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Abstract

Intraday liquidity risk is a subject that applies to all banks, and arises whenever there is

a timing mismatch between incoming and outgoing payments within a business day. In

case such a mismatch occurs, the bank is exposed to the risk that it is unable to meet its

payment obligations at the time expected. A liquidity buffer could help to mitigate this risk.

This thesis presents a framework for intraday liquidity risk management within ABN

AMRO Bank, while taking different priorities of transactions into account. We exam-

ine the use of extreme value theory (EVT) and propose two metrics to capture the risk:

the univariate and multivariate risk metric. The univariate risk metric represents the size

of the liquidity buffer for each priority group separately and provides granular view. Mak-

ing use of a Monte Carlo simulation algorithm in combination with univariate EVT, we

are able to estimate the size of the liquidity buffer for a specified time interval within a

business day. We forecast the buffer size 30 days out-of-sample and test the violations

against the conditional coverage (CC) hypothesis. Satisfactory results are obtained for the

groups with high and moderate priority when the highest confidence levels are considered:

α = 0.1 and 0.05. For the group with low priority, the risk metric performs well for the

lowest confidence levels: α = 0.025 and 0.01. The multivariate risk metrics aggregates

the size of the liquidity buffer, while taking the diversification of the priority groups into

account. We define a failure set and investigate the use of multivariate EVT.
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1

Introduction

1.1 Intraday liquidity risk

Regulators are concerned with the protection of the financial system against catastrophic

events. In recent years, a central issue in risk management has been to determine capital

and liquidity requirements for financial institutions to meet catastrophic risk (Bali, 2007,

[Bal07]).

One specific type of risk concerns intraday liquidity risk, which is a subject that applies to

all banks (Neijs et al., 2015, [NW15]). Intraday liquidity refers to the resources that can

be accessed by the bank during a business day, usually to enable banks to make payments

in real time. Intraday liquidity risk arises whenever there is a mismatch in timing between

incoming and outgoing payments during a business day. Whenever such a timing mismatch

occurs, the bank is exposed to the risk that it is unable to meet its payment obligations

at the time expected (Ball et al., 2011, [BDM11]). This may impact the liquidity position

of the bank and, in extreme situations due to the high interdependency between different

payment systems, that of other parties.

In order to moderate these risks and to strengthen the resilience of banks in times of extreme

financial distress, a number of regulatory measures have been introduced. The 2008 - 2009

financial crisis has driven the introduction of the Basel III regulatory framework. Basel

III focuses on strengthening capital and liquidity regulations in the international banking

sector (Mohanta, 2014, [Moh14]). In particular, Basel III requires banks to implement

monitoring tools for intraday liquidity management. The exact requirement concerning

intraday liquidity management (i.e. BCBS 248: principal 8) is stated below.

1



”A bank should actively manage its intraday liquidity positions and risks to meet payment

and settlement obligations on a timely basis under both normal and stressed conditions and

thus contribute to the smooth functioning of payment and settlement systems.”

In addition to Basel III, the Dutch Central Bank (DNB) introduced the Internal Liquidity

Adequacy Assessment Process (ILAAP) in the Netherlands in June 2011. Dutch banks

are expected, when reporting the ILAAP to DNB, to give a description together with an

internal assessment on the way in which liquidity risk is managed within the organization.

Regarding this assessment, it is important for banks to address how the required liquidity

buffer is calculated. Hence, in this thesis the size of the liquidity buffer will be the risk

metric of interest.

1.2 Research question

ABN AMRO Bank distinguishes different types of priorities among their payments, both for

incoming and outgoing payments. A payment is considered to be high priority, moderate

priority or low priority. A payment with a high priority has to be paid immediately, while a

low priority payments could be postponed. Hence, it is desired to take these three different

priorities into account while estimating the size of the liquidity buffer of ABN AMRO Bank.

This thesis aims to answer the following research question:

”How should the intraday liquidity buffer size of ABN AMRO Bank, when a distinction is

made between different priority groups, be determined?

(1) Determine the liquidity buffer size for each group separately within a univariate frame-

work.

(2) Determine the aggregated liquidity buffer size within a multivariate framework.

In this thesis, item (1) will be referred to as the univariate risk metric and item (2) will be

referred to as the multivariate risk metric. The univariate risk metric provides a granular

analysis of intraday liquidity risk for each priority group separately and allows for mon-

itoring. The multivariate risk metric specifies the aggregated level of risk and takes the

diversification of these groups into account. Hence, by developing these risk metrics we de-

velop a practice to determine the intraday liquidity buffer size in both normal and stressed

financial conditions. This thesis proposes an extreme value theory (EVT) application to

obtain these risk metrics.
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1.3 Outline

Figure 1.1 illustrates the outline of this thesis and highlights the links between the different

chapters. Three different layers are distinguished. The first layer is the research framework,

in which the research question and the data set is presented. Chapter 2 introduces the ABN

AMRO Bank transaction data set, which is considered to be ultra high frequency.

The second layer introduces the theoretical fundamentals on which our application will

rely. Chapter 3 presents results on both univariate and multivariate EVT. The results are

rather theoretical and especially recommended for people who are not familiar with EVT.

Subsequent chapters will be build upon the results.

The third layer consists of Chapter 4, 5 and 6 and presents the risk metrics. Chapter 4

describes the class of Autoregressive Conditional Duration (ACD) models, which are used

to model the durations between high frequency transactions. Chapter 5 relies on the results

of univariate EVT of Chapter 3 and the ACD model of Chapter 4. This chapter introduces

a Monte Carlo simulation algorithm, where the time steps are defined by the ACD model

of Chapter 4. The algorithm enables us to estimate our univariate risk metric: the size of

the liquidity buffer size of each group separately. Chapter 6 relies heavily on the results

of multivariate EVT of Chapter 3, and presents the multivariate risk metric: the size of

aggregated liquidity buffer size.
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Figure 1.1: Graphic representation of the thesis outline.
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2

Data description

2.1 Introduction

Author’s note: this section is confidential.

2.2 Description of transaction data set

Author’s note: this section is confidential.

2.2.1 Notation of transaction data set

Author’s note: this section is confidential.

2.3 Description of priority transaction data set

Author’s note: this section is confidential.

2.3.1 Notation regarding segmentation

Author’s note: this section is confidential.
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3

Extreme value theory

3.1 Introduction

The study of exceptional risks has become an important subject in probability and statisti-

cal research, as these type of risks can have major impact. Extreme value theory (EVT) is

considered as a classical mathematical framework to evaluate these exceptional risks (Cai et

al., 2013, [CFM13]). EVT provides an asymptotic distribution for extreme data, analogous

to the way that the Central Limit Theorem (CLT) suggests the normal distribution as an

approximate model for the sample means of a large enough sample (Northrop et al., 2011,

[NJ11]).

This chapter is rather theoretical and serves as an introduction on EVT. Results on both

univariate and multivariate EVT are presented. These results will be applied in the subse-

quent chapters. The univariate EVT will be used in Chapter 5, which enables us to answer

the first research question. The multivariate EVT will play a key role in Chapter 6, which

addresses the second research question.

3.2 Univariate extreme value theory

Univariate EVT is concerned with finding the limit distribution for extreme observations of

a sequence of independent and identically distributed random variables. Two fundamental

approaches can be distinguished in the way these extreme observations are identified: the

Block Maxima (BM) approach and the Peaks Over Threshold (POT) approach. We start

by making an intuitive distinction between these two methods.

7



The BM approach divides the observation period into equally sized and non overlapping

blocks in order to obtain the maximum realization in each block. The limiting distribution

arising from these maxima is the generalized extreme value (GEV) distribution. The POT

approach focuses on the realizations exceeding a given (high) threshold and searches for a

distribution that is able to capture the limit behavior of these exceedances. It turns out

that the limit behavior of these exceedances can be captured by the generalized pareto (GP)

distribution. Figure 3.1 gives a graphic representation of both methods for the realizations

x1, x2, . . . , x16 of an arbitrary process. The vertical lines in the left figure represent the

blocks, where the crosses form the maxima. The horizontal line in the right figure defines

the threshold, where the crosses represent the corresponding exceedances of this threshold.

The BM approach identifies the realizations x2, x5, x12, x14 as extreme events, while the

POT approach considers the realizations x2, x3, x5, x7, x8, x10, x11, x12, x14, x16 to be

extreme.
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Figure 3.1: Graphic representation of the BM approach (left) and the POT approach (right)

to define extreme events for an arbitrary sequence of realizations.

It should be noted that the BM approach could miss some of the high observations and

might retain some lower observations. Hence, the BM approach is considered to be wasteful

in case other approaches are present for the identification of extremes observations (Coles,

2011, [Col11]). Hence, the POT approach is preferred in this thesis.

3.2.1 Peaks Over Threshold approach

This section elaborates the general mathematical framework of the POT approach. Section

3.2.1.1 introduces the GEV distribution, the extreme value index and the max-domain of

attraction. Definition 3.1, Remark 3.2 and Theorem 3.1 form the highlights of this section.

These highlights enables us to the link the extreme value index with the GP distribution.

The GP distribution is presented in Section 3.2.1.2.
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3.2.1.1 GEV distribution and max-domain of attraction

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random vari-

ables with common cumulative distribution function (cdf) F . As extremes intuitively oc-

cur near the upper end of the support of F , define the right endpoint of F by xF =

sup
{
x ∈ R : F (x) < 1

}
which may be infinite. We define the partial maxima Mn =

max(X1, X2, . . . , Xn). It can be shown that, under the assumption of independent and

identically distributed random variables, the distribution of these partial maxima can be

expressed by

P (Mn ≤ x) = (F (x))n . (3.1)

It should be noticed that P (Mn ≤ x) = (F (x))n → 0 as n → ∞ for all x < xF and

P (Mn ≤ x) = (F (x))n = 1 as n→∞ for all x ≥ xF . This implies that the limit distribu-

tion of the partial maxima converges to a degenerate distribution. Thus, in order to find a

non degenerate limit distribution for the partial maxima, a proper transformation is neces-

sary. Suppose there exist two sequences of real numbers an > 0 and bn ∈ R (n = 1, 2, . . .)

and a non degenerate distribution function G such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim
n→∞

Fn(anx+ bn) = G(x) (3.2)

for every continuity point x of G. Definition 3.1 shows all distribution functions G that can

occur as a limit, which belong to the class of generalized extreme value (GEV) distribu-

tions. Therefore, we call G an extreme value distribution. This implies that the distribution

G, i.e. the limit distribution of the properly transformed maxima, is completely charac-

terized by a one parameter family. Note that via the relation min(X1, X2, . . . , Xn) =

−max(−X1,−X2, . . . ,−Xn) the same results can be applied for minima too.

Definition 3.1 (Class of extreme value distributions)

The class of extreme value distributions is given by

Gγ(x) =

 exp

(
− (1 + γx)

− 1
γ

+

)
γ 6= 0

exp (− exp (−x)) γ = 0

, (3.3)

where γ ∈ R is referred to as the extreme value index. The notation (·)+ = max (·, 0) is

used.

3.2 Univariate extreme value theory 9



Remark 3.1 (Block Maxima approach)

The class of extreme value distributions, denoted by Equation (3.3), are the possible limiting

distributions of the partial maxima. This approach, in order to obtain the limit distribution

for the tail observations of a sample, is known as the BM approach.

However, it should be noted that the convergence of the properly transformed partial max-

ima to an extreme value distribution Gγ does not hold in general. Therefore, we are

interested in conditions on the cdf F that ensure that there indeed exist two sequences

of real numbers an > 0 and bn ∈ R (n = 1, 2, . . .) such that properly transformed partial

maxima converge to an extreme value distribution Gγ . In order to state these conditions,

first the concept of max-domain of attractions is introduced.

Definition 3.2 (Max-domain of attraction)

The cdf F is said to be in the max-domain of attraction of an extreme value distribution

Gγ if there exist two sequences of real numbers an > 0 and bn ∈ R (n = 1, 2, . . .) such that

lim
n→∞

Fn(anx+ bn) = Gγ(x) (3.4)

for each continuity point x of G. We write F ∈MDA(Gγ).

Alternatively, by taking logarithms of both sides of Equation (3.4), the concept of max-

domain of attraction can also be described by Equation (3.5). This is denoted by Collorary

3.1.

Corollary 3.1

Alternatively, we could write: for each continuity point x for which 0 < Gγ(x) < 1 we have

lim
n→∞

n (1− F (anx+ bn)) = − logGγ(x) . (3.5)

Proof 3.1

We refer to Appendix E.1 for the proof.

�

Remark 3.2

The extreme value index γ ∈ R characterizes the heaviness of the tail of the distribution.

10 Chapter 3 Extreme value theory



Based on the sign of the extreme value index γ, the class of generalized extreme value dis-

tribution can be divided into three categories.

• γ > 0

The case γ > 0 represents the Fréchet max-domain of attraction, and translates into

Equation (3.6). We write F ∈ MDA(Gγ>0). The distribution has a heavy right tail

with an infinite right endpoint, i.e. xF = ∞. Moments of order greater than
1

γ
do

not exist. Examples of distributions in the Fréchet domain of attraction are Cauchy,

Student and Pareto distributions.

Gγ>0(x) =

 0 x ≤ 0

exp
(
−x−

1
γ

)
x > 0

(3.6)

• γ = 0

The case γ = 0 represents the Gumbel max-domain of attraction, and translates into

Equation (3.7). We write F ∈ MDA(Gγ=0). The distribution has a light right tail

with an infinite or finite right endpoint. All moments exist. Examples of distributions

in the Gumbel domain of attractions are the normal and gamma distribution.

Gγ=0(x) = exp (− exp (−x)) (3.7)

• γ < 0

The case γ < 0 represents the Weibull max-domain of attraction, and translates into

Equation (3.8). We write F ∈ MDA(Gγ<0). The distribution has a finite right

endpoint, i.e. xF <∞. All moments exist. Examples of distributions in the Weibull

domain of attraction are the uniform and beta distribution.

Gγ<0(x) =

 1 x ≥ 0

exp
(
− (−x)

− 1
γ

)
x < 0

(3.8)
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Figure 3.2: Probability density function (left) and cumulative distribution function (right)

of the GEV distribution for γ = −1, − 1
2

(with upper end points x = 1, 2), γ = 0, 1
2

and

γ = 1 (with lower end point x = −1).
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Theorem 3.1, which reformulates the definition of max-domain of attraction, puts condi-

tions on the cdf F that ensure that there exist two sequences of real numbers an > 0

and bn ∈ R (n = 1, 2, . . .) such that properly transformed partial maxima converge to an

extreme value distribution Gγ . As this theorem includes the concept of tail quantile func-

tions, first the tail quantile function is introduced. Definition 3.3 introduces the concept of

tail quantile functions.

Definition 3.3 (Tail quantile function)

Let F be a cdf with left continuous inverse F←(x) = inf
{
t : F (t) ≥ x

}
. Then the tail

quantile function U is given by

U(t) = F←
(

1− 1

t

)
. (3.9)

Theorem 3.1

For the extreme value index γ ∈ R the following statements are equivalent

1. F ∈MDA(Gγ).

2. There exist real constants an > 0 and bn ∈ R such that for all x

lim
n→∞

Fn(anx+ bn) = Gγ(x) . (3.10)

3. There exists a positive function a such that

lim
t→∞

t (1− F (a(t)x+ U(t))) = (1 + γx)
− 1
γ

+ , (3.11)

for all x. The notation (·)+ = max (·, 0) is used.

4. There exists a positive function a such that for x > 0

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
, (3.12)

where for γ = 0 the right-hand side is interpreted as log x.
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5. There exists a positive function u such that

lim
t↑xF

1− F (t+ xu(t))

1− F (t)
= (1 + γx)

− 1
γ

+ , (3.13)

for all x. The notation (·)+ = max (·, 0) is used.

Moreover, Equation (3.10) holds with an := a(n) and bn := U(n). Also, Equation (3.14)

holds with u(t) = a
(

1
1−F (t)

)
.

Proof 3.2

We refer to (de Haan et al., 2006, [HF06]) for the proof.

�

Example 3.1

Assume we have a sequence X1, X2, . . . , Xn of independent and identically distributed ran-

dom variables that follow the standard exponential distribution, i.e. Xi
IID∼ Exp(1). This

implies that we have cdf F (x) = 1− e−x for x > 0. It is easy to verify that we get an = 1,

bn = logn and γ = 0. Thus, F ∈ MDA(Gγ=0) and by choosing an and bn accordingly,

Mn − logn converges to the Gumbel distribution.

Example 3.2

Assume we have a sequence X1, X2, . . . , Xn of independent and identically distributed ran-

dom variables that follow the uniform distribution on the interval (0, 2), i.e. Xi
IID∼ U(0, 2).

This implies that we have cdf F (x) = x
2

for 0 ≤ x ≤ 2. It is easy to verify we get an = 2
n

,

bn = 2− 2
n

and γ = −1. Thus, F ∈ MDA(Gγ<0) and by choosing an and bn accordingly,

n

(
Mn

2
− 1

)
+ 1 converges to the Weibull distribution.

3.2.1.2 GP distribution

Theorem 3.1 forms the basis of the POT approach, as it provides the bridge between the

POT approach and the introduced framework of the BM approach. Item (5) of Theorem

3.1 enables us to establish a link between the BM approach and the POT approach. We

can reformulate item (5) of Theorem 3.1 as follows

3.2 Univariate extreme value theory 13



lim
t↑xF

1− F (t+ xu(t))

1− F (t)
= lim
t↑xF

1− P (X ≤ t+ xu(t))

1− P (X ≤ t)

= lim
t↑xF

P (X > t+ xu(t))

P (X > t)

= lim
t↑xF

P (X > t+ xu(t) ∩ X > t)

P (X > t)
∀ x ≥ 0

= lim
t↑xF

P
(
X > t+ xu(t)

∣∣∣ X > t
)
∀ x ≥ 0

= lim
t↑xF

P

(
X − t
u(t)

> x
∣∣∣ X > t

)
∀ x ≥ 0 . (3.14)

Let X be a random variable with cdf F ∈ MDA(Gγ). Let t be a threshold large enough.

Define the sequence
X1 − t
u(t)

,
X2 − t
u(t)

, . . . ,
Xn − t
u(t)

of independent threshold exceedances

scaled by an appropriate factor. Then the limit distribution, conditional on X exceeding

t, is given by Equation (3.15) as t ↑ xF . This class of distribution functions is referred to

as the class of generalized pareto (GP) distributions. The formal definition of the class of

GP distributions is stated below.

Definition 3.4 (Class of generalized pareto distributions)

The class of generalized pareto distributions is given by

Gv(x) = lim
t↑xF

P

(
X − t
u(t)

≤ x
∣∣∣ X > t

)
=

 1− (1 + γx)
− 1
γ

+ γ 6= 0

1− exp (−x) γ = 0
, (3.15)

where γ ∈ R is referred to as the extreme value index. The notation (·)+ = max (·, 0) is

used.
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Figure 3.3: Probability density function (left) and cumulative distribution function (right)

of the GP distribution for γ = −1, − 1
2

(with upper end points x = 1, 2), γ = 0, 1
2
, 1.
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It should be noticed that the parameter γ of the GP distribution is uniquely determined by

the associated GEV distribution. To be more specific, the parameter γ stated in Definition

3.5 is equal to that of the associated GEV distribution (Coles, 2011, [Col11]).

Remark 3.3 (Peaks Over Threshold approach)

The class of generalized pareto distributions, denoted by Equation (3.15), are the possible

limiting distributions of the exceedances over a large enough threshold. This approach, in

order to obtain the limit distribution of the tail observations of a sample, is known as the

POT approach. In this thesis, the POT approach is preferred over the BM approach.

Remember that in EVT one is interested in the tail behavior and not the whole distribu-

tion. In case we have a sequence X1, X2, . . . , Xn of independent and identically distributed

random variables, only the largest k < n observations are included in the estimation pro-

cess. Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the order statistics. Choose the (n − k)-th

order statistic Xn−k,n as threshold, i.e. t = Xn−k,n. Recall Theorem 3.1 with relation

u(t) = a
(

1
1−F (t)

)
. Hence,

u(Xn−k,n) = a

(
1

1− F (Xn−k,n)

)
(3.16)

≈ a
(

1

1− Fn(Xn−k,n)

)
= a

(
1

1− n−k
n

)
= a

(n
k

)
.

Remark 3.4 (Moment estimators)

Many estimators exist for a
(
n
k

)
, b
(
n
k

)
= U

(
n
k

)
and γ, and each estimator has its own

advantages and disadvantages. The most common estimators are the Hill estimator for

γ > 0, the ML estimator for γ > −1, the probability weighted moment estimator for γ < 1

and the moment estimator for γ ∈ R. For an overview of these estimators, the reader is

referred to Chapter 3 and 4 in (De Haan et al., 2006, [HF06]). In this thesis, we will use

the moment estimators given by

M (j)
n =

1

k

k∑
i=1

(logXn,n−i+1 − logXn,n−k)j (3.17)

γ̂ = M (1)
n + 1− 1

2

1−

(
M

(1)
n

)2

M
(2)
n


−1

(3.18)
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â
(n
k

)
= Xn−k,nM

(1)
n

(
1− γ̂ +M (1)

n

)
(3.19)

b̂
(n
k

)
= Xn−k,n , (3.20)

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denotes the ordered sample. Moreover, we have j = 1, 2

and provide that k = k(n)→∞, k
n
→ 0 as n→∞.

The question that remains is how to choose an appropriate value for k, as a trade off exists

between bias and variance. Choosing large values for k (i.e. high threshold) will result in

a high variance, as we will end up with few exceedances to estimate the parameters of the

GP distribution. Choosing small values for k (i.e. low threshold) will result in bias, as

the asymptotic basis will be violated (Coles, 2011, [Col11]). Two methods exist. The first

method is to generate the mean residual life plot and look where this plot is linear in the

threshold t = Xn−k,n. The second method is to take a range of values for k, estimate the

parameters of the GP distribution and look for stability of parameter estimates. For more

information about these methods one is referred to respectively section 4.3.1 and 4.3.4 in

(Coles, 2011, [Col11]).

Example 3.3 (Application to ABN AMRO Bank transaction data set)

Author’s note: this example is confidential.

Remark 3.5

Author’s note: this remark is confidential.

3.3 Multivariate extreme value theory

In this section, the focus will be on multivariate extremes. We restrict our attention to

the bivariate case. In this manner the main concepts can be highlighted without becoming

unnecessary complex due to notation issues that arise while considering higher dimensions.

In contrast to the univariate case, the identification of extreme values is not straightforward

and therefore many possibilities exist. It turns out that a very naive approach considering

pointwise maxima leads to a rich enough theory (Coles, 2011, [Col11]), and therefore we

will follow this approach. By following this approach we will rely on the results presented

in the previous sections of this chapter. Our main interest will be the limiting behavior of

these pointwise maxima.
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Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sequence of independent and identically distributed

random vectors with common cdf F . Let F1 and F2 be the marginal distribution functions

of X and Y , respectively. Define the pointwise maxima Mx,n = max(X1, . . . , Xn) and

My,n = max(Y1, . . . , Yn). Then Mn = (Mx,n,My,n) is called the vector of pointwise max-

ima. It should be noticed that the index i for which the variable Xi attains its maximum

value need not be necessarily the same as that of variable Yi. Therefore, the vector Mn is

not necessarily observed in the original sequence.

Similarly to the univariate framework, in order to avoid the limiting distribution of Mn

to be degenerate, we look for sequences of real numbers an, cn > 0 and bn, dn ∈ R
(n = 1, 2, . . .) and a bivariate distribution function G with non degenerate marginals such

that

lim
n→∞

P

(
Mx,n − bn

an
≤ x, My,n − dn

cn
≤ y
)

= lim
n→∞

Fn(anx+ bn, cny + dn) = G(x, y)

(3.21)

for all continuity points (x, y) of G. Any distribution function G that can occur as a limit

is called a multivariate extreme value (MEV) distribution. In contrast to the univariate

framework, the class of MEV distributions cannot be represented by a finite dimensional

parametric family. However, a specific characterization of the MEV distribution can be

found. Note that we have the following restrictions on the distribution function G due to

the convergence of the marginal distributions of the pointwise maxima Mx,n and My,n.

Here, the function Gγ1 and Gγ2 refers to the univariate GEV distribution as denoted in

Equation (3.3).

lim
n→∞

P

(
Mx,n − bn

an
≤ x

)
= G(x,∞) = Gγ1(x) (3.22)

lim
n→∞

P

(
My,n − dn

cn
≤ y
)

= G(∞, y) = Gγ2(y) (3.23)

It would be desirable to separate the modelling of the MEV distribution into inference on the

marginal distributions and inference on the dependence structure. A way to accomplish this

is to assume specific margins for the distribution function G. To be more specific, one aims

to find an appropriate transformation for the sequence X1, X2, . . . , Xn and Y1, Y2, . . . , Yn

such that the transformed tails (i.e. transformed pointwise maxima) follow an univariate

extreme value distribution (De Haan et al., 1998, [HR98]). A common and useful choice

is to set the transformed tails to follow the standard Fréchet distribution. This is where

Theorem 3.3, which is stated below, can be of use.

3.3 Multivariate extreme value theory 17



Theorem 3.2

Suppose Equations (3.21), (3.22) and (3.23) hold. Then

lim
n→∞

Fn(U1(nx), U2(ny)) = G0(x, y) , (3.24)

where

G0(x, y) = G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
. (3.25)

Proof 3.3

We refer to Appendix E.2 for the proof.

�

Corollary 3.2

Alternatively, we could write: for each continuity point (x, y) for which 0 < G0(x, y) < 1

we have

lim
n→∞

n (1− F (U1(nx), U2(ny)) = − logG0(x, y) . (3.26)

Proof 3.4

We refer to Appendix E.2 for the proof, which is almost identical to the univariate case.

�

One important observation is that Equation (3.24) can be reformulated into the form of

Equation (3.21). The result is shown by Equation (3.27), and the corresponding deriva-

tion can be found in Appendix E.3. Consequently, Equations (3.28) and (3.29) follow. Here,

M̃x,n and M̃y,n refer respectively to max
(
X̃1, . . . , X̃n

)
= max

(
1

1− F1(X1)
, . . . ,

1

1− F1(Xn)

)
and max

(
Ỹ1, . . . , Ỹn

)
= max

(
1

1− F2(Y1)
, . . . ,

1

1− F2(Yn)

)
. The reformulation implies

that the marginal distribution of these maxima after normalizing with constants an =

cn = n and bn = dn = 0 is fixed as n → ∞. The normalized maxima follow an univariate

extreme value distribution in the limit, i.e. the standard Fréchet distribution.

lim
n→∞

Fn(U1(nx), U2(ny)) = lim
n→∞

P

(
M̃x,n

n
≤ x, M̃y,n

n
≤ y
)

= G0(x, y) (3.27)

lim
n→∞

P

(
M̃x,n

n
≤ x

)
= G0(x,∞) = exp

(
− 1

x

)
(3.28)
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lim
n→∞

P

(
M̃y,n

n
≤ y
)

= G0(∞, y) = exp

(
−1

y

)
(3.29)

Now we are able to formulate the class of limiting distributions in Equation (3.21), which

is stated below in Theorem 3.4. This theorem implies that the bivariate extreme value

distribution G from Equation (3.21) is completely characterized by the extreme value in-

dices γ1 and γ2 of the marginal distributions and the exponent measure that captures the

dependence structure. Remark that also other characterizations exist, for instance by in-

cluding the spectral measure. For more information about these type of characterizations

the reader is referred to Theorem 6.1.14 in (de Haan et al., 2006, [HF06]).

Theorem 3.3

For any extreme value distribution distribution G from Equation (3.21) with (3.22) and

(3.23) there exist a distribution function H on [0, 1] with mean 1
2

, i.e.

∫ 1

0

wdH(w) =
1

2
, (3.30)

such that for x, y > 0

G0(x, y) = G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
= exp (−V (x, y)) , (3.31)

where the function V (x, y) is defined by

V (x, y) = 2

∫ 1

0

max

(
w

x
,

1− w
y

)
dH(w) . (3.32)

Conversely, any finite measure represented by distribution function H gives rise to a limit

distribution G in Equation (3.21) via Equation (3.31).

Remark 3.6 (Exponent measure)

The function V (x, y), defined by Equation (3.32), determines the exponent measure ν in

the following way:

ν(Ax,y) := V (x, y) , (3.33)

with

Ax,y :=
{

(s, t) ∈ R2
+ : s > x ∪ t > y

}
. (3.34)
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Moreover, we have

ν(Asx,sy) = ν(sAx,y) =
1

s
ν(Ax,y) . (3.35)

Remark 3.7 (Preview)

The exponent measure will play a key role in Chapter 6.

In the univariate framework, we introduced the concept of max-domain of attraction. This

concept enabled us to state conditions on the cdf F to ensure that there exist two sequences

an > 0 and bn ∈ R (n = 1, 2, . . .) such that the transformed partial maxima converge to

a extreme value distribution Gγ . In the bivariate framework we can introduce a similar

concept, which puts conditions on both the marginal distributions and the extremal de-

pendence.

Theorem 3.4 (Max-domain of attraction)

The cdf F , with continuous marginal cdfs F1 and F2, is said to be in the max-domain of

attraction of a bivariate extreme value distribution G with marginal distributions Gγ1 and

Gγ2 if and only if

1. Fi ∈MDA(Gγi) for i = 1, 2.

2. There exsists a positive function s(x, y) such that for x, y > 0

lim
n→∞

1− F (U1(nx), U2(ny))

1− F (U1(n), U2(n))
= s(x, y) . (3.36)

We write F ∈MDA(G).

3.4 Extremal dependence

Let (X1, Y1), . . . , (Xn, Yn) be a sequence of independent and identically distributed random

vectors. A common interest in multivariate EVT is estimating the probability of an extreme

event, i.e. a probability of type

P (Xi > u, Yi > v) (3.37)

for some values u and v. In the environmental context one could think of the variables

Xi and Yi representing wave heights and still water levels of which the exceedance of both

at some prespecified levels u and v would result in a dangerous situation that should be
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avoided, see for instance the application in (de Haan et al., 1998, [HR98]). In the financial

context one could think of the variables Xi and Yi representing the losses of two stock

indices, see for instance the application in (Poon et al., 2004, [PRT04]).

In multivariate extreme value theory, one important issue is to indicate whether the point-

wise maxima are dependent or not in the limit (Hüsler, 2009, [Hus09]) (De Haan et al., 1998,

[HR98]). In most literature, the distinction between asymptotic dependence and asymp-

totic independence is not made. Often asymptotic dependence of the variables is assumed

in case independence is rejected. However, in case the pointwise maxima are asymptotically

independent, the procedures for estimating a probability of type (3.37) are not applicable

anymore (Draisma et al., 2004, [DDFH04]). In this thesis, we want to avoid this situation

and make a clear distinctions between these two types of dependence structures in the limit.

We start this section by explaining the concept of asymptotic dependence and defining a

measure for this type of dependence. Hereafter, another type of dependence, known as

residual dependence is discussed.

3.4.1 Asymptotic dependence

In case two random variables are asymptotic independent, the limit distribution G of the

pointwise maxima, corresponds to the joint distribution function of two independent ran-

dom variables. However, this does not necessarily imply that the two variables are indepen-

dent. The formal definition of asymptoc independence in a bivariate framework, is denoted

by Definition 3.5.

Definition 3.5 (Asymptotic dependence)

Let the cdf F be in the max-domain of attraction of a bivariate extreme value distribution

G with marginal distributions Gγ1 and Gγ2 . Then

1. If G(x, y) = Gγ1(x)Gγ2(y), then X and Y are said to be asymptotic independent.

2. Otherwise, then X and Y are said to be asymptotic dependent.

Note that Equation (3.26) can be translated into Equations (3.38) and (3.39). In case

the variables X and Y are said to be asymptotically independent, using Definition 3.6, we

can see that the right-hand side of Equation (3.39) is identically zero (i.e. logG0(x, y) =

log (G0(x)G0(y)) = logG0(x) + logG0(y)). Consequently, Equation (3.39) cannot help us

by estimating a probability of type (3.37).
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lim
n→∞

nP

(
1

1− F1(X)
> nx ∪ 1

1− F2(Y )
> ny

)
= − logG0(x, y) (3.38)

lim
n→∞

nP

(
1

1− F1(X)
> nx,

1

1− F2(Y )
> ny

)
= logG0(x, y)− logG0(x)− logG0(y)

(3.39)

This implicates that it is important to preliminary check whether the variables X and Y

are asymptotic independent. We start by defining a measure of asymptotic dependence in

a bivariate framework, which is given by Equation (3.40). In case χ = 0 the components

X and Y are said to be asymptotically independent. In case χ > 0 the component X

and Y are said to be asymptotically dependent, and the measure χ gives the strength of

asymptotic dependence.

χ = lim
t→∞

P
(
X > U1(t)

∣∣∣ Y > U2(t)
)

(3.40)

Proposition 3.1 (Asymptotic independence)

If X and Y are asymptotic independent, then

χ = 0 . (3.41)

Proof 3.5 (Asymptotic independence)

We refer to Appendix E.4 for the proof.

�

Based on the bivariate sample (X1, Y1), . . . , (Xn, Yn) an estimator for the measure χ can

be derived. Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n and Y1,n ≤ Y2,n ≤ . . . ≤ Yn,n be the ordered

samples. Then the estimator χ̂ is defined by

χ̂ =
1

k

n∑
i=1

1{Xi>Xn−k,n, Yi>Yn−k.n} . (3.42)

It should be noticed that the measure χ is only defined for the bivariate framework so far.

However, this measure is extended by de Haan et al. (2006) for a d-dimensional framework.

The corresponding theorem is stated below. The theorem shows that pairwise asymptotic

dependence results in joint asymptotic independence.
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Theorem 3.5

Let F : Rd → R+ be a cdf. Suppose that its marginal distribution functions Fi : R → R+

satisfy

lim
n→∞

Fni

(
a(i)
n x+ b(i)n

)
= exp

(
− (1 + γix)

− 1
γi

)
(3.43)

for all x for which 1 + γix > 0 and where a
(i)
n > 0 and b

(i)
n ∈ R are sequences of real

numbers, i = 1, 2, . . . , d. Let (X1, X2, . . . , Xd) be a random vector with cdf F . If

lim
t→∞

P
(
Xi > Ui(t)

∣∣∣ Xj > Uj(t)
)

= 0 (3.44)

for all i ≤ i < j ≤ d, then

lim
n→∞

Fn
(
a(1)
n x1 + b(1)

n , . . . , a(d)
n xd + b(d)n

)
= exp

(
−

d∑
i=1

(1 + γixi)
− 1
γi

)
(3.45)

for 1 + γixi > 0, i = 1, 2, . . . , d. Hence the components of (X1, X2, . . . , Xd) are asymptoti-

cally independent.

Proof 3.6

We refer to (de Haan et al., 2006, [HF06]) for the proof.

�

Example 3.4 (Application to ABN AMRO Bank transaction data set)

Author’s note: this example is confidential.

3.4.2 Residual dependence

In order to overcome the problem of estimating a probability of type (3.37) in case of asymp-

totic independence, Ledford et al. (1998) introduced an additional parameter regarding

the extremal dependence in a bivariate setting. This additional parameter is known as the

residual dependence index, or the coefficient of tail dependence.

Consider a cdf F that is said to be in the max-domain of attraction of a bivariate extreme

value distribution G. This implies that the marginal cdfs F1 and F2 are said to be in the
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max-domain of attraction of some univariate extreme value distributions Gγ1 and Gγ2 . The

univariate extreme value distributions Gγ1 and Gγ2 are given by Equation (3.2). Secondly,

Ledford et al. assumed that in case of asymptotic independence an additional function S

exists such that

lim
t→∞

P
(
1− F1(X) < x

t
, 1− F2(Y ) < y

t

)
P
(
1− F1(X) < 1

t
, 1− F2(Y ) < 1

t

) := S(x, y) (3.46)

for x, y > 0. The function S is homogeneous of order 1
η

for some η ∈ (0, 1], i.e. S(ax, ay) =

a
1
η S(x, y). The index η is called the residual dependence index of the variables (X,Y ).

The value of the residual dependence index η characterizes the extremal dependence of the

variables (X,Y ). In case η = 1, we have asymptotic dependence which indicates that the

extremes of X and Y tend to occur simultaneously. In case η < 1, we have asymptotic

independence.

Remark 3.8

In case of η < 1, we can distinguish three different categories.

• η ∈
(
1
2
, 1
)

The case η ∈
(

1
2
, 1
)

represents a positive association between the variables (X,Y ).

The extremes of X and Y tend to occur simultaneously more often than those when

X and Y are independent. Mathematically, this can be translated into P (X > x, Y >

y)� P (X > x)P (Y > y).

• η = 1
2

The case η ∈
(

1
2
, 1
)

represents near extremal independence. The extremes of X and

Y behave as if X and Y are independent.

• η ∈
(
0, 1

2

)
The case η ∈

(
0, 1

2

)
represents a negative association between the variables (X,Y ).

The extremes of X and Y tend to occur simultaneously less often than those when X

and Y are independent. Mathematically, this can be translated into P (X > x, Y >

y)� P (X > x)P (Y > y).
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Using Equation (3.46) and the fact that the function S is homogeneous of order 1
η

, we can

derive

S

(
1

x
,

1

x

)
= x

− 1
η S(1, 1) = x

− 1
η . (3.47)

Additionally, introduce T = min
(

1
1−F1(X)

, 1
1−F2(Y )

)
. Now, rewriting Equation (3.46) using

the newly introduced variable T results in

S

(
1

x
,

1

x

)
= lim
t→∞

P
(

min
(

1
1−F1(X)

, 1
1−F2(Y )

)
> tx

)
P
(

min
(

1
1−F1(X)

, 1
1−F2(Y )

)
> t
) = lim

t→∞

P (T > tx)

P (T > t)
. (3.48)

Hence, combining Equation (3.47) and (3.48) gives

lim
t→∞

P (T > tx)

P (T > t)
= x

− 1
η . (3.49)

Referring to Theorem 1.2.1 in (de Haan et al., 2006, [HF06]), this implies that the variable

T is in the max-domain of attraction of the extreme value distribution Gη with extreme

value index η > 0. Going back to the univariate framework, this implies that the variable

T has a distribution with a heavy right tail with an infinite right endpoint. Therefore, we

can use the same estimators we used for the univariate framework.

Based on the bivariate sample (X1, Y1), . . . , (Xn, Yn) an estimator for the residual de-

pendence index η can now be derived following the procedure in (Draisma et al., 2004,

[DDFH04]). Let T1,n ≤ T2,n ≤ . . . ≤ Tn,n be the ordered sample of Ti = min
(

1
1−F1(Xi)

, 1
1−F2(Yi)

)
for i = 1, 2, . . . , n. The estimator η̂ is given by Equation (3.50). In case the marginal dis-

tribution F1 and F2 are unknown, Ti is replaced by T
(n)
i = min

(
n+1

n+1−RXi
, n+1
n+1−RYi

)
. Then

the estimator η̂ is defined by Equation (3.51).

η̂ =
1

k

k∑
i=1

log

(
Tn,n−i+1

Tn,n−k

)
(3.50)

η̂ =
1

k

k∑
i=1

log

(
T

(n)
n,n−i+1

T
(n)
n,n−k

)
(3.51)

Example 3.5 (Application to ABN AMRO Bank transaction data set)

Author’s note: this example is confidential.
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4

Modelling dynamic durations

4.1 Introduction

This chapter introduces the class of Autoregressive Conditional Duration (ACD) models.

The ACD model will form the main building block of Chapter 5, in which a methodology

is proposed for the estimation of the univariate risk metric.

The chapter is organized as follows. First the need of the ACD model is elaborated. Section

4.4 presents the ACD model framework and the different specifications that are available:

the standard ACD model and the Log ACD models. Section 4.5 and 4.6 adress model

estimation and tests available to check the correctness of the estimated model. In Section

4.7 a model selection methodology is proposed. The aim of this methodology is to quantify

the quality of each ACD model and to provide a straightforward guideline for selecting an

appropriate model. We end this chapter by applying this methodology to the ABN AMRO

Bank transaction data set of Chapter 2, of which the results will be used in Chapter 5.

4.2 Ultra high frequency data

Over the last years, improvements in computer technology, data recording and data stor-

age have made it possible to obtain high frequency time series. However, whether time

series are classified as high frequency depends on the domain of study. In finance, time

series are classified as high frequency in case the observations are taken at a time scale

finer than once per day (Yan et al., 2003, [YZ03]). Driving this frequency to the ultimate

limit results in real-time measurements, which are in the financial context also known as

transaction-by-transaction data, tick-by-tick data or ultra high frequency data. Hence, the

ABN AMRO Bank transaction data set as discussed in Chapter 2, can be classified as ultra
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high frequency.

The accessibility of this kind of high frequency time series has challenged the develop-

ment of new methods in statistical modelling, as ultra high frequency financial time se-

ries exhibit distinct characteristics compared to the classical financial time series that we

are usually dealing with (such as daily stock prices, monthly interest rates or quarterly

inflation rates). Most ultra high frequency time series are positive-valued, positively au-

tocorrelated, strongly persistent and exhibit strong intraday periodicities (Hautsch, 2012,

[Hau12]). Moreover, as illustrated by Figure 4.1, ultra high frequency time series have the

main characteristic of being irregularly spaced over time with a random number of obser-

vations per time interval. This implies that the duration between consecutive events is not

constant, but can be interpreted as a random variable.

Figure 4.1: Graphic representation of the characteristics of ultra high frequency time series.

As classical time series analysis makes use of discrete time series methods with fixed time

intervals, these methods are not applicable anymore in the case of ultra high frequency

time series. A solution could be to divide the observations into fixed time intervals prior

to analysis. However, it can be argued that the time interval between consecutive events

might contain valuable information. Dividing observations into short time intervals for

periods of relatively low activity could result in heteroskedasticity, due to the presence of

intervals that contain no additional information. In the same manner, dividing observations
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into long time intervals for periods of high activity could result in the loss of information

contained in rapidly arriving data (Engle et al., 1998, [ER98]). Thus, to avoid the afore-

mentioned problems we must be able to model the irregularity.

A solution to account for the irregularity of the timing between events is to consider the

event times as random variables that follow a point process, as first introduced by Engle.

This introduction was the starting point for the rapid development of research in the area

of ultra high frequency financial econometrics (Hautsch, 2012, [Hau12]). The next section

introduces the concept of point processes.

4.3 Point processes

One of the characteristics of ultra high frequency time series is that the events do not occur

at regularly spaced time intervals. One way of representing ultra high frequency time series

is by means of point processes. A point process is a stochastic process that generates a

random collection of points on the time axis (Bauwens et al., 2001, [BG01]). Point pro-

cesses are common in domains of study such as neuroscience and queuing theory, but have

gained great interest in finance over the last few years (Pacurar, 2006, [Pac08]).

Now, let t be a physical (calendar) time and let ti be the time of occurrence of the i-th

event such that 0 ≤ t1 ≤ t2 ≤ . . . . Then, the sequence of event times
{
ti : i = 1, 2, . . .

}
is called a point process on [0,∞). Additionally, in case ti < ti+1 for all i, the possibility is

excluded that events occur simultaneously. The sequence of event times
{
ti : i = 1, 2, . . .

}
is then referred to as a simple point process. In this thesis we will only focus on simple

point processes.

Often, additional information is associated with the event times. In case the events are

financial transactions, the information could for instance be the amount or type of the trans-

action. Each type of additional information is known as a mark. Let
{
yi : i = 1, 2, . . .

}
be the sequence of marks associated with the events times

{
ti : i = 1, 2, . . . ,

}
where

yi ∈
{

1, 2, . . . ,K
}

denotes the type of the i-th event. Then, the sequences of event times

and corresponding marks
{

(ti, yi) : i = 1, 2 . . .
}

is referred to as a (simple) marked point

process or a (simple) K-dimensional point process. The next sections will be dedicated to

models for simple point processes without marks.

Define the counting function N(t) =
∑
i≥1

1{ti≤t} which denotes the number of events that

have occurred by time t. This counting function is a step function that is continuous from

the left with limits from the right, also known as a cadlag function. Now, the simple point

process
{
ti : i = 1, 2, . . .

}
and the (simple) marked point process

{
(ti, yi) : i = 1, 2 . . .

}
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can be translated in terms of the counting function, i.e.
{
ti : i = 1, . . . , N(T )

}
and{

(ti, yi) : i = 1, . . . , N(T )
}

such that t1 < . . . < tN(T ).

A point process is considered to evolve without after-effects if for any t > t0 the realiza-

tion of the point process in the interval [t,∞) does not depend on the realization of the

point process in the previous interval [t0, t). Alternatively, a point process evolves with

after-effects in case there is a non-zero dependence between subsequent intervals. A point

process is called conditionally orderly at time t ≥ t0 if for a sufficiently short time interval

and conditional on any event P defined by the realization of the point process on [t0, t),

the probability of two or more events occurring is infinitesimal relative to the probability

of one event. It should be noticed that in the remainder of this thesis only conditionally

orderly point processes with after-effects will be considered.

A natural way of formulating a conditionally orderly point process is by means of the con-

ditional density function, conditional survivor function or the conditional intensity function

of the event times. The conditional intensity function describes the expected event arrival

rate conditional on the filtration of event arrival times. The exact definition of the con-

ditional intensity function is stated below. By using one of these functions the complete

conditionally orderly point process is specified (Engle et al., 2004, [ER04]).

Definition 4.1 (Conditional intensity function)

Let N(t) =
∑
i≥1

1{ti≤t} be the counting function for the sequence of event times
{
ti : i =

1, 2, . . . ,
}

. Then the conditional intensity function λ is given by

λ
(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
= lim
∆t→0

P
(
N(t+∆t) > N(t)

∣∣∣ N(t), t1, . . . , tN(t)

)
∆t

. (4.1)

Many different representations for the conditional intensity function exist in the litera-

ture, and we can distinguish four different classes. The first three classes are denoted

by

λ
(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
= ω +

N(t)∑
i=1

π (t− ti) , (4.2)

λ
(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
= ω +

N(t)∑
i=1

πi
(
tN(t)+1−i − tN(t)−i

)
, (4.3)

λ
(
t
∣∣∣ z1, . . . , zN(t)

)
= λ0(t) exp

(
β′zN(t)

)
. (4.4)
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The fourth class is known as the accelerated failure time model and is denoted by Equation

(4.5). Let zi be a vector of explanatory variables associated with event time ti. Assume Hi

is a random time-to-event variable which can be expressed in terms of the vector zi via the

relation logHi = ziβ+Wi. Here it is assumed that the errors Wi are IID random variables

which are independent of β. Then by taking the exponent on both sides of the equation

we obtain Hi = exp(ziβ) exp(Wi) where exp(Wi) > 0. Let λ0(t) be the hazard function of

exp(Wi). Then the conditional intensity function can be expressed by

λ
(
t
∣∣∣ z1, . . . , zN(t)

)
= λ0

(
t exp

(
−β′zN(t)

))
exp

(
−β′zN(t)

)
. (4.5)

It will turn out that the Autoregressive Conditional Duration (ACD) model, which is in-

troduced in Section 4.3, belongs to this specific class.

Remark 4.1

The class denoted by Equation (4.4) is known as the proportional hazard model. While the

explanatory variables act multiplicatively on the time in the accelerated failure time model,

the explanatory variables act multiplicatively on the hazard function in the proportional

hazard model.

4.4 ACD models

Engle et al. (1998) introduced a model for a sequence of time events that arrive at irregular

time intervals, which obtained in particular popularity in modelling the durations of finan-

cial transactions such as trade durations and price durations. These type of models are

called Autoregressive Conditional Duration (ACD) models. The ACD model is a non-linear

model that captures both the clustering effect often seen in high frequency financial dura-

tions and the time dependence between these durations. First the general ACD framework

will be introduced, where after the standard ACD model, Log ACD model and some other

extensions will be discussed.

Let xi be the i-th duration, which is defined as the time interval between the events occur-

ring at successive event times ti and ti−1. This is represented by

xi = ti − ti−1 . (4.6)
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In this thesis, as we focus on the transaction process of two specific accounts within ABN

AMRO Bank, a duration xi is the time elapsed in seconds between two consecutive events.

It should be noted that simultaneously recorded transactions are considered to be one event.

For more information about the transaction process, the reader is referred to Chapter 2.

Let Fi−1 denote the information set associated with the sequence of durations up to time

ti−1. Let ψi be the expectation of the duration xi conditional on this information set,

which is given by

E
(
xi

∣∣∣ Fi−1

)
= ψi (Fi−1,θ) := ψi . (4.7)

Often, ψi is also referred to as the conditional mean function. Furthermore, the ACD model

is based on the assumption that the durations are decomposed into the product of their

conditional expectation and an error term. Let εi be the error. This assumption can be

translated into

xi = ψiεi . (4.8)

The errors, also referred to as standardized durations in the literature, are assumed to have

values that are non negative and to be independent and identically distributed (IID) with a

probability density fε. Because ψi is defined as the conditional expectation of xi, εi should

have an expectation of 1. Therefore, the probability density fε should be chosen such that

E(εi) = 1.

In order to derive a general expression for the conditional intensity function, let Sε be the

survivor function of the errors εi. Then λ0(t) =
fε(t)

Sε(t)
is the hazard function of the errors

εi. Now the ACD model can be represented in terms of the conditional intensity function,

which is denoted by

λ
(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
= λ0

(
t− tN(t)−1

ψN(t)

)
1

ψN(t)

. (4.9)

This representation indeed demonstrates that the ACD model belongs to the class of ac-

celerated failure time models.

The ACD model possesses flexibility because various specifications for both the conditional

mean function ψi and the probability density fε of the errors εi can be considered. The

choice of the probability density fε affects the conditional intensity function. For instance,

if we assume that the errors are distributed according to the exponential distribution or

the Weibull distribution with unit mean, this results in the following conditional intensity
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functions. The conditional intensity function for exponential distributed errors turns out

to be constant, while the conditional intensity function for Weibull distributed errors could

be either increasing (i.e. γ > 1) or decreasing (i.e. γ < 1).

εi
IID∼ Exp(λ) =⇒ λ

(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
=

1

ψN(t)

. (4.10)

εi
IID∼ Weibull(λ, γ) =⇒ λ

(
t
∣∣∣ N(t), t1, . . . , tN(t)

)
= γ

(
t− tN(t)−1

)γ−1

Γ
(

1 + 1
γ

)
ψN(t)

γ

.

(4.11)

4.4.1 Diurnal adjustment

Financial duration processes are subject to strong intraday periodicities, or time-of-day

seasonality (Hautsch, 2012, [Hau12]). For instance, it is known that the frequency of

transactions is higher near the open and the close of the market, and the frequency f

transactions is lower during lunch breaks. The consequence is that these events result in

durations that exhibit a deterministic intraday seasonality. Therefore, Engle et al. (1998)

assumed that the duration process can be decomposed into a stochastic component and

a deterministic component, whereby the deterministic component can be formulated as a

multiplicative function. Such a decomposition is given by

xi = φ(ti)x̃i , (4.12)

where x̃i is the stochastic component and is assumed to follow an ACD model, while φ(ti)

is the deterministic component which is only dependent on the time of the day. This de-

terministic component is also known as the diurnal factor. Now, using the decomposition

in Equation (4.12), one can translate the conditional mean function ψi in Equation (4.7)

into the following equation

E
(
xi

∣∣∣ Fi−1

)
= φ(ti)E

(
x̃i

∣∣∣ Fi−1

)
= φ(ti)ψ̃i (Fi−1,θ) := φiψ̃i . (4.13)

The deterministic component φ(ti) can be specified in different manners. A common ap-

proach, used extensively in the literature, is to specify the deterministic component by

using spline functions. The main idea is to average the ’raw’ durations xi over q-minute

intervals, whereafter spline functions are used to smooth the deterministic component and

moreover to extrapolate for any time along the day (Engle, 2000, [Eng00]) (Engle et al.,

2004, [ER04]) (Bauwens et al., 2004, [BGGV04]) (Dionne et al., 2009, [DDP09]). For in-

stance, Engle (2000) averages the ’raw’ durations over 60-minute intervals in combination

with a cubic spline, Engle et al. (2004) average over 60-minute intervals in combination
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with a linear spline, and Bauwens et al. (2004) and Dionne et al. (2009) average over

30-minute intervals in combination with a cubic spline.

Let τ0, . . . , τQ be the time points splitting the business day into (Q + 1) q-minute time

intervals. Then the deterministic component can be denoted by Equation (4.14), where

M represents the order of the spline function. The most common choices in literature are

the linear (M = 1) and cubic (M = 3) spline function, which are denoted by respectively

Equation (4.15) and (4.16). It should be noticed that the constant cj is identified by setting

the mean of the predicted deterministic factor equal to the observed sample mean.

φi =

Q∑
j=1

1τj≤ti<τj+1

(
cj +

M∑
m=1

dm,j(ti − τj)m
)

(4.14)

=⇒ φi =

Q∑
j=1

1τj≤ti<τj+1 (cj + d1,j(ti − τj)) for M = 1 (4.15)

=⇒ φi =

Q∑
j=1

1τj≤ti<τj+1

(
cj + d1,j(ti − τj) + d2,j(ti − τj)2 + d3,j(ti − τj)3) for M = 3

(4.16)

It should be noticed that the parameters of both the deterministic and stochastic compo-

nent can be estimated jointly. Also a two-step procedure can be applied by standardizing

the ’raw’ durations by the deterministic component prior to further model estimation. The

ACD model will then be estimated for the standardized durations x̃i instead of the ’raw’

durations xi. The first stage will entail the estimation of the parameters of the determin-

istic component, while the second stage will involve the estimation of the parameters of

the conditional mean function of the standardized durations. We will adopt this two-step

procedure in this thesis.

4.4.2 Standard ACD model

As mentioned previously in this chapter, the ACD model has a lot of flexibility because

different specifications are available for both the conditional mean function ψi and the

probability density function fε of the errors εi. By combining these specifications for both

the conditional mean and the probability density a wide range of alternative parameteriza-

tions for the ACD model can be obtained. The most general specification of the conditional

mean function ψi is based on a linear parametrization, given by

ψi = ω + αxi−1 + βψi−1 , (4.17)

where the sufficient conditions ω > 0, α ≥ 0 and β ≥ 0 are imposed in order to ensure
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positivity of ψi. This parametrization is also known as the basic ACD(1, 1) model. The

basic ACD(1, 1) model can be extended to higher orders resulting in the basic ACD(p, q)

model, of which the formal definition is denoted by Definition 4.2.

Definition 4.2 (ACD(p, q) model)

The time series {xi : i = 1, . . . , n} is ACD(p, q) if it satisfies the following conditions

ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j , (4.18)

xi = ψiεi , (4.19)

where it is assumed that the errors εi are IID non-negative random variables such that

E(εi) = 1. Let θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈ Rk. The conditions ω > 0, αj ≥ 0

for j = 1, . . . , p and βj ≥ 0 for j = 1, . . . , q are needed to ensure positive conditional

durations for all possible realizations. The condition

p∑
j=1

αj +

q∑
j=1

βj < 1 is required to

ensure covariance stationarity.

Remark 4.2 (Diurnal adjustment)

In practice it is known that financial durations exhibit intraday seasonality (see Section

4.3.1). Therefore, in order to avoid distortions, this seasonality must be removed from the

durations prior to model estimation. This is done by standardizing the raw durations by a

deterministic component. Let φi be the deterministic component. Then we can rewrite the

ACD(p, q) model as

ψ̃i = ω +

p∑
j=1

αj x̃i−j +

q∑
j=1

βjψ̃i−j , (4.20)

xi = φiψ̃iεi , (4.21)

where x̃i =
xi
φi

is called the standardized duration.

Now, by assuming a specific probability density fε for the error term, a complete spec-

ification of the ACD model is obtained. A common choice for the probability density fε

is the exponential distribution, as first introduced in (Engle et al., 1998, [ER98]). The re-

sulting specification yields the exponential ACD (EACD) model. Because the exponential
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distribution is quite restrictive due to a constant intensity function, also other densities

are considered in the literature. Possible candidates are the Weibull distribution and the

generalized gamma distribution with their parameters chosen such that their means equal

unity. These models are known as the Weibull ACD (WACD) and generalized gamma ACD

(GACD), respectively.

It should be noticed that the ACD(p, q) model is closely related to the GARCH(p, q) model,

as the conditional expected durations in the ACD(p, q) model are modelled in a similair way

as the conditional variances in the GARCH(p, q) model. Rewriting Equations (4.18) and

(4.19) by taking εi = z2
i , xi = y2

i , and ψi = σ2
i yields a general GARCH(p, q) model formu-

lation. As a result, the ACD(p, q) model allows for empirical features such as clustering of

events, i.e. small (large) durations are most likely followed by other small (large) durations

in a similar manner as the GARCH(p, q) model allows for volatility clustering. Therefore,

the ACD(p, q) model is considered as the counterpart of the GARCH(p, q) model for dura-

tion processes (Bauwens et al., 2009, [BH09]) (Pacurar, 2008, [Pac08]). Many results and

specifications from the GARCH literature can be carried over to the ACD literature.

Another interesting property of the ACD(p, q) model is that it can be formulated in terms

of an ARMA(max(p, q), q) model for the durations xi. Let ηi = xi − ψi, which is a mar-

tingale difference by definition. Then the ARMA formulation in Equation (4.22) can be

derived. Although Equation (4.22) is more interesting from a theoretical perspective, in

practice Equations (4.18) and (4.19) are easier to work with.

Remark 4.3 (ACD(p, q) model as ARMA(max(p, q), q) model)

The ACD(p, q) model, as stated in Definition 4.2, can be formulated in terms of an ARMA(max(p, q), q)

model for the durations xi, i.e.

xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βjηi−j + ηi , (4.22)

where αj = 0 ∀ j > p, βj = 0 ∀ j > q and ηi are non-Gaussian innovations.

Derivation 4.1 (ACD(p, q) model as ARMA(max(p, q), q) model)

We refer to Appendix E.5 for the derivation.

�
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Remark 4.4 (Expectation of ACD(p, q) model)

The conditional expectation of xi is equal to ψ by definition 4.20. The unconditional ex-

pectation of xi is given by

E(xi) =
ω

1−
p∑
j=1

αj −
q∑
j=1

βj

. (4.23)

Derivation 4.2 (Expectation of ACD(p, q) model)

We refer to Appendix E.6 for the derivation.

�

4.4.3 Log ACD model

As described in the previous section, the standard ACD model can be quite restrictive as

several conditions on the parameters of the conditional mean function are needed in order

to ensure that the sequence of durations
{
xi : i = 1, 2, . . .

}
has non-negative conditional

durations. Bauwens et al. (2000) introduced a more flexible model, in which the condi-

tional mean function takes a logarithmic form, namely

lnψi = ω +

p∑
j=1

αjg(εi−j) +

q∑
j=1

βj lnψi−j , (4.24)

where g(εi−j) is given by ln εi−j or εi−j . The resulting parameterizations are known as

respectively the Log ACD1(p, q) model and the Log ACD2(p, q) model. In contrast to the

standard ACD model, both Log ACD models do not impose any conditions on the param-

eters of the conditional mean function in order to ensure the non-negativity of conditional

durations. Consequently, this enables us to introduce exogenous explanatory variables into

the model. The formal definitions are denoted by Definition 4.3 and 4.4.

Definition 4.3 (Log ACD1(p, q) model)

The time series {xi : i = 1, . . . , n} is Log ACD(p, q) if it satisfies the following conditions

lnψi = ω +

p∑
j=1

αj ln εi−j +

q∑
j=1

βj lnψi−j , (4.25)

xi = ψiεi . (4.26)
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Or equivalently, when letting lnψi = κi,

κi = ω̄ +

p∑
j=1

αj ln εi−j +

q∑
j=1

βjκi−j , (4.27)

xi = eκiεi , (4.28)

where it is assumed that the errors εi are IID non-negative random variables such that

E(εi) = 1. Let θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈ Rk. The condition

max(p,q)∑
j=1

(αj+βj) < 1

is required to ensure covariance stationarity.

Definition 4.4 (Log ACD2(p, q) model)

The time series {xi : i = 1, . . . , n} is Log ACD(p, q) if it satisfies the following conditions

lnψi = ω +

p∑
j=1

αjεi−j +

q∑
j=1

βj lnψi−j , (4.29)

xi = ψiεi . (4.30)

Or equivalently, when letting lnψi = κi,

κi = ω +

p∑
j=1

αjεi−j +

q∑
j=1

βjκi−j , (4.31)

xi = eκiεi , (4.32)

where it is assumed that the errors εi are IID non-negative random variables such that

E(εi) = 1. Let θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈ Rk. The condition

q∑
j=1

βj < 1 is

required to ensure covariance stationarity.

Remark 4.5 (Diurnal adjustment)

Because financial durations exhibit intraday seasonality (see Section 4.3.1), this seasonality

must be removed from the durations prior to model estimation. This is done by standardizing

the raw durations by a deterministic component. Let φi be the deterministic component.

Then we can rewrite the Log ACD1(p, q) model as

ln ψ̃i = ω +

p∑
j=1

αj ln εi−j +

q∑
j=1

βj ln ψ̃i−j , (4.33)

xi = φiψ̃iεi , (4.34)

and the Log ACD2(p, q) model as
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ln ψ̃i = ω +

p∑
j=1

αjεi−j +

q∑
j=1

βj ln ψ̃i−j , (4.35)

xi = φiψ̃iεi , (4.36)

where x̃i =
xi
φi

is called the standardized duration.

In the same view as the ACD(p, q) model can be seen as the counterpart of the GARCH(p, q)

model for duration processes, both Log ACD(p, q) models are considered as the counterpart

of the EGARCH(p, q) model for duration processes (Bauwens et al., 2009, [BH09]). Also,

the Log ACD1(p, q) model has the property that it can be formulated in terms of an ARMA

model for lnxi.

Remark 4.6 (Log ACD1(p, q) model as ARMA(max(p, q),max(p, q)) model)

The Log ACD1(p, q) model, as stated in Definition 2.2, can be formulated in terms of an

ARMA(max(p, q),max(p, q)) model for lnxi, i.e.

lnxi = ω̃ +

max(p,q)∑
j=1

δj lnxi−j +

max(p,q)∑
j=1

θjνi−j + νi , (4.37)

where

ω̃ = ω̄ +

max(p,q)∑
j=1

θjE(ln εi) + E(ln εi) , (4.38)

νi = ln εi − E(ln εi) . (4.39)

Derivation 4.3 (Log ACD1(p, q) model as ARMA(max(p, q),max(p, q)) model)

We refer to Appendix E.7 for the proof.

�

4.5 Parameter estimation

Given the sequence of durations {xi : i = 1, . . . , N(nT )}, the aim is to estimate the

unknown parameter set θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈ Rk corresponding to the

ACD(p, q) model as defined in Definition 4.2. The most common method is to estimate
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the parameter set by using the maximum likelihood (ML) method. Before using the ML

method, the joint density function of the sequence of durations {xi : i = 1, . . . , N(nT )}
conditioned on the parameter set θ is needed. Using the fact that the joint density func-

tion can be written as the product of the conditional density, the following result is retrieved

f
(
xm

∣∣∣ θ) = f
(
xmax(p,q)

∣∣∣ θ) f (xmax(p,q)+1

∣∣∣ xmax(p,q),θ
)
· · · f

(
xm

∣∣∣ xm−,θ)
= f

(
xmax(p,q)

∣∣∣ θ) m∏
i=max(p,q)+1

f
(
xi

∣∣∣ xi−,θ) , (4.40)

where m = N(nT ) is used for better readability. Mind the subtle difference in notation,

as xi refers to a single duration defined by Equation (4.6) and xi refers to the vector of

durations (x1, . . . , xi)
′ ∈ Ri.

It should be noticed that the joint density function of the sequence {xi : i = 1, . . . , max(p, q)},
conditioned on the parameter set θ, can be ignored when applying the ML method. This

is due to the fact that this joint density function is complicated but the impact on the

likelihood (or log likelihood) diminishes as the sample size increases (Tsay, 2001, [Tsa01]).

Thus, we obtain the following likelihood (or log likelihood) function

`
(
θ
∣∣∣ xm) =

m∏
i=max(p,q)+1

f
(
xi

∣∣∣ xi−,θ) , (4.41)

L
(
θ
∣∣∣ xm) = log

 m∏
i=max(p,q)+1

f
(
xi

∣∣∣ xi−,θ)
 =

m∑
i=max(p,q)+1

log f
(
xi

∣∣∣ xi−,θ) .

(4.42)

Let fε be the probability density of the errors εi. In case the true distribution of εi is known,

the estimation procedure is straightforward. The parameters of the ACD(p, q) model are

estimated by maximizing the likelihood (or log likelihood) function with respect to the

parameter set θ. In case the distribution of εi is unknown, which is usually the case in

practice, some distribution has to be chosen for εi. It should be noted that any distribution

defined on positive support can be specified for fε (Pacurar, 2008, [Pac08]). Some choices

for the density fε found in literature are the Weibull, generalized gamma and Burr, result-

ing in respectively the WACD model, GACD model and Burr-ACD model. A more natural

choice for the density fε is the exponential, as the exponential distribution is considered to

be the central distribution for stochastic processes defined on positive support (Hautsch,

2012, [Hau12]).
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Remark 4.7

An advantage of choosing the exponential distribution for probability density fε is that it

provides quasi-maximum likelihood (QML) estimators for the parameter set θ that are con-

sistent. Hence, the QML method based on the exponential distribution will produce consis-

tent estimators regardless of the true distribution of εi. In case the exponential distribution

is assumed, the conditional density is given by

f
(
xi

∣∣∣ xi−,θ) =
1

ψi
exp

(
− xi
ψi

)
, (4.43)

resulting in the quasi log likelihood

L
(
θ
∣∣∣ xm) = −

m∑
i=max(p,q)+1

(
logψi +

xi
ψi

)
. (4.44)

Note that this result only holds when conditional mean function, as defined in Equation

(4.18), is correctly specified. The result was first proven by Gourieroux et al. (1984) for

independent observations. Engle (2000) extended the result for observations that exhibit

dependence.

In this thesis, we will use the ML method to estimate the unknown parameter set θ. We

derive the log likelihood, as defined by Equation (4.42), in accordence with the chosen

distribution for the probability density fε. Hereafter, both the score function and the Hes-

sian function are derived. The score function is defined as the first order derivative of the

likelihood function (or log likelihood function), which we denote by

s
(
θ
∣∣∣ xm) =

∂L
(
θ
∣∣∣ xn)

∂θ
. (4.45)

The Hessian function is defined as the second order derivative of the likelihood function

(or log likelihood function), represented by

H
(
θ
∣∣∣ xm) =

∂2L
(
θ
∣∣∣ xn)

∂θ∂θ′
. (4.46)

The log likelihood function is maximized by setting the score function equal to zero and

solving it for the parameter set θ. This gives us our estimate θ̂. In case the Hessian func-

tion is negative definite for this estimate θ̂, the log likelihood is indeed maximized.
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4.6 Testing

After fitting the ACD model using the estimation techniques presented in the previous

section, it is crucial to check the correctness of the estimated model such that we can treat

the obtained parameters with confidence. While there is a lot of literature on the different

model specifications of the ACD model, the evaluation of these model specifications has

not yet received much attention (Li et al., 2003, [LY03]) (Fernandes et al., 2005, [FG05])

(Meitz et al., 2006, [MT06]) (Pacurar, 2008, [Pac08]).

In this section the available tests concerning the adequacy of the estimated ACD model are

elaborated. The flexibility of the ACD model arises from the fact that different choices can

be made for both the functional form of the conditional mean function and the distribu-

tional form of the probability density function of the error term. In this thesis a distinction

will be made between tests on the specification of the functional form of the conditional

mean function and tests on the specification of the error term. The latter one can again

be divided into two categories: tests on the independence assumption and tests on the

distributional assumption. We will start by discussing the tests on the specification of the

functional form of the conditional mean function by using Lagrange Multiplier (LM) tests.

Hereafter, tests on the specification of the error term are elaborated. Firstly, tests regarding

the distributional assumption of the error term are discussed which includes an introduc-

tion to probability integral transforms in combination with the Kolmogorov-Smirnov test.

Secondly, tests regarding the independence assumption of the error term are described.

These tests are more common in empirical studies and include portmanteau tests, such as

the classical Ljung-Box test and the relatively new Li-Yu test. The testing framework is

summarized by Figure 4.2.

Figure 4.2: Graphic representation of the testing framework for ACD models.
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4.6.1 Specification of conditional mean function

Remember that in case the exponential distribution is chosen for the error term, the QML

method will produce consistent estimators regardless of the true distribution of the error

term. However, this result only holds in case the conditional mean function is correctly

specified. Hence, in case the conditional mean function is misspecified, we might run into

the risk that the estimated parameter set does not converge in probability to the true pa-

ramete set as the sample size increases. Therefore, testing this type of misspecification is

an essential part of assessing the adequacy of the estimated model in case the QML method

is used.

Meitz et al. (2006) introduced, for the class of exponential ACD models, a Lagrange Multi-

plier (LM) test in order to detect misspecification of the functional form of the conditional

mean function. Let ψi = ψi (Fi−1,θ1) refer to the conditional mean function as defined

in Equation (4.7) and let θ1 be the corresponding parameter set. Two different types of

misspecification are distinguished: additive misspecification and multiplicative misspecifi-

cation. The conditional mean function is either additively misspecified,

xi = (ψi + ξi) εi , (4.47)

or multiplicatively misspecified,

xi = ψiξiεi , (4.48)

where ξi = ξi (Fi−1,θ1,θ2) denotes an Fi−1 measurable function that depends on an ad-

ditional parameter set θ2. Equation (4.47) and (4.48) will form the basis of the LM tests

for additive and multiplicative misspecification of the functional form of the conditional

mean function. Both tests can be found Appendix B.1. As the tests are rather general and

only defined for the class of exponential ACD models, we will not apply these tests in this

thesis. For more information about these LM tests the reader is referred to (Meitz et al.,

2006, [MT06]).

4.6.2 Specification of error term

Next to testing the specification of the functional form of the conditional mean function,

the obtained residuals after estimation could be investigated in order to check the correct-

ness of the estimated ACD model. Going back to the definition of the ACD model, the

obtained residuals are defined by

ε̂i =
xi

ψ̂i
. (4.49)
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The properties of these obtained residuals facilitate a way to assess the correctness of the

estimated model. To be more specific, in case the estimated model is adequate the ob-

tained residuals ε̂i should be IID non-negative random variables with a distribution that

corresponds with the specified distribution of the ACD errors and a mean equal to 1. In

this thesis, a distinction will be made between testing the distributional assumption of the

error term and testing the independence assumption.

4.6.2.1 Distributional assumption

Bauwens et al. (2004) proposed a test to verify the correctness of the distributional form

of the conditional probability density, which is based on using probability integral trans-

forms. Let {yi : i = 1, . . . , n} be the sequence of the realizations of the process

of interest. Consider the sequence of (unknown) true densities {p0
(
yi

∣∣∣ yi−) : i =

1, . . . , n}. Furthermore, consider the sequence of estimated 1-step-ahead density forecasts

{p
(
yi

∣∣∣ yi−) : i = 1, . . . , n}, i.e. the sequence of densities defined for the next obser-

vation of the variable yi. These densities are connected with each other by the probability

integral transform z
i

∣∣ i−1
, which is defined by

z
i

∣∣ i−1
=

∫ yi

−∞
p
(
s
∣∣∣ yi−)ds = P

(
yi

∣∣∣ yi−) . (4.50)

Diebold et al. (1998) proved that the sequence of probability integral transforms will be IID

random variables distributed according to the standard uniform distribution. The exact

proposition is stated below.

Proposition 4.1 (Distribution probability integral transforms)

Suppose {yi : i = 1, . . . , n} is generated from {p0
(
yi

∣∣∣ yi−) : i = 1, . . . , n}. If a se-

quence of density forecasts {p
(
yi

∣∣∣ yi−) : i = 1, . . . , n} coincides with {p0
(
yi

∣∣∣ yi−) :

i = 1, . . . , n}, then under the usual condition of a nonzero Jacobian with continuous par-

tial derivatives, the sequence of probability transforms of {yi : i = 1, . . . , n} with respect

to {p
(
yi

∣∣∣ yi−) : i = 1, . . . , n} is IID U(0, 1). That is,

z
i

∣∣ i−1
=

∫ yi

−∞
p
(
s
∣∣∣ yi−)ds = P

(
yi

∣∣∣ yi−) IID∼ U(0, 1) (4.51)
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Proof 4.1 (Distribution probability integral transforms)

We refer to (Diebold et al., 1998, [DGT98]) for the proof.

�

Applying these results to the probability integral transforms within the ACD model frame-

work, will give us information on the (mis)specification of the distributional form of the

estimated ACD model. Let {xi : i = 1, . . . , m = N(nT )} be the sequence of durations.

Let f
(
xi

∣∣∣ xi−) be the density forecast of the true conditional density f0
(
xi

∣∣∣ xi−)
for the i-th duration. If we for instance assume that the errors are distributed according

to the exponential distribution or Weibull distribution, Equation (4.50) translates into re-

spectively Equation (4.52) and (4.53).

εi
IID∼ Exp(λ) =⇒ ẑ

i

∣∣ i−1
= 1− e

− xi
ψ̂i (4.52)

εi
IID∼ Weibull(λ, γ) =⇒ ẑ

i

∣∣ i−1
= 1− e

−
(
xiΓ(1+ 1

γ )
ψ̂i

)γ
(4.53)

The (one-sided) Kolmogorov-Smirnov test can now be used to the test obtained probability

integral transforms against the standard uniform distribution. The Kolmogorov-Smirnov

test is used to test whether a sample comes from a certain distribution, and compares the

empirical cumulative distribution of the sample against a hypothetical cumulative distribu-

tion. The test is stated below. Note that in our case the sequence Y1, . . . , Yn corresponds

with the obtained sequence of probability integral transforms and the hypothetical cumu-

lative distribution G0 corresponds with the standard uniform distribution.

Theorem 4.1 (Kolmogorov-Smirnov test)

Let Y1, . . . , Yn be IID random variables with empirical cumlative distribution function Ĝn.

Let G0 be a specified hypothetical continuous distribution function. Furthermore, assume

that under the null hypothesis H0 : Ĝn = G0. Then, under H0, the Kolmogorov-Smirnov

test statistic

Dn = sup
y∈R

∣∣∣Ĝn(y)−G0(y)
∣∣∣ (4.54)

satisfies

lim
n−→∞

P
(√
nDn ≤ y

)
= L(y) = 1− 2

∞∑
i=1

(−1)i−1e−i
2y2 . (4.55)

H0 is rejected at significance level (1− α)% in case
√
nDn > L−1(1− α).
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Proof 4.2 (Kolmogorov-Smirnov test)

We refer to Section 3 in (Feller, 1948, [Fel48]) for the proof.

�

The critical values of the Kolmogorov-Smirnov test statistic are tabulated for small values

of n, see for instance (Smirnov, 1948, [Smi48]). The critical values of the Kolmogorov-

Smirnov test statistic for large enough values of n can be approximated by using the

asymptotic distribution above, denoted by Equation (4.55). One important property of the

Kolmogorov-Smirnov test statistic is that it is distribution-free, which means that under

the null hypothesis the distribution of the test statistic does not depend on the hypothetical

distribution function G0. This property is stated below and demonstrates that it suffices

to study the case when the hypothetical cumulative distribution function is the uniform

distribution on [0, 1].

Remark 4.8 (Kolmogorov-Smirnov test statistic distribution-free)

Under H0, the distribution of Dn does not depend on the continuous underlying function

G0.

Proof 4.3 (Kolmogorov-Smirnov test statistic distribution-free)

We refer to Appendix E.8 for the proof.

�

Rejection of the null hypothesis can be due to both the misspecification of the distribu-

tional form of the conditional probability density and the misspecification of the functional

form of the conditional mean function. Plotting a histogram of the sequence of probability

integral transforms can reveal more information about the reasons for misspecification. By

plotting a histogram, departures from the standard uniform distribution can be easily de-

tected. For instance, a humped shaped histogram suggests that the forecasts do not take

into account the tails of the true distribution. An U shaped histogram suggests that the

forecasts under- or overestimate too often.

4.6.2.2 Independence assumption

By testing the presence of autocorrelation in the obtained residuals, the independence as-

sumption is investigated. The most common test found in the literature for testing the

presence of autocorrelation in the residuals after fitting an ACD(p, q) model are portman-

teau tests such as the classical Ljung-Box test. Ljung et al. (1978) examined the residuals
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after estimating an appropriate ARMA(p, q) model, proposed a test statistic based on these

residuals and derived the corresponding asymptotic distribution. This asymptotic distri-

bution turns out to be a χ2-distribution. The exact theorem concerning the Ljung-Box test

is stated below.

Theorem 4.2 (Ljung-Box test)

Consider the ARMA(p, q) model, and denote the residuals with ε̂i and the k-th lag sample

autocorrelations are given by

ρ̂k =

n∑
i=k+1

(ε̂i − ¯̂ε)(ε̂i−k − ¯̂ε)

n∑
i=1

(ε̂i − ¯̂ε)2

k = 1, 2, . . . (4.56)

Let s = p+ q represent the number of parameters to be estimated (remark s = max(p, q) in

the case of an ACD(p, q) model). Furthermore, assume that under the null hypothesis H0

: ρ1 = . . . = ρk = 0. Then, under H0, the Ljung-Box test statistic

QLB(m) = n(n+ 2)

m∑
k=1

ρ̂2
k

n− k
a∼ χ2

m−s (4.57)

H0 is rejected at significance level (1− α)% in case QLB(m) > χ2
m−s(1− α).

Proof 4.4 (Ljung-Box test)

We refer to (Ljung et al., 1978, [LB78]) for the proof.

�

Although the Ljung-Box test is the most applied (and only) test found in empirical studies

in order to check for autocorrelation in the residuals after estimating ACD models, the

test results are only valid when applied to the residuals after estimating ARMA models.

For instance, when the Ljung-Box test is applied to the residuals after estimating GARCH

model the test results are invalid as the test statistic does not follow the asymptotic χ2-

distribution under the null hypothesis (Li et al., 1994, [LM94]). Therefore, Pacurar (2008)

stresses that the Ljung-Box results regarding the asymptotic distribution of the test statis-

tic cannot be carried over to ACD models. Nevertheless, the Ljung-Box test can be used

to give an approximation about the presence of autocorrelation in the residuals.
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Li et al. (2003) investigated the the asymptotic distribution of the residuals after estimating

ACD models, which results in a goodness of fit test for this kind of model. The latter test

will be named the Li-Yu test throughout the remainder of this thesis, and is preferred over

the Ljung-Box test. However, it should be noted that the test is restricted to the ACD(p, 0)

model.

Theorem 4.3 (Li-Yu test)

Consider the ACD(p, 0) model such that εi ∼ Exp(1), and denote the residuals with ε̂i and

the k-th lag sample autocorrelations are given by

ρ̂k =

n∑
i=k+1

(ε̂i − 1)(ε̂i−k − 1)

n
k = 1, 2, . . . (4.58)

Assume that under the null hypothesis H0 : ρ1 = . . . = ρk = 0. Then, under H0, the

Li-Yu test statistic

QLY (m) = nρ̂′
(
Im −XG−1X′

)−1
ρ̂
a∼ χ2

m (4.59)

where

ρ̂ = (ρ̂1, . . . , ρ̂k)′ (4.60)

Im m×m identity matrix (4.61)

X =



1

n

n∑
i=2

xi
ψ2
i

(ei−1 − 1)
1

n

n∑
i=2

xixi−1

ψ2
i

(ei−1 − 1)

...
...

1

n

n∑
i=2

xi
ψ2
i

(ei−k − 1)
1

n

n∑
i=2

xixi−1

ψ2
i

(ei−k − 1)


(4.62)

G = −E
(

1

n
H
(
θ
∣∣∣ xn)) (4.63)

H0 is rejected at significance level (1− α)% in case QLY (m) > χ2
m(1− α).

Proof 4.5 (Li-Yu test)

We refer to (Li et al., 2003, [LY03]) for the proof.

�

The conditional mean function, as given by Equation (4.17), is assumed to be a linear

parametrization of the past durations and the past conditional durations both belonging
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to the set Fi−1. Engle et al. (1998) proposed an additional test regarding the indepen-

dence assumption of the error term, which can also verify the correctness of this linear

parametrization. The main idea is to divide the durations into appropriate sized bins rang-

ing from 0 to∞. Call these bins B1, B2, . . . , Bk. Then regress the residuals ε̂i on a constant

and the indicators of the size of the previous duration, i.e.

ε̂i = α0 + α11xi−1∈B1 + α21xi−1∈B2 + . . . + αk1xi−1∈Bk = α0 +

k∑
i=1

αi1xi−1∈Bi (4.64)

Under the null hypothesis of the residuals being independently distributed, no predictabil-

ity should be implied from this regression and the coefficients α0, α1, . . . , αk should not

be significantly different from zero. In case the coefficients α0, α1, . . . , αk are significantly

different from zero, this null hypothesis is rejected. The coefficients that are significantly

different from zero can be examined in order to identify the sources of misspecification of

the functional form of the conditional mean function.

4.7 Model selection

Section 4.3 introduced the ACD model. By combining different specifications for the condi-

tional mean function and the probability density function of the error term, a wide variety

of ACD models is available for application. While ACD model applications appear often in

literature (see for instance (Dionne et al., 2009, [DDP09]), (Engle, 2000, [Eng00]), (Engle

et al., 1998, [ER98])), the methodology behind the model selection remains rather vague.

In this section, we address this gap by introducing a model selection methodology. The

aim of this methodology is to quantify the quality of each ACD model and to provide a

straightforward and easily adjustable framework for selecting an appropriate model.

4.7.1 Scoring function

The central element of the model selection methodology is the so called scoring function,

which will be used to quantify the quality of each estimated ACD model. Let m denote the

number of candidate ACD models. These m models form the input of the scoring function.

The output is a vector Y ∈ Rm, where Yi represents the score of the i-th ACD model.

A distinction is made between two different types of scores: a performance score and a

specifcation score. The performance score focuses on the performance capability of the

estimated ACD model. This capability is measured in terms of the Mean Squared Error

(MSE) and Mean Squared Prediction Error (MSPE), which will be discussed in the next
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section. The specification score indicates the appropriateness of the chosen specification of

the ACD model (i.e. specification of the conditional mean function and the error term).

Here, the tests discussed in Section 4.5 will be used. This scoring strategy is summarized

by Figure 4.3. Each bullet point reflects an element that contributes to the score Yi. The

scoring function calculates Yi, by summing the scores

[ ]× p

m
, (4.65)

for each element. Here, p ∈ [1,m] and [ ] reflects the weight of the element. p = m if the i-th

ACD model performs best, p = m−1 if the i-th ACD model performs second best, etcetera.

The linear dependence test and the Kolmogorov-Smirnov test, as discussed in Section 4.5,

form an exception as these tests can be either passed of failed. Therefore, the scoring

function calculates Yi, by adding up the scores

[ ]× p , (4.66)

for these elements. Here, p ∈ {0, 1} and [ ] reflects again the weight of the element. p = 1 if

the i-th ACD model passes the test and 0 otherwise. As the asympotic distribution of the

Ljung-Box test statistic does not hold for ACD models and only gives an approximation

about the presence of autocorrelation in the residuals, it is decided to treat this test not as

a pass of fail type of test. The score will be determined by Equation (4.65). A high value of

the Ljung-Box test statistic reflects the presence of autocorrelation in the residuals. Hence,

the ACD model with the highest test statistic is considered to be the worst performing

(i.e. p = 1) and the ACD model with the lowest test statistic is considered to be the best

performing (i.e. p = m).

Hence, the ACD model for which Yi = max1≤i≤m Yi will be selected in this thesis.

Remark 4.9 (Weights)

Table 4.1 presents the weights that are assigned to each element of the scoring function.

Hence, we have 2 elements that address the performance score (total weight of [30]), and

6 elements that reflect the specification score (total weight of [70]). The maximum score

possible equals 100 and the lowest score possible equals 6. Mind that the weights can be

adjusted to the preference of the modeller.
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element weight

score with respect to performance

Mean Squared Error (MSE) [15]

Mean Squared Prediction Error (MSPE) [15]

score with respect to specification

Akaike Information Criterion (AIC) [10]

Bayesian Information Criterion (BIC) [10]

Ljung - Box test statistic residuals [10]

Ljung - Box test statistic residuals2 [10]

Linear dependence test (Engle et al., 1998) [10]

Kolmogorov - Smirnov test [20]

Table 4.1: Weights that are assigned to each element of the scoring function.

4.7.1.1 Performance measures

As stated in the previous section, the performance capability of the ACD model is measured

in terms of the Mean Squared Error (MSE) and Mean Squared Prediction Error (MSPE).

Given the sequence of durations, the unknown parameter set θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈

Rk is estimated corresponding to the chosen ACD model (for instance ACD(p, q), Log

ACD1(p, q), Log ACD2(p, q)) In this thesis the ML method is used, and θ̂ ∈ Rk denotes

the parameter set that maximizes the (log) likelihood function.

In our application the original dataset {xi : i = 1, . . . , m = N(nT )} is split into two

subsets: an estimation set and a validation set. Let {xi : i = 1, . . . , k} denote the

estimation set and {xi : i = k + 1, . . . , k + l = N(nT )} denote the validation set.

The unknown parameter set θ is estimated based on the estimation set. The estimated

parameter set θ̂ is used to obtain the sequence {x̂i : i = 1, . . . , m = N(nT )}. The MSE,

as stated in Definition 4.5, measures the mean squared difference between this sequence

and the actual durations for the estimation set. The MSPE, as stated by Definition 4.6,

measures the mean squared difference between this sequence and the actual durations of

the validation set. Hence, the MSPE allows us to compare the predictive power of a set of

candidate ACD models.

Definition 4.5 (Mean Squared Error)

The Mean Squared Error (MSE) is given by

MSE =
1

k

k∑
i=1

(x̂i − xi)2 . (4.67)

Given a set of candidate ACD models, the preferred model is the one with the minimum

MSE.
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Definition 4.6 (Mean Squared Prediction Error)

The Mean Squared Prediction Error (MSPE) is given by,

MSPE =
1

N(nT )− k

N(nT )∑
i=k+1

(x̂i − xi)2 . (4.68)

Given a set of candidate ACD models, the preferred model is the one with the minimum

MSPE.

4.7.1.2 Specification measures

To determine the specification score, the tests of Section 4.5 will be used. For an overview

of the Kolmogorov-Smirnov test to test the distributional assumption of the error term, the

reader is reffered to Section 4.5.2.1. For an overview of the Ljung-Box test and the linear

dependence test (Engle et al., 1998) to test the independence assumption of the error term,

the reader is referred to Section 4.5.2.2.

However, as mentioned in Section 4.5.1, the available tests concerning the specification of

the conditional mean function are only defined for the class of exponential ACD models.

Hence, two different criteria are used to assess the specification of the conditional mean

function: the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC). The AIC is an estimate of the Kullback-Leibler distance, and takes into account the

value maximized log likelihood function in combination with the number of parameters.

A penalty is imposed for increasing the number of parameters. Definition 4.7 denotes the

AIC. The BIC is closely related to the AIC, but the penalty imposed for increasing the

number of parameter is stronger. Definition 4.8 gives the definition of the BIC.

Definition 4.7 (Akaike Information Criterion)

Let θ̂ ∈ Rk be he parameter set that maximizes the (log) likelihood function L (see Section

4.3). Then, the Akaike Information Criterion (AIC) is defined by

AIC = 2k − 2L
(
θ̂
∣∣∣ xm) . (4.69)

Given a set of candidate ACD models, the preferred model is the one with the minimum

AIC value.
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Definition 4.8 (Bayesian Information Criterion)

Let θ̂ ∈ Rk be he parameter set that maximizes the (log) likelihood function L (see Section

4.3). Then, the Bayesian Information Criterion (BIC) is defined by

BIC = log(n)k − 2L
(
θ̂
∣∣∣ xm) . (4.70)

Given a set of candidate ACD models, the preferred model is the one with the minimum

BIC value.
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Figure 4.3: Graphic representation of the scoring function scheme.
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4.8 Results from application

Author’s note: this section is confidential.
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5

Univariate risk metric : intraday risk measure

5.1 Introduction

Chapter 4 introduced the concept of point processes, and proposed the class of ACD mod-

els to capture the behavior of the durations of simple point processes. In this chapter,

the associated marks to these durations will be studied. We focus on the net positions

associated with the durations.

Despite the rise of econometric models for irregular spaced data, very few contributions

link high frequency data to risk management (Dionne et al., 2009, [DDP09]). Dionne et

al. (2009) examined the use of ultra high frequency data for market risk management with

an application to stock returns. They introduced an intraday risk measure by using Monte

Carlo simulations. The general idea is to use the ACD model to define the time steps of

the simulations, and to use the new UHF-GARCH model (which will be elaborated in the

coming sections) to generate the corresponding tick-by-tick returns that are rescaled into

fixed time intervals.

This chapter deals with the first research question, and aims to estimate the size of the

liquidity buffer for each group separately. We follow the approach of Dionne et al. (2009),

and tailor the intraday risk measure further for our purpose by using univariate EVT. Let

IRMi be the intraday risk measure at time ti. Then, the aim is to find a risk measure that

satisfies the following three conditions.

• IRMi can be expressed as a function of variables known at time ti−1 and an unknown

parameter set.

• IRMi can be estimated by an algorithm.
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• IRMi can be tested to asses the quality of the estimator.

We will start this chapter by introducing the definition of the high frequency risk measure.

Hereafter, the corresponding algorithm including Monte Carlo simulations will be elabo-

rated. We end this chapter by presenting a testing framework for this risk measure.

5.2 Intraday risk measure

In this thesis, we focus on the transaction process of two specific accounts within ABN

AMRO Bank. In this chapter, the transaction process will be viewed as a marked point

process in order to account for the irregularity of durations between consecutive trans-

actions. For the exact specification of the transaction process, the reader is referred to

Chapter 2. For an introduction to the concept of point processes, the reader is referred to

Chapter 4. The durations form the points and the net positions form the associated marks.

Then, the complete transaction process can be viewed as
{

(xi, NPi) : i = 1, . . . , N(nT )
}

where n denotes the number of business days and T denotes the number of seconds within

a business day. In this manner, the duration xi allows us to keep trace of the time step of

the net position NPi.

In order to define our intraday risk measure, we first have to introduce the rescaled net

positions. By defining rescaled net positions we follow the approach elaborated in (Dionne

et al., 2009, [DDP09]), where rescaled returns are introduced for the purpose of market risk

management. Let
{
yl : l ∈ Z

}
be the sequence of net positions rescaled at fixed intervals

of size Tfixed. Consider the realization
{
yl : l = 1, . . . , n

′}
with yl obtained at the event

times t
′
l such that t

′
l − t

′
l−1 = Tfixed. We define the rescaled net position corresponding to

the l-th interval by

yl =

τ(l)−1∑
i=τ(l−1)

NPi , (5.1)

with the restrictions

τ(l)−1∑
i=τ(0)

xi ≤ lTfixed and

τ(l)∑
i=τ(0)

xi > lTfixed where τ(0) = 1. This implies

that τ(l) for l = 1, . . . , n
′

is chosen such that the sum of the durations exceeds lTfixed for

the first time. A visual representation of these restrictions is given by Figure 5.1. Thus,

the rescaled net positions are obtained by summing up the tick-by-tick net positions such

that the sum of durations does not exceed Tfixed. The rescaled net positions yl are also

referred to as the Tfixed-period net positions of the l-th fixed interval.

Remark 5.1

The rescaled net position yl of the l-th interval is equivalent to the net cumulative position at
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the end of the l-th interval. Consequently, the rescaled net position yl describes the liquidity

need of ABN AMRO Bank at the end of the l-th interval. In case yl < 0, ABN AMRO

Bank needs access to liquidity to fund this balance. This remark will play a key role in the

remainder of this chapter.

Figure 5.1: Graphic representation of the restrictions

τ(l)−1∑
i=τ(0)

xi ≤ lTfixed and

τ(l)∑
i=τ(0)

xi >

lTfixed for obtaining the Tfixed-period net positions.

Remark 5.1 implies that the rescaled net position yl is not the variable of interest, as it

only reflects the liquidity need of the bank at the end of the l-th interval. More interesting

would be to observe the liquidity need of the bank within the l-th interval. Hence, the

largest negative rescaled net position occurring within the l-th interval will be the building

block of our intraday risk measure. We define the largest negative rescaled net position

occurring within the l-th fixed interval by

zl = max
{
−

j∑
i=τ(l−1)

NPi : j = τ(l − 1), . . . , τ(l)− 1
}
, (5.2)

for which still the restrictions

τ(l)−1∑
i=τ(0)

xi ≤ lTfixed and

τ(l)∑
i=τ(0)

xi > lTfixed hold.

Definition 5.1 formally defines the intraday risk measure (IRM). The intraday risk measure

IRMl(α) corresponds to the conditional quantile of the largest negative rescaled net posi-

tion zl. IRMl(α) represents the maximum liquidity need not to be succeeded within the

l-th interval for a given confidence level 100(1−α)%. In this thesis, the size of the liquidity

buffer associated with the l-th interval is set to be equal to IRMl(α). By estimating this

conditional quantile for each interval l, we are able to obtain the size of the liquidity buffer

for each interval.
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Definition 5.1 (Intraday risk measure)

The intraday risk measure (IRM), for shortfall probability α, IRMl(α) is defined by

P
(
zl > IRMl(α)

∣∣∣ Il−1

)
= α , (5.3)

where the information set Il−1 contains the information until moment τ(l − 1).

Remark 5.2

By defining the risk measure for the largest negative rescaled net positions instead of the

rescaled net positions, we differ from the approach elaborated in (Dionne et al., 2009,

[DDP09]). Dionne et al. (2009) defines the risk measure for rescaled returns. In the

context of tick-by-tick stock returns, Definition 5.1 is referred to as Intraday Value at Risk

(IVaR) which is denoted by IV aRl(α). For more information about IVaR in the context of

tick-by-tick stock returns, the reader is referred to (Dionne et al., 2009, [DDP09]).

5.3 Methodology

The question remains how the intraday risk measure IRMl(α), as given by Definition 5.1,

can be estimated. In this section this question will be elaborated. Again, the approach

discussed in (Dionne et al., 2009, [DDP09]) will be our guide. The general idea is to use

Monte Carlo simulations to obtain the estimator ÎRM l(α). The ACD model is used to de-

fine the time steps of the simulations, and the new UHF-GARCH model is used to generate

the corresponding net positions rescaled at fixed time intervals of size Tfixed. We start by

introducing the UHF-GARCH model.

5.3.1 UHF-GARCH model

Engle (2000) proposed adapting the general GARCH model for the application to tick-by-

tick data. Let NPi be the net position at event time ti. Let Gi−1 denote the information set

including both the information set Fi−1 and the current duration xi. Engle (2000) defined

two conditional variances: the conditional variance per transaction, hi and the conditional

variance per unit time, σ2
i . Let hi = V

(
NPi

∣∣∣ Gi−1

)
and σ2

i = V

(
NPi√
xi

∣∣∣ Gi−1

)
. This

implies the linear relationship hi = σ2
i xi. In case it is assumed that E

(
NPi

∣∣∣ Gi−1

)
= 0,

then the conditional variance per unit time is modeled by a GARCH(r, s) process given by

σ2
i = ω̇ +

r∑
j=1

α̇j

(
NPi−j√
xi−j

)2

+

s∑
j=1

β̇jσ
2
i−j , (5.4)
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which is known as the UHF-GARCH model. The formal definition is denoted in Definition

5.2. The parameters ω̇, α̇j and β̇j of the UHF-GARCH model differ from the parameters

of the ACD model. Dots are placed above the parameters of the UHF-GARCH model in

order to differentiate.

Definition 5.2 (UHF-GARCH(r, s) model)

Under the assumptions σ2
i = V

(
NPi√
xi

∣∣∣ Gi−1

)
and hi = V

(
NPi

∣∣∣ Gi−1

)
, the conditional

variance per unit time follows a GARCH(r, s) model:

σ2
i = ω̇ +

r∑
j=1

α̇j

(
NPi−j√
xi−j

)2

+

s∑
j=1

β̇jσ
2
i−j , (5.5)

NPi =
√
xiσiνi . (5.6)

Or equivalently,

hi = ω̇xi +

r∑
j=1

(
α̇j

xi
xi−j

)
NP 2

i−j +

s∑
j=1

(
β̇j

xi
xi−j

)
hi−j , (5.7)

NPi =
√
hiνi , (5.8)

where it is assumed that the errors νi are IID random variables with mean 0 and variance

1.

Remark 5.3

The UHF-GARCH(r, s) model of Definition 5.2 can be easily extended by changing the

representation of the conditional variance per unit time. Below three potential different

representations are described, of which the third one has proven to be the most successful

(Engle, 2000, [Eng00]).

1. σ2
i = ω̇ + α̇

(
NPi−1√
xi−1

)2

+ β̇σ2
i−1 . (5.9)

2. σ2
i = ω̇ + α̇

(
NPi−1√
xi−1

)2

+ β̇σ2
i−1 + γ

1

xi
. (5.10)

3. σ2
i = ω̇ + α̇

(
NPi−1√
xi−1

)2

+ β̇σ2
i−1 + γ1

1

xi
+ γ2

xi
ψi

+ γ3
1

ψi
. (5.11)

The assumption E
(
NPi

∣∣∣ Gi−1

)
= 0 is too restrictive in case micro structure effects are

present. Hence, wee denote E
(
NPi

∣∣∣ Gi−1

)
= µi. To remove these micro structure effects

an ARMA(p, q) model is proposed to model the net positions. This is represented by
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NPi = c+

p∑
j=1

ξjNPi−j +

q∑
j=1

θjεi−j + εi , (5.12)

in which εi are referred to as the demeaned net positions. The demeaned net positions

are extracted, and we denote εi = NPc,i from now on. Note that we can also write

NPi = µi + NPc,i. Hereafter, the UHF-GARCH(r, s) model is applied to the demeaned

net positions per unit time,

σ2
i = ω̇ +

r∑
j=1

α̇j

(
NPc,i−j√
xi−j

)2

+

s∑
j=1

β̇jσ
2
i−j , (5.13)

NPc,i =
√
xiσiνi . (5.14)

This model is considered to be an extension of the UHF-GARCH(r, s) model, and is referred

to as the UHF-ARMA(p, q)-GARCH(r, s) model. The estimation of the UHF-GARCH

model is done in two stages. The first stage covers the estimation of the ACD model to

capture the durations, assuming the error follows a specific distribution with positive sup-

port and expectation equal to one. The second stage covers the estimation of the GARCH

model, augmented with the duration as represented by Definition 5.2.

Remark 5.4 (Diurnally adjustments)

It should be noticed that in real world applications, not only the durations but also the net

positions could exhibit intraday seasonality (see Chapter 4). Therefore, the deterministic

component must be removed from the durations and net positions prior to model estima-

tion. This is done by standardizing the raw durations and the raw net positions. Let φx,i

and φNP2,i be respectively the deterministic components of the durations and squared net

positions. This gives the following result

xi = x̃iφ
x
i , (5.15)

NPi =

√
φNP

2

i

(
µi + ÑP c,i

)
. (5.16)

5.3.2 Dionne-Duchesne-Pacurar algorithm

Having the ACD model available for the durations and the UHF-GARCH model present to

capture the behavior of the net positions, Monte Carlo simulations can be used to obtain
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the estimator ̂IRMl(α). In this subsection this Monte Carlo approach and the resulting

algorithm to obtain this estimator are elaborated.

Let the last event time of the in-sample period be tn, and let tn+1 be the first event time

of the out-of-sample period. Then n is called the forecasting origin. Given that the ACD

model and the UHF-GARCH model are estimated for both the diurnally adjusted durations

and diurnally adjusted and demeaned net positions, one-step and i-step ahead forecasts can

be derived analytically given the information set Fn. The information set Fn contains all

information of the in-sample period. In case the durations follow a Log ACD2(p, q) model

the forecasts are given by

κ̂n+1 = ω̂ +

p∑
j=1

α̂j +

q∑
j=1

β̂j ln x̃n+1−j , (5.17)

=⇒ κ̂n+i = ω̂ +

p∑
j=1

α̂j +

i−1∑
j=1

β̂j κ̂n+i−j +

q∑
j=i

β̂j ln x̃n+i−j for q > i, i > 1 , (5.18)

and in case the net positions follow an UHF-GARCH(r, s) model we derive

σ̂2
n+1 = ̂̇ω +

r∑
j=1

̂̇αj ( ÑP c,n+1−j√
xn+1−j

)2

+

s∑
j=1

̂̇
βjσ

2
n+1−j , (5.19)

=⇒ σ̂2
n+i = ̂̇ω +

i−1∑
j=1

(̂̇αj +
̂̇
βj

)
σ̂2
n+i−j +

max(r,s)∑
j=i

(̂̇αj +
̂̇
βj

)
σ2
n+i−j for max(r, s) > i, i > 1 .

(5.20)

For the derivations of the one-step and i-step ahead forecasts the reader is referred to Ap-

pendices E.9 and E.10. In case another model is preferred for the durations, the one-step

and i-step ahead forecasts can be derived in an analogous manner. Having the one-step and

i-step forecasts in place, we are able to describe the Monte Carlo algorithm discussed in

(Dionne et al., 2009, [DDP09]). The algorithm is described by Algorithm 5.1, and referred

to as the Dionne-Duchesne-Pacurar algorithm.

Algorithm 5.1 (Dionne-Duchesne-Pacurar algorithm)

Estimate the parameters of the Log ACD2-GARCH model using diurnally adjusted dura-

tions
{
x̃i : i = 1, . . . , n

}
and diurnally adjusted and demeaned net positions

{
ÑP c,i :

i = 1, . . . , n
}

.

5.3 Methodology 63



for p = 1 to P do

i = 1

for l = 1 to L do

(1) Estimate the 1-step-head forecast

x̂pn+1 = ̂̃xpn+1φ
x
n+1 , (5.21)

where ̂̃xpn+1 = exp(κ̂pn+1)εp1 and κ̂pn+1 is obtained by Equation (5.17).

(2) Estimate the 1-step-head forecast

N̂P
p

n+1 =
√
φNP

2

n+1

(
µ̂pn+1 + ̂̃NP pc,n+1

)
, (5.22)

where ̂̃NP pc,n+1 =
√
x̂pn+1σ̂

p
n+1ν

p
1 and σ̂pn+1 is obtained by Equation (5.19).

while

i∑
i=τ(0)

x̂pn+i ≤ lTfixed do

(i) Estimate the i-step-head forecast

x̂pn+i = ̂̃xpn+iφ
x
n+i , (5.23)

where ̂̃xpn+i = exp(κ̂pn+i)ε
p
i and κ̂pn+i is obtained by Equation (5.18).

(ii) Estimate the i-step-head forecast

N̂P
p

n+i =
√
φNP

2

n+i

(
µ̂pn+i + ̂̃NP pc,n+i

)
, (5.24)

where ̂̃NP pc,n+i =
√
x̂pn+iσ̂

p
n+iν

p
i and σ̂pn+i is obtained by Equation

(5.20).

(iii) i = i + 1

end while
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(3) τ(l) = i

(4) Derive the largest negative rescaled net position

zp,l = max
{
−

j∑
i=τ(l−1)

N̂P
p

n+i : j = τ(l − 1), . . . , τ(l)− 1
}
. (5.25)

Note that zp,l corresponds to the largest negative rescaled net position of the

l-th fixed interval of length Tfixed of path p. Hence, z1,1 corresponds to the

largest negative rescaled net position of the 1-th fixed interval of path 1, z1,2

corresponds to the largest negative rescaled net position of the 2-nd fixed in-

terval of path 1, etcetera.

end for

end for

for l = 1 to L do

(1) Estimate, based on the sample
{
zp,l := zp : p = 1, . . . , P

}
, the moment estimators

γ̂, â
(
P
k

)
and b

(
P
k

)
as stated in Remark 3.4. These moment estimators are given by

M
(j)
P =

1

k

k∑
i=1

(log zP,P−i+1 − log zP,P−k)j (5.26)

γ̂ = M
(1)
P + 1− 1

2

1−

(
M

(1)
P

)2

M
(2)
P


−1

(5.27)

â

(
P

k

)
= zP−k,PM

(1)
P

(
1− γ̂ +M

(1)
P

)
(5.28)

b̂

(
P

k

)
= zP−k,P , (5.29)

where and z1,P ≤ z2,P ≤ . . . ≤ zP,P denotes the ordered sample. Moreover, we have

j = 1, 2 and provide that k = k(P )→∞, k
P
→ 0 as P →∞.

(2) Estimate the out-of-sample forecast ÎRM l(α) of the l-th fixed interval, given by

ÎRM l(α) = b̂

(
P

k

)
+
â
(
P
k

)
γ̂

((
Pα

k

)−γ̂
− 1

)
. (5.30)

end for
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Remark 5.5

It is assumed
{
zp,l : p = 1, . . . , P

}
represents a sequence of IID random variables. Hence,

the algorithm allows for the application of univariate EVT. The out-of-sample forecast

ÎRM l(α) is derived by combining Theorem 3.1 and Definition 5.1. For the derivation

of the forecast, the reader is referred to Appendix E.11. For an extensive overview of

univariate EVT, the reader is referred to Chapter 3. For each fixed interval l, the parameters

γ and the normalizing constants a
(
P
k

)
and b

(
P
k

)
are estimated based on this sequence{

zp,l : p = 1, . . . , P
}

. The visual representation of Algorithm 5.1 is given by Figure 5.2.

Figure 5.2: Graphic representation of the Dionne-Duchesne-Pacurar algorithm.
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5.4 Backtesting procedure

Evaluating the accuracy of the IRMl(α) forecasts is the next step, which is also referred

to as backtesting. An advantage of rescaling the net positions into fixed intervals is that it

allows for the evaluation of the accuracy in a traditional way. In this section two traditional

evaluation methodologies for measuring IRMl(α) accuracy are elaborated.

In general, the accuracy of the forecast of an economic variable is assessed by comparing the

ex ante forecasted value with the ex post realization (Banulescu et al., 2016, [BCHT16]).

However, in case of IRMl(α) forecasts the ex ante forecasted value cannot be compared

with the ex post realization because the true quantile of the distribution is not observable.

Therefore, the accuracy of IRMl(α) forecasts cannot be based on this comparison.

Currently, in the literature two different approaches can be distinguished in backtesting

procedures that aim to assess the accuracy of the forecast of an economic variable. The

first approach is based on the concept of violation as introduced by Christoffersen (1998).

An event is considered to be a violation in case the ex post realization is more negative

than the ex ante forecasted value. The main idea of this approach is to test the process

of violations against two hypotheses: unconditional coverage (UC) hypothesis and inde-

pendence (IND) hypothesis. The second approach is based on the concept of probability

integral transforms as introduced by Diebold et al. (1998). In this section we will skip the

latter approach and focus on the first one.

5.4.1 Framework and testable hypotheses

The starting point of the backtesting procedure is to define an indicator variable. Let Hl (α)

be the indicator variable associated with the ex post realization of an IRMl(α) violation.

Hence, the indicator variable Hl (α) is denoted by

Hl (α) =

 1 for zl > IRMl (α)

0 for zl ≤ IRMl (α)
. (5.31)

This indicator variable is also known as the so called hit variable, and can be more com-

pactly denoted as Hl (α) = 1zl>IRMl(α). In case Hl(α) = 1, the ex post realization of the

largest negative rescaled net position corresponding to the l-th fixed interval is larger than

the estimated IRMl(α). In this case the estimated IRMl(α) is considered to be violated.

On the contrary, in case Hl(α) = 0, the ex post realization of the largest negative rescaled

net position corresponding to the l-th fixed does not violate the estimated IRMl(α).
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Following the methodology in (Christoffersen, 1998, [Chr98]), the IRMl(α) forecasts are as-

sumed to be accurate if and only if the associated indicator variable Hl (α) satisfies both the

Unconditional Coverage (UC) hypothesis and the Independence (IND) hypothesis. These

hypotheses are formally denoted by Definition 5.3 and Definition 5.4. The UC hypothesis

states that the probability that an ex post realization of the largest negative rescaled net

position zl exceeding the ex ante IRMl(α) forecast should be equal to the coverage rate

α. The IND hypothesis states that violations for the same coverage rate α observed at two

different dates must be independently distributed. Observe that in case P (Hl(α) = 1) > α,

IRMl (α) under-estimates the true level of risk. In case P (Hl(α) = 1) < α, IRMl (α) over-

estimates the true level risk.

Definition 5.3 (Unconditional Coverage (UC) hypothesis)

Let Hl(α) = 1zl>IRMl(α) be a violation indicator variable or hit variable, and consider the

event Hl(α) = 1 to be a violation. Then the unconditional probability of a violation must

be equal to the coverage rate α, i.e.

P (Hl(α) = 1) = E (Hl(α)) = α . (5.32)

Definition 5.4 (Independence (IND) hypothesis)

Let Hl(α) = 1zl>IRMl(α) be a violation indicator variable or hit variable, and consider the

event Hl(α) = 1 to be a violation. Then violations observed at two different dates must be

independently distributed, i.e.

P
(
Hl(α) = 1

∣∣∣ Fl−1

)
= P (Hl(α) = 1) . (5.33)

When both hypothesis are simultaneously valid, the forecasts are said to have a correct

conditional coverage. Combining both hypothesis results in the conditional coverage (CC)

hypothesis, formally denoted by Definition 5.5. In case the CC hypothesis is satisfied, the

demeaned violation indicator variable is said to be a martingale difference sequence. That

means, the demeaned violations form a martingale difference sequence with respect to the

information set Il−1. This result is demonstrated by

E
(
Hl (α)− α

∣∣∣ Il−1

)
= E

(
Hl (α)

∣∣∣ Il−1

)
− α

= P
(
Hl (α) = 1

∣∣∣ Il−1

)
− α

= P (Hl (α) = 1)− α

= 0 .
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Definition 5.5 (Conditional Coverage (CC) hypothesis)

Let Hl(α) = 1zl>IRMl(α) be a violation indicator variable or hit variable, and consider the

event Hl(α) = 1 to be a violation. Then the conditional probability of a violation must be

equal to the coverage rate α, i.e.

P
(
Hl(α) = 1

∣∣∣ Fl−1

)
= E

(
Hl(α)

∣∣∣ Fl−1

)
= α . (5.34)

It should be noted that the CC hypothesis can be translated into a distributional assump-

tion. Under the CC hypothesis, each violation indicator variable Hl(α) takes the value 1

with probability α and the value 0 with probability 1− α. Therefore, the sequence of vio-

lation indicator variables or violation sequence {Hl(α)} is assumed to be a random sample

from the Bernoulli distribution with a success probability equal to α. This implies that the

violation sequence of an accurate IRMl(α) forecast agrees with a sequence of IID Bernoulli

distributed variables. In the same manner, the sequence of the sum of hit variables or

the sequence of the number of violations
{ L∑
l=1

Hl(α)
}

is assumed to be a random sample

from the binomial distribution with success probability equal to α. This is summarized by

Equation (5.35) and (5.36).

CC hypothesis =⇒ Hl(α)
IID∼ Ber(α) . (5.35)

CC hypothesis =⇒
L∑
l=1

Hl(α)
IID∼ Bin(L,α) . (5.36)

5.4.2 Testing unconditional coverage hypothesis

In this section the testing of the UC hypothesis, as stated in Definition 5.3, will be elab-

orated. Christoffersen (1998) proposed a likelihood ratio test in order to verify the UC

hypothesis. This likelihood test models the violation sequence as a sequence of IID ran-

dom variables distributed according to the Bernoulli distribution with unknown success

probability π1 ∈ [0, 1]. This can be translated into

Hl(α)
IID∼ Ber(π1) . (5.37)

The likelihood function for the violation sequence in Equation (5.37) is then given by

`
(
π1

∣∣∣ H1(α), . . . , HL(α)
)

=

L∏
l=1

f
(
Hl(α)

∣∣∣ π1

)
= π

L∑
l=1

Hl(α)

1 (1− π1)

L−
L∑
l=1

Hl(α)

.

(5.38)
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Remember that L denotes the number of fixed intervals. Now taking the first derivative

of this likelihood function with respect to α and setting this derivative equal to zero, one

maximizes the likelihood which results in the maximum likelihood estimator. This maxi-

mum likelihood estimator is π̂1 =

∑L
l=1 Hl(α)

L
. Theorem 5.1 formally defines the test.

Theorem 5.1 (Christoffersen test for unconditional coverage)

Let Hl(α) = 1zl>IRMl(α) be a violation indicator variable or hit variable. Define H =
L∑
l=1

Hl(α) as the sum of indicator variables, or the number of violations. Assume that

the sequence of indicator variables {Hl(α) : l = 1, . . . , L} is independent over time.

Furthermore, assume that under the null hypothesis H0 : π1 = α. Then, under H0, the

likelihood is given by

`
(
π1

∣∣∣ H1(α), . . . , HL(α)
)

= αH(1− α)L−H , (5.39)

which results in the likelihood ratio test statistic

LRUC = 2
(

ln `
(
π̂1

∣∣∣ H1(α), . . . , HL(α)
)
− ln `

(
π1

∣∣∣ H1(α), . . . , HL(α)
))

a∼ χ2
1 ,

(5.40)

where

π̂1 =
H

L
. (5.41)

H0 is rejected at significance level (1− β)% in case LR > χ2
1(1− β).

Proof 5.1 (Christoffersen test for unconditional coverage)

We refer to (Christoffersen, 1998, [Chr98]) for the short derivation of the asymptotic

distribution of the test statistic.

�

This test is often referred to as the Proportion Of Failures (POF) test. The test only

gives information about whether the number of violations agrees with the coverage rate.

The number of ones of the violation sequence is taken into account, however the order of

the ones of the violation sequence is not taken into account. Therefore, it could be that

the number of violations are clustered together in a time-dependent fashion. This will be

discussed in the next section.
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5.4.3 Testing independence hypothesis

Christoffersen (1998) introduced a likelihood ratio test in order to verify the IND hypoth-

esis. This likelihood test models the violation sequence as a first order Markov chain. The

test is based on a Markov chain model which has two states: violation or no violation. This

implies that the first order Markov chain can be written as

Hl(α)
∣∣∣ Hl−1(α)

IID∼ Ber(pl(θ)) , (5.42)

with success probability

pl(θ) = Hl−1(α)π11 + (1−Hl−1(α))π01 , (5.43)

where πij = P
(
Hl(α) = j

∣∣∣ Hl−1(α) = i
)

such that θ = (π11, π01)′ ∈ [0, 1]2. Equivalently,

this can also be denoted in terms of the transition probability matrix. Let Π be the tran-

sition probability matrix, denoted by

Π =

1− π01 π01

1− π11 π11

 . (5.44)

The probability of a violation occurring in the current interval (i.e. Hl(α) = 1) given that

no violation occurred in the previous interval (i.e. Hl−1(α) = 0) is given by π01. The prob-

ability of a violation occurring in the current interval (i.e. Hl(α) = 1) given that a violation

also occurred in the previous interval (i.e. Hl−1(α) = 1) is given by π11. Analogously, the

probability of no violation occurring in the current interval conditional on the fact that

no violation occurred in the previous interval is given by 1 − π01. The probability of no

violation occurring in the current interval conditional on the fact that a violation occurred

in the previous interval is given by 1− π11.

The aim of the likelihood ratio test is to examine whether or not the likelihood of the

violation sequence corresponding to the IRMl(α) forecast depends on whether a violation

occurred on the previous interval. In case the IRMl(α) forecast reflects the amount of

risk accurately, the chance of violating the IRMl(α) forecast in the current interval should

not dependent on whether or not the IRMl(α) was violated in the previous interval. The

likelihood for the violation sequence is then given by

`
(
Π
∣∣∣ H1(α), . . . , HL(α)

)
= p

(
H1(α), . . . , HL(α)

∣∣∣ Π
)

= (1− π01)L00 πL01
01 (1− π11)L10 πL11

11 .

(5.45)
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Now taking the first derivatives of this likelihood function (or log likelihood function to

simplify the maximization process) with respect to π01 and π11 and setting these deriva-

tives equal to zero, the maximum likelihood estimators found. Let Lij denote the number

of observations of the violation sequence where a j follows an i. Then the maximum like-

lihood estimators result in respectively and π̂01 =
L01

L00 + L01
and π̂11 =

L11

L10 + L11
. The

formal test is given by Theorem 5.2.

Theorem 5.2 (Christoffersen test for independence)

Let Hl(α) = 1yl<−RSIV aRl(α) be a violation indicator variable or hit variable. Assume that

the sequence of indicator variables {Hl(α) : l = 1, . . . , L} is dependent over time and

can be represented as a first order Markov chain with two states and transition probability

matrix

Π =

1− π01 π01

1− π11 π11

 , (5.46)

where πij = P
(
Hl(α) = j

∣∣∣ Hl−1(α) = i
)

. Furthermore, assume that under the null hy-

pothesis H0 : π01 = π11 = π. Then, under H0, the likelihood is given by

`
(
Π
∣∣∣ H1(α), . . . , HL(α)

)
= (1− π)L00 πL01 (1− π)L10 πL11 , (5.47)

which results in the likelihood ratio test statistic

LRIND = 2
(

ln `
(
Π̂
∣∣∣ H1(α), . . . , HL(α)

)
− ln `

(
Π
∣∣∣ H1(α), . . . , HL(α)

))
a∼ χ2

1 ,

(5.48)

where

Π̂ =

1− π̂01 π̂01

1− π̂11 π̂11

 , (5.49)

π̂01 =
L01

L00 + L01
, (5.50)

π̂11 =
L11

L10 + L11
. (5.51)

H0 is rejected at significance level (1− β)% in case LR > χ2
1(1− β).

Proof 5.2 (Christoffersen test for independence)

We refer to (Christoffersen, 1998, [Chr98]) for the short derivation of the asymptotic

distribution of the test statistic.

�
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5.4.4 Testing conditional coverage hypothesis

As stated before, it is also possible to test the UC hypothesis and the IND hypothesis

jointly. That means, testing the CC hypothesis at once. In this section two different tests

are proposed. We start with the Christoffersen test which is based on a Markov chain model

with two states, that is very similar to the test proposed for testing the IND hypothesis.

We conclude this chapter with the dynamic quantile (DQ) test, which is based on a linear

autoregressive regression.

The test proposed by Christoffersen (1998) to test the UC hypothesis and the IND hypoth-

esis jointly is stated in Theorem 5.3. It should be remarked that this test is rather limited.

First, the test is limited to modeling the violation sequence as a first order Markov chain,

and therefore is not able to capture dependencies higher than order one. Moreover, the

test does not allow to include any other explanatory variables.

Theorem 5.3 (Christoffersen test for conditional coverage)

Let Hl(α) = 1zl>IRMl(α) be a violation indicator variable or hit variable. Assume that the

sequence of indicator variables {Hl(α) : l = 1, . . . , L} is dependent over time and can be

represented as a first order Markov chain with two states and transition probability matrix

Π =

1− π01 π01

1− π11 π11

 , (5.52)

where πij = P
(
Hl(α) = j

∣∣∣ Hl−1(α) = i
)

. Furthermore, assume that under the null hy-

pothesis H0 : π01 = π11 = α. Then, under H0, the likelihood is given by

`
(
Π
∣∣∣ H1(α), . . . , HL(α)

)
= (1− α)L00 αL01 (1− α)L10 αL11 , (5.53)

which results in the likelihood ratio test statistic

LRCC = 2
(

ln `
(
Π̂
∣∣∣ H1(α), . . . , HL(α)

)
− ln `

(
Π
∣∣∣ H1(α), . . . , HL(α)

))
a∼ χ2

2 ,

(5.54)

where

Π̂ =

1− π̂01 π̂01

1− π̂11 π̂11

 , (5.55)

π̂01 =
L01

L00 + L01
, (5.56)

π̂11 =
L11

L10 + L11
. (5.57)

H0 is rejected at significance level (1− β)% in case LR > χ2
2(1− β).
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Proof 5.3 (Christoffersen test for conditional coverage)

We refer to Appendix in (Christoffersen, 1998, [Chr98]) for the proof.

�

Engle et al. (2004) proposed a linear regression based test in order to overcome these two

downsides. In order to apply this test, first a sequence of hit variables Hitl (α) has to be

defined. The hit variables Hitl (α) are defined by

Hitl (α) = Hl (α)− α . (5.58)

From this equation it is clear that the hit variable takes value 1− α in case the estimated

IRMl(α) is exceeded by the ex post realization of the largest negative rescaled net position

corresponding to the l-th fixed interval. On the other hand, the hit variable takes value α

in case the estimated IRMl(α) is not exceeded.

Second a linear regression of the variable Hitl (α) is applied on the past variables of Hitl (α)

and any other explanatory variables seem to be suited for the application. This linear

regression takes the following form

Hitl (α) = δ +

K∑
k=1

βkHitl−k(α) +

K∑
k=1

γkg (Hitl−k(α), Hitl−k−1 (α) , . . . , zl−k, zl−k−1, . . . ) + εl ,

(5.59)

=⇒ Hit(α) = XΨ + ε . (5.60)

Here, it is assumed that the errors εl are IID random variables. The vector Ψ = (δ, β1, . . . , βK ,

γ1, . . . , γK)′ ∈ R2K+1 contains the regression coefficients and the matrix X ∈ RP×(2K+1)

contains the corresponding explanatory variables. Moreover, the function g takes the past

Hitl−k variables and zl−k variables as input. The zl−k variables can be any informative

variable from the information set Ωl−1. In this manner, testing the CC hypothesis boils

down to testing the null hypothesis of the coefficients δ, βl and γl being equal to zero. Note

that under the null hypothesis of joint nullity of the coefficients we have

E
(
Hitl(α)

∣∣∣ Fl−1

)
= E

(
εl

∣∣∣ Fl−1

)
= 0 . (5.61)

Then using the definition of the variable Hitl(α) leads to Equation (5.34), which corre-

sponds with the CC hypothesis. This is shown below. Hence, testing the jointly nullity of
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the coefficients of the regression corresponds with testing the CC hypothesis. Here, βl = 0

and γl = 0 covers the IND hypothesis while δ = 0 covers the UC hypothesis. The test is

known as the dynamic quantile test and is given by Theorem 5.4.

E
(
Hitl(α)

∣∣∣ Fl−1

)
= 0 , (5.62)

=⇒ E
(
Hl(α)− α

∣∣∣ Fl−1

)
= 0 , (5.63)

⇐⇒ E
(
Hl(α)

∣∣∣ Fl−1

)
− α = 0 , (5.64)

⇐⇒ E
(
Hl(α)

∣∣∣ Fl−1

)
= α , (5.65)

=⇒ P
(
Hl(α) = 1

∣∣∣ Fl−1

)
= α . (5.66)

Theorem 5.4 (Dynamic quantile test)

Let Hitl(α) = Hl(α)− α be the demeaned process on α associated to Hl(α). Consider the

linear regression in Equation (5.60). Ψ = (δ, β1, . . . , βK , γ1, . . . , γK)′ ∈ R2K+1 represents

the vector containing the coefficients included in the regression. X ∈ RP×(2K+1) denotes

the matrix containing the corresponding explanatory variables. Furthermore, assume that

under the null hypothesis H0 : δ = βl = γl = 0 ∀ l = 1, . . . ,K. Then, under H0, this

results in the Wald statistic

DQCC =
Ψ̂ ′OLSX′XΨ̂OLS

α(1− α)

a∼ χ2
2K+1 , (5.67)

where

Ψ̂OLS = (X′X)−1X′Hit . (5.68)

H0 is rejected at significance level (1− β)% in case LR > χ2
2K+1(1− β).

Proof 5.4 (Dynamic quantile test)

We refer to Appendix B in (Engle et al., 2004, [EM04]) for the proof.

�

The question that remains is how the explanatory variables should be chosen. Clearly,

this depends on the specific model one is dealing with. In the literature, often the lagged

hit variables in combination with the forecast are chosen as explanatory variables of the
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linear regression. For instance, Engle et al. (2004) use a constant, the first four lagged

hit variables and the current VaR forecast, while Dionne et al. (2009) use the first five

lagged hit variables and the current IVaR forecast. Then, the regression as denoted in

Equation (5.59) translates into respectively Equation (5.69) and (5.70). Note that Engle et

al. (2004) used the dynamic quantile test in order to assess the accuracy of their V aRt (α)

forecast in the context of daily returns where t denotes day t (i.e. low frequency). Dionne

et al. (2009) used the dynamic quantile test in order to examine the correctness of their

IV aRl(α) forecast in the context of tick-by-tick returns where l denotes interval l during

a business day (i.e. high frequency). Key point is that the fact whether we are using low

frequency or high frequency returns does not change the way the dynamic quantile test is

applied.

Hitt(α) = 1rt<−V aRt(α) =⇒ Hitt(α) = δ +

4∑
k=1

βkHitt−k(α) + γ1V aRt(α) . (5.69)

Hitl(α) = 1yl<−IV aRl(α) =⇒ Hitl(α) = δ +

5∑
k=1

βkHitl−k(α) + γ1IV aRl(α) . (5.70)

Remark 5.6

It should be noticed that throughout this thesis it is recommended to test the UC hyothesis

and IND hypothesis separately, instead of testing the CC hypothesis at once. This gives us

more information in case the IRMl(α) estimator turns out to be inaccurate. Only testing

the CC hypothesis gives us indeed whether the estimator is accurate or inaccurate, but does

not give us the cause. Testing the UC hypothesis and the IND hypothesis separately gives us

the reason in case the estimator turns out to be inaccurate: inaccurate coverage, clustered

violations or even both.

5.5 Results from application

Author’s note: this section is confidential.

5.5.1 Model estimation for durations and net positions

Author’s note: this section is confidential.

5.5.1.1 Model estimation durations

Author’s note: this section is confidential.
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5.5.1.2 Model estimation net positions

Author’s note: this section is confidential.

5.5.2 Backtesting results

Author’s note: this section is confidential.

5.5.2.1 Backtesting results for group 1

Author’s note: this section is confidential.

5.5.2.2 Backtesting results for group 2

Author’s note: this section is confidential.

5.5.2.3 Backtesting results for group 3

Author’s note: this section is confidential.
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6

Multivariate risk metric : probability of failure

set

6.1 Introduction

In Chapter 5, we examined the use of ultra high frequency data for liquidity risk manage-

ment in a univariate framework. The intraday risk measure was introduced and estimated

by a Monte Carlo simulation algorithm. The ACD model, as introduced in Chapter 4, was

used to define the time steps of the simulation algorithm. The (UHF-)GARCH model was

used to generate the corresponding net positions at each time step, rescaled to an appro-

priate time interval. Hence, this enabled us to estimate the size of the liquidity buffer for a

specific time interval within a business day. However, this size was derived for each group

separately.

In this chapter the second research question is addressed, and we aim to estimate the size

of the liquidity buffer for all groups together. However, extensions to a multivariate frame-

work have proven to be very complex. This complexity arises from the nature of ultra high

frequency data, which are by definition not aligned in time (Rengifo et al., 2004, [RH04]).

In this chapter, we will make use of the statistical tools from multivariate EVT instead. For

an introduction to multivariate EVT, the reader is referred to Chapter 3. In this chapter,

we will rely heavily on the results developed in Chapter 3.

The focus of this chapter are the largest daily negative net cumulative positions of the ABN

AMRO Bank transaction data set. The specifics of the ABN AMRO Bank transaction data

set can be found in Chapter 2. The largest daily negative net cumulative positions for each

group d have been recorded during n = 824 business days, and are denoted by
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DMk,d = max
Nd((k−1)T )+1≤i≤Nd(kT )

(−NCPi,d) (6.1)

for k = 1, . . . , n and d = 1, 2, 3. Note that DMk,d reflects the maximum liquidity need

of ABN AMRO Bank within business day k based on group d. We obtain 3 sequences{
DMk,1 : k = 1, . . . , n

}
,
{
DMk,2 : k = 1, . . . , n

}
and

{
DMk,3 : k = 1, . . . , n

}
repre-

senting the largest daily negative net cumulative positions of group 1, group 2 and group

3, respectively. It is assumed that (DM1,1, DM1,2, DM1,3), (DM2,1, DM2,2, DM2,3),. . .,

(DMn,1, DMn,2, DMn,3) represents a sequence of independent and identically distributed

random vectors.

Now, the approach elaborated in (De Haan et al., 1998, [HR98]) (De Haan et al., 2006,

[HF06]) is followed closely. Define

C :=
{

(DM1, DM2, DM3) : DM1 +DM2 +DM3 > `
}
, (6.2)

which we refer to as the failure set. Additionally, let

pn := P ((DM1, DM2, DM3) ∈ C) (6.3)

denote the probability of the failure set. We are interested in those values for `, such that

the probability pn is low (i.e. one could think of pn = 0.05, 0.01, etcetera). In case this

probability is low, ` reflects the size of the liquidity buffer. By estimating `, we are able to

derive the aggregated size of the liquidity buffer of ABN AMRO Bank.

The chapter is organized as follows. In Section 6.2, the mathematical framework is intro-

duced. The probability of the failure set will be derived in Section 6.3. In Section 6.4,

an estimator for this probability is explicated. In both sections we start with a general

bivariate framework and extend the results to the trivariate framework of the ABN AMRO

Bank transaction data set, as defined by Equation (6.3). Section 6.4 presents the results

of the application to the ABN AMRO transaction data set. Here, the probability of the

failure set is estimated for different values of `.
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6.2 Framework

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sequence of independent and identically distributed

random vectors with common cdf F . Let F1 and F2 denote the marginal distribution

functions of X and Y , respectively. Define the block maxima Mx,n = max(X1, . . . , Xn) and

My,n = max(Y1, . . . , Yn). Suppose that there exist sequences of real numbers an, cn > 0

and bn, dn ∈ R (n = 1, 2, . . .) and a bivariate distribution function G with non degenerate

marginals such that

lim
n→∞

P

(
Mx,n − bn

an
≤ x, My,n − dn

cn
≤ y
)

= lim
n→∞

Fn(anx+bn, cny+dn) = G(x, y) (6.4)

for all continuity points (x, y) of G.

Chapter 3 tells us that we have restrictions on the distribution function G due to the

convergence of the marginal distributions of the block maxima Mx,n and My,n. These

restrictions are denoted by

lim
n→∞

P

(
Mx,n − bn

an
≤ x

)
= G(x,∞) = Gγ1(x) , (6.5)

lim
n→∞

P

(
My,n − dn

cn
≤ y
)

= G(∞, y) = Gγ2(y) . (6.6)

Here, the functions Gγ1 and Gγ2 refer to the univariate GEV distribution as denoted in

Equation (3.3). Hence, γ1 and γ2 denote the extreme values indices that characterize the

heaviness of the tail of the distribution. Based on this bivariate framework, the probability

of failure and its estimator will be derived.

6.3 Derivation probability of failure set

The aim of this section is to derive the probability of a failure set for a general bivariate

setting, as introduced in Section 6.2. In accordance with Equations (6.2) and (6.3), define

the probability of the failure set as

pn = P ((X,Y ) ∈ Cn) , (6.7)

where

Cn =
{

(x, y) : x+ y > `n
}

(6.8)
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denotes the failure set. Introduce Lemma 6.1, which involves the exponent measure ν as

introduced in Remark 3.6. Lemma 6.1 forms the core of our derivation. The main idea

is to transform the random variables X and Y in such a way that the probability of the

failure set pn can be approximated by making use of Equation (6.9).

Lemma 6.1

Suppose Equations (6.4), (6.5) and (6.6) hold. Then

lim
n→∞

n

k
P

(1 + γ1

X − U1

(
n
k

)
a1

(
n
k

) ) 1
γ1

,

(
1 + γ2

Y − U2

(
n
k

)
a2

(
n
k

) ) 1
γ2

 ∈ Ax,y
 = ν(Ax,y) ,

(6.9)

where k is an intermediate sequence such that k = k(n)→∞, k
n
→ 0 as n→∞.

Proof 6.1

We refer to Appendix E.12 for the proof.

�

Define the functions f1 and f2 such that

f1(x) =

(
1 + γ1

x− b1
(
n
k

)
a1

(
n
k

) ) 1
γ1

, (6.10)

f2(y) =

(
1 + γ2

y − b2
(
n
k

)
a2

(
n
k

) ) 1
γ2

. (6.11)

Mind that the functions f1 and f2 do not represent the marginal probability density func-

tions of X and Y , respectively. Using the functions f1 and f2 to transform the random

variables X and Y , the following relation is derived

(X,Y ) ∈ Cn

=⇒ (X,Y ) ∈
{

(x, y) : x+ y > `n
}

=⇒ (f1(X), f2(Y )) ∈
{

(f1(x), f2(y)) : x+ y > `n
}

=⇒ (f1(X), f2(Y )) ∈
{

(x, y) : f←1 (x) + f←2 (y) > `n
}

⇐⇒ (f1(X), f2(Y )) ∈
{

(x, y) :
a1

(
n
k

)
γ1

(xγ1 − 1) + b1
(n
k

)
+
a2

(
n
k

)
γ2

(yγ2 − 1) + b2
(n
k

)
> `n

}
.
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Now, define the set

Qn =
{

(x, y) :
a1

(
n
k

)
γ1

(xγ1 − 1) + b1
(n
k

)
+
a2

(
n
k

)
γ2

(yγ2 − 1) + b2
(n
k

)
> `n

}
. (6.12)

Combining Lemma 6.1 with the above derived relation, an approximation is found for the

probability of the failure set pn. This probability is expressed in terms of the transformed

random variables X and Y , i.e. f1(X) and f2(Y ). Hence, the probability pn is approxi-

mated by

pn = P ((X,Y ) ∈ Cn)

= P ((f1(X), f2(Y )) ∈ Qn)

= P

(1 + γ1

X − b1
(
n
k

)
a1

(
n
k

) ) 1
γ1

,

(
1 + γ2

Y − b2
(
n
k

)
a2

(
n
k

) ) 1
γ2

 ∈ Qn


≈ k

n
ν(Qn)

=
k

n
ν

(
cn
Qn
cn

)
=

k

ncn
ν

(
Qn
cn

)
=

k

ncn
ν (S) , (6.13)

where

S =
{

(x, y) :
a1

(
n
k

)
γ1

((cnx)γ1 − 1) + b1
(n
k

)
+
a2

(
n
k

)
γ2

((cny)γ2 − 1) + b2
(n
k

)
> `n

}
,

(6.14)

and cn denotes a positive sequence.

Remark 6.1

The question remains how to choose an appropriate positive sequence cn. Two methods

are distinguished in (De Haan et al., 2006, [HF06]). The first method considers cn to be

known, and the value of cn is chosen by the statistician. The second method assumes cn is

unknown, and the estimation of cn is incorporated in the problem itself. The latter method

will be utilized in this chapter. It is assumed that there exists some boundary point of the

failure set Cn, (un, vn), such that

Cn ⊂ Dn =
{

(x, y) : x ≥ un ∪ y ≥ vn
}

(6.15)

6.3 Derivation probability of failure set 83



holds for all n. Define for some r > 0

cn =

√
q2
n + r2

n

r
, (6.16)

where

qn = f1(un) =

(
1 + γ1

un − b1
(
n
k

)
a1

(
n
k

) ) 1
γ1

, (6.17)

rn = f2(vn) =

(
1 + γ2

vn − b2
(
n
k

)
a2

(
n
k

) ) 1
γ2

. (6.18)

Remark 6.2

Note that the point

(
un =

`n
2
, vn =

`n
2

)
could be an appropriate choice, translating Equa-

tion (6.15) into

Cn ⊂ Dn =
{

(x, y) : x ≥ `n
2
∪ y ≥ `n

2

}
. (6.19)

Figure 6.1 illustrates the choice un = vn =
`n
2

, as denoted by Equation (6.19). The black

area represents the set Cn, while the yellow area demonstrates the set Dn. The figure con-

firms that Dn is indeed an subset of Cn.

Figure 6.1: Graphic representation of the set Cn =
{

(x, y) : x + y > `n

}
and Dn ={

(x, y) : x ≥ `n
2
∪ y ≥ `n

2

}
.
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Remark 6.3 (Extension to trivariate framework)

It is straightforward to extend the probability of the failure set to the trivariate framework,

as it is completely analogous to the bivariate framework (De Haan et al., 2006, [HF06]).

In the trivariate framework, the probability of interest is defined by

pn = P ((X,Y, Z) ∈ Cn) , (6.20)

where

Cn =
{

(x, y, z) : x+ y + z > `n
}

(6.21)

denotes the failure set. Then, the probability of interest can be approximated by Equation

(6.13) such that

S =
{

(x, y, z) :
a1

(
n
k

)
γ1

((cnx)γ1 − 1) + b1
(n
k

)
+
a2

(
n
k

)
γ2

((cny)γ2 − 1) + b2
(n
k

)
+

a3

(
n
k

)
γ3

((cnz)
γ3 − 1) + b3

(n
k

)
> `n

}
. (6.22)

Moreover, the positive sequence cn is, for some r > 0, defined by

cn =

√
q2
n + r2

n + s2
n

r
, (6.23)

where

qn = f1(un) =

(
1 + γ1

un − b1
(
n
k

)
a1

(
n
k

) ) 1
γ1

, (6.24)

rn = f2(vn) =

(
1 + γ2

vn − b2
(
n
k

)
a2

(
n
k

) ) 1
γ2

, (6.25)

sn = f3(wn) =

(
1 + γ3

wn − b3
(
n
k

)
a3

(
n
k

) ) 1
γ3

, (6.26)

such that

Cn ⊂ Dn =
{

(x, y, z) : x ≥ un ∪ y ≥ vn ∪ z ≥ wn
}
. (6.27)

Hence, an appropriate choice could be un = vn = wn =
`n
3

.
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6.4 Estimation probability of failure set

In Section 6.3 an expression for the probability pn, as defined by Equation (6.7), was de-

rived. In this section we continue with this expression and aim to find an estimator p̂n, that

is based on the independent and identically distributed random vectors (X1, Y1), (X2, Y2), . . . ,

(Xn, Yn). Denote this estimator by

p̂n =
k

nĉn
ν̂
(
Ŝ
)
. (6.28)

Once more, Lemma 6.1 is of great importance and plays a leading role. Lemma 6.1 tells us

that the exponent measure of the set S, as defined by Equation (6.14), can be approximated

by

ν(S) ≈ n

k
P

(1 + γ1

X − U1

(
n
k

)
a1

(
n
k

) ) 1
γ1

,

(
1 + γ2

Y − U2

(
n
k

)
a2

(
n
k

) ) 1
γ2

 ∈ S
 . (6.29)

Hence, by replacing the probability by its empirical counterpart and using the definition of

the set S, we obtain

ν̂ (S) =
n

k

1

n

n∑
i=1

1(1+γ1
Xi−U1(nk )
a1(nk )

) 1
γ1
,

(
1+γ2

Yi−U2(nk )
a2(nk )

) 1
γ2

 ∈ S

=
1

k

n∑
i=1

1(1+γ1
Xi−U1(nk )
a1(nk )

) 1
γ1
,

(
1+γ2

Yi−U2(nk )
a2(nk )

) 1
γ2

 ∈ S

=
1

k

n∑
i=1

1(f1(Xi),f2(Yi)) ∈ S

=
1

k

n∑
i=1

1
a1(nk )
γ1

((cnf1(Xi))
γ1−1)+b1(nk )+

a2(nk )
γ2

((cnf2(Yi))
γ2−1)+b2(nk )>`n

=
1

k

n∑
i=1

1
a1(nk )
γ1

(
(c
γ1
n

(
1+γ1

Xi−b1(nk )
a1(nk )

)
−1

)
+b1(nk )+

a2(nk )
γ2

(
c
γ2
n

(
1+γ2

Yi−b2(nk )
a2(nk )

)
−1

)
+b2(nk )>`n

=
1

k

n∑
i=1

1
a1(nk )
γ1

c
γ1
n +c

γ1
n (Xi−b1(nk ))−

a1(nk )
γ1

+b1(nk )+
a2(nk )
γ2

c
γ2
n +c

γ2
n (Yi−b2(nk ))−

a2(nk )
γ2

+b2(nk )>`n
.

(6.30)

Now, combining Equations (6.28) and (6.30) and substituting γ1, γ2, a1

(
n
k

)
, a2

(
n
k

)
, b1

(
n
k

)
and b2

(
n
k

)
by its estimators γ̂1, γ̂2, â1

(
n
k

)
, â2

(
n
k

)
, b̂1

(
n
k

)
and b̂2

(
n
k

)
, yields the final result.

Consequently, the estimator p̂n is given by
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p̂n =
1

nĉn

n∑
i=1

1
â1(nk )
γ̂1

ĉ
γ̂1
n +ĉ

γ̂1
n (Xi−b̂1(nk ))−

â1(nk )
γ̂1

+b̂1(nk )+
â2(nk )
γ̂2

ĉ
γ̂2
n +ĉ

γ̂2
n (Yi−b̂2(nk ))−

â2(nk )
γ̂2

+b̂2(nk )>`n
.

(6.31)

Remember that various estimators exist for γ1, γ2, a1

(
n
k

)
, a2

(
n
k

)
, b1

(
n
k

)
and b2

(
n
k

)
. In

this thesis, the moment estimators of Remark 3.4 are used. Note that for M
(j)
n,2, γ̂2, â2

(
n
k

)
and b̂2

(
n
k

)
, X is replaced by Y in Equations (3.17), (3.18), (3.19) and (3.20).

Remark 6.4

Note that Lemma 6.1 is applied two times in this chapter. In Section 6.3 the lemma is

applied to derive an expression for the probability of the failure set, pn. In this section, the

lemma is applied again to find an estimator for the probability of the failure set, p̂n.

Remark 6.5 (Extension to trivariate framework)

In this thesis, the transaction process within ABN AMRO Bank is divided into three different

groups. Hence, we are interested in an estimator for the probability of the failure set in a

trivariate context. Fortunately, as discussed in Remark 6.3, this estimator can be extended

to the trivariate context. The estimator is given by

p̂n =
1

nĉn

n∑
i=1

1
â1(nk )
γ̂1

ĉ
γ̂1
n +ĉ

γ̂1
n (Xi−b̂1(nk ))−

â1(nk )
γ̂1

+b̂1(nk )+
â2(nk )
γ̂2

ĉ
γ̂2
n +ĉ

γ̂2
n (Yi−b̂2(nk ))−

â2(nk )
γ̂2

+b̂2(nk )+

1
â3(nk )
γ̂3

ĉ
γ̂3
n +ĉ

γ̂3
n (Zi−b̂3(nk ))−

â3(nk )
γ̂3

+b̂3(nk )>`n
(6.32)

6.5 Results from application

This section applies the estimator of the probability of the failure set, as defined by Equa-

tion (6.32), to the three dimensional data set of ABN AMRO Bank. The ABN AMRO

Bank data set consists of n = 824 independent and identically distributed observations

of the largest daily negative net cumulative positions of three different groups, which are

denoted by

DMk,d = max
Nd((k−1)T )+1≤i≤Nd(kT )

(−NCPi,d) (6.33)
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for k = 1, . . . , n and d = 1, 2, 3.

The aim is to estimate the multivariate risk metric: the aggregated liquidity buffer size. As

described in Section 6.1 of this chapter, this implies that those values of ` are of interest,

such that the probability

pn = P ((DM1, DM2, DM3) ∈ C) , (6.34)

of the failure set

C =
{

(DM1, DM2, DM3) : DM1 +DM2 +DM3 > `
}
, (6.35)

is low.

Both the probability pn and the value ` are unknown. In this chapter we proceed as fol-

lows. Different values of ` will be chosen. For each chosen value of `, the corresponding

probability pn will be estimated. In this manner, we obtain a table that contains values of

` with corresponding probability pn. In this thesis, we aim to find values of ` such that the

probability pn = 0.10, 0.05, 0.025, 0.01. These probabilities are common practice in risk

management. This procedure is summarized by Figure 6.2.

Figure 6.2: Graphic representation of estimation procedure.
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6.5.1 Estimation results of marginals

Author’s note: this section is confidential.

6.5.2 Estimation results of probability of failure set

Author’s note: this section is confidential.
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7

Conclusion and recommendations

The aim of this thesis was to propose a framework for intraday liquidity risk management

within ABN AMRO Bank, while taking different priorities of transactions into account.

For this purpose, two risk metrics were introduced. The univariate risk metric that pre-

sented the liquidity buffer size for each priority group separately, and the multivariate risk

metric that aggregated the liquidity buffer size while taking the diversification of the pri-

ority groups into account. The univariate risk metric provided a granular view, while the

multivariate risk metric specified the aggregated level of risk.

An extreme value theory application was proposed to obtain these risk metrics. Hence, the

theoretical fundamentals of EVT were elaborated in Chapter 3. Both results from univari-

ate and multivariate EVT were derived and discussed extensively.

Chapter 5 examined the use of ultra high frequency data in combination with results from

univariate EVT to obtain the univariate risk metric. The intraday risk measure was in-

troduced. By estimating the intraday risk measure, we were able to obtain the size of

the liquidity buffer for a specified time interval within a business day. A Monte Carlo

simulation algorithm was proposed to obtain an estimator for this intraday liquidity risk

measure. The ACD model, as introduced in Chapter 4, was used to define the time steps

of this simulation algorithm.

The performance of the intraday risk measure forecasts was evaluated for each group sep-

arately. Based on the frequency of transactions, different interval lengths were considered.

For the group with high priority payments, the business day was split up in 3, 4 and 5

intervals. The resulting interval lengths were 13200, 9900 and 7920 seconds. For the group

with moderate and low priority payments, the business day was split up in 5, 10 and 15

intervals. Hence, the resulting interval lengths were equal to 7920, 3960 and 2640 seconds.
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We forecasted the intraday risk measure 30 days out-of-sample. The main findings are

summarized below.

• For the group with high priority payments, the intraday risk measure performed well

out-of-sample in case an interval length of 13200 seconds was considered. In case

smaller interval lengths were considered, the forecasts only performed well for high

values of α: α = 0.1 and 0.05. For lower values of α the hypothesis of unconditional

coverage was rejected, due to an inaccurate coverage.

• For the group consisting of payments with moderate priority, the intraday risk mea-

sure performed satisfactory out-of-sample if an interval length of 7920 seconds was

selected. If smaller interval lengths were selected, the forecasts only performed satis-

factory for the highest level of α: α = 0.1 Again, an inaccurate coverage seemed to

be the cause.

• For the group with low priority payments, the forecasts performed adequate in case

the interval length of 7920 seconds was chosen. In case smaller interval were chosen,

the forecasts only performed well for low choices of α: α = 0.025 and 0.01. For higher

values of α both the hypotheses of unconditional coverage and independence were

rejected. The forecasts had an inaccurate coverage and clustered violations.

Chapter 6 investigated the use of multivariate EVT to obtain the multivariate risk metric.

Author’s note: this alinea is confidential.

7.1 Future developments

The following items could be taken into account when considering future developments.

• The diurnal component of the raw durations and net positions is estimated using step

functions, in order to avoid negative results. This is a rather simple solution to the

problem at hand. Other options for the diurnal component could be considered.
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• The Monte Carlo simulation algorithm is very time consuming. The implementation

of the algorithm could be improved.

• The aggregated buffer size is estimated based on historical data only. One could

investigate the use of the univariate framework to enable future predictions of the

aggregated buffer size. In case it is assumed that the different priority groups are

completely independent, the estimated models for the durations and net positions

could be used to obtain future predictions of the aggregated buffer size. In case this

assumption is not made, the dependence between the different priority groups serves

as a starting point for further research.
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Additional figures and tables Chapter 2

A.1 Mapping of heterogenous payment priority groups

Author’s note: this section is confidential.

95





B

Additional figures and tables Chapter 4

B.1 LM tests for specification of conditional mean function

B.1.1 LM test for additive misspecification

Theorem B.1 (LM test for additive misspecification)

Consider the ACD(p, q) model with εi
IID∼ Exp(λ) and the duration is additive misspecified,

i.e. instead of (4.8) we specify the duration as (4.47). Furthermore, assume that the stan-

dard regularity conditions (Engle, 2000, [Eng00]) apply, and that under the null hypothesis

H0 the function ξi satisfies ξi (Fi−1,θ1,θ2) = 0. Then, under H0, Equation (4.47) reduces

to Equation (4.8) and the LM test statistic

LM =

(
n∑
i=1

ĉib̂
′
i

)
×

(
n∑
i=1

b̂ib̂
′
i −

(
n∑
i=1

b̂iâ
′
i

)(
n∑
i=1

âiâ
′
i

)−1( n∑
i=1

âib̂
′
i

))−1

×

(
n∑
i=1

ĉib̂i

)
a∼ χ2

dim θ

where

ai(θ) =
1

ψi(θ)

∂ψi(θ)

∂θ

bi(θ,θ) =
1

ψi(θ)

∂ξi(θ,θ)

∂θ

ci(θ) =
xi

ψi(θ)
− 1

H0 is rejected at significance level (1− α)% in case LM > χ2
dim θ(1− α).

Proof B.1 (LM test for additive misspecification)

We refer to Appendix A in (Meitz et al., 2006, [MT06]) for the proof.

�
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B.1.2 LM test for multiplicative misspecification

Theorem B.2 (LM test for multiplicative misspecification)

Consider the ACD(p, q) model with εi
IID∼ Exp(λ) the duration is multiplicative misspec-

ified, i.e. instead of (4.8) we specify the durations as (4.48). Furthermore, assume that

the standard regularity conditions (Engle, 2000, [Eng00]) apply, and that under the null

hypothesis H0 the function ξi satisfies ξi (Fi−1,θ1,θ2) = 1. Then, under H0, Equation

(4.48) reduces to Equation (4.8) and the LM test statistic

LM =

(
n∑
i=1

ψ̂iĉib̂
′
i

)
×

(
n∑
i=1

ψ̂2
i b̂ib̂

′
i −

(
n∑
i=1

ψ̂ib̂iâ
′
i

)(
n∑
i=1

âiâ
′
i

)−1( n∑
i=1

ψ̂iâib̂
′
i

))−1

×

(
n∑
i=1

ψ̂iĉib̂i

)
a∼ χ2

dim θ

where

ai(θ) =
1

ψi(θ)

∂ψi(θ)

∂θ

bi(θ,θ) =
1

ψi(θ)

∂ξi(θ,θ)

∂θ

ci(θ) =
xi

ψi(θ)
− 1

H0 is rejected at significance level (1− α)% in case LM > χ2
dim θ(1− α).

Proof B.2 (LM test for multiplicative misspecification)

We refer to Appendix A in (Meitz et al., 2006, [MT06]) for the proof, which is almost identical.

�
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B.2 Descriptive statistics of (diurnally adjusted) durations

Author’s note: this section is confidential.

B.2.1 Descriptive statistics of (diurnally adjusted) durations for group

1

Author’s note: this section is confidential.

B.2.2 Descriptive statistics of (diurnally adjusted) durations for group

2

Author’s note: this section is confidential.

B.2.3 Descriptive statistics of (diurnally adjusted) durations for group

3

Author’s note: this section is confidential.
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B.3 Estimation results of diurnal components

Author’s note: this section is confidential.

B.3.1 Estimation results of diurnal components for group 1

Author’s note: this section is confidential.

B.3.2 Estimation results of diurnal components for group 2

Author’s note: this section is confidential.

B.3.3 Estimation results of diurnal components for group 3

Author’s note: this section is confidential.
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B.4 Estimation results of ACD models

B.4.1 Estimation results of ACD models for group 1

Log GACD1(1,2)

estimate SE p−value

ω -0.11012 0.02504 0.00001

α1 -0.01124 0.00326 0.00057

α2 - - -

β1 -1.14223 0.21770 0.00000

β2 -0.40705 0.18863 0.03095

γ 0.13207 0.00405 0.00000

κ 3.74017 0.09990 0.00000

max(p,q)∑
j=1

(αj + βj) < 1 -1.56052

log likelihood -9356.55

AIC 18725.10

BIC 18769.13

MSE 0.8691

QLB,1(15) 58

QLB,2(15) 42

linear dependence test R2 (Engle et al. (1998)) 0.0322

mean 1.0399

Dn 0.0433

Table B.1: Estimation results of fitting a Log GACD1(1, 2) model to the diurnally adjusted

durations of group 1 (i.e. estimation sample).
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Log GACD2(2,1) Log GACD2(2,2)

estimate SE p−value estimate SE p−value

ω -0.01520 0.00740 0.04009 -0.01697 0.00000 0.00000

α1 -0.04888 0.00664 0.00000 -0.04492 0.00502 0.00000

α2 0.04579 0.00676 0.00000 0.03962 0.00523 0.00000

β1 0.55084 0.01430 0.00000 0.19523 0.08366 0.01964

β2 - - - 0.29300 0.08555 0.00062

γ 0.13200 0.00411 0.00000 0.13251 0.00355 0.00000

κ 3.74764 0.09710 0.00000 3.73192 0.07514 0.00000

q∑
j=1

βj < 1 0.55084 0.48823

log likelihood -9339.48 -9335.32

AIC 18690.96 18684.65

BIC 18734.98 18736.01

MSE 0.8664 0.8647

QLB,1(15) 65 42

QLB,2(15) 39 25

linear dependence test R2 (Engle et al. (1998)) 0.0285 0.0283

mean 1.0406 1.0427

Dn 0.0459 0.0466

Table B.2: Estimation results of fitting a Log GACD2(2, 1) and Log GACD2(2, 2) model to

the diurnally adjusted durations of group 1 (i.e. estimation sample).
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B.4.2 Estimation results of ACD models for group 2

GACD(2,1)

estimate SE p−value

ω 0.00980 0.00026 0.00000

α1 0.00202 0.00099 0.04043

α2 0.10093 0.00151 0.00000

β1 0.89432 0.00108 0.00000

β2 - - -

γ 5.09275 0.13341 0.00000

κ 0.32594 0.00456 0.00000

p∑
j=1

αj +

q∑
j=1

βj < 1 0.99728

log likelihood -299308.38

AIC 598628.76

BIC 598693.42

MSE 2.1234

QLB,1(15) 2933

QLB,2(15) 122

linear dependence test R2 (Engle et al. (1998)) 0.0086

mean 0.9782

Dn 0.0683

Table B.3: Estimation results of fitting a GACD(2, 1) model to the diurnally adjusted dura-

tions of group 2 (i.e. estimation sample).
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Log GACD2(1,2) Log GACD2(2,1)

estimate SE p−value estimate SE p−value

ω -0.02353 0.00035 0.00000 -0.06674 0.00059 0.00000

α1 0.02361 0.00036 0.00000 0.01785 0.00084 0.00000

α2 - - - 0.04921 0.00094 0.00000

β1 1.67772 0.00517 0.00000 0.97618 0.00037 0.00000

β2 -0.68668 0.00509 0.00000 - - -

γ 4.72563 0.12405 0.00000 4.63026 0.12751 0.00000

κ 0.33865 0.00470 0.00000 0.34192 0.00501 0.00000

q∑
j=1

βj < 1 0.99104 0.97618

log likelihood -299905.82 -300363.05

AIC 599823.63 600738.10

BIC 599888.29 600802.76

MSE 488.9518 1337.5664

QLB,1(15) 135 294

QLB,2(15) 19 24

linear dependence test R2 (Engle et al. (1998)) 0.0105 0.0098

mean 0.9722 0.9730

Dn 0.0775 0.0776

Table B.4: Estimation results of fitting a Log GACD2(1, 2) and Log GACD2(2, 1) model to

the diurnally adjusted durations of group 2 (i.e. estimation sample).
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B.4.3 Estimation results of ACD models for group 3

Log EACD2(1, 2)

estimate SE p−value

ω -0.12197 0.00111 0.00000

α1 0.11948 0.00109 0.00000

α2 - - -

β1 0.86649 0.00977 0.00000

β2 0.09812 0.00959 0.00000

q∑
j=1

βj < 1 0.96462

log likelihood -467925.21

AIC 935858.41

BIC 935902.93

MSE 1.5158

QLB,1(15) 226

QLB,2(15) 171

linear dependence test R2 (Engle et al. (1998)) 0.0041

mean 1.0000

Dn 0.0558

excess dispersion test (Engle et al. (1998)) 73.17

Table B.5: Estimation results of fitting a Log EACD2(1, 2) model to the diurnally adjusted

durations of group 3 (i.e. estimation sample).
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Log WACD2(1, 2)

estimate SE p−value

ω -0.12252 0.00128 0.00000

α1 0.11999 0.00126 0.00000

α2 - - -

β1 0.86454 0.01102 0.00000

β2 0.10071 0.01081 0.00000

γ 0.94425 0.00103 0.00000

q∑
j=1

βj < 1 0.96525

log likelihood -466502.12

AIC 933014.24

BIC 933069.89

MSE 1.5357

QLB,1(15) 243

QLB,2(15) 168

linear dependence test R2 (Engle et al. (1998)) 0.0042

mean 1.0006

Dn 0.0445

excess dispersion test (Engle et al. (1998)) 23.22

Table B.6: Estimation results of fitting a Log WACD2(1, 2) model to the diurnally adjusted

durations of group 3 (i.e. estimation sample).
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Log GACD2(1, 1)

estimate SE p−value

ω -0.11585 0.00067 0.00000

α1 0.11438 0.00068 0.00000

α2 - - -

β1 0.96796 0.00056 0.00000

β2 - - -

γ 2.28858 0.02760 0.00000

κ 0.58495 0.00409 0.00000

q∑
j=1

βj < 1 0.96796

log likelihood -463770.85

AIC 927551.70

BIC 927607.35

MSE 1.4904

QLB,1(15) 399

QLB,2(15) 158

linear dependence test R2 (Engle et al. (1998)) 0.0039

mean 0.9947

Dn 0.0450

Table B.7: Estimation results of fitting a Log GACD2(1, 1) model to the diurnally adjusted

durations of group 3 (i.e. estimation sample).
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C

Additional figures and tables Chapter 5

C.1 Descriptive statistics (diurnally adjusted) net positions

Author’s note: this section is confidential.

C.1.1 Descriptive statistics of (diurnally adjusted) net positions for

group 1

Author’s note: this section is confidential.

C.1.2 Descriptive statistics of (diurnally adjusted) net positions for

group 2

Author’s note: this section is confidential.

C.1.3 Descriptive statistics of (diurnally adjusted) net positions for

group 3

Author’s note: this section is confidential.
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C.2 AICc values

C.2.1 AICc values for group 1

p−order

q−order 0 1 2 3

0 31799 31801 31803 31794

1 31801 31803 31791 31782

2 31803 31790 31775 31775

3 31794 31781 31774 31776

Table C.1: AICc values corresponding to the ARMA(p, q) models estimated on the diurnally

adjusted net positions of group 1 (i.e. estimation sample). The preferred ARMA(p, q)

model, is the one with minimum AICc value: ARMA(2,3).

C.2.2 AICc values for group 2

p−order

q−order 0 1 2 3 4 5

0 1239247 1001716 1001565 1001416 1001387 1001389

1 1137520 1001559 1001397 1001385 1001389 1001388

Table C.2: AICc values corresponding to the ARIMA(p, q) models estimated on the diurnally

adjusted net positions of group 2 (i.e. estimation sample). The preferred ARIMA(p, q)

model, is the one with minimum AICc value: ARIMA(1,1,3).

C.2.3 AICc values for group 3

p−order

q−order 0 1 2 3 4 5

0 1428478 1428080 1427921 1427894 1427890 1427890

1 1428066 1427885 1427886 1427862 1427888 1427890

2 1427912 1427886 1427884 1427861 1427861 1427858

3 1427892 1427861 1427861 1427863 1427862 1427850

4 1427889 1427887 1427887 1427863 1427881 1427850

5 1427890 1427889 1427859 1427850 1427850 1427850

Table C.3: AICc values corresponding to the ARMA(p, q) models estimated on the diurnally

adjusted net positions of group 3 (i.e. estimation sample). The preferred ARMA(p, q)

model, is the one with minimum AICc value: ARMA(3,5), ARMA(4,5), ARMA(5,3),

ARMA(5,4) and ARMA(5,5). ARMA(3,5) is selected, due to the number of parameters

and significant coefficients.

110 Chapter C Additional figures and tables Chapter 5



C.3 Estimation results of AR(I)MA(-EGARCH) models

C.3.1 Estimation results of ARMA model for group 1

ARMA(2,3)

estimate SE p−value

c 0.04880 0.01014 0.00000

ξ1 1.43614 0.12707 0.00000

ξ2 -0.68611 0.10320 0.00000

θ1 -1.43738 0.12672 0.00000

θ2 0.68097 0.10261 0.00000

θ3 -0.01584 0.00135 0.00000

Table C.4: Estimation results of fitting an ARMA(2,3) model to the diurnally adjusted net

positions of group 1 (i.e. estimation sample).

C.3.2 Estimation results of ARIMA-EGARCH model for group 2

ARIMA(1,1,3)

estimate SE p−value

ξ1 0.33028 0.02214 0.00000

θ1 -0.54379 0.11007 0.00000

θ2 0.32428 0.02160 0.00000

θ3 -0.01472 0.00063 0.00000

Table C.5: Estimation results of fitting an ARIMA(1,1,3) model to the diurnally adjusted

net positions of group 2 (i.e. estimation sample).

EGARCH(1,1)

estimate SE p−value

ω -0.10522 0.00027 0.00000

α1 -0.12215 0.00040 0.00000

β1 0.73030 0.00014 0.00000

Table C.6: Estimation results of fitting an EGARCH(1,1) model to the residuals, obtained

after fitting an ARIMA(1,1,3) model to the diurnally adjusted net positions of group 2 (i.e.

estimation sample).
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C.3.3 Estimation results of ARMA model for group 3

ARMA(3,5)

estimate SE p−value

c 0.00066 0.00033 0.04909

ξ1 0.57176 0.11008 0.00000

ξ2 -0.44535 0.12527 0.00038

ξ3 0.69576 0.08185 0.00000

θ1 -0.54379 0.11007 0.00000

θ2 0.44746 0.12329 0.00028

θ3 -0.68544 0.07998 0.00000

θ4 -0.01183 0.00150 0.00000

θ5 -0.01119 0.00165 0.00000

Table C.7: Estimation results of fitting an ARMA(3,5) model to the diurnally adjusted net

positions of group 1 (i.e. estimation sample).
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C.4 Backtesting plots

Author’s note: this section is confidential.

C.4.1 Backtesting plots for group 1

Author’s note: this section is confidential.

C.4.2 Backtesting plots for group 2

Author’s note: this section is confidential.

C.4.3 Backtesting plots for group 3

Author’s note: this section is confidential.
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Additional figures and tables Chapter 6

D.1 Estimation results moment estimators

D.1.1 Estimation results moment estimators for group 1
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Figure D.1: Estimates of γ1, a1

(
n
k

)
and b1

(
n
k

)
for various values of k (i.e. 10 ≤ k ≤ 400),

obtained by using the moment estimators given by Equations (3.18), (3.19) and (3.20).

The estimates are based on the largest daily negative net cumulative positions of the ABN

AMRO Bank transaction data set, see Equation (6.1) for d = 1.
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D.1.2 Estimation results moment estimators for group 2
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Figure D.2: Estimates of γ2, a2

(
n
k

)
and b2

(
n
k

)
for various values of k (i.e. 10 ≤ k ≤ 400),

obtained by using the moment estimators given by Equations (3.18), (3.19) and (3.20).

The estimates are based on the largest daily negative net cumulative positions of the ABN

AMRO Bank transaction data set, see Equation (6.1) for d = 2.

D.1.3 Estimation results moment estimators for group 3
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Figure D.3: Estimates of γ3, a3

(
n
k

)
and b3

(
n
k

)
for various values of k (i.e. 10 ≤ k ≤ 400),

obtained by using the moment estimators given by Equations (3.18), (3.19) and (3.20).

The estimates are based on the largest daily negative net cumulative positions of the ABN

AMRO Bank transaction data set, see Equation (6.1) for d = 3.

116 Chapter D Additional figures and tables Chapter 6



D.2 Estimation results probability of failure set

Author’s note: this section is confidential.

D.2.1 Estimation results probability of failure set for `n = 4.0

Author’s note: this section is confidential.

D.2.2 Estimation results probability of failure set for `n = 4.5

Author’s note: this section is confidential.

D.2.3 Estimation results probability of failure set for `n = 5.0

Author’s note: this section is confidential.

D.2.4 Estimation results probability of failure set for `n = 5.5
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E

Proofs and derivations

E.1 Proof Corollary 3.1

From Equation (3.4) we get by taking logarithms left and right

lim
n→∞

Fn(anx+ bn) = Gγ(x)

⇐⇒ lim
n→∞

logFn(anx+ bn) = logGγ(x)

⇐⇒ lim
n→∞

n logF (anx+ bn) = logGγ(x) .

This implies that lim
n→∞

F (anx+ bn) = 1. Now, use the following inequality

t < − log(1− t) < t

1− t for 0 < t < 1

⇐⇒ 1 <
− log(1− t)

t
<

1

1− t for 0 < t < 1

=⇒ 1 <
− logF (anx+ bn)

1− F (anx+ bn)
<

1

F (anx+ bn)
.

Hence

lim
n→∞

− logF (anx+ bn)

1− F (anx+ bn)
= 1 .
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Thus

lim
n→∞

n logF (anx+ bn) = logGγ(x)

=⇒ lim
n→∞

−n(1− F (anx+ bn)) = logGγ(x)

⇐⇒ lim
n→∞

n(1− F (anx+ bn)) = − logGγ(x) .
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E.2 Proof Theorem 3.2

From the assumption that Equations (3.22) and (3.23) hold, follows

lim
n→∞

Fn(anx+ bn,∞) = G(x,∞) = Gγ1(x)

lim
n→∞

Fn(∞, cnx+ dn) = G(∞, y) = Gγ2(y) .

Making use of item (4) of Theorem 3.1, it follows that there exist positive functions a1, a2

such that for x, y > 0

lim
t→∞

U1(tx)− U1(t)

a1(t)
=
xγ1 − 1

γ1
,

lim
t→∞

U2(ty)− U2(y)

a2(t)
=
yγ2 − 1

γ2
.

Now, let

gt(x) =
U1(tx)− U1(t)

a1(t)
=⇒ U1(tx) = a1(t)gt(x) + U1(t) ,

ht(x) =
U2(ty)− U2(t)

a2(t)
=⇒ U2(ty) = a2(t)ht(y) + U2(t) .

Hence, by the continuity of G and the monotonicity of F , we conclude

lim
n→∞

Fn(U1(nx), U2(ny)) = lim
n→∞

Fn (a1(n)gn(x) + U1(n), a2(n)hn(y) + U2(n))

= G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
.
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E.3 Reformulation Theorem 3.3

lim
n→∞

Fn (U1(nx), U2(ny)) = lim
n→∞

F (U1(nx), U2(ny))n

= lim
n→∞

P (X ≤ U1(nx), Y ≤ U2(ny))n

= lim
n→∞

P

(
X ≤ F←1

(
1− 1

nx

)
, Y ≤ F←2

(
1− 1

ny

))n

= lim
n→∞

P

(
F1(X) ≤ 1− 1

nx
, F2(Y ) ≤ 1− 1

ny

)n

= lim
n→∞

P

(
1

1− F1(X)
≤ nx, 1

1− F2(Y )
≤ ny

)n

= lim
n→∞

P

(
1

1− F1(X1)
≤ nx, 1

1− F2(Y1)
≤ ny

)
. . . P

(
1

1− F1(Xn)
≤ nx, 1

1− F2(Yn)
≤ ny

)

= lim
n→∞

P

(
1

1− F1(X1)
≤ nx, 1

1− F2(Y1)
≤ ny, . . . , 1

1− F1(Xn)
≤ nx, 1

1− F2(Yn)
≤ ny

)

= lim
n→∞

P
(
X̃1 ≤ nx, Ỹ1 ≤ ny, . . . , X̃n ≤ nx, Ỹn ≤ ny

)
= lim
n→∞

P
(

max
(
X̃1, . . . , X̃n

)
≤ nx,max

(
Ỹ1, . . . , Ỹn

)
≤ ny

)
(∗)
= lim

n→∞
P
(
M̃x,n ≤ nx, M̃y,n ≤ ny

)
= lim
n→∞

P

(
M̃x,n

n
≤ x, M̃y,n

n
≤ y
)
.

where

(∗) M̃x,n = max
(
X̃1, . . . , X̃n

)
with X̃i =

1

1− F1(Xi)
for i = 1, . . . , n ,

M̃y,n = max
(
Ỹ1, . . . , Ỹn

)
with Ỹi =

1

1− F2(Yi)
for i = 1, . . . , n .
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E.4 Proof Proposition 3.1

χ = lim
t→∞

P
(
X > U1(t)

∣∣∣ Y > U2(t)
)

= lim
t→∞

P (X > U1(t), Y > U2(t))

P (Y > U2(t))

= lim
t→∞

P (X > U1(t)) + P (Y > U2(t))− P (X > U1(t) ∪ Y > U2(t))

P (Y > U2(t))

= lim
t→∞

1− P (X ≤ U1(t)) + 1− P (Y ≤ U2(t))− P (X > U1(t) ∪ Y > U2(t))

1− P (Y ≤ U2(t))

= lim
t→∞

2− P (X ≤ U1(t))− P (Y ≤ U2(t))− P (X > U1(t) ∪ Y > U2(t))

1− P (Y ≤ U2(t))

= lim
t→∞

2− P
(
X ≤ F←1

(
1− 1

t

))
− P

(
Y ≤ F←2

(
1− 1

t

))
− P (X > U1(t) ∪ Y > U2(t))

1− P
(
Y ≤ F←2

(
1− 1

t

))
= lim
t→∞

2− F1

(
F←1

(
1− 1

t

))
− F2

(
F←2

(
1− 1

t

))
− P (X > U1(t) ∪ Y > U2(t))

1− F2

(
F←2

(
1− 1

t

))
= lim
t→∞

2−
(
1− 1

t

)
−
(
1− 1

t

)
− P (X > U1(t) ∪ Y > U2(t))

1−
(
1− 1

t

)
= lim
t→∞

2− 1 + 1
t
− 1 + 1

t
− P (X > U1(t) ∪ Y > U2(t))

1− 1 + 1
t

= lim
t→∞

2
t
− P (X > U1(t) ∪ Y > U2(t))

1
t

= lim
t→∞

t

(
2

t
− P (X > U1(t) ∪ Y > U2(t))

)

= lim
t→∞

2− tP (X > U1(t) ∪ Y > U2(t))

= lim
t→∞

2− t (1− P (X ≤ U1(t) ∪ Y ≤ U2(t)))

= lim
t→∞

2− t (1− F (U1(t), U2(t)))

(∗)
= 2 + logG0(1, 1)

(∗∗)
= 2− log e−2

= 2− 2

= 0 ,
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where

(∗) Use Corollary 3.2 .

(∗∗) G0(x, y) = G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)

= G

(
xγ1 − 1

γ1

)
G

(
yγ2 − 1

γ2

)

= e
−
(
+γ1

(
xγ1−1
γ1

))− 1
γ1
e
−
(
+γ2

(
yγ2−1
γ2

))− 1
γ2

= e−(1−xγ1−1)
− 1
γ1
e−(1−yγ2−1)

− 1
γ2

= e−(xγ1 )
− 1
γ1
e−(yγ2 )

− 1
γ2

= e−x
−1

e−y
−1

.

�

124 Chapter E Proofs and derivations



E.5 Derivation Remark 4.2

ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j

⇐⇒ ψi + xi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j + xi

⇐⇒ xi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j + xi − ψi

⇐⇒ xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
max(p,q)∑
j=1

βjxi−j +

q∑
j=1

βjψi−j + xi − ψi

(∗)⇐⇒ xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βjxi−j +

q∑
j=1

βjψi−j + xi − ψi

⇐⇒ xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

(βjxi−j − βjψi−j) + xi − ψi

⇐⇒ xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βj (xi−j − ψi−j) + xi − ψi

(∗∗)
=⇒ xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βjηi−j + ηi ,

where

(∗) βj = 0 ∀ j > q .

(∗∗) ηi = xi − ψi .

�
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E.6 Derivation Remark 4.3

Assume xi is covariance stationary and let E(xi) = µ, then we can derive the following

xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βjηi−j + ηi

⇐⇒ xi −
max(p,q)∑
j=1

(αj + βj)xi−j = ω −
q∑
j=1

βjηi−j + ηi

=⇒ E

xi − max(p,q)∑
j=1

(αj + βj)xi−j

 = E

(
ω −

q∑
j=1

βjηi−j + ηi

)

=⇒ E (xi)−
max(p,q)∑
j=1

(αj + βj)E (xi−j) = ω −
q∑
j=1

βjE (ηi−j) + E (ηi)

=⇒ µ−
max(p,q)∑
j=1

(αj + βj)µ = ω −
q∑
j=1

βjE (ηi−j) + E (ηi)

=⇒ µ−
max(p,q)∑
j=1

(αj + βj)µ = ω −
q∑
j=1

βjE (xi−j − ψi−j) + E (xi − ψi)

=⇒ µ−
max(p,q)∑
j=1

(αj + βj)µ = ω −
q∑
j=1

βjE
(
E
(
xi−j − ψi−j

∣∣∣ Fi−1

))
+ E

(
E
(
xi − ψi

∣∣∣ Fi−1

))

=⇒ µ−
max(p,q)∑
j=1

(αj + βj)µ = ω −
q∑
j=1

βjE (ψi−j − ψi−j) + E (ψi − ψi)

⇐⇒ µ−
max(p,q)∑
j=1

(αj + βj)µ = ω

⇐⇒ µ

1−
max(p,q)∑
j=1

(αj + βj)

 = ω

⇐⇒ µ =
ω

1−
max(p,q)∑
j=1

(αj + βj)

⇐⇒ µ =
ω

1−
max(p,q)∑
j=1

αj −
max(p,q)∑
j=1

βj

(∗)⇐⇒ µ =
ω

1−
p∑
j=1

αj −
q∑
j=1

βj

,
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where

(∗) αj = 0 ∀ j > p, βj = 0 ∀ j > q .
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E.7 Derivation Remark 4.4

First it should be noted that

xi = eκiεi

⇐⇒ lnxi = ln eκiεi

⇐⇒ lnxi = ln eκi + ln εi

⇐⇒ lnxi = κi + ln εi

⇐⇒ lnxi − κi = ln εi .

Then we can derive

κi = ω̄ +

p∑
j=1

αj ln εi−j +

q∑
j=1

βjκi−j

⇐⇒ κi = ω̄ +

p∑
j=1

αj(lnxi−j − κi) +

q∑
j=1

βjκi−j

⇐⇒ κi = ω̄ +

p∑
j=1

αj lnxi−j +

max(p,q)∑
j=1

(βj − αj)κi−j

(∗)
=⇒ κi = ω̄ +

p∑
j=1

αj lnxi−j +

max(p,q)∑
j=1

γjκi−j

⇐⇒ κi + lnxi = ω̄ +

p∑
j=1

αj lnxi−j +

max(p,q)∑
j=1

γjκi−j + lnxi

⇐⇒ lnxi = ω̄ +

p∑
j=1

αj lnxi−j +

max(p,q)∑
j=1

γjκi−j + lnxi − κi

⇐⇒ lnxi = ω̄ +

max(p,q)∑
j=1

(αj + γj) lnxi−j −
max(p,q)∑
j=1

γj lnxi−j +

max(p,q)∑
j=1

γjκi−j + lnxi − κi

⇐⇒ lnxi = ω̄ +

max(p,q)∑
j=1

(αj + γj) lnxi−j −
max(p,q)∑
j=1

(γj lnxi−j + γjκi−j) + lnxi − κi

⇐⇒ lnxi = ω̄ +

max(p,q)∑
j=1

(αj + γj) lnxi−j −
max(p,q)∑
j=1

γj (lnxi−j + κi−j) + lnxi − κi

(∗∗)
=⇒ lnxi = ω̄ +

max(p,q)∑
j=1

δj lnxi−j +

max(p,q)∑
j=1

θj ln εi−j + ln εi

⇐⇒ lnxi = ω̄ +

max(p,q)∑
j=1

δj lnxi−j +

max(p,q)∑
j=1

θj(ln εi−j − E(ln εi−j)) +

max(p,q)∑
j=1

θjE(ln εi−j) + ln εi − E(ln εi) + E(ln εi)

⇐⇒ lnxi = ω̄ +

max(p,q)∑
j=1

θjE(ln εi−j) + E(ln εi) +

max(p,q)∑
j=1

δj lnxi−j +

max(p,q)∑
j=1

θj(ln εi−j − E(ln εi−j)) + ln εi − E(ln εi)

(∗∗∗)
=⇒ lnxi = ω̃ +

max(p,q)∑
j=1

δj lnxi−j +

max(p,q)∑
j=1

θjνi−j + νi ,
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where

(∗) γj = βj − αj .

(∗∗) δj = αj + γj , θj = −γj .

(∗ ∗ ∗) ω̃ = ω̄ +

max(p,q)∑
j=1

θjE(ln εi) + E(ln εi), νi = ln εi − E(ln εi) .

�
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E.8 Proof Remark 4.5

Define the inverse of G0 by G−1
0 (z) = min{y : G0(y) ≤ z}.

Using the substitution G−1
0 (z) = y yields

Dn = sup
y∈R

∣∣∣Ĝn(y)−G0(y)
∣∣∣

= sup
z∈[0,1]

∣∣∣Ĝn(G−1
0 (z))−G0(G−1

0 (z))
∣∣∣

= sup
z∈[0,1]

∣∣∣ 1
n

n∑
i=1

1
Yi≤G

−1
0 (z)

− z
∣∣∣

= sup
z∈[0,1]

∣∣∣ 1
n

n∑
i=1

1G0(Yi)≤z − z
∣∣∣ .

Additionally, note that for z ∈ [0, 1]

P (G0(Yi) ≤ z) = P (Yi ≤ G−1
0 (z))

= G0(G−1
0 (z))

= z .

Hence, the sequence of G0(Yi)
IID∼ U(0, 1) for i ≤ n.

Using the substitution G0(Yi) = Ui for i ≤ n yields

Dn = sup
z∈[0,1]

∣∣∣ 1
n

n∑
i=1

1Ui≤z − z
∣∣∣ ,

which concludes the proof.

�
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E.9 Derivation one-step and i-step ahead forecasts of durations

κ̂n+1 = E
(
κn+1

∣∣∣ Fn)
= E

(
ω +

p∑
j=1

αjεn+1−j +

q∑
j=1

βjκn+1−j

∣∣∣ Fn)

= ω +

p∑
j=1

αj +

q∑
j=1

βj ln x̃n+1−j

κ̂n+2 = E
(
κn+2

∣∣∣ Fn)
= E

(
ω +

p∑
j=1

αjεn+2−j +

q∑
j=1

βjκn+2−j

∣∣∣ Fn)

= ω +

p∑
j=1

αj +

q∑
j=1

βjE
(
φn+2−j

∣∣∣ Fn)
= ω +

p∑
j=1

αj + β1E
(
κn+1

∣∣∣ Fn)+

q∑
j=2

βjE
(
κn+2−j

∣∣∣ Fn) for q > 2, i > 1

= ω +

p∑
j=1

αj + β1κ̂n+1 +

q∑
j=2

βj ln x̃n+2−j for q > 2

κ̂n+i = E
(
κn+i

∣∣∣ Fn)
= E

(
ω +

p∑
j=1

αjεn+i−j +

q∑
j=1

βjκn+i−j

∣∣∣ Fn)

= ω +

p∑
j=1

αj +

q∑
j=1

βjE
(
κn+i−j

∣∣∣ Fn)

= ω +

p∑
j=1

αj +

i−1∑
j=1

βjE
(
κn+i−j

∣∣∣ Fn)+

q∑
j=i

βjE
(
κn+i−j

∣∣∣ Fn) for q > i

= ω +

p∑
j=1

αj +

i−1∑
j=1

βj κ̂n+i−j +

q∑
j=i

βj ln x̃n+i−j for q > i, i > 1
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E.10 Derivation one-step and i-step ahead forecasts of net

positions

σ̂2
n+1 = E

(
σ2
n+1

∣∣∣ Fn)
= E

(
ω̇ +

r∑
j=1

α̇j

(
ÑP c,n+1−j√
xn+1−j

)2

+

s∑
j=1

β̇jσ
2
n+1−j

∣∣∣ Fn)

= ω̇ +

r∑
j=1

α̇j

(
ÑP c,n+1−j√
xn+1−j

)2

+

s∑
j=1

β̇jσ
2
n+1−j

σ̂2
n+2 = E

(
σ2
n+2

∣∣∣ Fn)
= E

(
ω̇ +

r∑
j=1

α̇j

(
ÑP c,n+2−j√
xn+2−j

)2

+

s∑
j=1

β̇jσ
2
n+2j

∣∣∣ Fn)

= E

(
ω̇ +

r∑
j=1

α̇j

(√
xn+2−jσn+2−jνn+2−j

√
xn+2−j

)2

+

s∑
j=1

β̇jσ
2
n+2−j

∣∣∣ Fn)

= E

(
ω̇ +

r∑
j=1

α̇jσ
2
n+2−jν

2
n+2−j +

s∑
j=1

β̇jσ
2
n+2−j

∣∣∣ Fn)

= E

ω̇ +

max(r,s)∑
j=1

(
α̇jν

2
n+2−j + β̇j

)
σ2
n+2−j

∣∣∣ Fn


= ω̇ +

max(r,s)∑
j=1

(
α̇j + β̇j

)
E
(
σ2
n+2−j

∣∣∣ Fn)

= ω̇ +
(
α̇1 + β̇1

)
E
(
σ2
n+1

∣∣∣ Fn)+

max(r,s)∑
j=2

(
α̇j + β̇j

)
E
(
σ2
n+2−j

∣∣∣ Fn) for max(r, s) > 2

= ω̇ +
(
α̇1 + β̇1

)
σ̂2
n+1 +

max(r,s)∑
j=2

(
α̇j + β̇j

)
E
(
σ2
n+2−j

∣∣∣ Fn) for max(r, s) > 2

σ̂2
n+i = E

(
σ2
n+i

∣∣∣ Fn)
= E

(
ω̇ +

r∑
j=1

α̇j

(
ÑP c,n+i−j√
xn+i−j

)2

+

s∑
j=1

β̇jσ
2
n+i−j

∣∣∣ Fn)

= E

(
ω̇ +

r∑
j=1

α̇j

(√
xn+i−jσn+i−jνn+i−j

√
xn+i−j

)2

+

s∑
j=1

β̇jσ
2
n+i−j

∣∣∣ Fn)

= E

(
ω̇ +

r∑
j=1

α̇jσ
2
n+i−jν

2
n+i−j +

s∑
j=1

β̇jσ
2
n+i−j

∣∣∣ Fn)

= E

ω̇ +

max(r,s)∑
j=1

(
α̇jν

2
n+i−j + β̇j

)
σ2
n+i−j

∣∣∣ Fn


= ω̇ +

max(r,s)∑
j=1

(
α̇j + β̇j

)
E
(
σ2
n+i−j

∣∣∣ Fn)
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= ω̇ +

i−1∑
j=1

(
α̇j + β̇j

)
E
(
σ2
n+i−j

∣∣∣ Fn)+

max(r,s)∑
j=i

(
α̇j + β̇j

)
E
(
σ2
n+i−j

∣∣∣ Fn) for max(r, s) > i, i > 1

= ω̇ +

i−1∑
j=1

(
α̇j + β̇j

)
σ̂2
n+i−j +

max(r,s)∑
j=i

(
α̇j + β̇j

)
σ2
n+i−j for max(r, s) > i, i > 1
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E.11 Derivation Remark 5.5

From item (5) of Theorem 3.1 we deduce

lim
t↑xF

1− F (t+ xu(t))

1− F (t)
= (1 + γx)

− 1
γ

+

⇐⇒ lim
t↑xF

1− P (X ≤ t+ xu(t))

1− F (t)
= (1 + γx)

− 1
γ

+

⇐⇒ lim
t↑xF

1− P
(
X−t
u(t)
≤ x

)
1− F (t)

= (1 + γx)
− 1
γ

+

⇐⇒ lim
t↑xF

P
(
X−t
u(t)

> x
)

1− F (t)
= (1 + γx)

− 1
γ

+

⇐⇒ lim
t↑xF

P

(
X − t
u(t)

> x

)
= (1− F (t)) (1 + γx)

− 1
γ

+ .

Now, using Definition 5.1, we obtain

P
(
zl > IRMl (α)

∣∣∣ Il−1

)
= α

⇐⇒ P

(
zl − t
u(t)

>
IRMl (α)− t

u(t)

∣∣∣ Il−1

)
= α

=⇒ (1− F (t))

(
1 + γ

IRMl(α)− t
u(t)

)− 1
γ

+

≈ α

⇐⇒
(

1 + γ
IRMl(α)− t

u(t)

)− 1
γ

+

≈ α

(1− F (t))

⇐⇒ 1 + γ
IRMl(α)− t

u(t)
≈
(

α

(1− F (t))

)−γ
⇐⇒ γ

IRMl(α)− t
u(t)

≈
(

α

(1− F (t))

)−γ
− 1

⇐⇒ IRMl(α)− t ≈ u(t)

γ

((
α

(1− F (t))

)−γ
− 1

)

⇐⇒ IRMl(α) ≈ t+
u(t)

γ

((
α

(1− F (t))

)−γ
− 1

)
.

Now, choosing t = b̂
(
P
k

)
= and u(t) = a

(
1

1−F (t)

)
= â

(
P
k

)
gives the result

ÎRM l(α) = b̂

(
P

k

)
+
â
(
P
k

)
γ̂

((
Pα

k

)−γ̂
− 1

)
,
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where γ̂, â
(
P
k

)
and b̂

(
P
k

)
are the moment estimators of Remark 3.4, where n is replaced

by P and X is replaced by zl (see Equations (5.27), (5.28) and (5.29)).

�
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E.12 Proof Lemma 6.1

From the assumption that Equations (6.4), (6.5) and (6.6) hold, Corollary 3.2 tells us that

for each continuity point (x, y) for which 0 < G0(x, y) < 1 we have

lim
t→∞

t (1− F (U1(tx), U2(ty)) = − logG0(x, y) . (E.1)

Additionally, define for x > 0

gt(x) =
U1(tx)− U1(t)

a1(t)
,

ht(x) =
U2(ty)− U2(t)

a2(t)
,

where a1 and a2 are positive functions. Now, making use of item (4) of Theorem 3.1, deduce

lim
t→∞

t(1− F (U1(tx), U2(ty)) = lim
t→∞

t(1− P (X ≤ U1(tx), Y ≤ U2(ty))

= lim
t→∞

t (1− P (X ≤ a1(t)gt(x) + U1(t), Y ≤ a2(t)ht(y) + U2(t)))

= lim
t→∞

tP (X > a1(t)gt(x) + U1(t) ∪ Y > a2(t)ht(y) + U2(t))

= lim
t→∞

tP

(
X > a1(t)

xγ1 − 1

γ1
+ U1(t) ∪ Y > a2(t)

yγ2 − 1

γ2
+ U2(t)

)
= lim
t→∞

tP

(
X − U1(t)

a1(t)
>
xγ1 − 1

γ1
∪ Y − U2(t)

a2(t)
>
yγ2 − 1

γ2

)
= lim
t→∞

tP

((
1 + γ1

X − U1(t)

a1(t)

) 1
γ1

> x ∪
(

1 + γ2
Y − U2(t)

a2(t)

) 1
γ2

> y

)
.

(E.2)

Hence, using Equations (E.1) and (E.2) in combination with Theorem 3.3, results in

lim
t→∞

tP

((
1 + γ1

X − U1(t)

a1(t)

) 1
γ1

> x ∪
(

1 + γ2
Y − U2(t)

a2(t)

) 1
γ2

> y

)
= V (x, y) ,

where the function V (x, y) is defined by Equation (3.32). Remark 3.6 tells us that the

function V (x, y) determines the exponent measure. Hence, a more general expression is

obtained, i.e.
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lim
t→∞

tP

(((
1 + γ1

X − U1(t)

a1(t)

) 1
γ1

,

(
1 + γ2

Y − U2(t)

a2(t)

) 1
γ2

)
∈ Ax,y

)
= ν(Ax,y) ,

where

Ax,y :=
{

(s, t) ∈ R2
+ : s > x ∪ t > y

}
.

Now, let k = k(n)→∞, k
n
→ 0 as n→∞. Replacing t by n

k
completes the proof

lim
n→∞

n

k
P

(1 + γ1

X − U1

(
n
k

)
a1

(
n
k

) ) 1
γ1

,

(
1 + γ2

Y − U2

(
n
k

)
a2

(
n
k

) ) 1
γ2

 ∈ Ax,y
 = ν(Ax,y) .
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