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Abstract

Currently used imaging methods in Atomic Force Microscopy (AFM) including the use of a
Lock-In Amplifier or a Phase-Locked Loop, are suboptimal. In this report, the image resolu-
tion in AFM is improved by detecting the tip-sample interaction using complete measurements
of the input of the cantilever and its measured deflection.

Two methods are studied while assuming that the tip-sample interaction is sparse, namely
a model-based approach and a data-driven approach. Real-life experiments have shown that
the model-based approach improves the image resolution with a factor of 7.5 to 0.555 nm
compared to the conventional imaging method, according to a metric using Fourier Ring Cor-
relation in which a reference image is unnecessary. The data-driven approach can be used in
the model-based approach to further improve the resolution. In addition to improved reso-
lutions, a Linear Time-Invariant model of the mechanically driven AFM-cantilever immersed
in liquid – from piezo input to cantilever deflection – has been obtained through subspace
identification with a Variance Accounted For of 79.2%.

Recommendations for future research include applying the latter model in detecting the tip-
sample interaction, improving the data-driven approach, reducing the computational effort of
the model-based approach and implementing algorithms for detecting the tip-sample interac-
tion online.
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Chapter 1

Introduction

Understanding life has always been a major curiosity of human beings. Both religion and
science are concerned with this issue, although it may be questioned whether life will ever
be completely understood at all. Nevertheless, curiosity is not the only reason to investigate
life. Namely, understanding life more and more may strengthen humanity, for instance in
enhancement in disease control or in food production. Therefore, research should continue
investigating life.
A current issue in investigating life is the desire to observe the smallest possible biological
structures, such as condensin with its tiny coiled coils [1] which facilitate the folding of
DeoxyriboNucleic Acid (DNA). Furthermore, static observations are inadequate. Dynamic
observations are more favourable, since the actual operation of those structres should be
discovered.
Facilitating dynamic observations of small biological structures entails various technical chal-
lenges. Firstly, those biological structures are extremely small, namely in the order of tens of
nanometers. So a microscope should be used for this. Secondly, the observations should be
done in ambient conditions, as the usual behaviour of the biological structures is preferred to
observe. This means that observations in vacuum, but also in highly irradiated environments
are futile. Thirdly, the sample to be investigated should be affected as little as possible during
observation. In this way, the original behaviour of the biological structure is preserved. Fi-
nally, successive static observations should be made as quickly as possible to make the entire
observation dynamic.
Atomic Force Microscopy (AFM), as a type of Scanning Probe Microscopy, turns out to have
high potential in scanning living biological samples, due to the ability to scan with very high
resolution in ambient conditions in air [2] and liquids [3]. However, AFMs are nowadays often
used for making single images at a slow rate, while making videos using AFMs is relatively
unexplored. Yet, Eeftens et al. [1] succeeded in filming condensin in liquid using the AFM
and found that condensin is flexible and dynamic. Nevertheless, certain features of condensin
were still undiscovered due to the slow frame rate and unsatisfactory resolution.
Moreover, the obtained video with size 70× 75 nm has a frame rate of 10 frames per second,
while the dynamics of the coiled coils (or: the arms) of condensin are expected to have much
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2 Introduction

faster dynamics. Namely, condensin can extrude DNA with a speed up to 1500 base pairs
per second (ca. 500 nm/s) [4] and the length of the arms of condensin is approximately 50
nm (implying a step size of ≤ 100 nm [5]), so condensin operates roughly with 5 cycles per
second. Thus, the dynamics of the arms of condensin cannot be captured appropriately with
a frame rate of 10 frames per second. A more suitable frame rate would be between 20 and
50 frames per second.

This gives rise to the idea to investigate methods to improve AFM-imaging in general. More
specifically (though still satisfying the general goal), this report is concerned with improving
the image resolution, while keeping the frame rate and influence on the sample constant.
While a literature study [6] provided research directions in detecting the interaction between
the AFM-cantilever and the sample to be studied, this report focuses on the experimental
results of the proposed directions. Furthermore, practical experience led to investigating
another new method, which is simulated and also experimentally tested. The results give a
first indication of the improvement which can be made in AFM-imaging in general.

The report is structured as follows. Firstly, an introduction to AFM with its physical design
and operating modes is given in Chapter 2. Besides, the limitations of current designs are
elaborated. Based on the limitations, Chapter 3 continues by describing two pragmatic meth-
ods to detect interaction between the AFM-cantilever and the biological sample. While the
first (model-based) method was recommended in [6], the second (data-driven) was designed
later to operate under less assumptions than the model-based method. Chapter 4 starts with
presenting significant contributions concerning system identification of the AFM-cantilever
in liquid. Subsequently, the chapter continuous by presenting experimental results of both
model-based and data-driven methods. Afterwards, the conclusions are presented in Chapter
5 with recommendations for future research.
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Chapter 2

Atomic Force Microscopy

Binnig and Quate invented the Atomic Force Microscope (AFM) in 1986 as a type of Scanning
Probe Microscopy [2]. This invention turned out to be very useful, due to its exceptional
potential resulotion achievable in versatile conditions [7]. The AFM is not only applicable in
vacuum [8], it has also proven itself in ambient conditions in air [2] and in liquids [3]. The
Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM) are
reasonable competitors of the AFM, considering the achievable resolution. However, the SEM
and TEM usually operate in vacuum and require a conductive (or conductive coated) sample
[9], which makes those microscopes unfavourable for biologists. Using the AFM, biologists are
able to study biomolecules and living cells at (sub-)nanometer resolution [7]. Furthermore,
besides scanning and imaging samples at high resolution, the AFM has the potential to
manipulate samples at nanometer scale [10].

2-1 Physical Design

Although there are several specific designs, the working principle remains similar for each
AFM. Namely, the surface of a sample is scanned by a sharp tip, as is illustrated in Figure 2-1.
The tip is attached to a cantilever, from which the displacement is measured. In early designs,
the cantilever displacement (or deflection) was being measured using a tip of a Scanning
Tunneling Microscope [2]. However, the designs nowadays are based on a laser aimed at the
cantilever and photo detector which catches the reflected laser beam [11]. The cantilever
deflection is determined from the place of the reflected beam at the photo detector. Based
on the measured deflection, the height of the sample can be estimated at that specific point.
Since the goal is to obtain a complete height profile of the sample rather than the sample
height at one specific point, the scan table has to be actuated in the x- and y-direction.
Additionally, a z-actuator is attached to the scan table so that interaction forces between tip
and sample can be controlled and samples with coarser relief can be scanned. Note that the
cantilever can also be driven by its cantilever-actuator (c-actuator). This is useful in certain
operating modes to bring the cantilever in oscillation.
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4 Atomic Force Microscopy

Figure 2-1: Sketch of physical design of an AFM. A cantilever is being driven by the can-
tilever actuator (c-actuator) above a scanner table with sample. Three actuators are attached
to the scanner table to move it in the x-, y- and z-direction. A sensor measures the cantilever’s
displacement.
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2-1 Physical Design 5

Typical scan ranges in x- and y-directions do not exceed 100 microns, although there are
exceptions [9]. Typical dimensions of cantilevers are 450 × 50 × 2 microns [9]. Also these
dimensions can vary. For example, cantilevers with dimensions 25 × 10 × 0.1 microns have
been manufactured to image with high speed [12] and the Cees Dekker Lab [13] uses even
smaller cantilevers with dimensions 7× 2× 0.08 microns (see Figure 2-2 [14]). Butt, Cappella
and Kappl [15] reported the design considerations of AFM cantilevers accurately. The tip of
the cantilever should be as small as possible to achieve the highest resolution. However, it is
difficult to produce probes with tip radii below 10 nanometers at reasonable costs [9].

Figure 2-2: Cantilever with dimensions 7× 2× 0.08 microns attached at a support chip (upside
down).

The cantilever actuator is often a (relatively large) piezo at the location of inclination of the
cantilever. As a consequence, most of the force from the piezo is acting on the support chip
of circa 3.4 × 1.6 × 0.3 mm [14]. For scanning in liquid, this results in complex behaviour
of the cantilever, as the support chip is also immersed [16]. Furthermore, the behaviour
can change during scanning due to changing liquid levels or changing viscosity [16]. An
alternative to the conventional actuation is the “self-actuating cantilever”, in which micro-
actuators are being integrated directly on the cantilever. However, although several actuator
mechanisms exist [17][18], there are some disadvantages. Firstly, combining the actuator
with sensor mechanisms can be problematic for some designs (Lorentz/piezo-electric/magnetic
actuation) due to interaction between those mechanisms, especially in water [17]. Secondly,
for a mechano-thermal design it may be challenging to realise such a cantilever with small
dimensions (in [17] the width was >100 microns). Thirdly, a photo-thermal design [18] is
in dimensions often relatively wide [14] (resulting in a higher force constant and therefore
higher forces on the sample) compared to a conventional cantilever and the sample might be
influenced by the heat, while it is desired to affect the sample as little as possible. Therefore,
for the scans of very small biological samples, the conventional piezo is still used as cantilever
actuator.
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6 Atomic Force Microscopy

Figure 2-3: Schematic view of mode Amplitude Modulation with Phase Imaging (AM-PI). The
cantilever is excited by a sinusoidal signal uc. The measured cantilever deflection yc is converted
to phase and amplitude, which are used for imaging and control of the z-actuator. An image is
generated by plotting one of the three output signals.

2-2 Operating Modes

There exist two generally known modes in which an AFM can be operated, namely “contact
mode” and “tapping mode”. In the contact mode, the cantilever tip is constantly being
held at or near the sample surface. One year after the invention of the AFM, Martin et al.
[19] developed a tapping mode, in which the cantilever is brought into oscillation using the
cantilever actuator (Figure 2-1). The cantilevers amplitude, frequency and phase will vary due
to interaction with the sample. Therefore, in tapping mode the sample height is estimated
using one or more of those quantities, generally referred to as AM-PI, PM-AI, FM-AI or
AM-FI [20].

Often, the AM-PI-mode is used, from which the schematic is shown in Figure 2-3. The
variable uc stands for the cantilever input (usually a sinusoidal signal); η represents thermal
noise; F the tip-sample interaction; ν the measurement noise; yc the output of the photo
detector; Ac, Ac,0, the amplitude with reference; φ the phase; uz the input to the z-actuator;
z the height of the scan table; and h the sample height. The abbreviation LIA stands for
Lock-In Amplifier and the block “t/s-interaction” contains the relationship between cantilever
deflection, table height z and sample height h on one side and the tip-sample interaction F
on the other. Conventionally, only the variables uc, φ, Ac, Ac,0 and uz are known.

Figure 2-4 shows the input (uz) and amplitude plots with feedback (FB) turned on and off
(i.e. the input to the z-actuator is either quickly or slowly varying). If FB is turned on, the
sample height is being estimated proportionally to the input to the z-actuator:

ĥ = c1uz. (2-1)

Moreover, both amplitude plot and phase plot (the latter not shown) are relatively flat in this
case. If, however, FB is turned off1, then the sample height can be estimated using either

1The FB was not turned off completely, but its parameters were set such that the input to the z-actuator
was varying very gradually. As a consequence, the cantilever tip was not drifting away from the sample.
Furthermore, note that the FB can only be turned off if the variations in sample height are small enough.
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2-3 Limitations 7

the amplitude or phase plot (the latter not shown again). Practical experience suggests that
the amplitude plot often contains the most valuable information (unless large differences in
hardness of the sample occur), so in this case:

ĥ = c2Ac (2-2)

with c1 and c2 constants.

For any mode, interaction forces between tip and sample are already present close to the
sample. Therefore, it is sometimes unnecessary to hit the sample surface to estimate its
height. Nevertheless, the signal-to-noise ratio will be lower, since non-contact forces are
smaller than forces caused by actual contact between tip and sample.

For the modes FM-AI and AM-FI, the LIA is replaced with a Phase-Locked Loop (PLL). An
extensive explanation including schematics and comparison of operating modes can be found
on pages 5 to 8 of [6].

2-3 Limitations

There are multiple factors which can limit the performance of an AFM. Examples are oscil-
lations in the scan table [11], inappropriate resonance characteristics of the cantilever [8][21]
and parachuting [22]. For each of those three limitations, improvements have been researched
(see pages 8 to 11 of [6]).

However, a literature study [6] and Sahoo, Agarwal and Salapaka [23] have shown that a
more fundamental change in signal processing can potentially lead to a larger improvement.
Namely, the use of either an LIA or a PLL is accompanied by losing crucial information about
the tip-sample interaction F . Moreover, the use of an LIA or a PLL implies that the cantilever
output yc is assumed to be a single-mode oscillation, i.e. the signal consists of just one
frequency. In reality, however, this assumption does not hold, since the cantilever is excited
by both the sinusoidal cantilever uc and the tip-sample interaction F . The latter element
causes the output signal yc to be a multi-mode oscillation. Therefore, it is inappropriate to
scale the output signal yc down to just an amplitude and a phase. Instead, the complete
envelope of yc should be measured to reconstruct the tip-sample interaction. As the sample
height is simply the cause of the tip-sample interaction, it can be estimated once F is known.

To conclude, all obtainable information about the sample is introduced in the system via
F . Hence, the remainder of this report is concerned with estimating the sample height h
using reconstruction of tip-sample interaction F from directly measured input and output
signals uc and yc. In contrast to Sahoo et al. [23], algorithms alternative to the Willsky-
Jones Generalised Likelihood Ratio [24] will be investigated (see pages 11, 12 and 15 of [6]).
Moreover, simulation experiments have shown better performance for algorithms alternative
to Willsky-Jones, while still being convex [25]. Besides, procedures will be studied for system
identification of the cantilever immersed in liquid. Finally, the obtained images will be assessed
both qualitatively and in terms of image resolution.
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Figure 2-4: Conventional methods to determine sample height, applied at a scan of graphite.
The input to the z-actuator (a-1) and the amplitude plot (a-2) if feedback (FB) to the scan table
is turned on, and the input to the z-actuator (b-1) and the amplitude plot (b-2) if FB is turned
off. Depending on whether the FB is turned on/off, either (a-1) or (b-2) is conventionally used
as image, respectively. The sample height was varying between approximately 0 and 1 nm, while
the free amplitude of the cantilever was approximately A0 = 1.4 nm.
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Chapter 3

Detection of Tip-Sample Interaction

Imaging in AFM is inherent to estimating the height of the sample. The sample height
causes interaction with the AFM-cantilever, from which the motion is recorded. Based on
the motion, the sample height is estimated. Conventionally, an LIA or a PLL is used for this.
However, improvement can be achieved here by recording the complete envelope of the input
and the output to reconstruct the tip-sample interaction, from which the sample height can be
estimated. Thus, it is needed to study methods for reconstructing the tip-sample interaction
using input and output information. This chapter provides explanation of two methods,
namely a model-based and a data-driven approach. While the model-based approach relies
on Ohlsson et al. [25], the data-driven is based on Yu et al. [26], but is modified so that
it fits in the AFM-framework. After a problem formulation in Section 3-1, the model-based
approach is presented in Section 3-2 and the data-driven approach in Section 3-3.

3-1 Problem Formulation

Suppose that the cantilever dynamics can be described by the linear time-invariant (LTI)
system

x(t+ 1) = Ax(t) +Buc(t) +B2F (t) + η(t)
yc(t) = Cx(t) + ν(t).

(3-1)

with A, B, B2, C the (known) system matrices and x(t) the state at time step t ∈ T =
{1, 2, ..., N} with N the number of measurements. With uc(t) and yc(t) known for t ∈ T , the
task is to recover F (t) for t ∈ T \ {N}.

In tapping mode AFM, the cantilever has intermittent contact with the sample. Moreover, for
a large part of the oscillation period of the cantilever, the interaction between cantilever tip
and sample is negligible, while for a small part, the interaction is relatively large. Therefore,
it is assumed that F (t) can be approached by a sparse signal, i.e. many entries in F (t) will
equal zero and a few will have a value.
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10 Detection of Tip-Sample Interaction

Accordingly, the following minimisation would produce an accurate solution to the problem:

min
F (k),η(k),x(1)
k=1,...,N−1

N∑
t=1

∥∥∥R−1/2
ν (yc(t)− Cx(t))

∥∥∥2

2
+
N−1∑
t=1

∥∥∥R−1/2
η η(t)

∥∥∥2

2

s.t. x(t+ 1) = Ax(t) +Buc(t) +B2F (t) + η(t);
‖VF ‖0 = n0

(3-2)

with
VF = [‖F (1)‖2 , ..., ‖F (N − 1)‖2].

The variable Rν is the variance of ν, i.e. the expectation matrice E[ν(t)νT (t)] and Rη is
the variance of η. Variable n0 is the known number of nonzero entries in F (t). The second
constraint ‖VF ‖0 = n0 implies that the zero-norm - i.e. the number of nonzero elements - of
VF equals the known number of jumps. More information and common terminology [27] of
norms is presented in Table 3-1.

Unfortunately, there are some drawbacks for direct implementation of optimisation problem 3-
2. One of the drawbacks is its non-convexity, which results in strong increase in computational
effort for increasing n0 and N . Besides, the number of jumps n0 is not known in AFM-
measurements. For instance, the intermittent contact between cantilever tip and sample is
temporarily interrupted during parachuting, so not every oscillation period of the cantilever
contains a pulse in F . Therefore, alternative methods will be studied to find the tip-sample
interaction.

The model-based and data-driven approach described in the following two sections are prag-
matic methods to find the tip-sample interaction in AFM. Although the model-based approach
is convex, the matrix B2 should be known1 for execution. On the contrary, the data-driven
approach does not require knowledge of B2, but is only sequentially convex.

Table 3-1: Definitions and common terminology of the norm ‖VF ‖p. The notation “card(VF )”
stands for the cardinality of vector VF .

Range Definition Terminology

1 ≤ p ≤ ∞
(∑N

j=1 V
p
F,j

)1/p
`p-norm

0 < p < 1
(∑N

j=1 V
p
F,j

)1/p
quasi-norm

p = 0 card(VF ) zero-norm

1In practice, knowledge of B2 turns out to be difficult to obtain through system identification, due to F (t)
which cannot be measured directly. Therefore, it is beneficial if knowledge of matrix B2 is not needed to
estimate F (t).

J. Noom Master of Science Thesis



3-2 Model-Based Approach 11

3-2 Model-Based Approach

Instead of solving the non-convex problem (3-2), it could be a better option to use State
Smoothing by Sum-of-Norms Regularisation (STATESON) [25]. This is a relaxation of op-
timisation problem (3-2) which makes the problem convex. The computational time will be
acceptable, while the results are still good estimates. The optimisation problem will be

min
x(1),F (k),
1≤k≤N−1

N∑
t=1

∥∥∥R−1/2
ν (yc(t)− Cx(t))

∥∥∥2

2
+
N−1∑
t=1

λ
∥∥∥Q−1/2F (t)

∥∥∥
p

s.t. x(t+ 1) = Ax(t) +Buc(t) +B2F (t).

(3-3)

Parameter λ ≥ 0 can be tuned to based on a trade-off between the fit to the measurements
yc(t) and the contribution of F (t). Besides, p ≥ 1 can be tuned to control the sparsity of
the outcome F̂ (t). Note that the tip-sample interaction F (t) is being handled as a stochastic
variable with variance Q:

F (t) = δF (t)γF (t)

δF (t) =
{ 0 with probability 1− µ

1 with probability µ.
γF (t) ∼ N (0, Q).

(3-4)

To find the optimal values, the optimisation algorithm (3-3) is incorporated in a certain
procedure. In this way, an appropriate value for λ will be used and estimates of F will be
accurate.

3-2-1 STATESON-algorithm

Below, the procedure of the STATESON-algorithm will be described.

1. Choose or calculate an appropriate value λ:

(a) Introduce

ςt , R−1/2
ν

(
yc(t)− C

( t−1∑
r=1

At−r−1Buc(r) +At−1x(1)
))

(3-5)

(b) Define ς̄t as

ς̄t = min
x(1)

N∑
t=1
‖ςt‖22 (3-6)

(c) Calculate the critical value λmax:

λmax = max
k=1,...,N−1

∥∥∥∥∥∥2
N∑

t=k+1
(R−1/2

ν CAt−k−1B2Q
1/2)ς̄t

∥∥∥∥∥∥
q

(3-7)

with 1/p+ 1/q = 1.
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12 Detection of Tip-Sample Interaction

(d) Choose (this value may be tuned somewhat)

λ = 1
10

√
‖Rν‖
‖Q‖

λmax. (3-8)

2. Set α(0)(t) = 1 for t = 1, ..., N − 1 and i = 0.

3. Compute the optimal F (i)(t) using 3-9 with α(t) = α(i)(t):

min
x(1),F (k),
1≤k≤N−1

N∑
t=1

∥∥∥R−1/2
ν (yc(t)− Cx(t))

∥∥∥2

2
+ λ

N−1∑
t=1

α(t)
∥∥∥Q−1/2F (t)

∥∥∥
p

s.t. x(t+ 1) = Ax(t) +Buc(t) +B2F (t)

(3-9)

4. Set
α(i+1)(t) = 1/(ε+

∥∥∥Q−1/2F (i)(t)
∥∥∥
p
) (3-10)

(for which ε is a positive tuning parameter) and possibly reduce λ.

5. If there is convergence of the estimates F̂ , go to the next step, otherwise set i = i + 1
and return to step 3.

6. Compute a final estimate of F̂ (t) using

min
x(1),F (k),
1≤k≤N−1

N∑
t=1

∥∥∥R−1/2
ν (yc(t)− Cx(t))

∥∥∥2

2

s.t. x(t+ 1) = Ax(t) +Buc(t) +B2F (t)
F (t) = 0 if t /∈ T

(3-11)

with2 T = {t|F̂ (t) 6= 0}.

To summarise, the STATESON-algorithm and specifically the corresponding procedure is a
pragmatic and accurate, convex relaxation of optimisation problem 3-2. The contribution of
F (t) is penalised with an `p-norm. The solution will be the sparsest for p = 1. An initial
estimate of tuning parameter λ is provided in the procedure, as well as a rule for updating the
weights α(t) to enhance convergence in subsequent iterations. Due to the use of the `p-norm,
the apparent solution will be biased toward zero. To circumvent this issue, a final estimate
F̂ (t) is calculated by executing optimisation problem 3-11.

2In practice, the constraint T = {t|F̂ (t) > ε} will be used, with ε a small number, so that very small values
in F (t) are set to zero.
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3-3 Data-Driven Approach

In the previous section, a convex method was proposed to find the sparse tip-sample inter-
action F (t). However, it was assumed that the matrix B2 was known. In practice, it can
be challenging to find this matrix through system identification. Therefore, a sequentially
convex method for which B2 may be unknown, will be investigated in this section. Moreover,
the goal of this data-driven method is to find both B2 and F (t). The goal is elaborated as
follows:
A description of the AFM-cantilever dynamics alternative to Equation 3-1 is:

A(q)yc(t) = Bu(q)uc(t) +Bf (q)F (t), (3-12)

from whichA(q), Bu(q) are known from identification without presence of F (t). The quantities
uc(t) and yc(t), however, are measured for t ∈ T in presence of unmeasurable F (t). Although
F (t) is unmeasurable, it is known that it is a pulse-like signal. The task is to recover both
Bf (q) and F (t).
Sections 3-3-1 to 3-3-3 elaborate the procedure to solve the bilinear optimisation problem.
Results from simulations are presented in Section 3-3-4.

3-3-1 Data Equation

A simpler formulation of Equation 3-12 is:

Y (k) = Bf (q)F (k) (3-13)

with Y (k) known. With a system of order 2, the latter equation is equivalent to

Y (k) = (bf,1q−1 + bf,2q
−2)F (k) = bf,1F (k − 1) + bf,2F (k − 2) (3-14)

This system description leads to the data equation
yc(k) yc(k − 1) yc(k − 2)

yc(k − 1) yc(k − 2) yc(k − 3)
... . . . ...

yc(k −N + 3) . . . yc(k −N + 1)


 1
a1
a2

−


uc(k − 1) uc(k − 2)
uc(k − 2) uc(k − 3)

...
...

uc(k −N + 2) uc(k −N + 1)


[
bu,1
bu,2

]
=


F (k − 1) F (k − 2)
F (k − 2) F (k − 3)

...
...

F (k −N + 2) F (k −N + 1)


[
bf,1
bf,2

]
.

(3-15)

which can be rewritten in the short form:

Y = Fbf . (3-16)

Note that the data equation can be easily adjusted to describe a system of higher order. The
equality 3-16 yields that [28]

Y− FI−1
2 bf = 0 ⇐⇒ rank

[
Y F
bf I2

]
= rank(M) = 2. (3-17)
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14 Detection of Tip-Sample Interaction

3-3-2 Difference of Convex Programming

The Difference of Convex Programming algorithm, as described in [26], can be used to find
both F and bf such that rank(M) = 2. It consists of two steps.

Step 1

Firstly, a minimisation of the nuclear norm will be performed:

min
F,bf
‖M‖∗

s.t. M =
[
Y F
bf I2

]
F = hankel(F ).

(3-18)

The found matrix M will be decomposed using a singular value decomposition:

UΣV > =
[
U1 U2

]
Σ
[
V >1
V >2

]
= M (3-19)

such that U1 and V1 are the first two3 columns of U and V , respectively.

Step 2

The second step consists of iterating Equation 3-20 and 3-21 until convergence.

min
F,bf

(
‖M‖∗ − tr(U>1 MV1)

)
s.t. M =

[
Y F
bf I2

]
F = hankel(F )

(3-20)

UΣV > =
[
U1 U2

]
Σ
[
V >1
V >2

]
= M (3-21)

Both steps 1 and 2 are convex minimisations and therefore computationally attractive. The
convergence of these iterations should ensure that rank(M) = 2.

3-3-3 Including prior knowledge of F (k)

The outcome of Step 2 is a good first approximation of both F and bf (up to a scaling
factor). To make the estimation more robust against process and measurement noises, the
prior knowledge that F is a pulse-like signal can be incorporated. This can be done using the
following steps.

3Matrices U1 and V1 should be the first two columns of U and V , since from Equation 3-17, it is known
that the rank of M should equal 2.
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Step 3

Using the most recent updates of U1 and V1 of Step 2, the following minimisation should be
done:

min
F,bf

(
‖M‖∗ − tr(U>1 MV1)

)
+ λDCP ‖Fbf‖1

s.t. M =
[
Y F
bf I2

]
F = hankel(F )

(3-22)

with λDCP a tuning parameter. Instead of iterating with new estimates of U1 and V1 like in
Step 2, this minimisation is needed to perform only once. This is again a convex minimisation.

If the `1-norm would be included in Equation 3-20, the iterations in Step 2 would not converge,
due to inappropriate estimations of U1 and V1. Therefore, Step 2 should be completed before
executing Step 3.

In Equation 3-22, the `1-norm on Fbf is used instead of the norm on F . In this way, tuning
parameter λDCP can be chosen appropriately before starting the execution of the whole algo-
rithm. Moreover, the force F can only be estimated up to a scaling factor, while the quantity
Fbf will be similar to the known order of Y (see Equation 3-16).

Step 4

Due to the use of the `1-norm in Step 3, it is likely that the magnitude of the estimated pulses
will be too small. Therefore, inspired from [25], a set of time instances at which an estimated
pulse occurs can be defined: T = {t|F(t, :)bf > ε} with ε a small value4. Using this set, a
final optimisation can be done:

min
F,bf

(
‖M‖∗ − tr(U>1 MV1)

)
s.t. M =

[
Y F
bf I2

]
F = hankel(F )

F (t) = 0 if t /∈ T

(3-23)

with t = {1, 2, 3, ..., N}. In this minimisation, the most recent updates of U1 and V1 of Step 2
are used. Similarly to Step 3, this minimisation is convex and needed to perform only once.

3-3-4 Simulations

Simulation experiments were done for the cases in which (a) the steps 1 through 3 are executed
successively, and (b) in which the steps 1 through 4 are executed (software in Appendix C).

4In [25], the set is defined as T = {t|F (t) 6= 0}. However, in practice this will result in T = {t|F (t) > ε} so
that very small values in F are filtered out. A question arises how large to choose ε, especially because F is
in Equation 3-22 estimated up to a scaling factor. Fortunately, the quantity Fbf will be of the same order of
magnitude as Y (see Equation 3-16). Therefore, ε can be chosen small compared to the maximum value in Y
and the set T will be defined as indicated in the text.
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16 Detection of Tip-Sample Interaction

The quasi-Newton algorithm is used for minimisations. In each experiment, exactly identical
measurement noise with variance 3.05 × 10−4 squared nanometers is included, so that a
quantitative comparison can be made. The threshold is chosen to be ε = 0.01 × ‖Y‖∞. In
both cases (a) and (b), the tuning parameter λDCP is varied between 0.02 and 0.78 and the
Mean Squared Error (MSE) between the measured yc(k) and estimated ŷ(k) is plotted in
Figure 3-1.

For very low values of λDCP, the MSE is very small. This is due to the ability to fully
reconstruct the output signal yc including the measurement noise. However, it is desired to
reconstruct the real cantilever deflection with noise filtered out. Therefore, a solution of F̂bf
should be found which is sparse and which has a low MSE.

If tuning parameter λDCP is increased, the estimated quantity F̂bf becomes sparser. In Figure
3-1 this is confirmed, since it shows increased values of the MSE for case (a), while the MSEs
for case (b) remain low. However, if λDCP is chosen too high, no pulses are detected anymore
and the MSE reaches the maximum. Thus, from Figure 3-1 it can be concluded that a sparse
solution with low MSE is found in case (b) with λDCP = 0.34.

Figure 3-2 shows solutions of (F̂bf )a and (F̂bf )b with corresponding deflections ŷa and ŷb
using λDCP = 0.34 for case (a) and case (b), respectively. In case (a), the solution is sparse.
However, the estimates have a too small magnitude due to the use of the `1-norm instead
of the zero-norm. In case (b), all entries satisfying (F̂bf )a < ε are set to zero and Step 4 is
applied, so that the solution is sparse, while its `1-norm is not penalized.

The scaled estimation of bf is (b̂f )b =
[
0.0015 0.0145

]>
, while the actual values were bf =[

0.0148 0.0145
]>

. The discrepancy may be caused by putting the `1-norm on Fbf instead of
F . This may have caused sparsity of b̂f , in addition to F . Nevertheless, outcome still ensures
that the estimated interaction is still relatively sparse, while the cantilever deflection (Figure
3-2 (a)) can be reconstructed accurately.
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Figure 3-1: MSEs between yc and ŷa (red +) and ŷb (black ×).
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Figure 3-2: (a) Measured cantilever deflection yc (blue) with estimated deflections ŷa (red) and
ŷb (yellow) and (b) corresponding signals Fbf (blue), (F̂bf )a (red) and (F̂bf )b (yellow) with
λDCP = 0.34.
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Chapter 4

Experimental Results

In this chapter, the experimental results of both model-based and data-driven approach are
presented. The results of the model-based approach are more comprehensive including recon-
struced AFM-images, whereas the data-driven approach is only tested at a small part of the
data. Moreover, the idea is to use the estimation of a parameter (b̂f ) from the data-driven
approach in the model-based approach.

The chapter is structured as follows. Firstly, the experimental setup is elaborated in Section
4-1. Secondly, two procedures for system identification are presented and tested in Section
4-2, from which the first procedure succeeds in identifying a complex model from the input of
the cantilever piezo to the cantilever deflection and the second procedure results in a simple
second-order model of the physical cantilever only. The latter model is used for experiments
in subsequent sections. After identification, this chapter continues with presenting the re-
constructed images of the model-based approach in Section 4-3. Those images are analysed
qualitatively in Section 4-3-1 and quantitatively in Section 4-3-2. The latter analysis includes
a metric in which the Fourier Ring Correlation is used, while a reference image is unnecessary.
Finally, the results of the data-driven approach are presented in Section 4-4. Software can be
found in Appendix C.

4-1 Setup

The experiments are performed using an AFM designed by T. Ando [29]. Pictures can be
found in Appendix B. A Picoscope 5443D [30] is used to collect the cantilever’s I/O-signals
with a rate of 1.0417× 107 Hz.

With a length of 7 µm and a spring constant of 0.15 N/m [14], the cantilever has a resonance
frequency in liquid of approximately 500 kHz. The free oscillation amplitude is about 1.4 nm.
In the x- and y-dimensions, the maximum scan range is 700 nm. The experiments are done
in liquid, since scanning in liquid results usually in less influence on the sample [16] and in
addition, biological samples often show their natural behaviour in liquids, which is eventually
desired to be observed.
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20 Experimental Results

Figure 4-1: The splitting of the whole cantilever system into one block with the higher-order
dynamics and one block with easier cantilever dynamics.

The AFM is controlled using the AM-PI-method from Figure 2-3. However, the controller
parameters are set such that the input to the z-actuator has minimal variations, i.e. z is
approximately constant. As a consequence, the sample height can be estimated by measuring
the cantilever’s oscillation amplitude, which will be comparison material for the new height
estimation algorithms. Yet, the input to the z-actuator cannot be perfectly constant, since
the cantilever tip may drift away from the sample.

Graphite is used as test sample, since this brittle material consists of atomic layers. Therefore,
it is expected to contain sudden steps in sample height within the order of nanometers.
Moreover, studying system dynamics with a step as input is very useful in determination and
comparison of the system’s performance.

For system identification in Section 4-2, the cantilever is off-sample so that there is no interac-
tion between cantilever tip and sample. However, for both the Model-Based and Data-Driven
approach in Sections 4-3 and 4-4, the cantilever does have intermittent contact with sample
and the scan table is activated to make scans of the graphite sample.

4-2 System Identification

To perform the new algorithms for estimating the sample height, an accurate model of the
cantilever is needed. Such a model can be obtained by system identification. There exist at
least two ways to perform system identification of the AFM cantilever. The first manner is
to identify the system from the piezo input to the cantilever deflection, i.e. from uc to yc in
Figure 4-1. However, the result can be a complex model, since higher-order dynamics of for
example the actuator (piezo) and fluid will also be part of the model. Elaboration and results
regarding this approach for identification can be found in Section 4-2-1.

An alternative is to make use of the thermal motion of the cantilever [31]. In this approach,
it is assumed that thermal forces act directly on the cantilever. Accordingly, the higher-order
dynamics of (among other things) the piezo and fluid are bypassed, so that a simple model
remains. This approach is elaborated in Section 4-2-2.
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4-2-1 Using piezo input and cantilever deflection

Although the cantilever seems to be a very trivial element in the AFM, its identification from
piezo input to measured cantilever deflection can be a challenging task, even without presence
of tip-sample interaction. Moreover, the piezo is attached at an inconvenient location of the
cantilever. Furthermore, this piezo itself can have complex dynamics. For those reasons, a
black-box identification method is chosen.

A Pseudo-Random Binary Sequence (PRBS) is chosen as input for identification, because of
its white noise-like properties while being less harmful for the system than white noise. The
input spectrum of the PRBS-signal with duration 2 seconds, is shown in Appendix A-1.

The Past Outputs Multivariable Output-Error State-sPace (PO-MOESP) method [32] is used
to identify the cantilever dynamics, while the measurements were done in presence of both
process and measurement noise. Moreover, the identification measurements were done in open
loop, so that the process and measurement noise are uncorrelated.

Using Hankel matrices of the input and output of size Rs×(Nb−s) with Nb the number of
measurements per segment and s chosen to be 2000, the singular values of R32 [32] are
shown in Appendix A-1. Now it is important to choose the right order of the model such
that the cantilever dynamics can be described satisfactorily. To do so, small sudden steps
in magnitude of successive singular values should be found (see Appendix A-1). Figure 4-2
shows the Variance Accounted For (VAF) for each choice of model order n. Those VAFs are
determined using a frequency sweep (with duration 1 second) as validation input signal, with
spectrum as is presented in Appendix A-1. The VAFs converge to a value near 80% (optimum
with s = 2000 is 79.2%). Higher percentages cannot be achieved in this case, possibly due to
noise contributions and nonlinearities. Besides, the VAF can differ for alternative validation
input signals. A better validation signal would have a wider range of frequencies for which
the power is constant, since more frequencies are tested with equal weight for the VAF.

Besides, Figure 4-2 shows that the choice of parameter s has influence on the performance of
system identification. For higher values of s, larger VAFs can be achieved. It can be expected
that the highest achievable VAF will converge for s→∞, which is gently suggested in Figure
4-2. Namely, the parameter s increases linearly, while the rise in maximum achievable VAF
per choice of s declines.

A bode plot of the identified system with the highest VAF is shown in Figure 4-3. The
bode plot consists of many peaks due to the high order, which is in case probably due to
large contributions in the dynamics of the liquid [16]. Moreover, the large support chip (or:
module) of the cantilever (described in Section 2-1) is also immersed in the liquid and accounts
for many peaks in the response spectrum [33]. This phenomenon is well known in tapping
mode AFM in liquid and also called the “forest of peaks” [33].

Further improvement on system identification can be done by reducing the model order in an
appropriate way. Moreover, the process and measurement noise could be coloured instead of
white. The dynamics of coloured noise appear in the identified model. Often, those dynamics
are included in the states which are the weakest coupled to the input and output. Therefore,
the weakest coupled states could be deleted from the model to potentially improve the model.
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Figure 4-2: VAFs for several choices of model orders for s = 1000 (red +), s = 1500 (blue ×)
and s = 2000 (black ∗).
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Figure 4-3: Bode plot of model with order 188, obtained using s = 2000, identified using piezo
input and cantilever deflection.
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Figure 4-4: Magnitude plot of estimated system (red) and the FFT of the measurements (blue),
identified using thermal motion of the cantilever.

4-2-2 Using thermal motion of the cantilever

The system used for identification of the cantilever is

x(k + 1) = Ax(k) +Kν(k)
y(k) = Cx(k).

(4-1)

After identifying A, C and K using the PO-MOESP-algorithm, the matrices B and D are
determined as:

B = K

D = 0.
(4-2)

After identification from thermal noise to cantilever deflection, a sinusiodal signal is applied
to the system, so that the phase difference between uc and u2 can be determined, as well as
the gain from uc to yc (see Figure 4-1). This will be done by fitting the modelled cantilever
output with the measured output with the Least Squared Error (LSE), using phase difference
τ and gain c alternately as optimisation variables. Afterwards, the input is determined as:

u2(1 : N − τ) = cuc(1 + τ : N). (4-3)

Since there is no appropriate control of u2 and the actual thermal noise η is unknown, the
identified model using thermal motion cannot be validated. The model can, however, be
assessed by applying the Sum-of-Norms Regularisation.

The magnitude plot of the identified system, together with the Fast Fourier Transform (FFT)
of the measured data, is shown in Figure 4-4.
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4-3 Model-Based Approach

In this section, the Model-Based Approach (i.e. the STATESON-algorithm) is experimentally
tested for one entire frame. Beside comparing the results with the conventional imaging
method, the STATESON-algorithm will also be examined for different values of λ. After a
detailed explanation of the experiment, the obtained images will be compared qualitatively
in Section 4-3-1. Afterwards, the image qualities are quantified in Section 4-3-2.
The STATESON-algorithm is applied as is explained in Section 3-2 with parameters given in
Appendix A-2. Each iteration of Equation 3-9 and 3-10, the parameter λ is decreased with a
factor 5.
Equation 3-6 is changed to

ς̄t =
N∑
t=1
‖ςt‖22

∣∣∣∣∣
x(1)=0

(4-4)

to enhance the computational speed. The second and final minor adjustment to reduce the
computational time is the splitting of data in segments of NT = 300 measurements of uc and
yc. The STATESON-algorithm is applied for each segment with initial state equal to the final
state of the former segment.
Effort has been made to implement the “Least Absolute Shrinkage and Selection Operator”
(LASSO)-problem [25][34] of Equation 3-9 with p = 1 in the “Alternating Direction Method
of Multipliers” (ADMM) [35] to further reduce the computational time. However, this imple-
mentation - presented in Appendix C-5 - has neither led to improvement nor to degradation.
In Section 4-2, two distinct ways are executed for identifying the cantilever dynamics. While
the first method succeeded in identifying the complex dynamics from the piezo input to the
cantilever deflection, the second method provided a simpler model of the actual cantilever
itself. Even though the model of the second method was not validated and may be less
accurate, its simplicity provides the opportunity to reduce the computational effort needed
for the STATESON-algorithm. Moreover, the computational time using a second-order model
is reduced with a factor of circa 800, compared with using a 188th-order model. Besides,
the segments in which the data is split should be larger, since otherwise the estimated initial
condition can be used to compensate large contributions of the tip-sample interaction. Finally,
the assumption that F influences the model similarly to uc is less valid than the assumption
that F influences the model similarly to u2.
After executing the STATESON-algorithm, the estimates F̂ (t) and ŷc(t) = Cx̂(t) are avail-
able. Using those outcomes, the sample height will be estimated:

c4+ 1
c3
ĥ(t = {1, ..., NT }+kNT ) = min

t

(
ŷc(t = {1, ..., NT }+kNT )

)
+0.02×

(k+1)NT∑
t=kNT+1

F̂ (t) (4-5)

with k = {0, 1, 2, ...} the segment number and {c3, c4} constants chosen such that the sample
height is estimated between known lower and upper bounds.

4-3-1 Qualitative Image Analysis

The conventional amplitude plot is shown in Figure 4-5 (similar to Figure 2-4 b-2), together
with the height reconstruction using the STATESON-algorithm using λ/λmax = 2.683×10−3.
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Figure 4-5: Conventional amplitude plot (a) and height reconstruction using STATESON (b)
with λ/λmax = 2.683×10−3. Scan direction was from right to left. The estimated sample height
varies between 0 and 1 nm.

Those images are zoomed in in Figure 4-6 (a) and (c) to emphasize the differences.

Considerable improvement in favour of the STATESON-algorithm is visible in Figure 4-6.
Using the conventional amplitude plot, no more than a simple dot can be seen. However, the
plot using STATESON is more nuanced, as it shows certain vertical lines. It is expected that
these lines are the result of oscillations in the scan table due to abrupt changes in direction at
the edges of the sample. The vertical lines are oscillations in the scan table for three reasons.
Firstly, the vertical lines are not induced by the sample structure. Moreover, the distance
between adjacent carbon atoms in graphite is 0.142 nm and the distance between the carbon
layers is 0.341 nm [36]. On the contrary, the intermittent distance in x-direction between the
peaks is circa 0.52 nm. Those distances are not similar and therefore, the vertical lines are
not induced by the sample structure.

Secondly, the vertical lines are not induced by the cantilever dynamics. The bode plot in
Figure 4-3 substantiates this by not showing a peak at 2.6× 105 rad/s.

Thirdly, the oscillations show up as nice vertical lines in the image. Moreover, similar results
with oscillations in the scan table are being obtained in previous studies [37]. In those
studies, the oscillations had an amplitude of >5 nm. The STATESON-results in Figure 4-6,
however, show oscillations with amplitude in the order of tenths of nanometers (Ångströms).
Altogether, the vertical lines in Figure 4-6 (b-d) are induced by oscillations in the scan table.

The effect of choosing a smaller or larger λ is shown in Figure 4-6 (b) and (d), respectively.
On one hand, the parameter λ should not be chosen too small, since more noise comes in.
But on the other hand, choosing λ too large may result in loss of valuable information.

For a part of Figure 4-6 (c) (the red horizontal line), the underlying data is shown in Figure
4-7. Also here, the oscillations in the scan table can be recognised. Performing the algorithm
over the entire 100× 100 nm-sized image took circa 50 hours per image.
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Figure 4-6: Zoom of amplitude plot (a) and height reconstructions using STATESON (b-d) with
λ/λmax = {0.894, 2.683, 4.025} × 10−3, respectively. As λ increases, the image contains less
noise. Besides, vertical lines become visible using STATESON.
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Figure 4-7: Measured (red) and estimated (blue) cantilever deflection (a), estimated tip-sample
interaction using STATESON (b) with λ/λmax = 2.683 × 10−3 and resulting sample height
estimation (c) at the segment corresponding to the red line in Figure 4-6. Note that the scan
direction was from right to left.
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4-3-2 Quantitative Image Analysis

Although differences in the obtained images and the conventional image are already visible,
their quality will be assessed in terms of a value for the resolution. A difficulty is the absence
of a reference image1, which means that the images cannot be compared to an ‘ideal’ image.
As a consequence, a method will be used in which the use of a reference image is avoided. A
suitable method splits each image up in two images and compares those using Fourier Ring
Correlation (FRC) [38]. Although this method was in [38] used as metric for super-resolution
microscopy, the idea is universally applicable for grayscale images, and therefore for AFM.
The procedure for determination of the image resolution is as follows.

1. Two images are generated by assigning each pixel of the original image randomly to one
of the two new images. So each new image comprises approximately half of zero-valued
pixels and half of pixels with values of the original image.

2. The number of pixels of the new images is increased to 3000 × 3000 pixels and all
pixels are filled with a value proportionally to the two images obtained in the previous
step. This means that many neighbouring pixels in the resulting images will have the
same value. The increase in number of pixels is needed to raise the maximum spatial
frequency that can be resolved in the image, according to the Nyquist criterion [38].

3. The images from the previous step, I1 and I2 are shifted and Fourier transformed to Ĩ1
and Ĩ2. Afterwards, the FRC is calculated:

FRC(R) =
∑
i∈R Ĩ1(ri) · Ĩ2(ri)∗√

(
∑
i∈R |Ĩ1(ri)|2) · (

∑
i∈R |Ĩ2(ri)|2)

(4-6)

with ri the pixel in frequency domain at location i, for which i can indicate any pixel
(in frequency domain) at the perimeter of the circle with radius R.

4. The σ3-curve is calculated as [39]

σ3(R) = 3√
Np(R)/2

· √nasym (4-7)

with Np(R) the number of pixels (in frequency domain) at the ring with radius R.
Marin van Heel and Michael Schatz [39] reported design considerations of this threshold
curve. The parameter nasym determines the symmetry of the image (it equals 1 for
assymmetrical images up to 60 for symmetrical images). In this report, it is chosen to
be nasym = 2.

5. The values for the radius R are chosen such that it is increasing linearly from 1 to 1500.
Those values correspond to the spatial frequencies f = R/3000.

1Obtaining a reference image entails several complications. For example, if another type of microscope is
used for this, the sample should be transferred without being damaged and without being exposed to dust.
In addition, exactly the same 100 × 100 squared nanometers area should be found for both microscopes.
Therefore, even when it is actually possible to obtain a reference image, the determination of image quality is
more beneficial and will take much less effort without using a reference.
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Figure 4-8: Image resolution in nanometers for different choices of λ, according to the FRCs
calculated in Steps 1 to 6. Optimum at λ/λmax = 2.683×10−3 with image resolutionQres = 0.555
nm.

6. The first point f0 at which the LOESS smoothed [40] FRC-curve crosses the σ3-curve
with derivative smaller (i.e. more negative) than the derivative of the σ3-curve, deter-
mines the resolution of the original image. Since the original image is 100×100 squared
nanometers and the images I1 and I2 consist of 3000 × 3000 pixels, the resolution in
nanometers is:

Qres = 100
3000× f0

(4-8)

Steps 1 to 3 are shown schematically in Appendix A-2-1. Steps 3 to 6 are performed with the
help of the Fourier Ring Correlation Plugin of Olivier Burri and Alex Herbert [41].

Results Quantitative Image Analysis

While the figures of the FRCs and σ3-curves are shown in Appendix A-2-1, the outcomes of
the obtained resolutions for several values of λ are shown in Figure 4-8. It can be concluded
that images in which the STATESON-algorithm is used have a significant better resolution
(of optimally 0.555 nm) than the amplitude plot, which has a resolution of 4.136 nm.

Another important observation from Figure 4-8 is the existence of an optimal value for λ.
Namely, on one side it is desired to filter out noise (λ ↑), but on the other it is undesirable
to lose information of the sample (λ ↓). Figure 4-8 shows that this method for image quality
assessment is suitable to find the optimal λ. In this case, λ/λmax = 2.683×10−3 is the optimal
choice.
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The bad resolution of the amplitude plot is partially due to the small number of pixels of
the original image. Namely, every oscillation period resulted in a value for a pixel in the
STATESON-images, resulting in 200× 1907-sized images, while conventionally no more was
stored than a 200× 200-sized image. If the amplitude was measured every oscillation period
as (max(yc) − min(yc))/2 resulting in a 200 × 1907-sized image, then the resolution would
already be increased to 1.685 nm (see Appendix A-2). Yet, a prerequisite for applying this is
that the entire envelope of the cantilever deflection is recorded, rather than only its amplitude
and phase using the conventional LIA.

Based on the results in this section, it can be concluded that the method from Banterle et
al. [38] (with small adaptations) is very suitable to assess the quality of AFM-images. An
important advantage is that a perfect reference of the sample is not needed. However, a
few side-notes must be made. Namely, the oscillations in the scan table acted in this case
as evidence that the STATESON-algorithm performs better than the conventional method
to generate an image. Likewise, the assessment method produced better resolutions for the
STATESON-algorithm. However, oscillations in the scan table result in less visibility of the
sample. Therefore, the actual image resolution with respect to the sample will be worse than
the resolutions obtained in this study. In addition, in presence of oscillations in the scan
table, care should be taken when comparing AFM-resolutions with resolutions of other types
of microscopes.

4-4 Data-Driven Approach

In this section, the Data-Driven Approach is experimentally tested on a small segment of
measurements. The quantities a1, a2 and bu,1, bu,2 are known from identification and ε =
0.01 × ‖Y‖∞. Tuning parameter λDCP is varied between 0 and 0.38 and similarly to the
simulations, the MSEs between the measured yc and estimated ŷc are plotted in Figure 4-9.

Surprisingly, the MSEs for case (b) are higher than those for case (a), while the estimated
(F̂bf )a is penalised with the `1-norm and (F̂bf )b is not. Probably, this is due to the constraint
F (t) = 0 if t /∈ T with T = {t|(F̂(t, :)bf )a > ε}. Besides, the actual cantilever is exposed
to thermal (process) noise, while this was not contained in simulations. However, a better
MSE between yc and ŷc does not necessarily imply a better estimate of bf , since the transfer
function from F to yc is desired to obtain rather than the transfer function between η and
yc. Moreover, to find the transfer function from F to yc, we look again for a solution which
is sparse, while reconstructing the signal yc appropriately. This solution is found for case (b)
with λDCP = 0.2. For this λDCP, the cantilever deflection is reconstructed for case (a) and
case (b) in Figure 4-10.

The corresponding bf =
[
10.3351 −7.1368

]>
can, together with

[
1 a1 a2

]>
be converted

to a state-space system, from whichB2 can be obtained. Using this information, the STATESON-
algorithm could be executed and is likely to generate improved results, compared to Section
4-3. The two methods are not being combined yet, since the data-driven method is still in
the development phase.
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Figure 4-9: MSEs between yc and ŷa (red +) and ŷb (black ×).
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Figure 4-10: (a) Measured cantilever deflection yc (blue) with estimated deflections ŷa (red)
and ŷb (yellow) and (b) corresponding signals (F̂bf )a (red) and (F̂bf )b (yellow) with λDCP = 0.2.
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Chapter 5

Conclusions

The goal of this research was to improve AFM-imaging in general. After concluding that the
use of an LIA or PLL is suboptimal, the research continued studying methods to reconstruct
the tip-sample interaction using directly measured input and output of the AFM-cantilever.
Moreover, a model-based and a data-driven approach were presented.

Before testing the presented approaches experimentally, a decent system identification was
needed. This is being performed in two ways: (1) via measured piezo input and cantilever
deflection and (2) via measured cantilever deflection while the piezo was turned off. Case (1)
led to interesting results, as up until now, no publications reported a successful identification
of an LTI-model to a conventional AFM-cantilever immersed in liquid, from piezo input to
cantilever deflection. Probably due to the liquid, the actual system has a very high order.
The maximum achievable VAF rises for increased values of parameter s. Using s = 2000 and
n = 188, the identified LTI-model can describe 79.2% of the dynamics. Despite this result, the
model-based and data-driven approaches to detect the tip-sample interaction are tested with
the second-order model obtained from identification case (2), for the reason of suppressing
the computational effort.

The model-based approach to detect tip-sample interaction yielded – in terms of the FRC-
metric of Banterle et al. – a resolution of 0.555 nm, implying an increase in resolution with a
factor 7.5 compared to the conventional imaging method, which had a resolution of 4.136 nm.
Furthermore, the data-driven approach – which is still in the development phase – is expected
to improve the resolution even further, since the identification of the cantilever dynamics will
be more accurate.

5-1 Recommendations

Based on the results in this report, the following practical recommendations can be made:

• Sample height estimation in AFM is recommended to be based on directly measured
input and output signals of the AFM-cantilever. Moreover, the tip-sample interaction
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can be detected with those measurements and based on the interaction, the estimated
sample height will be more accurate.

• It is recommended to handle the tip-sample interaction as a sparse signal, since it is
negligible in magnitude for a large part of the oscillation cycle of the AFM-cantilever,
while it is relatively large in magnitude at time instances at which there is physical
contact between tip and sample. Furthermore, the obtained images have a significant
higher resolution than the original image, while the assumption was made that the
tip-sample interaction is pulse-like.

• AFM-images are advised to assess using the FRC-metric of Banterle et al., since a
reference image is not required in this pragmatic metric and it is still able to make a
trade-off between noise reduction and information conservation. However, care should
be taken if significant artefacts occur in the AFM-image, as those artefacts will con-
tribute to a higher resolution according to the metric, while such artefacts are in general
detrimental.

In addition to practical recommendations, this report leads to the following recommendations
for future research:

• Using the obtained LTI-model from piezo input to cantilever deflection, the cantilever
dynamics are even described more accurately and more reliably than the model using
thermal motion. Therefore, it is recommended to investigate estimation of tip-sample
interaction using this model, while suppressing the computational effort.

• The data-driven and the model-based approach for detecting the tip-sample interaction
are not being combined yet. It is encouraged to research the additional improvements
which can be made using this combination, since due to the data-driven method to find
bf , it is more likely to find a sparse solution for F (t) in the model-based approach.

• It is recommended to further study the data-driven approach to estimate bf more pre-
cisely. Currently, the estimated bf supports the model-based approach for finding sparse
solutions, while estimating exactly the correct bf would be even more beneficial.

• Currently, the control to both cantilever input and input to the z-actuator of the scan
table, is still determined using the LIA or PLL. Future research should be concerned
with implementing real-time estimation of tip-sample interaction, such that the real-
time controls can be based on accurate sample height information.

• Due to improvement in sample height estimation through enhanced processing of the
measured cantilever deflection, oscillations in the scan table were revealed. Therefore,
research should be done to reduce and/or to filter those oscillations to improve the
image resolution in AFM further.

• Compressed Sensing is concerned with recovering sparse signals using the least possible
measurements and as little as possible computational effort. Therefore, research can
be done to replace the relatively slow STATESON-algorithm with algorithms resulting
from Compressed Sensing.

The latter recommendation is worked out in the next section with an example of an algorithm
from Compressed Sensing.
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5-2 Kalman Filtering for Compressed Sensing

Compressed Sensing (CS) is concerned with solving the optimisation problem

min ‖ẑ‖0 s.t.
k∑
i=1

∥∥yi −H ′ẑ∥∥2
2 ≤ εcs (5-1)

with
yk = H ′zk + ζk. (5-2)

Unfortunately, this problem is non-convex. However, it has been shown that if H ′ has the
“restricted isometry property” (RIP), then the solution can almost always be obtained by
solving the convex relaxation

min ‖ẑ‖1 s.t.
k∑
i=1

∥∥yi −H ′ẑ∥∥2
2 ≤ εcs. (5-3)

Kanevsky, Carmi, Horesh and Gurfil [27], however, invented an algorithm to solve

min
ẑk

Ezk|Yk [‖zk − ẑk‖22] s.t. ‖ẑk‖1 ≤ ε
′
cs (5-4)

efficiently. The so-called CS-embedded Kalman Filter (CSKF) works as follows:

1. Set ẑ1 = ẑk|k and P 1 = Pk|k (the posterior mean and covariance at time k).

2. for τ = 1, 2, ..., Nτ − 1 iterations do

3.
H̄τ = sign(ẑτ )

ẑτ+1 =
(
I − P τ H̄>τ H̄τ

H̄τP τ H̄>τ + σ2

)
ẑτ

P τ+1 =
(
I − P τ H̄>τ H̄τ

H̄τP τ H̄>τ + σ2

)
P τ

(5-5)

4. end for

5. Set ẑk|k = ẑNτ and Pk|k = PNτ .

There could be multiple ways to implement this algorithm for finding the tip-sample inter-
action force in AFM. One way is as follows. Suppose that in Equation 5-2, the vectors are
defined as

yk =


y(k) y(k − 1) y(k − 2)

y(k − 1) y(k − 2) y(k − 3)
... . . . ...

y(k −N + 3) . . . y(k −N + 1)


 1
a1
a2

−


u(k − 1) u(k − 2)
u(k − 2) u(k − 3)

...
...

u(k −N + 2) u(k −N + 1)


[
bu,1
bu,2

]

(5-6)
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Figure 5-1: Actual Fbf = zk (blue) and estimates using the CSKF-algorithm with Nτ = 10
(red) and Nτ = 50 (yellow). Definitions of Equations 5-6 through 5-9 are used.

and

zk =


F (k − 1) F (k − 2)
F (k − 2) F (k − 3)

...
...

F (k −N + 2) F (k −N + 1)


[
bf,1
bf,2

]
(5-7)

and
H ′ = I, (5-8)

with yk known and zk the sparse vector to be reconstructed. In Step 1 of the CSKF-algorithm,
ẑ1 = ẑk|k = yk and the posterior covariance will be

Pk|k =



∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ . . . 0
...

... . . . . . . . . . ...
0 0 . . . ∗ ∗ ∗
0 0 . . . 0 ∗ ∗


. (5-9)

Note that besides the main diagonal, also the super- and subdiagonal of Pk|k will have values,
since each element in zk is correlated with its neighbour, due to its construction in Equation
5-7.

Simulations in Figure 5-1 show the performance. For simplicity, the posterior covariance is
chosen to be Pk|k = I, Rν = 3.05× 10−4 and Rη = 0. It can be seen that increasing Nτ has
the same effect as increasing λ in the STATESON-algorithm or increasing λDCP in the data-
driven approach. The computational time for 100 samples and Nτ = 50 was 0.0136 seconds,
while the STATESON-algorithm would require 1.34 seconds for calculating the tip-sample
interaction over 100 samples.
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Appendix A

Additional Results

A-1 System Identification

The validation signal (Figure A-2) was applied to the system 10 minutes and 33 seconds after
the identification signal (Figure A-1) was applied. The validation signal had a duration of 1
second, while the identification signal had a duration of 2 seconds. A horizontal distribution
in both spectra is desirable, since in that case each frequency of the cantilever is excited.

The singular values are plotted in Figure A-3 and zoomed in in Figure A-4. Measurement data
were split in segments and R32 was iterated by combining the new measurement data with the
former R32. For this, the LTI System Identification Toolbox [42] is used. For determination
of the right model order such that the cantilever dynamics are described satisfactorily, small
sudden steps in the singular values should be found. Examples of promising orders are
n = {6, 16, 32, 42, 48, ...}. Since a clear gap between successive singular values cannot be
recognised, even with s = 2000 and 100 segments consisting of 20000 measurements each,
it can be concluded that a linear system describing the full cantilever dynamics would have
an infinite order. The increase of all singular values (except for some near s = 2000) per
additional batch confirms this conclusion.
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Figure A-1: Spectrum of a PRBS-input for identification.
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Figure A-2: Spectrum of a frequency sweep for model validation (with 107 samples).
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Figure A-3: Singular values of R32 after a certain amount of iterations, using s = 2000.
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Figure A-4: Singular values of R32 after a certain amount of iterations, using s = 2000, from
n = 1 to n = 59.
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A-2 Model-Based Approach

The parameters used in the STATESON-algorithm are presented in Table A-1.

Table A-1: Parameters used in STATESON-algorithm. Values in A, B, B2, C and D are rounded
and may generate notable different results.

Parameter Value Size Unit

A

[
0.8002 0.3699
−0.2199 0.9114

]
2× 2 [-]

B
[
0.0715 0.0129

]>
2× 1 [-]

B2
[
0.0715 0.0129

]>
2× 1 [-]

C
[
0.5577 −0.1730

]
1× 2 [-]

D 0 1 [-]
NT 300 1 [-]
p 1 1 [-]
q ∞ 1 [-]
Q 2 1 V2

Rν 0.1 1 V2

ε
[
0.1 . . . 0.1

]>
(NT − 1)× 1 [-]

ε 0.2 1 V
framerate 0.5 1 frames/s
linerate 200 1 lines/frame
#iterations of 2 1 [-]
Eq. 3-9 and 3-10

A-2-1 Quantitative Image Analysis

Steps 1 to 3 of Section 4-3-2 are shown schematically in Figure A-5.

The FRC-cures of the conventional amplitude plot and of the improved amplitude plot are
shown in Figure A-6. Those of the images resulting from the STATESON-algorithm are
presented in Figure A-7.
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Figure A-5: Schematic presentation of steps 1 to 3. Pixel values a to i are randomly assigned
to two new images. Then, the images are enlarged and empty pixels are filled with neighbouring
pixel values. Afterwards, both images are Fourier transformed and the FRC(R) can be calculated.
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Figure A-6: FRC-curves (gray) as function of spatial frequency (Equation 4-6), the LOESS
smoothed FRC (blue) and the σ3-curves (red) for the conventional amplitude plot (a) (Qres =
4.136 nm) and improved measurement technique for obtaining amplitude (b) (Qres = 1.685 nm)
(see results in Section 4-3-2).
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Figure A-7: FRC-curves (gray) as function of spatial frequency (Equation 4-6), the LOESS
smoothed FRC (blue) and the σ3-curves (red) for the STATESON plots with λ/λmax =
{0.894, 1.342, 1.789, 2.236, 2.683, 3.131, 3.578, 4.025} × 10−3 for (a-h) respectively (Qres =
{0.695, 0.676, 0.640, 0.607, 0.555, 0.629, 1.427, 1.579} nm).
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Appendix B

Pictures of the Setup

The setup is shown in Figures B-1 to B-4.
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Figure B-1: The atomic force microscope.
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Figure B-2: The atomic force microscope closer.
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Figure B-3: Scan table with actuators.

Figure B-4: Cantilever holder.

J. Noom Master of Science Thesis



Appendix C

Software

In this appendix, the Matlab-code is presented. Table C-1 summarises the functionality of
each file.

Table C-1: Matlab-files with corresponding applications.

File Application
AFM_piezo2deflection.m System identification using piezo input and cantilever deflection
AFM_thermalnoise.m System identification using thermal motion of the cantilever
int2V.m Conversion of raw (integer) data to Volts
load_AFM_meas.m Loads AFM-measurements and scales those to Volts

AFM_STAT.m Estimation of sample height as function of time, using STATESON
STAT.m Estimation of t/s-interaction and deflection using STATESON
varepsbar.m Calculates ς̄t as indicated in Equation 4-4
lmax.m Calculates critical value for λ according to Equation 3-7
STATESON.m Calculates t/s-interaction using Equation 3-9
STATESON2.m STATESON.m, but using additional data of previous segment
STATESON_final.m Calculates final estimates of t/s-interaction using Equation 3-11
STATESON_final2.m Calculates final estimates using additional data of previous segment
im_generation.m Converts estimated sample height to images

AFM_FRC.m Generates two images out of one
image_splitf.m Splits original image and enlarges the new images

AFM_DCP_sim.m Simulates the data-driven approach of Section 3-3
AFM_DCP_exp.m Experiment of the data-driven approach of Section 4-4
obj1.m Objective function of Equation 3-18
obj2_3.m Objective function of Equations 3-20 and 3-22
obj4.m Objective function of Equaction 3-23

admmstat.m Similar to STATESON.m, but using ADMM
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C-1 System Identification

C-1-1 AFM_piezo2deflection.m

This program identifies the cantilever dynamics from the input voltage to the output voltage,
according to Section 4-2-1. Use is made of LTI-Toolbox 2.4 [42]. Note that “dordpo_m” and
“dmodpo_m” are the Matlab-files in the LTI-Toolbox, instead of the mex-files.

1 % Files needed:
2 % 'stream-20190320-103735.mat' Identification data
3 % 'stream-20190320-104808.mat' Validation data
4 clear all
5 close all
6

7 %% load data (u, y and ts)
8 load('stream-20190320-103735.mat') %load raw identification data
9 ts=single(RunSettings(1))*10^(-9);

10 u=double(int2V(D(2*10^6:8*10^6),RunSettings,DSettings)); u = u - mean(u);
11 y=double(int2V(Y(2*10^6:8*10^6),RunSettings,YSettings)); y = y - mean(y);
12 clear D Y
13

14 %% Determine order of the model
15 k=1;i=1; % counters
16 window = 20000; s=2000; % #measurements per segment and size of Hankels
17 [Sn(:,i),Rnew]=dordpo_m(u(k:k+window-1),y(k:k+window-1),s); %Est. w/o. Rnew
18 k=k+window;
19 i=i+1;
20 while i < 101
21 [Sn(:,i),Rnew]=dordpo_m(u(k:k+window-1),y(k:k+window-1),s,Rnew); %Est. ...

w. Rnew
22 k=k+window;
23 i=i+1;
24 end
25 figure;semilogy(Sn(:,1),'*'); % Show singular values
26 hold on;semilogy(Sn(:,i-1),'.');
27

28 %% Start identification
29 n=188; % Desired order of identified model
30 [Ae,Ce]=dmodpo_m(Rnew,n,'stable'); % Identify Ae and Ce
31 [Be,De]=dac2bd(Ae,Ce,u(1:window),y(1:window)); % Identify Be and De
32 sys=ss(Ae,Be,Ce,De,ts); % Compose state-space system
33

34 %% Load validation data (u, y)
35 load('stream-20190320-104808.mat') % Load raw data
36 u=double(int2V(D(1:10^7),RunSettings,DSettings)); u = u - mean(u);
37 y=double(int2V(Y(1:10^7),RunSettings,YSettings)); y = y - mean(y);
38 clear D Y ye;
39

40 %% Validation
41 if n > 30 % Prevent exceeding RAM-memory
42 j=1;
43 ye=[];
44 window2 = 10^6/2;
45 while j < length(u)-window2+2
46 x0e = dinit(Ae,Be,Ce,De,u(j:j+window),y(j:j+window));
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47 ye = [ye;dltisim(Ae,Be,Ce,De,u(j:j+window2-1),x0e)];
48 j=j+window2;
49 end
50 else
51 x0e = dinit(Ae,Be,Ce,De,u(1:window),y(1:window));
52 ye = dltisim(Ae,Be,Ce,De,u,x0e);
53 end
54 VAF=vaf(y(1:length(ye)),ye)
55

56 [cyye,freq]=mscohere(y(1:length(ye)),ye,[],[],[],1/ts); %Coherence
57 figure;semilogx(freq*2*pi,cyye);xlim([5*10^5,10^7]);

C-1-2 AFM_thermalnoise.m

This file identifies the cantilever dynamics according to Section 4-2-2. Also here, use is made
of LTI-Toolbox 2.4 [42].

1 % Files needed:
2 % 'stream-20190115-111428.mat' Identification data
3 % 'stream-20190320-120206.mat' Data to find delay and scaling
4 clear all
5 close all
6

7 %% Load data (y and ts)
8 load('stream-20190115-111428.mat') %load raw identification data
9 ts=single(RunSettings(1))*10^(-9);

10 y=double(int2V(Y(1:3*10^6),RunSettings,YSettings)); y = y - mean(y);
11 kc=0.15; %Estimated spring constant
12

13 %% Start identification
14 s=30; %size of Hankel matrices
15 [Sn,Rnew]=dordpo([],y,s); %compute singular values
16

17 n=2; %desired order of identified system
18 [Ae,Ce,Ke]=dmodpo(Rnew,n); %identify Ae, Ce and Ke
19 Be=Ke;
20 De=0;
21

22 %% Compose 2nd-order state-space system with spring constant kc
23 sysid=ss(Ae,Be,Ce,De,ts);
24 systf=tf(d2c(sysid));
25 invm=systf.denominator{1}(3)/kc;
26 systf2=tf([invm/-zero(systf) invm],systf.denominator);
27 sysid2=sysid/dcgain(sysid)/kc; %identified system
28

29 %% Perform FFT over measurements
30 t=linspace(0,ts*(length(y)-1),length(y));
31 T=max(t)-min(t); N=length(t);
32 k=0:N-1;
33 omega=linspace(-N/T/2,(N/2-1)/T,N)*2*pi;
34 gf=fft(y');
35 gff=[gf(round(length(gf)/2)+1:end),gf(1:round(length(gf)/2))]/sum(y')...
36 *sum(10^7*y'.*double(T)/double(N));
37
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38 %% Determine delay and scaling factor
39 [u,y,ts] = load_AFM_meas([1, 2000],'stream-20190320-120206.mat'); % Load ...

scanning data (u,y and ts)
40 t=linspace(0,ts*(length(u)-1),length(u))';y=y-mean(y(1:5*10^2));
41

42 tau_opt=0;
43 for i=1:5 % Alternate fact and tau_opt to find optimum
44 ysim = lsim(sysid2,u);
45 tau_opt = phaseopt(y(1:1000),ysim(1:1000));
46 fact = (ysim(1+tau_opt:10^3+tau_opt)'*ysim(1+tau_opt:10^3+tau_opt))\...
47 ysim(1+tau_opt:10^3+tau_opt)'*y(1:10^3);
48 sysid2=sysid2*fact;
49 end
50 sys=sysid2*1.1; % Apply factor 1.1 as compensation for ...

presence of tip-sample interaction in scanning data

C-1-3 int2V.m

This function provides the measurements in Volts out of raw (integer) data.

1 % Inputs:
2 % -D Measured quantity as integer
3 % -Runsettings The settings: [sample time in ns; #bits; maximum integer ...

value]
4 % -Dsettings The settings: [Range in V; Offset in V]
5 %
6 % Output:
7 % -V Measured quantity in Volts
8 function V = int2V(D, RunSettings, DSettings)
9 V=(double(D)*DSettings(1))/double(RunSettings(3))+DSettings(2);

10 end

C-1-4 load_AFM_meas.m

This file loads the AFM-measurements and scales the measurements to voltages.

1 % Inputs:
2 % -index Range of measurements: [startindex; stopindex]
3 % -file The file with raw measurement data
4 %
5 % Outputs:
6 % -u The measured cantilever input in Volts
7 % -y The measured cantilever output in Volts
8 % -ts The sampling time
9 function [u,y,ts] = load_AFM_meas(index,file)

10 load(file);
11 ts=single(RunSettings(1))*10^(-9);
12 u=double(int2V(D(round(index(1)):round(index(2))),RunSettings,DSettings));
13 u = u - mean(u);
14 y=double(int2V(Y(round(index(1)):round(index(2))),RunSettings,YSettings));
15 y = y - mean(y);
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16 end

C-2 Model-Based Approach

C-2-1 AFM_STAT.m

This is the main file. Sample height is estimated as function of time. It requires installation
of CVX [43] to run appropriately.

1 % Files needed:
2 % 'stream-20190320-120206.mat' Scanning data
3 % 'AFM_STAT3_4_tauopt_sys2.mat' Identification: tau_opt, sys, n
4 clear all
5 close all
6

7 %% Load data (u, y, ts, t, tau_opt, sys, n)
8 [u,y,ts] = load_AFM_meas([1, 2*10^7],'stream-20190320-120206.mat');
9 t=linspace(0,ts*(length(u)-1),length(u))';

10 y=y-mean(y(1:5*10^2));
11 load('AFM_STAT3_4_tauopt_sys2.mat'); %Load identified system
12

13 %% Run STATESON
14 Rnu = 0.1; % Estimation of the measurement noise
15 Q = 2; % Estimation of magnitude variance of pulses Fh.
16 T = 300; % Number of measurements per STATESON evaluation
17 lambdafactor = 0.012; % Factor for calculating lambda
18 epsfactor = 0.1; % Factor for epsilon.
19 err = 0.2; % Minimum magnitude of pulses
20

21 tic;
22 [Fhhat,yhat] = STAT(u(1+tau_opt:end),y(1:end-tau_opt),sys,n,Rnu,Q,...
23 T,lambdafactor,epsfactor,err);
24 Tcomp = toc;
25

26 %% Split signal up in oscillation periods
27 N2=length(yhat);
28 j=1;
29 clear k
30 for i=1:N2-1
31 if yhat(i) < 0 && yhat(i+1) ≥ 0
32 k(j)=i;
33 j=j+1;
34 end
35 if yhat(i) > 0 && yhat(i+1) ≤ 0
36 k(j)=i;
37 j=j+1;
38 end
39 end
40 period=round(2*k(end)/length(k))+1; % #measurements per oscillation
41

42 %% Estimates of sample height
43 clear hhat5
44 for i=1:floor(N2/period)
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45 int(i)=sum(Fhhat((i-1)*period+1:i*period));
46 hhat5((i-1)*period+1) = min(yhat((i-1)*period+1:i*period)) +...
47 0.02*int(i); % Estimated sample height
48 end

C-2-2 STAT.m

The general STATESON-procedure is set out in this file. For the first data segment, there is
no constraint on the initial state. For subsequent segments (i.e. if i ≮ 2), the constraint on
the initial state is added.

1 % Inputs:
2 % -u2 Cantilever input (corresponding to Equation 4-3 in report)
3 % -y2 Measured cantilever deflection
4 % -sys Identified (state-space) system
5 % -n Order of identified system
6 % -Rnu Estimated variance of measurement noise
7 % -Q Estimated variance of pulses in tip-sample interaction
8 % -T Number of measurements per STATESON evaluation
9 % -lambdafactor Factor for calculating lambda

10 % -epsfactor Factor for epsilon
11 % -err Minimum of estimated pulses
12 %
13 % Outputs:
14 % -Fhhat1 Estimated tip-sample interaction
15 % -yhat1 Estimated cantilever deflection
16 function [Fhhat1,yhat1] =...
17 STAT(u2,y2,sys,n,Rnu,Q,T,lambdafactor,epsfactor,err)
18

19 i=1;
20 while i*T < length(u2)
21 u(:,i) = u2((i-1)*T+1:i*T);
22 y(:,i) = y2((i-1)*T+1:i*T);
23 i=i+1;
24 end
25 NT = i-1; % Number of data segments
26

27 ib=100; % Data segments per backup file
28 for i=1:NT
29 disp(['Performing algorithm...', num2str(i),'/',num2str(NT)])
30 vepsbar(i,1)=varepsbar(u(:,i),y(:,i),sys.A,sys.B,sys.C,Rnu);
31 lambdamax(i,1)=lmax(sys.A,sys.C,sys.B,Rnu,Q,vepsbar,T);
32 lambda(i,1)=lambdafactor*sqrt(norms(Rnu,1)/norms(Q,1))*lambdamax(i,1);
33

34 alpha = ones(T-1,1);
35 eps=epsfactor*ones(T-1,1);
36 if i<2
37 for j=1:2
38 [X(:,n*(i-1)+1:n*i),Fhhat(:,i)] =...
39 STATESON(y(:,i),u(:,i),sys.A,sys.B,sys.C,sys.B,Rnu,...
40 Q,alpha,lambda(i,1),1);
41 alpha = 1./(eps+norms(inv(sqrtm(Q))*Fhhat(:,i),1,2));
42 lambda(i,1) = 0.2*lambda(i,1);
43 end
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44 [X(:,n*(i-1)+1:n*i),Fhhat(:,i)] =...
45 STATESON_final(y(:,i),u(:,i),sys.A,sys.B,sys.C,sys.B,Rnu,...
46 Fhhat(:,i),err);
47 yhat(:,i) = sys.C*X(:,n*(i-1)+1:n*i)';
48 else
49 for j=1:2
50 [X(:,n*(i-1)+1:n*i),Fhhat(:,i)] = STATESON2(y(:,i),...
51 u(:,i),sys.A,sys.B,sys.C,sys.B,Rnu,Q,alpha,...
52 lambda(i,1),1,X(end,n*(i-2)+1:n*(i-1)),u(end,i-1),0);
53 alpha = 1./(eps+norms(inv(sqrtm(Q))*Fhhat(:,i),1,2));
54 lambda(i,1) = 0.2*lambda(i,1);
55 end
56 [X(:,n*(i-1)+1:n*i),Fhhat(:,i)] = STATESON_final2(y(:,i),...
57 u(:,i),sys.A,sys.B,sys.C,sys.B,Rnu,Fhhat(:,i),err,...
58 X(end,n*(i-2)+1:n*(i-1)),u(end,i-1),0);
59 yhat(:,i) = sys.C*X(:,n*(i-1)+1:n*i)';
60 end
61 if i == ib
62 save('backup2','yhat','Fhhat')
63 ib=ib+100;
64 end
65 end
66 Fhhat1=vec([Fhhat;zeros(1,NT)]);
67 yhat1=vec(yhat);
68 end

C-2-3 varepsbar.m

This function calculates ς̄t as indicated in Equation 4-4.

1 % Inputs:
2 % -u2 Cantilever input (corresponding to Equation 4-3 in report)
3 % -y Measured cantilever deflection
4 % -A Identified A-matrix
5 % -B Identified B-matrix
6 % -C Identified C-matrix
7 % -Rnu Estimated variance of measurement noise
8 %
9 % Output:

10 % -varepsbar Corresponding to Equation 3-5 in repo
11 function [varepsbar] = varepsbar(u2,y,A,B,C,Rnu)
12 N=length(y); [nc,n]=size(C);
13 A1(1:n,1:n)=A^0;
14 for t=2:N
15 clear eps1
16 A1(n*(t-1)+1:n*t,1:n)=A^(t-1);
17 for r=1:t-1
18 eps1(1:n,r)=A1(n*(t-r-1)+1:n*(t-r),1:n)*B*u2(r)+A1(n*(t-1)+...
19 1:n*(t),1:n)*zeros(n,1);
20 end
21 eps(1:nc,t) = inv(sqrtm(Rnu))*(y(t)-C*sum(eps1,2));
22 end
23 varepsbar = sum(abs(eps));
24 end
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C-2-4 lmax.m

This function calculates the critical value for λ for which no pulses are detected, according to
Equation 3-7.

1 % Inputs:
2 % -A Identified A-matrix
3 % -C Identified C-matrix
4 % -G Identified G-matrix (corresponding to B_2 in report)
5 % -Rnu Estimated variance of measurement noise
6 % -varepsbar Error vector (corresponding to Equation 3-6 in report)
7 % -T Number of measurements in data segment
8 %
9 % Output:

10 % -lmax Critical value for lambda for which no pulses are detected
11 function [lmax] = lmax(A,C,G,Rnu,Q,varepsbar,T)
12 for k=1:T-1
13 clear lambda1
14 lambda1=0;
15 for t=k+1:T
16 lambda1=lambda1+(inv(sqrtm(Rnu))*C*A^(t-k-1)*G*sqrtm(Q))*varepsbar;
17 end
18 lambda(k)=norms(2*lambda1,inf);
19 end
20 lmax=norms(lambda,inf);
21 end

C-2-5 STATESON.m, STATESON2.m

The following files produce intermediate estimates for the states and tip-sample interactions
using Equation 3-9.

1 % Inputs:
2 % -Y Measured cantilever deflection
3 % -u2 Cantilever input (corresponding to Equation 4-3 in report)
4 % -A Identified A-matrix
5 % -B Identified B-matrix
6 % -C Identified C-matrix
7 % -G Identified G-matrix (corresponding to B_2 in report)
8 % -Rnu Estimated variance of measurement noise
9 % -Q Estimated variance of pulses in tip-sample interaction

10 % -w Weights (corresponding to alpha in report)
11 % -lambda Regularisation term (corresponding to lambda in report)
12 % -p Norm indication
13 %
14 % Outputs:
15 % -X Estimated states of cantilever
16 % -Fhhat Estimated tip-sample interaction
17 function [X Fhhat] = STATESON(Y,u2,A,B,C,G,Rnu,Q,w,lambda,p)
18 N=length(Y);
19 n=size(C,2);
20 cvx_begin quiet
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21 variables X(N,n) Fhhat(N-1,1)
22 minimize( sum((inv(sqrtm(Rnu))*(Y-(C*X')')).^2)+lambda*norms(...
23 inv(sqrtm(Q))*diag(w)*Fhhat,p,1))
24 subject to
25 X(2:end,:) == ((A*[X(1:end-1,:)'])+(B*u2(1:N-1)')+(G*Fhhat'))'
26 cvx_end
27 end

1 % Inputs (in addition to STATESON.m):
2 % -Xprev Final estimated state of previous segment
3 % -u2prev Final input of previous segment
4 % -Fhhatprev Final estimated tip-sample interaction of previous segment
5 %
6 % Outputs similar to STATESON.m
7 function [X Fhhat] =...
8 STATESON2(Y,u2,A,B,C,G,Rnu,Q,w,lambda,p,Xprev,u2prev,Fhhatprev)
9

10 N=length(Y);
11 n=size(C,2);
12 cvx_begin quiet
13 variables X(N,n) Fhhat(N-1,1)
14 minimize( sum((inv(sqrtm(Rnu))*(Y-(C*X')')).^2)+lambda*norms(...
15 inv(sqrtm(Q))*diag(w)*Fhhat,p,1))
16 subject to
17 X(2:end,:) == ((A*[X(1:end-1,:)'])+(B*u2(1:N-1)')+(G*Fhhat'))'
18 X(1,:) == ((A*Xprev')+(B*u2prev')+(G*Fhhatprev'))'
19 cvx_end
20 end

C-2-6 STATESON_final.m, STATESON_final2.m

The following files produce final estimates for the states and tip-sample interactions using
Equation 3-11.

1 % Inputs:
2 % -Y Measured cantilever deflection
3 % -u2 Cantilever input (corresponding to Equation 4-3 in report)
4 % -A Identified A-matrix
5 % -B Identified B-matrix
6 % -C Identified C-matrix
7 % -G Identified G-matrix (corresponding to B_2 in report)
8 % -Rnu Estimated variance of measurement noise
9 % -Fhhat1 Previously estimated tip-sample interaction over the same segment

10 % -err Threshold value for Fhhat1
11 %
12 % Outputs:
13 % -X Estimated states of cantilever
14 % -Fhhat Estimated tip-sample interaction
15 function [X Fhhat] = STATESON_final(Y,u2,A,B,C,G,Rnu,Fhhat1,err)
16 N=length(Y); n=size(C,2);
17 i=1; k=[];
18 for t=1:N-1
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19 if Fhhat1(t) < err
20 k(i)=t;
21 i=i+1;
22 end
23 end
24

25 cvx_begin quiet
26 variables X(N,n) Fhhat(N-1,1)
27 minimize( sum((inv(sqrtm(Rnu))*(Y-(C*X')')).^2))
28 subject to
29 X(2:end,:) == ((A*[X(1:end-1,:)'])+(B*u2(1:N-1)')+(G*Fhhat'))'
30 Fhhat(k) == 0
31 cvx_end
32 end

1 % Inputs (in addition to STATESON_final.m):
2 % -Xprev Final estimated state of previous segment
3 % -u2prev Final input of previous segment
4 % -Fhhatprev Final estimated tip-sample interaction of previous segment
5 %
6 % Outputs similar to STATESON_final.m
7 function [X Fhhat] =...
8 STATESON_final2(Y,u2,A,B,C,G,Rnu,Fhhat1,err,Xprev,u2prev,Fhhatprev)
9 N=length(Y); n=size(C,2);

10 i=1; k=[];
11 for t=1:N-1
12 if Fhhat1(t) < err
13 k(i)=t;
14 i=i+1;
15 end
16 end
17

18 cvx_begin quiet
19 variables X(N,n) Fhhat(N-1,1)
20 minimize( sum((inv(sqrtm(Rnu))*(Y-(C*X')')).^2))
21 subject to
22 X(2:end,:) == ((A*[X(1:end-1,:)'])+(B*u2(1:N-1)')+(G*Fhhat'))'
23 X(1,:) == ((A*Xprev')+(B*u2prev')+(G*Fhhatprev'))'
24 Fhhat(k) == 0
25 cvx_end
26 end

C-2-7 im_generation.m

This file converts estimated sample height as function of time to height as function of location.
In other words, height profiles are generated.

1 % Files needed:
2 % 'test%_1.mat' Contains hhat2, hhat3, hhat32, hhat4, hhat5 and period for ...

first part (``%''-sign between 1 and 8)
3 % 'test%_2.mat' Contains hhat2, hhat3, hhat32, hhat4, hhat5 and period for ...

second part (``%''-sign between 1 and 8)
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4

5 linerate=200; %Lines per frame

6 framerate=0.5; %Frames per second

7 T=300; %Measurements per segment

8 load('test2_1') %Load estimated sample heights

9 line=double(floor(1/linerate/framerate/period/ts-192)); %Periods per line

10 delay=round(80*T/period); %Connect data of test%_1 and test%_2 correctly ...
(=round(55*T/period)) for test1_%

11 start=1350*period; %Start at the beginning of a scan line.

12

13 clear im5
14 for j=1:90 %j=1:100 for test1_%

15 im5(j,:)=hhat5((j-1)*period*line+1+start:period:j*period*line+start);
16 end

17

18 load('test2_2')
19 for jj=91:200 %jj=101:200 for test1_%

20 im5(jj,:)=hhat5((jj-j-1)*period*line+1+period*delay+start:period:...
21 (jj-j)*period*line+period*delay+start);
22 end

C-3 Quantitative Image Analysis

C-3-1 AFM_FRC.m

This is the main file for generating two images out of one, according to Steps 1 and 2 of
Section 4-3-2.

1 % Files needed:

2 % 'im5_%.mat' Contains generated image im5 (``%''-sign between 1 and 8)

3 % 'movie45.mat' Contains conventional amplitude plot

4

5 %% Import image and normalise

6 load('im5_1');I = im5(end:-1:1,round(length(im5(1,:))/2):-1:1); %Height ...
reconstruction using STATESON

7 %load('movie45.mat');I = movie45.Ch2.sImage(end:-1:1,end:-1:1,1)'*-1; ...
%Conventional amplitude plot

8 I=I-min(min(I)); %Set minimum of image to 0.

9 I=I/sum(sum(abs(I))); %Normalise image.

10

11 %% Set parameters & perform splitting algorithm

12 enlarge=[3000,3000];
13 [I1,I2]=image_splitf(I,enlarge);
14

15 %% imwrite

16 imwrite(I1/max(max(I1)),'I5_1_1.png','PNG');
17 imwrite(I2/max(max(I2)),'I5_1_2.png','PNG');
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C-3-2 image_splitf.m

This file splits the original image up in two images and enlarges the new images, according
to step 1 and 2 of Section 4-3-2.

1 % Inputs:
2 % -I Original image
3 % -enlarge Pixel size of output images [a, b]
4 %
5 % Outputs:
6 % -I1 Output image 1
7 % -I2 Output image 2
8 function [I1,I2] = image_splitf(I,enlarge)
9 pixels=size(I);

10 bin1=logical(round(rand(size(I)))); %Create random binary matrices
11 bin2=logical(1-bin1);
12 I11=I.*bin1; %Split the image
13 I22=I.*bin2;
14

15 I1(round(enlarge(1)/pixels(1)*[0:pixels(1)-1])+1,round(...
16 enlarge(2)/pixels(2) *[0:pixels(2)-1])+1)=I11(1:pixels(1),1:pixels(2));
17 I2(round(enlarge(1)/pixels(1)*[0:pixels(1)-1])+1,round(...
18 enlarge(2)/pixels(2) *[0:pixels(2)-1])+1)=I22(1:pixels(1),1:pixels(2));
19

20 [n1,n2]=size(I1);
21 for i=n1*n2:-1:1
22 ii=1;jj=1;
23 if I1(floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2)6=0
24 while floor((i-1)/n2)+1+ii≤n1 && I1(...
25 floor((i-1)/n2)+1+ii,i-floor((i-1)/n2)*n2)==0
26

27 ii=ii+1;
28 end
29 while i-floor((i-1)/n2)*n2+jj≤n2 && I1(...
30 floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2+jj)==0
31

32 jj=jj+1;
33 end
34 I1(floor((i-1)/n2)+1:floor((i-1)/n2)+...
35 min(ii,round(enlarge(1)/pixels(1))+1),...
36 i-floor((i-1)/n2)*n2:i-floor((i-1)/n2)*n2+jj-1)=...
37 I1(floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2);
38 end
39 end
40 for i=n1*n2:-1:1
41 ii=1;jj=1;
42 if I2(floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2)6=0
43 while floor((i-1)/n2)+1+ii≤n1 && I2(...
44 floor((i-1)/n2)+1+ii,i-floor((i-1)/n2)*n2)==0
45

46 ii=ii+1;
47 end
48 while i-floor((i-1)/n2)*n2+jj≤n2 && I2(...
49 floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2+jj)==0
50

51 jj=jj+1;
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52 end
53 I2(floor((i-1)/n2)+1:floor((i-1)/n2)+...
54 min(ii,round(enlarge(1)/pixels(1))+1),...
55 i-floor((i-1)/n2)*n2:i-floor((i-1)/n2)*n2+jj-1)=...
56 I2(floor((i-1)/n2)+1,i-floor((i-1)/n2)*n2);
57 end
58 end
59 end

C-4 Data-Driven Approach

C-4-1 AFM_DCP_sim.m

This file is used for the simulations in Section 3-3. Lines 1 to 64 are used to simulate the
cantilever and lines 64 to 147 are used to apply the data-driven algorithm.

1 clearvars
2 close all
3

4 %% Cantilever dynamics
5 scaling = 0.030503;
6 Ts1 = 1/(600*10^6); %Sampling time (equivalent to 1/Ts Hz)
7 wres = 500000*2*pi; %Resonance frequency of cantilever [rad/s]
8 zeta = 0.1; %Damping factor of cantilever
9

10 a1=1; a2= 2*zeta*wres; a3= wres^2; b1=scaling*10^14;
11 sysc = tf(b1,[a1 a2 a3]); %Continuous system
12 sys = c2d(ss(sysc),Ts1); %Discrete system (with high sampling ...

frequency)
13 A=sys.A; B=sys.B; C=sys.C; D=sys.D;
14 G=B;
15

16 %% Input and output generation of system
17 Rnu=0.01*scaling; %Variance of measurement noise
18 Q=10*scaling; %Estimated variance of pulses in ...

t/s-interaction
19 c=3/scaling; %Factor for tip-sample interaction
20

21 tfinal = 1*10^-5; %Simulation time
22 t1=[0:Ts1:tfinal]'; N1=length(t1);
23 [n,¬]=size(A); %Order of the system
24

25 nu1=wgn(N1,1,Rnu,'linear'); %Simulated measurement noise
26 uc1=sin(wres*t1); %Simulated input
27

28 x(1:n,1) = zeros(n,1);
29 for i=1:round(N1*1.9/8) %Construct sample height
30 h(i,1)=-40*scaling;
31 end
32 for i=round(N1*1.9/8)+1:round(N1*3.5/8)
33 h(i,1)=-20*scaling;
34 end
35 for i=round(N1*3.5/8)+1:round(N1*5.5/8)
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36 h(i,1)=-20*scaling;
37 end
38 for i=round(N1*5.5/8)+1:round(N1*7/8)
39 h(i,1)=-10*scaling;
40 end
41 for i=round(N1*7/8)+1:N1
42 h(i,1)=-10*scaling;
43 end
44 for i=1:N1 %Construct tip-sample interaction
45 x(1:n,i+1)=A*x(1:n,i)+B*uc1(i);
46 y1(i,1)=C*x(1:n,i)+D+nu1(i);
47 if C*x(1:n,i)+D > h(i)
48 Fh1(i,1) = 0;
49 else
50 Fh1(i,1) = c*(h(i)- (C*x(1:2,i)+D));
51 end
52 x(1:n,i+1)=A*x(1:n,i)+B*uc1(i)+G*Fh1(i);
53 y1(i,1)=C*x(1:n,i)+D+nu1(i);
54 end
55

56 %% Use lower sampling rate for STATESON-algorithm
57 clear A a1 a2 a3 B b1 c C D i n sys wres x zeta
58 Ts=1/(10*10^6);
59 t=[0:Ts:tfinal]'; N=length(t);
60

61 for i=1:N
62 Fh(i,1)=Fh1(round((i-1)*Ts/Ts1)+1);
63 end
64

65 %% Cantilever dynamics in state-space and in output-error model.
66 sys = c2d(ss(sysc),Ts); %Discrete system with lower sampling rate
67 A=sys.A; B=sys.B; C=sys.C; D=sys.D;
68 sysoe=idpoly(sys); %Rewrite the system to a transfer function
69 par=getpvec(sysoe); bu=par(1:round(length(par)/2+0.1));
70 a=[1;par(round(length(par)/2+0.1)+1:length(par))]; %Obtain a_1, a_2, ...

b_{u,1} and b_{u,2} according to Equation 3-15 in the report
71

72 %% Rewrite OE in desired form (Equation 3-16 in the report)
73 y2=lsim(sysoe,uc+Fh,t)+nu; %Simulate measured cantilever deflection
74 Y=hankel(y2(end:-1:length(a)),y2(length(a):-1:1));
75 Uh=hankel(uc(end-length(a)+length(bu):-1:length(bu)),uc(length(bu):-1:1));
76 Y2=Y*a-Uh*bu;
77

78 Fhh=hankel(Fh(end:-1:length(bu)),Fh(length(bu):-1:1));
79 Fhhbu=Fhh*bu; %Validation data (in reality unknown)
80

81 %% Start Optimisation (Step 1)
82 opt=optimset('Display','off','MaxIter',10^6,'MaxFunEvals',10^6,'TolX',...
83 10^-8,'TolFun',10^-8);
84 bf0=randn(length(bu),1); f0=1*randn(N-length(a)+length(bu),1); x0=[f0;bf0];
85

86 x=fminunc(@(x)obj1(Y2,x,bu),x0,opt);
87 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
88 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
89 M=[Y2 , F; bf , 1000*eye(length(bu))];
90 [U,¬,V]=svd(M);U1=U(:,1:length(bu));V1=V(:,1:length(bu));S1=svd(M);
91
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92 %% DCP (Step 2)
93 i=1;der=-100;k=1;
94 while abs(der) > 10^-3
95 [x,fval(i,k)]=fminunc(@(x)obj2_3(Y2,x,0,U1,V1,bu),...
96 randn(size(x)),opt);
97 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
98 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
99 M=[Y2 , F; bf , 1000*eye(length(bu))];

100 [U,¬,V]=svd(M);U1=U(:,1:length(bu));V1=V(:,1:length(bu));S1=svd(M);
101 if i > 7
102 der = fval(i,k)-fval(i-1,k);
103 end
104 i=i+1;
105 end
106

107 %% Add 1-norm (Step 3)
108 for k=2:2:40
109 lambda2=0.02*(k-1); %lambda varied between 0.02 and 0.78
110 [x,fval2,exitflag(k)]=fminunc(@(x)obj2_3(Y2,x,lambda2,U1,...
111 V1,bu),randn(size(x)),opt);
112 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
113 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
114

115 % Final step (Step 4)
116 err=max(abs(Y2))*10^-2;
117 ind2=find(abs(F*bf/1000)>err);
118 for j=2:length(bu)
119 ind2=[ind2;ind2+1];
120 end
121 ind=unique(sort(ind2(ind2>0)));
122

123 x2=[zeros(length(ind),1);bf];
124 [x2,fval2,exitflag2(k)]=fminunc(@(x2)obj4(Y2,x2,f,ind,U1,...
125 V1,bu),randn(size(x2)),opt);
126 f=zeros(length(f0),1);
127 f(ind)=x2(1:length(ind));
128 bf=x2(end-length(bu)+1:end);
129 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
130

131 f2(:,k)=f; %Final estimate of tip-sample interaction
132 bf2(:,k)=bf; %Final estimate of bf*1000
133 Fbf(:,k)=F*bf./1000; %Final estimate of F*bf
134

135 % Simulation
136 aa=cell(1); aa{1}=a; bub=cell(1); bub{1}=bu; bfb=cell(1);
137 bfb{1}=[zeros(length(a)-length(bu),1);bf2(:,k)]./1000;
138 FtoY=idpoly(aa,bfb,[],[],[],[],Ts);
139 yhat(:,k)=lsim(sysoe,uc(1:length(f)),t(1:length(f)))+...
140 lsim(FtoY,f2(end:-1:1,k),t(1:length(f)));
141

142 % Evaluation
143 MSE(k)=sum((Fhhbu(end-length(Fbf(:,k))+1:end)-Fbf(:,k)).^2)/...
144 length(Fbf(:,k));
145 MSE2(k)=sum((y2(1:length(yhat(:,k)))-yhat(:,k)).^2)/length(yhat(:,k));
146 clear ind2 ind
147 end
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C-4-2 AFM_DCP_exp.m

This file is used for the experiment in Section 4-4.

1 % Files needed:
2 % 'AFM_STAT_3_4_test1.mat' Contains scanning data: u, y, ts, sys, tau_opt
3 clear all
4 close all
5

6 %% Load scanning data
7 load('AFM_STAT_3_4_test1.mat')
8 clear yhat
9

10 N=200; % #measurements to perform algorithm
11 start=4929797; % Start point in data y
12 u2=u(start+tau_opt:start+N-1+tau_opt); % Corresponds to Equation 4-3 in report
13 y2=y(start:start+N-1); % Output data used for algorithm
14 t=[0:length(u2)-1]'*ts;
15

16 %% Cantilever dynamics in state-space and in output-error model.
17 A=sys.A; B=sys.B; C=sys.C; D=sys.D;
18 sysoe=idpoly(sys); % Rewrite the system to a transfer function
19 par=getpvec(sysoe); bu=par(1:round(length(par)/2+0.1));
20 a=[1;par(round(length(par)/2+0.1)+1:length(par))]; % Obtain a_1, a_2, ...

b_{u,1} and b_{u,2} according to Equation 3-15 in the report
21

22 %% Rewrite OE in desired form
23 Y=hankel(y2(end:-1:length(a)),y2(length(a):-1:1));
24 Uh=hankel(u2(end-length(a)+length(bu):-1:length(bu)),u2(length(bu):-1:1));
25 Y2=Y*a-Uh*bu;
26

27 %% Start Optimisation (Step 1)
28 opt=optimset('Display','off','MaxIter',10^6,'MaxFunEvals',10^6,'TolX',...
29 10^-8,'TolFun',10^-8);
30 bf0=randn(length(bu),1); f0=1*randn(N-length(a)+length(bu),1); x0=[f0;bf0];
31

32 x=fminunc(@(x)obj1(Y2,x,bu),x0,opt);
33 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
34 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
35 M=[Y2 , F; bf , 1000*eye(length(bu))];
36 [U,¬,V]=svd(M);U1=U(:,1:length(bu));V1=V(:,1:length(bu));S1=svd(M);
37

38 %% DCP (Step 2)
39 i=1;der=-100;k=1;
40 while abs(der) > 10^-3
41 [x,fval(i,k)]=fminunc(@(x)obj2_3(Y2,x,0,U1,V1,bu),...
42 randn(size(x)),opt);
43 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
44 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
45 M=[Y2 , F; bf , 1000*eye(length(bu))];
46 [U,¬,V]=svd(M);U1=U(:,1:length(bu));V1=V(:,1:length(bu));S1=svd(M);
47 if i > 7
48 der = fval(i,k)-fval(i-1,k);
49 end
50 i=i+1;
51 end
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52

53 %% Add 1-norm (Step 3)
54 for k=1:20
55 lambda2=0.02*(k-1); %lambda varied between 0 and 0.38
56 [x,fval2,exitflag(k)]=fminunc(@(x)obj2_3(Y2,x,lambda2,U1,...
57 V1,bu),randn(size(x)),opt);
58 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
59 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
60

61 % Final step (Step 4)
62 err=max(abs(Y2))*1*10^-2;
63 ind3=find(F*bf/1000>err);
64 for j=2:length(bu)
65 ind3=[ind3;ind3+1];
66 end
67 ind=unique(sort(ind3(ind3>0)));
68

69 x2=[zeros(length(ind),1);bf];
70 [x2,fval2,exitflag2(k)]=fminunc(@(x2)obj4(Y2,x2,f,ind,U1,...
71 V1,bu),randn(size(x2)),opt);
72 f=zeros(length(f0),1);
73 f(ind)=x2(1:length(ind));
74 bf=x2(end-length(bu)+1:end);
75 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
76

77 f2(:,k)=f; %Final estimate of tip-sample interaction
78 bf2(:,k)=bf; %Final estimate of bf*1000
79 Fbf(:,k)=F*bf./1000; %Final estimate of F*bf
80

81 % Simulation
82 aa=cell(1); aa{1}=a; bub=cell(1); bub{1}=bu; bfb=cell(1);
83 bfb{1}=[zeros(length(a)-length(bu),1);bf2(:,k)]./1000;
84 FtoY=idpoly(aa,bfb,[],[],[],[],ts);
85 yhat(:,k)=lsim(sysoe,u2(1:length(f)),t(1:length(f)))+lsim(...
86 FtoY,f2(end:-1:1,k),t(1:length(f)));
87

88 % Evaluation
89 MSE(k)=sum((y2(1:length(yhat(:,k)))-yhat(:,k)).^2)/length(yhat(:,k));
90 clear ind2 ind ind3
91 end

C-4-3 obj1.m, obj2_3.m, obj4.m

The following files correspond to Steps 1 to 4 in Section 3-3, respectively.

1 % Inputs:
2 % -Y2 Cantilever deflection in Hankel matrix (Eq. 3-16 in report)
3 % -x Vector containing estimation of f and bf
4 % -bu Vector containing b_{u,1} and b_{u,2} (Eq. 3-15 in report)
5 %
6 % Output:
7 % -obj Function value (Eq. 3-18 in report)
8 function obj=obj1(Y2,x,bu)
9 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);
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10 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
11 obj = sum(svd([Y2 F; bf 1000*eye(length(bu))]));
12 end

1 % Inputs (in addition to obj1.m):
2 % -lambda2 Regularisation parameter (corresponding to lambda_DCP in report)
3 % -U1 First two columns of U, with [U,¬,V]=svd(M)
4 % -V1 First two columns of V, with [U,¬,V]=svd(M)
5 %
6 % Output:
7 % -obj Function value (Eq.3-22 in report)
8 function obj=obj2_3(Y2,x,lambda2,U1,V1,bu)
9 f=x(1:end-length(bu)); bf=x(end-length(bu)+1:end);

10 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
11 obj = (sum(svd([Y2 F; bf 1000*eye(length(bu))]))-...
12 trace(U1'*[Y2 F; bf 1000*eye(length(bu))]*V1))+...
13 lambda2*norm(F*bf./1000,1);
14 end

1 % Inputs (in addition to obj1.m):
2 % -f2 Previous estimation of f
3 % -ind Indices for which f 6= 0 (as indicated in Eq. 3-23 in report)
4 % -U1 First two columns of U, with [U,¬,V]=svd(M)
5 % -V1 First two columns of V, with [U,¬,V]=svd(M)
6 %
7 % Output:
8 % -obj Function value (Eq.3-23 in report)
9 function obj=obj4(Y2,x,f2,ind,U1,V1,bu)

10 bf=x(end-length(bu)+1:end);
11 f=zeros(length(f2),1);
12 f(ind)=x(1:end-length(bu));
13 F=hankel(f(1:end-length(bu)+1),f(end-length(bu)+1:end));
14 obj = (sum(svd([Y2 F; bf 1000*eye(length(bu))]))-...
15 trace(U1'*[Y2 F; bf 1000*eye(length(bu))]*V1));
16 end
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C-5 Alternating Direction Method of Multipliers

The STATESON-algorithm can be rewritten into the following problem:

min
xB,zB

1
2 ‖GxB − g‖22 + λ ‖zB‖1

s.t.WxB − zB = 0
(C-1)

with

G =



−R−
1
2

ν C 0 . . . 0 0 0 0 0 . . . 0

0 −R−
1
2

ν C
. . . ...

... 0 0 0 . . . ...
... . . . . . . 0 0

... . . . . . . . . . 0
0 . . . 0 −R−

1
2

ν C 0 0 . . . 0 0 0
0 . . . 0 0 −R−

1
2

ν C 0 . . . 0 0 0
−γA γI 0 . . . 0 −γB2 0 . . . 0 0

0 . . . . . . . . . ... 0 . . . . . . ...
...

... . . . −γA γI 0
... . . . −γB2 0 0

0 . . . 0 −γA γI 0 . . . 0 −γB2 0



,

W =
[
0Nn×Nn 0Nn×N
0N×Nn IN

]

g =
[
Rνy(1) Rνy(2) . . . Rνy(N) −γu>c (1)B> −γu>c (2)B> . . . −γu>c (N − 1)B>

]>
xB =

[
x>(1) x>(2) . . . x>(N) F (1) F (2) . . . F (N − 1)

]>
zB =

[
0 0 . . . 0 F (1) F (2) . . . F (N − 1)

]>
(C-2)

and λ and γ tuning parameters. Then, the ADMM-algorithm consists of updating three
vectors each iteration [35]:

xB(k + 1) = (G>G+ ρW>W )−1(G>g + ρW>(zB(k)− uB(k)))
zB(k + 1) = Sλ/ρ(WxB(k + 1) + uB(k))
uB(k + 1) = uB(k) +WxB(k + 1)− zB(k + 1)

(C-3)

with ρ a penalty parameter and

Sκ(a) =
{ a− κ a > κ

0 |a| ≤ κ
a+ κ a < −κ.

It turned out that a varying penalty parameter improved the convergence considerably and
made the result less dependent on the initial guess of ρ. Therefore, ρ is adjusted every
iteration:

ρ(k + 1) =
{ τ incrρ(k) if ‖r(k)‖2 > µ ‖s(k)‖2
ρ(k)/τdecr if ‖s(k)‖2 > µ ‖r(k)‖2
ρ(k) otherwise,

(C-4)
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with choices for τ incr = τdecr = 2 and µ = 10. The variables r and s are r(k) = WxB(k)−zB(k)
and s(k) = −ρW>(zB(k)− zB(k − 1)).

Unfortunately, a varying ρ implies that the inverse (G>G+ ρW>W )−1 should be calculated
every iteration. This requires large computational effort. Since the dimensions of G andW are
approximately the same and these matrices are (almost) square, a trick with LU-factorisation
does not make sense.

C-5-1 admmstat.m

In this file, Equation 3-9 is implemented in the ADMM-algorithm, with α =
[
1 1 . . . 1

]>
.

Its functionality is similar to “STATESON.m”. Use is made of the (lasso) script in [44].

1 % Inputs:
2 % -lambda Regularisation parameter
3 % -rho Initial value for rho (Eq. C-4 in report)
4 % -relax Relaxation parameter, typical value between 1.0 and 1.8
5 % -A1 Identified A-matrix
6 % -B1 Identified B-matrix
7 % -C1 Identified C-matrix
8 % -G2 Identified G-matrix (corresponding to B_2 in report)
9 % -u2 Cantilever input (corresponding to Eq. 4-3 in report)

10 % -y Measured cantilever deflection
11 % -Rnu Estimated variance of measurement noise
12 % -Q Estiamted variance of pulses in tip-sample interaction
13 % -gamma Penalty term on constraint
14 %
15 % Output:
16 % -x Vector containing [states; t/s-interaction]
17 function x = admmstat(lambda, rho, relax, A1,B1,C1,G2,u2,y,Rnu,Q,gamma)
18

19 %% Global constants and defaults
20 MAX_ITER = 15;
21 ABSTOL = 1e-4;
22 RELTOL = 1e-2;
23 tincr = 2;
24 tdecr = 2;
25 mu = 10;
26

27 %% Making vectors
28 M = length(y);
29 N = (length(B1)+1)*M;
30 F = [zeros(length(B1)*M), zeros(length(B1)*M,N-length(B1)*M);
31 zeros(N-length(B1)*M,length(B1)*M), Q^(-0.5)*eye(N-length(B1)*M)];
32

33 for i=1:M-1
34 A(i,length(B1)*(i-1)+1:length(B1)*i) = -Rnu^(-0.5)*C1;
35 end
36 A(:,(M-1)*length(B1)+1:N) = zeros(M-1,N-(M-1)*length(B1));
37 b = -Rnu^(-0.5)*y(1:end-1);
38

39 for i=1:M-1
40 V(length(B1)*(i-1)+1:length(B1)*i,length(B1)*(i-1)+1:length(B1)*(i+1))...
41 = [-A1 eye(length(B1))];
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42 end
43 for i=1:M-1
44 V(length(B1)*(i-1)+1:length(B1)*i,length(B1)*(M)+i) = -G2;
45 end
46 V(:,length(B1)*(M)+M)=zeros(length(B1)*(M-1),1);
47 for i=1:M-1
48 g(length(B1)*(i-1)+1:length(B1)*i,1)= -B1*u2(i);
49 end
50 A = [A;gamma*V].*sqrt(2);
51 b = [b;-gamma*g].*sqrt(2);
52

53 %% Data preprocessing
54 [m, n] = size(A);
55

56 % save a matrix-vector multiply
57 Atb = A'*b;
58 AtA = A'*A;
59 FtF = F'*F;
60

61 %% ADMM solver
62 x = zeros(n,1)+0*1i;
63 z = zeros(n,1)+0*1i;
64 u = zeros(n,1)+0*1i;
65

66 % cache the factorization
67 % [L U] = factor(A, rho);
68

69 rnorm=0;snorm=0;
70 for k = 1:MAX_ITER
71 % Calculate inverse with new rho
72 ArhoFinv = inv(AtA + rho*FtF);
73 % x-update
74 q = Atb + rho*F'*(z - u); % temporary value
75 % if( m ≥ n ) % if skinny
76 % x = U \ (L \ q);
77 % else % if fat
78 % x = q/rho - (A'*(U \ ( L \ (A*q) )))/rho^2;
79 % end
80 x = ArhoFinv*q;
81

82 % z-update with relaxation
83 zold = z;
84 x_hat = relax*x + (1 - relax)*zold;
85 z = shrinkage(F*x_hat + u, lambda/rho);
86

87 % u-update
88 u = u + (F*x_hat - z);
89

90 % Update rho
91 if k > 1
92 if rnorm > mu*snorm
93 rho = tincr*rho;
94 u = u/tincr;
95 end
96 if snorm > mu*rnorm
97 rho = rho/tdecr;
98 u = u*tdecr;
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99 end
100 end
101

102 % calculate norms of r(k+1) and s(k+1)
103 rnorm = norm(F*x-z);
104 snorm = norm(-rho*F'*(z - zold));
105

106 if (rnorm < sqrt(n)*ABSTOL + RELTOL*max(norm(x), norm(-z)) && ...
107 snorm < sqrt(n)*ABSTOL + RELTOL*norm(rho*u))
108 break;
109 end
110

111 end
112 end
113

114 function p = objective(A, b, lambda, x, F, z)
115 p = ( 1/2*sum((A*x - b).^2) + lambda*norm(z,1) );
116 end
117

118 function z = shrinkage(x, kappa)
119 z = max( 0, x - kappa ) - max( 0, -x - kappa );
120 end
121

122 function [L U] = factor(A, rho)
123 [m, n] = size(A);
124 if ( m ≥ n ) % if skinny
125 L = chol( A'*A + rho*speye(n), 'lower' );
126 else % if fat
127 L = chol( speye(m) + 1/rho*(A*A'), 'lower' );
128 end
129

130 % force matlab to recognize the upper / lower triangular structure
131 L = sparse(L);
132 U = sparse(L');
133 end
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Glossary

List of Acronyms

ADMM Alternating Direction Method of Multipliers

AFM Atomic Force Microscopy

AM-FI Amplitude Modulation with Frequency Imaging

AM-PI Amplitude Modulation with Phase Imaging

CS Compressed Sensing

CSKF CS-embedded Kalman Filter

DCP Difference of Convex Programming

DNA DeoxyriboNucleic Acid

FB feedback

FFT Fast Fourier Transform

FM-AI Frequency Modulation with Amplitude Imaging

FRC Fourier Ring Correlation

I/O Input and Output

LASSO Least Absolute Shrinkage and Selection Operator

LIA Lock-In Amplifier

LOESS Locally weighted regression

LSE Least Squared Error

LTI Linear Time-Invariant

MSE Mean Squared Error
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PLL Phase-Locked Loop

PM-AI Phase Modulation with Amplitude Imaging

PO-MOESP Past Outputs Multivariable Output-Error State-sPace

PRBS Pseudo-Random Binary Sequence

RIP Restricted Isometry Property

SEM Scanning Electron Microscope

STATESON State Smoothing by Sum-of-Norms Regularisation

TEM Transmission Electron Microscope

VAF Variance Accounted For

List of Symbols

α Weighting vector to enhance convergence of model-based approach
δF (t) Binary digit
ε Positive tuning parameter to modify α in the next iteration
εcs Upper bound in CSKF
η Thermal noise
γF (t) Zero-mean Gaussian distributed variable with variance Q
λ Tuning parameter for model-based approach
λmax Critical value for λ for which the estimation would be F̂ = 0.
λDCP Tuning parameter for data-driven approach
µ Probability whether F (t) is nonzero
ν Measurement noise
φ Phase of oscillating cantilever
σ3(R) Threshold curve as function of R, used in relation with FRC(R)
τ Phase difference between uc and u2

ε Threshold value for which estimates F̂ (t) are set to zero or not
ςt Scaled error between measured and modelled signal if F (t) = 0
ζk Noise in CSKF

A, B, B2, C State-space matrices of the cantilever dynamics
A(q) Denominator of discrete-time transfer function Bu(q)/A(q)
a1, a2 Factors of A(q)
Ac Amplitude of oscillating cantilever
Ac,0 Reference amplitude of oscillating cantilever

bf Vector containing factors in Bf : i.e. bf =
[
bf,1 bf,2

]>
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Bf (q) Numerator of discrete-time transfer function Bf (q)/A(q)
Bu(q) Numerator of discrete-time transfer function Bu(q)/A(q)
bu,1, bu,2 Factors of Bu(q)
c Constant to relate u2 with uc
c1 Constant
c2 Constant
c3 Constant
c4 Constant
F Tip-sample interaction
f Spatial frequency
f0 Spatial frequency determining the resolution of the original image
h Sample height
H ′ Matrix having the “restricted isometry property”, used in CSKF
i Indication of pixel i, used in FRC(R)
I1 First image resulting from original image
I2 Second image resulting from original image
K Kalman gain
k Segment number in model-based approach
N Number of measurements
n Order of Linear Time-Invariant model of the cantilever
n0 Number of nonzero entries in F (t)
Nτ Number of iterations in CSKF
nasym Degree of symmetry
Nb Number of measurements per segment in System Identification
Np(R) Number of pixels in frequency domain at the ring with radius R
NT Number of measurements per segment in model-based approach
p Tuning parameter for model-based approach
Q Variance of F (t)
q Tuning parameter for model-based approach, dependent on choice of p
Qres Image resolution in nanometers
R Radius from center to ring in Fourier transformed images, used in FRC(R)
Rη Variance of η
Rν Variance of ν
ri The pixel in frequency domain at location i, used in FRC(R)
s Tuning parameter determining size of Hankel matrices in Subspace Identification
U Matrix resulting from singular value decomposition of M
U1 Matrix consisting of the first two columns of U
u2 Input to the cantilever at the location of the thermal noise
uc Input to cantilever actuator
uz Input to the z-actuator of the scan table
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V Matrix resulting from singular value decomposition of M
V1 Matrix consisting of the first two columns of V
VF Vector containing the `2-norms of F (t)
x(t) State at time step t
Y (k) Quantity resulting from the error A(q)yc(t)−Bu(q)uc(t)
yc Measured cantilever deflection
yk Known vector in CSKF
z Height of the scan table
zk Sparse vector to be reconstructed in CSKF

ŷa Estimated cantilever deflection for case (a) of data-driven approach
ŷb Estimated cantilever deflection for case (b) of data-driven approach
F Hankel matrix of tip-sample interaction
M Matrix composed of Y, F, bf and I2

Y Vector resulting from error Y (k)
T The set {1, 2, ..., N}
Ĩ1 Fourier Transform of I1

Ĩ2 Fourier Transform of I2

FRC(R) Fourier Ring Correlation as function of radius R
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