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 a b s t r a c t

Demand prediction is essential for effective management of Mobility-on-Demand (MoD) sys-
tems, as accurate forecasts enable better resource allocation, reduced wait times, and improved 
user satisfaction. Beyond that, probabilistic prediction methods that explicitly account for un-
certainty are particularly valuable, as it allows decision-makers to assess risk and make robust 
plans under uncertain operational environments. However, most existing approaches focus on 
point predictions, which fail to capture the full spectrum of possible future outcomes. For proba-
bilistic prediction, many methods typically rely on strong parametric distributional assumptions 
that may not accurately reflect the complex real-world environments. Nonparametric methods 
proposed in the literature, although promising, often suffer from high computational costs and 
model complexity, limiting their practical applicability. To overcome these challenges, we pro-
pose the Spatial-Temporal Graph Convolutional Network Variational Autoencoder (STGCN-VAE), 
a novel deep learning framework designed for uncertainty-aware probabilistic travel demand pre-
diction in MoD services. The STGCN-VAE effectively captures complex spatial-temporal depen-
dencies and inherent uncertainties in MoD demand data, generating diverse and realistic future 
demand scenarios and constructing comprehensive demand distributions. Specifically, the pro-
posed framework integrates three key components: a Spatial-Temporal Graph Convolutional Net-
work (STGCN) to learn complex spatial-temporal dependencies, a Variational Autoencoder (VAE) 
to compress these patterns into a latent space, and a Kernel Density Estimation (KDE) module to 
accurately construct probabilistic demand distributions and quantify uncertainties. Experiments 
on four different real-world MoD datasets including both rideshare and bikeshare services across 
different cities demonstrate that STGCN-VAE consistently outperforms state-of-the-art baselines 
in both point and probabilistic prediction, highlighting its robustness and broad transferability 
across service modes and urban contexts.

1.  Introduction

Mobility-on-Demand (MoD) systems, such as ride-hailing and ride-pooling provided by Uber, Lyft and DiDi, offer real-time, flexible 
mobility by matching passenger requests with available drivers through digital platforms. These services have rapidly gained popu-
larity by providing convenient, point-to-point transport, especially in areas where traditional public transit is less accessible (Lucken 
et al., 2019). In addition, they support the development of multi-modal transport by complementing public transit and active modes 
like walking and cycling, offering first- and last-mile connectivity and improving access to opportunities without the need for private 
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car ownership (Audenhove et al., 2020). As reported by Mahajan (2025), the global ride-hailing market is projected to grow from 
approximately $181.72 billion in 2025 to $441.20 billion by 2032, reflecting a compound annual growth rate (CAGR) of 13.5% .

As these services continue to expand, ensuring their operational efficiency becomes increasingly critical. A key functionality 
of these systems is their ability to make proactive decisions based on anticipated demand. Accurate demand forecasting enables 
platforms to anticipate when and where ride requests will occur, facilitating proactive decisions such as guiding drivers toward areas 
with expected high demand (Gao et al., 2021; Van Engelen et al., 2018) and implementing dynamic pricing strategies, such as surge 
pricing, in anticipation of imbalances between supply and demand (Wang and Yang, 2019). Without reliable forecasting, platforms 
lack the ability to optimize operations proactively and are limited to reactive and sub-optimal responses. Worse still, inaccurate 
predictions can mislead these decisions, sending drivers to the wrong areas, triggering inappropriate pricing responses, and thereby 
resulting in the inefficient matching between riders and available vehicles. These inefficiencies result in longer wait times, unnecessary 
travel for drivers, and missed revenue opportunities.

Given the central role of demand prediction in MoD operations, substantial research has focused on developing accurate fore-
casting methods. Traditional forecasting methods relied on classical time series models, such as Time-Varying Poisson Processes, 
ARIMA, and Vector AutoRegressive models, which provided point estimates of demand but struggled to capture complex urban 
dynamics (Yuan and Li, 2021). The advent of deep learning introduced neural network architectures, such as Convolutional Neural 
Networks (CNNs) (LeCun et al., 1998) and Recurrent Neural Networks (RNNs) (Elman, 1990), which significantly improved prediction 
accuracy by modeling temporal trends and local patterns. However, travel demand exhibits strong spatial and temporal dependen-
cies. To capture spatial correlations, such as those between neighboring city zones, recent studies leverage graph neural networks 
(GNNs) (Kipf and Welling, 2016), including Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) (Veličković 
et al., 2017), alongside temporal dynamics, achieving promising results.

MoD systems operate in highly dynamic environments influenced by external factors such as traffic congestion, weather conditions, 
and large-scale events (e.g., concerts or sports games). These factors introduce significant uncertainty, making single-point forecasts 
inadequate for robust decision-making (Gao et al., 2025). Understanding and quantifying uncertainty in demand forecasting is there-
fore essential, as it provides stakeholders with richer information to assess risks, supports robust planning under varying demand 
scenarios, and enhances transparency and fairness in system operations (Bhatt et al., 2021). To address this, probabilistic forecasting 
methods have emerged to estimate not only expected demand but also deliver possibility-aware insights to support decision-making 
under uncertainty. Parametric approaches, such as those assuming Gaussian or Negative Binomial distributions (Stoklosa et al., 2022), 
estimate distribution parameters but often rely on restrictive assumptions that fail to capture real-world complexity. For instance, 
Gaussian assumptions may poorly reflect the skewed or multimodal demand patterns typical of urban mobility systems (Gammelli 
et al., 2020). Nonparametric methods offer greater flexibility by avoiding predefined distributions, yet they frequently suffer from 
high computational costs or model complexity, limiting their applicability in real-time MoD settings.

In this study, we propose a novel deep learning framework, the Spatial-Temporal Graph Convolutional Network Variational Au-
toencoder (STGCN-VAE), to address these limitations and advance nonparametric probabilistic demand forecasting. Unlike traditional 
methods, STGCN-VAE directly learns demand distributions from data without relying on fixed parametric assumptions, enabling more 
accurate and flexible uncertainty quantification. Our framework integrates three key components: (i) the STGCN module captures 
intricate spatial-temporal dependencies across city regions, (ii) the Variational Autoencoder (VAE) maps these patterns into a latent 
space for diverse scenario sampling, and (iii) a Kernel Density Estimation (KDE) module constructs robust probability distributions 
for future demand. The integration is challenging, as it requires aligning the STGCN and VAE to bridge generative modeling and 
forecasting: the model must preserve multi-horizon temporal dependencies, maintain cross-region correlations, and reconstruct de-
mand distributions that capture the empirical characteristics of demand rather than being constrained by a fixed likelihood across 
scenarios. We achieve this by conditioning the VAE on STGCN features, so that the latent generator is tied to recent spatio-temporal 
context and produces coherent multi-step samples. During prediction, we draw multiple demand samples in parallel and use KDE to 
assemble a smooth predictive distribution with well-calibrated uncertainty intervals. Through extensive experiments on real-world 
MoD datasets, we demonstrate that STGCN-VAE substantially improves both forecasting accuracy and uncertainty quantification, 
while maintaining computational efficiency.

The main contributions of this paper are:

• We develop STGCN-VAE, a novel deep learning framework that integrates spatial-temporal graph convolution, variational autoen-
coder, and nonparametric density estimation to enable uncertainty-aware, probabilistic travel demand prediction for Mobility-on-
Demand (MoD) services.

• We design an architecture that is computationally efficient, modular, and scalable, enabling STGCN-VAE to generate probabilis-
tic demand forecasts with low computational cost and high flexibility. The STGCN backbone efficiently captures spatiotemporal 
dependencies. Probabilistic samples are generated directly from the latent space and decoder in parallel, eliminating the need for 
repeated full-model runs. The framework is modular, allowing the backbone to be replaced with alternative models to accommo-
date different input formats or spatiotemporal structures, enhancing generalizability. It is also scalable, capable of handling large 
numbers of locations and time steps without a proportional increase in computation, making it suitable for city-wide demand 
forecasting while maintaining high-quality predictions.

• We conduct extensive experiments on four real-world datasets, including rideshare and bikeshare services across cities with 
varying geographical scale and demand patterns. Our model significantly outperforms the baselines, e.g., it achieves up to a 
55.2% improvement in interval score on the New York Yellow Taxi Trip Records dataset and a 15% improvement on the Chicago 
rideshare dataset. In terms of interval width, it reduces uncertainty by 37.6% on the Washington DC taxi dataset and by 57.7% 
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on the Washington DC bikeshare dataset, compared to the state-of-the-art baseline. These datasets vary in geographical scale, 
demand patterns, and service type, providing a robust evaluation of model transferability. Across all four datasets, our proposed 
STGCN-VAE framework consistently surpasses existing methods in both point prediction accuracy and probabilistic forecasting 
metrics (e.g., CRPS, IS), highlighting its robustness and general applicability across diverse urban contexts and service modes.

The remainder of this paper is structured as follows: Section 2 reviews relevant literature. In Section 3, a formal problem statement is 
given, followed by details of our proposed method. Section 4 validates the proposed model’s performance using public datasets and 
provides a comprehensive analysis. Finally, Section 5 concludes the work and presents future research directions.

2.  Related work

This section reviews the literature on travel demand forecasting with a particular focus on uncertainty quantification. While 
accurate forecasting is essential for transport planning and resource allocation, existing methods often fail to provide reliable estimates 
of predictive uncertainty, especially in the presence of complex, nonlinear, and spatiotemporal dependencies. This review synthesizes 
recent advances in travel demand prediction and identifies key gaps that the proposed STGCN+VAE model— a hybrid Spatiotemporal 
Graph Convolutional Network and Variational Autoencoder–aims to address, especially in quantifying predictive uncertainty.

To facilitate clarity and guide the reader through a methodologically-driven narrative, the review is organized by problem type 
and analytical approach rather than by specific application domains. It begins by examining point forecasting methods, first cov-
ering traditional statistical models and then progressing to deep learning techniques. Subsequently, it transitions into probabilistic 
forecasting, highlighting a shift from parametric approaches, where distributional assumptions are explicitly defined, to more flexi-
ble non-parametric methods, which avoid assumptions about data distribution. Throughout this structured progression, the review 
highlights shared methodological challenges, particularly those involving spatiotemporal modeling, and uncertainty quantification.

2.1.  Point forecasting

2.1.1.  Traditional demand prediction models
Early studies in travel demand forecasting primarily utilized time series models such as ARIMA-based (Box et al., 2015) and 

regression-based techniques. For instance, Andreoni et al. (2006) proposed an ARIMAX model to forecast travel demand at Reggio 
Calabria airport using both univariate and multivariate ARIMA models. While univariate models effectively capture trends under 
stable conditions, the ARIMAX model—incorporating variables such as income and aircraft movements—accounts for policy impacts 
like the introduction of low-cost routes, predicting a 78% increase in demand in 2006. However, limitations arise due to data 
scarcity, sensitivity to boundary conditions, and difficulties in integrating fare estimates into the ARIMAX framework. To that end, 
Chen et al. (2019) proposesd a framework to predict short-term subway passenger flow during special events using smart card data, 
aiming to address the volatility and nonlinearity of passenger flow to reduce delays and improve service reliability. It employs a 
hybrid ARIMA-NAGARCH model, combining ARIMA for mean estimation with GARCH variants to capture volatility, asymmetry, and 
nonlinearity, and uses k-fold cross-validation to evaluate performance. The methodology involves four steps: establishing the mean 
model, selecting the volatility model, estimating the hybrid model with different residual distributions, and validating predictions. 
However, the study focuses on only two subway stations. While the chosen stations are indeed highly impacted by special events, 
the findings may not generalize to other parts of the subway network, or to other cities with different infrastructures, land-use 
patterns, or event characteristics. In another line of work, Wu et al. (2012) proposed a sparse Gaussian Process Regression (GPR) 
model for forecasting tourism demand in Hong Kong using monthly arrival data (1985–2008) from 13 source regions. This model 
outperforms ARMA and SVM approaches by reducing computational complexity and incorporating multi-factor inputs such as income 
and transportation costs. However, it still faces challenges in modeling non-stationary covariance structures.

Although these approaches effectively capture linear temporal patterns, they struggle to model the nonlinear dynamics (e.g., 
abrupt traffic shifts) and spatial dependencies (e.g., networked congestion) inherent in urban mobility systems. These limitations 
restrict their predictive accuracy in such complex environments.

2.1.2.  Deep learning based models
With the rise of deep learning, more expressive models have been developed to improve predictive accuracy in travel demand 

forecasting. Temporal dependencies—such as daily, weekly, and seasonal patterns—are commonly modeled using Recurrent Neural 
Networks (RNNs), including Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) and Gated Recurrent 
Units (GRUs) (Cho et al., 2014). For example, Ke et al. (2017) proposed the Fusion Convolutional Long Short-Term Memory Network 
(FCL-Net), which integrates convolutional LSTM, standard LSTM, and convolutional layers to forecast short-term passenger demand 
for on-demand ride services in Hangzhou, China, using DiDi Chuxing data. FCL-Net captures temporal patterns (e.g., peak-hour de-
mand), spatial dependencies (across a 7×7 grid), and exogenous factors (e.g., travel time rates and weather), outperforming traditional 
time-series models. However, its high computational complexity may limit practicality for real-time applications.

To address limitations of grid-based spatial representations, Liu et al. (2020) introduced the Physical-Virtual Collaboration Graph 
Network (PVCGN) for station-level metro ridership prediction. PVCGN integrates three types of graphs: a physical graph representing 
metro topology, a similarity graph built using Dynamic Time Warping to link stations with similar flow patterns, and a correlation 
graph reflecting origin-destination (OD) relationships. These are embedded into a Graph Convolutional Gated Recurrent Unit (GC-
GRU) and combined with a fully connected GRU for global trends within a Seq2Seq framework. PVCGN outperforms baselines like 
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LSTM by capturing complex spatial-temporal dynamics and extends effectively to online OD prediction. However, its generalizability 
may be limited when applied to systems with different topologies, scales, or passenger behaviors.

Despite these advancements, many existing models tend to focus on either temporal or spatial dependencies, while the interaction 
between the two is crucial for understanding urban mobility dynamics. To better capture these interactions, spatiotemporal forecast-
ing models have been developed. These models represent zones (e.g., administrative areas or demand clusters) as graph nodes and 
relationships between them (e.g., adjacency or travel flow) as edges, forming a sequence of graphs enriched with temporal informa-
tion. Graph Convolutional Network (GCN)-based models have shown strong potential in this domain. For instance, Yu et al. (2017) 
proposed Spatio-Temporal Graph Convolutional Networks (STGCN), a deep learning framework for traffic forecasting. STGCN models 
traffic networks as graphs and uses a fully convolutional architecture, combining graph convolutional layers (using Chebyshev or 
first-order approximations) to capture spatial features and gated temporal convolutions for time dynamics. These are structured into 
spatiotemporal blocks. STGCN outperforms baselines like ARIMA and LSTM, achieving lower errors and faster training and support for 
parallelization. Its flexibility allows application to a broad range of spatiotemporal sequence prediction tasks. Extending STGCN, Guo 
et al. (2019) proposed the Attention-based STGCN (ASTGCN) for traffic flow forecasting. ASTGCN introduces spatial and temporal 
attention mechanisms within each spatiotemporal block and incorporates separate components for different time periods—hourly, 
daily, and weekly—fusing their outputs for the final prediction. While effective, the use of fixed time segments may limit model flexi-
bility. Guo and Zhang (2020) introduced the Residual Spatio-Temporal Network (RSTN), a deep learning model for short-term travel 
demand forecasting in ride-sharing services like taxis. RSTN combines Fully Convolutional Neural Networks (FCNs) and a hybrid 
Conv-LSTM (CE-LSTM) module with residual connections to capture spatial, temporal, and exogenous factors (e.g., weather, time of 
day). It uses a Dynamic Request Vector (DRV) to model demand trends within time subintervals. While effective, RSTN’s performance 
may struggle with incomplete data or in highly dynamic systems, as noted by the authors. Furthermore, Tian and Chan (2021) intro-
duced the Spatial–Temporal Attention WaveNet (STAWnet), which captures complex spatiotemporal dependencies without relying on 
predefined graph structures. STAWnet integrates gated temporal convolutional networks (TCNs) with dilated convolutions to model 
long-range temporal patterns, and a dynamic attention network (DAN) with self-learned node embeddings to adaptively capture 
latent spatial relationships. This approach improves flexibility and interpretability via attention weight visualization. However, its 
lack of explicit adjacency modeling may hinder performance in short-term forecasting scenarios where local spatial dependencies 
are critical. Additionally, Ke et al. (2021) introduced the Spatio-Temporal Encoder-Decoder Residual Multi-Graph Convolutional Net-
work (ST-ED-RMGC) for short-term OD ride-sourcing demand prediction. This model constructs OD graphs with adjacency matrices 
to capture non-Euclidean geographical and semantic correlations, employing residual multi-graph convolutional networks for spatial 
modeling and LSTM networks for temporal modeling. A key limitation lies in its computational overhead from processing multiple 
graphs and large datasets. Furthermore, the model assumes relatively stable demand patterns based on historical data, which may 
reduce robustness to sudden disruptions or long-term shifts in mobility behavior.

Despite significant progress in improving point prediction accuracy, these models generate deterministic forecasts, predicting a 
single future value. This neglects the inherent uncertainty in travel demand arising from unpredictable factors such as traffic incidents, 
weather events, or individual human behavior. Ignoring such uncertainty can lead to overconfident predictions, undermining the 
reliability of planning and decision-making processes, and ultimately compromising system efficiency and user satisfaction.

2.2.  Probabilistic forecasting

2.2.1.  Parametric forecasting models
To address uncertainty in travel demand forecasting, recent research has explored probabilistic approaches that quantify uncer-

tainty by estimating prediction intervals (PIs) around forecasted values. A commonly used category of such methods is parametric 
forecasting, which assumes a specific distributional form for the target variable—such as Gaussian or Poisson—and estimates the 
corresponding parameters. One widely adopted technique is mean-variance estimation, which minimizes the negative log-likelihood 
(NLL) under the assumed distribution.

For instance, Wang et al. (2024) proposed the Probabilistic Graph Neural Network (Prob-GNN) framework, focusing on average 
demand forecasting. This approach combines deterministic components (GCN and GAT) with probabilistic assumptions — such as Ho-
moskedastic and Truncated Gaussian distributions — to model public transport and ride-sharing demand in Chicago. LSTM networks 
capture temporal dependencies, while multi-graph structures capture spatial correlations. Their findings highlight that the choice of 
distributional assumptions significantly impacts uncertainty estimation. However, a key limitation of this framework is its reliance 
on parametric assumptions, which may not adequately capture complex or non-parametric uncertainty patterns. This suggests the 
need for future comparisons with non-parametric alternatives. Similarly, Zhuang et al. (2022) introduced the Spatial-Temporal Zero-
Inflated Negative Binomial Graph Neural Network (STZINB-GNN) to model sparse Origin-Destination (OD) demand while quantifying 
uncertainty. The model integrates diffusion graph convolution and temporal convolutional networks to capture spatiotemporal cor-
relations, and employs a zero-inflated negative binomial distribution with a sparsity parameter 𝜋 to represent the high frequency of 
zeros in fine-grained OD matrices. While effective at fine resolutions, the model’s performance deteriorates at coarser temporal scales 
(e.g., 60-minute intervals), where simpler models may be more appropriate, indicating model’s sensitivity to data granularity. Another 
notable work is the DeepNegPol model by de Nailly et al. (2024), which also focuses on parametric forecasting for multivariate count 
data, using a “sums and shares” distribution framework combined with deep learning. It leverages recurrent neural networks (RNNs) 
to predict correlated and overdispersed count data, focusing on pedestrian counts at La Défense, a multimodal transport hub in Paris. 
The model uses two LSTMs: one to predict the total count (sum) via a negative binomial distribution, and another to distribute this 
sum across locations (shares) using a Dirichlet-Multinomial distribution. However, the “sums and shares” structure, while effective 
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for regular time series with predictable patterns (e.g., daily or weekly transportation cycles), is less suited for highly irregular or 
high-dimensional data, limiting the model’s generalizability across diverse multivariate count datasets. In another line of work, Zhu 
and Laptev (2017) proposed the BNN-LSTM model for predicting daily Uber trip counts. This approach combines LSTM networks in 
an encoder-decoder structure with a Gaussian likelihood for regression outputs. To capture uncertainty, it uses Monte Carlo dropout 
for epistemic uncertainty and a residual-based estimator for inherent noise. The model outperforms baselines such as vanilla LSTM 
and quantile random forests in terms of predictive accuracy. However, Bayesian inference methods typically require sampling-based 
or variational techniques, which are computationally intensive and may hinder their scalability in real-time applications.

A major limitation shared by these parametric approaches is their reliance on strong distributional assumptions. Presuming that 
travel demand follows predefined distributions—such as Gaussian, Poisson, or Negative Binomial—may introduce bias and reduce 
predictive reliability if the actual data deviates substantially from these assumptions.

2.2.2.  Nonparametric forecasting models
Non-parametric methods, on the other hand, offer a flexible alternative to the aforementioned parametric approaches by avoiding 

assumptions about the underlying data distribution. In the transportation domain, Gaussian Process (GP) models have been employed 
as non-parametric approaches for demand and traffic prediction. For example, Zhu et al. (2023b) developed a Bayesian Clustering 
Ensemble Gaussian Process (BCEGP) framework to capture spatiotemporal heterogeneity in network-wide traffic flow prediction, 
leveraging ensemble learning and Dirichlet process mixture clustering to improve scalability. Similarly, Zhu et al. (2023a) proposed 
additive Gaussian Process models for ride-sourcing operations, modeling matching and pickup processes with interpretable kernel 
structures. These studies highlight the flexibility of GPs in capturing nonlinear and complex patterns without strong distributional 
assumptions. As an extension of this approach, Neural Processes (NPs) have also been used as a scalable and data-driven approach 
for capturing complex spatiotemporal patterns in travel demand and traffic dynamics. For example, Li et al. (2024) proposed the 
Bidirectional Spatial-Temporal Transformer Neural Processes (Bi-STTNP) model for ride-sourcing demand forecasting, which provides 
probabilistic predictions and uncertainty estimates to support supply-demand management. This model integrates neural processes 
with bidirectional attention and spatial-temporal transformer modules to capture both supply-demand correlations and spatiotemporal 
dependencies. It outperforms baseline models in terms of both prediction accuracy and uncertainty quantification. Additionally, a 
predictability analysis categorizes regions by uncertainty levels using K-means clustering, offering insights for risk-aware operational 
strategies. However, the model’s complexity and computational cost, along with its dependence on high-quality, fine-grained data, 
may limit its practical applicability.

Building on the objective of producing high-quality uncertainty estimates without distributional assumptions, Pearce et al. (2018) 
developed a quality-driven (QD) method that constructs prediction intervals (PIs) based on a loss function designed to minimize 
interval width while maintaining desired coverage. Unlike Bi-STTNP, which directly estimates probabilistic uncertainty, the QD 
method focuses on ensuring the quality of PIs through a likelihood-based formulation compatible with gradient descent. Despite its 
strength in generating narrow intervals, the method’s lack of explicit probabilistic interpretation may limit its practical relevance 
in uncertainty-aware decision-making. Similar limitations apply to the Lower Upper Bound Estimation (LUBE) method proposed 
by Khosravi et al. (2010), where narrow but non-probabilistic PIs fail to reflect the underlying uncertainty dynamics of real-world 
systems.

Addressing a different aspect of uncertainty, Liu et al. (2023) introduced ProBTTE to improve travel time estimation (TTE) for 
on-demand ride-hailing by addressing uncertainty. This framework reformulates TTE as a multi-class classification problem using the 
Distributional Travel Time Encoding (DTTE) module, which discretizes travel time into intervals without assuming a predefined dis-
tribution shape. However, the method depends on large-scale historical data to generate route-wise priors, which may not generalize 
well in areas with sparse data or dynamic traffic conditions.

We also review relevant studies from the energy sector which we found inspiring and constructive in deepening our understanding 
of nonparametric approaches and their applications. For example, He and Li (2018) developed the QRNNE-UCV model to enhance 
short-term wind power forecasting by producing full probability density curves. This model combines a quantile regression neu-
ral network (QRNN), implemented via a single hidden-layer feedforward network, with kernel density estimation (KDE) using the 
Epanechnikov kernel. Bandwidth is optimized using unbiased cross-validation (UCV). Validated on wind power data from Ontario, 
Canada, the method provides detailed uncertainty quantification. However, the KDE bandwidth selection process can be computa-
tionally expensive and highly sensitive to the dataset. Similarly, Gu et al. (2021) proposed the LSTM-CM-NPKDE model, combining 
an improved Long Short-Term Memory (LSTM) network for multi-horizon wind power forecasting (4h, 24h, 72h), a Cloud Model 
(CM) for qualitative uncertainty assessment, and Non-Parametric Kernel Density Estimation (NPKDE) for deriving full probability 
density functions and confidence intervals of forecast errors. While the method improves accuracy and uncertainty quantification, its 
complexity and resource demands may hinder generalization and scalability across datasets with varying properties.

Despite their flexibility, non-parametric methods face several challenges. A common limitation is the computational burden, 
as these methods often estimate full distributions directly rather than a small number of parameters. Consequently, they require 
repeated sampling, dropout, or ensemble processes. Moreover, their performance is often highly sensitive to data quality, domain 
characteristics, and granularity, which can limit generalizability and robustness across different application settings.

2.3.  Summmary

Parametric approaches are widely used due to their simplicity and computational efficiency. However, their reliance on predefined 
distributional assumptions — such as Gaussian or Poisson — can result in biased or miscalibrated uncertainty estimates, particularly 
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Table 1 
Description of key notations.
 Symbol  Description
𝑣, 𝑉  A unique region in a city, a set of regions.
𝑡, 𝑇  Index of time interval in a sequence, the total number of time intervals sequence.
𝑥,𝑋  The number of orders in a region, the set of numbers of orders in all regions.
  A graph representing all regions as nodes, with edges encoding inter-regional relationships.
Γ  The convolution kernel over a time series sequence.
𝐾  The kernel size of a convolution kernel.
2𝐶𝑜  The number of output channels produced by the kernel.
⊙, 𝜎()  The element-wise Hadamard product, sigmoid function.
𝐿,𝐷,𝐴  The graph Laplacian matrix, the degree matrix, the adjacency matrix.
MSE  The mean squared error.

Fig. 1. Graph representation with time series. Graph 𝐺𝑡 with travel demand 𝑋𝑡 represents the travel demand status at each time step 𝑡.

when the actual data distribution deviates from these assumptions. Non-parametric models offer greater flexibility by directly learning 
uncertainty patterns from data without assuming any specific distribution, leading to improved uncertainty representation. Yet, 
existing non-parametric methods often suffer from high computational overhead, limited scalability, and sensitivity to data quality. To 
address these limitations, this study proposes a non-parametric probabilistic forecasting framework based on a Spatiotemporal Graph 
Convolutional Network combined with a Variational Autoencoder (STGCN+VAE). This model captures the nonlinear, spatiotemporal 
structure of travel demand while generating calibrated and distribution-free uncertainty estimates. Importantly, by leveraging the 
powerful spatiotemporal learning capabilities of STGCN and the highly efficient parallel sample generation enabled by VAE, our 
method achieves significantly higher computational efficiency compared to previous studies.

3.  Methodology

In this section, we first formalize the learning problem of spatiotemporal travel demand distribution forecasting. Thereafter we 
introduce the proposed spatiotemporal graph neural network-based encoder-decoder framework, followed by two subsections that 
describe the training and testing procedures. Table 1 summarizes the key notations frequently used in what follows.

3.1.  Travel demand distribution forecasting

We consider a travel demand distribution forecasting problem that is partitioned into 𝑛 distinct regions. Let 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛}
denote the set of all regions, where each 𝑣𝑖 ∈ 𝑉  represents a unique region within the area of interest, e.g. a city. For simplicity, we 
will drop the index 𝑖 when referring to any region as 𝑣. To represent the connections between these regions, we define the adjacency 
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matrix 𝐴 ∈ ℝ𝑛×𝑛, which is represented as:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 … 𝐴1𝑛
𝐴21 𝐴22 … 𝐴2𝑛
⋮ ⋮ ⋱ ⋮

𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎦

where 𝐴𝑖𝑗 = 1 if regions 𝑣𝑖 ∈ 𝑉  and 𝑣𝑗 ∈ 𝑉  are adjacent, and 𝐴𝑖𝑗 = 0 otherwise. Based on this partitioning, we construct a graph 
representation  = (𝑉 ,𝐴), where 𝑉  is a set of nodes (regions) and 𝐴 is the connection between them.

Let 𝑥𝑡𝑣 denote the number of orders in the region 𝑣 ∈ 𝑉  during the 𝑡𝑡ℎ time interval, where 𝑥𝑡𝑣 ∈ ℝ. We then define 𝑋𝑡 ∈ ℝ𝑛×1 as 
the number of orders in all regions at the 𝑡𝑡ℎ time interval, with 𝑥𝑡𝑣 as its entry for each region 𝑣.

For a sequence of 𝑇  time intervals, the travel demand sequence is denoted as 𝑋𝑡−𝑇+1∶𝑡 = [𝑋𝑡−𝑇+1,…𝑋𝑡−1, 𝑋𝑡], as illustrated in 
Fig. 1. This sequence captures the historical demand over the past 𝑇  intervals. Given the defined travel demand sequence, the demand 
forecasting problem is modeled as a function of the time dependent historical demand sequence. Formally, given 𝑋𝑡−𝑇+1∶𝑡, the goal 
is to forecast the conditional probability distribution of travel demand at the next time step, 𝑋𝑡+1, which is represented as:

𝑃 (𝑋𝑡+1
|𝑋𝑡−𝑇+1∶𝑡) (1)

In the remainder of this section, we introduce the proposed methodology for travel demand forecasting with the consideration of 
uncertainty.

3.2.  Spatiotemporal graph convolutional network variational autoencoder(STGCN-VAE)

Fig. 2 presents the overall structure of our proposed approach, which consists of three key modules. The first module leverages a 
spatiotemporal graph convolutional network (STGCN) to capture the complex spatial and temporal dependencies inherent in travel 
demand data, modeling both spatial interactions between regions and temporal patterns across time intervals. These learned features 
are then processed through an encoder-decoder structure, where the encoder compresses the high-dimensional spatiotemporal infor-
mation into a latent representation, effectively preserving critical features while reducing dimensionality. The decoder subsequently 
resamples from this latent representation to generate multiple predictions, representing a range of possible outcomes that capture 
the uncertainty present in real-world travel demand. To model the complete probability distribution of travel demand, we apply a 
non-parametric Kernel Density Estimation (KDE) technique. This module constructs a continuous, data-driven probability distribution 
based on the decoder’s predictions, unconstrained by predefined distributional assumptions, thereby offering a flexible and accurate 
representation of demand uncertainty. In the following subsections, we provide a detailed description of each of these three modules.

3.2.1.  STGCN for spatial and temporal information learning
The STGCN is designed to model both spatial dependencies (i.e., how regions are related in space through a graph) and temporal 

dependencies (i.e., how features of regions evolve over time) of travel demand data. It combines graph convolutional layers to capture 
spatial relationships with temporal convolutional layers to model dynamic changes over time. Our STGCN design follows the approach 
outlined in Yu et al. (2017).

The temporal convolutional aspect of STGCN captures patterns in travel demand data over time, as shown in Fig. 3. Specifically, 
given a time series sequence 𝑋𝑣 = [𝑥𝑡−𝑇+1𝑣 ,… , 𝑥𝑡𝑣] at a region 𝑣, where 𝑋𝑣 ∈ ℝ𝑇 , the model applies a convolution kernel Γ ∈ ℝ𝐾×2𝐶𝑜 . 
Here, 𝐾 represents the kernel size, indicating the length of the time window over which the convolution operates, and 2𝐶𝑜 defines 
the total number of output channels produced by the kernel. As the kernel slides over the sequence, it extracts temporal features, 
producing an output matrix [𝑃𝑄] ∈ ℝ(𝑇−𝐾+1)×(2𝐶𝑜). This matrix is then split along the channel dimension into two parts, 𝑃  and 𝑄, 
each of dimension (𝑇 −𝐾 + 1) × (𝐶𝑜). Then, 𝑃 , 𝑄 are applied with gated linear units (GLU) to control the information flows:

𝑃 ⊙ 𝜎(𝑄) ∈ ℝ(𝑇−𝐾+1)×𝐶𝑜 (2)

where 𝑃 , 𝑄 are input of gates in GLU respectively; ⊙ denotes the element-wise Hadamard product. The sigmoid gate 𝜎(𝑄) controls 
which input 𝑃  of the current states are relevant for discovering compositional structure and dynamic variances in time series.

The spatial convolution block is used to extract spatial dependencies inherited from travel demand data, and it adopts the spectral-
based graph convolution approach (Bruna et al., 2013). The spectral convolution relies on the graph Fourier transform, which is 
defined using the eigenvectors of the graph Laplacian matrix. The graph Laplacian matrix, denoted as 𝐿, is a pivotal operator in 
spectral graph theory, given by:

𝐿 = 𝐷 − 𝐴

where 𝐴 is the adjacency matrix as defined in Section 3.1, 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2,… , 𝑑𝑛) is the degree matrix, which is a diagonal matrix 
where its element 𝑑𝑖 =

∑𝑛
𝑗=1 𝐴𝑖𝑗 , representing the degree (number of connections) of region 𝑣𝑖. Then, the eigen-decomposition of the 

normalized Laplacian, denoted as 𝐿𝑛𝑜𝑟𝑚, is given by:
𝐿𝑛𝑜𝑟𝑚 = 𝐷−1∕2𝐿𝐷−1∕2 = 𝑈Λ𝑈⊤

where 𝑈 is the matrix of eigenvectors (orthonormal basis), and 𝑈⊤ is the transpose of 𝑈 , Λ is the diagonal matrix of eigenvalues. The 
simplified representation of the spectral convolution 𝐠 is provided by:

𝐠 ∗ 𝐬 = 𝑈𝐠(Λ)𝑈⊤𝐬
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Fig. 2. Overall architecture of the proposed method. During training, the STGCN and VAE modules are trained, while the latent space, decoder, 
and KDE are employed in the generation step. In the generation step, samples of predicted demand for all 𝑛 regions at time 𝑡 + 1 are drawn from the 
latent space and converted into region-wise predictive distributions using KDE.

Fig. 3. Temporal convolution block structure.
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where each element 𝑠𝑖 of 𝐬 is the signal value of the region 𝑣𝑖, which is the output of the previous temporal convolution block. The 
drawback of the implementation of spectral convolution is that the eigen-decomposition involves computing 𝑈 and Λ is computa-
tionally expensive, especially for large graphs. Therefore, Chebyshev polynomials approximation is used to approximate the spectral 
convolution (Defferrard et al., 2016), which is computationally efficient and avoids the need for explicit eigen-decomposition, given 
by:

𝐠 ∗ 𝐬 ≈
𝐾
∑

𝑘=0
𝜃𝑘𝑘(𝐿̃)𝐬

where 𝜃𝑘 are the coefficients of the Chebyshev polynomials; 𝑘(𝐿̃) are the Chebyshev polynomials of the rescaled Laplacian 𝐿̃ =
2𝐿∕𝜆max − 𝐼 , which normalizes the Laplacian such that its eigenvalues lie in the range [−1, 1]; 𝐾 is the order (or degree) of the 
polynomial approximation.

In order to fuse features from both spatial and temporal domains, the spatio-temporal convolutional block (ST-Conv block) is 
constructed to jointly process graph-structured time series. The input 𝑋𝑡−𝑇+1∶𝑡 is uniformly processed by ST-Conv blocks to explore 
spatial and temporal dependencies coherently. An output layer integrates comprehensive features to feed into the next module for 
multiple samples prediction. In the subsequent subsection, we explain the motivation and approach of shifting from generating a 
single forecast to producing a series of potential outcomes which jointly constitute the distribution of possible demand levels.

3.2.2.  Variational autoencoder (VAE) for information compression and samples generation
The VAE architecture in the model compresses information and generates new data samples. As shown in Fig. 2, the encoder, 

consisting of three fully connected layers, receives the learned features 𝐹 ∈ ℝ𝑛×𝑐 from the STGCN module, where 𝑛 is the number of 
regions and 𝑐 is the output channel number, and compresses them into a latent distribution parameterized by 𝜇 ∈ ℝ𝑖×𝑗 and 𝜎 ∈ ℝ𝑖×𝑗 , 
denoting as:

[𝜇, 𝜎] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐹 ) (3)

Here, 𝑖 and 𝑗 are determined by data complexity. Using the reparameterization trick, we sample 𝑧 = 𝜇 + 𝜎 ⋅ 𝜖, where 𝜖 ∼  (0, 1), trans-
forming 𝐹  into a dense latent representation 𝑧 that captures essential travel demand patterns, discards redundancies, and introduces 
randomness to explore the underlying distribution. The decoder reconstructs the next-step travel demand:

𝑋̂(𝑡+1) = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑧) (4)

where 𝑋̂(𝑡+1) is the next step travel demand we want to generate. With the predicted next-step travel demand, the loss function can 
be written as:

MSE = 1
𝑛

𝑛
∑

𝑖=1

(

𝑥𝑡+1𝑖 − 𝑥̂𝑡+1𝑖
)2

where 𝑛 is the number of regions and 𝑥𝑡+1𝑖  is the real demand value in region 𝑣𝑖 at next time step, 𝑥̂𝑡+1𝑖  is the prediction value. During 
the training process, we try to minimize the loss and test the model on the testing dataset.

Once training is complete, the model efficiently generates multiple demand samples using the VAE decoder. Since the generation 
process does not require running the entire model, it significantly reduces the computational load. This approach allows us to generate 
a vector of potential travel demand for each location in the next time step, enabling construction of a travel demand distribution via 
a kernel density estimation (KDE), which will be explained in the next subsection.

3.2.3.  Kernel density estimation for distribution construction
To estimate the density function that characterizes the distribution of the observed samples, we apply a non-parametric method 

known as Kernel Density Estimation (KDE). KDE approximates the probability density function of a random variable by smoothing 
the distribution over the observed samples, offering a continuous and flexible representation of the density. For each region, the 
respective KDE with a Gaussian kernel is expressed as:

𝑓 (𝑥) = 1

𝑁ℎ
√

2𝜋

𝑁
∑

𝑖=1
exp

(

−
(𝑥 − 𝑥𝑖)2

2ℎ2

)

where 𝑁 is the number of samples, 𝑥𝑖 represents the 𝑖𝑡ℎ sample at the next time step, and 𝑓 (𝑥) is the estimated density of travel 
demand 𝑥. The parameter ℎ is the bandwidth, which controls the smoothness of the estimate. The term exp

(

− (𝑥−𝑥𝑖)2

2ℎ2

)

 is the Gaussian 
kernel, which determines each sample’s contribution to the density at point 𝑥, and the summation aggregates the contributions of all 
samples.

In KDE, bandwidth is the key parameter that influences the smoothness of the estimate. Both overly narrow and overly wide 
bandwidths result in reduced accuracy. While careful bandwidth tuning is essential for optimal KDE performance, our study focuses 
on integrating KDE into the STGCN-VAE model to forecast taxi demand. We therefore leave extensive parameter optimization to 
future work, but include a sensitivity analysis in the experimental section to demonstrate the impact of bandwidth choice.
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Fig. 4. Training and testing process of the STGCN-VAE.

3.3.  Training process: Spatiotemporal learning and latent representation construction

The training process begins with time series data 𝑋𝑇 ∈ ℝ𝑇×𝑁  and Chebyshev polynomials 𝑘(𝐿) of the graph Laplacian 𝐿, which 
capture spatial dependencies. These inputs are processed by two stacked Spatio-Temporal Convolution (ST-Conv) blocks, each con-
sisting of a temporal convolution, a spatial convolution using 𝑘(𝐿), another temporal convolution, and a normalization layer. The 
resulting features are passed to an output block with two temporal convolution layers and a fully connected layer. The output is fed 
into the encoder of a Variational Autoencoder (VAE), which compresses it into a latent space of dimension 𝑑. The model applies the 
reparameterization trick to sample latent vectors 𝑧 ∼  (𝜇, 𝜎), decodes them into a vector of predictions, and computes the Mean 
Squared Error (MSE) loss between the predicted mean and the ground-truth future time steps. The parameters are updated via back-
propagation until convergence is achieved. A simplified illustration of the training process is shown in the left ’Training’ branch of 
Fig. 4, and the formalized workflow of the training process is summarized in Algorithm 1.

3.4.  Testing process: Probabilistic forecasting

The testing process leverages the trained STGCN-VAE model to generate probabilistic forecasts of travel demand. The testing 
phase follows the same data processing steps as in the training phase, ensuring consistency in the input representation. Specifically, 
the input time series data 𝑋𝑇  and Chebyshev polynomials 𝑘(𝐿) are fed through the ST-Conv blocks and VAE encoder to obtain the 
latent representation. However, unlike in the training phase, the objective during testing is to generate multiple samples for each 
time step, thereby capturing a range of potential future outcomes. This is achieved by repeatedly sampling latent vectors 𝑧 using the 
reparameterization trick. The decoder then produces multiple demand predictions for each sampled 𝑧, effectively generating a set of 
potential future demand values.

These samples are then fed into the Kernel Density Estimation (KDE) module, which constructs a continuous probability density 
function for the forecasted demand. The KDE module processes the set of generated samples to estimate the probability distribution 
of travel demand at the next time step. This distribution provides a comprehensive representation of forecast uncertainty, rather than 
a single-point estimate. A schematic representation of the testing process is shown in the right ‘Testing’ branch of Fig. 4, and the 
detailed workflow is outlined in Algorithm 2.
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Algorithm 1 STGCN-VAE training process.
1: Input: Time series data 𝑋𝑇 ∈ ℝ𝑇×𝑁 , Chebyshev polynomials 𝑘(𝐿)
2: Output: A list of predicted samples.
3: for each training epoch do
4:  Feed 𝑋𝑇  and 𝑘(𝐿) into the first ST-Conv block
5:  for each ST-Conv block do
6:  Apply temporal convolution
7:  Apply spatial convolution using 𝑘(𝐿)
8:  Apply another temporal convolution
9:  Apply normalization
10:  end for
11:  Feed output into the next ST-Conv block
12:  Feed ST-Conv output into the output block
13:   Apply two temporal convolution layers
14:   Apply a fully connected layer
15:  Feed result into VAE encoder
16:  Encode into latent representation
17:  Sample latent vectors using the reparameterization trick
18:  Decode latent vectors to reconstruct predicted samples
19:  Compute the mean of predicted samples
20:  Compute MSE between the mean and the ground-truth future target
21:  Backpropagate to update parameters
22: end for

It is worth noting that, in our framework, we train the model by minimizing the MSE between the mean of generated samples and 
the observed demand, while evaluation employs probabilistic metrics to assess the full predictive distribution. KDE is then applied 
post-training solely for visualization and summary statistics, not during optimization. We use MSE as a surrogate loss because it 
provides stability, scales well, and reduces computational load compared to distribution-aware losses such as CRPS or NLL. In a 
non-parametric, sample-based setting, those losses are resource-intensive because they require extensive calculations over the entire 
predictive distribution. By adopting MSE, our large graph-based model consistently delivers robust results, effectively supporting 
diverse scenario generation while maintaining computational efficiency.

Algorithm 2 STGCN-VAE testing process: Probabilistic forecasting.
1: Input: Time series data 𝑋𝑇 ∈ ℝ𝑇×𝑁 , Chebyshev polynomials 𝑘(𝐿), trained model parameters ∗

2: Output: Probabilistic distribution of forecasted values
3: Obtain latent representation as in Algorithm 1 (steps 3–16) using trained parameters ∗

4: Sample multiple latent vectors using reparameterization trick
5: Decode latent vectors to obtain multiple predicted samples
6: Feed predicted samples into Kernel Density Estimation (KDE)
7: Construct continuous probability density function from KDE
8: Return the probabilistic distribution

4.  Experiments

We conduct a series of extensive experiments to evaluate the proposed method introduced in Section 3. We assess its performance 
on real-world data and compare it with eight baseline models using six evaluation metrics, covering both point and probabilistic 
forecasting accuracy.

4.1.  Experimental setup

4.1.1.  Data and experimental settings
We conduct experiments using four different datasets (all for the months of January-March):

• Yellow Taxi Trip Records (New York City TLC, 2024)1: a public dataset that includes all MoD travel orders in New York city, 
containing 9,554,778 trip records.

1 https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Table 2 
Distribution of zone-level travel demand aggregated during the PM 
peak hour (18:00) across all days in the NYC and Chicago datasets.
 Distribution  NYC Counts  NYC High Demand  Chicago Counts
 Normal  13  5  10
 Gamma  8  8  28
 Beta  0  0  22
 Lognormal  48  20  17
 None  193  30  0
 Total  262  63  77

• Washington DC Open Data Taxi Trips (2024)2: a public dataset that contains all taxi trips in Washington DC, containing 640,720 
trip records.

• Chicago Rideshare Trips (2025)3: a public dataset reported by Transportation Network Providers (rideshare companies), contain-
ing 22,934,065 records.

• Capital Bikeshare Data (Washington DC, 2025)4: a public dataset recording bikeshare trips from the Capital Bikeshare system, 
containing 1,281,301 records.

All datasets record individual trips with metadata such as start time, start location, end time, and end location. In our study, we retain 
only the start time and start location, discarding other fields. For the first three datasets, trips are first mapped to regions based on 
postcode. Since the original data are collected at precise time points, we aggregate them into one-hour intervals. A new field, demand 
number, is then created to indicate the total number of trips in each interval.

For the Capital Bikeshare data, unlike the others which record pickup locations, the dataset reports origin stations (over 800 in 
total). To reduce data sparsity and improve consistency, we first aggregate stations by postcode and then apply the same hourly 
aggregation procedure. This significantly reduces both the data scale and sparsity, as many stations are geographically close and 
individually exhibit very low demand.

Fig. 5 visualizes the spatial divisions and average hourly demand across all datasets. Even though the absolute demand levels are 
not directly comparable due to differences in region definitions, the figure illustrates the distinct spatial demand patterns present in 
each dataset, highlighting the diversity of service modes and urban contexts considered in our evaluation.

After the data processing, we split the entire data into training set (Jan. 1st - Mar. 13th), validation set (Mar. 14th - Mar. 21st) 
and test set (Mar. 22nd - Mar. 31st) for training, validation, and testing, respectively. For each time series training round, the input 
data is structured as a 𝑇 × 𝑛 table, where 𝑇  represents time steps and 𝑛 denotes the regions. Each element in the table represents the 
travel demand at a given time and region.

To better understand regional travel demand distributions, we tested the New York and Chicago datasets against several candidate 
distributions using a p-value threshold of 0.05. We focused on the peak hour of 18:00, where demand was aggregated at the region 
level across all days. For each zone, the value corresponds to the total number of requests observed during this hour. As shown 
in Table 2, most New York regions do not conform to standard distributional forms. By contrast, in Chicago all 77 zones admit a 
parametric fit, but they split across families—10 normal, 28 gamma, 22 beta, and 17 lognormal—so no single form describes the 
city. 

All experiments are conducted on a single Apple Silicon M1 Pro-with 32GB of memory, using the PyTorch framework. Baselines 
are implemented based on their official source code and parameter settings as described in the respective original studies. The datasets 
are split into training, validation, and test sets in an 8:1:1 ratio. The best-performing model on the validation set is selected for testing. 
The prediction horizon is set to 3 steps. We use the RMSProp optimizer with an initial learning rate of 1 × 10−3. The latent space 
embedding dimension for both 𝜇 and 𝜎 is set to 64.

4.1.2.  Evaluation metrics
Six metrics are used to evaluate the performance of our approach. First, we use the mean absolute error (MAE) and root mean 

squared error (RMSE) to evaluate the performance for point estimation based on the mean. These two metrics evaluate the prediction 
accuracy and are defined as:

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑥𝑖 − 𝑥̂𝑖|| (5)

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑥𝑖 − 𝑥̂𝑖
)2 (6)

2 https://dcgov.app.box.com/v/TaxiTrips2024
3 https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2025-/6dvr-xwnh/about_data
4 https://capitalbikeshare.com/system-data
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Fig. 5. Average hourly travel demand heatmaps across four datasets. Darker regions represent higher demand.

where 𝑥̂𝑖 and 𝑥𝑖 are the predicted and ground-truth demand values of the 𝑖𝑡ℎ region, respectively, and 𝑛 is the total number of regions.
In addition, to quantify uncertainty, we use three metrics, namely Mean Prediction Interval Width (MPIW), Continuous Ranked 

Probability Score (CRPS), and Interval Score (IS) to evaluate the performance of probabilistic forecasting (Gneiting and Raftery, 
2007).

• MPIW assesses the average width of the prediction intervals, indicating interval tightness. A smaller MPIW suggests more confident 
predictions. It is defined as:

MPIW = 1
𝑛

𝑛
∑

𝑖=1

(

𝑈𝑖 − 𝐿𝑖
)

(7)
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where 𝐿𝑖 and 𝑈𝑖 represent the lower and upper bounds of the prediction interval for region 𝑣𝑖, respectively, which are computed 
with 10% to 90% confidence interval.

• CRPS treats the observed value as a step function in the form of a 0-1 CDF, providing a quadratic measure of discrepancy. It is 
formulated as:

CRPS(𝐹 , 𝑥) = ∫

(

𝐹 (𝑥𝑖) − 𝟏{𝑥𝑖≥𝑥}
)2

𝑑𝑥 (8)

where 𝐹  is the predicted CDF, 𝑥𝑖 is the predicted travel demand and 𝑥 is the ground truth travel demand. 𝟏(⋅) is an indicator 
function, the value is 1 when 𝑥𝑖 > 𝑥, otherwise 0. A lower CRPS indicates that the predicted distribution is closer to the observed 
outcome.

• IS evaluates the quality of prediction intervals, it balances the width of the prediction interval and the penalties for observed 
values falling outside the interval. It is defined as:

IS𝛼(𝐿,𝑈, 𝑥) = (𝑈 − 𝐿) + 2
𝛼
(𝐿 − 𝑥) ⋅ 𝟏(𝑥 < 𝐿) + 2

𝛼
(𝑥 − 𝑈 ) ⋅ 𝟏(𝑥 > 𝑈 ) (9)

where 𝐿 and 𝑈 represent the lower and upper bounds of the prediction interval for region 𝑣𝑖, for simplicity, we omit the subscript 
𝑣𝑖. 𝑥 is the ground truth travel demand, 𝛼 is the confidence level, and 𝟏(⋅) is an indicator function that equals 1 when the condition 
inside is true and 0 otherwise. A lower Interval Score indicates better calibration and sharpness of the prediction interval.

• Running time measures computational efficiency, in which we record both training and testing times (in minutes). Training time is 
measured from model initialization to convergence, while testing time refers to the total duration required to generate predictions 
for the entire test set.

4.1.3.  Baselines
We compare our proposed STGCN-VAE model with several benchmarks, including one point forecasting model and six probabilistic 

forecasting models:
• STGCN (Yu et al., 2017): A spatiotemporal graph convolutional network designed for point forecasting on graph-structured time 
series data. It serves as a strong baseline for deterministic forecasting and forms the foundation for our proposed STGCN-VAE 
model.

• STAWnet (Tian and Chan, 2021): Spatial-Temporal Attention Wavenet, an end-to-end multi-step traffic prediction model that 
captures complex spatial-temporal dependencies using temporal convolution and self-attention with self-learned node embeddings.

• STGCN + Normal: An extension of STGCN that incorporates a normal distribution over its predictions. By modeling the output as a 
Gaussian, it provides probabilistic forecasts, estimating uncertainty while retaining STGCN’s spatiotemporal modeling capabilities.

• STGCN + Log-normal: A variant of STGCN that uses a log-normal distribution for probabilistic forecasting. This approach is 
suited for data with positive values and skewed distributions, offering an alternative uncertainty estimation method compared to 
the normal distribution variant.

• DeepAR (Salinas et al., 2020): A deep autoregressive recurrent network designed for probabilistic forecasting. It uses an RNN 
architecture to model global time series, incorporating a likelihood term to produce uncertainty estimates across all input features. 
DeepAR is particularly effective for capturing temporal dependencies in large-scale time series datasets.

• BNN-LSTM (Zhu and Laptev, 2017): A Bayesian LSTM network with two LSTM layers, enabling probabilistic forecasting through 
Bayesian inference. By applying Monte Carlo dropout during inference, it estimates predictive uncertainty, making it suitable for 
time series tasks requiring robust uncertainty quantification.

• DGGP (Jiang et al., 2022): Deep graph Gaussian processes that combine graph-based spatial modeling with Gaussian processes 
for probabilistic forecasting. It uses RBF and Cosine kernels to capture complex spatiotemporal patterns, providing a flexible 
framework for uncertainty estimation on graph-structured data. 

• Prob-GNNs (Wang et al., 2024) A probabilistic graph neural network framework that quantifies spatiotemporal uncertainty in 
travel demand, robustly predicting ridership patterns under domain shifts and revealing peak-hour and high-volume area uncer-
tainties.

4.2.  Experimental results

In the following we present an in-depth analysis of the experimental results, focusing on the predictive accuracy, uncertainty 
quantification, and computational efficiency of the proposed STGCN-VAE model. We compare its performance with eight baseline 
models under various demand conditions using both point and probabilistic forecasting metrics. To better understand the model’s 
behavior, we also examine how results vary across high- and low-demand regions, explore how uncertainty varies by urban context 
and time, and investigate the differences between parametric and nonparametric modeling approaches.

4.2.1.  Predictive performance
A detailed comparison of the predictive performance is presented in Table 3. MAE and RMSE are evaluated across all seven models, 

while CRPS, MPIW, and IS are assessed for the seven probabilistic models. To better analyze performance differences, regions are 
categorized into low- and high-demand groups based on an average hourly demand threshold of 10, mitigating the dominance 
effect of high-demand regions. Each model’s results are averaged over five runs. The best performing model per evaluation metric is 
highlighted in bold.
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Table 3 
Comparison of predictive results across models on the New York City Trip Record dataset. (S+N: STGCN+Normal, S+L: STGCN+Lognormal, 
S+V: STGCN+VAE, our proposed model; model names abbreviated due to space constraints).
 Metric  Region  Point forecasting  Probabilistic forecasting

 Parametric  Non-parametric
 STGCN  STAWnet  S+N  S+L  BNN-LSTM  Prob-GNNs  DeepAR  DGGP  S+V

MAE
 All  5.7487  11.9538  5.8504  24.3598  10.0087  16.9312  11.0107  8.4483  5.4094
 Low demand  0.9431  2.0633  0.9548  1.7435  1.6095  14.8306  0.7750  1.4297  0.8815
 High demand  27.2737  26.9945  27.7788  125.6621  41.8215  26.3403  56.8581  37.5961  25.6908

RMSE
 All  29.3497  21.5188  26.0853  64.9564  32.5472  24.1395  35.6128  35.2685  19.9317
 Low demand  2.4184  3.4835  2.3556  4.0361  3.4655  15.0214  2.7630  3.2143  2.1532
 High demand  68.5096  28.7667  60.8557  151.8075  56.0011  46.7131  83.1558  62.3789  46.2324

MPIW
 All  –  –  29.4285  13761.1612  31.2340  39.8369  29.1572  34.8921  23.8823
 Low demand  –  –  3.3382  16234.3577  4.6783  7.8204  1.2152  5.1234  6.0574
 High demand  –  –  146.2911  2683.3019  154.9125  114.9107  154.3143  167.4532  103.7229

CRPS
 All  –  –  22.8911  24.4993  19.8754  34.6295  20.9385  21.3467  17.1134
 Low demand  –  –  3.5585  2.2019  1.5432  29.8844  0.9861  1.6789  1.0643
 High demand  –  –  109.4855  124.3728  98.7654  155.8835  110.3097  105.4321  88.9996

IS
 All  –  –  76.7607  13761.1699  38.5476  39.8369  41.9638  45.1234  19.4128
 Low demand  –  –  35.5485  16234.3681  4.8765  23.8254  3.5794  5.2345  3.8665
 High demand  –  –  261.3572  2683.3020  198.7654  114.7159  213.8939  220.9876  89.0475

Time  Train(min)  15  40  15  15  35  50  45  210  17
 Test(min)  1  5  1  1  5  8  5  20  2

As presented in Table 3, our proposed STGCN-VAE model (shaded in grey, last column) outperforms the baseline models across 
most metrics. For point forecasting, the results are presented in the first two rows of the table. The first row shows that our model 
achieves an MAE of 5.41 across all regions, a 5.9% improvement over STGCN, where STGCN is the strongest baseline for this metric. 
In high-demand regions, it achieves an MAE of 25.69, reducing the error by 5.8% compared to STGCN, which outperforms other 
baselines. For RMSE, the second row indicates that our model achieves 19.93 across all regions, a 23.6% reduction relative to 
STGCN+Normal, the best baseline for this metric. In high-demand regions, it yields 46.23, improving performance by 24% over 
STGCN+Normal. Although our model is primarily designed for probabilistic forecasting, it consistently outperforms STGCN in point 
forecasting across various metrics. This result underscores the robustness of our approach, as it not only captures uncertainty more 
effectively but also delivers more accurate point estimates than a model specifically optimized for deterministic predictions.

For probabilistic forecasting, our model consistently outperforms on average all baselines across regions, with particularly strong 
performance in high-demand areas. As shown in the third row of Table 3, it achieves an 18% improvement in MPIW over STGCN+Nor-
mal across all regions and a 29% improvement over STGCN+Normal in high-demand regions, where STGCN+Normal is the best-
performing baseline for this metric. For CRPS in the fourth row, it improves by 13.8% overall and by 9.8% in high-demand regions 
over BNN-LSTM, with BNN-LSTM being the strongest baseline for this metric. Finally, for IS in the fifth row, it achieves a 49.6% 
improvement across all regions and a 55.2% improvement in high-demand regions over BNN-LSTM, the strongest baseline here. 
These results highlight the proposed approach STGCN+VAE’s ability to generate high-quality predictive distributions, especially in 
high-demand regions.

However, in low-demand regions, our model slightly underperforms compared to DeepAR. This is likely due to data sparsity. In 
low-demand areas, travel demand is often zero for most time steps, which makes it difficult for sample-based methods like STGCN-
VAE to learn meaningful patterns. Since such methods generate predictions by sampling from learned distributions, excessive zeros 
hinder accurate distribution learning and can result in higher uncertainty or biased estimates. This challenge is further amplified 
by the graph-based nature of our model, which relies not only on a region’s own history but also on information from structurally 
related neighbors. Empirically, low-demand regions are highly likely to be surrounded by other low-demand regions, meaning that 
both local and neighboring signals are sparse, which further degrades learning quality. In contrast, time series forecasting models 
such as DeepAR, which directly estimate the mean and variance, are generally more robust in sparse settings, as they focus primarily 
on capturing central tendencies in historical data rather than learning from both spatial and temporal dependencies. However, such 
models often underperform in high-demand regions, where uncertainty is higher and spatial-temporal correlations are more complex. 
Importantly, our model performs strongly in high-demand regions, which are more critical in practice as they account for the majority 
of ride requests and directly influence operational decisions such as fleet relocation, pricing, and matching.

Furthermore, our approach significantly outperforms DeepAR, BNN-LSTM, and DGGP in terms of computational efficiency. Table 3 
records training and testing times in the last row. Training time is measured from initialization to convergence, showing that STGCN-
based models are more efficient than others due to their effective spatiotemporal dependency learning mechanism. In particular, 
it reduces training and testing time by more than half relative to DeepAR, with a 62% reduction in training time (17 vs. 45 mins) 
and a 60% reduction in testing time (2 vs. 5 mins). Relative to other baselines, our model also achieves significant improvements: 
STAWnet (58% faster training, 60% faster testing), BNN-LSTM (51% faster training, 60% faster testing), DGGP (92% faster training, 
90% faster testing), and Prob-GNNs (66% faster training, 75% faster testing). While parametric models predict only the mean and 
variance, our approach remains comparably efficient despite generating 100 samples per inference via the VAE decoder. This balance 
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Table 4 
Comparison of predictive results across models on Washington DC taxi dataset. (S+N: STGCN+Normal, S+L: STGCN+Lognormal, 
S+V: STGCN+VAE, our proposed model; model names abbreviated due to space constraints).
 Metric  Region  Point forecasting  Probabilistic forecasting

 Parametric  Non-parametric
 STGCN  STAWnet  S+N  S+L  BNN-LSTM  Prob-GNNs  DeepAR  DGGP  S+V

MAE
 All  1.1378  4.1979  1.2021  2.0125  1.4046  1.7656  1.4483  2.0087  0.9179
 Low demand  0.0465  0.2552  0.0531  1.1639  0.0054  0.0652  0.3297  0.3095  0.0115
 High demand  2.2292  4.2634  2.3511  3.5990  3.0331  3.5183  7.5961  6.8215  1.8243

RMSE
 All  4.9402  7.7103  5.1010  5.2927  6.1319  8.0275  7.2685  5.5472  3.5404
 Low demand  0.0926  0.9402  0.0860  1.1639  0.0735  0.1076  0.7143  0.5655  0.0661
 High demand  6.9859  7.7730  7.2134  8.8234  9.0200  11.4391  12.3789  9.0011  5.0065

MPIW
 All  –  –  2.9804  855.6571  5.7355  2.5313  7.8921  6.2340  1.5811
 Low demand  –  –  0.4281  937.8258  0.0001  1.4026  1.1234  0.9783  0.1106
 High demand  –  –  5.5327  702.0375  12.4111  3.6947  18.4532  20.9125  3.0516

CRPS
 All  –  –  1.8668  1.8128  0.7744  1.5080  5.3467  5.8754  1.8417
 Low demand  –  –  0.0453  0.9529  0.0001  0.0775  0.3789  0.5432  0.0177
 High demand  –  –  3.6883  3.4205  1.6758  3.1423  19.4321  16.7654  3.6657

IS
 All  –  –  4.5671  855.6620  7.3894  52.6456  7.1234  7.5476  3.2792
 Low demand  –  –  0.4434  937.8311  0.0217  1.4638  1.2345  1.1765  0.1257
 High demand  –  –  8.6909  702.0413  15.9649  105.4023  40.9876  35.7654  6.4328

Time  Train(min)  13  35  15  15  40  45  180  35  15
 Test(min)  1  5  1  1  5  8  16  5  2

Table 5 
Comparison of predictive results across models on Chicago rideshare dataset.(S+N: STGCN+Normal, S+L: STGCN+Lognormal, S+V: 
STGCN+VAE, our proposed model; model names abbreviated due to space constraints).
 Metric  Region  Point forecasting  Probabilistic forecasting

 Parametric  Non-parametric
 STGCN  STAWnet  S+N  S+L  BNN-LSTM  Prob-GNNs  DeepAR  DGGP  S+V

MAE
 All  40.3073  24.1664  55.8454  59.9482  50.4321  66.4161  47.5363  42.3894  23.8814
 Low demand  7.9235  7.1227  10.7209  7.9072  8.0470  11.4898  10.7983  7.2380  5.8113
 High demand  73.5434  41.5733  102.1573  113.3587  209.7438  122.7878  85.2411  188.9517  42.4271

RMSE
 All  116.2122  69.0882  149.4167  185.1795  162.3815  207.5255  122.1309  174.2864  67.8297
 Low demand  11.9019  11.1874  14.7481  11.1761  17.4629  16.227  14.9733  16.0873  8.4144
 High demand  164.9865  97.5690  212.1673  263.3574  282.9187  294.9521  173.1888  310.3476  96.1778

MPIW
 All  –  –  200.0194  219.7879  156.4732  222.3351  199.8660  171.9284  170.7719
 Low demand  –  –  37.6611  70.2834  43.9248  45.3467  58.4643  55.6125  35.6497
 High demand  –  –  366.6503  373.2268  772.5819  429.5074  344.9886  836.2745  309.4499

CRPS
 All  –  –  147.0282  102.9417  98.6527  164.1430  170.7946  207.9842  145.3260
 Low demand  –  –  32.7299  20.2880  27.8546  39.9279  26.8846  38.4012  33.9377
 High demand  –  –  264.3343  287.7705  497.3825  319.7848  326.1235  528.6197  259.6456

IS
 All  –  –  222.5982  231.3913  193.1748  2294.9114  480.1473  225.6841  185.4911
 Low demand  –  –  41.2715  70.7689  24.6971  233.4164  109.9827  26.1824  38.4222
 High demand  –  –  408.6967  396.2406  994.2816  4410.6558  860.0535  1106.4739  336.4302

Time  Train(min)  13  20  13  13  35  40  30  100  17
 Test(min)  1  3  1  1  5  6  3  10  2

between computational efficiency and probabilistic forecasting capability makes it well-suited for online applications, such as real-
time demand prediction in ride-hailing platforms, dynamic pricing systems, and adaptive fleet management.

An interesting observation from Table 3 is that STGCN+Lognormal performs significantly worse than STGCN+Normal, even 
though the only difference is the use of a lognormal instead of a Gaussian distribution. In contrast, our VAE-based approach learns 
the predictive distribution in a data-driven, non-parametric manner, avoiding reliance on rigid distributional forms. This flexibility 
allows it to better capture complex, multimodal, or skewed demand patterns, leading to more reliable uncertainty quantification. This 
is especially valuable in real-world ride-hailing settings where demand distributions often deviate from standard parametric shapes, 
as we verified in Table 2.

As for the Washington DC taxi dataset and the Chicago rideshare dataset, shown in Tables 4 and 5, our proposed STGCN-VAE 
model demonstrates consistent performance advantages across both point and probabilistic forecasting tasks.

As reported in Table 4, our model achieves the strongest overall results on the Washington DC taxi dataset. For point forecasting, 
it delivers the lowest errors across both MAE and RMSE. Averaged over all regions, STGCN-VAE reaches an MAE of 0.92, improving 
upon STGCN—the strongest baseline—by 19.3%. In high-demand regions, it reduces MAE to 1.82, a clear improvement over all 
competing methods. Similarly, for RMSE, our model achieves 3.54 overall and 5.00 in high-demand areas, corresponding to error 
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Table 6 
Comparison of predictive results across models on Washington DC bikeshare dataset. (S+N: STGCN+Normal, S+L: STGCN+Lognormal, 
S+V: STGCN+VAE, our proposed model; model names abbreviated due to space constraints).
 Metric  Region  Point forecasting  Probabilistic forecasting

 Parametric  Non-parametric
 STGCN  STAWnet  S+N  S+L  BNN-LSTM  Prob-GNNs  DeepAR  DGGP  S+V

MAE
 All  9.3599  8.7593  9.4426  20.4495  8.9576  11.9240  12.4326  9.5373  8.1848
 Low demand  1.1623  1.9231  1.5357  2.1500  1.4478  1.4806  1.6397  1.2714  1.3609
 High demand  18.0698  12.6734  17.8437  39.8928  36.9532  23.0201  23.9000  33.2245  15.4351

RMSE
 All  23.8387  18.3119  22.2216  44.9135  28.8924  29.9681  26.4479  31.4263  21.5475
 Low demand  2.4538  3.1416  2.3496  3.5986  3.0123  2.8551  2.9699  2.8476  2.7682
 High demand  34.1422  22.8374  31.8210  64.3953  49.8523  42.9377  37.8594  55.3071  30.8134

MPIW
 All  –  –  19.1583  664.0077  27.6152  38.2897  30.3608  30.4265  11.6821
 Low demand  –  –  3.0921  947.9519  4.0937  4.3600  4.3214  4.5662  1.6972
 High demand  –  –  36.2287  362.3170  137.8156  112.4650  58.0277  148.5621  22.2911

CRPS
 All  –  –  16.6771  20.0856  17.3265  21.0804  11.9945  18.7534  11.8485
 Low demand  –  –  2.0423  2.0019  1.3421  1.0369  1.4654  1.4573  1.2460
 High demand  –  –  32.2265  39.2994  87.5276  31.7516  23.1817  94.2315  23.1136

IS
 All  -  -  33.7017  669.2824  34.1068  364.1973  45.0575  40.5634  33.2454
 Low demand  –  –  5.9053  947.9544  4.3264  23.1970  6.9978  4.6932  5.3133
 High demand  –  –  63.2354  373.1933  176.8291  726.5094  85.4959  197.4532  62.9232

Time  Train(min)  8  15  8  8  16  18  17  35  8
 Test(min)  1  5  1  1  2  4  2  8  1

reductions of 28.4% and 28.3%, respectively, compared to the best baseline. These results highlight that even though our approach 
is tailored for probabilistic forecasting, it also yields highly competitive point predictions.

In terms of probabilistic forecasting, our model consistently provides narrower and more reliable predictive intervals. Across all 
regions, it achieves the smallest MPIW (1.58), reducing interval width by 37.6% compared to the next best model (Prob-GNNs). This 
improvement holds in high-demand regions, where interval sharpness is crucial. For CRPS, BNN-LSTM attains slightly lower values 
in sparse areas, but STGCN-VAE remains competitive, particularly in high-demand settings, where it achieves 3.67 compared to 1.68 
for BNN-LSTM. Importantly, for IS, our model records 3.28 overall and 6.43 in high-demand regions, outperforming all baselines by 
a large margin. While parametric approaches such as BNN-LSTM benefit from robustness in extremely sparse regions, they fall short 
in capturing the complex dynamics of dense urban demand. By contrast, STGCN-VAE excels in high-demand regions, which dominate 
practical ride-hailing operations and inform key decisions such as fleet allocation, pricing, and relocation.

As shown in Table 5, similar trends are observed on the Chicago rideshare dataset. For point forecasting, STGCN-VAE again achieves 
the strongest overall performance, recording the lowest MAE (23.88 overall) and RMSE (67.83 overall), improving upon the best 
baselines (STAWnet) by 1.2% and 1.8%, respectively. In high-demand regions, which are the most challenging, our model attains 
an MAE of 42.43 and RMSE of 96.18, remaining competitive with STAWnet and outperforming all other models. For probabilistic 
forecasting, STGCN-VAE consistently delivers sharper and more reliable predictive intervals, achieving the lowest MPIW in both low- 
and high-demand regions, as well as the lowest IS overall (185.49), surpassing all baselines. While BNN-LSTM and STGCN+Lognormal 
show slightly better CRPS in low-demand settings, STGCN-VAE outperforms them in high-demand regions, where accuracy and 
uncertainty calibration are most critical.  In addition to accuracy, STGCN-VAE is also computationally efficient. Training requires 
only 17 mins and testing 2 mins, which is significantly faster than more complex probabilistic baselines such as Prob-GNNs (40/6 
mins) and DGGP (100/10 mins), while still achieving stronger predictive performance. This balance between predictive accuracy and 
efficiency confirms the practicality of our approach for large-scale rideshare demand forecasting.

For the experiment on the Washington DC bikeshare dataset, as reported in Table 6, our proposed STGCN+VAE model delivers 
strong performance, particularly in probabilistic forecasting, with competitive point forecasting and high efficiency for the Washington 
DC bikeshare dataset.

For point forecasting, STGCN+VAE achieves an overall MAE of 8.18, improving on STGCN (9.36) by 12.6% and outperforming 
STAWnet (8.76, 6.6% worse). In high-demand regions, STGCN+VAE’s MAE (15.44) improves on STGCN (18.07) by 14.6%, though 
STAWnet leads (12.67, 25.6% better). For RMSE, STGCN+VAE records 21.55 overall, 9.6% better than STGCN (23.84) but behind 
STAWnet (18.31, 15.1% better). In high-demand areas, STGCN+VAE’s RMSE (30.81) improves on STGCN (34.14) by 9.8%. While 
not the top performer, STGCN+VAE is competitive despite its probabilistic focus.

In probabilistic forecasting, STGCN+VAE excels with the smallest MPIW (11.68 overall), reducing interval width by 57.7% over 
BNN-LSTM (27.62), with similar gains in low-demand (1.70, 45.1% better than STGCN+Normal) and high-demand (22.29, 38.5% 
better than STGCN+Normal). For CRPS, STGCN+VAE achieves 11.85 overall, slightly outperforming DeepAR (11.99, 1.2% better), 
and in high-demand areas, its 23.11 nearly matches DeepAR (23.18, 0.3% worse) while far surpassing BNN-LSTM (87.53, 73.6% 
better). For IS, STGCN+VAE delivers 33.25 overall, improving on STGCN+Normal (33.70) by 1.3%, and in high-demand regions, its 
62.92 is 0.5% better than STGCN+Normal (63.24), while significantly lower than BNN-LSTM (176.83, 64.4% better).  STGCN+VAE 
matches the fastest training (8min) and testing (1min) times, equalling STGCN and STGCN+Normal while outperforming DGGP (35 
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Fig. 6. Illustration of six selected regions: red denotes high-demand areas, while green denotes low-demand areas.

and 8min). Its tight intervals and reliable uncertainty make STGCN+VAE ideal for high-demand bike-sharing scenarios, enhancing 
decisions like bike rebalancing, despite some trade-offs in point forecasting accuracy. 

To visually illustrate the model’s performance, we select six representative regions from the New York, including three high-
demand and three low-demand areas, as shown in Fig. 6. This selection reflects a range of traffic conditions.

Fig. 7 compares the ground truth values with the ordered prediction intervals over a continuous 100-hour period. The orange 
line indicates the observed values, while the blue line and the shaded area represent the predicted values and the 90% predictive 
interval, respectively. In high-demand regions, the predicted mean (blue line) closely follows the observed values (orange line), and 
the predictive intervals remain well-calibrated and appropriately narrow. This suggests that our model effectively captures both 
central tendencies and uncertainty, providing reliable probabilistic forecasts. Such accurate and uncertainty-aware predictions are 
essential for decision-making in dynamic ride-hailing environments, where dispatching and pricing strategies depend on precise 
demand estimates. A closer examination of the figure reveals that the highest predictive uncertainty does not always coincide with 
peak demand periods. This observation aligns with real-world travel demand patterns, where uncertainty is influenced by various 
factors such as traffic conditions, event-driven fluctuations, and external disruptions rather than demand magnitude alone. However, 
parametric models that assume a Gaussian distribution often struggle to capture this nuanced behavior. These models explicitly predict 
the mean and variance under a fixed functional relationship, typically leading to the assumption that uncertainty grows monotonically 
with demand. As a result, they may overestimate or underestimate uncertainty in certain scenarios. As further illustrated in Fig. 7, low-
demand regions show lower prediction accuracy and interval coverage compared to high-demand regions. This underperformance is 
expected: in areas where both the region and its neighbors have very few non-zero demand values, the model has limited data to learn 
from, and the generated forecasts remain conservative. In such cases, short, unexpected increases in demand may not be captured 
by the predicted interval. However, this behavior also reflects a strength of the model: it avoids reacting to noise or overestimating 
demand where data are sparse. Even though there is still room to improve performance in these areas, the model remains reliable and 
well-calibrated in high-demand regions, which are most critical for practical applications. These observations highlight the importance 
of future work that specifically targets sparse regions, without compromising performance in high-demand regions.

4.2.2.  Uncertainty quantification
Next, we present our findings on uncertainty quantification by displaying prediction intervals for three representative regions 

in Manhattan. We do so for regions with different characteristics: workplace (Region 161), tourism (Region 230), and residential 
(Region 238), as shown in Fig. 8.

Transportation Research Part C 181 (2025) 105383 

18 



T. Peng et al.

Fig. 7. Comparison of targets and predictions across six regions (top: high-demand regions; bottom: low-demand regions).

Fig. 8. Three representative regions are selected and marked in red: a workplace area (Region 161), a tourism area (Region 230), and a residential 
area (Region 238).
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Fig. 9. Uncertainty quantification across three representative regions over two consecutive days (March 23, 2024, Sunday, and March 24, 2024, 
Monday).

The results are shown in Fig. 9. The figure shows the target demand (orange line), predicted demand (blue line), and associated 
prediction intervals (shaded blue area) over a 48-hour period, with the x-axis representing time (0–24h for each day) and the y-axis 
representing demand value. These regions were deliberately chosen for their distinct travel demand profiles, enabling a comprehensive 
exploration of how demand and its associated uncertainty fluctuate across diverse urban contexts. By examining these patterns over 
a weekend and a workday, we capture temporal variations that reflect differing activity rhythms, offering a robust testbed for our 
model’s ability to quantify uncertainty effectively.

In the workplace region (161), the target demand on Sunday exhibits a modest peak around 12 PM, reaching approximately 200 
trips per hour, before declining steadily into the evening. On Monday, the demand pattern shifts dramatically, with a pronounced 
peak at 5–6 PM, reaching nearly 600 trips, which aligns with the end of the typical workday and the evening commute. The predicted 
demand closely tracks the target values, with the blue line generally overlapping the orange line, indicating high predictive accuracy 
of our model. However, the prediction intervals widen significantly around 12 PM on both days, spanning from roughly 200 to 600 
units on Sunday and 100 to 700 units on Monday. This elevated uncertainty during midday likely stems from the heterogeneity of 
travel purposes, such as lunch breaks, meetings, or sporadic personal trips, which lack the structured regularity of commuting. In 
contrast, the intervals are narrower during the Monday evening peak (17–18 PM), spanning approximately 200 to 400 units, reflecting 
the more predictable flow of workers leaving offices.

In the tourism region (230), the target demand displays a more consistent profile across both days, fluctuating between 10 and 300 
units during daylight hours (roughly 6 AM to 6 PM) before dropping sharply to near-zero levels after 6 PM. This pattern reflects the 
continuous influx of visitors to attractions, largely unaffected by the weekday-weekend divide that governs workplace activity. The 
predicted demand again aligns well with the target, with minor deviations during the early morning hours (0–6 AM). However, the 
prediction intervals remain consistently wide throughout the day, often spanning from 100 to 300 units, even during peak demand 
periods around 12 PM. This persistent uncertainty reflects the unpredictable nature of tourist behavior, influenced by a complex 
interplay of factors: individual itineraries, group dynamics, weather conditions, and event schedules. Unlike the workplace region’s 
commute-driven predictability, tourism lacks a fixed temporal regularity, resulting in a diffuse demand pattern that challenges precise 
forecasting. The slight narrowing of intervals after 18 PM, where demand approaches zero, aligns with a natural tapering of activity 
as attractions close or visitors return to accommodations.

The residential region (238) shows comparable overall demand levels on both days but with distinct temporal signatures. On 
Sunday, the target demand peaks around 9–10 AM, reaching approximately 150 units, likely driven by leisure-oriented trips. On 
Monday, the peak shifts earlier to 6 AM, with demand spiking to around 200 units, corresponding to the morning commute as residents 
depart for work. A secondary peak on Monday around 6 PM is also visible, reflecting the evening return commute. The predicted 
demand closely follows the target, with the blue line nearly overlapping the orange line during these peak periods, highlighting the 
model’s accuracy for structured routines. Uncertainty is notably lower during commuting periods—both the Monday morning peak 
(6 AM) and evening peak (6 PM)—with prediction intervals spanning roughly 50 to 150 units, indicating a high degree of regularity 
in these movements. In contrast, the Sunday morning peak (9–10 AM) shows slightly wider intervals (approximately 90 to 200 units), 
possibly due to the discretionary nature of weekend activities, which vary more widely in timing and purpose than weekday routines. 
Across both days, midday hours (around 12 PM) exhibit broader intervals, suggesting a mix of secondary trips (e.g., shopping or 
social visits) that defy the predictability of peak commuting times.

A striking trend across all three regions is the consistent peak in uncertainty around 12 PM. This phenomenon likely arises from 
the convergence of diverse travel purposes during midday: professional errands and lunch trips in the workplace region, spontaneous 
sightseeing in the tourism region, and miscellaneous household activities in the residential region. Such multiplicity introduces greater 
stochasticity into the demand signal, complicating precise estimation. Conversely, uncertainty narrows during commuting hours (e.g., 
6–7 AM and 5–6 PM on Monday), where travel is dominated by habitual, work-related trips with well-defined spatial and temporal 
constraints. For instance, in the workplace region, the interval at 5 PM on Monday spans only 300 to 400 units, a much tighter range 
than the midday peak. This contrast highlights a key insight: the predictability of demand is closely tied to the degree of underlying 
behavioral regularity, with structured routines yielding tighter bounds than discretionary or heterogeneous activities.
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Fig. 10. Uncertainty quantification on region 161 over two consecutive days with and without VAE integration. (March 23, 2024, Sunday, and 
March 24, 2024, Monday).

These findings highlight the strength of our probabilistic approach, which combines predictive accuracy with explicit uncertainty 
quantification. The close alignment between predicted and target demand across all regions demonstrates the model’s ability to cap-
ture underlying patterns, while the prediction intervals provide a transparent measure of confidence in these estimates. By modeling 
not just point estimates but the full distribution of possible outcomes, our method captures the inherent variability in urban travel 
demand across different contexts, locations, and times. This added layer of information is especially valuable for decision makers — 
such as transport planners, ride-sharing operators, or policymakers — who must navigate uncertainty to optimize resource alloca-
tion, design responsive services, or mitigate congestion. For example, the wider intervals in the tourism region highlight the need 
for flexible capacity to accommodate unpredictable visitor flows, while the tighter bounds during commuting hours in the workplace 
and residential regions support more targeted scheduling of public transport services.

4.3.  Ablation study and hyperparameter sensitivity analysis

To further evaluate the robustness and interpretability of our proposed framework, we conduct two complementary analyses: an 
ablation study to isolate the contribution of the VAE module, and a hyperparameter sensitivity analysis to assess the stability of model 
performance under varying configurations.

Ablation study To investigate the contribution of the VAE to demand forecasting, we conducted an ablation study on region 161, 
over a continuous 48-hour period covering Sunday and Monday, as shown in Fig. 10. The VAE enhances interpretability by encoding 
temporal data into a latent space, capturing day-of-week variations, resulting in wider, more adaptive prediction intervals (left) that 
consistently encompass the target values. In contrast, the non-VAE variant (right) generates prediction intervals that remain nearly 
constant in width, failing to adjust to changes in demand volatility. This static behavior suggests that uncertainty is not adequately 
captured. In the non-VAE model, the uncertainty likely stems from model limitations rather than data variability. By contrast, the 
VAE’s probabilistic modeling enables practitioners to interpret the width of prediction intervals in relation to real-world activity 
patterns, with narrower intervals during stable periods and wider intervals during volatile periods such as rush hours. This provides 
a transparent diagnostic tool to trace demand drivers such as commuting or commercial activity, which is crucial for building trust 
and refining models in real-world applications.

Hyperparameter sensitivity analysis To evaluate the robustness of our VAE-based forecasting framework, we conducted a 
sensitivity analysis on three key hyperparameters: the latent dimension size (𝐿), the number of samples drawn during inference (𝑆), 
and the bandwidth (ℎ) used in KDE. These parameters directly influence the model’s capacity to encode temporal-spatial patterns, 
reconstruct meaningful distributions, and quantify predictive uncertainty.

As shown in Table 7, the bandwidth parameter ℎ, when varied under fixed latent dimension (𝐿 = 64) and sample size (𝑆 = 30), 
exhibits a U-shaped effect on performance. A smaller bandwidth (ℎ = 0.5) yields sharp and relatively narrow predictive intervals 
(MPIW = 22.23) and the best RMSE (19.41), but suffers from degraded probabilistic scores (CRPS = 19.12, IS = 25.88), likely 
due to overfitting and increased noise sensitivity in KDE. Increasing the bandwidth to 2.0 results in smoother but overly diffused 
distributions, reflected in the worst IS (27.67) and the widest intervals (MPIW = 24.54). The configuration with ℎ = 1.0 achieves the 
best balance across all metrics, providing the lowest CRPS (17.11), MAE (5.41), and IS (19.41), while maintaining reasonably tight 
intervals (MPIW = 23.88). These results suggest that ℎ = 1.0 effectively smooths the sample distribution without losing sharpness or 
introducing bias. When varying the number of samples (𝑆) under fixed 𝐿 = 64 and ℎ = 1.0, we observe that too few samples (𝑆 = 15) 
yield narrower intervals (MPIW = 15.23) and a strong IS (21.98), but slightly worse CRPS (18.66) and MAE (5.64), indicating reduced 
robustness in reconstructing the distribution. Increasing to 𝑆 = 60 leads to higher errors (MAE = 6.15, CRPS = 19.23) without 
clear gains in uncertainty quantification, suggesting diminishing returns and possible overfitting to noise. The configuration 𝑆 = 30
achieves a desirable trade-off between probabilistic accuracy and computational efficiency.  Lastly, varying the latent dimension size 
𝐿 under fixed 𝑆 = 30 and ℎ = 1.0 reveals that both under- and over-parameterization degrade model performance. A small latent 
space (𝐿 = 32) fails to capture complex demand patterns, resulting in high errors (MAE = 9.63, RMSE = 32.53) and wide intervals 
(MPIW = 43.74). In contrast, a large latent space (𝐿 = 128) produces overconfident yet inaccurate predictions: although the intervals 
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Table 7 
Parameter sensitivity (𝐿: Latent: dimension of latent space in VAE; 
𝑆: Sample: number of samples generated for distribution construc-
tion; ℎ: bandwidth of kernel in KDE)). Metrics (↓ better). ⋆ denotes 
the configuration used in the main experiments.
 (L, S, h)  IS ↓  CRPS ↓  MAE ↓  RMSE ↓  MPIW ↓
 Varying bandwidth ℎ (fix 𝐿=64, 𝑆=30)
 (64, 30, 0.5)  25.88  19.12  5.71  19.41  22.23
 (64, 30, 1.0) ⋆  19.41  17.11  5.41  19.93  23.88
 (64, 30, 2.0)  27.67  19.98  5.71  19.41  24.54
 Varying samples 𝑆 (fix 𝐿=64, ℎ=1.0)
 (64, 15, 1.0)  21.98  18.66  5.64  17.80  15.23
 (64, 30, 1.0) ⋆  19.41  17.11  5.41  19.93  23.88
 (64, 60, 1.0)  26.92  19.23  6.15  20.98  21.91
 Varying latent dimension 𝐿 (fix 𝑆=30, ℎ=1.0)
 (32, 30, 1.0)  50.55  22.20  9.63  32.53  43.74
 (64, 30, 1.0) ⋆  19.41  17.11  5.41  19.93  23.88
 (128, 30, 1.0)  29.45  18.63  8.83  28.75  10.60

are narrow (MPIW = 10.60), the MAE (8.83) and RMSE (28.75) are significantly worse, reflecting overfitting and bias. The best 
overall performance is achieved at 𝐿 = 64, which balances representational power and generalization ability. 

Overall, the experiments reveal three main patterns: (i) ℎ shows a U-shape, with ℎ=1.0 balancing calibration (IS/CRPS) against 
interval width (MPIW); (ii) fewer samples (𝑆=15) sharpen intervals but hurt CRPS, whereas 𝑆=30 offers the best trade-off; and (iii) 
both too small and too large latent sizes degrade accuracy, with 𝐿=64 yielding the most favorable results. This analysis highlights the 
importance of carefully tuning latent representation, sampling depth, and distribution smoothing when applying generative models to 
travel demand forecasting. Future work could explore adaptive strategies for hyperparameter selection to improve robustness across 
diverse spatial and temporal contexts. 

5.  Conclusion

In this study, we proposed STGCN-VAE, a novel probabilistic framework for travel demand forecasting that not only quantifies un-
certainty beyond state-of-the-art models but also demonstrates robustness and general applicability across diverse urban contexts and 
service modes through extensive real-world evaluations. Unlike parametric probability forecasting approaches, STGCN-VAE adopts 
a nonparametric paradigm to predict the underlying distribution of travel demand. The framework leverages a Spatio-Temporal 
Graph Convolutional Network (STGCN) to efficiently capture spatial and temporal dependencies, extracting robust features from the 
data. These features are then compressed into a latent embedding by a Variational Autoencoder (VAE) encoder. Through sampling 
and reparameterization in the latent space, the decoder reconstructs the demand distribution. During inference, multiple samples 
are generated, fitted to a Kernel Density Estimator (KDE), and subjected to statistical operations to quantify uncertainty. Extensive 
experiments on real-world public datasets demonstrate that STGCN-VAE significantly outperforms baseline models, delivering accu-
rate point forecasts and robust distribution forecasts with probability distributions. This enables uncertainty quantification for travel 
demand, providing a reliable and interpretable forecasting solution.

Despite its strong performance, STGCN-VAE has several limitations. It does not explicitly leverage supply-demand interactions, 
may miss unfulfilled demand, and lacks destination information. Additionally, like many machine learning models, it underperforms 
in low-demand regions due to data sparsity. Recognizing these limitations highlights areas for refinement and the need for careful 
data integration and sparsity-aware modeling

Building on these reflections, future work should focus on further enhancing the framework’s flexibility, accuracy, and applicabil-
ity. First, given the modular nature of STGCN-VAE, future research can explore replacing or augmenting the STGCN component with 
recent advances in spatiotemporal modeling, such as attention mechanisms or transformer-based architectures, to improve scalability 
and representational power. Second, integrating heterogeneous data sources — such as weather conditions, special events, and socio-
economic indicators — offers a promising direction for multimodal data fusion that could enhance predictive performance. Third, 
while our current framework employs MSE on the mean of generated scenarios to ensure stable and scalable training, the evaluation 
relies on probabilistic metrics such as CRPS, IS. This creates a partial mismatch between training and evaluation objectives. In future 
work, we plan to explore mixed or distribution-aware training objectives, for example, by incorporating differentiable approxima-
tions of probabilistic scoring rules (e.g., CRPS) or hybrid losses that jointly balance point accuracy and distributional calibration. 
Such extensions could further align the optimization process with evaluation criteria and improve the methodological contribution 
of non-parametric generative models for travel demand prediction. Fourth, sparsity handling, like many machine learning models, 
our approach underperforms in low-demand regions due to data sparsity compared to high-demand regions, where statistical models 
often achieve better robustness. Integrating sparsity-aware mechanisms into our framework would therefore be beneficial and rep-
resents an important direction for future work. Lastly, future work may assess the generalizability of the framework by applying it 
to related forecasting tasks, including energy consumption, bike-sharing demand, and traffic flow prediction, thereby evaluating its 
robustness across domains.
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