TU Delft

Conflict in the World of Inverse Reinforcement Learning
Investigating Inverse Reinforcement Learning with Conflicting Demonstrations

Petar Koev !
Supervisor(s): Luciano Cavalcante Siebert', Antonio Mone'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Petar Koev
Final project course: CSE3000 Research Project
Thesis committee: Luciano Cavalcante Siebert, Antonio Mone, Wendelin Bohmer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Inverse Reinforcement Learning (IRL) algorithms
are closely related to Reinforcement Learning (RL)
but instead try to model the reward function from
a given set of expert demonstrations. In IRL,
many algorithms have been proposed, but most
assume consistent demonstrations. Consistency is
the assumption that all demonstrations follow the
same underlying reward function and near-optimal
policy, without any contradictions. This, however,
is not always the case. This study investigates
the effect of conflicting demonstrations on IRL
algorithms. For our experiments, the Lunar Lander
environment and a grid-world environment are
used in combination with a state-of-the-art IRL
algorithm. To obtain the expert demonstrations,
agents were trained using RL algorithms with
explicit differences in the reward functions to
achieve optimal policy. Then these demonstrations
were used in training IRL in a variety of different
configurations of hyperparameters. Our results
show that IRL algorithms can be trained using
demonstrations with varying levels of conflict. In
conclusion, we demonstrate that IRL can learn
even when provided with a set of conflicting
demonstrations.

1 Introduction

In recent years, Inverse Reinforcement Learning (IRL)
algorithms have been used to learn the underlying reward
function of complex tasks [1,2]. This is achieved given
a set of expert demonstrations (human or robot) that
an autonomous agent uses to mimic or even learn the
intentions behind a human-performed task. This approach
has significantly advanced the development of autonomous
vehicles [3], personalized medical treatment plans [4]
and many other domains, since it eliminates the need for
explicit specifications of the reward functions, that would
be too strenuous to write out or even impossible for such
complex tasks. However, just like in the real world, expert
demonstrations are not always consistent, which leads to
challenges in efficiency and effectiveness when training
and evaluating such algorithms. Understanding how IRL
acts when given conflicting demonstrations is crucial in the
advancement of autonomous agents.

To understand the inner workings of IRL, first, we need
to look into regular Reinforcement Learning (RL). The main
goal of an RL agent is to continuously interact with the
environment, learning a policy through trial and error. IRL,
in contrast, works by inferring a reward function based on a
set of given demonstrations. This allows for the use of IRL in
complex scenarios where we cannot easily define an explicit
reward function.

Prior research into IRL has methodically documented the
strengths and limitations of the capabilities of an autonomous

agent to learn the true reward function. Many different
algorithms have been invented and honed to improve
the effectiveness of the task [1, 2, 5], but most of them
assume compatible expert demonstrations. Some studies
have investigated the effect of noise in the data of the
demonstrations [2]. Conflicting demonstrations, however, are
derived from differing or even malicious reward functions,
unlike sub-optimal demonstrations where the agent is
still trained on a single reward function. In conflicting
demonstrations, the observed behaviours are based on
multiple reward functions, leading to inconsistencies. While
these demonstrations could still be optimal, malicious
demonstrations deliberately promote detrimental behaviours
leading the agent to learn harmful policies. The specific
effects of such conflicting demonstrations remain relatively
unexplored.

This paper aims to fill in this gap and explore how different
degrees of conflict in the demonstrations affect the IRL’s
ability to learn. The main research topic is ”To what extent
can IRL learn rewards from conflicting demonstrations?”.
The paper will look into the following sub-questions:

* How does the degree of conflict between demonstrations
affect IRL’s ability to learn the reward function?

* Does the ratio of conflicting demonstrations influence
IRL’s ability to learn the reward?

* Does the complexity of the task influence IRL’s ability to
handle conflicting demonstrations?

* How do malicious expert demonstrations affect IRL?

The main contributions include a thorough analysis of
the impact of conflicting demonstrations on IRL, insight
into what factors affect the ability of the algorithms to
learn from conflicting demonstrations and how malicious
demonstrations affect the learning abilities of IRL.

The paper is structured as follows: Section 2 provides the
background information for Inverse Reinforcement Learning
and related algorithms. Section 3 explains the methodology
used. Then, Section 4 outlines the environments used
when training the algorithms. Section 5 investigates the
results of the experimentation. In Section 6, the results
are discussed and we delve into which factors helped the
ability of IRL algorithms to learn the reward function.
Section 7 summarizes the findings of this paper and suggests
areas to explore in future studies. Finally, Section 8 touches
upon ethical considerations made when conducting this study.

2 Background

To understand the techniques used in this paper, it is crucial
to know how the used algorithms work. In this section, we
provide a brief explanation of the algorithms used, namely
Proximal Policy Optimization (PPO) and Adversarial Inverse
Reinforcement Learning (AIRL).

2.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [6] is a policy-based
reinforcement learning algorithm that directly optimizes the
policy that the agent uses when choosing actions instead
of modelling a reward function. We use this technique to
generate expert demonstrations because collecting them
from humans can be expensive and complex. By using
synthetic demonstrations, we ensure consistency in our data,
allowing for more reproducible results of our study. The
main strengths of PPO are its simplicity and efficiency,
allowing it to quickly generate optimal demonstrations with
low computational needs. This is achieved through its update
function that limits the degree of change each generation can
bring, ensuring no abrupt changes are made.

To understand PPO, we need to look into the basics of RL,
namely the Markov Decision Process (MDP) [7]. In RL, an
agent interacts with an environment described by states (s),
actions (a), and rewards (7). The agent’s objective is to learn
a policy (m) that maximizes the expected cumulative reward.
An MDP is defined by a tuple (S, A, P, R,), where S is the
set of states, A is the set of actions, P is the state transition
probability, R is the reward function, and ~y is the discount
factor.

Many different algorithms were created to optimize this
process and PPO is an improvement over the Trust Region
Policy Optimization (TRPO) [8] algorithm. This is achieved
by simplifying the optimization process while keeping stable
performance.

Mathematically PPO is presented as:

L () = B, [min (7(0) Ay, clip (1:(6), 1 — &1+ ¢) 4y)|
(D

with

o (at|st)

Tota (at | st)

r(0) = ()

In these equations E; denotes the expectation, r;(f) is the
probability ratio between the new policy mg(at|s;) and the
old policy g, (as|s;). Ay is the estimated advantage at time
step t, representing how much better an action is compared
to the agent’s average action, and e is a hyperparameter that
controls the clipping range.

2.2 Adversarial Inverse Reinforcement Learning

Adversarial Inverse Reinforcement Learning (AIRL) is the
main algorithm that this paper focuses on. This is due to its
great performance in complex environments and its notable
generalization to new environments [1].

It follows the same methodology as Generative Adversarial
Networks (GAN) [9], but builds on top of it by directly
modelling the reward function. Similarly to GANs, AIRL has
two networks - a learner and a discriminator. The learner’s
role is to model the agent’s policy, while the discriminator
models the reward function of the environment. In this paper,

PPO is used to optimize the learner’s policy because of its
good balance between performance and training time needed.

The discriminator uses the provided expert trajectories and
differentiates them from the learner’s trajectories. Unlike a
traditional GAN discriminator, AIRL’s discriminator further
updates the learner’s policy based on this distinction. This
iterative process involves generating new trajectories with
the updated learner’s policy and honing the discriminator’s
ability to distinguish between expert and learner trajectories.

The goal of AIRL is to retrieve the reward function
that most accurately explains the demonstrations passed,
making this method flexible when learning rewards and more
generalizable when applied to unseen environments.

Algorithm 1 shows the whole process in pseudo-code,
while a more formal definition of the objective of the reward
function modelling is equations 3 and 4.

eXp{f97<P(57 a, Sl)}
exp{fﬁtp(sa a, S/)} + 71'((1‘8)

D@,tp(sa a, S/) =

3)

where

fe,sﬁ(sa Cl, Sl) = 99 (57 a’) + FYhQ’J(S/) - hSO(S) (4)

In these equations, Dy ,(s,a,s’) is the output of the
discriminator, representing the probability that the state,
action, next state triplet (s,a,s’) comes from the expert.
fo,0(s,a,s") is the function that is used when scoring the
triplets and is composed of a learned reward function gy (s, a)
and a value function difference yh,(s") — hy(s). 6 and ¢ are
parameters of the reward and value functions, and 7(a|s) is
the policy’s probability of taking action a in state s. Then, the
reward function used to update the policy is derived from the
discriminator’s output as

T9,5(8,a,8") =log Dy ,(s,a,s") —log(1 — Dy, (s,a,s"))
)

Algorithm 1 Adversarial Inverse Reinforcement Learning

1: Obtain expert trajectories 74

2: Initialize policy 7 and discriminator Dy ,

3: forsteptin{1,...,N} do

4: Collect trajectories 7; =
executing 7

5: Train Dy, via binary logistic regression to classify
expert data 7%, from samples 7;

6: Update reward 79 ,(s,a,s") « log Dy ,(s,a,s") —
log(l - D@,Lp(s7 a, 3/))

7. Update m with respect to 7y, using any policy
optimization method

8: end for

(So,ao, ey ST,CLT) by

3 Methodology

In the following section, we look into the methodology
used when conducting this study. Moreover, we look at
the generation of expert trajectories used when training the
AIRL algorithm, our definition of conflict in the trajectories,

and the notion of malice.

Train RL Agents with Different Reward Functions

Generation of Conflicting and Malicious Trajectories

Train the AIRL Algorithm

Policy Evaluation

Figure 1: Methodology overview.

As seen in Figure 1, we begin by training agents using
RL with various reward functions, generating conflicting and
malicious policies. Following this, we generate trajectories
based on the agents’ policies and pass these trajectories to the
AIRL algorithm. Once the algorithm is trained, we evaluate
its new policy by comparing it against our baseline to assess
its performance.

3.1 Expert Trajectories

In order to train AIRL, we need to feed it expert
demonstrations. To have good results, these demonstrations
need to be efficient enough to complete the given task. This
does not mean that the agents must perform the optimal
actions in each state though, just that the overall policy
achieves above a predefined score when evaluated, making it
considered a solution.

To achieve this, we used PPO on three different
environments and we trained until convergence to optimality.
Because the environments range in complexity, the agents
needed various amounts of training, but this will be
elaborated on further in Section 4.

3.2 Conflict

The core research topic of this paper is about conflict in
the expert demonstrations. This means that there should
be a clear definition of conflict. Although in recent years a
lot of literature concerns itself with solving multi-objective
environments [10, 11], there is a lack of investigation into
how multi-intentional demonstrations affect the IRL’s ability
to learn a reward function.

Thus, there is a lack of a clear definition of what it means
for two trajectories to be conflicting. For this study, we use
a time-efficient approach where we compare two trajectories
based on the reward functions they were trained on [12]. This
is a conceptually oriented approach that looks at the goal of
the agent rather than the exact actions taken at each state.
Mathematically, we express this in Equation 6.

Ry(s,a,s’) # Ra(s,a,s) (6)

One drawback of this approach is its lack of a precise
metric to quantify the differences between two conflicting
trajectories. Furthermore, it allows trajectories to have the
same steps for a part of their path while still being considered
conflicting. This will be very important when defining the
degree of conflict in each environment in Section 4.

Another approach would be to compare each state of the
trajectories and see what actions were taken [13]. This is
a more statistical method, which gives exact results. Then,
the degree of conflict could be defined by the number of
different actions taken at each state. This, however, poses a
lot of challenges when taken to a continuous environment. In
continuous environments, the state space is infinite [14] and
an agent’s actions vary vastly, making it impossible to match
state-action pairs of two trajectories precisely. Furthermore,
minor variations in states could amount to big differences in
the action taken, making this method very sensitive to noise
in the data.

One approach to fix these issues is to use similarity
ranking algorithms [15] between states that allow for small
differences. This means that precise thresholds that will
vary based on the specific environment need to be set. Due
to this issue, we decided not to use this approach in our paper.

Instead, by opting for reward function comparison, we aim
to provide a clear conceptual definition of conflict. This
method not only simplifies the reward comparison but also
aligns better with the main goal of this study.

3.3 Malice

To further push the idea of conflict, in this study, we look
deeper into a special subset of conflicting demonstrations,
namely malicious demonstrations. These are demonstrations
that intentionally try to harm the learning algorithm. Such
demonstrations go for as many penalties as possible in
order to trick the learner agent into harmful or sub-optimal
behaviour. Since IRL algorithms depend solely on expert
demonstrations, the effect that the malicious demonstration
could have is detrimental. By incorporating such flawed
demonstrations into the training process, we aim to show
how much performance is lost when training AIRL and what
could be an acceptable amount of malicious demonstrations.

For the sake of simplicity, we define malicious
demonstrations in a straightforward manner: simply
inverting the reward function of the environment as shown in
Equation 7.

Rna(s,a,s’) = —R(s,a,s") (7

Other methods, such as using reward poisoning attacks
performed during the training phase, have been explored [16],
but we consider them outside the scope of this study due to
their complexity.

4 Experimental Setup

In this section, we are going to take a look at the three
environments used in this study. A short explanation about
how each environment works will be given as well as the
reasoning behind each choice. When deciding on which
environments to pick, two main criteria were used: the ability
to generate conflicting demonstrations and computational
expenses. Each environment constitutes a different level of
conflict while still being simple enough to be trained locally.
All environments are provided by Gymnasium [17] and MO-
Gymnasium [18].

4.1 Lunar Lander

The first environment we look at is the LunarLander-v2 [19]
environment shown in Figure 2. We chose this environment
as it is a good starting point for our study. It is simple
enough to train agents relatively quickly, while still being
complex enough to have conflicting demonstrations. Other
environments, such as Cartpole-vl, were also taken into
account, but there were difficulties in generating conflicting
demonstrations since the expert policy, trained on different
reward functions, consistently performed the same actions.

Lunar Lander is a simple environment where an agent is
trying to land on a platform in the middle of the environment.
The agent can utilize their main booster to slow down and
their side boosters to rotate. At the beginning of each run, a
random force is applied to the agent in an arbitrary direction
and the agent’s goal is to land safely on the platform in the
middle.

Figure 2: Lunar Lander environment showing an agent trying to land
on the landing platform.

While training our expert agents, we extended the default
environment’s reward function by adjusting the rewards at
each time step. The new reward functions were designed with
specific objectives: one for approaching the platform from
the left, as described by Equation 8, another for approaching
from the right, as detailed in Equation 9, and a third for
maintaining a central position as much as possible, described
by Equation 10.

r =1 — 10 (Zposition — 0.5) ®)
r =17+ 10 - (Zposition — 0.5) 9)

r=r— 10 . ‘xpositi(m‘ (10)

This constitutes our first level of conflict. All of the
agents are trying to achieve the same task but take different
approaches since they were trained on different reward
functions. Following our definition of conflict from Section
3.2, we assume that there is a degree of conflict when
comparing a left-approaching agent with a right-approaching
one. Furthermore, we can logically conclude that comparing
left- and right-approaching agents has a higher degree of
conflict, than when comparing left- or right-, and centre-
approaching ones.

When generating the malicious demonstrations for both
the lunar lander environment and the multi-objective one, we
used the approach described in section 3.3. We then trained
an agent using the environments’ inverted reward functions
and trained agents using PPO until convergence.

4.2 Multi-objective Lunar Lander

While the method of taking different approaches was able to
yield conflicting trajectories, to further increase the degree
of conflict, we chose to explore the mo-lunar-lander-v2 [20].
This step was taken to make the difference in the reward
functions even more explicit.

The multi-objective lunar lander environment builds on top
of the base one, with the main difference that now firing the
main engine or the side engines gives a penalty of -1. This
enables us to clearly define two distinct reward functions:
one that minimizes the penalty of the main engine, and
another that minimizes the penalties from the side engines.

This, in turn, takes the degree of conflict one step further,
since now we optimize the policies for explicitly different
reward functions. Despite that, there is still some overlap
in the trajectories since the agent cannot only use their side
boosters to slow down enough to land.

4.3 Resource Gathering

Finally, we look at the resource-gathering-vO [21]
environment, shown in Figure 3. This choice was made
since it had clearly defined objectives that an agent could
be optimized for, without an overlap in the trajectories.
Furthermore, it has enemies which will be useful when
generating malicious demonstrations.

The resource gathering environment is a grid-world
environment where the agent’s goal is to collect gold and
gems and return home while avoiding the dragons, which
act as enemies. The gold and the gem contribute with a
+1 reward upon successfully returning home while being
killed by the dragons gives a -1 reward. Dragons have a 10%
chance of killing the agent when it steps into their square.

Figure 3: Resource Gathering environment showcasing the home
position, agent, gold, gem and two enemies.

This environment will simulate the highest degree of
conflict that this paper will explore. The agents were trained
with reward functions focusing only on one of the two
collectable objects. Because of their locations on the map,
the trajectories have as little overlap as possible.

A similar approach to the lunar lander environments was
taken when generating the malicious demonstrations. The
environment’s reward function was inverted as described in
Section 3.3. This causes the agent to go up to the top-
right dragon and continue moving upwards. Due to the
environment’s boundary constraints, the agent stays in the
dragon’s square and continues trying to move upwards until
it eventually dies.

5 Results

In this section, we will systematically explore the findings
based on training the AIRL algorithm on each of the three
environments and interpret the implications of the achieved
results.

The evaluation method for all environments was based
on the average result of 100 episodes using the evaluation
method provided by stablebaselines3 [22]. This evaluation
was performed based on the standard environment’s reward
function. Furthermore, we record the mean training reward
and standard deviation when training the algorithm every
100,000 timesteps.

5.1 Lunar Lander

Starting with the LunarLander-v2 environment, we see that
the smallest degree of conflict didn’t affect the learning
performance of the AIRL algorithm much. Here we only
look at agents trained with left- and right-approaching
demonstrations. All agents achieved comparable results, as
shown in Figure 4.

mean_reward, std_reward

— left_right_40_60 left_right_25_75 = left_right_10_90 = control = left_right_50_50 v

0 V%—;\A

-500

500

-1000

timesteps

0 500k M 1.5M

Figure 4: Graph showcasing the learning of AIRL agents in the
LunarLander-v2 environment.

In Table 1, we see that all the agents performed similarly
to the control version when evaluated, except for the
left_right 40_60 agent. The left_right_.50_50 agent even
manages to outperform our control agent.

Run Final Reward | Final Std
control 263.9 57.3
left_right_50_50 274.3 52.2
left_right_40_60 179.8 112.6
left_right 2575 214.5 94.9
left_right_10_90 225.4 88.2

Table 1: Comparison of final mean reward and final mean standard
deviation for the LunarLander-v2 environment.

When it comes to malicious demonstrations, in Figure 5,
we see a trend that will continue in the other environments.
The control agent and the agent that has only 10% of
malicious demonstrations manage to learn well, while the
25% and 50% agents cannot.

mean_reward, std_reward

— malice50 = malice25 = malice10 = control v

v

-5000 timesteps

1000

0

-2000

-3000

-4000

0 500k M 1.5M

Figure 5: Graph showcasing the training performance of AIRL with
varying ratios of malicious demonstrations

5.2 Multi-objective Lunar Lander

Next, we explore the mo-lunarlander-v2. We see that
increasing the degree of conflict poses challenges to the
learning of the algorithm. In Figure 6, we see that the
standard deviation is higher in the beginning stages of the
training phase but all agents converge to the same result.

mean_reward, std_reward

— main_side_25_75 — main_side_75_25 — main_side_90_10 — main_side_50_50 :

500

0

7

-500

-1000

1500 timesteps

0 500k M 1.5M

Figure 6: Graph showcasing the learning of AIRL being passed
various ratios of main engine and side booster demonstrations.

Again in Table 2, we see that the agents perform similarly
to the control agent. An interesting observation is that as the
number of main engine demonstrations increases, the final
reward also increases and the standard deviation goes down.

Run Final Reward | Final Std
control 177.4 89.8
main_side_90_10 192.0 25.7
main_side_75_25 180.3 74.8
main_side_50_50 168.7 112.1
main_side_25_75 186.7 63.0

Table 2: Comparison of final mean reward and final mean standard
deviation for the mo-lunar-lander-v2 environment.

We only look in-depth at the multi-objective lunar lander
behaviour of the learned policies. Table 3 shows that AIRL
tries to average out the two conflicting reward functions. We
can see that the number of demonstrations passed highly
influences the number of engine usage.

Main Engine Use | # Side Engines Use Run Name
70 21 control
100 14 main_side_90_10
75 48 main_side_75_25
86 54 main_side_50_50
70 38 main_side_25_75

Table 3: Engine usage statistics for different runs.

Figure 7 shows us that, similarly to the lunar lander
environment, the agent with only 10% of malicious
demonstrations manages to converge to the results of the
control agent. Again, the 25% and 50% agents don’t learn
the reward function.

mean_reward, std_reward
— malice_50 = malice_25 =— malice_10 = control

1000

-1000

2000

-3000

4000
timesteps

0 500k M 1.5M

Figure 7: Graph showcasing the learning of AIRL being different
ratios of control and malicious demonstrations.

5.3 Resource Gathering

Finally, we look at the environment with the highest degree
of conflict. Here, we achieved results that surprised us. We
expected that the behaviour of the agents would be similar to
the agents from the previous two environments - averaging
out the behaviours of the demonstrations. However, as seen
in Figure 8, none of the agents trained with conflicting
demonstrations managed to beat the score of the control
agent.

mean_reward
— gem_gold_40_60 =— gem_gold_25_75 = gem_gold_10_90 = gem_gold_50_50 == control

timesteps

0 500k M 1.5M

Figure 8: Graph showcasing the mean reward during the training
phase.

In Table 4, we see that some agents manage to achieve a
1.0 final reward and O standard deviation. This means that
they have found a safe path where they don’t go through any
enemies but only pick up one of the objectives. We see that
none of the conflicting agents pick up both objectives.

Run Final Reward | Final Std
control 1.8 0.8
gem_gold_50_50 1.0 0.0
gem_gold_40_60 1.0 0.0
gem_gold_25_75 1.0 0.0
gem_gold_10_90 0.8 0.5

Table 4: Comparison of final mean reward and final mean standard
deviation for the resource-gathering-v1 environment.

To understand this behaviour, we plotted out the reward
function of the gem_gold_50_50 agent and added or subtracted

the rewards that the reward function predicts for 100
trajectories. The result can be seen in Figure 9. The reward
function prefers the gold objective, giving it a positive reward,
and it gives a negative reward for the gem.

Learned Reward Function

Figure 9: Plot of the rewards predicted by the reward net of the
gem_gold_50_50 agent.

Similarly to the lunar lander environments, we see
in Figure 10 that runs with over 25% of malicious
demonstrations cannot learn. In the case of 10%, it achieves
the same results as the control version.

mean_reward, std_reward

— malice_50 — malice_25 — malice_10 — control =

timesteps

0 500k M 1.5M

Figure 10: Graph showcasing the learning of AIRL being passed
different ratios of malicious demonstrations in the resource-
gathering-v1 environment.

6 Discussion

Based on the results of Section 5, there are still some
problems to be interpreted and studied further. We saw that
in Table 1, one of the agents did not perform as well as the
control agent. This could be due to the environment’s seed,
as all agents underwent only one training run.

Furthermore, the lunar lander environments give a reward
based on the time taken to land. Since in our observations
AIRL tries to average out the reward functions of the
demonstrations, this could potentially also explain the lower
score of the left_right 25_75 and left_right_10-90 agents,
since it takes them more time to land on the right side of the
landing pad when compared to going straight down to the

centre of the landing pad.

Nonetheless, having similar training metrics and similar
evaluation metrics causes us to believe that for smaller levels
of conflict, IRL algorithms can successfully learn the reward
function.

When it comes to the multi-objective lunar lander, a
behaviour that we observed is that the agent cannot slow
down enough to land while only using the side boosters. This
explains the relatively high usage of the main engine for the
main_side_25_75 agent. Moreover, it explains the results that
we obtained in Table 2. By increasing the number of main
engine demonstrations, the agent can learn to slow down fast
enough, thus the standard deviation gets lower.

Overall, we can see that when an environment has a single
reward function, AIRL can learn even when given conflicting
demonstrations. However, with the increase of conflict, the
distance between the trajectories grows larger and it is harder
to stay in a good direction. This was especially showcased
when malicious demonstrations were introduced.

As for environments that have more than one reward
function, we saw that AIRL trained with conflicting
demonstrations chooses only one of them. This is showcased
in Figure 9, where the discriminator gives a positive reward
for the gold and a negative for the gem. This indicates that
the discriminator considers the trajectories leading to the
gold to be consistent with the expert demonstrations, while
the trajectories leading to the gem are not.

Further study is required to understand more complex
environments. Based on our results with malicious
demonstrations, we believe that as the complexity of the
environments increases, fewer malicious demonstrations will
be needed to harm the learning of AIRL. However, additional
research is necessary to confirm this.

7 Conclusions and Future Work

In this paper, we explored how conflicting demonstrations
affect IRL’s ability to learn the true reward function.
We found that even with conflicting demonstrations
we successfully trained optimal policies in the three
environments that were explored.

We observed that as the degree of conflict intensified,
it became more challenging for the algorithm to learn.
Furthermore, malicious demonstrations had a great impact
on performance even when they constituted only a small
portion of the demonstrations.

Future work could explore applying conflicting
demonstrations to environments with higher levels of
complexity. Furthermore, a hybrid combination of the two
definitions of conflict from section 3.2 could be explored
to see if defining conflict more strictly makes the algorithm
perform better. Another interesting topic that would be highly

impactful is whether we can protect the IRL algorithms from
malicious demonstrations. This could be done by either
detecting the malicious trajectories and removing them
before training starts, or by pruning trajectories that have a
negative impact during learning.

8 Responsible Research

Although this paper doesn’t use human-generated data, we
find it important to mention the measures taken to ensure that
ethically sound and reproducible research was done.

8.1 Reproducibility

The expert demonstrations were exclusively trained by
RL models provided by the imitation library [23]. All
environments used were taken from OpenAI’s Gymnasium
and MO-Gymnasium. This means that everyone can easily
reproduce all of the work provided in this paper.

Furthermore, all required code to train the algorithms
locally is provided. Additionally, the weights zip files of the
already trained models that were used in the generation of the
results of this paper are also given.

8.2 Ethical Considerations

It is important to stress that all of the malicious demonstration
work was done locally in a controlled environment. Even
though we show that malicious demonstrations can harm
the performance of IRL algorithms we strongly condemn
using this information to cause harm to any real-world
organisations or individuals.

We hope that any organisation that sees this research and
uses IRL algorithms in their operational works will consider
the effects of contradictory demonstrations, malicious or not,
and employ measures to ensure their algorithms’ safety and
ethical soundness.

References

[1] J. Fu, K. Luo, and S. Levine, “Learning robust rewards
with adversarial inverse reinforcement learning,” CoRR,
vol. abs/1710.11248, 2017. [Online]. Available: http:
/larxiv.org/abs/1710.11248

[2] D. Ramachandran and E. Amir, “Bayesian inverse
reinforcement learning,” in IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007,
M. M. Veloso, Ed., 2007, pp. 2586-2591. [Online].
Available: http://ijcai.org/Proceedings/07/Papers/416.
pdf

[3]1 C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced
planning for autonomous vehicles using reinforcement
learning and deep inverse reinforcement learning,”
Robotics and Autonomous Systems, vol. 114, pp. 1-18,
2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0921889018302021

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

C. Shen, Y. Gonzalez, P. Klages, N. Qin, H. Jung,
L. Chen, D. Nguyen, S. B. Jiang, and X. Jia, “Intelligent
inverse treatment planning via deep reinforcement
learning, a proof-of-principle study in high dose-
rate brachytherapy for cervical cancer,” Physics in
Medicine Biology, vol. 64, no. 11, p. 115013, may
2019. [Online]. Available: https://dx.doi.org/10.1088/
1361-6560/ab18bf

B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling
interaction via the principle of maximum causal
entropy,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-
24, 2010, Haifa, Israel, J. Firnkranz and T. Joachims,
Eds. Omnipress, 2010, pp. 1255-1262. [Online].
Available: https://icml.cc/Conferences/2010/papers/28.
pdf

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
0. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

M. L. Puterman, “Chapter 8 markov decision
processes,” in Stochastic Models, ser. Handbooks
in Operations Research and Management Science.
Elsevier, 1990, vol. 2, pp. 331-434. [Online].
Available: https://www.sciencedirect.com/science/
article/pii/S0927050705801720

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz, “Trust region policy optimization,” in
Proceedings of the 32nd International Conference
on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37.
Lille, France: PMLR, 07-09 Jul 2015, pp. 1889-1897.
[Online]. Available: https://proceedings.mlr.press/v37/
schulman15.html

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, p. 139-144, oct 2020. [Online].
Available: https://doi.org/10.1145/3422622

A. Bighashdel, P. Meletis, P. Jancura, and
G. Dubbelman, “Deep adaptive multi-intention
inverse reinforcement learning,” in Machine Learning
and Knowledge Discovery in Databases. Research
Track - European Conference, ECML PKDD
2021, Bilbao, Spain, September 13-17, 2021,
Proceedings, Part I, ser. Lecture Notes in Computer
Science, N. Oliver, F. Pérez-Cruz, S. Kramer,
J. Read, and J. A. Lozano, Eds., vol. 12975.
Springer, 2021, pp. 206-221. [Online]. Available:
https://doi.org/10.1007/978-3-030-86486-6_13

J. Choi and K. Kim, “Nonparametric bayesian inverse
reinforcement learning for multiple reward functions,”
in Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada,
United States, P. L. Bartlett, F. C. N. Pereira,

http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1710.11248
http://ijcai.org/Proceedings/07/Papers/416.pdf
http://ijcai.org/Proceedings/07/Papers/416.pdf
https://www.sciencedirect.com/science/article/pii/S0921889018302021
https://www.sciencedirect.com/science/article/pii/S0921889018302021
https://dx.doi.org/10.1088/1361-6560/ab18bf
https://dx.doi.org/10.1088/1361-6560/ab18bf
https://icml.cc/Conferences/2010/papers/28.pdf
https://icml.cc/Conferences/2010/papers/28.pdf
http://arxiv.org/abs/1707.06347
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1145/3422622
https://doi.org/10.1007/978-3-030-86486-6_13

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., 2012, pp. 314-322. [Online]. Available:
https://proceedings.neurips.cc/paper/2012/hash/
140f6969d5213fd0ece03148e62e461e- Abstract.html

S. Balakrishnan, Q. P. Nguyen, B. K. H. Low,
and H. Soh, “Efficient exploration of reward
functions in inverse reinforcement learning via
bayesian optimization,” in Advances in Neural
Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 4187-4198. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2020/
file/2bba9f4124283edd644799e0cecd45ca-Paper.pdf

K. Toohey and M. Duckham, “Trajectory similarity
measures,” SIGSPATIAL Special, vol. 7, no. 1,
p. 43-50, may 2015. [Online]. Available: https:
//doi.org/10.1145/2782759.2782767

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous
control with deep reinforcement learning,” in 4th
International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2016. [Online]. Available:

http://arxiv.org/abs/1509.02971

Z. Wang, C. Long, G. Cong, and Y. Liu, “Efficient
and effective similar subtrajectory search with deep
reinforcement learning,” CoRR, vol. abs/2003.02542,
2020. [Online]. Available: https://arxiv.org/abs/2003.
02542

K. Cai, X. Zhu, and Z. Hu, “Reward poisoning attacks
in deep reinforcement learning based on exploration
strategies,” Neurocomputing, vol. 553, p. 126578,
2023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231223007014

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis,
G. d. Cola, T. Deleu, M. Gouldo, A. Kallinteris,
A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré,
S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G.
Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

F. Felten, L. N. Alegre, A. Nowé, A. L. C.
Bazzan, E. Talbi, G. Danoy, and B. C. da Silva,
“A toolkit for reliable benchmarking and research
in multi-objective reinforcement learning,” in
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, Eds., 2023. [Online]. Available:
http://papers.nips.cc/paper_files/paper/2023/hash/

42a8891583f07ae200ba07843954caeb- Abstract-Datasets_

and_Benchmarks.html

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”

[20]

[21]

[22]

[23]

CoRR, vol. abs/1606.01540, 2016. [Online]. Available:
http://arxiv.org/abs/1606.01540

W. Hung, B. K. Huang, P.-C. Hsieh, and X. Liu,
“Q-pensieve: Boosting sample efficiency of multi-
objective RL through memory sharing of q-snapshots,”
in The Eleventh International Conference on Learning
Representations, 2023. [Online]. Available: https:
/lopenreview.net/forum?id=AwWaBXLIJE

L. Barrett and S. Narayanan, “Learning all optimal
policies with multiple criteria,” in Proceedings of the
25th International Conference on Machine Learning,
ser. ICML °08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 41-47. [Online].
Available: https://doi.org/10.1145/1390156.1390162

A. Raffin, A. Hill, A. Gleave, A. Kanervisto,
M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,”
Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1-8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

A. Gleave, M. Taufeeque, J. Rocamonde, E. Jenner,
S. H. Wang, S. Toyer, M. Ernestus, N. Belrose,
S. Emmons, and S. Russell, “imitation: Clean imitation
learning implementations,” arXiv:2211.11972v1
[cs.LG], 2022. [Online]. Available: https://arxiv.
org/abs/2211.11972

https://proceedings.neurips.cc/paper/2012/hash/140f6969d5213fd0ece03148e62e461e-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/140f6969d5213fd0ece03148e62e461e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/2bba9f4124283edd644799e0cecd45ca-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2bba9f4124283edd644799e0cecd45ca-Paper.pdf
https://doi.org/10.1145/2782759.2782767
https://doi.org/10.1145/2782759.2782767
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2003.02542
https://arxiv.org/abs/2003.02542
https://www.sciencedirect.com/science/article/pii/S0925231223007014
https://www.sciencedirect.com/science/article/pii/S0925231223007014
https://zenodo.org/record/8127025
http://papers.nips.cc/paper_files/paper/2023/hash/4aa8891583f07ae200ba07843954caeb-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4aa8891583f07ae200ba07843954caeb-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4aa8891583f07ae200ba07843954caeb-Abstract-Datasets_and_Benchmarks.html
http://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=AwWaBXLIJE
https://openreview.net/forum?id=AwWaBXLIJE
https://doi.org/10.1145/1390156.1390162
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972

	Introduction
	Background
	Proximal Policy Optimization
	Adversarial Inverse Reinforcement Learning

	Methodology
	Expert Trajectories
	Conflict
	Malice

	Experimental Setup
	Lunar Lander
	Multi-objective Lunar Lander
	Resource Gathering

	Results
	Lunar Lander
	Multi-objective Lunar Lander
	Resource Gathering

	Discussion
	Conclusions and Future Work
	Responsible Research
	Reproducibility
	Ethical Considerations

