern should match the while loop syntactically using a start_stmt action. Since the
loop condition is evaluated at least once for every while loop, we also match the condition
expression once. After that, we use a fixed point to match consequent repetitions of the loop
body followed by the loop condition, until possibly an end_stmt action that closes the loop is

61

5. TRANSLATION OF DYNO TO μ-CALCULUS

found. This results in the following pattern.

Di P Int.xstart_stmt(s,i)y xcondy νX.(

xend_stmt(s,i)yJ

_ xbodyyxτyxcondyX

)

where ec := constant(BoolV(true))

sb := blk([])

s := while(ec) sb

xcondy := xstart_expr(ec)yxend_expr(ec)y

xbodyy := Dib P Int.xstart_stmt(sb,ib)yxend_stmt(sb,ib)y

Note the use of the greatest fixed point (ν) here, instead of the least fixed point (µ) that we
use for most patterns. The reason for choosing the greatest fixed point is precisely such that
infinite loops can be matched. If the least fixed point were used instead, the formula would
fail to match an infinite loop of the form shown in the pattern. This is because the least fixed
point is allowed to ‘pass through’ the fixed point variable (X) only a finite amount of times,
before an end_stmt action is reached. In the case of an infinite loop this never happens, so
using the least fixed point would not result in a match. On the other hand, the above formula
with the greatest fixed point does correctly match infinite loops, because it is allowed to pass
through X an infinite amount of times.

Between the body and the condition there is a τ -action. This is necessary because it is
present in the same location in the representations of while loops in LTSs.

5.1.2 Metavariables

Metavariables are used to capture arbitrary syntax or runtime values. Consider the following
pattern with an expression metavariable.
1 var @e: expression
2 {{ x = @e }}

This pattern matches any assignment to x, regardless of the right-hand side expression.
At the end of Section 4.3.3 we already hinted how metavariables can be translated to μ-

calculus. Here we give the μ-formula of the above pattern as an example of how to translate
a metavariable and its declaration.

De P Expr, i P Int.xstart_stmt(assign(x,e),i)yxstart_expr(e)yµX.(

Dv P Val.xend_expr(e,v)yxend_stmt(assign(x,e),i)yJ

_ @v P Val.[end_expr(e,v)]X ^ xend_expr(e,v)yJ

)

The declaration is represented as an existential quantification. The metavariable is repre-
sented as a fixed point formula of a form that is probably familiar by now.

Lastly, we note that identifier and value metavariables can occur anywhere an expres-
sion can occur, and expression metavariables can occur anywhere a statement can occur. We
handle this by ‘upcasting’ metavariables to the expected type. Take the following identifier
metavariable as an example.
1 var @x: identifier
2 y = @x

This is a valid pattern, even though one might expect a metavariable of type expression in
this position. To ensure the μ-calculus translation is correct, we wrap the metavariable in a
variable node during compilation.

62

5.1. Translating DYNO operators to μ-calculus formulas

5.1.3 Ellipsis

The ellipsis pattern can be used to iterate over arbitrary syntax and computation until a pat-
tern of interest is found. We revisit an example from Section 3.2.1 of the diamond ellipsis.

1 <...>
2 {{ foo() }}

And a similar example of the box ellipsis.

1 [...]
2 {{ foo() }}

The μ-calculus translations for the ellipsis variants are quite similar. First we give the
translation of the diamond (exists) variant. Where, for brevity we elide some of the actions
that correspond to the function call statement.

µX.ϕ_ xJyX

where s := call(dummy,foo,[])

ϕ := Di P Int.xstart_stmt(s,i)y . . . xend_stmt(s,i)y

The translation of the box (forall) variant is as follows.

µX.ϕ_ [J]X ^ xJyJ

where s := call(dummy,foo,[])

ϕ := Di P Int.xstart_stmt(s,i)y . . . xend_stmt(s,i)y

Compared to the diamond variant, we exchange the diamond modality for a box modality
and add a diamond modality to exclude a trivial match in case of deadlock.

5.1.4 Function call patterns

Function call patterns are used to match occurrences of function calls. The following is a
simple example of a pattern that matches a call to a function named foo.

1 foo()

The μ-calculus translation of the call pattern is as follows.

Di P Int.xcall(foo,[],i)yµX.

Dv P Val.xret(foo,v,i)yJ _ @v P Val.[ret(foo,v,i)]^ xret(foo,v,i)yJ

Note that the μ-calculus translation of the concrete syntax version of the function call pattern
is essentially a function call pattern wrapped with start_stmt and end_stmt actions.

5.1.5 Value capture

DYNO offers a collection of value capture constructs to be able to capture the value of any
expression and the return value of any function call. In particular, we have:

• The expression value capture pattern: e -> v, that can be used in place of any expres-
sion to capture its value.

• A capture version of the function call pattern: id([v,]˚) -> v, used to capture the return
value of a function call.

• Capture versions of the concrete syntax function call patterns, used to capture return
values.

63

5. TRANSLATION OF DYNO TO μ-CALCULUS

– Call statement capture: {{ id([e,]˚) -> v }}

– Call assign statement capture: {{ id = id([e,]˚) -> v }}

An example of the use of an expression value capture pattern is the following.

1 var @e: expression
2 <...>
3 {{ x->0 }}

This pattern asserts that there is an x expression that evaluates to 0 at some point in the
program. The next pattern asserts that there is a function that returns the same value as its
input parameter.

1 var @f: identifier
2 var @v: value
3 <...>
4 @f(@v) -> @v

To compile the value capture patterns, we take the compilation of the non-capture variant
of the pattern and replace the existentially quantified value variable by the actual value as
specified in the capture pattern. Consider the translation of the expression capture pattern
above as an example.

µX.xstart_expr(variable(x))yxend_expr(variable(x),NumV(0))yJ _ xJyX

5.1.6 Assertion

This assertion pattern can be used to assert restrictions on values captured with metavari-
ables using IMP expression syntax. Consider the following example.

1 var @e: expression
2 var @v: value
3 x = @e->@v
4 assert @v > 0

The asserted expression must evaluate to a boolean value, otherwise it is invalid. Trans-
lating assertions to μ-calculus formulas is relatively straightforward. Consider the following
translation of the above pattern.

De P Expr, v P Val.Di P Int.xstart_stmt(s,i)yxstart_expr(e)y

xend_expr(e,v)yxend_stmt(s,i)y

val(get_bool(eval(prop,empty_env,empty_env)))
where prop := binop(Gt,v,constant(NumV(0)))

The last part, val(. . .), corresponds to the assertion from the pattern. It evaluates the supplied
binary operation, and if prop evaluates to BoolV(true), val(get_bool(BoolV(true))) becomes
J. Otherwise, if prop evaluates to BoolV(false), it becomes K causing the entire formula to
evaluate to K.

5.1.7 Negation

The final pattern we discuss is the negation pattern. Negation in DYNO functions exactly like
negation in propositional logic or μ-calculus. If a DYNO pattern matches a program, then
its negation does not match, and vice versa. For example, the following pattern matches a
program that does not contain a call to print(3).

64

5.2. A complete translation of DYNO to μ-calculus

1 !<...>
2 print(3)

Negation is simply implemented using the negation operator from μ-calculus. Thus, the
translation of the above formula would be the translation of <...> print(3) prepended by a
negation.

5.2 A complete translation of DYNO to μ-calculus

In the previous section we have seen examples of translations from DYNO patterns into μ-
calculus formulas. In this section we formalize this by giving a complete overview of the
systematic translation into μ-calculus. We give the translation using a polymorphic transla-
tion function ‘J¨Kϕ’, formally defined as follows.

Definition 5.1. Given a μ-formula ϕ, the polymorphic translation operator J¨Kϕ maps an ar-
bitrary item to a μ-calculus formula containing ϕ as sub-formula. Additionally, J¨K is used
as an alias for J¨KJ, i.e. the translation where the sub-formula is J.

Throughout this section, we give equations that define the translation function on DYNO
patterns. We start by defining the following utility operation for translating lists of items.

Definition 5.2. An operation that defines how to translate a list of generic items into a for-
mula. Here, [] denotes the empty list and [s|ss] is a list with s as its first element and ss as
its tail. J[]Kϕ = ϕJ[s|ss]Kϕ = JsKJssKϕ

In Figure 5.1 the translation of top-level DYNO patterns is defined. First, it translates the
metavariable declarations using nested existential quantifiers. The pattern p is then trans-
lated as the sub-formula of the inner existential quantifier.

Jmv˚ pK = Jmv˚KJpKJJvar @x : τKϕ = Dx P JτKIMP.ϕ

Figure 5.1. Top-level translation of a DYNO pattern.

The operator J¨KIMP translates IMP statements, expressions, values and types into mCRL2
data types. We do not formally define the operator in this section, but an example of its
application is shown in the following example.

Example 5.1. Example of applying J¨KIMP to the expression x + 2.

Jx + 2KIMP = binop(Add, variable(x), constant(NumV(2)))

Translation of DYNO pattern constructs is shown in Figure 5.2. These translations are
generalizations of those given in the examples of Section 5.1. Note that for the concrete syntax
pattern we provide two equations. This is an attempt to communicate that if an expression
statement is encountered at the top level of a concrete syntax pattern, the inner expression
should be used instead of the expression statement.

In the definitions in this section some syntax is annotated with expr, stmt, id or value
when it is ambiguous which is meant. For example, we use estmt to distinguish an expression
statement from an expression eexpr.

65

5. TRANSLATION OF DYNO TO μ-CALCULUS

J{{ estmt }}Kϕ = JeexprKϕJ{{ s }}Kϕ = JsKϕJ<...>Kϕ = µX.ϕ_ xJyXJ[...]Kϕ = µX.ϕ_ [J]X ^ xJyJJassert eKϕ = val(get_bool(eval(e1,empty_env,empty_env)))^ ϕ

where e1 := JeKIMP

Jid([v,]˚)Kϕ = Di P Int.xcall(id,vs,i)y

µX.(Dvr P Val.xret(id,vr,i)yϕ

_ @vr P Val.[ret(id,vr,i)]X ^ xret(id,vr,i)yJ)

where vs := J[v,]˚KIMP

Jid([v,]˚) -> vrKϕ = Di P Int.xcall(id,vs,i)y

µX.(xret(id,v1
r,i)yϕ_ [ret(id,v1

r,i)]X ^ xret(id,v1
r,i)yJ)

where
#

vs := J[v,]˚KIMP

v1
r := JvrKIMP

J!pKϕ = ␣JpKϕJp1 p2Kϕ = Jp1KJp2Kϕ
Figure 5.2. Translation of DYNO pattern constructs.

We further define the translation function by adding cases for concrete syntax statements
in Figures 5.3 and 5.4. Before translation, we assume that an oracle has annotated all metavari-
ables with a type, based on the metavariable declarations at the top of the pattern. The nota-
tion @x[τ] is used for metavariable @x, annotated with type τ . In practice, we implement this
oracle as a type checking phase in the compilation pipeline.

Completing the translation of DYNO patterns, we define cases of the J¨Kϕ function for
metavariables and expressions in Figures 5.5 and 5.6.

66

5.2. A complete translation of DYNO to μ-calculus

JestmtKϕ = Di P Int.xstart_stmt(s,i)yJeexprKxend_stmt(s,i)yϕ

where s := JestmtKIMP

Jx = eKϕ = Di P Int.xstart_stmt(s,i)yJeKxend_stmt(s,i)yϕ

where s := Jx = eKIMP

Jglobal x = eKϕ = Di P Int.xstart_stmt(s,i)yJeKxend_stmt(s,i)yϕ

where s := Jglobal x = eKIMP

Jwhile (e) sKϕ = Di P Int.xstart_stmt(s,i)yϕcond

where

$

’

&

’

%

ϕcond := JeKϕν

ϕν := νX.xend_stmt(s,i)yϕ_ ϕloop

ϕloop := JsKxτyJeKXJx = f([e,]˚)Kϕ = Di P Int.xstart_stmt(s,i)yJe˚Kϕcall

where

$

’

&

’

%

s := Jx = f([e,]˚)KIMP

v˚ := generate a unique identifier for each e P e˚

ϕcall := [Dv P Val.]˚Jf([@v[value],]˚)Kxend_stmt(s,i)yϕJx = f([e,]˚) -> vrKϕ = Di P Int.xstart_stmt(s,i)yJe˚Kϕcall

where

$

’

&

’

%

s := Jx = f([e,]˚)KIMP

v˚ := generate a unique identifier for each e P e˚

ϕcall := [Dv P Val.]˚Jf([@v[value],]˚) -> vrKxend_stmt(s,i)yϕJ{ [s;]˚ }Kϕ = Di P Int.xstart_stmt(s1,i)yJs˚Kxend_stmt(s1,i)yϕ

where s1 := J{ [s;]˚ }KIMP

Jreturn eKϕ = Di P Int.xstart_stmt(s,i)yJeKxend_stmt(s,i)yϕ

where s := Jreturn eKIMP

Figure 5.3. Translation of concrete syntax statement patterns.

Jif (e) sJ else sKKϕ = De1 P Expr.Di P Int.xstart_stmt(s1,i)yϕ1

where

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

s1 := Jif (@e1[Expr]) sJ else sKKIMP

ϕ1 := xstart_expr(e1)yµX.

ϕ2 _ @v P Val.[end_expr(e,v)]X ^ xend_expr(e,v)yJ
ϕ2 := Dv P Val.xend_expr(e,v)yϕ3

ϕ3 := (val(e1 == e)^ (ϕJ _ ϕK))

ϕJ := val(v == BoolV(true))^ JsJKxend_stmt(s1,i)yϕ

ϕK := val(v == BoolV(false))^ JsKKxend_stmt(s1,i)yϕ

Figure 5.4. Translation of the if statement concrete syntax pattern.

67

5. TRANSLATION OF DYNO TO μ-CALCULUS

J@x[τ]Kϕ =

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Di P Int.xstart_stmt(x1,i)yµX.
(xend_stmt(x1,i)yϕ
_ [end_stmt(x1,i)]X ^ xend_stmt(x1,i)yJ)

if τ = statement

xstart_expr(x1)yµX.
(Dv P Val.xend_expr(x1,v)yϕ
_ @v P Val.[end_expr(x1,v)]X ^ xend_expr(x1,v)yJ)

otherwise

where x1 := J@x[τ]KIMP

J@x[τ]->vKϕ = xstart_expr(x1)yµX.

(xend_expr(x1,v1)yϕ_ [end_expr(x1,v1)]X ^ xend_expr(x1,v1)yJ)

where
#

x1 := J@x[τ]KIMP

v1 := JvKIMP

Figure 5.5. Translation of concrete syntax metavariables and metavariable capture.

JxexprKϕ = xstart_expr(e)yDv P Val.xend_expr(e,v)yϕ

where e := JxexprKIMP

Jxexpr->vrKϕ = xstart_expr(e)yxend_expr(e,vr)yϕ

where
#

e := JxexprKIMP

v1
r := JvrKIMP

JvexprKϕ = xstart_expr(e)yDvr P Val.xend_expr(e,vr)yϕ

where e := JvexprKIMP

Jvexpr->vrKϕ = xstart_expr(e)yxend_expr(e,v1
r)yϕ

where
#

e := JvexprKIMP

v1
r := JvrKIMP

JdeKϕ = xstart_expr(e1)yJeKDvPVal.xend_expr(e1,v)yϕ

where e1 := JdeKIMP

Jde->vrKϕ = xstart_expr(e1)yJeKxend_expr(e1,v1
r)yϕ

where
#

e1 := JdeKIMP

v1
r := JvrKIMP

Jel ‘ erKϕ = xstart_expr(e)yJ[el,er]KDvPVal.xend_expr(e,v)yϕ

where e := Jel ‘ erKIMP

Jel ‘ er->vrKϕ = xstart_expr(e)yJ[el,er]Kxend_expr(e,v1
r)yϕ

where
#

e1 := Jel ‘ erKIMP

v1
r := JvrKIMP

Figure 5.6. Translation of concrete syntax expression patterns. We give a single equation for
all unary operators d P t!, -u, and another for binary operators ‘ P t&&, ||, +, -, ==, !=, <, >u.

68

5.3. Implementation in Spoofax

5.3 Implementation in Spoofax
This section discusses the implementation of the compiler used for automated translations
of DYNO patterns and IMP programs. We do not provide full details, as the implementation is
largely a direct implementation of the translations we defined previously. The compiler has
been implemented in Spoofax (Kats and Visser 2010) and consists of the following parts.

• Implementation of DYNO, IMP and mCRL2 syntax in SDF3, which is Spoofax’s domain-
specific language (DSL) for specifying grammars.

• A strategy for compiling DYNO patterns to μ-calculus formulas, written in Stratego
(Smits and Visser 2020), which is Spoofax’s DSL for program transformation.

• A strategy for compiling IMP programs to mCRL2 specifications, based on the boiler-
plate we built in Chapter 4. The full boilerplate can be seen in Appendix A, where only
lines 356-376 are program-specific.

• A type checker, implemented in Statix, that ensures metavariables are annotated with
the correct types, based on their declarations.

To use DYNO, we provide syntax for combining an IMP program with a DYNO pattern in a
single file with the .dyn extension. We call such a file a DYNO specification. The following is
an example of a complete DYNO specification that checks a program for use-after-free bugs.

Example 5.2. Example of a DYNO specification that checks a program for occurrences of use-
after-free bugs.

1 program
2 global
3 destroyed = false
4

5 public
6 fn access() -> void
7 if (!global destroyed) use()
8

9 fn destroy() -> void {
10 global destroyed = true;
11 free()
12 }
13

14 external
15 fn use() -> void
16 fn free() -> void
17

18 pattern
19 !<...>
20 free()
21 <...>
22 use()

A DYNO specification can be executed using the ‘Run’ option from a context menu within
the Spoofax IDE. The result of pattern matching is written to an accompanying file. The
context menu also contains options for generating an mCRL2 specification of the specified
program or translating the specified pattern to a μ-calculus formula.

69

5. TRANSLATION OF DYNO TO μ-CALCULUS

5.3.1 Correctness of the implementation

To ensure the correctness of our implementation, we have developed a suite of automated
tests. These tests are designed to validate the behavior of the compiler and ensure that it
adheres to the expected semantics of DYNO patterns.

Our testing strategy is twofold. First, we verify the correctness of individual operators
and constructs. Each operator in DYNO is tested at least once to confirm its behavior matches
the informal semantics described in earlier chapters. For concrete syntax patterns, we ensure
that every type of IMP expression and statement is tested with both positive and negative
cases. This approach aims to ensure that the compiler handles all IMP constructs correctly.

Second, we validate the correctness of more complex patterns and edge cases. For exam-
ple, we test scenarios that distinguish between box and diamond ellipses, as well as scenarios
requiring function call patterns instead of their concrete syntax equivalents. Additionally,
we implement the examples from Chapter 3 as test cases to verify that the compiler handles
practical patterns effectively.

To illustrate, consider the following two tests for verifying assignment matching. The
first test checks a positive case where an assignment is correctly matched, while the second
test ensures that an unmatched assignment is correctly identified as a negative case.

Example 5.3. A positive test for assignment matching.

1 test assign (positive) [[
2 program
3 public
4 fn main() -> void {
5 x = true
6 }
7

8 pattern
9 <...>

10 {{ x = true }}
11]] run run-spec to "true"

Example 5.4. A negative test for assignment matching.

1 test assign (negative) [[
2 program
3 public
4 fn main(x: bool) -> void {
5 x
6 }
7

8 pattern
9 <...>

10 {{ x = true }}
11]] run run-spec to "false"

70

Chapter 6

Limitations and future work

In this chapter we discuss some limitations of our current approach and how they might be
improved upon in the future. Section 6.1 goes into the problem of infinite state spaces. In
Section 6.2 we discuss the problem posed by the current lack of evidence in match results.
Patterns that are currently not expressible in DYNO are discussed in Section 6.3, along with
suggestions for operators that could improve expressiveness. Section 6.4 remarks that a log-
ical next step would be to implement DYNO for a real programming language. Section 6.5
acknowledges the lack of a performance study in our work, which would be useful to do in
future work. A different approach to semantic pattern matching, which trades precision for
performance and possibly a termination guarantee is discussed in Section 6.6. In Section 6.7
we discuss program transformation as an area where semantic pattern matching might be
applied. Finally, in Section 6.8 we remark that DYNO can also be interpreted as a DSL for prop-
erty checking of programs, and how it could be augmented to be even more like a property
language.

6.1 Infinite state spaces

We fundamentally cannot pattern match every program. In particular, programs with an
infinite state space pose a problem. One source of infinite state spaces is when integer pa-
rameters are used as inputs to a program. We offer bound syntax to limit the input parameter
space in such scenarios. However, even with a bounded input space, it is still possible to have
programs with an infinite state space. An example of this is the following program.

1 x = 0;
2 while (true) {
3 x = x + 1;
4 }

Because the variable x is increased in every loop iteration of an infinite loop, the state
space corresponding to this program never reaches a steady state. That is, a state after which
every loop iteration is the same.

A similar problem occurs with infinite recursive functions. For example:

1 program
2 fn f() -> void
3 f()

The reason this program does not reach a steady state is because a new call frame is made
for every function call. In this scenario a tail call optimization could offer a solution, as this
would cause the state space to loop on the function call f, i.e. reach a steady state.

71

6. LIMITATIONS AND FUTURE WORK

A more general solution, to both infinite loops and infinite recursive functions could be
to let the user limit the amount of iterations of a loop or the size of the call stack. This would
be a way to enforce termination, at the cost of changing the semantics of a program.

6.2 Lack of evidence in match results

The result of pattern matching currently is simply a boolean indicating whether a pattern
matches the input program. If DYNO is to become a proper pattern matching tool it would
need to report additional witness information of the match. For example, consider a pattern
with a metavariable.

1 var @s: statement
2 <...>
3 {{ @s }}

We might be interested in finding out which statement(s) of the program cause(s) this pattern
to be a match.

In the particular use case of program search, the user would want to know which part of
a program matches the pattern. If DYNO can report positional AST information, it could be
integrated into IDEs to highlight the syntax that matched a certain pattern.

6.3 Inexpressible patterns and additional operators

In previous chapters, we showed many examples of patterns that are expressible using DYNO.
In this section we focus on patterns that are not expressible, but which one might expect to be
expressible. That fact that these patterns are not expressible in the current version of DYNO
indicates that there is room for improvement. Additionally, this section discusses examples
of operators that could be added to the pattern language to make it more expressive.

6.3.1 Use-after-free with reallocation

In Section 3.3 we have seen an example of a use-after-free pattern that is expressible in DYNO.
The pattern is defined as follows.

1 !<...>
2 free()
3 <...>
4 use()

Though this pattern is sufficient for the example program we used in Section 3.3, it might
raise false positives when a reallocation happens after the free has occurred. Consider the
following program.

1 global
2 destroyed = false
3

4 public
5 fn init() -> void
6 if (global destroyed) {
7 alloc();
8 global destroyed = false
9 }

10

11 fn access() -> void

72

6.3. Inexpressible patterns and additional operators

12 if (!global destroyed) use()
13

14 fn destroy() -> void {
15 global destroyed = true;
16 free()
17 }
18

19 external
20 fn alloc() -> void
21 fn use() -> void
22 fn free() -> void

In the above program the resource can be reallocated, in which case the use-after-free
pattern falsely reports that a use-after-free bug appears. To fix the pattern, such that it no
longer reports a false positive, we need a way to restrict the ellipsis pattern. The following
two sections discuss two patterns that achieve this.

6.3.2 The guarded ellipsis pattern

The problem of false positives for the use-after-free pattern in the previous section can be
solved if we could limit the syntax that is allowed to occur between the free call and the use
call. An example of a construct that could achieve this is the guarded ellipsis pattern. Using
guarded ellipsis the improved pattern would look as follows.

1 !<...>
2 free()
3 <...> where !alloc()
4 use()

The μ-calculus translation of this particular guarded ellipsis might look as follows.

µX.ϕ_ (xJyX ^ [call(alloc,[v])]K)

Where ϕ is a placeholder for the remainder of the pattern.

6.3.3 Reflexive transitive closure

An alternative to the guarded ellipsis pattern is to add a reflexive transitive closure pattern
to the language. Similar to the star operator (‘*’) from regular expressions, its syntax could
be defined follows.

(p)*

The meaning of this pattern is “pattern p repeated zero or more times.” It could be trans-
lated to μ-calculus as follows.

µX.ϕ_ (JpKJ ^ xJyX)

Where JpKJ is the translation of the inner pattern andϕ represents the remaining formula. We
believe the reflexive transitive closure could greatly increase the expressiveness of DYNO, but
we have not tested it properly, so we leave it to future work to further explore this pattern.
Note that, depending on the desired semantics, the pattern could either be implemented
using the least fixed point (as in our example translation) or the greatest fixed point. Or
alternatively, multiple versions can be implemented leaving the choice of fixed point operator
up to the user.

Using the reflexive transitive closure we can implement the use-after-free example from
above as follows.

73

6. LIMITATIONS AND FUTURE WORK

1 var @v: value
2 !<...>
3 free(@v)
4 (!alloc(@v))*
5 use(@v)

6.3.4 Scoped patterns

Currently, DYNO does not offer the ability to express scoped or nested patterns within if state-
ments, while loops or block statements. To get an idea of what a scoped pattern might look
like, consider the following example.

1 {{
2 if (x) [
3 <...> {{ print(x) }}
4] else [
5 !<...> {{ print(x) }}
6]
7 }}

This imaginary example matches an if statement that has a print(x) statement in the
true branch and does not have a print(x) statement in the false branch. The blocks of the if
statement’s branches have been replaced by a scope pattern, denoted using square brackets
([p]). The idea of a scope pattern is that an arbitrary DYNO pattern occurs within a given
scope. In this case the scope would be the body of the if statement.

A potentially useful example of a scoped pattern would be one that finds a while loop for
which a certain invariant holds. For example:

1 var @e: expression
2 {{
3 while (@e) [
4 var @v: value
5 <...> {{ x->@v }}
6 assert @v < 10
7]
8 }}

This pattern finds a while loop where a variable x occurs, which is always smaller than 10.
Note that the pattern also requires metavariables to be declarable within a scope, otherwise
the value would have to be exactly the same for each iteration.

Generally, scoped patterns would allow for a way to limit a certain sub-pattern to occur
within a specific scope. The scope could be a function call, an if statement, while loop or
block statement.

6.4 Application to a real programming language

In our primitive exploration of semantic pattern matching we have kept things simple by
using a toy object language. It would be a logical next step to apply the technique to a real-
world programming language. In doing so performance might be a growing concern, we
discuss this in the next section. If indeed performance turns out to pose a problem, the
approach we mention in Section 6.6 might be fruitful. The section suggests trading precision
for smaller state spaces using over-approximation.

74

6.5. Performance study

6.5 Performance study

In this thesis we have not focused on the performance of pattern matching with DYNO. Since
we focus on an experimental scenario with a toy language, performance has not been our
greatest concern. However, when moving on to more practical applications of our work,
performance does become of interest.

Future work could look into the asymptotic complexity of pattern matching based on se-
mantic models combined with model checking. To get an idea of the overhead of the seman-
tic approach to non-semantic approaches, it would also be interesting to see an experimental
study of the performance of DYNO patterns on programs, with a comparison to non-semantic
alternatives.

Finally, as a coarse lower bound on performance, we do note that the state spaces ex-
tracted from DYNO programs are generally proportional to the runtime of the underlying ob-
ject program. This is because during state space generation, we evaluate the actual runtime
semantics of a program.

6.6 A different approach to the parameter space problem

During the development of DYNO we have explored different approaches to tackling the prob-
lem of state space explosion due to unknown input parameters. An alternative approach is
to use over-approximation. In this approach, input parameters are modeled using approx-
imation of their value space. The coarsest approximation would be to use an any value to
represent all possible values of a parameter. Stricter bounds on a parameter’s value can be
established if it occurs in the condition of a branching construct.

Modified semantics of the object language have to be used to deal with approximated
values. These semantics should, for example, specify what happens when operators are
applied to one or more any values. Furthermore, if a termination guarantee is desired for
pattern matching, loops and recursive calls have to be approximated as well. The technique
we just described is essentially abstract interpretation (P. Cousot and R. Cousot 1976), a tech-
nique that uses over-approximation to reason about dynamic properties of programs while
guaranteeing termination in finite time, but compromising on completeness.

Instead of over-approximation, in this thesis we use under-approximated state spaces of
programs as the basis for pattern matching. Under-approximation has a significant advan-
tage: it is simpler to implement, since the actual, non-approximated, object language seman-
tics can be used. On top of this, it seems a natural fit with mCRL2, as, for example, unknown
input parameters can easily be modeled using sum operators over data types.

That being said, a notable advantage of over-approximation is that it could lead to much
smaller state spaces, likely leading to better performance. We therefore encourage further
experimentation with over-approximation based semantic pattern matching.

6.7 Program transformation

A motivating use-case for pattern matching is as a necessary precursor to program trans-
formation. Program transformation tools use patches expressed in a pattern language to
automatically transform programs on a large scale. Therefore, a natural question to ask is
whether DYNO can be applied in the context of program transformation. From a syntactic
perspective, this requires adding syntax for expressing patches. For example, we could im-
plement a patch pattern, as seen work by Miljak, Bach Poulsen, and Corvino (2024). For DYNO
the patch pattern could be of the following form:

s => s

75

6. LIMITATIONS AND FUTURE WORK

Where s on the left-hand side is the concrete syntax to match and s on the right-hand side is
the syntax that should replace it.

However, to be able to implement transformations, a method is needed to extract AST
location information and metavariable bindings from pattern match results. As we have
discussed in Section 6.2, this is not currently supported. Therefore, improving DYNO such
that it does indeed report match evidence is necessary if it is to be used in the context of
program transformation.

6.8 DYNO as a property language
We have focused on DYNO as a pattern language, motivated by the pattern matching use case.
An alternative perspective is to view DYNO as a DSL to specify properties about programs
using intuitive syntax. In this sense, it is essentially a layer of sugar on top of μ-calculus,
specifically for the context of verifying properties about programs using concrete syntax.

When DYNO is used as a property language it might be fruitful to add additional logical
operators to the language, such as conjunction and disjunction. We have experimented with
such operators as pattern constructs. Implementing them is surprisingly straightforward.
When conjunction and disjunction are defined at the pattern level, they can simply be im-
plemented by translating them to their μ-calculus equivalents and continuing with copies of
the remaining pattern on both sides of the conjunction or disjunction.

However, as we have not tested these constructs thoroughly, we leave it as future work to
formally extend DYNO with extra operators and explore DYNO as a property language.

76

Chapter 7

Related work

This chapter discusses research efforts that are in some way related to this thesis. The sections
are roughly organized in decreasing order of relevance. In Section 7.1 we discuss an existing
tool that offers a pattern matching language similar to DYNO. Although it is not based on
dynamic semantics, as a state-of-the-art tool in pattern matching it has been of great influence
to our work. Section 7.2 discusses the model extraction technique that we base our DYNO
implementation on. In Section 7.3 we mention a paper about concrete syntax metapatterns,
from which we, among other things, borrow the terminology “concrete syntax patterns”.
Lastly, we briefly touch on abstract interpretation in Section 7.4.

7.1 Coccinelle
Coccinelle (Lawall and Muller 2018) is a transformation system developed with the main
purpose of facilitating large scale collateral evolutions in systems code. At the core of Coc-
cinelle lies a pattern language called SmPL. SmPL can be used to specify patches that match
desired parts of a program and apply transformations at indicated locations. Consider the
following example of a Coccinelle patch.

Example 7.1. A Coccinelle patch written in SmPL. A line starting with a - indicates that the
statement or expression after it should be removed. Likewise, a line starting with + indicates
the addition of syntax. Metavariables are declared in a header, delimited by @@ @@.

1 @@
2 identifier x;
3 @@
4 int x = 0;
5 ...
6 - print(x);
7 + print(x+1);

There are two fundamental differences between SmPL and our language, DYNO.

• SmPL pattern matching is control flow based, while DYNO pattern matching is based
on a model that takes dynamic semantics into account.

• SmPL is not only capable of pattern matching, but also allows expressing transforma-
tions of syntax.

A more practical difference is that Coccinelle is implemented to work on a real program-
ming language: C. It has been in development for well over a decade and supports many
features that are useful in practice, such as support for scripting.

77

7. RELATED WORK

What SmPL and DYNO have in common is that they are both compiled to a modal logic
and use a model checker to perform pattern matching. To implement SmPL, Brunel et al.
(2009) propose CTL-VW as an extension of the better known temporal logic CTL. In the
same paper it is shown how SmPL can be translated into CTL-VW primitives. One of the ex-
tensions in CTL-VW is existential quantification, which is necessary for the implementation
of metavariables. The other is the collection of witnesses during model checking. In case of
a match, a witness contains evidence in the form of metavariable bindings. These are used
to apply transformations correctly.

We borrow the idea of compiling a pattern language to a modal logic from Coccinelle.
However, instead of designing a custom logic, or adopting CTL-VW, we chose to use the
modal μ-calculus. With its fixed points and quantification operators it has all the expressivity
needed for implementing DYNO. A benefit of choosing μ-calculus is that we can use the
mCRL2 model checker, instead of having to design our own.

7.1.1 Detecting use-after-free using Coccinelle

As an example of how DYNO patterns are more precise than semantic patching language
(SmPL), we once again turn to the use-after-free pattern. In SmPL we can express the use-
after-free pattern as follows.

1 @@
2 identifier x;
3 @@
4 free(x)
5 ...
6 access(x)

This pattern catches the following use-after-free bug.

1 alloc(x);
2 free(x);
3 access(x);

However, Coccinelle fails to catch other occurrences of the bug, such as:

1 alloc(x);
2 y = x;
3 free(x);
4 access(y);

This bug is missed by Coccinelle because x and y are not syntactically equivalent. The
following example reveals another scenario where Coccinelle.

1 alloc(x);
2 freed = false;
3 free(x);
4 freed = true;
5 if (!freed) {
6 access(x);
7 }

Since Coccinelle is not aware that the true branch of the if statement is unreachable, it
would falsely report the occurrence of a use-after-free bug. While the SmPL pattern could
be updated to work for the above examples, doing so for generic use-after-free occurrences
quickly becomes infeasible. This is a fundamental problem of syntactic pattern matching. As
we have shown in Section 3.3.2, a semantic pattern matching language can be used to find
use-after-free occurrences more precisely in a concise manner.

78

7.2. Semi-automatic extraction of formal models

7.2 Semi-automatic extraction of formal models
Spaendonck (2024) proposes SSTraGen, a semi-automatic tool for the extraction of formal
models from C++ classes. In Section 4.1 we use their technique for model extraction as the
first step of obtaining a model that can be used for pattern matching.

SSTraGen roughly works as follows. Input C++ classes are parsed to an AST, which is
in turn translated to a simpler language SCPP. Each class is then either transformed into
an mCRL2 process equation or abstracted away as a stub process. The stub process over-
approximates a class interface, by allowing any value to be returned from its methods. The
return values of stubbed methods can also be bounded by the user. The user indicates one
class as the top-level interface, of which the methods are the entry points of the process.
Like the return values of stubbed methods, the parameters of entry point methods can be
bounded. Finally, parallel composition of the resulting processes yields a model representing
the (under-approximated) state space of a program. This model can be used for verification
using μ-calculus formulas.

Both in concept and implementation there are similarities with our work. Their work
also concerns the dynamic semantics of an object program. Furthermore, they also translate
programs into mCRL2 specifications in order to generate LTSs of programs and to be able to
verify properties about them using μ-calculus.

Although there is significant overlap, the goal of their work is different from ours. We
do not aim for extraction of a model from code for verifying arbitrary μ-calculus properties.
Instead, we provide a pattern matching DSL where concrete syntax can be used to express
dynamic patterns of programs. Facilitating concrete syntax in behavioral patterns comes
with its own set of challenges, which is one of the main concerns of this thesis.

7.3 Concrete syntax metapatterns
Miljak, Bach Poulsen, and Corvino (2024) present a technique for implementing concrete syn-
tax metapatterns. Similar to our work, they provide a pattern language based on concrete
syntax, which means that object language syntax can be used as a primitive when writing
patterns. This makes for much more readable and intuitive patterns, when compared to
patterns based on abstract syntax. By employing a black-box parser technique, the need
for implementing a custom parser is circumvented. This is particularly advantageous for
languages with complex syntax like C++. Like Coccinelle, they support program transfor-
mation through a patch pattern.

7.4 Abstract interpretation
Abstract interpretation, pioneered in the work of P. Cousot and R. Cousot (1976), is a tech-
nique used to analyze dynamic properties of programs statically. In Section 6.6 we mention
abstract interpretation as an alternative basis for semantic pattern matching. The benefit of
abstract interpretation is that it uses approximated semantics, which results in a smaller state
space during analysis. Since the semantics are approximated this is a less precise method
than the exact, though bounded, semantic models used in our implementation of DYNO.

79

Chapter 8

Conclusion

In this thesis, we have explored behavioral pattern matching of programs written in an
imperative-style toy language IMP. To this end, we defined and implemented a small pat-
tern language called DYNO. Using an mCRL2 specification we extract a behavioral model
from IMP programs. Then, after compiling DYNO patterns to μ-calculus formulas, we lever-
age mCRL2 to perform pattern matching by model checking these formulas against models
extracted from IMP programs.

The translations of DYNO to μ-formulas, and IMP programs to mCRL2 specifications, were
automated as transformations in Stratego. Using a set of automated tests, we verified the
correctness of our implementation. Additionally, we surveyed the expressiveness of DYNO
by discussing examples of expressible patterns, including some that implement common
static analyses.

Some holes in the expressiveness of DYNO are identified, for which we propose new pat-
tern constructs to be implemented in the future. Most notable are the reflexive transitive
closure pattern and scoped patterns. Another limitation we recognize is the absence of a ter-
mination guarantee when pattern matching programs with infinite state spaces. While we
provide methods for limiting state spaces by bounding unknown input parameter values and
return values of external functions, additional bounding methods are needed to guarantee
termination for all programs.

Currently, the result of matching a pattern against a program is simply true or false, in-
dicating whether the specified pattern occurs in the program. For pattern matching to be of
real practical use, additional information has to be reported, such as bindings of metavari-
ables. We leave this as an opportunity for future work.

81

Bibliography

Blackburn, Patrick and Johan van Benthem (2007). “Modal logic: a semantic perspective”. In:
Handbook of Modal Logic. Ed. by Patrick Blackburn, J. F. A. K. van Benthem, and Frank
Wolter. Vol. 3. Studies in logic and practical reasoning. North-Holland, pp. 1–84. ISBN:
978-0-444-51690-9. DOI: 10.1016/s1570-2464(07)80004-8. URL: https://doi.org/10.1016/
s1570-2464(07)80004-8.

Brunel, Julien et al. (2009). “A foundation for flow-based program matching: using temporal
logic and model checking”. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009. Ed. by Zhong Shao and Benjamin C. Pierce. ACM, pp. 114–126. ISBN: 978-1-60558-
379-2. DOI: 10.1145/1480881.1480897. URL: http://doi.acm.org/10.1145/1480881.1480897.

Bunte, Olav et al. (2019). “The mCRL2 Toolset for Analysing Concurrent Systems - Improve-
ments in Expressivity and Usability”. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part II. Ed. by Tomás Vojnar and Lijun Zhang. Vol. 11428. Lecture
Notes in Computer Science. Springer, pp. 21–39. ISBN: 978-3-030-17465-1. DOI: 10.1007/978-
3-030-17465-1_2. URL: https://doi.org/10.1007/978-3-030-17465-1_2.

Cousot, Patrick and Radhia Cousot (1976). “Static determination of dynamic properties of
programs”. English (US). In: Proceedings of the 2nd International Symposium on Program-
ming, Paris, France. Dunod, pp. 106–130.

Groote, Jan Friso and Mohammad Reza Mousavi (2014). Modeling and Analysis of Communi-
cating Systems. MIT Press. ISBN: 9780262321020. URL: https://mitpress.mit.edu/books/
modeling-and-analysis-communicating-systems.

Hennessy, Matthew and Robin Milner (1980). “On Observing Nondeterminism and Concur-
rency”. In: Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The
Netherland, July 14-18, 1980, Proceedings. Ed. by J. W. de Bakker and Jan van Leeuwen.
Vol. 85. Lecture Notes in Computer Science. Springer, pp. 299–309. ISBN: 3-540-10003-2.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench: rules for
declarative specification of languages and IDEs”. In: Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard. Reno/Ta-
hoe, Nevada: ACM, pp. 444–463. ISBN: 978-1-4503-0203-6. DOI: 10.1145/1869459.1869497.
URL: https://doi.org/10.1145/1869459.1869497.

Kozen, Dexter (1983). “Results on the Propositional mu-Calculus”. In: Theoretical Computer
Science 27, pp. 333–354.

Lawall, Julia and Gilles Muller (2018). “Coccinelle: 10 Years of Automated Evolution in the
Linux Kernel”. In: 2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston,

83

https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1145/1480881.1480897
http://doi.acm.org/10.1145/1480881.1480897
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497

BIBLIOGRAPHY

MA, USA, July 11-13, 2018. Ed. by Haryadi S. Gunawi and Benjamin Reed. USENIX Associ-
ation, pp. 601–614. URL: https://www.usenix.org/conference/atc18/presentation/lawall.

Miljak, Luka, Casper Bach Poulsen, and Rosilde Corvino (2024). “Concrete Syntax Metapat-
terns”. In: Proceedings of the 17th ACM SIGPLAN International Conference on Software Lan-
guage Engineering. SLE ’24. Pasadena, CA, USA: Association for Computing Machinery,
pp. 43–55. ISBN: 9798400711800. DOI: 10.1145/3687997.3695637. URL: https://doi.org/10.
1145/3687997.3695637.

Rice, H. G. (1953). “Classes of Recursively Enumerable Sets and Their Decision Problems”.
In: Trans. Amer. Math. Soc. 74, pp. 358–366.

Smits, Jeff and Eelco Visser (2020). “Gradually typing strategies”. In: Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language Engineering, SLE 2020, Virtual
Event, USA, November 16-17, 2020. Ed. by Ralf Lämmel, Laurence Tratt, and Juan de Lara.
ACM, pp. 1–15. ISBN: 978-1-4503-8176-5. DOI: 10.1145/3426425.3426928. URL: https://doi.
org/10.1145/3426425.3426928.

Spaendonck, P. (Nov. 2024). Semi-Automatic Extraction of Formal Models from Object Oriented
Code. DOI: 10.48550/arXiv.2411.12386.

84

https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1145/3687997.3695637
https://doi.org/10.1145/3687997.3695637
https://doi.org/10.1145/3687997.3695637
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.48550/arXiv.2411.12386

Acronyms

AST abstract syntax tree

DSL domain-specific language

HML Hennessy-Milner logic

LTS labeled transition system

SmPL semantic patching language

CTL computation tree logic

CTL-VW computation tree Logic with variables and witnesses

LPS linear process specification

85

Appendix A

mCRL2 code

This appendix contains the full mCRL2 boilerplate for transforming IMP programs into LTSs
that represent their state space.

1 % %%%%%%%%%%%%%%%%%%%% %
2 % LANGUAGE DEFINITIONS %
3 % %%%%%%%%%%%%%%%%%%%% %
4

5 sort Val = struct BoolV(get_bool: Bool) ? is_bool
6 | IntV(get_int: Int) ? is_int
7 | VoidV ? is_void
8 ;
9

10 sort Stmt = struct assign(get_var: Id, get_expr: Expr) ? is_assign
11 | glob_assign(get_var: Id, get_expr: Expr) ? is_glob_assign
12 | ite(get_cond: Expr, get_then: Stmt, get_else: Stmt) ? is_ite
13 | expr(get_expr: Expr) ? is_expr
14 | return(get_expr: Expr) ? is_return
15 | while(get_cond: Expr, get_body: Stmt) ? is_while
16 | call(get_var: Id, get_fun: Id,
17 get_args: List(Expr)) ? is_call
18 | blk(get_stmts: List(Stmt)) ? is_blk
19

20 % auxiliary
21 | while'(get_cond: Expr, get_body: Stmt) ? is_while'
22 | call'(get_var: Id, get_fun: Id,
23 get_args: List(Expr)) ? is_call'
24 | return'(get_expr: Expr) ? is_return'
25 | assign'(get_var: Id, get_expr: Expr) ? is_assign'
26 | glob_assign'(get_var: Id, get_expr: Expr) ? is_glob_assign'
27 | end_stmt'(get_stmt: Stmt) ? is_end_stmt'
28 ;
29

30 sort Expr = struct constant(get_val: Val) ? is_constant
31 | variable(get_id: Id) ? is_variable
32 | glob_variable(get_id: Id) ? is_glob_variable
33 | unop(get_unop: UnOp, get_expr: Expr) ? is_unop
34 | binop(get_binop: BinOp, get_left: Expr,
35 get_right: Expr) ? is_binop
36

87

A. MCRL2 CODE

37 % auxiliary
38 | end_expr'(get_expr: Expr) ? is_end_expr'
39 ;
40

41 sort UnOp = struct Not | Neg;
42 sort BinOp = struct And | Or | Eq | Neq | Add | Sub | Lt | Lte | Gt | Gte;
43

44 % %%%%%%%%%%% %
45 % INTERPRETER %
46 % %%%%%%%%%%% %
47 sort Env = Id -> Val;
48

49 map empty_env: Env;
50 eqn empty_env = lambda id: Id. VoidV;
51

52 % Helper function for instantiating environments
53 map make_env: List(Id) # List(Val) -> Env;
54 var v: Val;
55 vs: List(Val);
56 id: Id;
57 ids: List(Id);
58 eqn make_env([],[]) = empty_env;
59 make_env(id|>ids,v|>vs) = make_env(ids,vs)[id->v];
60

61 map eval: Expr # Env # Env -> Val;
62 var uop: UnOp;
63 bop: BinOp;
64 e, e': Expr;
65 es: List(Expr);
66 v: Val;
67 env: Env;
68 genv: Env;
69 id: Id;
70 eqn eval(constant(v), env, genv) = v;
71 eval(variable(id), env, genv) = env(id);
72 eval(glob_variable(id), env, genv) = genv(id);
73 eval(unop(uop, e), env, genv) = eval_unop(uop, eval(e, env, genv));
74 eval(binop(bop, e, e'), env, genv) = eval_binop(bop, evals([e, e'], env,
75 genv));
76

77 map eval_unop: UnOp # Val -> Val;
78 var b: Bool;
79 i: Int;
80 env: Env;
81 uop: UnOp;
82 eqn eval_unop(Not, BoolV(b)) = BoolV(!b);
83 eval_unop(Neg, IntV(i)) = IntV(-i);
84

85 map eval_binop: BinOp # List(Val) -> Val;
86 var b, b': Bool;
87 i, i': Int;
88 v, v': Val;

88

89 env: Env;
90 bop: BinOp;
91 eqn eval_binop(And, [BoolV(b), BoolV(b')]) = BoolV(b && b');
92 eval_binop(Or, [BoolV(b), BoolV(b')]) = BoolV(b || b');
93 eval_binop(Eq, [v, v']) = BoolV(v == v');
94 eval_binop(Neq, [v, v']) = BoolV(v != v');
95 eval_binop(Add, [IntV(i), IntV(i')]) = IntV(i + i');
96 eval_binop(Sub, [IntV(i), IntV(i')]) = IntV(i - i');
97 eval_binop(Lt, [IntV(i), IntV(i')]) = BoolV(i < i');
98 eval_binop(Lte, [IntV(i), IntV(i')]) = BoolV(i <= i');
99 eval_binop(Gt, [IntV(i), IntV(i')]) = BoolV(i > i');

100 eval_binop(Gte, [IntV(i), IntV(i')]) = BoolV(i >= i');
101

102 map evals: List(Expr) # Env # Env -> List(Val);
103 var e: Expr;
104 es: List(Expr);
105 env: Env;
106 genv: Env;
107 eqn evals([], env, genv) = [];
108 evals(e |> es, env, genv) = eval(e, env, genv) |> evals(es, env, genv);
109

110 % %%%%%%%%%%%%%%%%%% %
111 % PROCESS DEFINITION %
112 % %%%%%%%%%%%%%%%%%% %
113

114 act call: Id # List(Val) # Int;
115 ret: Id # Val # Int;
116 start_stmt, end_stmt: Stmt # Int;
117 start_expr: Expr;
118 end_expr: Expr # Val;
119

120 sort Frame = struct F(get_pid: Id, get_body: List(Stmt), get_env: Env,
121 get_ret_var: Id, get_end_stmts: List(Stmt));
122

123 proc P_call(pid: Id, body: Stmt, env: Env, genv: Env) =
124 P_frame(pid, pid, [body], env, dummy, genv, [], []);
125

126 proc P_return(pid: Id, cid: Id, stack: List(Frame), genv: Env, ret_var: Id,
127 ret_val: Val, end_stmts: List(Stmt)) =
128 (#end_stmts > 0)
129 -> end_stmt(head(end_stmts),#stack)
130 . P_return(pid, cid, stack, genv, ret_var, ret_val, tail(end_stmts))
131 <> ret(cid,ret_val,#stack-1)
132 . (#stack > 0)
133 -> P_frame(pid,
134 get_pid(head(stack)),
135 get_body(head(stack)),
136 get_env(head(stack))[ret_var->ret_val],
137 get_ret_var(head(stack)),
138 genv,
139 tail(stack),
140 get_end_stmts(head(stack)))

89

A. MCRL2 CODE

141 <> Stable(genv);
142

143 proc P_frame(pid: Id, cid: Id, body: List(Stmt), env: Env, ret_var: Id,
144 genv: Env, stack: List(Frame), end_stmts: List(Stmt)) =
145 (#body == 0) ->
146 P_return(pid, cid, stack, genv, ret_var, VoidV, end_stmts) <> (
147 is_return(head(body)) -> start_stmt(head(body),#stack)
148 . P_expr([get_expr(head(body))],
149 pid,cid,
150 [return'(get_expr(head(body)))]
151 ++ tail(body),
152 env,ret_var,genv,stack,
153 head(body) |> end_stmts)
154 + is_return'(head(body)) -> P_return(pid,cid,stack,genv,ret_var,
155 eval(get_expr(head(body)),env,genv),
156 end_stmts)
157 + is_expr(head(body)) -> start_stmt(head(body),#stack)
158 . P_expr([get_expr(head(body))],
159 pid,cid,
160 end_stmt'(head(body)) |> tail(body),
161 env,ret_var,genv,stack,
162 head(body) |> end_stmts)
163 + is_assign(head(body)) -> start_stmt(head(body),#stack)
164 . P_expr([get_expr(head(body))],
165 pid,cid,
166 assign'(get_var(head(body)),
167 get_expr(head(body)))
168 |> tail(body),
169 env,ret_var,genv,stack,end_stmts)
170 + is_assign'(head(body)) -> end_stmt(assign(get_var(head(body)),
171 get_expr(head(body))),
172 #stack)
173 . P_frame(pid,cid,
174 tail(body),
175 env[
176 get_var(head(body)) ->
177 eval(get_expr(head(body)),
178 env,genv)
179],
180 ret_var,genv,stack,end_stmts)
181 + is_glob_assign(head(body)) -> start_stmt(head(body),#stack)
182 . P_expr([get_expr(head(body))],
183 pid,cid,
184 glob_assign'(get_var(head(body)),
185 get_expr(head(body)))
186 |> tail(body),
187 env,ret_var,genv,stack,end_stmts)
188 + is_glob_assign'(head(body)) -> end_stmt(glob_assign(get_var(head(body)),
189 get_expr(head(body))),
190 #stack)
191 . P_frame(pid,cid,
192 tail(body),

90

193 env,ret_var,
194 genv[
195 get_var(head(body))->
196 eval(get_expr(head(body)),
197 env,genv)
198],
199 stack,end_stmts)
200 + is_blk(head(body)) -> start_stmt(head(body),#stack)
201 . P_frame(pid,cid,
202 get_stmts(head(body))
203 ++ [end_stmt'(head(body))]
204 ++ tail(body),
205 env,ret_var,genv,stack,
206 head(body) |> end_stmts)
207 + is_ite(head(body)) ->
208 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
209 start_stmt(head(body),#stack)
210 . P_expr([get_cond(head(body))],
211 pid,cid,
212 [get_then(head(body)),
213 end_stmt'(head(body))]
214 ++ tail(body),
215 env,ret_var,genv,stack,
216 head(body) |> end_stmts)
217 <> start_stmt(head(body),#stack)
218 . P_expr([get_cond(head(body))],
219 pid,cid,
220 [get_else(head(body)),
221 end_stmt'(head(body))]
222 ++ tail(body),
223 env,ret_var,genv,stack,
224 head(body) |> end_stmts)
225 + is_while(head(body)) ->
226 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
227 start_stmt(head(body),#stack)
228 . P_expr([get_cond(head(body))],
229 pid,cid,
230 [get_body(head(body)),
231 while'(get_cond(head(body)),
232 get_body(head(body))),
233 end_stmt'(head(body))]
234 ++ tail(body),
235 env,ret_var,genv,stack,
236 head(body) |> end_stmts)
237 <> start_stmt(head(body),#stack)
238 . P_expr([get_cond(head(body))],
239 pid,cid,
240 end_stmt'(head(body))
241 |> tail(body),
242 env,ret_var,genv,stack,
243 head(body) |> end_stmts)
244 + is_while'(head(body)) ->

91

A. MCRL2 CODE

245 (eval(get_cond(head(body)),env,genv) == BoolV(true)) ->
246 tau
247 . P_expr([get_cond(head(body))],
248 pid,cid,
249 [get_body(head(body)),
250 head(body)]
251 ++ tail(body),
252 env,ret_var,genv,stack,end_stmts)
253 <> tau
254 . P_expr([get_cond(head(body))],
255 pid,cid,tail(body),
256 env,ret_var,genv,stack,end_stmts)
257 + (is_call(head(body))) -> start_stmt(head(body),#stack)
258 . P_expr(get_args(head(body)),
259 pid,cid,
260 [call'(get_var(head(body)),
261 get_fun(head(body)),
262 get_args(head(body))),
263 end_stmt'(head(body))]
264 ++ tail(body),
265 env,ret_var,genv,stack,
266 head(body) |> end_stmts)
267 + (is_call'(head(body)) && !is_external(get_fun(head(body))))
268 -> call(get_fun(head(body)),
269 evals(get_args(head(body)),env,genv),
270 #stack)
271 . P_frame(pid,
272 get_fun(head(body)),
273 [func_body(get_fun(head(body)))],
274 make_env(
275 func_args(get_fun(head(body))),
276 evals(get_args(head(body)),
277 env,genv)),
278 get_var(head(body)),
279 genv,
280 F(cid,tail(body),env,ret_var,
281 end_stmts) |> stack,
282 end_stmts)
283 + (is_call'(head(body)) && is_external(get_fun(head(body))))
284 -> call(get_fun(head(body)),
285 evals(get_args(head(body)),env,genv),0)
286 . sum v: Val .
287 bound(get_fun(head(body)),dummy,v)
288 -> ret(get_fun(head(body)),v,0)
289 . P_frame(pid,cid,tail(body),
290 env[get_var(head(body))->v],
291 ret_var,genv,stack,end_stmts)
292 + is_end_stmt'(head(body)) -> end_stmt(get_stmt(head(body)),#stack)
293 . P_frame(pid,cid,tail(body),env,ret_var,genv,
294 stack,tail(end_stmts))
295);
296

92

297 proc P_expr(exprs: List(Expr), pid: Id, cid: Id, body: List(Stmt), env: Env,
298 ret_var: Id, genv: Env, stack: List(Frame),
299 end_stmts: List(Stmt)) =
300 (#exprs == 0) -> P_frame(pid,cid,body,env,ret_var,genv,stack,end_stmts) <>
301 (
302 (is_constant(head(exprs))
303 || is_variable(head(exprs))
304 || is_glob_variable(head(exprs)))
305 -> start_expr(head(exprs))
306 . end_expr(head(exprs),
307 eval(head(exprs),env,genv))
308 . P_expr(tail(exprs),pid,cid,body,env,ret_var,
309 genv,stack,end_stmts)
310 + is_unop(head(exprs)) -> start_expr(head(exprs))
311 . P_expr([get_expr(head(exprs)),
312 end_expr'(head(exprs))]
313 ++ tail(exprs),
314 pid,cid,body,env,ret_var,genv,stack,
315 end_stmts)
316 + is_binop(head(exprs)) -> start_expr(head(exprs))
317 . P_expr([get_left(head(exprs)),
318 get_right(head(exprs)),
319 end_expr'(head(exprs))]
320 ++ tail(exprs),
321 pid,cid,body,env,ret_var,genv,stack,
322 end_stmts)
323 + is_end_expr'(head(exprs)) -> end_expr(get_expr(head(exprs)),
324 eval(get_expr(head(exprs)),env,genv))
325 . P_expr(tail(exprs),pid,cid,body,env,ret_var,
326 genv,stack,end_stmts)
327);
328

329 proc S(pid: Id, genv: Env) = sum vals: List(Val) .
330 (is_within_bounds(pid, vals)) ->
331 call(pid,vals,-1)
332 . P_call(pid,func_body(pid),
333 make_env(func_args(pid),vals),genv);
334

335 % %%%%%%%%%%%%%%%%%%%%%%% %
336 % BOUNDS HELPER FUNCTIONS %
337 % %%%%%%%%%%%%%%%%%%%%%%% %
338 map meets_bounds: Id # List(Id) # List(Val) -> Bool;
339 var pid, id: Id;
340 ids: List(Id);
341 v: Val;
342 vs: List(Val);
343 eqn meets_bounds(pid, [],[]) = true;
344 meets_bounds(pid, id|>ids, v|>vs) = bound(pid,id,v)
345 && meets_bounds(pid,ids,vs);
346

347 map is_within_bounds: Id # List(Val) -> Bool;
348 var pid: Id;

93

A. MCRL2 CODE

349 vals: List(Val);
350 eqn is_within_bounds(pid, vals) = #vals == #func_args(pid)
351 && meets_bounds(pid,func_args(pid),vals);
352

353 % %%%%%%%%%%%%% %
354 % INSTANTIATION %
355 % %%%%%%%%%%%%% %
356 sort Id = struct dummy | ...;
357

358 map func_args: Id -> List(Id);
359 eqn ...
360

361 map func_body: Id -> Stmt;
362 eqn ...
363

364 map is_external: Id -> Bool;
365 eqn ...
366

367 map bound: Id # Id # Val -> Bool;
368 var v: Val;
369 eqn ...
370

371 map glob_init: Env;
372 eqn glob_init = empty_env[...->...]
373

374 proc Stable(genv: Env) = S(...)+...+S(...);
375

376 init Stable(glob_init);

94

	Preface
	Contents
	Introduction
	Modal µ-calculus and mCRL2
	Labeled transition systems
	Hennessy-Milner logic
	The modal µ-calculus
	Modeling processes with mCRL2
	Modal µ-calculus with data

	Overview of the pattern language: Dyno
	Defining an object language: Imp
	Introducing Dyno
	Practical examples of Dyno patterns

	Extracting models from Imp programs
	First steps toward state space extraction
	Improved state space extraction
	Extending state spaces with internal computation

	Translation of Dyno to µ-calculus
	Translating Dyno operators to µ-calculus formulas
	A complete translation of Dyno to µ-calculus
	Implementation in Spoofax

	Limitations and future work
	Infinite state spaces
	Lack of evidence in match results
	Inexpressible patterns and additional operators
	Application to a real programming language
	Performance study
	A different approach to the parameter space problem
	Program transformation
	Dyno as a property language

	Related work
	Coccinelle
	Semi-automatic extraction of formal models
	Concrete syntax metapatterns
	Abstract interpretation

	Conclusion
	Bibliography
	Acronyms
	mCRL2 code

