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SUMMARY

The aim of the thesis is to develop methods and algorithms for the development of a
robust perception system that is capable of dealing with adverse weather conditions.
Robust environmental perception is important in order to guarantee safety for the au-
tomated vehicle and the road users in the neighborhood. To create a robust perception
system, a sensor setup should be selected with multiple sensing modalities. Commonly
used sensing modalities in the field of intelligent vehicles are lidar, camera and radar
sensors. This thesis addresses three subjects that are important for robust perception,
namely sensor selection, extrinsic calibration and object tracking.

The first subject that this thesis addresses is sensor selection. The sensor setup should
be able to fulfill the requirements for automated driving applications. The position and
velocity of the objects should be estimated accurate enough. Therefore, the predicted
tracking performance limits of the sensor setup should be estimated in an early design
phase. A systematic approach is presented that is able to predict tracking performance
limits for a setup. This approach can also be used to predict the performance in case of
sensor failure, by computing the tracking performance limits for the sensor setup with-
out the failing sensor.

The second addressed subject is joint extrinsic calibration of sensor setups consist-
ing of one or multiple lidar, camera and radar sensors. Extrinsic calibration estimates
the orientation and the position of the sensors to express the sensor data in a common
coordinate frame. This is relevant for robots and intelligent vehicles. The requirement
for joint extrinsic calibration is the availability of a calibration target that facilitates ac-
curate detections for all sensing modalities. A calibration target has been designed for
that purpose. For joint extrinsic sensor calibration, three optimization configurations
are identified. The first configuration optimizes all sensor-to-sensor errors with respect
to a reference sensor. The second configuration optimizes all sensor-to-sensor errors in
combination with a loop closure constraint. The last configuration jointly estimates the
sensor poses and calibration board poses in a probabilistic model. Experiments with
a sensor setup consisting of a lidar, a radar and a stereo camera suggest that the con-
figuration that includes all sensor-to-sensor errors in combination with a loop closure
constraint performs best. Apart from estimating the relative pose of the sensors with
respect to each other, it is also important to know where exactly in the vehicle the sen-
sors are located. Therefore the sensors need to be calibrated with respect to the body
reference frame of the robot. For that, two requirements are identified, namely the need
for an external sensor that is able to ‘see’ the car and the calibration board and a set of
3D reference points. The set of 3D reference points are needed to determine the pose of
the body reference frame and these points can be obtained by the method Markers that
uses visual markers placed in the environment or by the method Human labeling using
geometrical shape fitting. Experiments showed that Human labeling using geometrical
shape fitting provides more accurate results, since the median rotation error around the

vii
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vertical axis 0.33° for the method Markers and 0.02° for the method Human labeling.

The third and last subject of this thesis is object tracking in adverse weather and illu-
mination conditions. Object tracking is the process of estimating the position, velocity
and other properties of all objects using detections of consecutive moments in time. De-
tecting road users in camera images is more challenging in adverse weather and illumi-
nation conditions. This means that the number of false negatives increases. The tracking
performance is affected if this is not taken into account. The thesis proposes an adap-
tive filter comprising of two filters; a filter that estimates the detection probabilities, and
a tracking filter that uses the estimated detection probabilities. By using the estimated
probability of detection of both sensors in the tracking filter, the effect of a failing or
affected sensor can be mitigated. This is shown both in a controlled environment (fog
simulator) and in real world experiments with the Toyota Prius vehicle. The experiments
in a controlled environment, for which the visibility range in fog decreases from 300 m
to 50 m, showed improved tracking performance compared to tracking filters using fixed
detection probabilities. Furthermore, experiments with the vehicle prototype showed
improved tracking performance for scenarios recorded after sunset (twilight/night) and
in scenarios where there was precipitation.

Finally, this thesis ends with a chapter that addresses the conclusions of all chapters.
In addition, this chapter also addresses the final remarks and recommendations.



SAMENVATTING

Het doel van dit proefschrift is om methodes en algoritmes te maken voor de ontwikkel-
ing van een robuust perceptiesysteem voor intelligente voertuigen dat met slechte weer-
somstandigheden om kan gaan. Om de veiligheid van de passagiers en andere wegge-
bruikers te waarborgen is het belangrijk dat het systeem voor de perceptie van de omgev-
ing robuust is. Om dit te bewerkstelligen moet er een set van sensoren geselecteerd wor-
den die meerdere modaliteiten van waarneming bevat. Veelgebruikte modaliteiten op
het gebied van intelligente voertuigen zijn lidar, radar en camera sensoren. Dit proef-
schrift behandelt drie belangrijke onderwerpen die nodig zijn voor robuuste perceptie;
selectie van sensoren, extrinsieke kalibratie en object tracking.

Het eerste onderwerp van dit proefschrift is de selectie van sensoren. De sensor set
van het intelligente voertuig moet kunnen voldoen aan de vereisten voor geautoma-
tiseerde rijtoepassingen. De locatie en de snelheid van andere weggebruikers moet met
een zekere nauwkeurigheid geschat kunnen worden. Hiervoor moet in een vroeg sta-
dium van de ontwerpfase een schatting worden gemaakt van hoe nauwkeurig de locatie
en de snelheid van andere weggebruikers kan worden bepaald. Er wordt een systematis-
che benadering gepresenteerd die in staat is om de prestatie limieten van object track-
ing te voorspellen voor een sensor set. Deze benadering kan ook worden gebruikt om
de prestaties te voorspellen in het geval van een sensor storing, namelijk door de object
tracking prestatie limieten te berekenen voor de sensor set zonder de falende sensor.

Het tweede onderwerp is gezamenlijke extrinsieke kalibratie van sensor opstellin-
gen die bestaan uit één of meerdere lidar, camera en radar sensoren. Tijdens extrin-
sieke kalibratie worden de posities en oriéntaties van alle sensoren bepaald zodat alle
sensorgegevens in een gemeenschappelijk coordinatenstelsel kunnen worden gerepre-
senteerd. Dit is relevant voor zowel robots als intelligente voertuigen. De vereiste voor
gezamenlijke extrinsieke kalibratie is de beschikbaarheid van een kalibratie object dat
nauwkeurige detecties geeft voor alle modaliteiten (lidar, camera, radar). Daarom is
hiervoor een specifiek kalibratie object ontworpen. Er zijn drie optimalisatie config-
uraties geidentificeerd voor gezamenlijke extrinsieke kalibratie. De eerste configuratie
optimaliseert alle sensor-naar-sensor fouten ten opzichte van een referentie sensor. De
tweede configuratie optimaliseert alle sensor-naar-sensor fouten door middel van een
lus sluitings beperking (loop closure constraint). De laatste configuratie schat gezamen-
lijk de positie en de oriéntatie van de sensoren en de kalibratie objecten in een proba-
bilistisch model. De sensoren moeten niet alleen ten opzichte van elkaar worden gekali-
breerd, maar het is ook belangrijk om te weten waar de sensoren zich bevinden in het
voertuig. Daarom wordt er in dit proefschrift onderzocht hoe de sensoren kunnen wor-
den gekalibreerd ten opzichte van het referentie coérdinatenstelsel van het voertuig. Om
dit mogelijk te maken zijn er twee vereisten geidentificeerd; de behoefte van een externe
sensor die in staat is het voertuig en het kalibratie object te ‘zien’, en een set van 3D-
referentiepunten om de positie en de oriéntatie van het referentie coordinatenstelsel te
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bepalen. De set met 3D-referentiepunten kan worden verkregen door twee methodes,
namelijk de method Markers en de methode Human labeling. In het geval van Markers
worden er visuele markeringen geplaatst in de omgeving. De methode Human labeling
maakt gebruik van handmatig gelabelde punten in de sensor data waardoor er een ge-
ometrische vorm geschat wordt (geometrical shape fitting). Experimenten laten zien dat
de methode Human labeling de beste resultaten geeft, omdat de mediaan van de rotatie
fout om de verticale as van het voertuig 0.33° is voor de methode Markers en 0.02° is voor
de methode Human labeling.

Het derde en laatste onderwerp van dit proefschrift is object tracking in ongunstige
weers- en lichtomstandigheden zoals mist en schemering. Object tracking is het proces
waarbij de positie, snelheid en andere eigenschappen van alle objecten geschat worden
met behulp van detecties gedurende opeenvolgende momenten in de tijd. In ongunstige
weers- en lichtomstandigheden is het detecteren van weggebruikers in camerabeelden
uitdagender dan in gunstige omstandigheden. Dit betekent dat het aantal ontbrekende
detecties (false negatives) toeneemt. Een ontbrekende detectie is een object dat niet
gedetecteerd wordt terwijl het in werkelijkheid wel bestaat. Als de toename van ont-
brekende detecties niet bekend is dan beinvloedt dat de object tracking prestaties. Een
adaptief filter wordt voorgesteld dat bestaat uit twee componenten. Het eerste compo-
nent is een filter dat de detectie kansen schat voor iedere sensor. Het tweede component
is een object tracking filter dat gebruik maakt van de geschatte detectie kansen. Door in
het object tracking filter gebruik te maken van de geschatte detectie kansen, kan het ef-
fect van een defecte sensor of verminderde detectie condities worden beperkt. Dit wordt
aangetoond zowel in een gecontroleerde omgeving als in praktijkexperimenten met een
Toyota Prius voertuig. In de gecontroleerde omgeving zijn er experimenten uitgevoerd
in een mist simulator waarbij de zichtafstand in mist afneemt van 300 m tot 50 m. Het
adaptieve filter laat betere resultaten zien dan filters die gebruik maken van vaste de-
tectie kansen. Tevens laten de praktijkexperimenten met het voertuig zien dat er verbe-
terde resultaten worden gevonden voor de opnames die zijn gemaakt na zonsondergang
(schemering/nacht) en waarbij er neerslag viel.

Ten slotte eindigt dit proefschrift met een hoofdstuk waarin de conclusies van alle
hoofdstukken worden behandeld. Daarnaast komen in dit hoofdstuk ook de slotop-
merkingen en aanbevelingen aan de orde.



INTRODUCTION

Intelligent vehicles are equipped with multiple sensors to perceive the surroundings of
the vehicle. The main three sensing modalities are lidar, camera (monocular and stereo)
and radar. The data from these sensors are used for environmental perception [1].

In environmental perception, road users and other important objects (e.g. traffic
signs, road boundaries) are observed and interpreted. The locations of these road users
and other objects are required for the intelligent vehicle to be able to act in the world. For
instance, the vehicle should react on crossing pedestrians or plan a safe route through
other traffic participants. From now on, all road users and other relevant objects on
the road are simply referred to as objects. To detect all objects in the environment, the
vehicle utilizes machine learning techniques to classify and localize all objects in raw
sensor data (point clouds, images, etc.). This process is called object detection.

Using the detections from the object detector in consecutive frames, the state of all
(moving) objects can be estimated using estimation and tracking techniques. This is the
responsibility of the object tracker, since it estimates the state of these objects and the
number of objects in the environment. The object’s state consists of the spatial location
and kinematic state of the object. The kinematic state describes the motion parameters
of the object, for instance linear and angular velocity and accelerations. Furthermore,
another important state parameter is the shape extent, which describes the object’s di-
mensions.

In the motion planning module, the motion for every object is predicted to anticipate
on potential collisions. For that, the motion planner is using the location and velocity es-
timates from a state estimator, i.e. object tracker. The motion planner plans a sequence
of actions to move from A to B on the road, while avoiding collisions and complying with
traffic rules.

Now that the main elements of the perception pipeline have been mentioned, the
next section will deal with the importance of sensor data fusion for intelligent vehicles.
Furthermore, the prerequisites that are needed to perform sensor data fusion are dis-
cussed as well as the main challenges. The last two sections in this chapter are devoted
to the outline of the thesis and to the contributions of this work.
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1.1. SENSOR DATA FUSION

As mentioned in the previous section, intelligent vehicles are equipped with a sensor
setup consisting of one or more lidars, cameras and radars. Intelligent vehicles use mul-
tiple sensing modalities for environmental perception. One important reason is to im-
prove the estimates of perception system, as there is more data available to estimate the
state. Each sensing modality has its strengths and weaknesses. For instance, for a radar
the Doppler velocity can be used as a measurements, however the data is not as dense
as a lidar sensor. Furthermore, a perception system consisting of a single sensor has a
single point of failure. Hardware failures or other environmental conditions like adverse
weather conditions could deteriorate the sensor data, resulting in that the perception
system fails. A failing perception system means that the intelligent vehicle cannot guar-
antee safety of the passengers. Adding a second sensing modality, the perception system
is more robust and it is better equipped to deal with these circumstances.

To fuse data from multiple sensors, a central place should be assigned where the fu-
sion takes place. Two prerequisites should be met in order to be able to fuse the data
from multiple sources. The first prerequisite is that the sensors should be intrinsically
and extrinsically calibrated. This way the sensor data can be expressed in a common co-
ordinate frame. The second prerequisite is that the measurements or processed sensor
data should be communicated along with time stamps for temporal integration.

When the prerequisites are met, the sensor data can be fused. The system should
deal with several challenges, for instance:

* Data association: Identifying which observations originated from the same object.

* Asynchronous sensors: Each sensor has a certain update rate, the frame rate. Fur-
thermore, each sensor sends its data to the fusion center with a delay. Because the
raw sensor data usually needs to be processed and transmitted to the processing
unit, a delay between observing something and receiving the data in the fusion
center arise. Due to the fact hat each sensor has a different frame rate and delay,
measurements arrive asynchronous in the fusion center.

e Imperfect measurements: The ideal sensor does not exist. Sensor data contains
noisy measurements, false positives and false negatives and it depends on many
factors like environmental conditions and the environment (urban, highway, rural,
etc.). This means that the observation noise, probability of detection and false
alarms ratio are not constant, but varying with time and state dependent, e.g. are
depending on distance of the object.

To ensure safety in intelligent vehicles, a robust perception system is required that
can deal with adverse weather conditions. Each of the three sensing modalities (lidar,
radar and vision) use a different part of electromagnetic spectrum, therefore these sens-
ing modalities are not affected by adverse weather conditions (rain, fog, snow, etc.) in
the same way. Some sensing modalities are more sensitive to different weather and il-
lumination conditions than others. Detection of road users using vision is sensitive to
illumination and weather conditions [2]. For instance, adverse weather conditions like
haze and fog degrade images due to atmospheric absorption and scattering [3, 4]. A
methodology to benchmark imaging sensors was proposed in [5], and the authors show



1.2. RESEARCH QUESTIONS 3

that cameras lose contrast in fog due to air-light and attenuation. Also, laser scanners
perform poorly in dense fog conditions and the maximum viewing distance is reduced
to a fraction of the clear-weather viewing distance[6]. Benchmarking of lidar sensors
in snow and icy conditions was performed in [7]. In turbulent snow tests, the viewing
distances of the lidars were shortened [8].

To deal with adverse weather conditions, one option is to incorporate all adverse
weather conditions in annotated datasets, such that the object detectors could be trained
to recognize object appearances in adverse weather conditions. State of the art datasets
(e.g. [9-11]) cover a variety dynamic objects in various weather and illumination condi-
tions at different geographical locations with sensor data from various sensing modali-
ties used in automotive; lidar, camera and radar. Furthermore, the dataset of [12] con-
tains data from a variety of harsh weather and illuminations conditions such as heavy
fog, heavy snow, and severe rain. As the training data in harsh conditions such as dense
fog and snow is rare, the authors only train their object detector in clear conditions and
test on adverse weather data. Training a state of the art detector requires a large an-
notated dataset, therefore it is challenging to obtain robust detections by incorporating
adverse weather conditions in a training dataset. Apart from recording a diverse dataset,
manually labeling ground truth is a time consuming task.

Alternatively, a classifier could be trained to recognize the adverse environmental
conditions and act upon these recognized conditions. For instance, in case of bad sens-
ing conditions for the camera sensor (e.g. direct sunlight or foggy conditions), the cam-
era observations could be excluded in the sensor data fusion. Another option is to use
techniques to improve the raw sensor data in software. For instance, image enhance-
ment techniques in camera images for bad weather conditions [3, 4, 13].

Furthermore, an alternative approach would be to design a perception system that
is able to estimate the quality of the data arriving in the sensor data fusion module. The
estimated quality of the inputs to fusion module can be used to monitor in real time the
quality of perception system (e.g. sensors). For instance, if one sensor always detects
an object and the other sensor does not, it could mean that one sensor is failing or is
affected. Furthermore by estimating the sensing quality, the algorithm could benefit
from this information by means of a different fusion strategy, e.g. relying fully on the
sensor with a high detection probability. Monitoring the health of the sensor data is of
importance, therefore identifying the quality metrics is of interest. The components that
use the output of the perception system should be able to know how reliable the output
is. Therefore the reliability of all the perception sensors needs to be assessed in real time
to inform the users about the reliability. Some of the metrics could be estimates of the
observation noise, clutter, detection probability and frame rate of the individual sensors.

1.2. RESEARCH QUESTIONS
The aim of the thesis is to develop methods and algorithms for a robust perception sys-
tem that is able to deal with adverse weather conditions.

In order to create a robust perception system, the sensing modalities and the sensors
need to be selected that is be able to fulfill the requirements of the automated driving
application. To evaluate if a sensor setup is able to achieve these requirements, a sys-
tematic evaluation is required to determine the tracking performance limits in the de-
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sign phase. How to compute the tracking performance limit for a certain sensor setup?
In addition, to develop a redundant system, the performance of the perception system
should be known in case of sensor failures. What are the predicted tracking performance
limits in case of a single sensor failing? A systematic approach is required to estimate the
tracking performance limits for a given sensor setup, which is the subject of chapter 2.

After selecting the sensing modalities and sensors in the early design phase, the sen-
sors can be mounted on the mobile platform. The sensors need to be intrinsically and
extrinsically calibrated to be able to use the sensor data and to express the sensor data
in a common reference frame. Therefore, extrinsic sensor calibration of the sensor setup
is the main focus of chapter 3. This chapter addresses the following research ques-
tions. What are the different optimization configuration to jointly extrinsically calibrate
a multi-sensor setup? Which of the optimization configuration performs best? The sen-
sor poses should not only be estimated with respect to other sensors, the sensor poses
should also be known with respect to the (robot) vehicle’s geometrical model, which is
a geometrical model that describes the dimensions, joints and parts. To avoid collisions
with other road users, the automated vehicle requires knowledge where other road users
are located with respect to its own geometrical shape. To express the estimated locations
of road users in a body reference frame, the sensor poses should be known with respect
to abody reference frame of the vehicle. This way the automated vehicle can plan a route
to overtake a cyclist without hitting the cyclist with, for instance, the side mirror. Chap-
ter 3 also answers the questions: What are the requirements to calibrate the ego sensors
with respect to the robot’s body reference frame? What is the best method to determine
the pose of the body reference frame?

In adverse weather conditions, detection and tracking of objects in more challeng-
ing. Chapter 4 will address the subject of object tracking in adverse weather conditions.
For instance, the camera detector has more difficulties in detecting objects far away due
to a decreased visibility in fog, which leads to more false negatives. The increase of false
negatives impacts the tracking performance if the detection probabilities are consid-
ered fixed, therefore the detection probabilities need to be continuously estimated. How
can the detection probabilities be estimated in adverse weather and illumination condi-
tions? How can the estimated detection probabilities be used in the tracking filter to mit-
igate the effect of degraded detection performance in adverse weather and illumination
conditions? Chapter 4 presents a tracking filter that is able to monitor the probability
of detection of the sensors, and the estimated detection probability is used within the
tracking filter to realize improved tracking performance.

Finally, chapter 5 will summarize the findings of this thesis. Furthermore, it will also
discuss open issues and directions for future research.
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1.3. CONTRIBUTIONS
The main contributions of the thesis are:

° A systematic approach to evaluate tracking performance limits for different com-
binations of lidar, camera and radar sensors. In an early design phase, this ap-
proach can be used to select sensing modalities and sensors for automated driving
applications.

* An open-source extrinsic calibration tool to jointly calibrate sensor setups consist-
ing of lidars, radars and cameras. This tool consists of three optimization config-
urations to jointly calibrate a sensor setup of lidars, radars and cameras. Further-
more, this thesis proposes two methods to estimate the pose of the body reference
frame of the robot, which is needed to calibrate the sensors with respect to the
vehicle.

* A tracking filter is proposed that is able to deal with affected detection probabil-
ities in adverse weather conditions. The multi-modal bootstrap filter that online
estimates the probability of detection of each sensor and the filter uses these de-
tection probabilities to take into account a failing of affected sensor.
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SENSOR SELECTION

This chapter presents an systematic approach to evaluate the tracking performance lim-
its for different sensing modalities (lidar, radar and vision) and for combination of these
sensing modalities. For that, the Cramér-Rao lower bound (CRLB) is used to predict the
tracking performance limits for state of the art sensors such as the Continental ARS408,
Velodyne HDL-64E lidar and monocular/stereo camera. The performance is evaluated by
computing the theoretical CRLB in urban and highway environments. Based on numer-
ical study in an urban environment, a CRLB oy and a CRLB gy, of less than 0.1 m was
found for all sensor configuration consisting out of two sensors, within an observation
time of 0.5 seconds. In highway environments, the best performance can be achieved by
sensor data fusion of radar and lidar.

This chapter is based on the paper [1].

2.1. INTRODUCTION

Intelligent vehicles are equipped with different sensing modalities such as lidar, radar
and vision to detect and track road users such as cars, cyclists and pedestrians. Each of
the sensing modalities has its advantages and disadvantages. A systematic evaluation is
required to select the best sensor(s) for an automated driving application. Therefore, a
design tool is needed in an early stage in the design process to predict the tracking per-
formance for multi-sensor systems. Since state of the art sensors are costly, the cheapest
set of sensors could be selected that meets the system requirements. In this way the sens-
ing modality, sensor type (camera A vs camera B) and sensor placement can be selected
to achieve the required tracking performance. This is achieved by systematic evaluation
of the output of the multi-sensor perception system.

There are three challenges to objectively compare the tracking performance of dif-
ferent sensors. The first challenge is data heterogeneity; each sensor has a specific ob-
servation model with a number of observable parameters in a coordinate frame (pixels,
polar, planar, etc.). This means that the measurement uncertainty is defined in different
coordinate frames and units. Furthermore, intelligent vehicle systems do not rely on a

7
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single sensor observation, but instead the systems will react on tracked objects. There-
fore, the second challenge is to compare the tracking performance for sensors with dif-
ferent sampling rates that results in that two sensors might have an unequal number of
measurement updates for a track within a period of time (tracking/observation time).
The third challenge is that the measurement uncertainty often depends on the state of
the object. These three challenges result in that there is no clear and objective answer
which sensor or sensor set is best for a particular automated driving application (e.g.
automated people mover, urban scenarios, highway scenarios, etc.).

Based on these challenges, the following research questions are defined and addressed
in this chapter. What are the predicted tracking performance limits for each of the dif-
ferent sensing modalities (radar, vision and lidar)? What are the predicted tracking per-
formance limits of multi-sensor data fusion systems?

2.2. RELATED WORK

The Cramér-Rao lower bound (CRLB) provides a lower bound on the variance of an esti-
mator. It can be used to estimate the tracking performance limits of estimators for differ-
ent levels of probability of detections, false alarm rates, measurement noise uncertainty
and process noise [2, 3]. Furthermore, the CRLB can be used for optimal sensor place-
ment in (mobile) sensor networks [4, 5]. It can also be used to select a subset of sensors
for optimizing tracking performance in sensor networks [6]. In addition, the CRLB can
be used to quantify the performance of an estimator, because if an estimator extracts all
information from the data the state covariance matrix equals the inverse of the Fisher
Information Matrix (FIM) [7]. For instance, Blanc et al. [8] use the CRLB to estimate the
tracking performance of estimators that fuse the data of a radar and lidar by assuming
that the sampling rates are identical.

Previous work either present object tracking approaches using a single sensing modal-
ity or present approaches using sensor data fusion of different modalities. For instance,
stereo vision is used in [9] for pedestrian tracking and prediction. Pedestrian tracking
using radar and lidar is proposed in [10] and [11], respectively. Cho et al. [12] proposed
a multi-sensor system using lidar, radar and vision. However, there is not a clear answer
which sensing modality or sensor set fulfills best the perception system’s requirements.
Therefore, this thesis proposes to use the CRLB to select sensing modalities for auto-
mated driving by evaluating the complete perception system instead of selecting based
on the (individual) sensor specification sheets.

2.2.1. CONTRIBUTIONS

The main contribution of this chapter is twofold. First, this chapter proposes a design
tool to systematically evaluate tracking performance limits for single sensor and multi-
sensor perception systems in order to select sensing modalities, sensor type and sensor
placement for automated driving. Second, the tracking performance limits are analysed
for a state of the art lidar, radar and vision sensors as well as combinations of these sen-
sors.
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2.3. PROPOSED APPROACH

In this work, the tracking performance limits are analyzed for an intelligent vehicle. The
assumption is made that there are optimal atmospheric and light conditions. Further-
more, the measurement noise covariance matrices are mainly derived from documented
sensor specification sheets.

It is considered that a static point object, being a passenger car or pedestrian, sud-
denly appears in front of the vehicle. This object is modeled as a point object. The thesis
assumes that the object is tracked for 0.5s. Subsequently, the effect of shorter or longer
observation time is evaluated in section 2.4.5. The uncertainty of the ego motion of the
car is ignored, because the aim is to compare of different sensor configurations. Fur-
thermore, it is assumed that there is no measurement origin uncertainty, which means
that there is no doubt which measurement belongs to which object. In addition, it is
considered that there are no false alarms and that the probability of detection, pp = 1.
However, in section 2.4.6 the influence of a probability of detection pp < 1 and clutter is
quantified.

2.3.1. MULTI-SENSOR DATA FUSION

In the centralized tracking architecture (type IV configuration [7]), all measurements
from N sensors are processed centrally. In this case, the measurements are fused cen-
trally resulting in optimal tracking performance [7, 13]. In reality, most sensors are asyn-
chronous therefore sequential measurement updates take place. This means that the
tracks are predicted using different intervals. The origin of the coordinate system is lo-
cated at the center of the rear axle of the car at ground level. The x-axis points in the
forward driving direction and the y-axis to the left side of the car.

2.3.2. NON-LINEAR FILTERING
For anon-linear filtering problem with additive Gaussian noise, the state transition model
and observation model are equal to:

X1 = flxp)+ vk (2.1)
R(Xj41) + Wi 2.2)

Zk+1

where v; and wy are the process noise vy ~ A (0, Qx) and observation noise wy; ~
N (0, Rg+1), respectively. Furthermore, %, denotes the state estimate that is obtained
using a estimator (e.g. a non-linear Kalman filter), and Py its state covariance matrix.
The subscript of P, denotes that the estimate of P is at time 7, given the measurements
integrated up to and including time m. In the next sections, the used motion model and
observation models are addressed.

2.3.3. MOTION MODEL

The state vector xi = [, , Ux, Uy] T consists of the positions (x and y) and the velocities
in x and y (v and vy). Instead of an non-linear motion model as defined in equation
2.1, an linear motion model is considered, namely the constant velocity model is used
[14]:

Xi+1 = Fr(AD xXp + wi, wi ~ A (0,Q(AD)) (2.3)
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where
1 0 At O
01 0 At
Fi.(AD) = 00 1 0 (2.4)
0 0 O 1

2.3.4. SENSOR MEASUREMENT MODELS
In this section, the sensor measurement models are elaborated on. It is assumed that the
observation noise w is zero mean Gaussian noise. Furthermore, it is assumed that the
measurement covariance matrix is a diagonal matrix, so all sensor errors are indepen-
dent.

To deal with the non-linear observation models, the models are are linearized using
the Jacobian matrix, which contains the first order partial derivatives of the non-linear
model. The Jacobian matrix of the observation model is denoted as Hy., 1.

LIDAR
The lidar observes the range (r), azimuth () and elevation angle (¢):

r
[a] = h;(xg) + w; (2.5)
€

RADAR
The observation vector for a radar consists of the range (r), azimuth (a) and Doppler
velocity (7):
r
al| =h(xp) + wy (2.6)
i
The polar radar observations, range and azimuth, can be converted to Cartesian coordi-

nates when the following is valid [7]:

2

r-os
<0.4 2.7

Or

This is called Converted Measurement Kalman Filter (CMKF).

VISION
In case of vision, the observation vector consists of the pixel location (u, v) for a monoc-
ular camera. For a stereo camera, the disparity (d) is the third observation:

u
v| =hy(xp) +wy (2.8)
d
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2.3.5. CRAMER-RAO LOWER BOUND (CRLB)

The Cramér-Rao lower bound (CRLB) can be used as an analysis tool [15] in order to pre-
dict the performance of estimation problems. The expected value of the mean squared
error is greater than or equal to the inverse of the Fisher Information Matrix (FIM). This
means that the state covariance matrix Py, has a lower bound (CRLB) [7]:

Py = Efl%x — xil [k —xi) T} = T (2.9)

where %y is the state estimate and xi is the true state at time k. Furthermore, Ji repre-
sents the FIM, and its inverse is the CRLB [15]. For the linear state transition model and
anon-linear observation model, the FIM is computed by [15]:

-1 _
Ji1 = (Qr+ FePrkFL) ™ + HL Rt Hien (2.10)

where Fj is the state transition matrix and Q. is the covariance matrix of the process
noise, as defined in equation 2.3. Furthermore, Hy,, is the Jacobian of the observation
models as defined by equations 2.5, 2.6 and 2.8.

When the state covariance matrix equals the inverse of the FIM, the estimator (track-
ing filter) has extracted all information from the data [7]. In this case, the estimator is
called a (statistically) efficient estimator, however the CRLB might not be attainable.

2.3.6. INITIALIZATION

The state covariance matrix is initialised using the one point initialization [7]. A maxi-
mum velocity is defined for initialization of velocity component of the state covariance
matrix and for the radar the Doppler velocity is utilized.

In the multi-sensor case, the initial state covariance matrix is estimated using the co-
variance intersection (CI) algorithm that fuses the state covariance matrices of all avail-
able sensors. This estimate is optimal if the cross-covariance between two estimates is
unknown [16, 17]. Note that in the multi-sensor case, it is considered that the sensors
start synchronously, i.e all sensors start at time ¢ = 0. After that, the sensors run at their
specific sampling rates. The covariance intersection method for NV sensors provides a
state covariance matrix (P¢y) that equals [18]:

N

P;; = Y wiPi? 2.11)
i=1

w = argmin(det(Pcy)) (2.12)

subject to Zf.\il w; =1 and scalar parameter w; € [0,1] for i = 1,... N sensors.

2.3.7. PERFORMANCE MEASURES

The tracking performance limit is quantified using CRLB. The first measure is the L,
norm of the Cramér-Rao lower bound. The second performance measure is the o for
X, ¥, vx and vy in order to determine main differences between sensors. Finally, the filter
convergence for a sensor or a combination of sensors is plotted.

2.3.8. IMPLEMENTATION DETAILS
In algorithm 1, the pseudo-code can be found for computing the CRLB for an object
located at x, y for a observation time of #,,,,.
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Algorithm 1 Compute Cramér-Rao lower bound

1: function COMPUTECRLB(x, ¥, tenq)

2: Py: initialize using available sensors

3: t;: Schedule all available sensors 1> To determine all prediction intervals At; for
equation 2.3.

4: for t =0:At;: t,,q do

5: Compute Ry.41 > State and sensor dependent
6: Compute Hy4 > State and sensor dependent
7: Update Ji.+1 > see equation 2.10
8: end for

9: end function

2.4. SIMULATIONS

A virtual car is equipped with a lidar, radar and (stereo) camera. The lidar is mounted
on top of the vehicle, the stereo camera in front of the windscreen and the radar in the
bumper of the vehicle. The (stereo) camera has a pitch angle of 2° (downward).

2.4.1. PROCESS NOISE VARIANCE

In urban environments, the vehicle has to deal with vulnerable road users such as pedes-
trians and cyclists.

In order to compute the performance limits in an urban environment, the object of
interest is considered to be an adult pedestrian. In the work of [9], the process noise pa-
rameter g is optimized for the constant velocity (white noise acceleration) model, where
q is defined as g = 0% with the optimal ¢, = 0.77 was found. In highway scenarios, the
vehicle only has to deal with cars, therefore a normal passenger car is considered and
the process model of [19] is used with Sy = (0.629m/s%)? s™! and Sy, = (0.472m/s%)? s

2 (2.13)
ALs, 0 ArSe 0

0o s, 0 A,

2.4.2. MEASUREMENT NOISE VARIANCE
LIDAR

According to the user manual [20] of the Velodyne HDL-64E LiDAR, the standard devia-
tion in range equals o, = 2 cm. It is assumed that it is independent of the range of the
object. For o4 and o, it is assumed that these are equal to the maximum expected error
(resolution/2). Moreover, o, depends on the frame rate and o, depends on the elevation
angle. The frame rate of the lidar is set to 10Hz. Furthermore, it is assumed that there is
no minimum number of lidar hits required to detect objects.
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RADAR

The measurement noise variance of the Continental ARS408 radar is based on the Conti-
nental specification sheet [21]. This radar consists of a far range radar sensor and a near
range radar sensor. The accuracy in azimuth is interpolated using the provided azimuth
accuracy values. Furthermore, it is assumed that these values equal 1o.

VISION

The camera sensor has a 8mm lens, resolution of 1936 x 1216 pixels with a pixel size of
5.86 um. The baseline for the stereo camera is equal to 30cm. The standard deviation
of the measurement noise for stereo vision equals o, = 6.15 pixels and o, = 0.32 pixels
according to [9]. Furthermore, it is assumed for simplicity that o, = 0. In all cases,
limits on minimum and maximum distance for object detection are ignored.

2.4.3. URBAN ENVIRONMENT

In urban environment scenarios, a maximum range of 50m is considered to compute
CRLB. For initialization (see section 2.3.6), a walking speed of 5km/h is used. Figure 2.1
shows the single sensor tracking performance limits for stereo, radar and lidar.

Stereo vision provides the best the o, in short range (= 15m). Since o scales quadrat-
ically with distance, at larger distances the performance decreases. Due to very accurate
range observations (op = 2 cm), the lidar sensor performs best in all other ranges. In
urban environment, the lidar most accurately estimates the lateral position (y) of an ob-
ject. Within field of view (FOV) of the radar, the radar is the best sensor for the velocity in
x-direction (vy). For the lateral velocity (vy), the lidar is the most precise sensor as shown
in Figure 2.1. Moreover, the radar is not performing well in both the lateral position as
the lateral velocity.

Figure 2.2 shows the CRLB performance for multi-sensor multi-modal systems. The
top two rows show the configuration with radar and monocular camera and radar and
stereo camera. The multi-modal performance is significantly better than using a single
sensor (modality). This is because radar and camera are complementary to each other.
Furthermore, the configuration with stereo vision is slightly better in the short range as
indicated in Figure 2.2. Adding a stereo camera instead of a monocular camera to the li-
dar, only (slightly) improves the performance limits in the short range (see row three and
four). The fifth row visualises the performance of radar and lidar, whereas the last row
shows the performance of lidar, radar and stereo vision. It can be seen that the stereo vi-
sion hardly improves the tracking performance compared to the lidar + radar when the
Ox, Oy, 0yx and o, of the fifth row and sixth row are compared. However, any config-
uration with lidar provides accurate tracking performance according to the norm of the
CRLB. Moreover, using monocular or stereo vision the sensing region is reduced. This
relates to the resolution of the used camera(s) and the selected camera lens(es) (focal
length). The latter is selected based on a compromise between accuracy and FOV.

However, the main finding of Figure 2.2 is that with any configuration of multi-sensor
data fusion the o, and o is within 0.1 m in the tested FOV. Compared to the single
sensor performance (Figure 2.1), all multi-sensor systems provide a significant improve-
ment. In the case that an accurate velocity estimate is required, the best sensor is the
radar as it can directly observe the Doppler velocity.
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2.4.4. HIGHWAY ENVIRONMENT
In the highway scenario, the vehicle is considered driving on the central lane of a three
lane highway and therefore the figures only visualize this sensing region.

For the observed vehicle, a maximum velocity of 100 km/h is considered for initial-
ization for o, and o, (see section 2.3.6).

Figure 2.3 shows the performance limits for configurations of lidar, radar and vision.
Since the distance accuracy scales quadratically with distance, object tracking using only
stereo vision is not suitable in the far range. Therefore, the configuration with only stereo
vision is not plotted in Figure 2.3.

According to Figure 2.3, the best sensor for o, in a highway environment is the li-
dar. Also the radar is a good option if both far range and near range are combined. Also,
for lateral accuracy the radar is a good option. Only the combination of lidar + radar
and lidar + radar + vision are performing significantly better. Moreover, the radar sen-
sor is achieving the best results in estimating the o, because it can directly observe
the Doppler velocity. The best performance for ¢, can be reached by a combination of
radar and lidar. Based on the norm of the CRLB, the best performance for highways can
be achieved by sensor data fusion of lidar and radar. Although a stereo camera would im-
prove the results, the performance increase is minimal according the norm of the CRLB.

2.4.5. TRACKING FILTER CONVERGENCE

Figure 2.4 shows the tracking filter convergence for different sensing modalities. In this
case, a highway scenario is considered. For two object’s distances (20 m and 50 m), the
convergence of the tracking filter is plotted as a function of tracking (observation) time.

In all case the norm of the CRLB quickly converges in the first 0.5 second, which was
therefore also considered in the previous sections. In most cases, the oy, 0y, 0, and
oyy have converged in the first 0.5 seconds, whereas in some cases it already converges
within 0.2 seconds. For example, in the longitudinal direction (x and vy) for radar and
lidar. In close range, stereo vision quickly converges to the steady state CRLB, however
at larger distances the filter needs more time to converge. Especially, the velocities need
more time to converge for an object located at 50 m distance.

Since the radar is able to directly observe the object’s velocity, the tracking filter is
initialized and updated with the Doppler velocity. This results in that longitudinal ve-
locity (vy) quickly converges if a radar sensor is used. This means that the intelligent
vehicle is able to quickly respond to unexpected events, which is important for smooth
and responsive control.

2.4.6. IMPERFECT DETECTION AND CLUTTER
In reality, the probability of detection is smaller than one. In addition, clutter measure-
ments are present. The effect of these two factors will be addressed in this section. For
predicting the tracking performance of a probability data association (PDA) filter, the in-
formation reduction factor (IRF) can be used [7]. The IRF factor quantifies how much
the innovation Sy is decreased due to imperfect detection and clutter.

Updating equation 2.10 to take into account the IRF [7] results in

-1 _
Jes1= (Qk+FkPk\kaT) +612H,CT+1Rki1Hk+1- (2.14)
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where ¢ is the IRE and it depends on clutter density A, the probability of detection pp
and the volume V of the innovation matrix Si. For the exact graph for ¢, the reader is
referred to [7]. In this numerical study, the thesis will look into a sensor data fusion of
radar (range and azimuth) and camera (pixel location). Furthermore, the curves from
[7, 22] are interpolated to acquire the IRF which depends on the pp and the 1.
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Figure 2.4: Tracking filter convergence for lidar, radar and vision with on the horizontal axis the tracking (ob-
servation) time in seconds. From left to right: ox, 0y, 0yx, 0py, and the Ly norm of the CRLB. From top to
bottom, an object located at 20 m and 50 m. The following sensors are considered: stereo camera (S), lidar (L),
radar near range (RyR), radar far range (Rrg) and radar near range + radar far range (Ryg + RER)-

According to Zhang et al. [23], the state of the art pedestrian detectors have approx-
imately 1 false positive per image at miss rate of 0.1. This means that at a probability
of detection of 0.9, the clutter density is 1 per image for a 640 x 480 image. The clutter
density per unit volume A can be computed. Furthermore, for the radar a probability of
detection of pp = 0.9 can be achieved at a false alarm probability of 1076 ([24, 25)).

Figure 2.5 shows the norm of the CRLB in an urban environment for the perfect case
and for the imperfect detection and clutter case. It can be seen that the predicted track-
ing performance degrades. The mean difference of the norm of the CRLB equals 4.6%
with respect to the perfect case.

In automated driving, it is essential to robustly track objects in all conditions. Miss-
ing sensor detections can be caused by sensor failures or by environmental conditions
such as rain, snow, fog, illumination, etc. Redundancy is crucial in order to safely drive
in all conditions, so it is important in sensor selection for automated driving. The track-
ing performance reduction due to these type of circumstances can be estimated in ad-
vance using the proposed method. The influence of sensor failure can be investigated as
well as the effect of environmental conditions (e.g. reduced visibility in fog). Therefore,
a numerical study is performed to quantify the tracking performance in these condi-
tions. Figure 2.6 visualizes the o, and o, in four different conditions: imperfect detec-
tion and clutter, adverse environmental conditions (camera pp = 0.3), failing camera
sensor (pp =0 at ¢ > 0) and failing radar sensor (pp = 0 at ¢ > 0). Figure 2.6 shows that
this tool can be used to decide if the tracking performance is satisfactory in cases of sen-
sor failure or changing environmental conditions if the requirements of the perception
system are given.
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Figure 2.5: Effect of imperfect detection (pp < 1) and clutter (A1 > 0) for a sensor set that consists of a radar and
a camera. The top figure shows the norm of the CRLB in optimal conditions, whereas the bottom figure shows
the tracking performance in case of imperfect conditions.
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for a sensor set that consists of a radar and a camera. From top to bottom: imperfect detection and clutter,
adverse environmental conditions pp = 0.3, failing camera sensor and failing radar sensor.
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SENSOR PLACEMENT

This methodology can also be used for sensor placement. Consider that the aim is to
position two radars in the bumper of the car. Figure 2.7 shows the norm of the CRLB for
two radars which are separated 0.40 m apart and two radars which are separated 1.6 m
apart (in y-direction).

Finally, the findings of the different numerical studies are summarized. In highway
conditions (see sections 2.4.4 and 2.4.5), the radar is an essential sensor for smooth and
responsive control. In order to develop a cheap and redundant sensing system that
works as well in an urban environment, a good choice according to section 2.4.3 would
be to include a stereo camera. The tracking performance can be found in section 2.4.3
and section 2.4.4. In urban conditions, the CRLB tracking performance limit of o, and
0y is <0.1 m. Section 2.4.6 gives an example of the influence of imperfect detection and
clutter on the tracking performance for a sensor set of radar and camera. It was shown
that the performance is affected on average with = 5%.

Y [m]
o

Y [m]
o

Figure 2.7: Difference between the norm of the CRLB for 2 different sensor positions. The figure shows the
norm of the CRLB for 0.4 m and 1.6 m seperation between radars.
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2.5. DISCUSSION

The proposed tool can be used to select the sensing modalities, sensor types and sensor
placements in multi-sensor perception systems. In order to focus on comparing various
sensing modalities and configurations, ego motion uncertainty is ignored. The CRLB
provides a lower bound on the performance of an object tracker that might not be at-
tainable. In reality, there are also errors due to measurement origin uncertainty, sensor
calibration and sensor placement.

Furthermore, the specification sheets of radar and lidar have been used to estimate
sensor noise characteristics. However in an early phase in the design process, experi-
ments cannot be conducted to retrieve the sensor uncertainties because that is too ex-
pensive (purchasing sensors and invested time).

Atmospheric conditions and occlusions affect the performance of localizing objects
in the surroundings of the car, however these can also be captured by simulating a time
or state dependent pp.

2.6. CONCLUSION

This thesis presents a tool to predict tracking performance limits for multi-sensor con-
figurations in an early phase in the design process. Object tracking performance limits
are computed for multi-sensor configuration of state of the art sensors (lidar, radar and
vision). The assumption is made that the probability of detection pp = 1 and that there
are no false alarms. Subsequently, the influence of imperfect detection (pp < 1) and
clutter have been quantified. Furthermore, it was shown that the tracking performance
can be estimated in case of sensor failure or changing environmental conditions.

This approach can be used to study the tracking performance limits for various sen-
sor configurations and sensor types. In addition, this approach can be used to analyze
what the limits are in case of a sensor failure.

This chapter contains different numerical studies on state-of-the art automotive sen-
sors to analyze the performance for tracking applications. In the close range stereo vision
performs well, and lidar provides very accurate positional x and y estimates. In highway
environments, the best performance can be achieved by sensor data fusion of radar and
lidar. In urban environments, any two sensor combination provides a CRLB o, and a
CRLB gy, of less than 0.1 m within an observation time of 0.5 seconds.
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EXTRINSIC SENSOR CALIBRATION

This chapter addresses joint extrinsic calibration of lidar, camera and radar sensors. To
simplify calibration, the thesis proposes a single calibration target design for all three
sensing modalities, and implements the approach in an open-source tool with bindings
to Robot Operating System (ROS). The tool features three optimization configurations,
namely using error terms for a minimal number of sensor pairs, or using terms for all
sensor pairs in combination with loop closure constraints, or by adding terms for struc-
ture estimation in a probabilistic model. Apart from relative calibration where relative
transformations between sensors are computed, this chapter also addresses absolute cali-
bration that includes calibration with respect to the mobile robot’s body. Two methods are
compared to estimate the body reference frame using an external laser scanner, one based
on markers and the other based on manual annotation of the laser scan. In the exper-
iments, the three configurations for relative calibration are evaluated. The results show
that using terms for all sensor pairs is most robust, especially for lidar to radar, when min-
imum five board locations are used. For absolute calibration, the median rotation error
around the vertical axis reduces from 1° before calibration, to 0.33° using the markers and
0.02° with manual annotations.

This chapter is based on the paper [1].

3.1. INTRODUCTION
Nowadays, mobile robots have sensor setups consisting of multiple sensors for environ-
mental perception. To increase robustness, these sensor setups consist of various sens-
ing modalities such as lidars, cameras and radars [2, 3]. For effective sensor data fusion,
a geometrical description is needed that describes the location and orientation of all the
robot’s sensors with respect to each other, and to its body. For that, all sensors need to
be calibrated.

One can distinguish two types of calibration tasks, namely intrinsic calibration and
extrinsic calibration. Intrinsic calibration involves estimating the internal parameters
of the sensor. For a camera, this calibration procedure consists of estimating all entries

25
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Figure 3.1: Schematic overview of an example sensor setup with three coordinate frames (lidar, camera and
radar) with transformation matrices from one reference frame to another, e.g. /2¢ for lidar to camera. Joint
multi-sensor calibration requires detections from multiple target locations which can be detected by all sen-
sors simultaneously.

(a) MCPE (b) FCPE (c) PSE

Figure 3.2: Optimization configurations for joint calibration. The symbols S i stand for sensor reference frames,
and T%J for coordinate frame transformations from sensor reference frame i to Jj. a Minimally connected
pose estimation (MCPE) relies on a reference sensor S'; b Fully connected pose estimation (FCPE) adds the
loop constraint T23 . 712 = T13 ¢ Pose and structure estimation (PSE) also estimates latent variables M that
represent the true board locations (i.e. the structure).

of the camera projection matrix (focal length, skew parameter and principal point[4])
and the distortion coefficients of the lens. For a lidar, the intrinsic parameters are range
offset, scale factor, vertical offset, elevation angle and azimuth angle [5]. Extrinsic cali-
bration instead estimates the orientation and the position of the sensor (i.e. sensor pose)
with respect to a frame of reference, which is also called pose estimation [6] and sensor
registration [7].

Extrinsic calibration methods can further be split into two groups: target-less and
target-based methods. Target-less methods (e.g. [8-10]) are potentially able to perform
online calibration as these methods use natural features in the environment to calibrate
the sensors. However, target-less calibration methods are challenging since these meth-
ods need to deal with asynchronous and heterogeneous sensors. Target-based methods
instead use specifically designed physical calibration objects (i.e. targets) to obtain ro-
bust features. A typical example of a calibration target is the checkerboard pattern for in-
trinsic and extrinsic (stereo) calibration of cameras [4, 6, 11]. Since each sensing modal-
ity (lidar, camera and radar) works on a different wavelength and operating principles, it
is challenging to find corresponding features across sensing modalities. Therefore, this
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chapter focuses on target-based procedures to obtain accurate key points for all involved
sensors at once. Multiple correspondences can be found by repositioning the calibration
target at various locations in the overlapping Field of View (FOV) of the sensors.

While reasonable initial estimates of all sensor poses can be obtained from technical
drawings of the robot (e.g. computer-aided design (CAD) models), an extrinsic calibra-
tion considers the sensor measurements to determine their actual poses. In this work, a
rigid robot body is considered, which means that the transformations between the sen-
sors and the body coordinate frame are constant (i.e. no relative movement). Extrinsic
sensor calibration can be split into two procedures: First, a relative calibration proce-
dure estimates the sensor poses relative to all other sensors, see Figure 3.1. Second, an
absolute calibration procedure estimates sensor poses with respect to a body coordinate
frame of the robot. If a relative calibration is done first, the Absolute calibration only
needs to estimate the transformation of one sensor to the robot body to complete the
geometric model.

Existing multi-modal calibration methods usually only address combinations of two
sensor sensing modalities. Accordingly, each approach uses a calibration target design
that only works for their sensor pair, e.g. lidar and monocular camera. For more complex
sensors setups involving radar, camera and lidar calibration, such as intelligent vehicles,
multiple calibration boards and calibration tools would be needed to calibrate all sen-
sors. However, as this chapter will show, optimization of all sensor pairs jointly should be
preferred over separate pairwise calibration. Furthermore, a joint extrinsic calibration
procedure reduces the calibration effort and calibration time, since the sensors poses
are estimated at once using a single calibration target design. Related work also typically
only addresses relative calibration, while in practice absolute calibration is often needed.

In this thesis, the focus is on a joint extrinsic sensor calibration procedure for sen-
sor setups containing lidars, radars and/or cameras, using a single target design for all
these sensing modalities. This thesis considers three configurations to jointly calibrate
such multi-modal setups, as shown in Figure 3.2: Minimally Connected Pose Estimation
(MCPE) estimates sensor-to-sensor transformations with respect to a single reference
sensor. Fully Connected Pose Estimation (FCPE) provides transformations between all
sensor pairs by adding a constraint that forces loop closure. The configuration Pose and
Structure Estimation (PSE) jointly estimates sensor poses as well as the structure (i.e.
calibration board poses). Additionally, the thesis addresses the problem of target-based
absolute calibration to relate the sensors to a robot’s body coordinate frame. The tool is
implemented in an open-source tool with bindings to Robot Operating System (ROS).

The next section addresses the related work in detail. After that, the proposed ap-
proach is presented that elaborates on the three joint calibration configurations and the
procedure to calibrate the sensors with respect to the robot coordinate frame. Finally, the
experimental section provides comparisons of these three configurations on real sensor
data from a sensor setup with a lidar, a stereo camera and a radar. Furthermore, the two
methods are evaluated to determine the body reference frame for absolute calibration.
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3.2. RELATED WORK

An overview of related work on multi-modal extrinsic calibration is provided in Table 3.1,
which is elaborated on in the following subsections. Note that a sensor pair with a stereo
camera could be calibrated as two separate monocular cameras, however this is subop-
timal if a full point cloud of the stereo camera is available (i.e. in case of a calibrated
stereo camera).

3.2.1. PAIRWISE CALIBRATION

The method of Persi¢ et al. [12] focuses on lidar to radar calibration. Rectangular shaped
objects are inaccurate to detect in a lidar sensor, because nearly vertical or horizontal
edges might fall between lidar scan planes (finite resolution issues). Therefore the au-
thors use a triangular shaped Styrofoam calibration target with an attached metal trihe-
dral corner reflector. Corner reflectors are a common target for radar because of their
distinct reflectivity, the Radar Cross Section (RCS) value. The reprojection error between
point cloud data and radar detections is minimized in their optimization procedure. In
addition, the RCS values of multiple target locations are used to refine a subset of the
transformation parameters.

Lidar to stereo calibration can be performed using the method of Guindel et al. [13].
This method uses a calibration target with four circles to calibrate a lidar and a stereo
camera. Iterative Closest Point (ICP) [14] minimizes the error between the detected circle
centers in both sensors.

For lidar to monocular camera calibration there are more methods available, namely
[5,9, 15-22]. Mirzaei et al. [5] perform intrinsic calibration of the lidar as well extrinsic
calibration with respect to a monocular camera. The authors refine an analytical solu-
tion for intrinsic and extrinsic parameters by an optimization procedure based on iter-
ative least squares. Geiger et al. [15] use data from multiple checkerboard patterns that
are positioned in the environment to calibrate a lidar and a monocular camera. A set of
initial transformation hypothesis are generated by a global registration procedure that
minimizes the distance between the normal vectors and the centroids of the checker-
board patterns. After that, the set of transformation hypothesis is refined using ICP that
minimizes the sum of point-to-point distances.

Extrinsic calibration of radar and monocular camera is performed by several meth-
ods [12, 23-26]. El Natour et al. [26] solve a system of equations with additional spherical
and geometrical constraints to obtain the transformation matrix. Both [23] and [25] es-
timate a homography projection between the two sensors, which means that the full 3D
transformation is not available.
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3.2.2. JOINT CALIBRATION
In order to calibrate a multi-modal sensor setup, one could simply pairwise calibrate all
sensors with respect to one reference sensor, i.e. minimally connected pose estimation.

Alternatively, one could get inspiration from Simultaneous Localization and Map-
ping (SLAM), where loop closure is applied to readjust a trajectory of poses when the
robot revisits the same location[31]. Fully connected pose estimation, a loop closure can
be added as a constraint in the optimization procedure in extrinsic sensor calibration.
In case of loop closure, moving over the edges in the loop (see Figure 3.2b) should result
in the original pose, i.e. the multiplication of the transformation matrices of sensors in
a loop results in the identity matrix. Sim et al. [28] use this ‘loop closure’ constraint for
calibration of a lidar with multiple cameras.

Visual Odometry estimates the ego-motion based on matched features in consecu-
tive images, and it could include bundle adjustment that refines all poses in a (sub) tra-
jectory [32]. Bundle adjustment simultaneously refines sensor poses and 3D coordinates
of landmarks [32]. A similar approach can be applied to extrinsic calibration. Pusztai et
al. [29] uses a ‘bundle adjustment-like’ approach that consists of two steps, where in the
first step the lidar errors are minimized and in the second step the camera re-projection
errors are minimized. Owens et al. [30] use a graph optimization approach to calibrate a
setup consisting of multiple lidars and cameras.

3.2.3. CONTRIBUTIONS

The overview in Table 3.1 reveals several open issues: Existing work only addresses rel-
ative calibration, is not able to calibrate all combinations of radar, lidar, and (stereo)
camera jointly, and the community lacks an open-source tool to jointly calibrate such a
multi-modal sensor setup.

The chapter of this thesis addresses these issues with four contributions. First, three
extrinsic calibration configurations to jointly calibrate a sensor setup consisting of lidars,
cameras and radars are examined. Important factors like configuration choice, required
number of calibration board locations and choice for the reference sensor are investi-
gated using a real multi-modal sensor setup. Second, this thesis proposes and compares
two methods to estimate the pose of the body reference frame of the robot in order to
perform absolute calibration. Third, a calibration target design that is detectable by lidar,
camera and radar is presented. Fourth, the software is released as an open-source ex-
trinsic calibration tool with bindings to Robot Operating System (ROS)”. For ROS users,
a tool is provided that updates the Unified Robot Description Format (URDF) file that
describes the robot model, to facilitate user-friendly usage of the tool on real robotic
platforms.

3.3. PROPOSED APPROACH

In this section, the joint extrinsic calibration tool to calibrate lidar, camera and radar
jointly with respect to the body reference frame of the robot is presented. Figure 3.3

I The repository contains a calibration board detector for monocular cameras, therefore sensor pairs with a
monocular camera can also be calibrated.
2github .com/tudelft-iv/multi_sensor_calibration
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Figure 3.3: Extrinsic multi-sensor calibration pipeline. The first three steps perform relative calibration es-
timating the transformation matrices between all sensors using one of three optimization configurations
(MCPE, ECPE, PSE). For absolute calibration, the next two steps relate the sensor frames to the robot body
frame, by scanning the calibration targets and the robot body with an external laser scanner. The final step
updates the URDF file with the new calibration results.

shows the pipeline with all steps to calibrate the sensors with respect to the body refer-
ence frame of the robot.

The next section discusses the calibration board design. Then, the detectors are de-
scribed that extract the key points from this calibration board design. Using the detec-
tions, the thesis presents the details on pairwise calibration and then it is extended to
joint calibration of a multi-modal sensor setup that consists of more than two sensors.
The last part contains the proposed approach for absolute calibration.

Figure 3.4: From left to right, front view drawing, side view drawing, and an image of the back of the target.
The trihedral corner reflector is indicated in red (triangle and arrow).

3.3.1. CALIBRATION TARGET DESIGN

The design of the calibration target should facilitate accurate detections for all sensing
modalities. For accurate radar detections, the thesis uses a trihedral corner reflector that
facilitates radar reflections with specific RCS values. To limit the effect on detectability
of the corner reflector, Styrofoam is chosen as material for the calibration target[33]. As
target for lidar and camera, this thesis pursues the approach of [13, 16] and use circular
holes. These holes have edges, which are perfect features to detect in both sensors. The
layout of the target, with a size of 1.0 m by 1.5 m, with circle diameter a; = 15 cm, and
distance between the centers a; = 24 cm is shown in Figure 3.4. The reflector is posi-
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tioned in the middle of the four circles at the back of the Styrofoam plate (at a3 = 10.5
cm from the front).”

3.3.2. DETECTION OF CALIBRATION TARGET

The lidar detector and the stereo detector of [13] have been adapted. For lidar and cam-
era, the 3D location of the circle centers are returned as features. Incorrect detections
can be discarded since the geometry of the board is known and there are four feature
points. If the ratio between the diagonal and the side of the square is not equal to v/2,
detections can be discarded.

The radar measurements consist of 2D locations in polar coordinates and a RCS
value. First, all detections are kept that are within the expected RCS range. From all
those detections, the closest measurement to the robot is taken as radar detection as the
assumption is made that the calibration board is the closest target in the vicinity of the
robot.

For the monocular camera detector, the four circles are detected based on edges in
the 2D image plane. Using the known geometry of the calibration board, perspective-n-
point algorithm (PnP) [34] can be used to extract the 3D locations of the circle centers.

3.3.3. PAIRWISE CALIBRATION
First, pairwise calibration is explained, which is then extended to joint calibration of a
setup with N sensors in section 3.3.4.

The calibration target is positioned at K different locations in FOV of two sensors,
referred to as sensor 1 and sensor 2. Each detector returns K detections y1 ={ y{, e ,y}<}
for sensor 1 and y2 = {yf, e yi} for sensor 2. Each calibration board location provides
four detections in 3D for lidar and camera: y; = (yk1),** » Yk(4)). Furthermore, the radar
detector only returns a single detection as the target has one trihedral corner reflector.
This detection y;. = (yx(1)) is defined in 2D Euclidean coordinates. Since a detector might
not always detect the target, for instance if the target is not in the sensor’s FOV, indicator
variables ,u;; are used to represent if the detector of sensor i was able to successfully
detect calibration board location k. This means that ,u;; =1 if the target was detected
and ufc = 0 otherwise.

Extrinsic calibration between the two sensors aims to estimate the relative rigid trans-
formation 712, This transformation can be used to project a point from the coordinate
frame of sensor 1 to the coordinate frame of sensor 2. The rigid transformation is ex-
pressed as a 4 x 4 matrix for homogeneous coordinates that consists of a 3 x 3 rotation
matrix R and 3D translation ¢ vector,

Th? = (3.1)

R t
0 1
To use this homogeneous representation, each 3D point (x, y, ) is represented as an aug-

mented 4D vector (X, y, z,1). To parametrize the 6 degrees of freedom of transformation
T12, vector 012 = (1, ty, Iz, s @, vy - @, v - @) is used. The rotation part is expressed by

3See README file in the repository for details on the calibration board.



3.3. PROPOSED APPROACH 33

an axis-angle representation (using Rodrigues’ rotation formula), namely as a unit vector
(v, Uy, v) for the axis of rotation, and an angle a.

For the k-th target location, the total squared Euclidean distance of the four detected
circle centers is used to define the transformation error between lidar and camera detec-
tions,

4 2
12y _ 2 12 .1
ex(01%) = Zl Hyk(p) =T Vi ” . 3.2)
p:

If the sensor pair contains a radar, a different error term is used. Let yfj represents the
radar measurement of target k, then the squared Euclidean error equals

e (0"7) =] viy - p(TLR.g(yi))Hz. (33)

Here, function g(y,;) calculates the expected 3D position of the trihedral corner reflector
in the reference frame of sensor 1 by using the four circle center locations in detection
¥, and the geometry of the calibration board. Then, function p(qy) first converts 3D
Euclidean point gy to spherical coordinates (ry, ¢, W), disregards the elevation angle
V¥, and converts (1, ¢y) back to 2D Euclidean coordinates.

In addition, the thesis adds constraints that enforce that the projected 3D points lie
within radar Field of View (FOV). To achieve that, the elevation angles v for all calibra-
tion board locations k should be within the maximum view angle v 4 of the radar,

W/k| —Wmax = O) Vk. (3-4)

Pairwise calibration is now formulated as an optimization problem that finds the
optimal transformation between both sensors by minimizing the total error f(6'?) be-
tween all K calibration targets,

K
f@"* = )3 Mie ke (072). (3.5)
=1

The indicator variables ,ui . y,lc ensure calibration board locations K that are detected
by both sensors are included. By minimizing the error criterion f(8) subject to zero or
more (in)equality constraints (e.g. equation (3.4)), the optimal relative transformation
are obtained.

Sequential Least SQuares Programming (SLSQP) from the SciPylibrary [35] is used to
solve the optimization problem, which is potentially subject to constraints. To initialize
the optimization procedure, an initial solution is required. For that, the optimal rotation
between the point cloud containing centroids of the four circle detections for all calibra-
tion board locations K is computed by Kabsch algorithm [36]. Using this rotation matrix,
the initial translation vector can be determined. To find an initial transformation for a
sensor pair containing a radar, it is assumed that detections lie on the radar plane (zero
elevation angle).
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3.3.4. JOINT CALIBRATION WITH MORE THAN TWO SENSORS

To generalize extrinsic calibration from pairwise calibration to N sensors, three config-
urations are considered to jointly calibrate a multi-sensor sensor setup, namely MCPE,
FCPE, PSE. Instead of estimating a single edge (i.e. sensor-to-sensor transformation),
now multiple edges are present. The three configurations for relative calibration are vi-
sualized in Figure 3.1 and will be discussed in this section.

Minimally connected pose estimation (MCPE) In the first configuration, all sensors
are calibrated in a pairwise manner with respect to a selected ‘Teference’ sensor. This
results in a minimally connected graph, which is visualized in Figure 3.2a. The edges
describe the transformation from the 'reference sensor’ to the other sensors. Without
loss of generality, let’s assume that the first sensor is selected as the reference sensor. In
this case, the optimization criterion is formulated as

N

f@o=>

i=2

K
> e 0. 36)

k=1

Note that transformations between any non-reference sensors i, j can be computed from
the known transformations in this graph, i.e. 7/ = Tb/ . (ThH)~1,

Fully connected pose estimation (FCPE) In the second configuration, the thesis con-
siders optimizing transformations between all sensors at once, without assigning a spe-
cific reference sensor. This results in optimizing edges in a fully connected graph (see
Figure 3.2b), akin to a loop closure optimization in SLAM. Instead of estimating N —1
transformation matrices with respect to a reference sensor, all transformation matrices
between all (g ) combinations of two sensors are computed. In this case, the error func-
tions equals

WA
k=1

N N
HOEDYDY

i=1j=i+1

. (3.7

To ensure that all loops [ equal the identity matrix, the loop closure constraint is included
in the optimization problem,

(rsvt.simbs Ty =0, VI (3.8)

where s; equals the number of sensors in this loop [. The thesis only considers all (g] )
combinations of s; = 3 sensors. The advantage of this optimization is that it is potentially
more robust against noisy observations from one reference sensor. The disadvantages
are that the number of error terms increases with the number of sensors N and that by
adding extra sensors, additional loop constraints must be included as well.

Pose and structure estimation (PSE) The third configuration is called pose and struc-
ture estimation and it is visualized in Figure 3.2c. This configuration has similarities to
bundle adjustment since it simultaneously estimates all sensor poses and calibration
board poses. This means that both the unknown structure M = (my,-- -, mg) of the true
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Figure 3.5: For absolute calibration, the transformation between body reference frame B and a sensor S i (solid
arrow) is found indirectly by first determining the transformations to both frames from an external reference
sensor E (dashed arrows).

target poses in a fixed coordinate frame, and the transformation 7™ from the fixed
frame to each sensor i are estimated. Observations are considered samples from a prob-
abilistic measurement model, which uses j/‘llcv(’ n = h(my, p), with zero-mean Gaussian
noise,

Vi =T by +1's 0~ # (0,21, (3.9)

Therefore, instead of the squared Euclidean distance, the squared Mahalanobis distance
is used, which equals

Di(a,b)=[a-bl" () (a-b] (3.10)

with vectors a and b, and covariance X. In the optimization, the thesis jointly optimizes
the transformations and structure,

. 4 . .
ex 0", ) L ko T30 61D
N K . .
FOM=Y |3 e (0¥, M), (3.12)
i=1[k=1

and initialize all =’ as identity. An iterative procedure is used to calculate the diagonal
elements of the noise covariances. Using the result of the first optimization, the noise
covariances are recalculated and updated, after which the optimization of f(8, M) is re-
peated. This process is continued until all variances have converged. Note that to deter-
mine a unique solution, one transformation TM:i must be fixed.

This probabilistic formulation has the potential advantage that it avoids having het-
erogeneous error functions (pixel versus Euclidean). Instead, a homogeneous error func-
tion is used that comprises of the sum of squared Mahalanobis distances. Furthermore,
it provides the option to include prior knowledge on board and sensor poses, however
this direction is not pursued here. The disadvantages are also twofold. First, the opti-
mization is more complex and therefore it takes more time. Second, the loop closure
constraint is not explicitly enforced.

3.3.5. POSE ESTIMATION OF BODY REFERENCE FRAME
To estimate the pose of the body reference frame of the robot, minimal three 3D refer-
ence points on the exterior of the robot are required. To determine the set of 3D points
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during calibration, an external sensor must be used which can detect these reference
points, and the calibration target at multiple locations. This sensor should have a high
resolution and large field of view to accurately locate both the 3D reference points on the
exterior as well as the calibration target. From the shared detected calibration targets,
the transformation from the external sensor to the robot sensor can be found, similar to
relative calibration. After the robot reference frame is determined in the external sensor
frame too, the sought transformations between the sensor and the robot frame can be
computed directly, as illustrated in Figure 3.5.

To localize the 3D body reference points within the external sensor point cloud, two
general approaches can be taken:

1. Human labeling: The locations of the set of the 3D reference points can be man-
ually labeled in the sensor data. These locations can be obtained by manually
labeling each individual 3D reference point in the point cloud. Alternatively, mul-
tiple points can be labeled on a visible part of the robot’s exterior with a specific
geometric shape (e.g circular shape). After that, a geometrical shape can be fitted
on the set of labeled points.

2. Markers: The locations of the 3D reference points can be extracted by placing
physical markers that the external sensor can easily detect. This is less laborious
than labeling the data afterwards, but the accuracy depends fully on how precise
the markers could be placed when the calibration procedure was performed.

In practice, a lidar laser scanner is used to construct a point cloud model of the body,
and either select the 3D reference points in this point cloud, or use markers that the
scanner can accurately detect.

3.4. EXPERIMENTS

To evaluate the performance of the tool, sensor data of lidar, camera and radar is recorded
with the Toyota Prius vehicle, which is equipped with:

* aVelodyne HDL-64E lidar (on roof)
* a Continental ARS430 radar (behind front bumper)
* astereo camera 2x UI-3060CP Rev. 2 (behind windscreen)

For the experimental validation, the sensor set of the vehicle is calibrated with the
calibration target in the vehicle’s garage. The calibration target is positioned in front of
the car at 30 different locations within approximately 5 meters. From these 30 calibration
board locations, 29 locations were within the field of view of all three sensors (lidar, the
stereo camera and the radar). See Figure 3.6a for the output of the calibration tool, where
the detected calibration target locations for all three sensors are shown in the lidar ref-
erence frame. For absolute calibration, a Leica P40 laser scanner is used as the external
sensor, see Figure 3.6b. The P40 is a high resolution laser scanner which is able to local-
ize itself in the environment using multiple black-white markers on the walls and floor.
The Leica scanner was placed at several positions around the car, and using the markers
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and Leica software a merged point cloud of the vehicle is obtained, shown in Figure 3.6c.
During calibration, the P40 is positioned next to the car such that this sensor can see
both the car and 12 calibration board locations.

Three configuration (MCPE, FCPE and PSE) for relative calibration are evaluated on
data from 29 calibration board locations. The computation time of the optimization
depends on the number of sensors and the number of calibration board locations. If
all 29 calibration board locations are used, the computation time is less than 1 second
for the MCPE configuration, approximately 10 seconds for the FCPE configuration and
approximately 5 minutes for PSE configuration on a high-end computer (with an Intel
Xeon W-2123 @ 3.60GHz CPU).

In section 3.4.1, the thesis investigates the performance of the tool for relative cali-
bration, and in section 3.4.2 for absolute calibration. Finally, in section 3.4.2, additional
outdoor experiments are presented to demonstrate the impact outside the garage in the
intended environment of the vehicle.

3.4.1. Relative calibration

To assess calibration quality, the residual error for each pair of sensors is computed, i.e.
the Euclidean distance between the measured target positions after applying the found
transformation to put all measurements in the same reference frame. The root mean
squared error (RMSE) of all pairwise transformations is reported, namely lidar to stereo
camera (/2c¢), lidar to radar (/2r), stereo camera to radar (c2r). In the following sec-
tions, this thesis compares the relative calibration approaches to a baseline calibration
method, and assesses the choice of reference sensors, the number of target locations,
and sensitivity to additional noise.

COMPARISON TO BASELINE METHOD

First, a comparison is made with the single-target method of Guindel et al. [13] that only
calibrates a lidar to stereo camera pair. For the MCPE implementation when using sen-
sor data of a single target location and the single target method of Guindel, the cali-
bration is performed for all 29 calibration board locations and the mean and standard
deviation of the RMSE are provided in Table 3.2. It can be seen that both single target
implementations provide a similar result. In addition, the benefit of using multiple cali-
bration board locations is investigated. Table 3.2 shows that the /2¢ RMSE reduces from
39 mm to 15 mm.

Table 3.2: Comparison with baseline method.

lidar to stereo method # boards RMSE [mm]
Guindel et al. [13] single board 39.3+104
MCPE single board 39.3+10.4
MCPE all boards (29) 15.3
FCPE all boards (29) 15.3
PSE all boards (29) 15.3
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Figure 3.6: a Output of the calibration tool. All sensors poses and all detections of the calibration board are
plotted in the lidar reference frame. b Absolute calibration setup, using an external Leica laser scanner, for a
vehicle with a lidar, stereo camera, and radar. ¢ Merged point cloud from the Leica scanner, with the calibrated
coordinate systems of the three sensors after absolute calibration using the Human labeling approach.
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Table 3.3: Median of the RMSE [mm] for 200 combinations of 10 calibration board locations.

RMSE 12¢c [mm] | RMSE I12r [mm] | RMSE c2r [mm)]
MCPE(camera) 16.0+0.3 20.5+0.5 27.7+0.8
MCPE(lidar) 16.0+0.3 20.4+0.5 27.6+0.7
MCPE(radar) 16.3+0.4 20.4+0.5 27.7+0.8
PSE 16.1+0.3 18.3+1.7 24.0+1.2
FCPE 16.0£0.3 15.0+0.6 22.3+0.9

CHOICE OF MCPE REFERENCE SENSOR

Next, an experiment is performed to investigate if the choice for reference sensor of the
MCPE configuration influences its results. 10 calibration board locations are randomly
picked 200 times and the sensors are calibrated. Table 3.3 shows the median RMSE for
MCPE with all three reference sensors and for FCPE and PSE. The Table shows that all
choices (lidar, camera and radar) give similar RMSE, however selecting the radar as ref-
erence sensors results in two links that contain radar measurements. Since radar data
is 2D (range and angle) having two links with radar data might result in less accurate
results, therefore the lidar with a FOV of 360° is used as reference sensor from now on.
Furthermore, the RMSE for the sensor pairs /2r and c2r shows that configurations FCPE
and PSE perform better than the MCPE configuration.

DEPENDENCE ON THE NUMBER OF CALIBRATION BOARD LOCATIONS

To understand the impact of the number of calibration board locations, K, number K
is varied from 3 to 29 locations. For each value of K, 100 sets of K randomly selected
locations are used to calibrate the sensor setup. Figure 3.7 shows the median and median
absolute deviation of the RMSE over all 100 sets. Both FCPE and PSE show smaller RMSE
than MCPE for the [2r transform. The RMSE for [2¢ and [2r transforms for FCPE and
PSE configurations have converged to < 2 cm if more than 10 calibration board locations
are used. The configuration FCPE shows the best performance for /2r, since the RMSE
is smaller than 1.5 cm when using all 29 board locations.

SENSITIVITY TO OBSERVATION NOISE

This thesis also compares the robustness of the three configurations under additional
measurement noise for a sensor, and wonders how it affects the other sensor pairs. Zero-
mean Gaussian noise A4 (0,0213) is added to the 3D measurements of the lidar detec-
tions. The median and median absolute deviation of the RMSE for various values of o
are plotted in Figure 3.8, and it can be seen that the RMSE of sensor pairs with lidar in-
crease as a result, though the c2r errors for both FCPE and PSE remain fairly constant
as more noise is added. Furthermore, the RMSE for [2¢ and [2r remain lower than the
RMSE c2r for most of values of ¢.

3.4.2. ABSOLUTE CALIBRATION
For absolute calibration, the additional transformation between the Velodyne lidar coor-
dinate frame and the vehicle’s body reference frame is estimated using the external Leica
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Figure 3.8: RMSE error as function of Gaussian observation noise A 0,02 I3) added to the lidar observations.
The plotted median and median absolute deviation are based on 100 random combinations of 10 calibration
board locations.
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Table 3.4: Comparison of the standard deviations of the wheel center location for the manual labeling ap-
proaches.

0, [mm] oy [mm] | o, [mm]
Single point 1.3 1.7 1.9
3D circle fit 0.8 0.5 1.3

laser scanner. This means that the transformation between the Velodyne and the body
reference frame TP (see Figure 3.5) needs to be assessed. For the Toyota Prius vehicle,
the origin vehicle’s body reference frame is at the center of the rear axle projected onto
the ground, the X-axis is pointing forward, the Y-axis is pointing to the left rear wheel
and the Z-axis is perpendicular to the ground (pointing upwards). Hence, to determine
the pose of the body reference frame, the location of the wheel centers and ground plane
must be determined.

In section 3.3, several practical approaches are discussed to determine the location of
the 3D reference points, namely Markers and Human labeling, which are implemented
as follows:

1. As a first Human labeling approach, each wheel center location is manually la-
beled by selecting a single point in the Leica point cloud (see Figure 3.6c). To
project those locations to the ground, the normal vector and distance to the ground
is found by fitting a planar model on the lower part of the point cloud.

2. Another Human labeling approach is to manually select N points on the rim of the
wheel, and fit a 3D circle through those N points to determine the wheel center.

3. For the Markers approach, four Leica markers are positioned next to the wheels on
the ground (see markers in Figure 3.6b) below the axles.

This section will compare the robustness of the labeling options over multiple repe-
titions, and compare the rotational errors of the approaches with respect to the ground
normal.

ROBUSTNESS OF MANUAL LABELING
First, the two manual labeling approaches are compared by labeling the left rear wheel of
the car 10 times. Table 3.4 shows the standard deviations in X, Y and Z positions in Leica
reference frame. The results shows that labeling the wheel centers using multiple points
(N = 10) on the rim and fitting a 3D circle provides slightly better results than labeling
wheel centers using a single 3D point. Despite that the differences between the labeling
approaches are small, the 3D circle fit on the rim is used to determine the wheel centers
from now on.

More importantly, the observation is made that the standard deviation between mul-
tiple annotations is in the order of millimeters. This thesis concludes that this is suffi-
ciently robust given the operating scale and physical size of the vehicle.
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ROTATION ERROR AROUND X-AXIS AND Y-AXIS COMBINED
Now, the error in angle between the estimated and expected Z-axis is quantified. The
rotational error around the vertical Z-axis will be assessed later in section 3.4.3.

Since the Z-axis of the body reference frame is perpendicular to the ground, it is ex-
pected that the observed normal vector of the ground in the vehicle sensors is aligned
with the body’s Z-axis. Sensor data was recorded in a large garage space at the same time
as the absolute calibration was performed, meaning that the state of the suspension and
state of the tires is unchanged. The assumption is made that the ground within 6 meters
of the vehicle center is flat. The ground normal vector is estimated in the point cloud
of the vehicle’s Velodyne by segmenting the planar ground floor, using a maximum dis-
tance tolerance of 2.5 cm, and use the calibration to transform it to the body reference
frame. The angular error 6 between the observed normal vector n,;,; and the expected
normal vector nexp = [0,0,1] is

(3.13)

Ngps * Nex
6 = arccos ( P ) .

Inobs|l || nexp |

Initially when the sensors were positioned based on manual adjustments, the angle
was 0.13° and after calibration the angle 6 has decreased to 0.07° using the Markers ap-
proach, and 0.02° using the Human labeling approach.

3.4.3. OUTDOOR EXPERIMENTS

Finally, the thesis reports on additional experiments performed outside the garage at
two outdoor locations. These enable us to asses the calibration impact on multi-modal
perception in realistic environments, and at larger distances than possible in the garage
to highlight the reduced rotational errors.

LOCATION 1: QUALITATIVE ASSESSMENT

The thesis first qualitatively demonstrates the overall spatial and rotational accuracy of
relative calibration for all vehicle sensors in an urban outdoor scene with obstacles at 7
to 14 meter distance, see Figure 3.9. Before calibration, with initial manually set sensor
poses, the data from lidar and the stereo camera have a mismatch in the Z direction,
and the radar detection on the person on the left does not match the measurements
from the other two sensors. After calibration the data from all sensors are well aligned,
even though the used calibration targets were only placed at a few meters in front of the
vehicle.

LOCATION 2: ROTATION ERROR AROUND VERTICAL Z-AXIS

To assess the rotation error around the vehicle’s vertical axis for absolute calibration, the
apparent lateral drift of static objects is measured in the sensor frame while the vehicle
is moving straight forward, i.e. along the X-axis of the body reference frame. On a well
calibrated setup, the expectation is that the measured lateral position of static objects,
when transformed to the vehicle’s body reference frame, is the same at the first and last
measurement, see Figure 3.10. Therefore, the lateral positions of eight street light poles
distributed along the right side of an empty 240 meter long straight road is measured in
the vehicle’s lidar. The poles are extracted from the point cloud by clustering the lidar
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(a) Zoomed in camera image of outdoor scene
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Figure 3.9: a Image of the recorded scene to test the calibration. There is a parked car ~ 6m in front of the
sensor setup, and a person with a checkerboard at ~ 13m. b The lidar (black) and stereo (blue) point cloud,
and radar detections (red) before extrinsic calibration (based on manual adjustments). c The sensor data after
extrinsic calibration. Radar detections are drawn as arcs since the elevation angle is not measured.
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(a) Vehicle driving straight on road with street lights.
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(b) Expected lateral position of street lights.

Figure 3.10: Experimental setup to assess the rotational error of absolute calibration in real-world setting over
larger distances. a The vehicle drives in an approximately straight line on a long straight road with streetlights.
b The angle of inclination « (slope) of the lateral position of the light in the vehicle’s reference frame is expected
to be near zero over the whole drive if the sensors are properly calibrated (black lines). For a bad calibration
(red lines) the results would show a systematic lateral drift.
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points [37]. The car drives with a maximum speed of 5.4 m/s over the road marking line
(closed road), and each pole is measured for about 30 meters. To compensate for mea-
surement errors, small deviations of the straight trajectory, and outliers at the start and
end, for each pole a line through all measured positions is fitted. A pole’s amount of lat-
eral shift (AY) over the longitudinal range that it is observed (A X) allows us to compute
the angular error @ = arctan(AY/AX) of the lidar w.r.t. the body reference frame. While
small deviations in the car’s actual velocity can affect the number of measured positions
for each street light in Figure 3.11, e.g. driving faster would result in fewer measured
positions for each street light, a similar angle estimates is expected as the speed only
impacts the number of points that are used for line fitting.

The measured positions of the street lights in the body frame are shown in Figure
3.11. The observation is made that the slopes for Human labeling are the smallest com-
pared to the other cases. Overall, the reported median « angles in the graph captions
confirm that the error has decreased from more than 0.95° to 0.33° for Markers and 0.02°
for Human labeling.

3.5. DISCUSSION

Both the FCPE and the PSE configuration showed better results than the MCPE config-
uration (see Table 3.3 and Figure 3.7). This was expected since the FCPE configuration
includes all error terms between sensors in the optimization and the PSE configuration
uses a probabilistic model to simultaneously estimate the calibration board poses and
the sensor poses. It was found that the FCPE configuration shows the best results on
our sensor setup which consists of a lidar, a stereo camera and a radar. Furthermore,
the experiments showed that the proposed method that uses sensor data of multiple
calibration board locations outperforms the single target method of Guindel et al. [13].
With more than ten calibration board locations, the median RMSE is < 2 cm for lidar to
camera, approximately 2 cm for lidar to radar and approximately 2.5 cm for camera to
radar. For the MCPE configuration with fast computation time, the radar does not seem
to be a good choice as reference sensor, since it results in having two links with 2D radar
measurements (range and angle).

The PSE configuration simultaneously estimates the calibration board poses and
sensor poses. The noise covariances are estimated iteratively using sensor data of all cali-
bration board locations, however the noise covariances might not be constant for all cali-
bration board locations as the radar observation noise is usually larger at the edges of the
field of view. It is assumed that the observations are samples from a probabilistic model
with zero-mean Gaussian noise and that for every sensor the (2D/3D Euclidean) mea-
surements are uncorrelated (i.e. all off-diagonal entries of the observation covariance
matrices are equal to zero). In computation of the root mean squared error, the errors
in the various dimensions (e.g. X,Y,Z) are treated equally (i.e. identity weights). These
identity weights are also used in optimization of Euclidean error terms in the MCPE and
the FCPE configuration. However in case of the PSE configuration, the total error term
in the optimizer is based on the squared Mahalanobis distance, which means that the
inverse covariance matrices are used as weights (i.e. different weights for the various di-
mensions). This means that in case of the PSE configuration, the total error is internally
optimized using the inverse covariance matrices as weights, however when the RMSE is
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Uncalibrated - 0.95°

Figure 3.11: Locations of all streetlights in vehicle body reference frame while driving on a straight road. The
value in the title represents the median a angle for each method.
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computed then identity weights are used. This could explain why the PSE configuration
performs worse than the FCPE configuration.

Furthermore, some practical considerations are important for users. The calibration
board design consists of four key points for lidar and camera and one key point for radar
(e.g. trihedral corner reflector). The number of key points for every sensor affects the
optimization. In the FCPE configuration, the error term consists of all pairwise errors
and the total error for a single calibration board locations consist of four error terms for
lidar to camera and one error term for the other two links. In addition, all error terms
for sensor pairs with a radar are 2D Euclidean errors, whereas lidar to camera terms are
3D Euclidean errors. This means that the error in the FCPE configuration is dominated
by the lidar to camera errors, since it has four 3D Euclidean errors for every calibration
board location. Furthermore, there are multiple loop closure constraints for the FCPE
configuration for N > 3 sensors. The number of constraints (loop constraints) increases
with the number of sensors in the FCPE configuration. Therefore, the optimizer needs to
deal with a increasing number of constraints. This might influence the performance of
this configuration. In addition, the PSE configuration requires the measurement noise
covariances for all sensors, therefore these are estimated in an iterative manner. In prac-
tice, this means that the computation time is significantly affected by the number of
calibration board locations.

For calibration with respect to the body reference frame, a circle fitting approach was
used on the rims of the wheels to determine its center, which makes this calibration ap-
proach suitable for robots with visible wheels. In absence of visible wheels, the users
should use other 3D reference points to determine the pose of a body reference frame.
The main difference between the approach Markers and the approach Human labeling
can be found in the rotation error around the vertical axis, which can be explained by the
fact that accurate marker placement is challenging for the former method. Moreover, the
accuracy completely depends on how well the markers were placed during the calibra-
tion procedure. In case of inaccurate marker placement, the calibration procedure needs
be performed again. When the Human labeling needs to be performed again, the point
cloud model of the car (including the wheel center locations) can be reused. In that case,
the transformation between the point cloud model and the current scan of the external
sensor can be estimated using point set registration techniques (e.g. ICP) to determine
the wheel center locations in the reference frame of the Leica. In addition, the absolute
calibration of the lidar sensor was evaluated. For the lidar sensor, the method Human
labeling using 3D circle fitting showed most accurate results, namely a median angle
of 0.02° around the vertical Z-axis. To provide insights on how orientation errors affect
position estimates at a larger distance, the displacement error due to rotation errors €
for objects located at distance d,;; can be computed using: A = sin(e) - dyp;. Initially
when the sensors were positioned based on manual adjustments a median angle error
of 0.95°results in a displacement error of approximately 50 cm for an object at 30 meters.
After calibration, the median angle reduces from approximately 1° to 0.02° with a factor
50, therefore the displacement error decreased with a factor 50 assuming small-angle
approximation (sin(e) = € where € is in radians).
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3.6. CONCLUSION

An open-source extrinsic calibration tool to jointly calibrate sensor setups consisting of
lidar, camera and radar sensors was presented. The tool offers three configurations to
estimate the sensor poses from simultaneous detections of multiple calibration board
locations. Important factors like configuration choice, dependency on the number of
calibration board locations and choice for the reference sensor are investigated using a
real multi-modal sensor setup that consists of a lidar, a stereo camera and a radar. The
experiments show that all configurations can provide good calibration results, though
fully connected pose estimation showed the best performance. When ten calibration
board locations are used, the median RMSE is less than 2 cm for lidar to camera, ap-
proximately 2 cm for lidar to radar and approximately 2.5 cm for camera to radar. This
chapter’s findings highlight the importance of calibrating multiple sensors modalities
jointly, rather than separately for each pair.

In addition, two approaches were described to calibrate the sensors to the body refer-
ence frame using an external laser scanner, a process referred to as absolute calibration.
To measure the body frame pose of a vehicle in the external point cloud, it was found that
the best approach was to manually annotate several points on each wheel, and perform
geometric shape fitting on the wheels and ground plane. For the lidar sensor, a low hor-
izontal error w.r.t. the perceived ground plane normal < 0.2° was achieved, an outdoor
driving experiment showed a rotation error around the vertical axis of 0.02° an order of
magnitude smaller than the alternatives.

By sharing the ROS compatible calibration tool, and detailing the approach and find-
ings, other researchers are facilitated that need to regularly calibrate such multi-modal
sensor setups.
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OBJECT TRACKING

This chapter addresses the multi-sensor tracking filter that deals with time-varying and
state dependent conditions. The filter comprises of a estimator for the probability of de-
tection, and a tracking filter that utilizes the estimated detection probabilities. In this
way, the detection probability of each sensor is continuously estimated, to adapt to chang-
ing weather and illumination conditions. Experiments in a controlled environment with
artificial fog and experiments with the vehicle prototype in various weather and illumina-
tion conditions have been performed. The experiments showed that the proposed adaptive
tracking filter outperforms the tracking filter with fixed hyper-parameters for the detection
probabilities.

This chapter is based on the paper [1].

4.1. INTRODUCTION

To ensure safety, an intelligent vehicle must be aware of the objects in its surroundings.
Mainly three sensors are used for object tracking, namely (monocular/stereo) vision,
radar and lidar [2]. The object tracker provides state estimates (position, velocity, etc.)
for objects such as road users to the path planning algorithm in order to plan a safe tra-
jectory. Many state-of-the-art object tracking approaches assume perfect weather and
illumination conditions; however each sensor sensing modality has their drawbacks. For
example, the main drawback of vision is that it is sensitive to changes in weather and illu-
mination conditions [3], and lidar is more sensitive to precipitation than radar [3]. Since
the intelligent vehicle is a safety critical system, the sensing quality should be monitored
during highly automated driving to avoid safety-critical situations. On the basis of the
estimated sensing quality, the system should decide if it can continuously operate.

Multi-object filtering approaches require a parameterization of the detection proba-
bility and clutter level, however such models are not always available. Incorrect param-
eterization of these two variables lead to missing objects and/or spurious objects in the
object tracker. Furthermore, these parameters depend on the weather and illumination
conditions, which can change while driving.

53
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There are three challenges considering adverse weather conditions. First, the proba-
bility of detection and clutter density are usually considered time invariant (fixed). These
parameters are tuned based on a training data set, however these values change when
for instance weather conditions change (e.g. visibility in fog).

In other words, when the weather and illumination conditions in the test set are de-
viating from the training set, the performance of the object tracker will be affected. Sec-
ond, the probability of detection of a sensor might be dependent on the state of the
object. For instance, visibility in fog depends on distance. However it is hard to param-
eterize the probability of detection as function of the object’s state for all weather and
illumination conditions. Third, the perception system should be able to inform when
the sensors working are not working properly. This means that there is a need for a mea-
sure for the quality of sensing of the system. One aspect to quantify the ‘health’ of the
sensors is to have an estimate of the probability of detection for each sensor.

Approaches that use a single sensor for object tracking are not able to deal with sen-
sor or detector failures. In case of total sensor failure, a single sensor object tracker en-
counters an ambiguity, as it can reason in two ways: either the probability of detection is
low or there are no objects in the field of view. In case of some sensor or detector failure
due to adverse weather conditions (e.g, reduced visibility due to fog) this ambiguity ex-
ists. The same ambiguity exists when, for instance, the image detector is no longer able
to detect objects at a certain distance. Therefore, this thesis motivates for having two
sensing modalities for object tracking is to deal with sensor or detector failures.

In this chapter, a novel multi-sensor approach that dynamically estimates the de-
tection probability for each sensor is presented, which uses these estimates within a
multi-sensor tracking filter to improve tracking performance in challenging weather and
illumination conditions.

4.2. RELATED WORK

Multi-object tracking filters combine Kalman and particle filters with data association
techniques. Popular approaches include Multiple Hypothesis Tracking (MHT) [4] and
Joint Probabilistic Data Association (JPDA) [5, 6]. While MHT builds all track hypoth-
esis by propagating the data association hypothesis over time, JPDA approximates the
state update by an weighted measurement update based on all measurement to track
association probabilities. However, the number of association hypotheses might be in-
tractable for real-time object tracking. The Random Finite Set (RFS) approach [7] uses an
alternative way to model the collection of unknown targets, namely using a random fi-
nite set; both the elements in the set and the number of elements are a random variable.
Commonly used filters are: Probability Hypothesis Density (PHD)[8], Cardinalized Prob-
ability Hypothesis Density (CPHD)[9] and the labeled multi-Bernoulli filter (LMB) filter
[10]. Common implementations of multi-sensor tracking filters in automotive applica-
tions use CPHD tracking filters [11] and Labeled Multi-Bernoulli (LMB) tracking filters
[12, 13] as a tracking framework.

To deal with an unknown clutter rate and detection probability, Mahler et al. [14]
proposed three filters, namely a CPHD filter that can handle an unknown clutter rate, a
CPHD filter that can deal with an unknown detection probability, and a CPHD filter that
deals with an unknown clutter and detection probability. In the work of [15], the authors
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propose a bootstrap filter consisting of a clutter estimator and a tracking filter to deal
with an unknown clutter density. A robust multi-Bernoulli particle filtering approach
has been proposed that deal with non-linear dynamics in [16]. Furthermore, Rezatofighi
et al. [17] use a bootstrap filter with a clutter rate and detection probability estimator
for multi-target tracking of cells in microscopic images. The clutter rate and detection
probabilities from the estimator are bootstrapped onto a tracking filter that outputs es-
timates for the objects. In this way, the authors can deal with time-varying clutter and a
detection profile. In [18], the authors simultaneously estimate an unknown clutter rate
and detection probability for pedestrian tracking using a single camera. In addition,
adaptive filtering approaches are proposed that estimate a time-varying detection prob-
ability for radar [19] or sonar [20] sensors. A state dependent probability of detection
model has been derived offline in [21] for indoor pedestrian tracking with lidar and vi-
sion. The probability of detection model depends on the distance from the object, the
occlusions, and the sensor field of view; however, this model is unable to deal with the
time-varying probability of detection.

Furthermore, existing work bench marked the performance of automotive sensors
in adverse weather conditions. For example, in the work of [22], the authors show that
all state-of-the-art laser scanners perform poorly in dense fog conditions. Experiments
in the fog chamber showed that the maximum viewing distance is reduced to a fraction
of the clear-weather viewing distance. In [23], lidar sensors were bench marked in snow
and icy conditions. A methodology to test and evaluate imaging sensors was proposed
in [24]. Based on experiments in a fog chamber, the authors concluded that (standard)
cameras suffer from loss of contrast that deteriorates the visibility of edges.

Nowadays, deep learning techniques show very promising results in object detection
[25, 26] and object tracking [27-29]. To train these models, data sets are required with a
large corpus of training data. For adverse weather conditions, the number of data sets is
limited, because adverse weather conditions are relative rare. A dedicated multi-modal
data set in adverse weather conditions was recorded by [30]. The authors use the clear
weather part of the data set to train a deep learning neural network for object detection
using sensor data of radar, lidar, camera and gated camera, and use the adverse weather
data as the test set. Due to lack of data, researchers move to the usage of synthetic data,
e.g. [31-33].

Alternative approaches to deal with adverse weather conditions focus on weather
detection and weather removal techniques. For example, Pavlic et al. [34] and Hautiére
et al. [35] developed a fog detector. Zhang et al. developed a classifier for sunny, rainy,
hazy, and snowy conditions [36]. In addition, image enhancement techniques [37, 38]
can be used to remove effects of adverse weather conditions. The work of [39] survey
techniques to mitigate the effect of rain in images and analyse existing deep learning
approaches for object detection in rainy weather conditions. Hassaballah et al. [40] use
image restoration technique to enhance visibility in images, and use a deep learning
neural network for object detection in combination of a PHD tracking filter. Image en-
hancement methods are bench marked in dense fogin [41]. Running all these algorithms
continuously in parallel for each sensor might be computationally intractable. Further-
more, these methods cannot deduce the sensing quality, because it is not evident how
these conditions impact the sensor observations (i.e. object detectors), which are used
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for object tracking.

In summary, related work does not address object tracking with multiple sensing
modalities when the detection probabilities are potentially time-varying and
state-dependent due to weather and illumination conditions.

4.2.1. CONTRIBUTION

The main contribution of this chapter is threefold. First, a novel multi-modal tracking
filter is proposed that is able to deal with adverse weather conditions. Second, controlled
experiments in a fog simulator have been performed with static targets to investigate the
tracking performance (cardinality and localization errors) in slowly changing conditions.
Third, a data set is collected with the TU Delft vehicle prototype that contains recorded
scenarios with multiple dynamic objects. This data set with lidar, camera, and radar data
is used to investigate the performance of the proposed tracking filter in various weather
and illumination conditions.

4.3. METHODOLOGY

Robust perception cannot be achieved by using a single sensing modality. There is a
need for having an additional sensing modality. An additional sensing modality is ben-
eficial for estimating the detection probabilities of the sensor, because of three reasons.
First, each of the three sensing modalities (lidar, radar and vision) use a different part
of electromagnetic spectrum which means that the weather conditions (rain, fog, snow,
etc.) do not affect these modalities in the same way. Second, in case of sensor failure
(e.g. something is covering the camera lens), an ambiguity exists in the single-sensor
case. The system might reason that there are no objects or that the probability of de-
tection is very low. Third, the probability of detection of a sensor might depend on the
state of the object in case of adverse weather conditions. For instance, visibility in fog
depends on the distance as objects further away are affected more by the fog.

Based on these three reasons, this thesis proposes to use at least two sensing modal-
ities for object tracking. The single sensor bootstrap filters in [15, 17] served as inspira-
tion for this work. Experiments in [15] showed better performance for the bootstrap filter
than the filter dealing with an unknown clutter rate. Similarly, the proposed bootstrap
filter outperformed the filter with unknown detection probability and clutter rate [17].
Instead of a single sensor bootstrap tracking filter, this thesis uses a multi-sensor boot-
strap tracking filter that estimates the detection probability for each sensor to deal with
adverse weather and illumination conditions. The multi-sensor bootstrap filter com-
prises of an estimator for the detection probabilities and a multi-sensor tracking filter.
Figure 4.1 shows the schematic of the proposed multi-sensor bootstrap filter. The esti-
mator provides the detection probabilities estimates for each object to the multi-sensor
tracking filter, which uses the detection probabilities estimates for improved tracking.

The original pp-CPHD filter, which is the CPHD filter that can deal with unknown
detection probability, is summarized in section 4.3.1. In section 4.3.2, the proposed
multi-sensor pp-CPHD filter is discussed, which is the estimator for the probability of
detection (true positive rate). The last section, section 4.3.3, addresses how the estima-
tor and the tracking filter are integrated in the proposed multi-sensor bootstrap filter.
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Figure 4.1: Schematic of the multi-sensor bootstrap tracking filter (4.3.3), which consists of two components,
namely the estimator (4.3.2) and the tracking filter. The estimator aims at estimating the probability of detec-
tion for each sensor, and the tracking filter is using these estimates to track objects.

Both the estimator and the tracking filter receive sensor data from more than one
sensor. Most sensors have a different frame rate and others are not able to be triggered
(i.e. synchronized); therefore, observations are obtained asynchronously. Therefore, the
estimator and the tracking filter should process the observation from a sensor one after
the other; the sensor data fusion takes place by a sequential measurement update [42].
This is also called the iterated-corrector method [43]. This way, the detection probability
for the various sensors can be easier taken into account compared to parallel updating.

4.3.1. ORIGINAL pp-CPHD FILTER

This section summarizes the pp-CPHD filter from Mahler et al. [14], which is the CPHD
filter that deals with an unknown detection probability.

The state x = [x,a] consists of a kinematic state x and an augmented part a that
represents the detection probability between 0 and 1. The state x is also called the aug-
mented state, as it consists of the kinematic state and the augmented detection prob-
ability. The random finite set with augmented states at time k is represented by X =
{Xp 1+ X N} Where N(k) indicates the number of objects. The filter estimates the
states using observations Zi = {z; ;... 2y sy}, Where M(k) denotes the number of ob-
servations at time k.

Modeling of the kinematic state The probability of an object’s kinematic state x is
modeled by a Gaussian distribution A (x; m, P), where m denotes the mean and P its
covariance, The kinematic state follow a linear Gaussian dynamical model, hence the
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predicted kinematic state equals

Mik—1 = Fr—1Mp—1 (4.1
Piji—1 = Q1 + Feor Pear FL 4 (4.2)

where Fy_; represents the state transition matrix and Qy_; is the process noise matrix at
time k — 1. The subscript k|k — 1 denotes that the estimate of a certain parameter hold
for time k, given the observations up to and including time k — 1.

The estimate of the kinematic state that is updated by observation z is equal to

M (2) = myje—1 + Ki (2 — Hemipgie—1) (4.3)
Py = (I - K Hg) P (4.4)

where Hj is the observation matrix. For brevity, the subscript k is used to denote k|k.
Furthermore, K represents the Kalman gain at time k

Kk:Pk|k_1Hg(HkPk|k_1Hg+Rk)_1 (4.5)

with Rj denoting the observation noise covariance.

Modeling of the detection probability The state vector is augmented with a probabil-
ity of detection a, which is modeled by a Beta distribution B(a; s, t) which is described
by two parameters, namely s > 0 and ¢ > 0. As the probability of detection is part of the
state, it is estimated by the filter for each time k, hence B(a; s, tx). From the properties
of the Beta distribution, the expected value of (a; s, ) is

Sk

= 4.6
g,k St (4.6)
and its variance equals
2 Sk Lk
o . 4.7
P (s + )2 (s + L+ 1) @

Prediction for the augmented part of the state follows a preserved mean and a dilated
variance, i.e. fig -1 = Hp k-1 and U%,k|k—1 = kg -Ué'k_l, where p4 -1 and Uzﬁ,k—l are
the expected value and the variance at the previous time instance k — 1, respectively.
Furthermore, kg is a hyper parameters > 0 that scales the variance. To increase the pre-
dicted variance, a factor of kg > 1 is chosen. Then the prediction for parameters s and
t; boils down to

1B kik—1 (1 — g kk—1)
Sk|k—1=( 2 3 b =1 kg k-1 (4.8)
06,k-1
1 k11 — 1B kik-1)
fklk—1=( ’ 3 u =1 (= g kik-1)- (4.9)
T8 k-1
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Implementation This section details the closed-form implementation of the filter equa-
tions. To estimate the augmented states Xy, the filter aims at jointly propagating an
intensity distribution and a cardinality distribution. The intensity distribution v(x, a)
describes the density of the expected number of targets per unit volume, at x, a, [44].
This means that when v(x, a) is higher, then it is more likely that there is a target at
x,a, [43]. When v(x, a) is integrated, fs fol v(x,a)dadx, then the expected number of
targets in region S is obtained. The cardinality distribution is a probabilistic represen-
tation of the estimated number of objects in the set. Thus, for each r, the cardinality
distribution contains the probability that there are n targets in the environment. The
cardinality distribution is a probability mass function of the number of targets, which is
propagated by considering existing targets and appearing targets as well as false alarms
and the measurement set. To avoid propagating infinite terms, the cardinality distribu-
tion is truncated at Ny 4y, with Ny, 4y significantly greater than the number of targets in
the environment [44].

If the posterior intensity v,._, and posterior cardinality distribution p;_; at time k—1
are known and the v, _, is a Beta-Gaussian mixture [14] with Jr_; components, each
representing a target hypothesis, that have weight w,(ciil

Ji-t . .
V(o a)= Zi wl(clllﬁ(a; sgclzl’tl(clzl)
iz
x N (m PO ). (4.10)

The predicted intensity and cardinality distribution are adapted by considering the
probability that previously tracked targets continue to exist (surviving targets) and that
new targets appear, also known as ‘births’ The surviving RFS and birth RES are assumed
to be independent. Then the predicted intensity is given by

Ji-1
_ (i) L) (i)
Vij—1 (X, @) = Ps i 21 wk—1ﬁ(“’ S klk-1’ ts,klk—l)
i=

x N (x; mg,)klk—l'P.(Sl,)]dk—l) +7i(x,a) (4.11)

where subscript S denotes the surviving states, pg is the probability of survival and
vk (x, a) is the intensity of the birth targets, represented by a Beta-Gaussian mixture. The
predicted cardinality distribution pgx—; (1) involves a convolution of the birth and sur-
viving targets, see [14].

Given the predicted intensity v;,_, (x,a) and the predicted cardinality distribution
Pkik—1(n), the updated intensity is also a Beta-Gaussian mixture

Jkik—1
_ D afa DD
vp(x,a) = Zl Witk ﬁ(“’sk\k—l’tk\k—l+1)
]:

Jkik-1
G 5 )
X‘/V(x’mklk—l’Pklk—l)+ > Z wp (%)
z€Z j=1

y p(a; s+ t,‘cflic_l)ﬂ (x; mg)(z),Pl(C])). (4.12)
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where w](\fl) i 1s the weight after a missed detection and w;’, (z) is the weight that is up-
dated with an observation (detection). The first term of equatlon 4.12 contains the missed
term, which means that the weight (w ) are updated considering a missed detection;
for the beta distribution # is 1ncremented by one and the kinematic state is predicted us-
ing equation 4.1. The second term represents the term that is updated with a detection.
Thus, the weights are updated based on the measurement likelihood, clutter intensity
and a correction factor considering a detection. Furthermore, the kinematic states are
updated according to the Kalman filter update step (equations 4.3 to 4.5) and for the de-
tection probability a detection is considered; increment s of the Beta distribution by one.
The updated cardinality p(n) is a function of the clutter cardinality, the measurements,
the expected detection probability (similar to equation 4.6), the predicted weights and
the predicted cardinality distribution. For the exact equations for the updated cardinal-

()

ity px(n), weights wﬁ\{[) . and weights wg)k(z), the reader is referred to the original work,
[14]. ’ '

The expected number of targets can be estimated in two ways; first option is to com-
pute the mean of the weights Ny = Z] k wk , whereas the second option involves taking
the mode of py(n), namely N = argmax,, py(n).

To avoid increase of the number mixture components, component pruning, merg-
ing and capping are required. Component pruning involves removing mixture com-
ponents that have a weight smaller than a threshold T'. Component merging aims at
merging mixture components that are similar. In the work of [14], two mixture com-
ponents are merged if the similarity measure is below predefined threshold S’. As a
measure of similarity, the authors chose a metric that is inspired by the Hellinger dis-
tance [45], which quantifies the distance between two probability distributions. It is de-
fined in the range between zero and one, where zero indicates that two distributions
are the same. For a set with mixture components that are similar I = {i : d;; < §'}, the
set I is replaced by a single Beta-Gaussian mixture component that is approximated by
a summed weight ;s w}ci) and a weighted average for the augmented and kinematic
state, e.g. m(] ) = 5 lw(i) Yier w,(c’) () Finally, if the number of mixture components

i€l
is greater than /.y, thén component capping reduces the number of mixture compo-
nents by taking the J,,,,x components with the highest weight.

4.3.2. MULTI-SENSOR pp-CPHD FILTER

Instead of having one detection probability a, now the multi-sensor case is considered.
This means that apart from the kinematic state, multiple augmented variables needs to
be considered, which are denoted as as), and represent the detection probability for
sensor 1. The assumption is made the detection probabilities are independent of each
other. From now on, two sensors (N = 2) are considered, hence the set of sensor indices
equals 1,2. To include the probability of detection for the second sensor, equation 4.10
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is extended:

Jk-1
o @) = (1) 1. (1,1 (1,0
v (x,aVa )—Ziwk_lﬁ(a ’Sk—l’tk—l)
i=

2). [(2,0) (2,0)
x ﬁ(a()’sk—l’tk—l)

x A (x;md P ) 4.13)

This means that for the predicted intensity, both 8 distributions are predicted using
equations 4.8 and 4.9.

To denote from which sensor, sensor data is received, two variables are introduced,
namely n, and n-,. Variable n, indicates the sensor for which sensor data Z"= is re-
ceived at time k, and n-, to denote the other sensor. This means that at each time k, ei-
ther n, =1 and n-, = 2 when sensor data from sensor 1 is received or n, =2 and n-, =1
when sensor data from sensor 2 is received. The updated intensity equals

Ek(xl d(nZ), a(n—!z)) -

Jklk-1
() (ny). (nz,J) (nz,))
Zi wM,k(nz) x p (a FSplk1 tk|k—1 + 1)
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(n-2) . Nz, ) (-z,)) . ) ()
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zeZi j=1

xBam syl izl ) xon (mmd @, p). (4.14)

The intensity and cardinality distribution are updated similarly as in section 4.3.1 if the
measurement model of sensor rn,, clutter density of sensor n;, the expected detection
probability of sensor n, are selected. The kinematic state x and the augmented part a'"*)
are updated using sensor data of sensor 7;, which means that the observation model of
sensor 71, is used for the Kalman filter update step and that only  part for sensor n,
is updated. Pruning, merging and capping techniques are used to prevent unbounded
growth of the number of components. Pruning and capping techniques work similarly
as for the pp-CPHD filter, however for merging there is a difference. As the augmented
state now includes additional variables, namely the detection probability for each sen-
sor, the similarity measure for merging the components (after the update of equation
4.14) should be extended. To accommodate multiple augmented variables, the simi-
larity measure should take into account the f distributions for each of the augmented
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variables. Similarly to [14], a measure inspired by the Hellinger distance is used

dij= \/1 —dll-al?-a (4.15)

s;ci) +s§c‘) t”’ +t(])
6 B 2 2
d. . = (4.16)

i,j i X
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B det(P)!/?

exp{ ~(m¥ - ;j))T(P)*l(mgj)—mﬁj))} (4.17)

(i)+P(])
£——£ and where B is the Beta function. In equation 4.15, dﬁ - is calculated be-

with P =

tween the two f distributions for sensor 1, d'6 for sensor 2, and ﬁnally d‘/‘]/ is calculated

for components of i and j, which are based on the Hellinger distance for multivariate
normal distribution and Beta distribution, see the Appendix B.

4.3.3. BOOTSTRAP FILTERS

Section 4.3.2 addressed the estimator for the probability of detection for each sensor. As
Figure 4.1 is showing, the bootstrap filter is composed of the estimator and a tracking
filter. This section explains how the estimator and the tracking filter are integrated.

The tracking filter requires a parametrization of several parameters. One of these
parameters is the probability of detection pp for each sensor. To benefit from the esti-
mator, the tracking filter needs to be adapted to use the estimated detection probabilities
from the estimator. For that, this thesis distinguishes two approaches how the estimated
probability of detection is used inside the multi-sensor tracking filter. The first approach
is to consider time-varying detection probabilities, which means that the probability of
detection (pp) for sensor n; is constant in the field of view and it depends on time k,
p(" <) The second approach considers the detection probabilities to be time-varying and
state dependent, i.e. the detection probability also depends on the location in the field of
view.

Time varying The probability of detection is considered constant in the field of view,
however, it can vary over time. In that case, a weighted average of estimated probability
of detection is used to parameterize the multi-sensor tracking filter.

ng_ 1 f (15,0 4.18)
Ppx = e m wy 'uﬁk '

where ,uglfc’i) is the mean of the Beta distribution for sensor n, and mixture component i

at time k. The mean is computed using as equation 4.6.
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Time varying and state dependent Now consider that the probability of detection de-
pends on the state of the object, e.g. a lower detection probability when the object is
further from the sensor. The pp-CPHD filter estimates the probability of detection for
each object in the environment, and the detection probability estimate for each com-
ponent of the pp-CPHD filter are shared with the tracking filter along with the weight,
kinematic state and (kinematic) state covariance. The tracking filter requires an estimate
for the detection probability for each object, for which the estimate in the neighborhood
of the object’s state is used, i.e. the closest component from the pp-CPHD filter. To find
the closest component, a distance measure is calculated between the kinematic state
of the object in the tracking filter and between the components of the pp-CPHD filter.
Similarly to the component merging within the pp-CPHD filter, the distance measure is
inspired by the Hellinger distance. Distance is calculated between the kinematic states

of i and j:
dij=\/1-d (4.19)

where d;/‘; is defined in equation 4.17.

For each object i in the tracking filter, which is described by mean m¥ and covari-
ance P,(C”, the distance d;, ; from each m"/, P in the pp-CPHD filter is computed. Next,
the component with minimum distance is found: j = argmin j di,j- The probability of

detection pg“"k] is assigned to the object i if the distance d; ; is smaller than the threshold

D', otherwise the estimate of the previous time is kept. To avoid tracking objects with
very low detection probabilities, pruning is performed, requiring a minimum detection
probability.

When the detection probability is considered to be time-varying and independent of
the object’s state, the filter is called a bootstrap-filter, following the naming as used in the
single sensor bootstrap filters of [15] and [17]. In that case, the probability of detection
for all object at time k is equal for all objects. Since, CPHD and LMB filters are consid-
ered here as tracking filters, this thesis calls these bootstrap-CPHD and bootstrap-LMB,
respectively.

Furthermore, in the case where the probability of detection is time-varying and state
dependent, the name local-bootstrap-filter is used, as the filter finds locally the closest
component for retrieving the estimate for the probability of detection. Now, the filters
are called local-bootstrap-CPHD and local-bootstrap-LMB.

4.4, EXPERIMENTS

The first section describes the experiment in a controlled environment, and the second
section elaborates on the experiment with the TU Delft vehicle prototype (a Toyota Prius)
with multiple dynamic objects in various weather and illumination conditions. To eval-
uate performance, the Optimal Sub Pattern Assignment (OSPA) metric is used, which is
a commonly used metric to evaluate the performance of multi object filters [46]. The
OSPA metric consists of two error components, namely the localization error and the
cardinality error. The localization error quantifies how precise the state estimates are,
whereas the cardinality error indicates how accurate it estimates the number of targets
in the scene. The proposed filter variations from section 4.3.3 are compared with two
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baselines, namely CPHD filter and LMB filter are used that both use a fixed detection
probability for the sensors.

4.4.1. EXPERIMENTS IN FOG SIMULATOR

In the rain & fog simulator from Cerema (www.cerema.fr), experiments were conducted
to investigate the influence of adverse weather on radar and camera in a controlled en-
vironment. Very dense fog, with a visibly range of 50 m, was injected in the environment
(see Figure 4.3). The visibility range slowly increase, because the particles slowly dissi-
pate. To simulate that the fog is slowly appearing (see Figure 4.2) in this experiment,
the recorded sensor data and visibility data (by means of a transmissometer) has been
reversed.
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Figure 4.2: Measured visibilty range [m] by the transmissometer as function of time in frames.

The sensor setup consists of a radar and a monocular camera. The Continental
ARS309-2 radar runs at 15 Hz and the Melexis MLX75411 HDR camera with a high dy-
namic range of 154 dB runs at 30 Hz. In this experiment, the camera images are tem-
porally aligned with the radar frames, resulting in sensor data at a rate of 15 Hz. The
recording consists of 3461 radar frames (corresponding to a duration of = 4 minutes). In
total, 19 radar frames (0.5% of total) were missing due to the CAN to USB converter.

A trihedral corner reflector is a common radar target because of its distinctive Radar
Cross-Section (RCS) value (i.e. reflectivity). To have a common target for radar and vi-
sion, a vision-based detector is needed for the trihedral corner reflector, therefore a lin-
ear Support Vector Machine (SVM) using Histogram Oriented Gradient (HOG) features
is trained on a data set with images in normal conditions (no fog or precipitation).

The ground truth of the stationary targets (see Figure 4.3) is obtained by a combina-
tion of manually measured 3D locations and annotated pixel locations in the image. The
initial manually measured 3D locations are refined by minimizing the reprojection pixel
error with the annotated pixel locations.

The object’s kinematic state vector x; = [X, y, Uy, Uy T consists of the positions (x and
¥) and the velocities in x and y (v, and v,). As motion model a Discrete White Noise
Acceleration (DWNA) model is used. The radar observation vector consists range (r),

azimuth angle (a) and Doppler velocity (7). The polar radar observations can be con-
2
verted to Cartesian coordinates when the following conditions is valid [42]: :r“ <04
where 0, and o, are the standard deviations of observation noise in azimuth and range,
respectively. This method is called Converted Measurement Kalman Filter (CMKF) [42].
In this experiment, the standard deviation for the observation noise equals o, = 0.25 m,

04 =0.017 rad and o = 0.14 m/s. For the vision-based detector, the measurement vec-
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Figure 4.3: Experiment setup at the rain/fog simulator. The left figure shows the top view of the environment
and the right image shows the camera view. The red crosses in both the top view and image represent the radar
detection. Blue crosses represent the bottom center of the bounding box of the trihedral detector. The red dots
represent the multi-sensor local-bootstrap-LMB tracks. The trihedral corner reflectors are numbered in the
top view.

tor consists of the bottom center of the 2D bounding box (%, v). In case of a nonlinear
observation model, the nonlinear observation model is linearized around the current
mean estimate and covariance estimate, and an extended Kalman filter update is used.
Standard deviations for the camera model are 6.15 pixels and 10 pixels for o, and o,
respectively. Both observations uz and v are used for gating, and only u is used in the
Kalman filter update.

For the filters, the maximum number of components is set to 100, the pruning thresh-
olds equals 107°, the maximum cardinality equals 10, and a value of 0.5 is used as merg-
ing threshold. In addition, the variance of the Beta distribution is increased with factor
ks = 1.1 in the prediction step. Furthermore, gating is used with a gate probability of
0.99. The Gaussian mixture births are located at the expected locations of the trihedral
corner reflectors with a weight of 0.03. Furthermore based on observations, the Poisson
average rate of uniform clutter per scan is assumed to be constant and equal to 5 for the
radar and equal to 1 for the camera. The OSPA metric with parameters p =2 and c =1
m is used to quantify the performance. For assigning the detection probability in the
local bootstrap filters, a distance threshold D' of 0.3 is used (see section 4.3.3). As a prior
for the birth model in the CPHD filter, a prior for B(a, s, f) with s =9 and ¢ = 1 for the
radar detector and the camera detector. As a baseline, the multi-sensor implementation
of the CPHD and LMB filters are used. Both filters use fixed detection probabilities; the
detection probability for radar is equal to 0.99, and that for the camera detector is 0.95.

In table 4.1, the average OSPA is summarized. The OSPA distance is decomposed
into localization and cardinality errors in table 4.1 in order to compare the performance
of the various filters. Furthermore, the rows in the table are sorted based on the OSPA
distance column, with the best performing filter at the top (local-bootstrap-LMB). It can
be seen that the local-bootstrap-LMB filter outperforms the other filters, because the
cardinality (i.e. the estimated number of objects) is more accurate. In terms of localiza-
tion accuracy, the LMB filters show similar localization errors and for the CPHD filters
the local-bootstrap-CPHD performs better than the bootstrap-CPHD and CPHD filter.
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Table 4.1: Average OSPA in m for all filters (lower is better). Bold numbers indicate best performance for each
column.

OSPA OSPA OSPA

Distance | Localisation | Cardinality
local-bootstrap-LMB (proposed) 0.322 0.303 0.037
bootstrap-LMB (proposed) 0.469 0.304 0.306
local-bootstrap-CPHD (proposed) 0.500 0.348 0.296
LMB (baseline) 0.511 0.299 0.381
bootstrap-CPHD (proposed) 0.623 0.482 0.345
CPHD (baseline) 0.667 0.447 0.480

Figure 4.4 demonstrates the detection probability of the third trihedral corner re-
flector (see Figure 4.3) estimated by the local-bootstrap-LMB filter. At the beginning of
the scenario, the probability of detection for radar and camera is both larger than 0.8,
whereas at the end of the scenario the detection probability for camera dropped to val-
ues smaller than 0.3 due to the reduced visibility.

250

Time [s]

Figure 4.4: The probability of detection of trihedral corner reflector three in the multi-sensor local-bootstrap-
LMB filter. The blue dots represent the pp for the radar, and the red dots represent the pp for the camera.
Furthermore, the solid lines present the averaged probability of detection of a period of 2 seconds.

4.4.2. RECORDED DATA WITH PRIUS
In the fog simulator experiments, it was shown that the best performing filter was the
local-bootstrap-LMB filter, therefore this thesis now evaluates the performance of the
proposed local-bootstrap-LMB tracker on recorded data of the prototype vehicle. The
sensors of the prototype vehicle consist of a Velodyne HDL-64E lidar (on the roof), a
Continental ARS430 radar (behind the front bumper), and a camera (UI-3060CP Rev. 2)
which is mounted behind the windscreen at the height of the rear view mirror. These
sensors are calibrated extrinsically using [47]. The vehicle is equipped with an Inertial
Measurement Unit (IMU) and GPS receiver for egomotion estimation and localization.
The prototype vehicle is parked on a straight road, with a pavement on the right-
hand side of the car. Four different staged scenarios with three or four pedestrians are
performed and recorded, where the crossing pedestrians are at a distances of 15 m and
30 m, and the longitudinal moving pedestrians walk up to 100 m from the car. To obtain
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Figure 4.5: Box plots with average OSPA distance results. For the proposed filter, the results are obtained using
a uniform distribution (i.e. B(a,1,1)) for the initialization of the unknown detection probabilities in the birth
model of the pp-CPHD filter.

ground truth annotations, each pedestrian wears on his head a wearable Emlid Reach
M+ with a Tallysman multi-GNSS antenna. For each reading of the GPS devices, the
GPS coordinate is transformed to vehicle coordinate frame using the vehicle’s GPS and
IMU data. Then, the distance to the points in the lidar point cloud is computed, and the
closest lidar point is assigned as ground truth location, if the distance is smaller than 2
m.

In total, 36 recordings were recorded in various weather conditions (with/without
precipitation) and illumination conditions; 6 scenarios of those recordings were recorded
when there was precipitation, 24 scenarios were recorded in twilight/night conditions,
i.e. after sunset. Figure 4.6 shows the camera images for each recorded scenario.

Figure 4.6: Camera images showing the conditions in which the scenarios were recorded.
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To the detect the moving pedestrians in the radar and camera data, a detector is re-
quired for moving road users. To detect road users in the camera images, the Single
Shot Multibox Detector (SSD) is used [26]. As measurements for the camera detector,
the bottom center of 2D bounding box are fed into the object tracker(s). The moving tar-
get detector for radar data consist of three three pre-processing steps. Radar detections
are filtered for detections with a Radar Cross Section (RCS) value smaller than -20 dBm?
and, in addition, only detections that have a minimum absolute Doppler velocity value
of 0.02 m/s are kept. After that, DBSCAN [48] is used to extract the clusters using a dis-
tance threshold of 0.7 and with minimum number of points set to 1. For each cluster, the
mean of the cluster is computed and the mean is converted to range and azimuth which
serve as measurements for the tracker.

Within the tracking filters, the state vector of the object is represented by the 3D posi-
tions (x, y, z), and the 3D velocities (vy, vy, V). As motion model, a Discrete White Noise
Acceleration (DWNA) model is used. The non-linear observation models that object’s
states to the observations space of the radar and the SSD detector, are approximated us-
ing the unscented transformation, i.e. an Unscented Kalman Filter is used [49]. For the
radar sensor, the standard deviation of the observation noise is considered to be 0.6 m
for the range and 2° for the azimuth angle. Furthermore, a pinhole camera model is used
as an observation model with a standard deviation of the observation noise equal to 10
and 15 pixels for the horizontal pixel location and the vertical pixel location, respectively.
To initialize new tracks, a birth approach is required. For the pp-CPHD filter, the birth
approach from [50] is used and the adaptive birth procedure from [10] is used for initial-
ization for the LMB filters. New tracks are initialized based on radar observations as the
detections from the SSD detector (based on the monocular camera) lack depth informa-
tion. The maximum cardinality is set to 20 objects. Furthermore, a pruning threshold
of 107* is used, and the Gaussian components of each track are merged on the basis of
a threshold of 1. The tracks in the local-bootstrap-LMB filter that have a probability of
detection > 0.5 for one of the sensors are kept and the tracks with a maximum proba-
bility of detection < 0.5 are pruned. For the pp-CPHD filter, a maximum number of 100
components is used as the capping threshold. In the LMB and local-bootstrap-LMB fil-
ter, the number components for each track is limited to 20. A distance threshold D’ of
0.3 is used, for assigning the detection probabilities in the local-bootstrap-LMB filter.

In this experiment, this thesis investigates the performance of the LMB filter, which
showed better performance than the CPHD in section 4.4.1, that is optimized offline for
daylight conditions without precipitation with the local-bootstrap-LMB filter that on-
line estimates the probability of detection. The adaptive tracking filter is expected to
be more robust in various weather and illumination conditions than the tracking filter
with fixed hyper-parameters for the probability of detection and clutter rate for both
sensors. Two scenarios (see Appendix C) that were recorded in daylight conditions with-
out precipitation are used as training dataset for finding the optimal hyper parameters.
These optimal parameters for the detection probabilities and clutter rates are found us-
ing the minimization of the summed OSPA distance in all frames of both scenarios us-
ing a derivative-free global optimization routine (adapted version of [51]) from the dlib
toolkit [52]. For the camera detector, a detection probability of 0.73 with a clutter rate of
1.9 were found as optimal parameters. For the radar detector, the detection probability
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equals 0.6 and the clutter rate equals 4.9. The optimal clutter rates are known to both the
LMB and local-bootstrap-LMB filters.

For each scenario, the average OSPA is calculated across all frames with parameters
p =2 and c = 5.0 m to obtain a single metric for each scenario. This thesis considers that
the conditions are rainy when during the recording of the scenario rain was observed and
when the hourly weather classification data of the nearby Rotterdam weather station of
the Royal Dutch Meteorological Institute (KNMI) reports rain.

Figure 4.5 shows the result for the LMB and local-bootstrap-LMB filter in three con-
ditions. For the pp-CPHD filter, a uniform distribution for the detection probabilities
is used in the birth model, i.e. f(a,1,1). The label Day means that the recording was
made in daylight conditions (including precipitation) and the label Twilight/Night in-
dicates that the recording was made after sunset. Finally, Precipitation describes if the
sensor data was recorded in rainy conditions, regardless of illumination conditions. In
Day conditions, both filter show similar performance as both median values are very
close. In Twilight/Night scenarios, the LMB filter shows a decrease in performance com-
pared to Day conditions, as the median value of the average OSPA distances increases
to 4.4 m. The local-bootstrap-LMB filter shows better results than the LMB filter, as the
median value is approximate 3.5 m and the whisker boundaries are lower. Two outliers
are identified in Twilight/Night conditions from which the outlier with the lowest OSPA
distance can be explained as it is recorded shortly after sunset.

To investigate why the local-bootstrap-LMB performs better for Twilight/Night and
Precipitation conditions, the cardinality component of the OSPA metric in these two
conditions is inspected. In Twilight/Night conditions, the median value of the average
OSPA cardinality errors equals 4.4 m for the LMB filter, and 2.7 for the local-bootstrap-
LMB filter. In Precipitation, the median values are 3.7 m and 2.4 m for the LMB filter
and the local-bootstrap-LMB filter, respectively. The lower median values for the local-
bootstrap-LMB filter show that the cardinality estimates are better, meaning that this
filter is better at estimating the number of objects.

4.5. DISCUSSION

In section 4.4.2, a uniform distribution is used to initialize the detection probabilities
in the pp-CPHD filter. Even with a uniform distribution, the local-bootstrap-LMB filter
showed better performance than the LMB filter with fixed detection probabilities. How-
ever if more optimal values for the initialization of the detection probabilities are used,
improved results can be expected. For instance, the radar sensor is more robust than the
camera in adverse weather conditions, therefore in the birth model a Beta distribution
with higher mean and lower standard deviation could be used.

The optimal settings found in parameter optimization for detection probability and
clutter rate for the radar detector are equal to 0.6 and 4.9 per frame, respectively. False
positives detections could result in tracked objects if the false positive is persistent. For
instance, undesired detections due to multi path reflections or detection due to mov-
ing vegetation could result in a tracked objects. The local-bootstrap-LMB filter could be
more sensitive to persistent false positives as the filter estimates a low detection prob-
ability for camera and it keeps these tracked objects alive. Instead, the LMB filter with
fixed detection probabilities suppresses these objects as it expects camera detections. To
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reduce the number of false positives, the minimum number of points in DBSCAN clus-
tering could increased, however this might result in missed detections at large distances.
The minimum absolute value of the Doppler velocity threshold could be increased to
decrease the number of false positives; however, this might lead to a decrease in the de-
tection probability. Furthermore, more advanced signal processing techniques could be
used to reduce false positives in the radar point cloud. Finally, a state-of-the-art detec-
tor for moving objects (e.g. [53]) could be used, as these typically have a higher detection
probability and less false positives.

For the camera detector, a detection probability of 0.73 with a clutter rate of 1.9 per
frame were found as optimal parameters. The detection probability is low; however,
objects appear to be quite small in the image when the pedestrian is moving up to 100 m
from the camera. Moreover, it is the recommended to investigate why the found optimal
clutter rate is high. A possible explanation could be that a pinhole camera model is not
optimal as observation model the camera detector or that the observation noise was set
too low. Furthermore, the challenge with using a monocular camera is that there is a
lack of depth information. This means that 3D points that are along the same ray have
similar pixel coordinates, which might result in that objects further away are associated
with a bounding box that belongs to a closer object. One way to deal with that is to add
a second camera in a stereo camera setup and use stereo imaging to infer depth or use
the bounding box size to improve the association.

In adverse weather conditions, detecting road users in camera images is more chal-
lenging, therefore the number of false negatives increases. For instance, the images in
Twilight/Night conditions (Figure 4.6) show that for a human it is hard to detect the road
users in the images. To reduce the effect of the increased number of false negatives, the
local-bootstrap-LMB filter estimates the detection probabilities, which are subsequently
used by the tracking filter to improve the cardinality estimates and thereby the tracking
performance. Apart from affected detection probabilities, also the number of false posi-
tives could be dependent on the weather and illumination conditions, therefore adding
an estimator for clutter rate to the bootstrap filter of Figure 4.1 might be a direction for
future research. In addition, it should be investigated if the observation noise is depend-
ing on weather conditions. Furthermore, in experiments in a controlled environment,
it has been shown that the detection probability for both sensors can be estimated for
an object. These estimated detection probabilities could be used to assess the quality of
the sensing. For instance, in Figure 4.4 the detection probability for the camera detec-
tor drops below 0.3 in dense fog, which could indicate that this camera detector is not
working as expected.

4.6. CONCLUSION

In this chapter, a tracking filter that deals with affected detection performance due to
adverse weather conditions was proposed. The experiment in a fog simulator showed
that local-bootstrap-LMB filter performs better than the local-bootstrap-CPHD filter ac-
cording to the OSPA metric. Furthermore, the experiment recorded with the prototype
vehicle showed that the proposed local-bootstrap-LMB filter outperforms the LMB with
fixed detection probabilities. For instance, the median value of the average OSPA dis-
tances reduces from 4.4 m to 3.5 m in Twilight/Night conditions. As a consequence
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of online estimation of the detection probabilities, the cardinality estimates in case of
adverse weather conditions improved with respect to the LMB filter that uses fixed pa-
rameters which were optimized on daylight recordings. Future work involves adding an
estimator for the clutter rates to the bootstrap filter in order to estimate the number of
false positives for each sensor.
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CONCLUSION

This chapter summarizes the main technical findings of each chapter, then turns to more
general discussion of the thesis research, including future work.

5.1. SENSOR SELECTION

To select the sensor setup for a certain automated driving application, the tracking per-
formance of a candidate sensor setup needs to be estimated in an early design phase.
It is important to know if a certain sensor setup can comply with the system require-
ments. Therefore, tracking performance limits of a sensor setup are required in an early
(design) phase. Chapter 2 presented a framework to predict tracking performance limits
using the Cramér-Rao lower bound (CRLB) for multi-sensor setups. Numerical studies
on an example sensor set consisting of state-of-the art automotive sensors showed that
in close range stereo vision performs well, and accurate positional x and y estimates can
be found for the lidar sensor. Fusing data from radar and lidar showed the best perfor-
mance in highway environments and any two sensor combination provides a CRLB o
and a CRLB o, of less than 0.1 m within an observation time of 0.5 seconds in urban en-
vironments. The framework can be used to design a redundant perception system, since
the impact of a sensor failure on the tracking performance can be predicted. Comparing
the performance limits to the system requirements, early decisions can be made if the
perception system is still able to continuously operate or not.

5.2. EXTRINSIC SENSOR CALIBRATION

Chapter 3 addressed the problem of joint extrinsic sensor calibration for lidar, camera
and radar sensors. Three configurations to optimize the set of sensors were identified
and evaluated. Minimally Connected Pose Estimation (MCPE) computes the sensor-to-
sensor transformations with respect to a single reference sensor. Fully Connected Pose
Estimation (FCPE) optimizes the transformations between all sensor pairs using a con-
straint that forces loop closure. Finally, Pose and Structure Estimation (PSE) jointly es-
timates sensor poses as well as the calibration board poses. Both the FCPE and the PSE
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configuration showed better performance than the MCPE configuration, since the for-
mer configuration includes all pairwise error terms in combination with a loop closure
constraint and the latter configuration simultaneously estimates the calibration board
poses and sensor poses. The experiments with the TU Delft prototype vehicle with lidar,
camera and stereo camera suggest that the FCPE configuration performs better than the
PSE configuration. The median RMSE is less than 2 cm for lidar to camera, approxi-
mately 2 cm for lidar to radar and approximately 2.5 cm for camera to radar when ten
calibration boards are used.

Furthermore, the sensors are calibrated with respect to the body reference frame of
the robot in this chapter. For that, two requirements are identified, namely the need
for an external sensor and a set of 3D reference points. Two methods are compared to
determine the pose of the body reference frame in an external sensor. For absolute cal-
ibration, the experiments suggest that the method Human labeling using geometrical
shape fitting provides more accurate results than the method Markers. The main differ-
ence between the method Markers and the method Human labeling can be found in the
rotation error around the vertical axis, which can be explained by the fact that accurate
marker placement is challenging for the Markers method.

The software is available as an open-source extrinsic calibration tool with bindings to
Robot Operating System (ROS). It consists of three configurations to estimate the sensor
poses from simultaneous detections of multiple calibration board locations.

5.3. OBJECT TRACKING

Chapter 4 of this thesis addresses object tracking in challenging weather and illumina-
tion conditions, for which the multi-modal bootstrap filter is proposed, comprising of
a Cardinalized Probability Hypothesis Density (CPHD) filter that can deal with an un-
known detection probability (pp-CPHD filter) [1] that serves as an estimator of the prob-
ability of detection and a tracking filter. Experiments in a controlled environment with
artificial generated fog and experiments that were recorded with the TU Delft prototype
vehicle showed that according to the Optimal Sub Pattern Assignment (OSPA) [2] metric,
the proposed filter outperforms tracking filters with fixed detection probabilities. Ex-
periments with the TU Delft prototype vehicle illustrated that estimating the detection
probabilities and using these estimates in the tracking filter improves the tracking for
scenarios recorded in adverse illumination (twilight/night) and precipitation conditions.
Improved cardinality estimates in case of adverse weather conditions were found with
respect to the Labeled Multi-Bernoulli (LMB) [3] filter using fixed parameters that were
optimized on daylight recordings. Furthermore, the detection probability for radar and
camera was visualized for a single target in a controlled environment. These estimated
detection probabilities could serve a measure for the sensing quality as it indicates the
quality of data entering the fusion center.

5.4. FINAL REMARKS
The aim of the thesis is to develop methods and algorithms for developing a robust per-
ception system that is able to deal with adverse weather and illumination conditions.

A systematic approach to evaluate the tracking performance limits for sensor setups
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are computed in chapter 2, for static objects in front of the vehicle observed by different
sensor setups. Future work should address the problem of moving objects, and thereby
the observation noise and the observation matrices vary with time as these matrices de-
pend on the object’s position.

Robust perception cannot be achieved by using a single sensing modality, as in that
case there is a common mode of failure. Therefore, there is a need for having an addi-
tional sensing modality. Each of the three sensing modalities (lidar, radar and vision)
use a different part of electromagnetic spectrum, therefore environmental conditions
(rain, fog, snow, etc.) do not affect these sensor in the same way. The use of multiple
sensing modalities reduces the probability of a common mode of failure due to adverse
weather and illumination conditions. For redundancy purposes, the perception system
should comprise of at least two sensors that completely observe the 3D object and have
an overlapping field of view (FoV). If one of the sensors fails the system can still operate
using the other sensor. In case of sensor failure, the system can observe that one of the
sensors is detecting the object and the other sensor not. Therefore for tracking moving
objects, a sensor setup with two sensors including a monocular camera is not recom-
mended as a monocular camera is not able to measure depth directly, although depth
from monocular images [4, 5] might be accurate enough in the future.

The calibration tool proposed in chapter 3 uses a styrofoam calibration target with
four holes, and including a single trihedral corner reflector as target. To improve the de-
tectability of the calibration target for a monocular camera, the calibration board design
can be improved to include fiducial markers [6].

The thesis addresses the problem of joint extrinsic calibration of camera, lidar and
radar sensors in an offline setting, which is important for vehicles leaving the factory.
However, while being in operation, there is a need for an online calibration method to
verify if the sensor pose is still correct, or it has been misaligned. Misalignment could
happen after servicing, due to vibrations or by impact. Classical methods for online cal-
ibration of lidar and camera (e.g. [7, 8]), and more recently online extrinsic calibration
is performed using deep learning techniques [9, 10]. Future work should involve online
extrinsic and intrinsic calibration for multi-sensor setups consisting of lidar, camera and
radar sensors. Online calibration results should be monitored, to confirm that the sen-
sors are not misaligned. Without well calibrated sensors, there is no common coordinate
frame in which the sensor data can be expressed and fused.

In chapter 4, a sensor setup consisting of a radar and a camera is used for object
tracking in adverse weather conditions. The challenge with the radar - monocular cam-
era setup is that the monocular camera does not provide depth estimates. Without these
depth measurements, the monocular camera cannot initialize any new objects, unless
the object’s size is used to infer the depth. Due to the lack of depth estimates, the state of
the object cannot be estimated solely on the monocular camera, as the state is not fully
observable. Furthermore, the lack of depth accurate information makes it also harder
to monitor the health of the radar sensor, because the object cannot be tracked based
on monocular camera only. In case of malfunctioning radar sensor, the tracking filter is
not able to track based on camera only, and the estimator of the probability of detection
cannot estimate the detection probabilities. In order to improve the monitoring of the
sensing quality of the radar, the monocular camera could be replaced with a stereo cam-
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era or a lidar. Alternatively, deep learning techniques can be applied to infer depth from
monocular vision [4, 5].

To assess the reliability of all the perception sensors in real time, one parameter to
monitor is the detection probability of each of the sensors. Apart from the detection
probability, there are other parameters that needs to be monitored that can serve as a
measure for the sensing quality. In other words, these parameters indicate if the per-
ception system works as expected. Parameters such as the observation noise, clutter
and frame rate of each of the individual sensors need be monitored on a regular basis
to determine the sensors still works as expected. Furthermore, this thesis addressed the
problem of a time-varying and state dependent detection probability for object track-
ing. Other parameters, e.g. clutter and observation noise, could also be time-varying
and state dependent, therefore similar techniques need to be developed with the aim to
create a robust perception system dealing adverse weather and illumination conditions.

Deep learning techniques are nowadays also used for object tracking [11-13]. Train-
ing these models require large data sets for training and testing, and especially data in
adverse weather conditions are more challenging to record, as these are more rare. To
train and test deep learning models for object tracking, the research community requires
more specialized data sets on adverse weather conditions, similar to [14]. Alternatively,
techniques to ‘simulate’ adverse weather conditions on radar, lidar and camera data in
existing datasets are needed. For instance, [15] simulate fog on lidar point clouds, and
[16] render rain in camera images.

While important challenges remain, this thesis serves as a stepping stone to more
robust perception using heterogeneous sensors, contributing to safer intelligent vehicles
in adverse weather and illumination conditions.
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HELLINGER DISTANCE

The Hellinger distance between two multivariate normal distributions equals /1 — d;./‘; (11,
where d;"]{ is defined

(0)y1/4 ()y1/4
N det(Pk ) det(Pk )
b det(P)!/?

1 . . B . .
exp{—g(mg) —mgcj))T(P) ! (mg) —m;g))} (B.1)

(i) (0]
Pl+Py

with P = -~ The Hellinger distance between two Beta distributions equals /1 - dlp i

(e.g. [2]), where dfj equals

s04s0 (DD
5 )
da; .= . (B.2)

i,j ; ;
@) (@) 0 ()
\/B(Sk ’tk )B(Sk ’tk )
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Table C.1: Figure with average OSPA results for both filters on all recordings. For the local-bootstrap-LMB
filter, the results are obtained using a uniform prior for the both detection probabilities in the birth model of
in the pp-CPHD filter. The two recordings with an asterisk (*) are the recordings used for tuning of the hyper
parameters (i.e. the probability of detection and the false alarm rate). The values in bold indicate the best filter
for each recorded scenario.

Recording Precipitation Light LMB | local-bootstrap-LMB
2019-5-13 15:32* - day 2.2 24
2019-5-13 15:36* - day 2.3 2.5
2019-5-13 15:42 - day 2.7 2.7
2019-5-13 15:49 - day 3.6 4.0
2019-6-19 21:59 Rain day 2.3 2.3
2019-6-19 22:02 Rain day 2.5 2.5
2019-6-19 22:06 Rain twilight/night | 3.8 3.5
2019-6-19 22:10 Rain twilight/night | 4.4 3.8
2019-6-19 22:13 Rain twilight/night | 3.8 3.7
2019-6-19 22:17 Rain twilight/night | 4.2 2.4
2019-6-19 22:29 - twilight/night | 4.3 3.9
2019-6-19 22:32 - twilight/night | 4.4 3.7
2019-6-19 22:34 - twilight/night | 4.4 3.3
2019-6-19 22:40 - twilight/night | 4.7 4.2
2019-6-19 22:48 - twilight/night | 4.6 3.9
2019-6-19 22:50 - twilight/night | 4.6 3.6
2019-6-19 22:56 - twilight/night | 4.8 4.4
2019-6-19 23:29 - twilight/night | 4.6 4.0
2019-6-19 23:31 - twilight/night | 4.7 4.1
2019-6-19 23:34 - twilight/night | 4.9 3.8
2019-6-21 12:24 - day 3.3 3.4
2019-6-21 12:26 - day 3.4 3.6
2019-6-21 12:27 - day 3.3 3.4
2019-6-21 12:33 - day 3.3 34
2019-6-21 12:44 - day 3.4 2.8
2019-6-21 12:46 - day 3.4 35
2019-6-24 22:20 - twilight/night | 2.5 2.7
2019-6-24 22:24 - twilight/night | 3.9 2.9
2019-6-24 22:26 - twilight/night | 4.4 3.7
2019-6-24 22:36 - twilight/night | 4.4 3.5
2019-6-24 22:38 - twilight/night 4.4 2.6
2019-6-24 23:14 - twilight/night | 3.0 2.7
2019-6-24 23:16 - twilight/night | 3.4 2.7
2019-6-24 23:21 - twilight/night | 4.7 3.4
2019-6-24 23:23 - twilight/night | 4.7 23
2019-6-24 23:30 - twilight/night | 4.6 2.7
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