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ARTICLE INFO ABSTRACT
Keywords: Demand prediction is essential for effective management of Mobility-on-Demand (MoD) sys-
Mobility-on-demand services tems, as accurate forecasts enable better resource allocation, reduced wait times, and improved

Probabilistic forecasting

user satisfaction. Beyond that, probabilistic prediction methods that explicitly account for un-
Travel demand

certainty are particularly valuable, as it allows decision-makers to assess risk and make robust
plans under uncertain operational environments. However, most existing approaches focus on
point predictions, which fail to capture the full spectrum of possible future outcomes. For proba-
bilistic prediction, many methods typically rely on strong parametric distributional assumptions
that may not accurately reflect the complex real-world environments. Nonparametric methods
proposed in the literature, although promising, often suffer from high computational costs and
model complexity, limiting their practical applicability. To overcome these challenges, we pro-
pose the Spatial-Temporal Graph Convolutional Network Variational Autoencoder (STGCN-VAE),
anovel deep learning framework designed for uncertainty-aware probabilistic travel demand pre-
diction in MoD services. The STGCN-VAE effectively captures complex spatial-temporal depen-
dencies and inherent uncertainties in MoD demand data, generating diverse and realistic future
demand scenarios and constructing comprehensive demand distributions. Specifically, the pro-
posed framework integrates three key components: a Spatial-Temporal Graph Convolutional Net-
work (STGCN) to learn complex spatial-temporal dependencies, a Variational Autoencoder (VAE)
to compress these patterns into a latent space, and a Kernel Density Estimation (KDE) module to
accurately construct probabilistic demand distributions and quantify uncertainties. Experiments
on four different real-world MoD datasets including both rideshare and bikeshare services across
different cities demonstrate that STGCN-VAE consistently outperforms state-of-the-art baselines
in both point and probabilistic prediction, highlighting its robustness and broad transferability
across service modes and urban contexts.

Variational autoencoder

1. Introduction

Mobility-on-Demand (MoD) systems, such as ride-hailing and ride-pooling provided by Uber, Lyft and DiDi, offer real-time, flexible
mobility by matching passenger requests with available drivers through digital platforms. These services have rapidly gained popu-
larity by providing convenient, point-to-point transport, especially in areas where traditional public transit is less accessible (Lucken
et al., 2019). In addition, they support the development of multi-modal transport by complementing public transit and active modes
like walking and cycling, offering first- and last-mile connectivity and improving access to opportunities without the need for private
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car ownership (Audenhove et al., 2020). As reported by Mahajan (2025), the global ride-hailing market is projected to grow from
approximately $181.72 billion in 2025 to $441.20 billion by 2032, reflecting a compound annual growth rate (CAGR) of 13.5% .

As these services continue to expand, ensuring their operational efficiency becomes increasingly critical. A key functionality
of these systems is their ability to make proactive decisions based on anticipated demand. Accurate demand forecasting enables
platforms to anticipate when and where ride requests will occur, facilitating proactive decisions such as guiding drivers toward areas
with expected high demand (Gao et al., 2021; Van Engelen et al., 2018) and implementing dynamic pricing strategies, such as surge
pricing, in anticipation of imbalances between supply and demand (Wang and Yang, 2019). Without reliable forecasting, platforms
lack the ability to optimize operations proactively and are limited to reactive and sub-optimal responses. Worse still, inaccurate
predictions can mislead these decisions, sending drivers to the wrong areas, triggering inappropriate pricing responses, and thereby
resulting in the inefficient matching between riders and available vehicles. These inefficiencies result in longer wait times, unnecessary
travel for drivers, and missed revenue opportunities.

Given the central role of demand prediction in MoD operations, substantial research has focused on developing accurate fore-
casting methods. Traditional forecasting methods relied on classical time series models, such as Time-Varying Poisson Processes,
ARIMA, and Vector AutoRegressive models, which provided point estimates of demand but struggled to capture complex urban
dynamics (Yuan and Li, 2021). The advent of deep learning introduced neural network architectures, such as Convolutional Neural
Networks (CNNs) (LeCun et al., 1998) and Recurrent Neural Networks (RNNs) (Elman, 1990), which significantly improved prediction
accuracy by modeling temporal trends and local patterns. However, travel demand exhibits strong spatial and temporal dependen-
cies. To capture spatial correlations, such as those between neighboring city zones, recent studies leverage graph neural networks
(GNNs) (Kipf and Welling, 2016), including Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) (Velickovic¢
et al., 2017), alongside temporal dynamics, achieving promising results.

MoD systems operate in highly dynamic environments influenced by external factors such as traffic congestion, weather conditions,
and large-scale events (e.g., concerts or sports games). These factors introduce significant uncertainty, making single-point forecasts
inadequate for robust decision-making (Gao et al., 2025). Understanding and quantifying uncertainty in demand forecasting is there-
fore essential, as it provides stakeholders with richer information to assess risks, supports robust planning under varying demand
scenarios, and enhances transparency and fairness in system operations (Bhatt et al., 2021). To address this, probabilistic forecasting
methods have emerged to estimate not only expected demand but also deliver possibility-aware insights to support decision-making
under uncertainty. Parametric approaches, such as those assuming Gaussian or Negative Binomial distributions (Stoklosa et al., 2022),
estimate distribution parameters but often rely on restrictive assumptions that fail to capture real-world complexity. For instance,
Gaussian assumptions may poorly reflect the skewed or multimodal demand patterns typical of urban mobility systems (Gammelli
et al., 2020). Nonparametric methods offer greater flexibility by avoiding predefined distributions, yet they frequently suffer from
high computational costs or model complexity, limiting their applicability in real-time MoD settings.

In this study, we propose a novel deep learning framework, the Spatial-Temporal Graph Convolutional Network Variational Au-
toencoder (STGCN-VAE), to address these limitations and advance nonparametric probabilistic demand forecasting. Unlike traditional
methods, STGCN-VAE directly learns demand distributions from data without relying on fixed parametric assumptions, enabling more
accurate and flexible uncertainty quantification. Our framework integrates three key components: (i) the STGCN module captures
intricate spatial-temporal dependencies across city regions, (ii) the Variational Autoencoder (VAE) maps these patterns into a latent
space for diverse scenario sampling, and (iii) a Kernel Density Estimation (KDE) module constructs robust probability distributions
for future demand. The integration is challenging, as it requires aligning the STGCN and VAE to bridge generative modeling and
forecasting: the model must preserve multi-horizon temporal dependencies, maintain cross-region correlations, and reconstruct de-
mand distributions that capture the empirical characteristics of demand rather than being constrained by a fixed likelihood across
scenarios. We achieve this by conditioning the VAE on STGCN features, so that the latent generator is tied to recent spatio-temporal
context and produces coherent multi-step samples. During prediction, we draw multiple demand samples in parallel and use KDE to
assemble a smooth predictive distribution with well-calibrated uncertainty intervals. Through extensive experiments on real-world
MoD datasets, we demonstrate that STGCN-VAE substantially improves both forecasting accuracy and uncertainty quantification,
while maintaining computational efficiency.

The main contributions of this paper are:

¢ We develop STGCN-VAE, a novel deep learning framework that integrates spatial-temporal graph convolution, variational autoen-
coder, and nonparametric density estimation to enable uncertainty-aware, probabilistic travel demand prediction for Mobility-on-
Demand (MoD) services.

e We design an architecture that is computationally efficient, modular, and scalable, enabling STGCN-VAE to generate probabilis-
tic demand forecasts with low computational cost and high flexibility. The STGCN backbone efficiently captures spatiotemporal
dependencies. Probabilistic samples are generated directly from the latent space and decoder in parallel, eliminating the need for
repeated full-model runs. The framework is modular, allowing the backbone to be replaced with alternative models to accommo-
date different input formats or spatiotemporal structures, enhancing generalizability. It is also scalable, capable of handling large
numbers of locations and time steps without a proportional increase in computation, making it suitable for city-wide demand
forecasting while maintaining high-quality predictions.

e We conduct extensive experiments on four real-world datasets, including rideshare and bikeshare services across cities with
varying geographical scale and demand patterns. Our model significantly outperforms the baselines, e.g., it achieves up to a
55.2 % improvement in interval score on the New York Yellow Taxi Trip Records dataset and a 15 % improvement on the Chicago
rideshare dataset. In terms of interval width, it reduces uncertainty by 37.6 % on the Washington DC taxi dataset and by 57.7 %
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on the Washington DC bikeshare dataset, compared to the state-of-the-art baseline. These datasets vary in geographical scale,
demand patterns, and service type, providing a robust evaluation of model transferability. Across all four datasets, our proposed
STGCN-VAE framework consistently surpasses existing methods in both point prediction accuracy and probabilistic forecasting
metrics (e.g., CRPS, IS), highlighting its robustness and general applicability across diverse urban contexts and service modes.

The remainder of this paper is structured as follows: Section 2 reviews relevant literature. In Section 3, a formal problem statement is
given, followed by details of our proposed method. Section 4 validates the proposed model’s performance using public datasets and
provides a comprehensive analysis. Finally, Section 5 concludes the work and presents future research directions.

2. Related work

This section reviews the literature on travel demand forecasting with a particular focus on uncertainty quantification. While
accurate forecasting is essential for transport planning and resource allocation, existing methods often fail to provide reliable estimates
of predictive uncertainty, especially in the presence of complex, nonlinear, and spatiotemporal dependencies. This review synthesizes
recent advances in travel demand prediction and identifies key gaps that the proposed STGCN + VAE model— a hybrid Spatiotemporal
Graph Convolutional Network and Variational Autoencoder-aims to address, especially in quantifying predictive uncertainty.

To facilitate clarity and guide the reader through a methodologically-driven narrative, the review is organized by problem type
and analytical approach rather than by specific application domains. It begins by examining point forecasting methods, first cov-
ering traditional statistical models and then progressing to deep learning techniques. Subsequently, it transitions into probabilistic
forecasting, highlighting a shift from parametric approaches, where distributional assumptions are explicitly defined, to more flexi-
ble non-parametric methods, which avoid assumptions about data distribution. Throughout this structured progression, the review
highlights shared methodological challenges, particularly those involving spatiotemporal modeling, and uncertainty quantification.

2.1. Point forecasting

2.1.1. Traditional demand prediction models

Early studies in travel demand forecasting primarily utilized time series models such as ARIMA-based (Box et al., 2015) and
regression-based techniques. For instance, Andreoni et al. (2006) proposed an ARIMAX model to forecast travel demand at Reggio
Calabria airport using both univariate and multivariate ARIMA models. While univariate models effectively capture trends under
stable conditions, the ARIMAX model—incorporating variables such as income and aircraft movements—accounts for policy impacts
like the introduction of low-cost routes, predicting a 78 % increase in demand in 2006. However, limitations arise due to data
scarcity, sensitivity to boundary conditions, and difficulties in integrating fare estimates into the ARIMAX framework. To that end,
Chen et al. (2019) proposesd a framework to predict short-term subway passenger flow during special events using smart card data,
aiming to address the volatility and nonlinearity of passenger flow to reduce delays and improve service reliability. It employs a
hybrid ARIMA-NAGARCH model, combining ARIMA for mean estimation with GARCH variants to capture volatility, asymmetry, and
nonlinearity, and uses k-fold cross-validation to evaluate performance. The methodology involves four steps: establishing the mean
model, selecting the volatility model, estimating the hybrid model with different residual distributions, and validating predictions.
However, the study focuses on only two subway stations. While the chosen stations are indeed highly impacted by special events,
the findings may not generalize to other parts of the subway network, or to other cities with different infrastructures, land-use
patterns, or event characteristics. In another line of work, Wu et al. (2012) proposed a sparse Gaussian Process Regression (GPR)
model for forecasting tourism demand in Hong Kong using monthly arrival data (1985-2008) from 13 source regions. This model
outperforms ARMA and SVM approaches by reducing computational complexity and incorporating multi-factor inputs such as income
and transportation costs. However, it still faces challenges in modeling non-stationary covariance structures.

Although these approaches effectively capture linear temporal patterns, they struggle to model the nonlinear dynamics (e.g.,
abrupt traffic shifts) and spatial dependencies (e.g., networked congestion) inherent in urban mobility systems. These limitations
restrict their predictive accuracy in such complex environments.

2.1.2. Deep learning based models

With the rise of deep learning, more expressive models have been developed to improve predictive accuracy in travel demand
forecasting. Temporal dependencies—such as daily, weekly, and seasonal patterns—are commonly modeled using Recurrent Neural
Networks (RNNs), including Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) and Gated Recurrent
Units (GRUs) (Cho et al., 2014). For example, Ke et al. (2017) proposed the Fusion Convolutional Long Short-Term Memory Network
(FCL-Net), which integrates convolutional LSTM, standard LSTM, and convolutional layers to forecast short-term passenger demand
for on-demand ride services in Hangzhou, China, using DiDi Chuxing data. FCL-Net captures temporal patterns (e.g., peak-hour de-
mand), spatial dependencies (across a 7x7 grid), and exogenous factors (e.g., travel time rates and weather), outperforming traditional
time-series models. However, its high computational complexity may limit practicality for real-time applications.

To address limitations of grid-based spatial representations, Liu et al. (2020) introduced the Physical-Virtual Collaboration Graph
Network (PVCGN) for station-level metro ridership prediction. PVCGN integrates three types of graphs: a physical graph representing
metro topology, a similarity graph built using Dynamic Time Warping to link stations with similar flow patterns, and a correlation
graph reflecting origin-destination (OD) relationships. These are embedded into a Graph Convolutional Gated Recurrent Unit (GC-
GRU) and combined with a fully connected GRU for global trends within a Seq2Seq framework. PVCGN outperforms baselines like
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LSTM by capturing complex spatial-temporal dynamics and extends effectively to online OD prediction. However, its generalizability
may be limited when applied to systems with different topologies, scales, or passenger behaviors.

Despite these advancements, many existing models tend to focus on either temporal or spatial dependencies, while the interaction
between the two is crucial for understanding urban mobility dynamics. To better capture these interactions, spatiotemporal forecast-
ing models have been developed. These models represent zones (e.g., administrative areas or demand clusters) as graph nodes and
relationships between them (e.g., adjacency or travel flow) as edges, forming a sequence of graphs enriched with temporal informa-
tion. Graph Convolutional Network (GCN)-based models have shown strong potential in this domain. For instance, Yu et al. (2017)
proposed Spatio-Temporal Graph Convolutional Networks (STGCN), a deep learning framework for traffic forecasting. STGCN models
traffic networks as graphs and uses a fully convolutional architecture, combining graph convolutional layers (using Chebyshev or
first-order approximations) to capture spatial features and gated temporal convolutions for time dynamics. These are structured into
spatiotemporal blocks. STGCN outperforms baselines like ARIMA and LSTM, achieving lower errors and faster training and support for
parallelization. Its flexibility allows application to a broad range of spatiotemporal sequence prediction tasks. Extending STGCN, Guo
et al. (2019) proposed the Attention-based STGCN (ASTGCN) for traffic flow forecasting. ASTGCN introduces spatial and temporal
attention mechanisms within each spatiotemporal block and incorporates separate components for different time periods—hourly,
daily, and weekly—fusing their outputs for the final prediction. While effective, the use of fixed time segments may limit model flexi-
bility. Guo and Zhang (2020) introduced the Residual Spatio-Temporal Network (RSTN), a deep learning model for short-term travel
demand forecasting in ride-sharing services like taxis. RSTN combines Fully Convolutional Neural Networks (FCNs) and a hybrid
Conv-LSTM (CE-LSTM) module with residual connections to capture spatial, temporal, and exogenous factors (e.g., weather, time of
day). It uses a Dynamic Request Vector (DRV) to model demand trends within time subintervals. While effective, RSTN’s performance
may struggle with incomplete data or in highly dynamic systems, as noted by the authors. Furthermore, Tian and Chan (2021) intro-
duced the Spatial-Temporal Attention WaveNet (STAWnet), which captures complex spatiotemporal dependencies without relying on
predefined graph structures. STAWnet integrates gated temporal convolutional networks (TCNs) with dilated convolutions to model
long-range temporal patterns, and a dynamic attention network (DAN) with self-learned node embeddings to adaptively capture
latent spatial relationships. This approach improves flexibility and interpretability via attention weight visualization. However, its
lack of explicit adjacency modeling may hinder performance in short-term forecasting scenarios where local spatial dependencies
are critical. Additionally, Ke et al. (2021) introduced the Spatio-Temporal Encoder-Decoder Residual Multi-Graph Convolutional Net-
work (ST-ED-RMGC) for short-term OD ride-sourcing demand prediction. This model constructs OD graphs with adjacency matrices
to capture non-Euclidean geographical and semantic correlations, employing residual multi-graph convolutional networks for spatial
modeling and LSTM networks for temporal modeling. A key limitation lies in its computational overhead from processing multiple
graphs and large datasets. Furthermore, the model assumes relatively stable demand patterns based on historical data, which may
reduce robustness to sudden disruptions or long-term shifts in mobility behavior.

Despite significant progress in improving point prediction accuracy, these models generate deterministic forecasts, predicting a
single future value. This neglects the inherent uncertainty in travel demand arising from unpredictable factors such as traffic incidents,
weather events, or individual human behavior. Ignoring such uncertainty can lead to overconfident predictions, undermining the
reliability of planning and decision-making processes, and ultimately compromising system efficiency and user satisfaction.

2.2. Probabilistic forecasting

2.2.1. Parametric forecasting models

To address uncertainty in travel demand forecasting, recent research has explored probabilistic approaches that quantify uncer-
tainty by estimating prediction intervals (PIs) around forecasted values. A commonly used category of such methods is parametric
forecasting, which assumes a specific distributional form for the target variable—such as Gaussian or Poisson—and estimates the
corresponding parameters. One widely adopted technique is mean-variance estimation, which minimizes the negative log-likelihood
(NLL) under the assumed distribution.

For instance, Wang et al. (2024) proposed the Probabilistic Graph Neural Network (Prob-GNN) framework, focusing on average
demand forecasting. This approach combines deterministic components (GCN and GAT) with probabilistic assumptions — such as Ho-
moskedastic and Truncated Gaussian distributions — to model public transport and ride-sharing demand in Chicago. LSTM networks
capture temporal dependencies, while multi-graph structures capture spatial correlations. Their findings highlight that the choice of
distributional assumptions significantly impacts uncertainty estimation. However, a key limitation of this framework is its reliance
on parametric assumptions, which may not adequately capture complex or non-parametric uncertainty patterns. This suggests the
need for future comparisons with non-parametric alternatives. Similarly, Zhuang et al. (2022) introduced the Spatial-Temporal Zero-
Inflated Negative Binomial Graph Neural Network (STZINB-GNN) to model sparse Origin-Destination (OD) demand while quantifying
uncertainty. The model integrates diffusion graph convolution and temporal convolutional networks to capture spatiotemporal cor-
relations, and employs a zero-inflated negative binomial distribution with a sparsity parameter z to represent the high frequency of
zeros in fine-grained OD matrices. While effective at fine resolutions, the model’s performance deteriorates at coarser temporal scales
(e.g., 60-minute intervals), where simpler models may be more appropriate, indicating model’s sensitivity to data granularity. Another
notable work is the DeepNegPol model by de Nailly et al. (2024), which also focuses on parametric forecasting for multivariate count
data, using a “sums and shares” distribution framework combined with deep learning. It leverages recurrent neural networks (RNNs)
to predict correlated and overdispersed count data, focusing on pedestrian counts at La Défense, a multimodal transport hub in Paris.
The model uses two LSTMs: one to predict the total count (sum) via a negative binomial distribution, and another to distribute this
sum across locations (shares) using a Dirichlet-Multinomial distribution. However, the “sums and shares” structure, while effective
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for regular time series with predictable patterns (e.g., daily or weekly transportation cycles), is less suited for highly irregular or
high-dimensional data, limiting the model’s generalizability across diverse multivariate count datasets. In another line of work, Zhu
and Laptev (2017) proposed the BNN-LSTM model for predicting daily Uber trip counts. This approach combines LSTM networks in
an encoder-decoder structure with a Gaussian likelihood for regression outputs. To capture uncertainty, it uses Monte Carlo dropout
for epistemic uncertainty and a residual-based estimator for inherent noise. The model outperforms baselines such as vanilla LSTM
and quantile random forests in terms of predictive accuracy. However, Bayesian inference methods typically require sampling-based
or variational techniques, which are computationally intensive and may hinder their scalability in real-time applications.

A major limitation shared by these parametric approaches is their reliance on strong distributional assumptions. Presuming that
travel demand follows predefined distributions—such as Gaussian, Poisson, or Negative Binomial—may introduce bias and reduce
predictive reliability if the actual data deviates substantially from these assumptions.

2.2.2. Nonparametric forecasting models

Non-parametric methods, on the other hand, offer a flexible alternative to the aforementioned parametric approaches by avoiding
assumptions about the underlying data distribution. In the transportation domain, Gaussian Process (GP) models have been employed
as non-parametric approaches for demand and traffic prediction. For example, Zhu et al. (2023b) developed a Bayesian Clustering
Ensemble Gaussian Process (BCEGP) framework to capture spatiotemporal heterogeneity in network-wide traffic flow prediction,
leveraging ensemble learning and Dirichlet process mixture clustering to improve scalability. Similarly, Zhu et al. (2023a) proposed
additive Gaussian Process models for ride-sourcing operations, modeling matching and pickup processes with interpretable kernel
structures. These studies highlight the flexibility of GPs in capturing nonlinear and complex patterns without strong distributional
assumptions. As an extension of this approach, Neural Processes (NPs) have also been used as a scalable and data-driven approach
for capturing complex spatiotemporal patterns in travel demand and traffic dynamics. For example, Li et al. (2024) proposed the
Bidirectional Spatial-Temporal Transformer Neural Processes (Bi-STTNP) model for ride-sourcing demand forecasting, which provides
probabilistic predictions and uncertainty estimates to support supply-demand management. This model integrates neural processes
with bidirectional attention and spatial-temporal transformer modules to capture both supply-demand correlations and spatiotemporal
dependencies. It outperforms baseline models in terms of both prediction accuracy and uncertainty quantification. Additionally, a
predictability analysis categorizes regions by uncertainty levels using K-means clustering, offering insights for risk-aware operational
strategies. However, the model’s complexity and computational cost, along with its dependence on high-quality, fine-grained data,
may limit its practical applicability.

Building on the objective of producing high-quality uncertainty estimates without distributional assumptions, Pearce et al. (2018)
developed a quality-driven (QD) method that constructs prediction intervals (PIs) based on a loss function designed to minimize
interval width while maintaining desired coverage. Unlike Bi-STTNP, which directly estimates probabilistic uncertainty, the QD
method focuses on ensuring the quality of PIs through a likelihood-based formulation compatible with gradient descent. Despite its
strength in generating narrow intervals, the method’s lack of explicit probabilistic interpretation may limit its practical relevance
in uncertainty-aware decision-making. Similar limitations apply to the Lower Upper Bound Estimation (LUBE) method proposed
by Khosravi et al. (2010), where narrow but non-probabilistic PIs fail to reflect the underlying uncertainty dynamics of real-world
systems.

Addressing a different aspect of uncertainty, Liu et al. (2023) introduced ProBTTE to improve travel time estimation (TTE) for
on-demand ride-hailing by addressing uncertainty. This framework reformulates TTE as a multi-class classification problem using the
Distributional Travel Time Encoding (DTTE) module, which discretizes travel time into intervals without assuming a predefined dis-
tribution shape. However, the method depends on large-scale historical data to generate route-wise priors, which may not generalize
well in areas with sparse data or dynamic traffic conditions.

We also review relevant studies from the energy sector which we found inspiring and constructive in deepening our understanding
of nonparametric approaches and their applications. For example, He and Li (2018) developed the QRNNE-UCV model to enhance
short-term wind power forecasting by producing full probability density curves. This model combines a quantile regression neu-
ral network (QRNN), implemented via a single hidden-layer feedforward network, with kernel density estimation (KDE) using the
Epanechnikov kernel. Bandwidth is optimized using unbiased cross-validation (UCV). Validated on wind power data from Ontario,
Canada, the method provides detailed uncertainty quantification. However, the KDE bandwidth selection process can be computa-
tionally expensive and highly sensitive to the dataset. Similarly, Gu et al. (2021) proposed the LSTM-CM-NPKDE model, combining
an improved Long Short-Term Memory (LSTM) network for multi-horizon wind power forecasting (4h, 24h, 72h), a Cloud Model
(CM) for qualitative uncertainty assessment, and Non-Parametric Kernel Density Estimation (NPKDE) for deriving full probability
density functions and confidence intervals of forecast errors. While the method improves accuracy and uncertainty quantification, its
complexity and resource demands may hinder generalization and scalability across datasets with varying properties.

Despite their flexibility, non-parametric methods face several challenges. A common limitation is the computational burden,
as these methods often estimate full distributions directly rather than a small number of parameters. Consequently, they require
repeated sampling, dropout, or ensemble processes. Moreover, their performance is often highly sensitive to data quality, domain
characteristics, and granularity, which can limit generalizability and robustness across different application settings.

2.3. Summmary

Parametric approaches are widely used due to their simplicity and computational efficiency. However, their reliance on predefined
distributional assumptions — such as Gaussian or Poisson — can result in biased or miscalibrated uncertainty estimates, particularly
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Table 1
Description of key notations.

Symbol  Description

v,V A unique region in a city, a set of regions.
t, T Index of time interval in a sequence, the total number of time intervals sequence.
x, X The number of orders in a region, the set of numbers of orders in all regions.
4 A graph representing all regions as nodes, with edges encoding inter-regional relationships.
r The convolution kernel over a time series sequence.
K The kernel size of a convolution kernel.
2C, The number of output channels produced by the kernel.
0,60 The element-wise Hadamard product, sigmoid function.
L,D,A The graph Laplacian matrix, the degree matrix, the adjacency matrix.
Lyse The mean squared error.
< . S xt

Fig. 1. Graph representation with time series. Graph G, with travel demand X' represents the travel demand status at each time step 7.

when the actual data distribution deviates from these assumptions. Non-parametric models offer greater flexibility by directly learning
uncertainty patterns from data without assuming any specific distribution, leading to improved uncertainty representation. Yet,
existing non-parametric methods often suffer from high computational overhead, limited scalability, and sensitivity to data quality. To
address these limitations, this study proposes a non-parametric probabilistic forecasting framework based on a Spatiotemporal Graph
Convolutional Network combined with a Variational Autoencoder (STGCN + VAE). This model captures the nonlinear, spatiotemporal
structure of travel demand while generating calibrated and distribution-free uncertainty estimates. Importantly, by leveraging the
powerful spatiotemporal learning capabilities of STGCN and the highly efficient parallel sample generation enabled by VAE, our
method achieves significantly higher computational efficiency compared to previous studies.

3. Methodology

In this section, we first formalize the learning problem of spatiotemporal travel demand distribution forecasting. Thereafter we
introduce the proposed spatiotemporal graph neural network-based encoder-decoder framework, followed by two subsections that
describe the training and testing procedures. Table 1 summarizes the key notations frequently used in what follows.

3.1. Travel demand distribution forecasting

We consider a travel demand distribution forecasting problem that is partitioned into » distinct regions. Let V = {v;,v,,...,0,}
denote the set of all regions, where each v; € V represents a unique region within the area of interest, e.g. a city. For simplicity, we
will drop the index i when referring to any region as v. To represent the connections between these regions, we define the adjacency
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matrix A € R"™", which is represented as:

Ay Ap . Ay,
A= A.21 A?z A'Zn
Ay Ap . A,
where A;; = 1 if regions v; € V and v; € V are adjacent, and A;; =0 otherwise. Based on this partitioning, we construct a graph

representation G = (V, A), where V is a set of nodes (regions) and A is the connection between them.

Let x! denote the number of orders in the region v € V during the ' time interval, where x/ € R. We then define X’ € R™! as
the number of orders in all regions at the 1 time interval, with x! as its entry for each region .

For a sequence of T time intervals, the travel demand sequence is denoted as X'~T+!'/ = [x"-T+1 _ x'=1 X'] as illustrated in
Fig. 1. This sequence captures the historical demand over the past T intervals. Given the defined travel demand sequence, the demand
forecasting problem is modeled as a function of the time dependent historical demand sequence. Formally, given X'~7+!*’  the goal
is to forecast the conditional probability distribution of travel demand at the next time step, X"+!, which is represented as:

P(XH—llXx—T-H:r) @))

In the remainder of this section, we introduce the proposed methodology for travel demand forecasting with the consideration of
uncertainty.

3.2. Spatiotemporal graph convolutional network variational autoencoder(STGCN-VAE)

Fig. 2 presents the overall structure of our proposed approach, which consists of three key modules. The first module leverages a
spatiotemporal graph convolutional network (STGCN) to capture the complex spatial and temporal dependencies inherent in travel
demand data, modeling both spatial interactions between regions and temporal patterns across time intervals. These learned features
are then processed through an encoder-decoder structure, where the encoder compresses the high-dimensional spatiotemporal infor-
mation into a latent representation, effectively preserving critical features while reducing dimensionality. The decoder subsequently
resamples from this latent representation to generate multiple predictions, representing a range of possible outcomes that capture
the uncertainty present in real-world travel demand. To model the complete probability distribution of travel demand, we apply a
non-parametric Kernel Density Estimation (KDE) technique. This module constructs a continuous, data-driven probability distribution
based on the decoder’s predictions, unconstrained by predefined distributional assumptions, thereby offering a flexible and accurate
representation of demand uncertainty. In the following subsections, we provide a detailed description of each of these three modules.

3.2.1. STGCN for spatial and temporal information learning

The STGCN is designed to model both spatial dependencies (i.e., how regions are related in space through a graph) and temporal
dependencies (i.e., how features of regions evolve over time) of travel demand data. It combines graph convolutional layers to capture
spatial relationships with temporal convolutional layers to model dynamic changes over time. Our STGCN design follows the approach
outlined in Yu et al. (2017).

The temporal convolutional aspect of STGCN captures patterns in travel demand data over time, as shown in Fig. 3. Specifically,
given a time series sequence X, = [x/"T*!, ... x'] at a region v, where X, € R”, the model applies a convolution kernel I' € RX*2C,,
Here, K represents the kernel size, indicating the length of the time window over which the convolution operates, and 2C, defines
the total number of output channels produced by the kernel. As the kernel slides over the sequence, it extracts temporal features,
producing an output matrix [PQ] € RT—-K+DX(2C) This matrix is then split along the channel dimension into two parts, P and Q,
each of dimension (T — K + 1) X (C,). Then, P, Q are applied with gated linear units (GLU) to control the information flows:

PoOcQ) e R(T—K+1)><C,, 2)

where P, Q are input of gates in GLU respectively; © denotes the element-wise Hadamard product. The sigmoid gate ¢(Q) controls
which input P of the current states are relevant for discovering compositional structure and dynamic variances in time series.

The spatial convolution block is used to extract spatial dependencies inherited from travel demand data, and it adopts the spectral-
based graph convolution approach (Bruna et al., 2013). The spectral convolution relies on the graph Fourier transform, which is
defined using the eigenvectors of the graph Laplacian matrix. The graph Laplacian matrix, denoted as L, is a pivotal operator in
spectral graph theory, given by:

L=D-A

where A is the adjacency matrix as defined in Section 3.1, D = diag(d,,d,, ...,d,) is the degree matrix, which is a diagonal matrix
where its element d; = E;; | A;;, representing the degree (number of connections) of region v;. Then, the eigen-decomposition of the

normalized Laplacian, denoted as L,,,,,,, is given by:

L, =D2Lp12=yAUT

norm

where U is the matrix of eigenvectors (orthonormal basis), and U7 is the transpose of U, A is the diagonal matrix of eigenvalues. The
simplified representation of the spectral convolution g is provided by:

gxs=UgMU s
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where each element s; of s is the signal value of the region v;, which is the output of the previous temporal convolution block. The
drawback of the implementation of spectral convolution is that the eigen-decomposition involves computing U and A is computa-
tionally expensive, especially for large graphs. Therefore, Chebyshev polynomials approximation is used to approximate the spectral
convolution (Defferrard et al., 2016), which is computationally efficient and avoids the need for explicit eigen-decomposition, given
by:

K
gHSR 2 0, T,.(L)s
k=0
where 0, are the coefficients of the Chebyshev polynomials; 7}, (L) are the Chebyshev polynomials of the rescaled Laplacian L =
2L/Ana — I, which normalizes the Laplacian such that its eigenvalues lie in the range [—1,1]; K is the order (or degree) of the
polynomial approximation.

In order to fuse features from both spatial and temporal domains, the spatio-temporal convolutional block (ST-Conv block) is
constructed to jointly process graph-structured time series. The input X*~7+!" is uniformly processed by ST-Conv blocks to explore
spatial and temporal dependencies coherently. An output layer integrates comprehensive features to feed into the next module for
multiple samples prediction. In the subsequent subsection, we explain the motivation and approach of shifting from generating a
single forecast to producing a series of potential outcomes which jointly constitute the distribution of possible demand levels.

3.2.2. Variational autoencoder (VAE) for information compression and samples generation

The VAE architecture in the model compresses information and generates new data samples. As shown in Fig. 2, the encoder,
consisting of three fully connected layers, receives the learned features F € R"* from the STGCN module, where » is the number of
regions and c is the output channel number, and compresses them into a latent distribution parameterized by y € R™/ and ¢ € R™/,
denoting as:

[u, o] = Encoder(F) (3)

Here, i and j are determined by data complexity. Using the reparameterization trick, we sample z = y + ¢ - ¢, where € ~ N'(0, 1), trans-
forming F into a dense latent representation z that captures essential travel demand patterns, discards redundancies, and introduces
randomness to explore the underlying distribution. The decoder reconstructs the next-step travel demand:

XD = pecoder(z) @

where X+ is the next step travel demand we want to generate. With the predicted next-step travel demand, the loss function can
be written as:

:I»—‘

n
Loisg = 2 1+1 Ar+l 2
where n is the number of regions and x/* !'is the real demand value in region v, at next time step, %
the training process, we try to minirnize the loss and test the model on the testing dataset.

Once training is complete, the model efficiently generates multiple demand samples using the VAE decoder. Since the generation
process does not require running the entire model, it significantly reduces the computational load. This approach allows us to generate
a vector of potential travel demand for each location in the next time step, enabling construction of a travel demand distribution via
a kernel density estimation (KDE), which will be explained in the next subsection.

#*! is the prediction value. During

3.2.3. Kernel density estimation for distribution construction

To estimate the density function that characterizes the distribution of the observed samples, we apply a non-parametric method
known as Kernel Density Estimation (KDE). KDE approximates the probability density function of a random variable by smoothing
the distribution over the observed samples, offering a continuous and flexible representation of the density. For each region, the
respective KDE with a Gaussian kernel is expressed as:

feo= Z@m( x_x) >

27 i=1

where N is the number of samples, x; represents the i sample at the next time step, and f(x) is the estimated density of travel
X=X, 2
e
kernel, which determines each sample’s contribution to the density at point x, and the summation aggregates the contributions of all
samples.

In KDE, bandwidth is the key parameter that influences the smoothness of the estimate. Both overly narrow and overly wide
bandwidths result in reduced accuracy. While careful bandwidth tuning is essential for optimal KDE performance, our study focuses
on integrating KDE into the STGCN-VAE model to forecast taxi demand. We therefore leave extensive parameter optimization to
future work, but include a sensitivity analysis in the experimental section to demonstrate the impact of bandwidth choice.

demand x. The parameter 4 is the bandwidth, which controls the smoothness of the estimate. The term exp (— ) is the Gaussian
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Fig. 4. Training and testing process of the STGCN-VAE.

3.3. Training process: Spatiotemporal learning and latent representation construction

The training process begins with time series data X7 € R"™" and Chebyshev polynomials 7, (L) of the graph Laplacian L, which
capture spatial dependencies. These inputs are processed by two stacked Spatio-Temporal Convolution (ST-Conv) blocks, each con-
sisting of a temporal convolution, a spatial convolution using 7, (L), another temporal convolution, and a normalization layer. The
resulting features are passed to an output block with two temporal convolution layers and a fully connected layer. The output is fed
into the encoder of a Variational Autoencoder (VAE), which compresses it into a latent space of dimension d. The model applies the
reparameterization trick to sample latent vectors z ~ N'(u, ), decodes them into a vector of predictions, and computes the Mean
Squared Error (MSE) loss between the predicted mean and the ground-truth future time steps. The parameters are updated via back-
propagation until convergence is achieved. A simplified illustration of the training process is shown in the left 'Training’ branch of
Fig. 4, and the formalized workflow of the training process is summarized in Algorithm 1.

3.4. Testing process: Probabilistic forecasting

The testing process leverages the trained STGCN-VAE model to generate probabilistic forecasts of travel demand. The testing
phase follows the same data processing steps as in the training phase, ensuring consistency in the input representation. Specifically,
the input time series data X” and Chebyshev polynomials 7} (L) are fed through the ST-Conv blocks and VAE encoder to obtain the
latent representation. However, unlike in the training phase, the objective during testing is to generate multiple samples for each
time step, thereby capturing a range of potential future outcomes. This is achieved by repeatedly sampling latent vectors z using the
reparameterization trick. The decoder then produces multiple demand predictions for each sampled z, effectively generating a set of
potential future demand values.

These samples are then fed into the Kernel Density Estimation (KDE) module, which constructs a continuous probability density
function for the forecasted demand. The KDE module processes the set of generated samples to estimate the probability distribution
of travel demand at the next time step. This distribution provides a comprehensive representation of forecast uncertainty, rather than
a single-point estimate. A schematic representation of the testing process is shown in the right ‘Testing’ branch of Fig. 4, and the
detailed workflow is outlined in Algorithm 2.
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Algorithm 1 STGCN-VAE training process.

1:
2:
3:

»

21:
22:

Input: Time series data X7 € RT*N, Chebyshev polynomials 7;(L)
Output: A list of predicted samples.
for each training epoch do
Feed X7 and 7,(L) into the first ST-Conv block
for each ST-Conv block do
Apply temporal convolution
Apply spatial convolution using 7; (L)
Apply another temporal convolution
Apply normalization
end for
Feed output into the next ST-Conv block
Feed ST-Conv output into the output block
Apply two temporal convolution layers
Apply a fully connected layer
Feed result into VAE encoder
Encode into latent representation
Sample latent vectors using the reparameterization trick
Decode latent vectors to reconstruct predicted samples
Compute the mean of predicted samples
Compute Ly between the mean and the ground-truth future target
Backpropagate to update parameters
end for

It is worth noting that, in our framework, we train the model by minimizing the MSE between the mean of generated samples and

the observed demand, while evaluation employs probabilistic metrics to assess the full predictive distribution. KDE is then applied
post-training solely for visualization and summary statistics, not during optimization. We use MSE as a surrogate loss because it
provides stability, scales well, and reduces computational load compared to distribution-aware losses such as CRPS or NLL. In a
non-parametric, sample-based setting, those losses are resource-intensive because they require extensive calculations over the entire
predictive distribution. By adopting MSE, our large graph-based model consistently delivers robust results, effectively supporting
diverse scenario generation while maintaining computational efficiency.

Algorithm 2 STGCN-VAE testing process: Probabilistic forecasting.

1:
2: Output: Probabilistic distribution of forecasted values

3: Obtain latent representation as in Algorithm 1 (steps 3-16) using trained parameters W*
4: Sample multiple latent vectors using reparameterization trick

5:
6
7
8

Input: Time series data X7 € R™*N, Chebyshev polynomials 7, (L), trained model parameters W*

Decode latent vectors to obtain multiple predicted samples

: Feed predicted samples into Kernel Density Estimation (KDE)
: Construct continuous probability density function from KDE
: Return the probabilistic distribution

. Experiments

We conduct a series of extensive experiments to evaluate the proposed method introduced in Section 3. We assess its performance

on real-world data and compare it with eight baseline models using six evaluation metrics, covering both point and probabilistic
forecasting accuracy.

4.1. Experimental setup

4.1.1. Data and experimental settings

We conduct experiments using four different datasets (all for the months of January-March):

e Yellow Taxi Trip Records (New York City TLC, 2024)!: a public dataset that includes all MoD travel orders in New York city,

containing 9,554,778 trip records.

! https://www.nyc.gov/site/tlc/about/tle-trip-record-data.page

11


https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

T. Peng et al. Transportation Research Part C 181 (2025) 105383

Table 2
Distribution of zone-level travel demand aggregated during the PM
peak hour (18:00) across all days in the NYC and Chicago datasets.

Distribution ~ NYC Counts ~ NYC High Demand  Chicago Counts

Normal 13 5 10
Gamma 8 8 28
Beta 0 0 22
Lognormal 48 20 17
None 193 30 0

Total 262 63 77

e Washington DC Open Data Taxi Trips (2024): a public dataset that contains all taxi trips in Washington DC, containing 640,720
trip records.

e Chicago Rideshare Trips (2025)°: a public dataset reported by Transportation Network Providers (rideshare companies), contain-
ing 22,934,065 records.

e Capital Bikeshare Data (Washington DC, 2025)*: a public dataset recording bikeshare trips from the Capital Bikeshare system,
containing 1,281,301 records.

All datasets record individual trips with metadata such as start time, start location, end time, and end location. In our study, we retain
only the start time and start location, discarding other fields. For the first three datasets, trips are first mapped to regions based on
postcode. Since the original data are collected at precise time points, we aggregate them into one-hour intervals. A new field, demand
number, is then created to indicate the total number of trips in each interval.

For the Capital Bikeshare data, unlike the others which record pickup locations, the dataset reports origin stations (over 800 in
total). To reduce data sparsity and improve consistency, we first aggregate stations by postcode and then apply the same hourly
aggregation procedure. This significantly reduces both the data scale and sparsity, as many stations are geographically close and
individually exhibit very low demand.

Fig. 5 visualizes the spatial divisions and average hourly demand across all datasets. Even though the absolute demand levels are
not directly comparable due to differences in region definitions, the figure illustrates the distinct spatial demand patterns present in
each dataset, highlighting the diversity of service modes and urban contexts considered in our evaluation.

After the data processing, we split the entire data into training set (Jan. 1st - Mar. 13th), validation set (Mar. 14th - Mar. 21st)
and test set (Mar. 22nd - Mar. 31st) for training, validation, and testing, respectively. For each time series training round, the input
data is structured as a T X n table, where T represents time steps and »n denotes the regions. Each element in the table represents the
travel demand at a given time and region.

To better understand regional travel demand distributions, we tested the New York and Chicago datasets against several candidate
distributions using a p-value threshold of 0.05. We focused on the peak hour of 18:00, where demand was aggregated at the region
level across all days. For each zone, the value corresponds to the total number of requests observed during this hour. As shown
in Table 2, most New York regions do not conform to standard distributional forms. By contrast, in Chicago all 77 zones admit a
parametric fit, but they split across families—10 normal, 28 gamma, 22 beta, and 17 lognormal—so no single form describes the
city.

All experiments are conducted on a single Apple Silicon M1 Pro-with 32 GB of memory, using the PyTorch framework. Baselines
are implemented based on their official source code and parameter settings as described in the respective original studies. The datasets
are split into training, validation, and test sets in an 8:1:1 ratio. The best-performing model on the validation set is selected for testing.
The prediction horizon is set to 3 steps. We use the RMSProp optimizer with an initial learning rate of 1x 1073, The latent space
embedding dimension for both u and ¢ is set to 64.

4.1.2. Evaluation metrics

Six metrics are used to evaluate the performance of our approach. First, we use the mean absolute error (MAE) and root mean
squared error (RMSE) to evaluate the performance for point estimation based on the mean. These two metrics evaluate the prediction
accuracy and are defined as:

n
1 -
MAE:;Z|xi—xi| 5)

i=1

©)

2 https://dcgov.app.box.com/v/TaxiTrips2024
3 https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2025- /6dvr-xwnh/about_data
4 https://capitalbikeshare.com/system-data
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Fig. 5. Average hourly travel demand heatmaps across four datasets. Darker regions represent higher demand.

where %; and x; are the predicted and ground-truth demand values of the i region, respectively, and # is the total number of regions.

In addition, to quantify uncertainty, we use three metrics, namely Mean Prediction Interval Width (MPIW), Continuous Ranked
Probability Score (CRPS), and Interval Score (IS) to evaluate the performance of probabilistic forecasting (Gneiting and Raftery,
2007).

o MPIW assesses the average width of the prediction intervals, indicating interval tightness. A smaller MPIW suggests more confident
predictions. It is defined as:

_Ly (g, -
MPIW_n;(Ui L) @
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where L; and U, represent the lower and upper bounds of the prediction interval for region v;, respectively, which are computed
with 10 % to 90 % confidence interval.

¢ CRPS treats the observed value as a step function in the form of a 0-1 CDF, providing a quadratic measure of discrepancy. It is
formulated as:

CRPS(F, x) = / (F(x,-)—l{XIZX))Z dx (8)

where F is the predicted CDF, x; is the predicted travel demand and x is the ground truth travel demand. 1(-) is an indicator
function, the value is 1 when x; > x, otherwise 0. A lower CRPS indicates that the predicted distribution is closer to the observed
outcome.

¢ IS evaluates the quality of prediction intervals, it balances the width of the prediction interval and the penalties for observed
values falling outside the interval. It is defined as:

IS, (L,U,x)=U - L)+ %(L -x)-1(x< L)+ %(x—U)-l(x >U) (C)]

where L and U represent the lower and upper bounds of the prediction interval for region v;, for simplicity, we omit the subscript
v;. x is the ground truth travel demand, « is the confidence level, and 1(-) is an indicator function that equals 1 when the condition
inside is true and 0 otherwise. A lower Interval Score indicates better calibration and sharpness of the prediction interval.

¢ Running time measures computational efficiency, in which we record both training and testing times (in minutes). Training time is
measured from model initialization to convergence, while testing time refers to the total duration required to generate predictions
for the entire test set.

4.1.3. Baselines
We compare our proposed STGCN-VAE model with several benchmarks, including one point forecasting model and six probabilistic
forecasting models:

e STGCN (Yu et al., 2017): A spatiotemporal graph convolutional network designed for point forecasting on graph-structured time
series data. It serves as a strong baseline for deterministic forecasting and forms the foundation for our proposed STGCN-VAE
model.

e STAWnet (Tian and Chan, 2021): Spatial-Temporal Attention Wavenet, an end-to-end multi-step traffic prediction model that
captures complex spatial-temporal dependencies using temporal convolution and self-attention with self-learned node embeddings.

e STGCN + Normal: An extension of STGCN that incorporates a normal distribution over its predictions. By modeling the output as a
Gaussian, it provides probabilistic forecasts, estimating uncertainty while retaining STGCN'’s spatiotemporal modeling capabilities.

¢ STGCN + Log-normal: A variant of STGCN that uses a log-normal distribution for probabilistic forecasting. This approach is
suited for data with positive values and skewed distributions, offering an alternative uncertainty estimation method compared to
the normal distribution variant.

e DeepAR (Salinas et al., 2020): A deep autoregressive recurrent network designed for probabilistic forecasting. It uses an RNN
architecture to model global time series, incorporating a likelihood term to produce uncertainty estimates across all input features.
DeepAR is particularly effective for capturing temporal dependencies in large-scale time series datasets.

e BNN-LSTM (Zhu and Laptev, 2017): A Bayesian LSTM network with two LSTM layers, enabling probabilistic forecasting through
Bayesian inference. By applying Monte Carlo dropout during inference, it estimates predictive uncertainty, making it suitable for
time series tasks requiring robust uncertainty quantification.

e DGGP (Jiang et al., 2022): Deep graph Gaussian processes that combine graph-based spatial modeling with Gaussian processes
for probabilistic forecasting. It uses RBF and Cosine kernels to capture complex spatiotemporal patterns, providing a flexible
framework for uncertainty estimation on graph-structured data.

¢ Prob-GNNs (Wang et al., 2024) A probabilistic graph neural network framework that quantifies spatiotemporal uncertainty in
travel demand, robustly predicting ridership patterns under domain shifts and revealing peak-hour and high-volume area uncer-
tainties.

4.2. Experimental results

In the following we present an in-depth analysis of the experimental results, focusing on the predictive accuracy, uncertainty
quantification, and computational efficiency of the proposed STGCN-VAE model. We compare its performance with eight baseline
models under various demand conditions using both point and probabilistic forecasting metrics. To better understand the model’s
behavior, we also examine how results vary across high- and low-demand regions, explore how uncertainty varies by urban context
and time, and investigate the differences between parametric and nonparametric modeling approaches.

4.2.1. Predictive performance

A detailed comparison of the predictive performance is presented in Table 3. MAE and RMSE are evaluated across all seven models,
while CRPS, MPIW, and IS are assessed for the seven probabilistic models. To better analyze performance differences, regions are
categorized into low- and high-demand groups based on an average hourly demand threshold of 10, mitigating the dominance
effect of high-demand regions. Each model’s results are averaged over five runs. The best performing model per evaluation metric is
highlighted in bold.

14



T. Peng et al. Transportation Research Part C 181 (2025) 105383

Table 3
Comparison of predictive results across models on the New York City Trip Record dataset. (S+ N: STGCN + Normal, S+ L: STGCN + Lognormal,
S+ V: STGCN + VAE, our proposed model; model names abbreviated due to space constraints).

Metric Region Point forecasting Probabilistic forecasting
Parametric Non-parametric
STGCN STAWnet S+N S+L BNN-LSTM Prob-GNNs DeepAR DGGP S+V
All 5.7487 11.9538 5.8504 24.3598 10.0087 16.9312 11.0107 8.4483 5.4094
MAE Low demand 0.9431 2.0633 0.9548 1.7435 1.6095 14.8306 0.7750 1.4297 0.8815
High demand  27.2737  26.9945 27.7788 125.6621 41.8215 26.3403 56.8581 37.5961 25.6908
All 29.3497  21.5188 26.0853 64.9564 32.5472 24.1395 35.6128 35.2685 19.9317
RMSE Low demand 2.4184 3.4835 2.3556 4.0361 3.4655 15.0214 2.7630 3.2143 2.1532
High demand  68.5096  28.7667 60.8557 151.8075 56.0011 46.7131 83.1558 62.3789 46.2324
All - - 29.4285 13761.1612 31.2340 39.8369 29.1572 34.8921 23.8823
MPIW  Low demand - - 3.3382 16234.3577  4.6783 7.8204 1.2152 5.1234 6.0574
High demand - - 146.2911 2683.3019 154.9125 114.9107 154.3143 167.4532 103.7229
All - - 22.8911 24.4993 19.8754 34.6295 20.9385 21.3467 17.1134
CRPS Low demand - - 3.5585 2.2019 1.5432 29.8844 0.9861 1.6789 1.0643
High demand - - 109.4855 124.3728 98.7654 155.8835 110.3097 105.4321 88.9996
All - - 76.7607 13761.1699  38.5476 39.8369 41.9638 45.1234 19.4128
IS Low demand - - 35.5485 16234.3681 4.8765 23.8254 3.5794 5.2345 3.8665
High demand - - 261.3572 2683.3020 198.7654 114.7159 213.8939 220.9876 89.0475
Time Train(min) 15 40 15 15 35 50 45 210 17
Test(min) 1 5 1 1 5 8 5 20 2

As presented in Table 3, our proposed STGCN-VAE model (shaded in grey, last column) outperforms the baseline models across
most metrics. For point forecasting, the results are presented in the first two rows of the table. The first row shows that our model
achieves an MAE of 5.41 across all regions, a 5.9 % improvement over STGCN, where STGCN is the strongest baseline for this metric.
In high-demand regions, it achieves an MAE of 25.69, reducing the error by 5.8 % compared to STGCN, which outperforms other
baselines. For RMSE, the second row indicates that our model achieves 19.93 across all regions, a 23.6 % reduction relative to
STGCN + Normal, the best baseline for this metric. In high-demand regions, it yields 46.23, improving performance by 24 % over
STGCN + Normal. Although our model is primarily designed for probabilistic forecasting, it consistently outperforms STGCN in point
forecasting across various metrics. This result underscores the robustness of our approach, as it not only captures uncertainty more
effectively but also delivers more accurate point estimates than a model specifically optimized for deterministic predictions.

For probabilistic forecasting, our model consistently outperforms on average all baselines across regions, with particularly strong
performance in high-demand areas. As shown in the third row of Table 3, it achieves an 18 % improvement in MPIW over STGCN + Nor-
mal across all regions and a 29 % improvement over STGCN + Normal in high-demand regions, where STGCN + Normal is the best-
performing baseline for this metric. For CRPS in the fourth row, it improves by 13.8 % overall and by 9.8 % in high-demand regions
over BNN-LSTM, with BNN-LSTM being the strongest baseline for this metric. Finally, for IS in the fifth row, it achieves a 49.6 %
improvement across all regions and a 55.2% improvement in high-demand regions over BNN-LSTM, the strongest baseline here.
These results highlight the proposed approach STGCN + VAE’s ability to generate high-quality predictive distributions, especially in
high-demand regions.

However, in low-demand regions, our model slightly underperforms compared to DeepAR. This is likely due to data sparsity. In
low-demand areas, travel demand is often zero for most time steps, which makes it difficult for sample-based methods like STGCN-
VAE to learn meaningful patterns. Since such methods generate predictions by sampling from learned distributions, excessive zeros
hinder accurate distribution learning and can result in higher uncertainty or biased estimates. This challenge is further amplified
by the graph-based nature of our model, which relies not only on a region’s own history but also on information from structurally
related neighbors. Empirically, low-demand regions are highly likely to be surrounded by other low-demand regions, meaning that
both local and neighboring signals are sparse, which further degrades learning quality. In contrast, time series forecasting models
such as DeepAR, which directly estimate the mean and variance, are generally more robust in sparse settings, as they focus primarily
on capturing central tendencies in historical data rather than learning from both spatial and temporal dependencies. However, such
models often underperform in high-demand regions, where uncertainty is higher and spatial-temporal correlations are more complex.
Importantly, our model performs strongly in high-demand regions, which are more critical in practice as they account for the majority
of ride requests and directly influence operational decisions such as fleet relocation, pricing, and matching.

Furthermore, our approach significantly outperforms DeepAR, BNN-LSTM, and DGGP in terms of computational efficiency. Table 3
records training and testing times in the last row. Training time is measured from initialization to convergence, showing that STGCN-
based models are more efficient than others due to their effective spatiotemporal dependency learning mechanism. In particular,
it reduces training and testing time by more than half relative to DeepAR, with a 62 % reduction in training time (17 vs. 45 mins)
and a 60 % reduction in testing time (2vs. 5 mins). Relative to other baselines, our model also achieves significant improvements:
STAWnet (58 % faster training, 60 % faster testing), BNN-LSTM (51 % faster training, 60 % faster testing), DGGP (92 % faster training,
90 % faster testing), and Prob-GNNs (66 % faster training, 75 % faster testing). While parametric models predict only the mean and
variance, our approach remains comparably efficient despite generating 100 samples per inference via the VAE decoder. This balance
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Table 4
Comparison of predictive results across models on Washington DC taxi dataset. (S +N: STGCN + Normal, S+ L: STGCN + Lognormal,
S+ V: STGCN + VAE, our proposed model; model names abbreviated due to space constraints).

Metric Region Point forecasting Probabilistic forecasting
Parametric Non-parametric
STGCN STAWnet S+N S+L BNN-LSTM Prob-GNNs DeepAR DGGP S+V
All 1.1378 4.1979 1.2021 2.0125 1.4046 1.7656 1.4483 2.0087 0.9179
MAE Low demand 0.0465 0.2552 0.0531 1.1639 0.0054 0.0652 0.3297 0.3095 0.0115
High demand  2.2292 4.2634 2.3511 3.5990 3.0331 3.5183 7.5961 6.8215 1.8243
All 4.9402 7.7103 5.1010  5.2927 6.1319 8.0275 7.2685 5.5472 3.5404
RMSE Low demand 0.0926 0.9402 0.0860 1.1639 0.0735 0.1076 0.7143 0.5655 0.0661
High demand  6.9859 7.7730 7.2134  8.8234 9.0200 11.4391 12.3789  9.0011 5.0065
All - - 2.9804  855.6571 5.7355 2.5313 7.8921 6.2340 1.5811
MPIW Low demand - - 0.4281 937.8258 0.0001 1.4026 1.1234 0.9783 0.1106
High demand - - 5.5327  702.0375 12.4111 3.6947 18.4532  20.9125  3.0516
All - - 1.8668  1.8128 0.7744 1.5080 5.3467 5.8754 1.8417
CRPS Low demand - - 0.0453 0.9529 0.0001 0.0775 0.3789 0.5432 0.0177
High demand - - 3.6883 3.4205 1.6758 3.1423 19.4321 16.7654 3.6657
All - - 4.5671 855.6620  7.3894 52.6456 7.1234 7.5476 3.2792
1S Low demand - - 0.4434  937.8311 0.0217 1.4638 1.2345 1.1765 0.1257
High demand - - 8.6909 702.0413 15.9649 105.4023 40.9876 35.7654 6.4328
Time Train(min) 13 35 15 15 40 45 180 35 15
Test(min) 1 5 1 1 5 8 16 5 2
Table 5

Comparison of predictive results across models on Chicago rideshare dataset.(S+N: STGCN +Normal, S+L: STGCN +Lognormal, S+V:
STGCN + VAE, our proposed model; model names abbreviated due to space constraints).

Metric ~ Region Point forecasting Probabilistic forecasting
Parametric Non-parametric
STGCN STAWnet S+N S+L BNN-LSTM Prob-GNNs DeepAR DGGP S+V
All 40.3073 24.1664 55.8454 59.9482 50.4321 66.4161 47.5363 42.3894 23.8814
MAE Low demand 7.9235 7.1227 10.7209 7.9072 8.0470 11.4898 10.7983 7.2380 5.8113
High demand  73.5434 41.5733 102.1573 113.3587  209.7438 122.7878 85.2411 188.9517 42.4271
All 116.2122 69.0882 149.4167 185.1795 162.3815 207.5255 122.1309 174.2864 67.8297
RMSE Low demand 11.9019 11.1874 14.7481 11.1761 17.4629 16.227 14.9733 16.0873 8.4144
High demand  164.9865  97.5690 212.1673 263.3574 2829187 294.9521 173.1888  310.3476 96.1778
All - - 200.0194  219.7879  156.4732 222.3351 199.8660 171.9284 170.7719
MPIW Low demand - - 37.6611 70.2834 43.9248 45.3467 58.4643 55.6125 35.6497
High demand - - 366.6503 373.2268  772.5819 429.5074 3449886  836.2745 309.4499
All - - 147.0282 102.9417  98.6527 164.1430 170.7946  207.9842 145.3260
CRPS Low demand - - 32.7299 20.2880 27.8546 39.9279 26.8846 38.4012 33.9377
High demand - - 264.3343 287.7705  497.3825 319.7848 326.1235  528.6197 259.6456
All - - 222.5982  231.3913 193.1748 2294.9114 480.1473  225.6841 185.4911
IS Low demand - - 41.2715 70.7689 24.6971 233.4164 109.9827 26.1824 38.4222
High demand - - 408.6967  396.2406  994.2816 4410.6558 860.0535 1106.4739  336.4302
Time Train(min) 13 20 13 13 35 40 30 100 17
Test(min) 1 3 1 1 5 6 3 10 2

between computational efficiency and probabilistic forecasting capability makes it well-suited for online applications, such as real-
time demand prediction in ride-hailing platforms, dynamic pricing systems, and adaptive fleet management.

An interesting observation from Table 3 is that STGCN + Lognormal performs significantly worse than STGCN + Normal, even
though the only difference is the use of a lognormal instead of a Gaussian distribution. In contrast, our VAE-based approach learns
the predictive distribution in a data-driven, non-parametric manner, avoiding reliance on rigid distributional forms. This flexibility
allows it to better capture complex, multimodal, or skewed demand patterns, leading to more reliable uncertainty quantification. This
is especially valuable in real-world ride-hailing settings where demand distributions often deviate from standard parametric shapes,
as we verified in Table 2.

As for the Washington DC taxi dataset and the Chicago rideshare dataset, shown in Tables 4 and 5, our proposed STGCN-VAE
model demonstrates consistent performance advantages across both point and probabilistic forecasting tasks.

As reported in Table 4, our model achieves the strongest overall results on the Washington DC taxi dataset. For point forecasting,
it delivers the lowest errors across both MAE and RMSE. Averaged over all regions, STGCN-VAE reaches an MAE of 0.92, improving
upon STGCN—the strongest baseline—by 19.3 %. In high-demand regions, it reduces MAE to 1.82, a clear improvement over all
competing methods. Similarly, for RMSE, our model achieves 3.54 overall and 5.00 in high-demand areas, corresponding to error
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Table 6
Comparison of predictive results across models on Washington DC bikeshare dataset. (S + N: STGCN + Normal, S+ L: STGCN + Lognormal,
S+ V: STGCN + VAE, our proposed model; model names abbreviated due to space constraints).

Metric Region Point forecasting Probabilistic forecasting
Parametric Non-parametric
STGCN STAWnet S+N S+L BNN-LSTM Prob-GNNs DeepAR DGGP S+V
All 9.3599 8.7593 9.4426 20.4495 8.9576 11.9240 12.4326  9.5373 8.1848
MAE Low demand 1.1623 1.9231 1.5357 2.1500 1.4478 1.4806 1.6397 1.2714 1.3609
High demand 18.0698 12.6734 17.8437 39.8928 36.9532 23.0201 23.9000  33.2245 15.4351
All 23.8387 18.3119 22.2216  44.9135 28.8924 29.9681 26.4479  31.4263 21.5475
RMSE Low demand 2.4538 3.1416 2.3496 3.5986 3.0123 2.8551 2.9699 2.8476 2.7682
High demand  34.1422  22.8374 31.8210  64.3953 49.8523 42.9377 37.8594  55.3071 30.8134
All - - 19.1583  664.0077  27.6152 38.2897 30.3608  30.4265 11.6821
MPIW  Low demand - - 3.0921 947.9519  4.0937 4.3600 4.3214 4.5662 1.6972
High demand - - 36.2287 362.3170 137.8156 112.4650 58.0277 148.5621 22.2911
All - - 16.6771 20.0856 17.3265 21.0804 11.9945 18.7534 11.8485
CRPS Low demand - - 2.0423 2.0019 1.3421 1.0369 1.4654 1.4573 1.2460
High demand - - 32.2265 39.2994 87.5276 31.7516 23.1817 94.2315 23.1136
All - - 33.7017  669.2824 34.1068 364.1973 45.0575  40.5634 33.2454
IS Low demand - - 5.9053 947.9544  4.3264 23.1970 6.9978 4.6932 5.3133
High demand - - 63.2354 373.1933 176.8291 726.5094 85.4959 197.4532 62.9232
. Train(min) 8 15 8 8 16 18 17 35 8
Time .
Test(min) 1 5 1 1 2 4 2 8 1

reductions of 28.4 % and 28.3 %, respectively, compared to the best baseline. These results highlight that even though our approach
is tailored for probabilistic forecasting, it also yields highly competitive point predictions.

In terms of probabilistic forecasting, our model consistently provides narrower and more reliable predictive intervals. Across all
regions, it achieves the smallest MPIW (1.58), reducing interval width by 37.6 % compared to the next best model (Prob-GNNs). This
improvement holds in high-demand regions, where interval sharpness is crucial. For CRPS, BNN-LSTM attains slightly lower values
in sparse areas, but STGCN-VAE remains competitive, particularly in high-demand settings, where it achieves 3.67 compared to 1.68
for BNN-LSTM. Importantly, for IS, our model records 3.28 overall and 6.43 in high-demand regions, outperforming all baselines by
a large margin. While parametric approaches such as BNN-LSTM benefit from robustness in extremely sparse regions, they fall short
in capturing the complex dynamics of dense urban demand. By contrast, STGCN-VAE excels in high-demand regions, which dominate
practical ride-hailing operations and inform key decisions such as fleet allocation, pricing, and relocation.

As shown in Table 5, similar trends are observed on the Chicago rideshare dataset. For point forecasting, STGCN-VAE again achieves
the strongest overall performance, recording the lowest MAE (23.88 overall) and RMSE (67.83 overall), improving upon the best
baselines (STAWnet) by 1.2% and 1.8 %, respectively. In high-demand regions, which are the most challenging, our model attains
an MAE of 42.43 and RMSE of 96.18, remaining competitive with STAWnet and outperforming all other models. For probabilistic
forecasting, STGCN-VAE consistently delivers sharper and more reliable predictive intervals, achieving the lowest MPIW in both low-
and high-demand regions, as well as the lowest IS overall (185.49), surpassing all baselines. While BNN-LSTM and STGCN + Lognormal
show slightly better CRPS in low-demand settings, STGCN-VAE outperforms them in high-demand regions, where accuracy and
uncertainty calibration are most critical. In addition to accuracy, STGCN-VAE is also computationally efficient. Training requires
only 17 mins and testing 2 mins, which is significantly faster than more complex probabilistic baselines such as Prob-GNNs (40/6
mins) and DGGP (100/10 mins), while still achieving stronger predictive performance. This balance between predictive accuracy and
efficiency confirms the practicality of our approach for large-scale rideshare demand forecasting.

For the experiment on the Washington DC bikeshare dataset, as reported in Table 6, our proposed STGCN + VAE model delivers
strong performance, particularly in probabilistic forecasting, with competitive point forecasting and high efficiency for the Washington
DC bikeshare dataset.

For point forecasting, STGCN + VAE achieves an overall MAE of 8.18, improving on STGCN (9.36) by 12.6 % and outperforming
STAWnet (8.76, 6.6 % worse). In high-demand regions, STGCN + VAE’s MAE (15.44) improves on STGCN (18.07) by 14.6 %, though
STAWnet leads (12.67, 25.6 % better). For RMSE, STGCN + VAE records 21.55 overall, 9.6 % better than STGCN (23.84) but behind
STAWnet (18.31, 15.1 % better). In high-demand areas, STGCN + VAE’s RMSE (30.81) improves on STGCN (34.14) by 9.8 %. While
not the top performer, STGCN + VAE is competitive despite its probabilistic focus.

In probabilistic forecasting, STGCN + VAE excels with the smallest MPIW (11.68 overall), reducing interval width by 57.7 % over
BNN-LSTM (27.62), with similar gains in low-demand (1.70, 45.1 % better than STGCN + Normal) and high-demand (22.29, 38.5%
better than STGCN + Normal). For CRPS, STGCN + VAE achieves 11.85 overall, slightly outperforming DeepAR (11.99, 1.2 % better),
and in high-demand areas, its 23.11 nearly matches DeepAR (23.18, 0.3 % worse) while far surpassing BNN-LSTM (87.53, 73.6 %
better). For IS, STGCN + VAE delivers 33.25 overall, improving on STGCN + Normal (33.70) by 1.3 %, and in high-demand regions, its
62.92 is 0.5 % better than STGCN + Normal (63.24), while significantly lower than BNN-LSTM (176.83, 64.4 % better). STGCN + VAE
matches the fastest training (8 min) and testing (1 min) times, equalling STGCN and STGCN + Normal while outperforming DGGP (35
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(C) OpenStreetMap contributors (C) CARTO

Fig. 6. Illustration of six selected regions: red denotes high-demand areas, while green denotes low-demand areas.

and 8min). Its tight intervals and reliable uncertainty make STGCN + VAE ideal for high-demand bike-sharing scenarios, enhancing
decisions like bike rebalancing, despite some trade-offs in point forecasting accuracy.

To visually illustrate the model’s performance, we select six representative regions from the New York, including three high-
demand and three low-demand areas, as shown in Fig. 6. This selection reflects a range of traffic conditions.

Fig. 7 compares the ground truth values with the ordered prediction intervals over a continuous 100-hour period. The orange
line indicates the observed values, while the blue line and the shaded area represent the predicted values and the 90 % predictive
interval, respectively. In high-demand regions, the predicted mean (blue line) closely follows the observed values (orange line), and
the predictive intervals remain well-calibrated and appropriately narrow. This suggests that our model effectively captures both
central tendencies and uncertainty, providing reliable probabilistic forecasts. Such accurate and uncertainty-aware predictions are
essential for decision-making in dynamic ride-hailing environments, where dispatching and pricing strategies depend on precise
demand estimates. A closer examination of the figure reveals that the highest predictive uncertainty does not always coincide with
peak demand periods. This observation aligns with real-world travel demand patterns, where uncertainty is influenced by various
factors such as traffic conditions, event-driven fluctuations, and external disruptions rather than demand magnitude alone. However,
parametric models that assume a Gaussian distribution often struggle to capture this nuanced behavior. These models explicitly predict
the mean and variance under a fixed functional relationship, typically leading to the assumption that uncertainty grows monotonically
with demand. As a result, they may overestimate or underestimate uncertainty in certain scenarios. As further illustrated in Fig. 7, low-
demand regions show lower prediction accuracy and interval coverage compared to high-demand regions. This underperformance is
expected: in areas where both the region and its neighbors have very few non-zero demand values, the model has limited data to learn
from, and the generated forecasts remain conservative. In such cases, short, unexpected increases in demand may not be captured
by the predicted interval. However, this behavior also reflects a strength of the model: it avoids reacting to noise or overestimating
demand where data are sparse. Even though there is still room to improve performance in these areas, the model remains reliable and
well-calibrated in high-demand regions, which are most critical for practical applications. These observations highlight the importance
of future work that specifically targets sparse regions, without compromising performance in high-demand regions.

4.2.2. Uncertainty quantification

Next, we present our findings on uncertainty quantification by displaying prediction intervals for three representative regions
in Manhattan. We do so for regions with different characteristics: workplace (Region 161), tourism (Region 230), and residential
(Region 238), as shown in Fig. 8.
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{C) OpenStreetMap contributors (C) CARTO

Fig. 8. Three representative regions are selected and marked in red: a workplace area (Region 161), a tourism area (Region 230), and a residential
area (Region 238).
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Fig. 9. Uncertainty quantification across three representative regions over two consecutive days (March 23, 2024, Sunday, and March 24, 2024,
Monday).

The results are shown in Fig. 9. The figure shows the target demand (orange line), predicted demand (blue line), and associated
prediction intervals (shaded blue area) over a 48-hour period, with the x-axis representing time (0-24h for each day) and the y-axis
representing demand value. These regions were deliberately chosen for their distinct travel demand profiles, enabling a comprehensive
exploration of how demand and its associated uncertainty fluctuate across diverse urban contexts. By examining these patterns over
a weekend and a workday, we capture temporal variations that reflect differing activity rhythms, offering a robust testbed for our
model’s ability to quantify uncertainty effectively.

In the workplace region (161), the target demand on Sunday exhibits a modest peak around 12 PM, reaching approximately 200
trips per hour, before declining steadily into the evening. On Monday, the demand pattern shifts dramatically, with a pronounced
peak at 5-6 PM, reaching nearly 600 trips, which aligns with the end of the typical workday and the evening commute. The predicted
demand closely tracks the target values, with the blue line generally overlapping the orange line, indicating high predictive accuracy
of our model. However, the prediction intervals widen significantly around 12 PM on both days, spanning from roughly 200 to 600
units on Sunday and 100 to 700 units on Monday. This elevated uncertainty during midday likely stems from the heterogeneity of
travel purposes, such as lunch breaks, meetings, or sporadic personal trips, which lack the structured regularity of commuting. In
contrast, the intervals are narrower during the Monday evening peak (17-18 PM), spanning approximately 200 to 400 units, reflecting
the more predictable flow of workers leaving offices.

In the tourism region (230), the target demand displays a more consistent profile across both days, fluctuating between 10 and 300
units during daylight hours (roughly 6 AM to 6 PM) before dropping sharply to near-zero levels after 6 PM. This pattern reflects the
continuous influx of visitors to attractions, largely unaffected by the weekday-weekend divide that governs workplace activity. The
predicted demand again aligns well with the target, with minor deviations during the early morning hours (0-6 AM). However, the
prediction intervals remain consistently wide throughout the day, often spanning from 100 to 300 units, even during peak demand
periods around 12 PM. This persistent uncertainty reflects the unpredictable nature of tourist behavior, influenced by a complex
interplay of factors: individual itineraries, group dynamics, weather conditions, and event schedules. Unlike the workplace region’s
commute-driven predictability, tourism lacks a fixed temporal regularity, resulting in a diffuse demand pattern that challenges precise
forecasting. The slight narrowing of intervals after 18 PM, where demand approaches zero, aligns with a natural tapering of activity
as attractions close or visitors return to accommodations.

The residential region (238) shows comparable overall demand levels on both days but with distinct temporal signatures. On
Sunday, the target demand peaks around 9-10 AM, reaching approximately 150 units, likely driven by leisure-oriented trips. On
Monday, the peak shifts earlier to 6 AM, with demand spiking to around 200 units, corresponding to the morning commute as residents
depart for work. A secondary peak on Monday around 6 PM is also visible, reflecting the evening return commute. The predicted
demand closely follows the target, with the blue line nearly overlapping the orange line during these peak periods, highlighting the
model’s accuracy for structured routines. Uncertainty is notably lower during commuting periods—both the Monday morning peak
(6 AM) and evening peak (6 PM)—with prediction intervals spanning roughly 50 to 150 units, indicating a high degree of regularity
in these movements. In contrast, the Sunday morning peak (9-10 AM) shows slightly wider intervals (approximately 90 to 200 units),
possibly due to the discretionary nature of weekend activities, which vary more widely in timing and purpose than weekday routines.
Across both days, midday hours (around 12 PM) exhibit broader intervals, suggesting a mix of secondary trips (e.g., shopping or
social visits) that defy the predictability of peak commuting times.

A striking trend across all three regions is the consistent peak in uncertainty around 12 PM. This phenomenon likely arises from
the convergence of diverse travel purposes during midday: professional errands and lunch trips in the workplace region, spontaneous
sightseeing in the tourism region, and miscellaneous household activities in the residential region. Such multiplicity introduces greater
stochasticity into the demand signal, complicating precise estimation. Conversely, uncertainty narrows during commuting hours (e.g.,
6-7 AM and 5-6 PM on Monday), where travel is dominated by habitual, work-related trips with well-defined spatial and temporal
constraints. For instance, in the workplace region, the interval at 5 PM on Monday spans only 300 to 400 units, a much tighter range
than the midday peak. This contrast highlights a key insight: the predictability of demand is closely tied to the degree of underlying
behavioral regularity, with structured routines yielding tighter bounds than discretionary or heterogeneous activities.
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Fig. 10. Uncertainty quantification on region 161 over two consecutive days with and without VAE integration. (March 23, 2024, Sunday, and
March 24, 2024, Monday).

These findings highlight the strength of our probabilistic approach, which combines predictive accuracy with explicit uncertainty
quantification. The close alignment between predicted and target demand across all regions demonstrates the model’s ability to cap-
ture underlying patterns, while the prediction intervals provide a transparent measure of confidence in these estimates. By modeling
not just point estimates but the full distribution of possible outcomes, our method captures the inherent variability in urban travel
demand across different contexts, locations, and times. This added layer of information is especially valuable for decision makers —
such as transport planners, ride-sharing operators, or policymakers — who must navigate uncertainty to optimize resource alloca-
tion, design responsive services, or mitigate congestion. For example, the wider intervals in the tourism region highlight the need
for flexible capacity to accommodate unpredictable visitor flows, while the tighter bounds during commuting hours in the workplace
and residential regions support more targeted scheduling of public transport services.

4.3. Ablation study and hyperparameter sensitivity analysis

To further evaluate the robustness and interpretability of our proposed framework, we conduct two complementary analyses: an
ablation study to isolate the contribution of the VAE module, and a hyperparameter sensitivity analysis to assess the stability of model
performance under varying configurations.

Ablation study To investigate the contribution of the VAE to demand forecasting, we conducted an ablation study on region 161,
over a continuous 48-hour period covering Sunday and Monday, as shown in Fig. 10. The VAE enhances interpretability by encoding
temporal data into a latent space, capturing day-of-week variations, resulting in wider, more adaptive prediction intervals (left) that
consistently encompass the target values. In contrast, the non-VAE variant (right) generates prediction intervals that remain nearly
constant in width, failing to adjust to changes in demand volatility. This static behavior suggests that uncertainty is not adequately
captured. In the non-VAE model, the uncertainty likely stems from model limitations rather than data variability. By contrast, the
VAE’s probabilistic modeling enables practitioners to interpret the width of prediction intervals in relation to real-world activity
patterns, with narrower intervals during stable periods and wider intervals during volatile periods such as rush hours. This provides
a transparent diagnostic tool to trace demand drivers such as commuting or commercial activity, which is crucial for building trust
and refining models in real-world applications.

Hyperparameter sensitivity analysis To evaluate the robustness of our VAE-based forecasting framework, we conducted a
sensitivity analysis on three key hyperparameters: the latent dimension size (L), the number of samples drawn during inference (5),
and the bandwidth (4) used in KDE. These parameters directly influence the model’s capacity to encode temporal-spatial patterns,
reconstruct meaningful distributions, and quantify predictive uncertainty.

As shown in Table 7, the bandwidth parameter 4, when varied under fixed latent dimension (L = 64) and sample size (S = 30),
exhibits a U-shaped effect on performance. A smaller bandwidth (A = 0.5) yields sharp and relatively narrow predictive intervals
(MPIW = 22.23) and the best RMSE (19.41), but suffers from degraded probabilistic scores (CRPS = 19.12, IS = 25.88), likely
due to overfitting and increased noise sensitivity in KDE. Increasing the bandwidth to 2.0 results in smoother but overly diffused
distributions, reflected in the worst IS (27.67) and the widest intervals (MPIW = 24.54). The configuration with » = 1.0 achieves the
best balance across all metrics, providing the lowest CRPS (17.11), MAE (5.41), and IS (19.41), while maintaining reasonably tight
intervals (MPIW = 23.88). These results suggest that 4 = 1.0 effectively smooths the sample distribution without losing sharpness or
introducing bias. When varying the number of samples (.5) under fixed L = 64 and & = 1.0, we observe that too few samples (S = 15)
yield narrower intervals (MPIW = 15.23) and a strong IS (21.98), but slightly worse CRPS (18.66) and MAE (5.64), indicating reduced
robustness in reconstructing the distribution. Increasing to .S = 60 leads to higher errors (MAE = 6.15, CRPS = 19.23) without
clear gains in uncertainty quantification, suggesting diminishing returns and possible overfitting to noise. The configuration .S = 30
achieves a desirable trade-off between probabilistic accuracy and computational efficiency. Lastly, varying the latent dimension size
L under fixed S =30 and s = 1.0 reveals that both under- and over-parameterization degrade model performance. A small latent
space (L = 32) fails to capture complex demand patterns, resulting in high errors (MAE = 9.63, RMSE = 32.53) and wide intervals
(MPIW = 43.74). In contrast, a large latent space (L = 128) produces overconfident yet inaccurate predictions: although the intervals
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Table 7

Parameter sensitivity (L: Latent: dimension of latent space in VAE;
S: Sample: number of samples generated for distribution construc-
tion; h: bandwidth of kernel in KDE)). Metrics (| better). x denotes
the configuration used in the main experiments.

(L, S, h) IS CRPS | MAE | RMSE | MPIW |
Varying bandwidth h (fix L=64, S=30)

(64, 30, 0.5) 25.88 19.12 5.71 19.41 22.23
(64, 30,1.0) x  19.41 17.11 5.41 19.93 23.88
(64, 30, 2.0) 27.67 19.98 5.71 19.41 24.54
Varying samples S (fix L=64, h=1.0)

(64, 15, 1.0) 21.98 18.66 5.64 17.80 15.23
(64, 30, 1.0) * 19.41 17.11 5.41 19.93 23.88
(64, 60, 1.0) 26.92 19.23 6.15 20.98 21.91
Varying latent dimension L (fix $=30, h=1.0)

(32, 30, 1.0) 50.55 22.20 9.63 32.53 43.74
(64, 30, 1.0) * 19.41 17.11 5.41 19.93 23.88
(128, 30, 1.0) 29.45 18.63 8.83 28.75 10.60

are narrow (MPIW = 10.60), the MAE (8.83) and RMSE (28.75) are significantly worse, reflecting overfitting and bias. The best
overall performance is achieved at L = 64, which balances representational power and generalization ability.

Overall, the experiments reveal three main patterns: (i) ~ shows a U-shape, with ~=1.0 balancing calibration (IS/CRPS) against
interval width (MPIW); (ii) fewer samples (.S=15) sharpen intervals but hurt CRPS, whereas .S§=30 offers the best trade-off; and (iii)
both too small and too large latent sizes degrade accuracy, with L=64 yielding the most favorable results. This analysis highlights the
importance of carefully tuning latent representation, sampling depth, and distribution smoothing when applying generative models to
travel demand forecasting. Future work could explore adaptive strategies for hyperparameter selection to improve robustness across
diverse spatial and temporal contexts.

5. Conclusion

In this study, we proposed STGCN-VAE, a novel probabilistic framework for travel demand forecasting that not only quantifies un-
certainty beyond state-of-the-art models but also demonstrates robustness and general applicability across diverse urban contexts and
service modes through extensive real-world evaluations. Unlike parametric probability forecasting approaches, STGCN-VAE adopts
a nonparametric paradigm to predict the underlying distribution of travel demand. The framework leverages a Spatio-Temporal
Graph Convolutional Network (STGCN) to efficiently capture spatial and temporal dependencies, extracting robust features from the
data. These features are then compressed into a latent embedding by a Variational Autoencoder (VAE) encoder. Through sampling
and reparameterization in the latent space, the decoder reconstructs the demand distribution. During inference, multiple samples
are generated, fitted to a Kernel Density Estimator (KDE), and subjected to statistical operations to quantify uncertainty. Extensive
experiments on real-world public datasets demonstrate that STGCN-VAE significantly outperforms baseline models, delivering accu-
rate point forecasts and robust distribution forecasts with probability distributions. This enables uncertainty quantification for travel
demand, providing a reliable and interpretable forecasting solution.

Despite its strong performance, STGCN-VAE has several limitations. It does not explicitly leverage supply-demand interactions,
may miss unfulfilled demand, and lacks destination information. Additionally, like many machine learning models, it underperforms
in low-demand regions due to data sparsity. Recognizing these limitations highlights areas for refinement and the need for careful
data integration and sparsity-aware modeling

Building on these reflections, future work should focus on further enhancing the framework’s flexibility, accuracy, and applicabil-
ity. First, given the modular nature of STGCN-VAE, future research can explore replacing or augmenting the STGCN component with
recent advances in spatiotemporal modeling, such as attention mechanisms or transformer-based architectures, to improve scalability
and representational power. Second, integrating heterogeneous data sources — such as weather conditions, special events, and socio-
economic indicators — offers a promising direction for multimodal data fusion that could enhance predictive performance. Third,
while our current framework employs MSE on the mean of generated scenarios to ensure stable and scalable training, the evaluation
relies on probabilistic metrics such as CRPS, IS. This creates a partial mismatch between training and evaluation objectives. In future
work, we plan to explore mixed or distribution-aware training objectives, for example, by incorporating differentiable approxima-
tions of probabilistic scoring rules (e.g., CRPS) or hybrid losses that jointly balance point accuracy and distributional calibration.
Such extensions could further align the optimization process with evaluation criteria and improve the methodological contribution
of non-parametric generative models for travel demand prediction. Fourth, sparsity handling, like many machine learning models,
our approach underperforms in low-demand regions due to data sparsity compared to high-demand regions, where statistical models
often achieve better robustness. Integrating sparsity-aware mechanisms into our framework would therefore be beneficial and rep-
resents an important direction for future work. Lastly, future work may assess the generalizability of the framework by applying it
to related forecasting tasks, including energy consumption, bike-sharing demand, and traffic flow prediction, thereby evaluating its
robustness across domains.
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