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A B S T R A C T   

Due to the increasing frequency of disastrous events, the challenge of creating large-scale simulation models has 
become of major significance. Indeed, several simulation strategies and methodologies have been recently 
developed to explore the response of communities to natural disasters. Such models can support decision-makers 
during emergency operations allowing to create a global view of the emergency identifying consequences. An 
integrated platform that implements a community hybrid model with real-time simulation capabilities is pre-
sented in this paper. The platform’s goal is to assess seismic resilience and vulnerability of critical infrastructures 
(e.g., built environment, power grid, socio-technical network) at the urban level, taking into account their 
interdependencies. 

Finally, different seismic scenarios have been applied to a large-scale virtual city model. The platform proved 
to be effective to analyze the emergency and could be used to implement countermeasures that improve com-
munity response and overall resilience.   

1. Introduction 

Recent natural and manmade disasters demonstrated the high 
vulnerability and unpreparedness of most communities (Alsubaie, Alu-
taibi, & Martí, 2015). Modern societies have proved to be heavily 
dependent on their critical infrastructures, which provide essential 
services and contribute significantly to the social and economic devel-
opment (Ismail, Sadiq, Soleymani, & Tesfamariam, 2011). Having a 
more comprehensive insight into critical infrastructures and their 
mutual dependencies would yield crucial information on community 
disaster vulnerability, which represents the sensitivity of a community 
exposed to a given hazardous event (Cash et al., 2006). 

Understanding the vulnerability of critical infrastructures is of 
paramount importance as it allows to properly predict community 
resilience, which is defined as the ability of a system to respond and 
recover from disaster (Cimellaro, Renschler, Reinhorn, & Arendt, 2016; 
Cutter et al., 2008). Among all definitions of resilience, (Walker & Salt, 
2006) define resilient systems as “sustaining ecosystems and people in a 

changing world”, therefore resilience is intertwined with sustainability. 
Resilience can be considered as one of the indicators of sustainability as 
being resilient is essential for being sustainable (G. P. Cimellaro, 2016). 

Current practices of infrastructure modeling incorporate both facil-
ities (housing, commercial, and cultural facilities) and lifelines (hospi-
tals, transportation systems, power and communication networks, water 
distribution networks, etc.) (Renschler et al., 2010). However, there is 
still a lack of tools and methods to assess resilience at the urban level 
(Ribeiro & Gonçalves, 2019). 

The first step towards large-scale urban simulations is the develop-
ment of standards and metrics that enable decision-makers to quantify 
resilience. An indicator-based framework for measuring urban com-
munity resilience was introduced by Kammouh, Noori, Cimellaro, and 
Mahin (2019). The framework, namely PEOPLES, captures the overall 
resilience of communities considering different aspects/layers, i.e., 
population, environmental and ecosystem, organized governmental 
services, physical infrastructures, lifestyle, economic development, and 
social capital. Karakoc, Barker, Zobel, and Almoghathawi (2020) 
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proposed an important measure that is derived by social aspects of 
resilience to identify the most critical components that have the largest 
impact on the performance of interdependent networks. A hybrid 
simulation framework was suggested by Hwang, Park, Lee, and Lee 
(2016) to plan immediate recovery measures for the regional facilities in 
the aftermath of a disaster combining system dynamic approaches with 
discrete-event simulations. More detailed indicator-based models have 
been developed for single infrastructures typical of modern commu-
nities. For instance, Balaei, Wilkinson, Potangaroa, and McFarlane 
(2020) identified indicators to quantify the robustness and consequently 
the resilience of water supply systems, which are essential in the after-
math of a disaster. 

The interaction among critical infrastructures needs to be examined 
to correctly model and comprehensively analyze the community system. 
A modeling and simulation framework was developed by Dudenhoeffer, 
Permann, and Manic (2006) to simulate the urban infrastructure in-
terdependencies given a flood event. Infrastructures were modeled as a 
network consisting of nodes and edges, while interdependencies were 
defined as direct links between infrastructures’ components. Focusing 
on system interdependencies and related cascading effects, Guidotti 
et al. (2016) investigated the effects of the seismic damage of an electric 
power network on a water distribution network while Domaneschi, 
Cimellaro, and Scutiero (2019) focused on the interdependency between 
seismic damage of masonry buildings and transportation networks. In 
addition, a recent study showed the importance of considering the 
pre-event conditions of interdependent stormwater drainage system and 
road transportation network (Yang, Ng, Zhou, Xu, & Li, 2019). 

Recent years have seen a rise in the development of integrated 
platforms to quantify the resilience of infrastructure systems. In their 
research, Repetto, Burlando, Solari, De Gaetano, and Pizzo (2017) pro-
vided tools for real-time monitoring of seaports which can have a highly 
positive impact on improving the resilience of coastal urban commu-
nities. Different applications can be found for different scenarios and 
hazards. Among others, a conceptual integrated framework (Martí, 
2014) was proposed to plan and coordinate the response of multiple 
infrastructures during disasters. Borgdorff, Krishna, and Lees (2015) 
developed a software tool (SIM-CITY) to predict complex urban dy-
namics to coordinate emergency services and urban planners. An 
example of a Virtual Geographic Environment (VGE)-based simulation 
framework for flood disaster management was presented by Ding, Zhu, 
and Lin (2014), while a community-driven project named Global 
Earthquake Model (GEM) (Crowley, Pinho, Pagani, & Keller, 2013) 
simulates earthquake risks. The main goal of the GEM foundation is to 
define standards and collect best practices related to seismic hazard and 
risk assessment methodologies, with a focus on data collection and 

storage. Besides, seismic vulnerability through empirical, analytical, 
and expert opinion was addressed by Porter et al. (2012), while an 
open-source software named the OpenQuake (Silva, Crowley, Pagani, 
Monelli, & Pinho, 2014) was developed to evaluate human or economic 
losses. 

Although previous studies have tackled disaster community 
modeling and simulation, the integration of all computing resources into 
a unified platform remains a challenge. An integrated platform would 
provide a more effective problem-solving approach that is useful to 
assist the decision support system. This poses several practical chal-
lenges in enabling different simulators to interact and in organizing the 
information system flow for a standardized output. 

The main objective of this work is to develop an integrated platform 
to assess seismic resilience at the community level. With this aim, new 
methods and computational procedures are proposed. These methods 
are implemented in a new software tool that assesses the vulnerability of 
critical infrastructures in large-scale urban areas. Besides, innovative 
physical interdependency models have been implemented in the plat-
form. As a testbed, a virtual city that mimics a typical Italian building 
stock is designed. The information of the physical systems (i.e. buildings, 
transportation, power, water networks) is collected in the form of a 
machine-readable database. The designed testbed is used throughout the 
manuscript to explain the different methodologies introduced in this 
paper; thus, there will not be a separate section dedicated to the 
methodologies. 

The entire analysis is controlled in a Python-based environment 
implementing a parallel computing workflow. The developed software 
comprises different Python classes that include all necessary algorithms 
to assess the building portfolio damage and model the physical in-
terdependencies within and across the networks. The software tool in-
cludes visualization methods that convert the numerical results into 
easy-to-interpret figures which can be crucial for decision-makers. 
Resilience and interdependency analyses, which this paper is centered 
around, help decision-makers to identify vulnerable structures and 
infrastructure prior to the event so they can develop sustainable tech-
nologies for preparedness and reconstruction. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of the proposed hybrid community model. Section 3 presents 
the details for modeling and simulating the building portfolio. Section 4 
describes the methods used for modeling the road infrastructure 
network and for analyzing its interdependency with the building stock. 
Sections 5 and 6 deal with the power system and water distribution 
network, respectively. In section 7, the agent-based model used to 
simulate the socio-technical network is introduced. Section 8 presents an 
application of the entire computational procedure considering different 

Fig. 1. Hybrid multi-layered model and interdependencies (dashed arrows).  
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seismic scenarios to demonstrate the platform’s features and function-
ality. Finally, conclusions are drawn in Section 9. 

2. Hybrid community model 

Community vulnerability modeling is multi-layered as it considers 
the responses of different infrastructures and social networks, including 
their interdependencies (Pamungkas, Bekessy, & Lane, 2014). Common 
approaches can be grouped into six types: empirical, agent-based, sys-
tem dynamics, economic theory-based, network, and others (Ouyang, 
2014). Empirical approaches analyze the system’s components accord-
ing to historical disaster data. In agent-based approaches, the system is 
considered as adaptive and its complex behavior is described as the 
interaction of autonomous agents (Cimellaro, Ozzello, Vallero, Mahin, & 
Shao, 2017). System dynamic approaches attempt to model the evolu-
tionary behavior of interdependent infrastructures by capturing causes 
and effects under an external impact. On the other hand, network-based 
approaches model each infrastructure combining nodes and links, while 
the interdependencies among infrastructures are defined using in-
terlinks. Finally, economic theory-based approaches focus on market 
rules to model interdependencies. Other approaches include Bayesian 
networks, hierarchical methods, and hybrid models. The latter result 
from a combination of two or more traditional methods (Kammouh, 
Noori, Taurino, Mahin, & Cimellaro, 2018). 

In this work, a hybrid model is proposed to couple Network Models 
(NMs), which are used to analyze the physical infrastructures, with 
Agent-Based Models (ABMs) to simulate the socio-technical networks 
(emergency rescue services, firefighters, etc.). It is applied to a virtual 
city named Ideal City, which is envisioned as being representative of a 
typical European urban area and it is inspired by the city of Turin in 
Italy. Its building portfolio comprises four different sectors including 
housing (residential building, hotel, shelter), education (school, uni-
versity, library), business (shopping centers, retail stores, heavy in-
dustries), and public services (hospital, police station, churches, airport, 

etc.). Fig. 1 schematically shows the hybrid multi-layered model of Ideal 
City and the interdependencies among the networks. Four lifelines 
supporting the community’s demands are modeled: (i) the Road 
Transportation Network (RTN), (ii) the Water Distribution Network 
(WDN), (iii) the Power Grid (PG), and (iv) the Socio-Technical Network 
(STN). The proposed hybrid model takes into account also cascading 
effects between the building damage and the RTN, the PG, the WDN, and 
the STN in the aftermath of an earthquake. 

The dashed lines refer to the interdependencies between layers that 
have been modeled in the proposed platform. The damage experienced 
by the building portfolio is considered as the trigger event inducing an 
additional loss of functionality in all the remaining networks (RTN, 
WDN, PG, and STN). Moreover, the functionality of WDN is dependent 
on the PG due to the presence of pumps and electric valves. The func-
tionality of all the considered physical networks affects the STN 
response (e.g. emergency rescue and evacuation, human behavior). 

3. Modeling the building portfolio 

Performing urban large-scale simulations, some generalizations and 
simplifications on the building portfolio are necessary to overcome the 
lack of data and to limit the computational workflow. Therefore, a sur-
rogate model to describe the lateral behavior of each building is herein 
adopted by considering the relationship between its base shear and top 
horizontal displacement (Marasco, Noori, and Cimellaro, 2017; Noori, 
Marasco, Kammouh, Domaneschi, and Cimellaro, 2017). The lateral 
stiffness properties are modeled through a parameterized backbone 
curve, where the post-elastic line is characterized by progressive 
decreasing stiffness, while hysteresis is accounted through the Takeda 
model (Takeda, Sozen, & Nielsen, 1970). 

3.1. Building exposure database 

An essential advantage of the surrogate model is the limited 

Fig. 2. Flowchart of data analysis.  
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computational effort it requires with respect to a more refined finite 
element model, providing a significant benefit for large-scale urban 
simulations. However, it presents several practical challenges because 
detailed information about each building is generally not available. To 
overcome this issue, different methods have been proposed to classify 
the building stock based on their typical characteristics (Crowley et al., 
2013; Lu & Guan, 2017). Although rapid, these methods are not so ac-
curate because they could give similar results for buildings with 
different structural characteristics. 

The approach proposed herein can collect data from different public 
and accessible sources. Based on the building stock of the city of Turin, 
general geometrical parameters (e.g., footprint area and total height) 
have been obtained from OpenStreetMap (Haklay & Weber, 2008), 
while more detailed information (e.g., number of stories, year of con-
struction) have been found in Geographical Information Systems 
(Maguire, 1991). Besides, further public information (provided by Mu-
nicipality or other authorities), census data (provided by National or 
regional Statistical Institute, ISTAT (2016)), and other technical infor-
mation (e.g. real estate data, design guidance) have been exploited to 
increase the level of knowledge. 

Data analysis has been performed to identify common patterns; e.g. 
building’s age has been correlated with the adopted design methods and 
parameters (e.g. load combinations and material strength classes), 
which has been used to estimate the minimum required geometrical and 
mechanical characteristics of the structural components. However, this 
procedure may lead to discrepancies with real data. Therefore, un-
certainties characterization has been introduced to face the statistical 
nature of data, considering the buildings’ parameters as normally 
distributed Random Variables (RVs). 

Correlation among the different variables used in the analysis may 
also exist. In this study, the correlation between the reinforcement 
percentage and the characteristic reinforcing bar yield strength has been 
considered according to the Probabilistic Model Code (Vrouwenvelder & 
Faber, 2001). Also, a correlation between characteristic compressive 
strength and the elastic modulus of the concrete (Mirza & MacGregor, 

1979) has been considered assuming a correlation coefficient of 0.8. 
The flowchart of the data analysis is shown in Fig. 2. Sources are 

illustrated on the top of the scheme as they contribute to the data 
collection phase. Then, correlations among the variables are considered 
in the data processing phase, and, finally, the processed data are stored 
in a standard format to create a comprehensive building exposure 
database. 

3.2. Backbone curve estimation 

Each building is modeled as Multi-Degree-Of-Freedom (MDOF), 
which is subjected to a monotonically increasing lateral force distribu-
tion proportional to its fundamental mode. Elastic parameters are 
identified by the values of base shear and top displacement that cause 
the yield of the weakest column. Post-elastic parameters are assessed 
based on the upper-bound theorem of limit analysis and the equal en-
ergy rule (Marasco et al., 2017). These parameters allow to define a 
backbone curve representative of an equivalent 
Single-Degree-Of-Freedom (SDOF) model for each building. Four-point 
and three-point parametrized backbone curves are adopted for RC and 
masonry buildings, respectively. 

All building’s parameters that are significant to predicting the global 
structural capacity are assumed lognormally distributed RVs. Each sta-
tistical distribution is represented by the median (μ) and dispersion 
value (σ). The latter is based on the completeness of the quality and 
confidence associated with the building parameter that depends on its 
level of knowledge. In the proposed methodology, three classes of 
building parameters are identified that are: mechanical-based (M), 
geometrical-based (G), and construction-based (C). For each class, a 
certain standard deviation has been set based on the building archetype 
and year of construction (Table 1). 

The standard deviation values are higher for old buildings since some 
of the building information lack of precision. Furthermore, a larger 
standard deviation is found for masonry buildings. The mechanical pa-
rameters refer to the compressive and tensile strength and elastic 

Table 1 
Standard deviations associated with the mechanical, geometrical, and construction-based parameters for RC and masonry buildings based on the year of construction.    

Year of construction   

< 1916 1916− 1937 1938− 1974 1975− 1996 1996− 2008 > 2008 

RC 
σG / μG 0.20 0.18 0.16 0.13 0.1 0.08 
σC / μC 0.25 0.22 0.20 0.18 0.15 0.10 
σM / μM 0.20 

Masonry 
σG / μG 0.25 0.22 0.2 0.17 0.13 0.10 
σC / μC 0.28 0.26 0.24 0.22 0.20 0.18 
σM / μM 0.25  

Fig. 3. Backbone curves obtained through MCS and estimated median backbone curve for (a) RC and (b) masonry buildings.  
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modulus of the constitute materials (concrete, bricks, stones, steel 
rebar), while the geometrical parameters are represented by the di-
mensions of the structural components (e.g. span length, cross-section 
width and depth, percentage of reinforcement). Finally, the 
construction-based parameters comprise all those variables that affect 
the building design such as the vertical and horizontal loads and the type 
of deck and external walls. The building data collection has been dis-
cussed in detail in the previous section. 

The backbone curve is computed for each single building by varying 
its parameter through Monte Carlo Simulation (MCS) in the range μ±σ. 
The iterative process ends when the output dataset is consistent and 
provides a stable estimate of the median backbone curve which repre-
sents the global building’s capacity. As 7-story RC and 4-story masonry 
buildings built in 1930 and 1978, respectively have been considered. 
The estimated median backbone curve for the RC and masonry buildings 
have been illustrated in Fig. 3. 

3.3. Nonlinear time history analyses 

Structural analyses have been carried out through the finite element 
code OpenSees (Mazzoni, McKenna, Scott, & Fenves, 2006). Recent 
advances have been introduced by Zhu, McKenna, and Scott (2018) to 
offer multi-interpreter capabilities resulting in the release of an 
“OpenSeesPy” library in Python. It has been used to implement the 
surrogate model and to perform the nonlinear time history analyses. 

Each building has been modeled as “ZeroLength” element through 
two overlapped nodes. Initial stiffness and proportional damping cor-
responding to the median backbone curve are assigned to each element 
in both horizontal directions. Uniaxial “MultiLinear” material is 
employed to simulate the force deformation relationship, while the 
Takeda model is adopted to consider the hysteresis. Seismic input con-
sists of a pair of time histories (in both horizontal directions) applied at 
each element’s location. 

A simplified seismic scenario is assumed by defining epicenter 
location, moment magnitude, and time history recorded in the 
epicenter. Seismic inputs at any building locations are estimated based 
on Ambraseys’ ground motion model (Ambraseys, Simpson, & Bommer, 
1996), while frequency changing is neglected. Therefore, nonlinear time 
history analyses are performed and the maximum top displacements of 

each element are computed. 

3.4. Multiprocessing computation 

Advancements in computer knowledge and architecture have led to 
the development of algorithms that can speed up the entire computa-
tional process through parallelization techniques. In parallel and 
distributed systems, Graphics Processing Unit (GPU) or Central Pro-
cessing Unit (CPU) solvers can be adopted. GPU solvers exploit the high 
computation power of NVIDIA CUDA (Kirk, 2007) to significantly 
decrease the simulation time. Numerical GPU algorithms can be sub-
stantially accelerated as long as the algorithms map well to the specific 
hardware’s features. For limited bandwidth problems that do not aim to 
the solution of a large complex matrix, the GPU solution might not be 
optimal because it causes poor or negative speedups (Ament, Knittel, 
Weiskopf, & Strasser, 2010). Thus, CPU-solvers may be adopted using 
parallel programming based on threading and multiprocessing processes. 
The first process consists of breaking the process within different parts 
while running the tasks that have access to the same memory areas. 
Instead, multiprocessing consists of submitting multiple processes 
independently to separate memory locations. The main advantage of 
multiprocessing is that it avoids conflicts in case the processors are 
assessing the same memory location at the same time; therefore, it is 
appropriate for distributed memory systems with several CPU processors 
(e.g. supercomputers). 

Given the considerations above, in the present study, the multipro-
cessing Python standard library has been used. The nonlinear time his-
tory analysis of each building has been assigned to different memory 
locations (Fig. 4). A Rack Server with no. 2 Intel Xeon (E5-2698 v4 2.2 
GHz, 50MB Cache) and 256 GB RAM (8 × 32GB DDR4, 2400 MHz) has 
been employed in this study. A schematic representation of the pro-
cedure used to speed up the processes is shown in Fig. 4. 

4. Road transportation network (RTN) 

Road infrastructure connectivity within and among communities is 
essential to provide services and to forward social and economic growth. 
This topic has inspired several studies that developed different tools to 
investigate properties of large-scale transportation networks, from 

Fig. 4. Multiprocessing scheme.  
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Python packages like NetworkX (Hagberg, Swart, & Chult, 2008) to 
open source software such as Gephi (Bastian, Heymann, & Jacomy, 
2009). Graph theory principles are certainly one of the most frequent 
tools in this field due to their simplicity and effectiveness to solve 
problems related to routing, traffic, minimum cost flow, etc. 

Ideal City’s road transportation network (RTN) has been modeled as 
an undirected graph G (each path can be passed through in both di-
rections) that consists of 14,239 nodes (N), representing the road’s in-
tersections, and 18,798 edges (E), i.e. the links. Despite road maps are 
directed graphs, as streets have a certain directionality, the choice of 
modeling the system as an undirected graph has been followed because, 
in emergency conditions, directionality is not respected to give priority 
to evacuation and rescue operations. 

Theoretically, the network has been described with an N×

Nadjacency matrix A. The elements inside A can be either 1 or 0. If ai,j =

1, it means that node i and node j are connected, while ai,j = 0 means that 
nodes i and j are disconnected. Since the graph is not directed, the 
resulting adjacency matrix is symmetric. The adjacency matrix allows 
computing many network parameters and quickly modifying the to-
pology of the network, e.g. when roads are unavailable. An important 
global metric of graphs is the average vertex degree (〈vd〉), which indicates 
how many edges cross a given node (Eq. (1)). 
〈

vd

〉

=
1
N
∑

i∈N

∑

j∈N
aij (1) 

In the case of an undirected graph, edges crossing a node should be 

considered only once, thus the adjacency matrix becomes triangular. 
Global efficiency is another measure of network performance that was 

introduced by Latora and Marchiori (2001). It is defined as the average 
of the number of edges d(i,j) in the shortest path between nodes i and j 
(Eq. (2)): 

Eglob =
1

N(N − 1)/2
⋅
∑

i∕=j

1
d(i,j)

(2) 

The plan view of the RTN with its main properties is shown in Fig. 5. 

4.1. Interdependency between buildings and RTN 

The interdependency between buildings and the RTN following an 
earthquake is caused by the amount of the debris generated from the 
buildings’ damage. To assess the amount of generated debris, pictures 
collections by reconnaissance groups in the aftermath of worldwide 
seismic events have been used. These collections belong to publicly 
available databases: the Earthquake Engineering Research Institute 
clearinghouse and collection of case studies (EERI, 2020), the 
Geotechnical Extreme Events Reconnaissance (GEER, 2020), and the 
Digital Environment for Enabling Data-Driven Science (DEEDS, 2020) 
ones. Despite that these valuable sources contain thousands of images, 
only a small percentage clearly shows the amount of generated debris 
that can be measured. So after visual inspection, a database of 195 
pictures has been selected. 

Each selected picture shows a building suffering a partial or complete 

Fig. 5. Ideal City’s RTN plan view.  
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collapse after a seismic event. In total, 14 different earthquakes on 
different world regions have been considered, i.e., Central Italy (38 
pictures), Cephalonia (6 pictures), South Napa Valley (6 pictures), 

Christchurch (9 pictures), Ecuador (32 pictures), Nepal (38 pictures), 
India (6 pictures), Loma Prieta (5 pictures), Central Mexico (20 pic-
tures), North Iran (1 picture), Northridge (2 pictures), Armenia (5 pic-
tures), Taiwan (26 pictures), Turkey (1 picture). 

In the first step, the following information has been collected: (i) the 
earthquake magnitude, (ii) the epicentral distance, and (iii) the year of 
construction, (iv) the building archetype, (v) the building height and (vi) 
the number of stories. Then, each picture has been visually inspected to 
identify objects, such as vehicles, whose dimensions can be estimated. 
Starting from these reference measures, the extension of the debris with 
acceptable accuracy has been evaluated (Fig. 6). Let P be the dimension 
of a reference object and p the debris’ extension measured in pixel (px). 
Let D and d be the corresponding measures in m of the reference object 
and the debris extension, respectively. The debris extension d can be 
computed using 

Eq. (3). 

d = p⋅
D
P

(3) 

Fig. 6. Example of debris extension evaluation.  

Fig. 7. Ideal City’s PG.  
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Then d is normalized by the building height to reduce its variance, 
allowing an easier comparison across different models. 

Then, two machine learning (ML) algorithms have been considered: 
Random Forest (RF), and k-Nearest Neighbors (KNR) algorithm (Liaw 
and Wiener, 2002; Piegl and Tiller, 2002). The KNR algorithm predicts a 
new data point starting from the closest data in the training datasets, i.e. 
its “nearest neighbors” (Ni & Nguyen, 2009). Where ‘k’ stands for how 
many samples are used to evaluate the prediction. An RF, instead, is 
essentially a collection of randomized decision trees (Yao, Khosla, & 
Fei-Fei, 2011). The idea behind RFs is that multiple trees might reduce 
the problem of overfitting with respect to a single decision tree. There 
are two ways in which the trees in a random forest are randomized: by 
selecting the data points used to build a tree and by selecting the features 
in each split test. 

Both selected algorithms have been tuned to obtain the optimal 
result and accuracy. In the KNR algorithm, the tuned parameter is the 
number of neighbors taken into consideration to evaluate the pre-
dictions in a χ test. This parameter k has been set equal to 5. Instead in 
RF, three parameters have been tuned: (i) the maximum depth of the 
tree (set to 10), (ii) the number of trees in the forest (set to 20), (iii) the 
minimum number of samples required to split an internal node (set to 
40). 

The two algorithms have been used to estimate the extension of 
debris and they have been compared using the R-squared and the mean 
absolute relative distance (MARD). 

The R-squared measure provides a measure of how well future 
samples are likely to be predicted by the model by evaluating how much 
the scatter points are distant from the regression fit line calculated by the 
algorithm. R-squared measure ranges from 0 to 1, where 1 means perfect 
matching. MARD is the average vertical distance between each point 
and the regression line. Therefore, the lower the value of MARD and the 
more accurate the predictions. 

Results from the training of the algorithms show that KNR algorithm 
gives a better MARD score (0.32), but a lower value of R-squared (0.42) 
with respect to RF, which means that more data are needed for KNR. 
Instead, RF gives better results both in terms of R-squared (0.52) and 
MARD (0.22) and therefore this algorithm has been selected and 
implemented in the platform. 

5. Power grid 

Urban PGs consist of a transmission system, which runs for long 
distances at high voltages, and a distribution system, which delivers 
electricity at medium and low voltage. The low voltage line (i.e. 230 V 
single-phase, 400 V three-phase for European countries) supplies do-
mestic and small commercial customers. Usually, at the city-level, PGs 
follow the main streets and may run both overhead and underground. 

Various methodologies are available in the literature to assess the 
seismic damage to the electric infrastructure (Cavalieri, Franchin, Bur-
iticá Cortés, & Tesfamariam, 2014). However, they require a large 
amount of data about the network’s components, which is often not 
shared by stakeholders and public authorities. 

Moreover, most of these methods assess the resilience of power 
distribution networks adopting the inherent fragility of the electrical 
components. However, in most cases, electrical components can with-
stand seismic excitation, while the buildings where they are installed are 
subject to serious seismic damages. The debris generated from partial or 
complete collapses damages electrical components, compromising the 
functionality of the entire PG. The weakest element of PGs are often 
distribution substations as discussed in Fujisaki, Takhirov, Xie, and 
Mosalam (2014). Fragility of substations varies whether their compo-
nents are anchored or unanchored. Cavalieri, Franchin, and Pinto 
(2014) reported a complete overview of the main recent works on 
fragility functions of electric power system components, with the indi-
cation of the methodology used to evaluate the curves, the components 
considered and the damage states and indices. Considering the HAZUS 

methodology (Agency, 2003), to have extensive level of damage (i.e., 
repairs needed to restore functionality), the median peak ground ac-
celeration (PGA) should reach 0.34 g for low voltage substations with 
unanchored components and 0.45 g in case of anchored components. 
These values of PGAs are most likely to cause serious building damage 
given the typical built environment of European cities. Therefore, in this 
paper, the vulnerability of the PG is related to the damage occurring to 
the buildings where substations are located. In other words, if the 
building where a substation is installed collapses, the grid components 
in that substation fail. Consequently, when a substation fails the electric 
load drops to zero, and all the buildings connected to that substation are 
without power. 

The fragility of distribution lines has not been considered since at the 
urban level distribution lines are more robust than distribution sub-
stations. Distribution lines can run both overhead and underground, 
despite modern cities prefer to let the system run underground as it is 
safer and more efficient. In Ideal City, they are mainly meant to be 
underground. Generally, failure of underground lines happens only in 
case of strong shakes with significantly large ground deformations, 
which would cause serious building damage anyway. On the other hand, 
overhead distribution lines are mostly affected by strong winds, while 
their vulnerability to earthquakes is limited due to the small size and 
slenderness of urban utility poles. 

Ideal City’s PG consists of 15 primary substations and 1274 distri-
bution substations (Fig. 7). The primary substations operate at high and 
medium voltages and are supposed to be located in robust facilities so 
that they can keep operating even after strong ground motions. 

5.1. Interdependency between buildings and PG 

The power system of Ideal City has been modeled following the 
Density Design Method (DDM) proposed by Cardoni, Cimellaro, Doma-
neschi, Sordo, and Mazza (2019). The DDM is based on the idea that the 
fragility of electric substations is the same as the buildings hosting them. 
Therefore, the electric components and the buildings where they are 
located are assumed as a series system with their corresponding fragility 
functions, so the weakest component limits the overall system reli-
ability. This approach allows to implicitly take into account the inter-
dependency between the power network and the building portfolio. The 
DDM allows for a detailed analysis of the system, as the PG is specifically 
designed instead of using an existing database. Thus, population density, 
power load density, and system properties (e.g., feeders’ length, load 
types, buses’ redundancy, etc.) are the main design parameters. The first 
step consists in dividing the area covered by Ideal City into districts to 
locate primary substations. These are characterized by a medium 
voltage (MV) scheme of 22 kV. Then, electrical loads are identified 
following the procedure described by the 2016 European guidelines 
(Prettico, Gangale, Mengolini, Lucas, & Fulli, 2016). Based on the area 
and population of each district, the design load is estimated. In detail, 
the adopted design load density is assumed to be 8 MVA/km2 for each 
district. This information is needed to identify the distribution sub-
stations containing transformers. Transformers can be of three types, i. 
e., 0.40 MVA, 0.63 MVA, and 1.00 MVA. The chosen distribution is 60 
%, 30 %, and 10 % respectively, in accordance with current best prac-
tices. Overall, Ideal City’s PG consists of 1274 distribution substations. 
Table 2 summarizes the number of distribution substations for each 
power category. 

Distribution substations are evenly located in the district considering 

Table 2 
Ideal City’s distribution substations.  

Distribution substation type Total number 

0.40 MVA 766 
0.63 MVA 382 
1.00 MVA 126  
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power demand so that each of them supplies a different number of 
buildings. Substations located in buildings that are extensively damaged 
or collapsed after an earthquake are assumed to fail. Besides, since the 
distribution substations are connected in series, once a substation fails 
all the downstream substations will also be unfunctional. Consequently, 
the number of buildings and users not supplied after the seismic event 
can be determined. 

6. Water distribution network (WDN) 

The WDN serviceability implies enough water supply to fulfill the 
demand and reasonable water pressure. The damages induced by 
seismic events are likely to cause a drop in the water pressure and 
consequently a limited water supply. 

In this research, urban water consumption is extrapolated from na-
tional census data and the layout of the WDN of Ideal City has been 
assumed to overlap the RTN. Elevations of WDN’s nodes have been 
gathered from Google Maps (Svennerberg, 2010). Collected data have 
been processed through the Water Network Tool for Resilience, which is 
a Python package designed to simulate and analyze the resilience of 
water distribution networks. This tool allows controlling EPANET 2.0 
(Rossman, 2000) using Python. 

The water demand at each node (junction) depends on the number of 
people served by that node. The number of the population served by 
each node has been estimated from the number of households around 
that node. 

Water distribution systems consist of interconnected components 
including primary and secondary pipelines, storage facilities, and com-
ponents that convey water on buildings based on the closest distance 
between the primary pipeline and the buildings inside the mesh 
(Fig. 8a). 

The calibration of a WDN of such a size brings on several difficulties. 
It is a fundamental issue to ensure an accurate and realistic simulation 
for both the flow velocity and pressure. The pipes diameters and the 
positions of the valves, pumps, reservoirs, and tanks have been deter-
mined to ensure the following constraints (Eqs. (4) and (5)): 

0.5m/s ≤ Velocity ≤ 2m/s (4)  

40m ≤ Pressure ≤ 80m (5) 

Fig. 8b shows the calibrated WDN at the peak hour of water demand. 
More details about the network’s generation methods and technical 
criteria can be found in (Taurino, Kammouh, Cardoni, & Paolo, 2018). 

6.1. Vulnerability of the WDN 

The reliability of a water network is connected to the concept of 
vulnerability of its elements. Herein, the focus is given to the pipe 
because it is the most challenging component to inspect and replace, and 
also its extensive distribution and exposure make it especially vulner-
able. In this work, the seismic vulnerability of the buried pipelines 
introduced in the American Lifelines Alliance (Eidinger et al., 2001) is 
adopted. 

The seismic wave propagation induces strains to the pipes due to the 
soil-pipe interaction. Strains could produce damage if the pipe strength 
is exceeded. When pipe damage occurs, the pipe is assumed to break in 
the middle. In the context of this work, only major damage is assumed to 
cause water leakage. Pipe damage is modeled dividing the pipe into two 
equal parts. Then two reservoirs are added at their endpoints to simulate 
the water leakage through the crack. The reservoirs have a total head 
equal to the elevation of the middle point of the pipe (assuming that the 
pipe breaks in the middle). A check valve is inserted so that water only 
flows towards the reservoirs. 

A combined demand-driven and pressure-driven analysis is con-
ducted to account for the dependence of water supply on pressure. First, 
a Demand-driven analysis is performed; then, nodes with pressure below 
the value required to satisfy the demand are converted into Emitter 
nodes. 

6.2. Interdependency between buildings and WDN 

Once a seismic event occurs, an additional drop of pressures might be 
considered due to the damage to the secondary water system. In this 
study, a further drop of pressure in the pipelines system is considered 
when “extensive” or “complete” damage occurs in a household located 
within the closed-shaped WDN. In other words, the building damage 
scenario is used to update the water supply of the WDN. 

Fig. 8. (a) Water demand in wth element, ith nodes of the element, and water convey on buildings within the element. (b) Water pressure of the WDN after calibration.  
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6.3. Interdependency between PG and WDN 

The functionality of WDN is dependent on the power system due to 
the presence of pumps and electric valves. In the aftermath of a seismic 
event, a power outage may occur leading to a temporary inoperability of 
the electric device of the WDN. In this study, the interdependency be-
tween PG and WDN is taken into account by identifying the unpowered 
pumps and then updating the EPANET model accordingly. A new state of 
nodal pressure and water supply is then generated. 

7. Emergency evacuation modelling 

The implemented platform includes STN that consist of an agent- 
based model (ABM), which can manage 900,000 individual agents 
that dynamically interact with each other and with the urban scenario. 

Furthermore, the ABM can be used to model other objects, such as 
shelters, hospitals, and ambulances that are governed by different rules. 
Therefore, an emergency evacuation can be simulated, and specific 
emergency plans can be designed to study and improve the community 
response. 

The ABM layer is also able to manage the interdependency between 
the agents and the other layers (i.e. the built environment, the generated 
debris, and the road network). Furthermore, the evacuees have been 
implemented with individual characteristics including human behavior 
and considering different levels of agent health obtained from the 
seismic damage simulation. Fig. 9 reports evacuating agents, where the 
level of injury severity is associated with the agent color (e.g. green 
normal conditions, orange slight injured), and the evacuation velocity 
depends on the injury level. 

The ABM environment has been developed in Unity (Uni-
tyTechnologies, 2020). The input data needed to develop the ABM 
scenario are collected from the other infrastructure layers implemented 
in the platform. Indeed, the data collected are: (i) the estimated 
post-disaster building damage that reflects in (ii) number of injuries and 
(iii) road blockage due to debris. 

7.1. First aid modeling 

The ABM STN layer considers two classes of agents, the individuals, 
and the ambulances; the last ones pick up severely injured individuals 
and transport them to hospitals. On the contrary, lightly injured agents 
preserve their walking capabilities and reach hospitals on their own 
(Fig. 10). Healthy agents can remain close to their buildings or walk to 
the nearest emergency shelter accordingly to a random procedure that is 
parameterized as a function of damage level suffered by the buildings. 

Shelters have a fixed capacity, beyond which the individual starts 

Fig. 9. Simulation of an evacuation procedure using virtual reality. The color of 
each agent indicates her health conditions. 

Fig. 10. First-aid organization in the ABM layer.  

Fig. 11. EDFT architecture and interaction of the human behavior modules (adapted from Cimellaro et al. (2019).  
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walking toward the closest town exit. Also, hospitals have a fixed ca-
pacity, except for those that can deploy a field hospital. In this case, an 
infinite capacity is assumed to guarantee assistance to all injured in-
dividuals. A control room manages the hospitals and shelters monitoring 
the available information and making decisions about resources. The 
buildings may contain a number of individuals and contain a variable 
number of individuals function of the time of the day. 

7.2. Modeling human behavior and emotions in ABM 

During the emergency evacuation, two frequent individual phe-
nomena can be recognized: the leader-follower and the emotional (e.g. 
altruism, panic) behavior. The first one is recognized as the static and 
predictable component because it remains unchanged throughout the 
process. Instead, the second one, the dynamic component, is generally 
unpredictable because characterized by emotions. It can be modeled 
using the Belief-Desire-Intention (BDI) model and implemented through 
a matrix approach by the Extended Decision Field Theory (EDFT) to 
cope with the dynamically changing environment (Cimellaro, Mahin, 
and Domaneschi, 2019, 2017). It presents a dynamic and probabilistic 
mathematical approach to reproduce the individual decision-making 
process in the changing environment. It is summarized by the 
following relation that allows to compute the preferences P among m 
options expressed by an agent durint the simulation time (Eq. (6)). 

P(t + h) = SP(t) + CM(t + h)⋅W(t + h) (6)  

where P(t)T
= [P1(t), P2(t), ...,Pm(t)] are the preference in percentage 

and Pi(t) is the strength of the preference corresponding to option i at 
time t. The first term is the product of the preference chosen at the 
previous state and the stability matrix S that provides the memory effect. 
The second term reproduces the emotional individual behavior in the 
changing environment, where M is the value matrix that represents the 
subjective evaluations (perceptions) of a decision-maker, W is the 
weight vector that allocates the weights of attention corresponding to 
each attribute of M, and C is the contrast matrix that compares the 
weighted evaluations of each option. Matrix C is the identity matrix if 

each option is evaluated independently Fig. 11 (Cimellaro et al., 2019, 
2017). 

7.3. Interdependencies with other networks 

The interdependency between the evacuees and the built environ-
ment consists of the debris generated by the earthquake-induced dam-
ages to buildings. As a cascading consequence of debris accumulation, 
the road network can be interrupted entailing an overall increase in the 
average number of people who have difficulty evacuating and an 
essential risk that some individuals cannot evacuate at all. Furthermore, 
the first aid network supported by ambulances that intervene in the 
recovery of seriously injured individuals can be unable to access those 
parts of the urban system most affected by damage to buildings and 
debris. 

The debris generation is also included in the ABM layer with the 
approach already detailed in Section 4.1. Thus, the hybrid characteris-
tics of Ideal City allow both the estimation of buildings’ damage and 
debris’ generation and the analysis of their cascading effects. In detail, 
individuals could be killed, injured, or trapped inside damaged buildings 
or Ideal City portions. Moreover, the transportation network can be 
interrupted blocking the ambulances’ intervention and affecting the 
escape routes for evacuees. 

8. Application 

The objective of this work is the development of an integrated 
platform to assess seismic resilience at the community level for large- 
scale areas. Five layers have been considered to model community in-
frastructures, while different physical methods have been implemented 
to evaluate the infrastructures’ vulnerability and their mutual in-
terdependencies. The flowchart depicted in Fig. 12 provides a detailed 
description of the methods and processes used in the platform. 

All the inherent data of the infrastructures are stored in the exposure 
database. Building stock represents the main physical layer whose 
vulnerability is assessed by using a surrogate model based on certain 
damage states and seismic scenario. The platform allows users to upload 

Fig. 12. Flowchart of the integrated platform.  
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exposure database, while selecting the damage states and the related 
Engineering Demand Parameters. Ghobarah (2004) damage states and 
related maximum inter-story drift thresholds are set by default in the 
integrated platform. The user can also define the seismic scenario by 
selecting (i) epicenter location, (ii) magnitude of the earthquake, (iii) 
time-history recorded at the epicenter, and (iv) ground motion predic-
tion equation to evaluate the geometrical attenuation at any building 
location. Ambraseys et al. (1996) attenuation model is set by default 
while seismic record processing is performed by the embedded Open-
Signal tool (Cimellaro & Marasco, 2015). 

The simulated damage experienced by the buildings is the starting 
point for taking into account the cascading effects on the RTN, PG, and 
WDN. Interdependency between buildings and roads is accounted 
through an RF algorithm which provides the functionality state of each 
roadway element. Furthermore, the Density Design Method is applied to 
PG by setting off the transformers located within irreversibly damaged 
buildings. Based on the buildings’ damage and PG’s unfunctionality, the 
Water Network tool for resilience is employed to evaluate the effects on 
the WDN. Under these conditions, the emergency evacuation is simu-
lated through an Agent-Based model after fixing the common rules 
adopted by the agents. 

An application of the developed platform to Ideal City hybrid model 
is herein presented. The virtual city consists of 23420 residential 
buildings and covers an overall area of 120 km2 with a population of 
908.129 inhabitants. The building stock of the city is mainly composed 
of RC buildings (63 %) and masonry structures for the remaining parts 
(37 %). Fig. 13 illustrates a screenshot of the software’s graphical user 
interface and the related analysis options. 

Different seismic scenarios have been adopted by defining the 
epicenter location, the moment magnitude, and the time history 

recorded at the epicenter. Geometrical attenuation at any building 
location has been estimated based on Ambrayses’ attenuation Ground 
Motion Prediction Equation (GMPE) (Ambraseys et al., 1996). 

Four benchmark horizontal acceleration time histories have been 
selected using Opensignal software (Cimellaro & Marasco, 2015). 
Northridge (lmar County Hospital parking lot in Sylmar, California) and 
Kobe (Kobe Japanese Meteorological Agency station, Japan) records 
have been assumed to simulate the effects of near-field earthquakes. On 
the other hand, El Centro (Imperial Valley Irrigation District substation, 
California) and Hachinohe (Hachinohe City, Japan) records have been 
considered as far-field seismic benchmark scenarios. Table 3 lists the 
main seismological characteristics of each selected record. 

The developed platform can provide damage information associated 
with all the layers of the analyzed area. Furthermore, the dataflow can 
be completely managed by the user who can choose among different 
options (Fig. 13). Analysis flow starts with the damage assessment on the 
building portfolio. Once a seismic scenario is defined, a pair of hori-
zontal orthogonal acceleration time histories have been applied at each 
building location by considering the geometrical attenuation. 

Fig. 14 depicts the Damage States (DSs) map of the selected district 

Fig. 13. View of Ideal City within the software’s main window and the dataflow for a disaster simulation.  

Table 3 
Characteristics of the four selected benchmark time histories.   

El Centro Kobe Hachinohe Northridge 

Date 5/18/1940 1/17/1995 5/16/1968 1/17/1994 
Event Imperial Valley Hyogoken Nanbu Tokachi-oki California 
Mw 6.9 6.8 8.2 6.7 
Depth [km] 16.00 17.60 26.00 11.30 
PGA [g] 0.35 0.82 0.23 0.84  
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under different seismic scenarios. Table 4 lists the percentage of building 
DSs: Northridge and Kobe scenarios mainly have caused almost com-
plete damage (about 86 % and 79 % of buildings, respectively). Only a 
few buildings have been found functional (around 1% ranging between 
undamaged and slightly damaged for both scenarios). Besides, 40 % of 
moderate damage and 27 % of complete damage has been experienced 
by the El Centro earthquake, while extensive and slight damage corre-
sponds to 14 % and 19 %, respectively. Hachinohe earthquake is the less 
disruptive scenario where most of the buildings remain functional, 52 % 
of buildings are either undamaged or slightly damaged, 37 % are 
moderately damaged, while only 9% collapse. 

The possibility to use parallel computing to run this demanding 

Fig. 14. Building DS maps of Ideal City district for (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) Northridge earthquake scenarios.  

Table 4 
Percentage of buildings DSs for each scenario.  

Damage States [%] El Centro Kobe Hachinohe Northridge 

No damage 0.62 0.03 5.9 0.03 
Slight 18.75 0.77 45.68 0.77 
Moderate 39.38 9.53 36.73 7.17 
Extensive 14.1 10.21 2.22 5.83 
Complete 27.14 79.47 9.47 86.19  

Fig. 15. Speedup ratio between Single-Core (SC) and Multiprocessing (MC) 
computational process. 
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Fig. 16. Visualization of interrupted roads for (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) Northridge earthquake scenarios.  

Fig. 17. Variation of the normalized average vertex degree (a) and normalized global efficiency (b) under different seismic scenarios.  
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computational analysis has been investigated. First, Single Core (SC) and 
Multi-Core (MC) processing have been compared in terms of elapsed 
time under different building cluster sizes. Fig. 15 illustrates the vari-
ability of the mean elapsed time ratio (speedup ratio) vs the number of 
buildings involved during the analysis. 

According to the numerical results, SC application is faster when the 
number of buildings is lower than 10. This is because MC frameworks 
require more time for spawning processes, assigning tasks, collecting 
data, and closing processes. Once the processes are spawned, they can be 
used without closing processes. In the selected case study, the speedup 

Fig. 18. Visualization of PG failure’s component for (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) Northridge earthquake scenarios.  

S. Marasco et al.                                                                                                                                                                                                                                



Sustainable Cities and Society 64 (2021) 102506

16

ratio of MC reaches the maximum efficiency when 1000 buildings are 
analyzed simultaneously. Under this condition, MC is 36 times faster 
than SC. When the top performance is reached, then an increase of the 
elapsed time is observed due to the thermal throttling caused by the CPU 
overheating. Under this condition, the new speedup ratio is about 30 
times faster than SC and remains almost constant until the end of the 
analysis. 

Once the building damage has been estimated, then different types of 
interdependencies have been investigated. First, the extension of debris 
caused by the building damage is evaluated using a machine learning 
algorithm and the corresponding obstructed roads are identified. Fig. 16 
illustrates the interrupted roads (red lines) caused by the four selected 
seismic scenarios for the considered district. Indeed, the Northridge 
earthquake has caused the largest number of blocked roads (30.48 %) 
followed by Kobe (21.29 %) and El Centro (14.49 %), while Hachinohe 
is the less disruptive seismic event with only 4.47 % of unfunctional 
roads. 

The blocked roads are not equally distributed over the city. Indeed, 
some districts are completely isolated due to the amount of debris pro-
duced, highlighting the importance of this type of analysis to plan effi-
cient evacuation and rescue operations. The average vertex degree and 
global efficiency have been calculated and normalized with respect to the 

undamaged conditions. Results are shown in Fig. 17 where it is possible 
to see the two indices reducing with the increment of the earthquake 
severity. 

The second interdependency that has been considered correlates the 
power distribution network with the building damage. The failed elec-
trical substations for the four different seismic events are shown in 
Fig. 18. 

In detail, the substations that remain functional for Northridge are 
12, for Kobe are 25, while for El Centro are 220, and for Hachinohe are 
747 out of a total of 1274 substations. These results show that the near- 
field earthquakes are more disruptive than the far-field earthquakes for 
the PG. In Fig. 19 is shown the impact of the PG’s disruption at the 
building level, where in red are the buildings without power. 

A simple resilience index (Rpower) has been introduced as the ratio 
between the number of users who still have access to electricity and the 
total population of Ideal City. 98.5 % of the population is without power 
after Northridge and Kobe scenarios, while about 80 % of the population 
has no power after the El Centro earthquake. Instead, Hachinohe causes 
a loss of power for about 40 % of users. 

Finally, the damage caused by the four benchmark scenarios on the 
WDN has been investigated. Northridge scenario induced the highest 
number of damaged pipes while Hachinohe induced the lowest one. 

Fig. 19. Visualization of buildings with and without electricity for (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) Northridge earthquake scenarios.  
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Fig. 20 depicts the drop in water pressure (m) in each building caused 
by the damage on the water pipes. The Northridge scenario induced the 
highest number of damaged pipes while Hachinohe induced the lowest 
one. The disruption of the pipes is a function of the earthquake char-
acteristics, such as Magnitude, epicenter, depth, etc. Looking at Table 3 
in the paper, Northridge earthquake, due to its shallow depth, is a near 
field earthquake. This makes it more disruptive for the water pipes of the 
Ideal city. 

Finally, the population response to emergency evacuation has been 
analyzed by the ABM layer of Ideal City. For example, the number of 
lightly injured individuals walking to hospitals and severely injured 
individuals that are waiting to be rescued are reported in Fig. 21. 

Furthermore, the platform can also be adopted at the design stage, e. 
g. to compute the minimum number of rescue resources (ambulances) to 
recover the seriously injured individuals within a fixed period for a 
certain earthquake scenario (Fig. 22). 

The four seismic benchmark scenarios have caused similar effects for 
all the infrastructures within Ideal city. Northridge and Kobe have found 
to be more disruptive due to the higher PGA. These two near-field 
seismic scenarios have caused more than 90 % of irreversible damage 
to the building portfolio. Their impact on the RTN have been also 
devastating, causing a considerable decrease in the normalized global 
efficiency of the transportation network around 45–55 %. A similar 
trend has been found in the PG, where more than 98 % is without power 
following the Northridge and Kobe earthquakes. Drastically reduction of 

water pressure has been also accounted for in the WDN after the 
occurrence of the two aforementioned seismic scenarios. Finally, the 
number of severely injured agents between 50000 and 60000 has been 
estimated. 

The Hachinoe scenario has found as the less disruptive scenario for 
all the networks, while El Centro induced a considerable level of irre-
versible damage on the analyzed infrastructure. More than 40 % of 
building stock has experienced irreversible damage following the El 
Centro scenario, while only 12 % has been found for Hachinoe. These 
results are also reflected on the RTN, where 75 % and 40 % of 
normalized global efficiency have been accounted. 20 % and 60 % of 
substations have been found functional following El Centro and Hachi-
noe scenarios, respectively. Finally, Hachinoe has caused only 10000 
severely injured agents, while after the occurrence of El Centro scenario, 
more than 35000 severely injured agents have been found. 

The large outcomes discrepancies between Hachinoe and El Centro 
are due to their seismological characteristics. Hachinoe is represented by 
a greater magnitude and hypocentral depth than El Centro. Therefore, 
the seismic wave propagation associated with the Hachinoe scenario is 
more affected by the geometrical attenuation. In fact, the PGA of 
Hachinoe is about 0.23 g, while 0.35 g is the one of El Centro. In the 
nonlinear time history analyses, such a kind of discrepancy of PGA will 
cause considerably different responses. 

Fig. 20. Water pressure distribution after (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) Northridge earthquake scenarios.  
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9. Concluding remarks 

A computational platform is presented in this paper to analyze the 
effects of seismic events on an urban community. The platform imple-
ments different layers, such as buildings, road transportation networks, 
power grid, water distribution networks, and socio-technical networks. 
Specific models have been developed to simulate the interdependency 
between different layers. The individual seismic response of each 
building is analyzed through a surrogate physical model, including 

inherent uncertainties. The seismic effects in terms of damage and 
serviceability for each layer can be computed and visualized. Further-
more, an agent-based model has been developed to simulate the emer-
gency evacuation process and the first-aid operations in post-disaster 
conditions. Future work is geared towards including gas and telecom-
munication interdependencies in the analyses. 

A hybrid model of a virtual city has been used to test the platform 
under four different seismic scenarios. The main innovative aspects and 
advantages of the proposed platform are: (i) damage and resilience 
assessment of critical infrastructures in a large-scale urban environment 
considering their interdependencies; (ii) graphic visualization of the 
results obtained by the different layers; (iii) multiprocessing computa-
tion; (iv) agent-based modeling for emergency management and 
evacuation. 

The platform is intended to support decision-makers and planners to 
analyze the community response to a seismic event and implement 
possible countermeasures to improve the overall resilience. The long- 
term objective is to make individual infrastructures safer, implement-
ing specific actions that allow each network to withstand external per-
turbations and to mitigate cascading effects due to interdependencies. 

The current state of the platform does not allow considering the re-
covery of the damaged structure and infrastructure. This is actually a 
work in progress that will be included in a future paper. The future work 
will address both the damage and the restoration analysis of the infra-
structure network by incorporation already-developed models within 
the platform (De Iuliis, Kammouh, Cimellaro, & Tesfamariam, 2019; 
Kammouh, Cimellaro, & Mahin, 2018). 

Fig. 21. Lightly injured agents walking to hospitals and severely injured waiting to be rescued vs time (hours): (a) El Centro, (b) Kobe, (c) Hachinohe, and (d) 
Northridge earthquake scenarios. 

Fig. 22. Kobe event: rescue time (hour of all severely injured individuals as a 
function of the number of ambulances. 
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