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Abstract

In nature, all species have their own behaviors and strategies for survival. Some species survive and
reproduce, while others become extinct. This paper proposes a model to simulate these strategies and
test their performance. Natural behavior is represented as strategies for the iterated Prisoner’s Dilemma
(IPD). Agents wielding one of ten common IPD strategies are deployed in a natural spatial environment
with biologically realistic conditions, where they continuously play Prisoner’s Dilemma games. If the
payoffs are well enough, agents are able to reproduce. The harshness of the environment is determined
by three factors. The cost of living directly controls the climate and age limitation and energy limitation
affect an agent’s ability to reproduce. Another influencing factor is evolution, which gives agents the
option to adopt different strategies in later stages. Harsh environments are defined by high costs of living,
high reproduction costs and low life expectancy. Results show that cooperative strategies are more likely
to survive and reproduce in harsh environments. Moreover, evolution is in the advantage of cooperative
strategies, because many unsuccessful defectors evolve into cooperators.
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1 Introduction

The Prisoner’s Dilemma (PD) is a founding concept
in game theory used in numerous studies. It is a coop-
erative game where players have the choice to either
cooperate or defect and receive payoffs depending on
the outcome. It is a non-zero-sum game, meaning
that one player’s gain does not necessarily balance
the other player’s loss. For mutual cooperation both
players receive reward R. For mutual defection both
players receive a punishing payoff P . If a player de-
fects while the opponent cooperates the player re-
ceives a temptation payoff T and the opponent re-
ceives a sucker payoff S. A classical PD game is de-
fined when T > R > P > S and 2R > T + S.

The Iterated Prisoner’s Dilemma (IPD) is an ex-
tended version of PD, where the game is played re-
peatedly and the player is able to remember previous
choices of its opponent. IPD provides an abstract
framework for investigating the evolution of cooper-
ation. Multi-agent simulations using IPD are very
useful in studying cooperation levels and social cohe-
sion in nature and society [1].

In a single Prisoner’s Dilemma game defection is
the preferred strategy. Regardless of the opponent’s
move, defecting receives the best payoff. In the iter-
ated Prisoner’s Dilemma however, opponents repeat-
edly play against each other and cooperating will pay
off better on the long term, as proved by Axelrod
[2]. He was the first to organize a tournament of
a N -step iterated Prisoner’s Dilemma with a fixed
N , where participants entered their strategies. Over-
all, successful strategies were the ones that allowed
for cooperation. The winning strategy, sent by pro-
fessor Anatol Rappoport, is called tit for tat (TFT)
which is based on attempt of cooperation and later
on reciprocity - simply copying the opponent’s last
move. Axelrod concluded that in order to be success-
ful, strategies should be nice, forgiving and simple.
Nice means cooperation on the first move and forgiv-
ing means reciprocity even after being defected.

2 Related Work

Spatial evolutionary games are played in two-di-
mensional or three-dimensional spatial structures and
usually restrict interactions between players to local
neighborhoods. Numerous researchers have designed
models to study behavior of IPD strategies in spatial
environments. Nowak and May were pioneers in this
field of research. They showed indefinite persistence
between cooperators and defectors in spatial environ-
ments. In their model, each patch-owner plays PD
games with its immediate neighbours. At the start
of the next generation players switch strategy if this
proves to be more successful [3].

Schweitzer and Mach performed similar experi-
ments, but instead of using the strategies of uncon-
ditional cooperation and defection they used a 3-bit
binary string representation of strategies, introduced
by Nowak and Sigmund [4]. The first bit represents
the initial choice of the agent. The second and third
bit represent its choice when the opponent cooperates
and defects, respectively. They found that all players
eventually adopt TFT, provided that the games were
played for enough iterations against each opponent
[5].

Lindgren and Nordahl used a variation of binary
string representation of strategies. Longer binary
strings enable agents to choose their next move based
on a bigger memory of previous moves. Different
types of mutation allowed the agents to evolve their
strategies over time into more complex ones. Suc-
cessful strategies were binary strings evolved from the
simple binary strings 11 and 01 representing uncon-
ditional cooperation and TFT, respectively [6].

Wilensky built a model to explore the implica-
tions of some complex strategies as well. He deployed
agents in a spatial environment with periodic bounds.
The agents moved randomly through space and re-
peatedly played PD games against the same oppo-
nents [7].

Table 1: Overview of related models
Strategies Evolution Mutation Reproduction Aging

Nowak & May [3] ALLC, ALLD x
Schweitzer & Mach [4] 3-bit binary strings x
Lindgren and Nordahl [6] n-bit binary strings x x
Netlogo [7] ALLC, ALLD, RAND,

TFT, GRIM
Smaldino [8] ALLC, ALLD x
Proposed model ALLC, ALLD, RAND,

gTFT, sTFT, TFTT,
TTFT, GRIM, Pavlov

x x x
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Finally, Smaldino studied cooperation in harsh
environments and the emergence of spatial patterns
as they occur in all types of natural systems, living
and non-living. He discussed the strategies of un-
conditional cooperation and defection and the coex-
istence between the two strategies in a natural model.
In specific, he experimented with factors that deter-
mined the environment’s harshness. The cost of liv-
ing and sucker payoff S played an important role in
the harshness. He found that the larger the cost of
living and the value for S were, the more successful
the cooperators. Accordingly, low costs of living and
sucker payoffs served defectors [8].

Table 1 shows an overview of models related to
this model and the different features they posses. The
features and strategies are discussed into detail in sec-
tion 3 and section 4.

3 Contribution

This paper reports an extension of Smaldino’s study
and model. Whereas Smaldino discussed only the
two unconditional strategies, this paper talks about
several complex strategies for IPD. It is a research re-
garding the question: How do strategies for IPD per-
form in a biologically realistic environment? Multi-
agent simulations were used to experiment with sev-
eral factors influencing the strategies in the environ-
ment. These experiments try to show how complex
IPD strategies would perform if they were deployed
in nature. The simulations were run on an extension
of Smaldino’s model. In this model the agents can be
compared to individuals in nature. These individu-
als wield survival strategies which can be cooperative
(flocks) or defective (predators). The model features
several variables that influence realistic factors found
in nature. Harshness of the climate is determined
in the model by a cost of living, age limitation and
energy limitation. The cost of living k directly con-
trols the climate. The higher k, the harder for agents
to survive. Age limit h affects an agent’s ability to
reproduce. The sooner it will die, the sooner it has
to reproduce to be successful. Thus, low age limits
make the environment harsher. Finally the repro-
duction threshold and reproduction cost are in close
relation with the energy limit. Agents are able to re-
produce if their energy level is two-third of the max-
imum with a cost of one-third of the maximum. The
higher the energy limit, the longer it takes to become
strong enough to reproduce. Another realistic feature
of the model is evolution. In nature individuals ac-
commodate to harsh environments by small changes
in their physique, habits and behavior. Evolution is

reflected in the model by the option to change strate-
gies in later stages. The model is described in detail
in section 5.

To experiment with the performance of the strate-
gies some hypotheses were drafted. The following
hypotheses are based on conclusions of Axelrod and
Smaldino:

1. Successful strategies are nice and forgiving.

2. Harsh environments are in the advantage of co-
operators.

3. Evolution is in the advantage of cooperators.

Note that Axelrod concluded that strategies
should be simple as well. This is left out in hypothesis
1 as this paper only discusses rather simple strategies
and does not go into detail about complex ones.

4 Strategies

In 2004 and 2005 similar competitions to the one or-
ganized by Axelrod were held. Jurǐsić et al. did a re-
view of strategies submitted in all three tournaments
and strategies that have emerged in between. They
state that most new successful strategies are based
on the principle of TFT [9].

In their review Jurǐsić et al. classify nine strate-
gies as default types shown in Table 2. Furthermore,
they mention the winning strategy of the tournament
in 2005, called Adaptive Pavlov (APavlov). APavlov
tries to recognize the opponent’s strategy, categorize
it in one of the nine strategies (RAND if unknown)
and respond in an optimal way [10]. Note that Pavlov
can be either played with a cooperation in the first
move (Cooperative Pavlov or PavlovC) or a defection
(Defective Pavlov or PavlovD).

All IPD strategies can be further categorized in
subsets. First, there is the set of fixed strategies
containing: always cooperating (ALLC), always de-
fecting (ALLD) and random (RAND). The actions
of the other strategies are more complicated as they
depend on their opponent’s behavior. Second, there
is a separation between nice strategies and non-nice
strategies. Nice means that they always start with a
cooperating move. For example, TFT and grim trig-
ger (GRIM) are nice strategies and suspicious TFT
(STFT) and PavlovD are not. Finally, strategies have
some level of forgiveness. For example, tit for two tats
(TFTT) is more forgiving than TFT, which is in its
turn more forgiving than two tits for tat (TTFT).
GRIM is the sternest strategy.

The model described in section 5 will contain
the default strategies from Table 2, including both
PavlovC and PavlovD.
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Table 2: Default Types of Strategies
Designation Description
ALLC Strategy always plays coopera-

tion
ALLD Strategy always plays defection
RAND Strategy has a 50% probability

to play cooperation or defection
GRIM It starts with cooperation, but

after the first defection of its op-
ponent continues with defection

TFT It starts with cooperation and
then it copies the moves of the
opponent

STFT As TFT but starts with defection
TFTT As TFT but defects after two

consecutive defections
TTFT As TFT but for each defection

retaliates with two defections
Pavlov Action results are divided into

2 groups, positive actions are
T and R and negative actions
are P and S - if the result of
previous action belonged to the
first group, action is repeated
and if the result was in the sec-
ond group, then the action was
changed, it is also called win-
stay, lose shift

5 Model Description

As explained in section 3, the model used in this pa-
per is based on the work of Smaldino [8]. In his model
however, he only used unconditional cooperation and
defection, i.e. only the strategies ALLC and ALLD.
The model proposed in this paper features multiple
complex strategies. Netlogo was used to build this
model [11].

Agents are deployed on unique random cells in a
100 x 100 square lattice with periodic boundary con-
ditions. They are initialized with an energy level h
drawn from a uniform distribution between 1 and 50.
Once the simulation starts, agents try to find an op-
ponent on one of its 8 neighboring cells (Moore neigh-
borhood). If successful the agents play a single game
of the Prisoner’s Dilemma against each other and the
resulting payoffs add up to their current energy level.
If no opponent is found the agent randomly moves up
a single cell in its Moore neighborhood. Payoffs are
determined in Table 3.

Table 3: Payoff Matrix
Opponent’s move

Player’s move Cooperate Defect

Cooperate
Player: 3
Opponent: 3

Player: 0
Opponent: 5

Defect
Player: 5
Opponent: 0

Player: 1
Opponent: 1

Harshness of the environment is directly con-
trolled by the cost of living k. Each game cycle this
value is deducted from the energy level of every agent.
If its energy level falls below zero, the agent dies and
is removed from the environment. On the other hand
the agents have an energy limit. It is important that
k > 1, otherwise defectors can survive on their own,
because P = 1. Furthermore, agents have a reproduc-
tion threshold of two-third of the energy limit. If an
agent obtains an energy level above this threshold the
agent will try to reproduce and hatch an agent with
the same strategy in its Moore neighborhood. Re-
production will only be successful if there is at least
one unoccupied neighboring cell. The child agent will
be provided with an energy level of one-third of the
energy limit, deducted from its parent agent.

The model allows for evolution of strategies.
Agents are able to imitate strategies from neighbors
that outperform their own. The model provides a
variable threshold for evolution q. If the sum of an
agents energy level and q is lower than the energy
level of one of the agents with a different strategy in
its Moore neighborhood, it will adopt the strategy of
that agent.

6 Results

Experiments were conducted with an initial popula-
tion of one-tenth of the lattice capacity, i.e. an equal
distribution of 100 agents per strategy. The variables
to be tested were cost of living k, age limit m, en-
ergy limit h and evolution threshold q. Default values
were chosen as follows: k = 1.1, m = 0 (no age limit),
h = 150 and q = 0 (no evolution). As explained in
section 5, k should be larger than 1 to avoid survival
by mutual defection. Still k is chosen not much higher
than 1 so the environment will not be too harsh by
default. Values for age limit, energy limit and evo-
lution are determined by Smaldino’s model, i.e. no
aging, no evolution and an energy cap of 150.

Results were determined by the average of 20 runs
per simulation. The deviations in results were signif-
icantly small at this number of runs. Every run kept
going until the populations of strategies stabilized,
i.e. when deviations in the relative number of agents
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per strategy stayed within a margin of 0.1% of the
total population for 50 consecutive generations. Sim-
ulations for experimenting with an age limit were set
on a fixed number of generations, because agents are
constantly dying and replaced, which never leads to
an exact stable state. These simulations ran for 2000
generations. After this rather large number of gener-
ations populations still changed, but stopped growing
or shrinking, making it stable enough for good results.
The measurement for the success of strategies is the
number of agents counted in the environment in the
last generation.

First simulations were run using the default values
for k, m, h and q. Figure 1 shows the average agent
count per strategy over time. After approximately
350 generations (t = 350) the complete environment
was occupied with agents. The populations stabilized
when the agent count hit 10 000. After a few genera-
tions differences in growing rates arise and no popu-
lations pass each other. At t = 350 a clear separation
can be made between the nice strategies and the non-
nice. The lower four strategies start with a defection
(RAND with a 50% chance, thus can not be called
nice) and the upper six start with cooperation. Fur-
thermore, there seems to be an advantage for rather
unforgiving strategies. GRIM ends up as largest pop-
ulation followed by TTFT, TFT and TFTT. This is
the order from sternest to most forgiving as described
in section 4.

Figure 1: Agent count per strategy over time without
evolution

6.1 Evolution

By evolution the imitation of neighboring strategies
is meant. When an agent has sufficiently less energy
than its strongest neighbor, it will adopt the strat-
egy of this neighbor. The experiment on the effect of
evolution was conducted on two values for the evolu-
tion threshold q: q = 0 (no evolution) and q = 20.
When q < 20 agents kept evolving too often and never

reached a stable composition and when q > 20 differ-
ences in populations become negligible.

Simulations with evolution took about 50 genera-
tions more to stabilize than without evolution. Evo-
lution kept doing its work even after all 10 000 cells
were occupied. Results shown in figure 2 are similar
to the previous experiment without evolution. The
order of strategies in the agent count is nearly the
same. In this graph however, the strategies are wider-
spread. The difference in agent count between the
best strategy (GRIM) and worst strategy (STFT) has
nearly doubled compared to runs without evolution.
At approximately t = 200 some populations stagnate
and start shrinking. At this point many agents with
losing strategies realize their strategy is dying out and
they switch to a neighboring winning strategy. Most
of these shrinking strategies are not nice. Interest-
ingly PavlovC is shrinking as well, even though it
starts with cooperation. The decrease in population
is sufficient enough to drop below the agent count of
ALLC.

Figure 2: Agent count per strategy over time with
evolution

6.2 Cost of Living

The harshness of the environment is directly influ-
enced by the cost of living. Each generation, cost of
living k is deducted from each agent’s energy level.
The higher k, the harsher the environment. The ex-
periment was conducted on 11 values for k, from 1.0
to 2.0 with steps of 0.1. Below 1, the cost of living
will not affect any agent. Above 2, it will become
hard for any agent to survive.

Figure 3 shows the results of simulation runs on
the cost of living. For k = 1, populations stabilized
at approximately t = 350. It took longer for larger
values of k. For k = 2, stabilization took about 1300
generations. The final average agent count per strat-
egy is shown in the graph for 1 ≤ k ≤ 2. Again we
see a gap between nice strategies and non-nice ones.
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When the cost of living is increased there is a clear
decrease in the agent count for non-nice strategies.
Moreover, non-nice strategies become extinct when
the environment is sufficiently harsh. Nice strategies
take in their place, which results in a slight increase
in agent count. Interestingly, PavlovC does not seem
to be affected by the cost of living at all. For both
k = 1 and k = 2, the final agent count for PavlovC
is just above 1000. ALLC even outperforms PavlovC
in harsh environments.

Figure 3: Final agent count with a varying cost of
living

6.3 Age Limit

In nature, all individuals are affected by aging. How
old one becomes differs per species and per individ-
ual. For research purposes the age limit is gener-
alized. Every agent has the exact same age limit.
The experiment on the effect of age limitation m was
conducted on 10 values for m, from 100 to 500 with
steps of 50 and m = 0, being no age limit. The value
m = 50 was excluded from the experiment. For this
age limit, none of the agents survived because they
died of age before they could reproduce.

In figure 4 it can be seen that an age limit is in the
advantage of nice strategies. A short life time results
in extinction of non-nice strategies. After an agent
reaches its limit, it dies and makes place for a strong
strategy waiting to reproduce. Again PavlovC is the
exception. Instead of having an advantage, low age
limits even affect the strategy negatively.

Figure 4: Final agent count with a varying age limit

6.4 Energy limit

In the model, reproduction becomes more expensive
as the energy limit rises. Thus, increasing the energy
limit will make reproduction conditions worse. Sim-
ilar to nature, agents have to be strong and healthy
enough to reproduce in harsh conditions. The exper-
iment on the effect of h was conducted on 10 values
for h, from 50 to 500 with steps of 50.

Figure 5 shows the results of the experiment. For
h = 500, the gap between nice and non-nice strate-
gies is clearly visible. The lower the energy limit, the
more this gap fades. For h = 50, non-nice strate-
gies RAND and PavlovD even perform the same as
ALLC. The top four strategies count approximately
200 agents more when the energy limit goes from the
default value (h = 150) to 500. The lower four strate-
gies drop about 150 in agent count in this interval.
Surprisingly, PavlovC and ALLC are not affected by
the change in energy limit. The agent count deviates
less than 50 in the interval 50 < h < 500.

Figure 5: Final agent count with a varying energy
limit
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6.5 One-on-one Results

Previous experiments were conducted with all strate-
gies at once. In the environment, 1 000 agents of
ten different strategies compete for the highest agent
count. One-on-one competitions were held as well.
Again, the initial population consisted of one-tenth
of the capacity, i.e. 500 agents of two different strate-
gies. All strategies played against every other strat-
egy ten times. The number of runs is less than pre-
vious experiments because deviations were smaller in
one-on-one simulations. The resulting average per-
centage of the total population was used for the mea-
surement of performance.

Results were quite similar to previous experi-
ments. The order in success of strategies is quite
the same. Only PavlovD has an unexpected boost
in rankings. It switched places with ALLC. Its suc-
cess is due to the fact that PavlovD overrules forgiv-
ing strategies. In one-on-one competitions PavlovD
reaches nearly 100 percent of the population against
ALLC and a little less for TFTT and TFT. It is out-
performed by TTFT and GRIM, but these strategies
do not inhibit PavlovD in competing against other
strategies as they did in experiments with all strate-
gies mixed in the environment. Figure 6 shows the
exact results.

Figure 6: Average percentage of the total population
per strategy in one-on-one competitions

7 Conclusion

In this paper, the performance of IPD strategies in
nature was investigated. An extension of Smaldino’s
model was proposed which is able to deploy ten de-
fault strategies for IPD in a biologically realistic en-
vironment.

Success of strategies was measured by the final
agent count. The order of the strategies was mostly
the same in all experiments. The six nice strategies
outperformed the four remaining non-nice strategies.

GRIM, TTFT, TFT and TFTT stayed quite close to
each other, followed by ALLC and PavlovC. Those
two strategies alternated fifth and sixth place depen-
dent on the settings of the environment. RAND,
PavlovD, ALLD and STFT always ended up in the fi-
nal four places. The order of the first four strategies is
the exact order from sternest to most forgiving. Over-
all, nice but stern strategies are most successful. This
conclusion both confirms and contradicts hypothesis
1. Axelrod concluded that strategies should be nice
and forgiving. Results verify that strategies should
be nice, i.e. start with cooperation. A strategy that
starts with defection in its first move performs dras-
tically worse than its twin strategy that starts with
cooperation. Examples of this huge difference are
TFT and STFT and PavlovC and PavlovD. On the
other hand results contradict that strategies should
be forgiving. TFT was the winner of Axelrod’s tour-
nament. TFT is quite forgiving, but is outperformed
in this model by GRIM, which is not forgiving at all.
This disagreement may be due to the lack of vari-
ous strategies. Success of forgiving strategies can be
tested better with more different strategies and above
all with the presence of stochastic strategies. RAND
is the only stochastic strategy in this model. TFT
will perform much better with stochastic strategies,
because after a defection of its opponent TFT will
later on attempt to reestablish cooperation. GRIM
would never cooperate again which results in lower
payoffs. It should also be stated that this model re-
lies heavily on self cooperation, i.e. cooperation with
agents of the same strategy. This is what makes TFT
so successful and STFT not. Two TFT agents keep
cooperating, while two STFT agents keep defecting
each other, due to the first move.

Hypothesis 2 can be tested with the the cost of
living and the ability to reproduce, which is affected
by age limitation and energy limitation. All con-
ducted experiments partially confirm the hypothesis
that harsh environments are in the advantage of co-
operators. High costs of living, high energy limits and
low age limits make the environment harsh and result
in the success of cooperative strategies and the fail-
ure of defective strategies, given that the cooperative
strategies are nice.

The same goes for hypothesis 3. The difference
between performance with evolution and without are
significant. Evolution gives cooperative strategies a
boost and inhibits defective strategies, again, given
that they are nice. After approximately 200 genera-
tions defective strategies start adopting nice, cooper-
ative strategies.

An interesting aspect of the results is the perfor-
mance of PavlovC. PavlovC is cooperative, nice and
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forgiving. Therefore, according to the hypotheses,
PavlovC should have an advantage in harsh environ-
ments and an advantage with evolution. However, it
has neither of these advantages. In evolutionary en-
vironments PavlovC agents switch to different strate-
gies resulting in a decrease of nearly 300 agents com-
pared to runs without evolution. Moreover, the cost
of living and energy limit does not seem to affect the
agent count of PavlovC at all and an age limit even
harms the strategy. These findings can not easily be
explained and should be tested more extensively with
more varying strategies.

During experiments clustering and forming of pat-
terns emerged. It was decided that this was out of the
scope of this research. For future works, clusters and

patterns within IPD strategies could be an interesting
topic. Furthermore, the model can be extended with
more strategies in the future. Only in Axelrod’s first
tournament 223 different strategies were submitted.
A large part of these strategies are stochastic. The
participation of stochastic strategies could change re-
sults, especially in the forgiveness of strategies.

Nature counts millions of species. Each of them
living in their own climate and having their own
strategy of survival. This strategy is profitable
against some species and disadvantageous against
others. But which strategy has the best chance of sur-
vival? By simulating natural behavior in IPD games
a lot can be learned about survival and extinction of
species in nature.
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