
Software Engineering Research Group

A Generative Approach for

Data Synchronization between

Web and Mobile Applications
December 4, 2013

Chris M. Melman

C
om

pu
te

rS
ci

en
ce

M
as

te
ro

fS
ci

en
ce

T
he

si
s

A Generative Approach for
Data Synchronization between
Web and Mobile Applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Chris M. Melman

born in Haarlem, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2013 Chris M. Melman

Cover picture: Digits bursting into the world

A Generative Approach for
Data Synchronization between
Web and Mobile Applications

Author: Chris M. Melman

Student id: 1358359

Email: chrismelman@gmail.com

Abstract

Mobile developement is a relatively new and popular domain for applications.
An increasing amount of web applications are releasing a mobile variant of their
application, which requires sharing of data. Currently, the creation of a mobile
version can be done in two ways: a specialized web UI for mobile devices, which
lacks good abstractions for mobile hardware, or a manually implemented mobile
application, which is more expensive and often causes a high amount of code
duplication between web and mobile code.

This thesis presents a generative approach for data synchronization between
web and mobile applications, which simplifies the creation of a standalone mo-
bile application based on an existing web application. The generated framework
is an incremental approach for synchronization of data in different representa-
tions. The framework uses object relations to determine selective data partitions
to reduce the amount of data. Additional access control rules and validation ex-
pressions are used to enforce a secure and robust system.

Thesis Committee:

Chair: Dr. E. Visser, Faculty EEMCS, TU Delft

University supervisor: Dr. E. Visser, Faculty EEMCS, TU Delft

Daily supervisor: Ir. D.M. Groenewegen , Faculty EEMCS, TU Delft

Committee Member: Dr. G.H. Wachsmuth, Faculty EEMCS, TU Delft

Committee Member: Dr. A. Bozzon, Faculty EEMCS, TU Delft

chrismelman@gmail.com

Preface

About this thesis This thesis consists of thee parts. The first part, Chapter 1 to
Chapter 4, analyzes the three domains covering the solution space: Web, Mobile and
Synchronization. The second part, Chapter 5, contains details on the motivating exam-
ple YellowGrass Mobl. Which leads to the last part, Chapter 6 to Chapter 8, containing
details on architecture, implementation and evaluation of the final solution of this the-
sis.

Acknowledgements I am grateful to Eelco Visser for his feedback, insightful con-
versations and the possibility to execute my own thesis proposal. I would like to thank
Danny Groenewegen for his support on WebDSL , his task as daily supervisor, a spar-
ring partner in discussions and delivering valuable feedback on my work. I would like
to thank Zef Hemel for his support on Mobl. I am grateful to all the SLDE members
for their support and good coffee conversations, but more importantly for providing a
comfortable environment to produce my thesis. Last but not least, I am grateful to my
family, friends and girl for support, motivation and affection during my studies.

Chris M. Melman
Delft, the Netherlands

December 4, 2013

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline . 3

2 Web & Mobile Applications 5
2.1 Web Applications . 5
2.2 Mobile Applications . 8
2.3 Target Languages . 11
2.4 Impact on synchronization . 14
2.5 Summary . 17

3 Data Synchronization 19
3.1 Theoretical Models . 19
3.2 Activities . 24
3.3 Summary . 25

4 Synchronization Framework Requirements 27
4.1 Functional Requirements . 27
4.2 Non-Functional Requirements . 29
4.3 Summary . 33

5 YellowGrass Mobl
Motivating Example 35
5.1 Approach . 35
5.2 YellowGrass . 36
5.3 Architecture Design . 40

v

CONTENTS

5.4 Implementation Details . 48
5.5 Evaluation . 54
5.6 Summary . 60

6 Architecture Design 61
6.1 System Context . 61
6.2 Decomposition . 63
6.3 Control Flow . 68
6.4 Information Architecture . 71
6.5 Security and Robustness . 76
6.6 Summary . 77

7 Implementation 79
7.1 Generated Code . 79
7.2 Compiler Code . 88
7.3 Technical Difficulties . 91
7.4 Summary . 95

8 Evaluation 97
8.1 Evaluation of Functional Aspects . 97
8.2 Evaluation of non-Functional Aspects 99
8.3 Experiment in the Scalability of the Synchronization Framework . . . 103
8.4 Experiment with Existing Web Applications 110
8.5 Summary . 119

9 Related Work 121
9.1 Existing Approaches in Popular Applications 121
9.2 Mobile Data Synchronization . 123

10 Summary and Conclusions 127
10.1 Summary . 127
10.2 Conclusions . 129
10.3 Software Contributions . 132

11 Future Work 135
11.1 Fine Grained Synchronization Framework 135
11.2 Improved Data Partitioning . 137
11.3 Total Solution . 138

Bibliography 141

A WebService Data Types 145

B Pseudo Code Synchronization Algorithm 147

vi

List of Figures

2.1 Decomposition overview of a Web application with its aspects 7
2.4 Inline display of an error in the WebDSL editor 13

3.1 Combination of ordered and unordered data in an object based systems . . 20
3.2 Graphical representation of the wholesale approach 21
3.3 Graphical representation of the mathematical approach 21
3.4 Graphical representation of the incremental approach 22

5.1 Approach used for developing this thesis solution 35
5.2 YellowGrass homepage . 37
5.3 A YellowGrass Project page . 37
5.4 A YellowGrass Issue page . 38
5.5 YellowGrass Roadmap page . 39
5.6 Context diagram of the motivating example 41
5.7 Decomposition diagram of the motivating example 43
5.8 Sequence diagram of the motivating example 46
5.9 Graphical display of connections between server and application in off-

and online mode . 49
5.10 Pseudocode for identification of updates used in the motivating example . 50
5.11 Pseudocode for propagation of updates in the motivating example 51
5.12 Pseudocode for preventing of inconsistencies of updates in the motivating

example . 51
5.13 Pseudocode for transforming data model to graph tree representation . . . 52
5.14 Tree representation of the YellowGrass model after applying the model2tree

algorithm . 53
5.15 Results of chunking data of webservices with constant data set and varying

chunk size . 56
5.16 Results of comparing chunking and non chunking with varying size of data

set . 57
5.17 Results of chunking data of webservices with constant data set and varying

chunk size (removed search annotations) 58
5.18 Results of comparing chunking and non chunking with varying size of data

set (removed search annotations) . 59

vii

LIST OF FIGURES

5.19 Results of chunking data of webservices (without updates) with constant
data set and varying chunk size (removed search annotations) 59

6.1 Context diagram for generative solution 62
6.2 Decomposition diagram for generated code of the generative solution . . 64
6.3 Decomposition diagram for web services component 64
6.4 Decomposition diagram for compiler extension of the generative solution 68
6.5 Sequence diagram for the generated code of the generative approach . . . 69
6.6 A schematic display of the WebDSL compiler pipeline 71
6.9 Example of an entity in WebDSL . 73
6.10 Example of inheritance in data model of WebDSL 73
6.11 Example of principal declaration in WebDSL 74
6.12 Example of synchronization configuration declaration 74
6.13 Example of toplevel entity declaration in synchronization configuration . 75
6.14 Example of restricted properties declaration in synchronization configuration 75
6.15 Example of security rules declaration in synchronization configuration . . 76

7.1 Example of a synchronization with a clean mobile application 80
7.2 Example of a synchronization with a changed data in the mobile application 81
7.3 Example of a synchronization with a changed data in the web application 82
7.4 Example of synchronization with conflicting changed objects 83
7.5 Example situations conflict detection and resolution for objects 84
7.6 Example of synchronization with conflicting new objects 84
7.7 Example situations conflict resolution for updates in web application . . . 85
7.8 Visual representation of the calculation for related entities 87
7.9 Example for implementation of simple views in generated Mobl code . . 88
7.10 Examples for model-to-model transformations in different situations . . . 89
7.11 Example of authentication module generation 90
7.12 Example of access control generation 91
7.13 Solutions by example for missing inheritance hierarchy support in data

model . 93
7.14 Solutions by example for no inheritance hierarchy support in data model . 94

8.1 Visual representation of object graphs representing weaknesses of data
partitioning approach . 101

8.2 Class diagram of linear model for the experiment with increasing number
of objects . 104

8.3 Results of scalability experiment based on increasing number of objects in
partition . 105

8.4 Class diagram for the experiment with increasing size of objects 105
8.5 Results of scalability experiment based on increasing size for each of the

1000 objects . 106
8.6 Results of scalability experiment based on increasing size for each of the

10 objects . 107
8.7 Class diagram for the experiment with increasing number of incoming

edges for each object . 107

viii

List of Figures

8.8 Results of scalability experiment based on increasing incoming references
for each of the 500 objects . 108

8.9 Results of scalability experiment based on increasing number of entities
in data model with 720 objects . 109

8.10 Results of scalability experiment based on increasing the number of prop-
erties for an entity with 1000 objects of constant size 109

8.12 Distribution of the object sizes in the database from the existing applica-
tion YellowGrass . 112

8.13 Distribution of the object sizes from 2% random objects in the database
from the existing application Researchr 113

8.14 Results of scalability experiment with existing application YellowGrass
based on increasing size of partition measured by the number of objects in
a partition . 114

8.15 Results of scalability experiment with existing application YellowGrass
based on increasing size of partition measured by the sum of the size for
each object in a partition . 114

8.16 Comparison of performance between motivating example and synchro-
nization framework . 115

8.17 Results of scalability experiment with existing application Researchr based
on increasing size of partition measured by the number of objects in a par-
tition . 117

8.18 Results of scalability experiment with existing application Researchr based
on increasing size of partition measured by the sum of the size for each ob-
ject in a partition . 118

B.1 Pseudocode for identification in generated synchronization framework . . 148
B.2 Pseudocode for propagation of updates in generated synchronization frame-

work . 148
B.3 Improved pseudocode for detection of inconsistencies in generated syn-

chronization framework . 149
B.4 Improved pseudocode for resolution of inconsistencies in generated syn-

chronization framework . 150
B.5 Improved pseudocode in mobile application for resolution of inconsisten-

cies in generated synchronization framework 151
B.6 Pseudocode of resolution functions for mobile application in generated

synchronization framework . 152
B.7 Improved pseudocode in mobile application for resolution of inconsisten-

cies in generated synchronization framework 152
B.8 Pseudocode for gathering object of partitions in generated synchronization

framework . 153

ix

List of Tables

2.2 Comparison between development platforms of mobile applications . . . 11
2.3 WebDSL sublanguages descriptions . 13
2.5 Mobl sublanguages description . 14

3.5 Comparison between the synchronization approaches 24

4.1 Summary of partitioned functional requirements 30
4.2 Summary of the non-functional requirements 31

6.7 List of webservices with corresponding description of functionality 72
6.8 The webservice interface specifications of the generated code 72

8.11 Numbers on the data in the databases from the existing applications Yel-
lowGrass and Researchr . 111

A.1 The specification of types used by the webservices of the generated code . 145

x

Chapter 1

Introduction

Nowadays it seems that smartphones and internet are products, which we cannot live
without anymore. Both are relatively new technologies which have been adapted
quickly into our society. This adaption seems to be triggering more and more appli-
cations to be available on those domains. This created a movement from developing
conventional software to highly interactive web and mobile applications. However,
due to the fast rise of both technologies there has been limited time for adaptation and
creation of developer tools for the domain. Additionally, solutions for conservative
software do not always apply in web and mobile software.

In our studies the first real contact with development for both domains was in the
course Model Driven Software development. A part of the course was a project to
create a social media application like facebook in a web and mobile variant. The de-
velopment was done using Domain Specific Languages (DSLs) for the specific domain
of web and mobile applications. Those languages: WebDSL and Mobl are developed
by the Software Language Design and Engineering group (SLDE) using Spoofax.

The software for the lab was separated into three parts. Next to the web and mobile
application an additional webservices layer is added as separate module. This layer is
needed for communication between the web and mobile application because the mo-
bile application operates on the same data. The data is stored on the server from the
web application. After reviewing the code of the project, it showed a high amount of
code and logic duplication that was added by the webservices. There was even func-
tionality implemented in the webservices that was not available for the web application
itself.

Not only in the course, but also in practice it is becoming normal that web applica-
tion have a mobile variant. Those applications are mostly manual implementations of
the web variant and require webservices to request data or send changes. While there
are technologies that deliver abstractions for creating web applications and similarly,
for creating mobile applications. However, the world lacks a solution that takes into
account that both variants of an application are desired. This requires an infrastructure
to share data.

A solution for sharing data is synchronization of data between devices. There has
been a lot of research into the topic of synchronization which shows that the optimal
solution is dependent on the context. We are interested in determining what emerges
when more domains are inserted into the context. Including the question, can the

1

1. INTRODUCTION

difference between both domains be overcome within a synchronization framework?
This thesis uses a deeper analysis of the domains to deliver a better view on what

are the restrictions are requirements for a synchronization framework within this con-
text. A manual implementation of a synchronization framework and mobile applica-
tion of YellowGrass is used as a motivating example. This delivers practical insight
into the problem.

The goal of this thesis is to present a solution for the problem described in the pre-
vious paragraphs of missing technologies that overlap the gap of shared data between
web and mobile application. The solution proposed in this thesis is a generative ap-
proach for a synchronization framework that is based on information from the existing
code of the web application. This generative approach should consider the constraints
and problems gathered from the analysis and infer abstractions from the motivating
example. The synchronization framework should be simple and require only a small
amount of interaction. An incremental solution is preferred to reduce the load in band-
width and computation for the mobile devices. The webservices for synchronization
imply additional security risks to the application and data, those risks should be con-
sidered in the design and implementation of the generated synchronization framework.

1.1 Research Questions

The research and engineering for this thesis is driven by the following research ques-
tions:

Research Question A How do existing synchronizations solutions apply to the
domain of web and mobile applications?

The problem that this thesis tries to solve can be categorized into synchronization prob-
lems. As stated in the previous section, the problem and solution of synchronization is
dependent on the context. So before answering the synchronization problem a deeper
analyses is needed of the domains of web and mobile applications. With this analysis
we can consider what possible solutions would fit and which additional constraints and
requirements are included within the combination of both domains.

Research Question B How can we automate the creation of incremental data
synchronization between web and mobile applications?

Secondly, how can we make a synchronization framework that works for a wide range
of web and mobile applications. This question covers multiple aspects that are required
from this approach. Firstly, how can we automate the creation so that it can be applied
to various web applications. Secondly, what is needed for an incremental synchroniza-
tion solution to reduce bandwidth and computation. Synchronization is often a process
which needs to be a black box for the user which allows your data to be synchronized.
This demands additional research into how it can be achieved to reduce the interaction.
At last the synchronization has as side-effect that it delivers extra security concerns for
a web application. How can we deal with the security problems without manipulation
of the original application.

2

1.2. Outline

Research Question C How can we optimize a synchronization algorithm to use
a minimal amount of computation on mobile devices?

The last part is to question if it is possible to optimize the solution for mobile devices.
It is a known problem for the domain of mobile applications that mobile devices are re-
stricted in factors such as computation, space and connectivity. Space and connectivity
are not factors that can be compensated with other machines. However, computations
can in some conditions be offloaded to other machines. This concludes the question
stated above, how can we optimize the synchronization for mobile devices?

1.2 Outline

This thesis is organized as follows. Analysis of the web and mobile application do-
main and the possible impact on synchronization is described in Chapter 2. Chapter 3
gives insight in the synchronization problem and existing solutions. The information is
combined to state the requirements for a solution(Chapter 4). The analysis is followed
by Chapter 5 containing the explanation and evaluation of the motivating example.
Chapter 6, Chapter 7 and Chapter 8 contain corresponding the architecture design, im-
plementation details and evaluation of the final solution presented by this thesis. A
summary of this thesis and answers to the research questions are given in Chapter 10.
Finally, the future work is discussed in Chapter 11.

3

Chapter 2

Web & Mobile Applications

Web and mobile are a popular target platform for new applications. An application
often has a version for both platforms, which requires data sharing or synchronization
between devices. Synchronization solutions deviate from each other depending on
their context. This fact calls for an inspection of the impact on synchronization by
both domains.

This chapter explains the aspects of web (Section 2.1) and mobile (Section 2.2)
applications and how they differ from each other. The second goal of this chapter is to
give an introduction into the chosen target languages WebDSL and Mobl correspond-
ing to their domains in Section 2.3. To conclude, Section 2.4 explains the influence of
the domains from a synchronization viewpoint.

2.1 Web Applications

In the last decade there has been an increase in websites and web applications which
also seem to be the trend for the near future [5]. Many of the desktop applications
have moved or added a web version of their application. There are several reasons to
prefer the web variant, but the most convenient is that it becomes easier to access the
application and data for users anywhere.

This section starts with stating the important differences between conventional and
web development (Section 2.1.1) and describes the important aspects of web applica-
tions (Section 2.1.2).

2.1.1 Conventional vs Web Engineering

The development of desktop applications and web applications deal with the same as-
pects. They each have other priorities and perception of those aspects. Mendes et
al. state that the biggest differences between web and conventional software develop-
ment are found in the following attributes: intrinsic characteristics, stakeholders and
discipline variety [27].

5

2. WEB & MOBILE APPLICATIONS

Intrinsic characteristics of web applications

Web applications are remote datadriven applications that are available through the
browser. Remote applications might not sound that more complicated, but having a
remote access point directly raises problems: How to deal with, concurrency, load
balancing, availability and other network characteristics.

One of the biggest concerns of web applications is security. Desktop applications
store most of their information locally. In comparison, web applications have to store
this on a remote server. The storage of data is already questionable for privacy rea-
sons. However, it also increases the changes of getting sold, stolen or leaked without
knowing.

Web applications have to combine more (smaller) technologies to build an applica-
tion. Take a look at the Graphical User Interface (GUI), it uses at least three languages
(HTML, CSS, JavaScript) to compose an interactive interface. Where conventional
applications often use one language, in general the same language as the rest of the
code, to compose an interface. The web browsers benefits from a universal display of
the GUI, but comes at the price of the limitations in interaction possibilities of the web
technologies: HTML, JavaScript and CSS.

Stakeholders

In conventional software development the stakeholders are predefined by the client
and are accessible for questioning. Web development could also have predefined users
if the software would be developed for internal usages. However, most of the web
applications target are openly accessible. The open applications could define a target
audiences. Nevertheless the applications are available for a wider group of people. Be-
sides the unknown users, there is also the possibility that other software could interact
with the application. The unknown and unreachable users make it harder to get a clear
scope of functionality and requirements of a web application.

Multidisciplinary

In development of web software there are many aspects that have to be dealt with
(Section 2.1.2). Conventional software implementation is often done by a develop-
ment team of essentially general programmers. With web development it is not clear
that a general purpose programmer can solve the issues of other areas. For example,
GUI design or Network infrastructure are often done by specialists like graphic de-
signers or hardware specialists. It is common to see a team of members with diverse
specializations to create full web applications. When the application or the producing
company becomes bigger, the gap of specialists diversity will reduce.

2.1.2 Web Application Aspects

The previous paragraph mentioned that web applications have to deal with multiple
disciplines. Each of those aspects generally use different technologies and languages
to implement correct behavior. The list below describes the most common aspects of

6

2.1. Web Applications

web development and their possible influence on synchronization of data and therefore
the solution of this thesis. The relations and the position of the aspects within a web
application are displayed in Figure 2.1.

Web Application

Data Model

Application LogicData Access Interface

Security

Figure 2.1: Decomposition overview of a Web application with its aspects

.

Data Model Describes the relation between the available data, also describes the
problem domain of the application. Normally, programming languages allow to
define a data model with relations directly in the code. The database structure
also implies a data model for the stored data, which does not have to be the same
as the one in the code of the application.

Data Access Provides the possibility to manipulate stored data within the application
code. Programming languages support data modeling, yet data access is nor-
mally separated into libraries and are data storage dependent. Those libraries
allow to access and modify stored data, through composition of queries.

Application Logic Acts as glue between the data and the User Interface (UI) and de-
scribes the business logic of an application. The application logic is an interest-
ing and big part of the code base. However, it consists of normal computations
just like most code in conventional software development.

Interface Delivers a front end of the application for users to interact with the appli-
cation. Web applications often have two interfaces, one for people and another
interface for external software. The goal of those interfaces are not similar, peo-
ple prefer an attractive graphical interface. Where software does not need this
sugar and only requires a thin layer in front of the application logic as interface.

Security Protects the application from malicious users. Security is one of the bigger
concerns of web applications and most frameworks deliver a separate part to
define security rules. Security is weaved through the other modules because it is
required or requires information on different levels of the application.

7

2. WEB & MOBILE APPLICATIONS

2.2 Mobile Applications

The last couple of years the popularity of mobile devices has grown to a level that the
majority of people in western countries own one or multiple mobile devices. Next to
that there has been an enormous increase of quality and quantity on mobile internet, al-
lowing people to access data from almost anywhere [4]. Combining those two factors
caused higher usages of web applications on mobile machines. Most of the applica-
tions were not fully accessible because of the different interaction model of mobile
devices. The different paradigm has triggered an increase in specialized applications
for the mobile platform.

As continuation on the previous section about web applications, this section de-
scribes the differences between web and mobile applications in Section 2.2.1 and the
hardware limitation of mobile devices in Section 2.2.2. The comparison of different
platforms for creating applications can be found in Section 2.2.3.

2.2.1 Web vs Mobile Applications

The number of mobile applications created in the last couple of years has been higher
than that of web applications. One of the reasons mobile applications are created is
the fact that popular web applications need a mobile application to keep itself in the
market. Development of a mobile application impacts the code base because for ev-
ery functionality now it needs to be implemented in both the mobile and the normal
application. The extra application leads to duplication of code and different imple-
mentations, what could even be more than one if there are different applications for
different mobile operating systems.

Mobile and web applications have similar aspects to deal with, yet due to differ-
ences in the hardware and interaction model, they deviate in the how to deal with those
aspects. To compare both platforms, this section evaluates the differences by reviewing
the most common aspects that are described in Section 2.1.2.

Data Model
Mobile applications often do not have access to the same data as the actual application.
Security and hardware limitations prefer that the data is shared on a need to know basis.
Those restrictions on data have as consequence that mobile application use a simplified
or ad hoc interpretation of the actual data as internal model. This simple model makes
it easier to reason about data at the price of missing the bigger picture of the application
domain.

Data Access Web applications normally persist their data to a database, but in general
this is not the perspective of mobile applications. The mobile applications often require
data from a remote servers which than could be manipulated locally. On application
level it varies whether the data is persisted or just kept in memory. The same choice
holds for changes, they could be stored locally to sync later or they could be only
modified directly through server communication. The mobile devices have a limitation
on bandwidth and space because of those restrictions a combination of both models is
regularly used. Normally, this is the situation where the data is cached, although not
fully persisted.

8

2.2. Mobile Applications

Application Logic
Mobile application have a limited set of computations and try to avoid to have much
application logic because of multiple reasons:

• Limited computation power available, try to offload calculations to the server
where possible.

• Restricted set of data available, makes it mostly impossible to compute certain
values.

• Duplication reduction between applications as much as possible to improve on
maintenance.

The reduction of application logic on mobile applications has as effect that some func-
tionality is not offered in the mobile application or only on requests through a remote
server.

Interface
The reason that there is a need for mobile applications is mostly because of the web
UI is not easily accessible through the hardware of mobile devices. One of the biggest
differences is the greatly reduced size and resolution of a screen and the use of touch
instead of the conventional input devices. A simple solution that web applications offer
are an modification of the pages to something that is accessible with mobile devices.
Users are not satisfied with this solution because it is missing the look and feel of
the native applications. Most mobile applications are reactive of style and optimized
for touch devices with smaller screens. In general, the views are separated in smaller
pieces and uses buttons and gestures to navigate easily between views.

Web applications and mobile applications can both offer interfaces for other soft-
ware. Nevertheless, the functionality is not equivalent. Web applications have an inter-
face to request data or functionality for other applications, where mobile applications
might have an interface for other software to push notifications.

Security
Mobile applications have to deal with less security concerns because usually data is
shared on a need to know basis. This implies that the mobile application only has data
that is public available or within the boundaries of information that is available for the
user. This restricted data set has as consequence that there is no need of protecting this
data from the user. The local data is not available through remote access, so there is no
need to protect against remote users. Sometimes applications choose for encryption of
data as a security mechanism to keep private data inaccessible for stolen devices.

2.2.2 Hardware limitations

Web applications can run into hardware limitations when the applications are utilized
by an increasing number of users. To keep the web application working and accessible
within the normal time requirements additional hardware is needed. The mobile appli-
cation developer runs faster into problems when it comes to hardware restrictions. The

9

2. WEB & MOBILE APPLICATIONS

first cause is that the hardware is not within their control so they have no possibilities
to know and modify the device. Secondly, is that the hardware of mobile devices has
lower specifications and therefore more restricting on applications. The solution that
is used for web applications is not working for mobile applications due to money and
lack of control of the target hardware.

When taking the hardware limitations into consideration the first problem which
arises is that mobile devices differ from each other on several properties. Another
difficulty is that it is hard to have a good grip on the actual minimum on hardware
requirements. The unknown parts of the specs are minimized where possible to keep
the excluded group as small as possible. Those areas that are restricted by mobile
devices are listed below with a description of the limitation it introduces.

Connectivity Mobile devices use Wi-Fi or a cellular connection to access the Inter-
net. The mobile internet connections are slow and many providers only allow a
restricted amount of bandwidth.

Computation power The processor of a mobile device is slower than those of desk-
tops and use a less powerful architecture. Another disadvantage for the power
of the processor is that it is more focused more on graphics calculations for the
display output instead of general computations. The newer phones have multiple
cores, however, that is not as sophisticated as the desktop variant.

Energy supply The energy supply of mobile devices is limited by the size of battery
and the amount of energy that is consumed by the hardware.

Memory The memory in mobile devices come in two forms: Random-access memory
(RAM) and storage. Both parts are small compared to the amount available on
personal computers.

Input & Output The input and output devices of mobile devices are in general not
interpreted as a restriction. however they are limited to the hardware of the
device and differ from the conventional devices.

2.2.3 Development Platforms

There are several approaches to create a mobile applications: customized web pages,
native applications, frameworks to generate mobile application, and DSLs for the mo-
bile application domain. They can be split into two groups: The native and web so-
lutions that are manually written applications (1). The framework and DSL solution
abstract over common problems of mobile development (2). The next paragraphs de-
scribe the differences between mobile development platforms and are summarized in
Table 2.2.

The specialized mobile pages are easy to create and take small amount of effort
to develop. Just like a normal web page they get portability as free asset. Combined
reducing the code duplication and costs to a minimum level. Still it is more common to
develop mobile applications in a native form instead of a web variant. There are sev-
eral other aspects which are in favor of the native application. The marketing reason
would be that native applications are offered in a local marketplace and therefore the
application is easier to be found and sold. In perspective of functionality, the native

10

2.3. Target Languages

applications have access to more features of the device which could be a restriction
that is critical for a mobile application. The developers take advantage of the devel-
opment environment for mobile platforms that offers tooling and abstractions on UI
elements, which makes it easier to develop and are also automatically optimized for
mobile hardware [10].

Web Native

Implementation effort + -

Code duplication + -

Portability + -

Market place - +

Device feature access +/- +

Tool support - +

Mobile UI abstractions - +

Programming expertise + -

Table 2.2: Comparison between development platforms of mobile applications

DSLs and Frameworks try to abstract over aspects within the problem domain. The
most popular frameworks for mobile applications are: Titanium1 and Phonegap2. Both
frameworks offer native functionality by wrapping the HTML5 UI in a native appli-
cation with a browser widget. Additionally, they have some JavaScript Application
Programming Interface (API) hooks to access device features like camera or contact
list. The framework tries to combine the power of both web and native applications.
The UI part is not as strong for current frameworks, Phonegap lacks total support of UI
abstractions and Titanium has a solution library of small UI elements that are translated
differently for different operating systems.

The differences between frameworks and DSLs is a more general question, which
is similar to the WebDSL advantages in comparison to the popular web frameworks
like better domain abstraction and error checking. In the case of mobile applications
current frameworks try to combine the positives aspects of web and native applications,
where the goal of a DSL is to have a more general view and abstractions on the whole
set of sub-problems in the domain.

2.3 Target Languages

The implementation of the generative approach presented in this thesis needs target
languages from both domains. The semantic details of the languages are not interesting
for the synchronization problem, but a general overview of the languages is used as a

1http://www.appcelerator.com/platform/titanium-platform
2http://phonegap.com

11

http://www.appcelerator.com/platform/titanium-platform
http://phonegap.com

2. WEB & MOBILE APPLICATIONS

guide and reference for some implementation details that are described further on in
this thesis.

This section will give an overview on the target languages: WebDSL(Section 2.3.1)
and Mobl(Section 2.3.2). Both languages are a DSL particularly developed for the
corresponding domains of web and mobile applications.

2.3.1 WebDSL

Currently development of web applications often uses frameworks like: Ruby on
Rails3, Zend Framework4 and Seam Framework5. Frameworks are constructed on
General Purpose Languages (GPLs) and abstract over aspects of web applications by
providing extensions or API to make life easier for programmers.

WebDSL6 has the same purpose as those frameworks, to make life easier for web
developers. WebDSL is a DSL which defines its own language instead of being based
on an existing GPL. The compiler generates java code conform the Java Servlet API,
which makes it possible to run code in a web container like tomcat7. WebDSL is
build with Spoofax8, which delivers in combination with a compiler an Integrated
Development Environment (IDE) with editor services.

WebDSL agrees on the viewpoint of frameworks about abstraction and separation
of concerns for areas of web development. WebDSL defines sublanguages for the
different sub-domains as described in Table 2.3. The domains cover the aspects found
in Section 2.1.2 and some of them are split up in to smaller parts to give better control
and abstraction on the domain. All the sublanguages are combined through linguistic
integration into one language. The sublanguages have similar syntax styles and can
share common elements where semantically possible.

Type checking is one of the strengths of WebDSL. The language is statically typed
making it possible to check for typing errors on compile time like Java. WebDSL is de-
signed specifically for the web application domain. Which means that the semantics of
the code gives the possibility to add extra checks and give errors that are more specific
to the application, something a GPL cannot accomplish. The integration of the sublan-
guages makes it possible to cross check references and give feedback on compilation
for unresolved references and incompatible usage. Spoofax provides inline errors in
the editor, combining that with real-time analysis introduces the feature to show errors
while typing, as shown in Figure 2.4. The integration and error checking on compi-
lation is a great improvement of WebDSL compared to the popular frameworks. In
frameworks errors often occur on run-time, making untested code conceivably fatal in
a live system [19].

Further details about the syntax and semantics of WebDSL are not specifically
interesting for the goal of this thesis, since other target languages with similar capa-
bilities could have been used for this purpose. For the interested reader there are more
papers with additional details of WebDSL [17, 18, 19, 34].

3http://rubyonrails.org
4http://framework.zend.com
5http://www.seamframework.org
6http://webdsl.org
7http://tomcat.apache.org
8http://spoofax.org

12

http://rubyonrails.org
http://framework.zend.com
http://www.seamframework.org
http://webdsl.org
http://tomcat.apache.org
http://spoofax.org

2.3. Target Languages

Data Model Language to define a persisted data model

Data Access Built-in API to access stored data

HQL Specialized query language to customize and optimize data access

Action Java like language to define application logic

Tasks Language to define reoccurring tasks

UI Language to define User Interface design through templates and HTML

Services Language for defining webservices

Access Control Rule based language to define access control on UI elements

Validation Check based language to define validation on data model and input

Search Extension to provide indexing of entities and an API for search queries

Table 2.3: WebDSL sublanguages descriptions

Figure 2.4: Inline display of an error in the WebDSL editor

2.3.2 Mobl

For this thesis the choice for a target languages on the mobile platform is Mobl, a
DSL for mobile applications build with Spoofax. Mobl targets HTML5, JavaScript
and CSS3 for easy portability and also offers support for integration with Phonegap, to
generate native application. The design of Mobl is derived from that of WebDSL and
shares the separation of concerns. However, the set is limited to a subset described in
Table 2.5. The sublanguages differ for the biggest part in syntax and semantics from
those of WebDSL to adapt for the mobile platform.

Compared to the frameworks Mobl offers an abstraction by reusable templates and
a library, with UI elements and high-level controls, to give the applications a native
look and feel. In the logic part Mobl uses a JavaScript like syntax with some abstrac-
tions and adds a type system. The best part is that Mobl rewrites normal functional
calls into the form of the asynchronous style of JavaScript function calling.

13

2. WEB & MOBILE APPLICATIONS

Data Model Language to define a (un)persisted data model

Data Access Built-in API to access stored data

Action JavaScript like language to define application logic

UI Language to define User Interface design through templates and HTML

Services Language for defining usage and handlers for webservices

Search Extension to provide indexing of entities and an API for search queries

Table 2.5: Mobl sublanguages description

For the goal of this thesis Mobl is particularly interesting because of the automatic
persistence of data and possibility to declarative define a model. With more effort
other languages could have been used to generate the solution. For the interested
reader, more details on Mobl are available in this paper [22].

2.4 Impact on synchronization

The previous sections tell the differences and the aspects that are introduced by web
and mobile applications. The differences from conventional and web applications are
not changing the problem of synchronization, except for the interesting fact of un-
known users in web applications, which could be similar for the synchronization in-
terface. On the other hand, mobile applications bear along hardware limitations and
restricted software technologies, which deliver constraints for synchronization.

This section illuminates the impact of the domains web and mobile applications,
broken down into software (Section 2.4.1) and hardware (Section 2.4.2) influences.

2.4.1 Software influence

It is certain that data plays an important role for synchronization, other areas of web
and mobile application might as well interact with the synchronization algorithm.
Therefore, the following paragraphs describe the relations between synchronization
and the attributes that are found in Section 2.1.2.

Data Model
Depending on the synchronization algorithm the data model might be of high value,
it is mainly used to interpret and map data between different formats. There is a high
chance that mobile application needs another representation for the data model, since
not all data might be shared and the technologies for data storage are not similar to
those of desktops. In the situation of the solution, presented in this thesis, the data
model is indeed needed because it uses different storage facilities and data representa-
tions.

14

2.4. Impact on synchronization

Data Access

In synchronization data has a central position, therefore it would be an improvement
if the access would be easy and without too much overhead. At the same time, there
should be no limitation in the accessing data, since it might be necessary for the syn-
chronization algorithm to specify queries that are not normal within the normal appli-
cation data flow. In the case of WebDSL and Mobl, they have both abstractions and
possibilities to manually specify queries, both on top of a specified framework. Those
frameworks offer auto persisting of data. However, that means less control over the
process to store and retrieve data, which might be needed for custom behavior.

Application Logic

Application logic in viewpoint of data synchronization is not interacting with the al-
gorithm. The synchronization needs to take into consideration that application logic
works at the same moment with the same data. For WebDSL the interfering is not a
problem, since the persistence framework abstracts over those problems. The synchro-
nization algorithm could be seen as part of the application logic since it is a glue layer
between data and UI. It might also be regarded separately because it is not part of the
business logic of the application.

Interface

Synchronization is done between multiple instance, to accomplish this, a communi-
cation layer is required. In the case of mobile and web applications, communication
is normally implemented as webservices. More specifically RESTful webservices are
often used because they are simple and have a minimal overhead on the data represen-
tation and communication.

Security

Security is an important factor for web applications. Therefore, it is also essential
for synchronization with web applications. The sharing of data should be restricted
based to specific user rights. There also exists a need to detect if the current principal
is allowed to modify the data. WebDSL has a sublanguage which integrates security
throughout the whole application and that is a good starting point to use or extend for
synchronization purposes.

2.4.2 Hardware influence

The hardware limitations that are introduced by servers for the synchronization are
similar to those of the application itself. It only deviates in the part that web page
requests are smaller though, occurs often. Where synchronization requires more cal-
culations however, on less frequent basis. The solution on scalability is similar to that
of the application itself by improving or adding hardware. The limitations by mobile
devices that are described in Section 2.2.2 have a bigger influence on the synchroniza-
tion and will be reviewed per topic in the following paragraphs.

15

2. WEB & MOBILE APPLICATIONS

Connectivity

An internet connection is a required asset for a synchronization solution. Synchroniza-
tion needs the connection to communicate between applications. Another influence is
that synchronization cannot depend on a stable full-time connection to the server. The
bandwidth and speed of internet connection motivate the synchronization to reduce the
data traffic as much as possible or postpone the process until it has a better connection.

Computation power

There is always a certain amount of computation needed to use the synchronization
algorithm on a device. However, to have a usable solution it is preferred that those
computations are within the bounds of reasonable time consumption so that the mobile
application is still usable and reactive.

Energy supply

Energy supply itself does not interfere with functionality of an application. There is
a more general problem with energy usages. That is the use of internet connection
and processor significantly increase the energy consumption. It would be good for
the synchronization solution to keep the time of computation and connectivity low to
increase the usability of the application.

Memory

The two parts of memory each have their own functionality in the device. RAM is
used for access to data with increases speed, but is not persisted. When the data of
the application does not fit in the memory it needs to use storage, which is much
slower. This is general problem of insignificant amount of RAM, which leads to slower
computations.

Storage of persistent data is done on other hardware and is in general bigger than
RAM. The problem for synchronization is that it needs to store the retrieved data.
Nevertheless, it can never fit same amount of data that is stored in database of the web
application. Simplifications and restrictions are needed to address this issue. Although
this might not be enough in the case of internet applications the maximum storage
facility is reduced even further. Where IOS9 tops everything by a limitation of a few
Mb that can be increased by the user to 50 Mb maximum [16, 38].

Input and Output

The input and output where strictly not restrictions. They do not contribute any prob-
lems to the synchronization because they only have an impact on the GUI of the mobile
application.

9http://www.apple.com/nl/ios/

16

http://www.apple.com/nl/ios/

2.5. Summary

2.5 Summary

The last decade there has been a movement of conventional software to web and mobile
application development. Applications that both offer a web and mobile version run
into the disadvantages: Code duplication and a need for communication layer between
different application domains.

To have deeper analysis this chapter presents the three different areas where web
development differs to conventional software: intrinsic properties, stakeholders and
discipline variety. Secondly, evaluates the most common aspects used by web de-
velopment (Section 2.1.2) which are displayed in an overview in Figure 2.1. Mobile
applications share most of those aspects of web development. Nevertheless, the inter-
pretation is different as described in Section 2.2.1.

Mobile applications are currently available in two variants: a customized web ap-
plication and a native application. Both have their own advantages as summarized
in Table 2.2. Frameworks for mobile applications try to combine the power of both
platforms by wrapping web application in a native application with browser widget.

This chapter also introduce the two target languages WebDSL (Section 2.3.1) and
Mobl (Section 2.3.2) for the corresponding domains of web and mobile applications.
Both are a DSL written in Spoofax and include separation of concerns by sublanguages
which can be found in Table 2.3 and Table 2.5. While both languages have their
advantages over other solutions, they could be substituted with other languages.

The concluding part, Section 2.4, takes the aspect found earlier in this chapter and
use them to give extra context in the synchronization framework. The hardware limi-
tations of mobile devices, specifically those of connectivity, computation and memory
have a considerable effect on the synchronization. In the following two chapters you
will find the details of synchronization algorithms and uses the insight gathered from
this chapter to formulate the requirements.

17

Chapter 3

Data Synchronization

Synchronization is a well researched problem and is used within diverse ranges of soft-
ware applications. The problem is having data that is shared with multiple hosts. Each
host has full copy of the data and require that their data is consistent with all other
hosts. Direct connection with all hosts would make it possible to directly modify all
objects on the different host. However, it is practical impossible to prevent conflicts
and change all data on all hosts without blocking data access before applying. Addi-
tionally, it is not practical to require that all host are always connected for the system
to be working. This shows the complexity and the core of data synchronization: iden-
tify updates in certain time range for host combination. Detection is needed within
the system because multiple host could have changed the same data. A deterministic
resolution approach is needed to acquire consistency of data over all hosts.

Data synchronization is used within multiple disciplines of computer sciences like:
databases, file systems and version control. In big software solutions database systems
are often replicated over multiple systems to distribute load or use as fallback. In this
case data synchronization is used to keep databases equal to each other. In the case
of file systems, synchronization is used to have files backed up or make it possible
to easily share or cooperate on same documents. A popular application that is used
for this purpose is Dropbox1. Version control systems for source code, like git or
subversion, use data synchronization solutions to deal with distribution of change sets.

The current developments of cloud services made synchronization into a hot topic
again. This thesis has the goal of data synchronization focused on web applications
with multiple instances of the mobile application.

The previous chapter introduced the context of web and mobile applications. This
chapter will focus more on the core of synchronization, presented as theoretical models
with their pros and cons (Section 3.1), and a description of the activities that play a role
in synchronization (Section 3.2).

3.1 Theoretical Models

The theory splits data synchronization up into two domains: ordered and unordered.
The difference can easily be explained by an example. In a text document the string “a
b c” has another meaning than “ a c b ”, which means it is ordered data. In set theory

1https://www.dropbox.com

19

https://www.dropbox.com

3. DATA SYNCHRONIZATION

{a, b, c} is equivalent to {a, c, b} and therefore categorized as unordered. A similarity
can be found in theoretical computer science, when inspecting collections, lists present
ordered data and bags unordered data.

A first look would consider data with a data model as ordered data because it is
structured, mostly uniform represented and some of the property values are definitely
ordered. This assumption would make it hard to have an efficient solution for the
synchronization problem. However, reality shows that it is a combination of the two,
breaking the model representation down to a level of objects and separate the object to
only include its own information makes it possible to handle the objects as unordered.
This theory also holds on level of properties. However, the value in the properties
must be handled as ordered data. An overview of ordered and unordered in object
based systems is shown in Figure 3.1, where equality between two representations
mean that data is unordered.

Data System one

A:Object

C:Object

B:Object

Data System two

A:Object

C:Object

B:Object

A:Object

name = "testobject"
value = 4
id = "9e96-0800200c9a66"

A:Object

id = "9e96-0800200c9a66"
value = 4
name = "testobject"

name = "testobject" name = "objecttest"

Data
System
Level

Object
Level

Property
Value
Level

Equality means that both data systems represent same data because of unordered data

Figure 3.1: Combination of ordered and unordered data in an object based systems

For the solution of this thesis we could simplify the problem by perceiving the data as
unordered. This means that the resolution of problems on property values can not be
solved by merging, but has to be solved by selecting one version.

The unordered variant of the problem is also known in algebra as the set reconcil-
iation problem. This problem is based on two remote clients, which each has a set of
(different) integers. For both to know the updates they need to calculate the difference

20

3.1. Theoretical Models

of both sets. The extra restriction is that the solution has to restrict the synchronization
to a minimum amount of communication.

The next part describes methods that currently exist in unordered data synchroniza-
tion and can be roughly separated in the following groups: wholesale, mathematical
and incremental approach.

3.1.1 Wholesale Approach

The wholesale algorithms contain a straightforward approach. At the moment of syn-
chronization sends all local data on the device to the remote device. The other device
computes the differences and sends back the updates as displayed in Figure 3.2. The
Slow sync algorithm of the Hotsync technology from Palm OS uses this technique to
make it possible to synchronize the mobile device with multiple computers [26].

Figure 3.2: Graphical representation of the wholesale approach

3.1.2 Mathematical Approach

The mathematical approach consists of solutions for the set reconciliation problem,
which are mapped to the synchronization domain (Figure 3.3). The computation of
the symmetric difference between two sets of integers on different host with minimal
communication can be mapped, since all data can be represented in integers. This map-
ping allows it to translate the set reconciliation problem into synchronization problems
that are encountered in reality. The algorithm takes care of the core problems and min-
imizes on communication. CPIsync has implemented an algorithm of this group for
PDA synchronization and shown big improvements over the slow sync algorithm [32].
Even if the solution would be optimal for the set reconciliation problem it does not
have to be the best solution for practice, since it could use extra information to make
the problem easier.

set reconciliation
problem

set reconciliation
problem

Figure 3.3: Graphical representation of the mathematical approach

21

3. DATA SYNCHRONIZATION

3.1.3 Incremental Approaches

The most used synchronization variant currently are algorithms that use an incremental
approach. A better description is that those algorithms only synchronizing changes
of a certain time range, namely those in-between current and last synchronization as
displayed in Figure 3.4. In general, the two following ways of tracking changes in
certain time range can be distinguished: object versioning and logging changes.

Figure 3.4: Graphical representation of the incremental approach

Tracking the status of an object with versioning is done by adding extra data to an
object which stores version information. This extra information is used to only sent
changed data instead of sending all data. There are several ways to implement ver-
sioning of objects. The solution often depends on the context of the synchronization
problem.

Flag Approaches

For one-one synchronization the easiest ways is to track changes by setting flags for
objects that are modified after the last synchronization. This only works if there is one
remote point where it synchronizes with. An implementation of this approach is used
in the Fast sync algorithm, part of the Hotsync technology [26] and Intellisync [29]
solution from Nokia.

To adapt this method and make it usable for synchronization between multiple de-
vices, additional flags are needed for every device. Flags for modifications are not
really scalable, at a certain point the version information in an object will be bigger
than the original data, which blows up the data increase on object creation. Several im-
plementations of the SyncML [9] protocol use this solution to keep track of differences
between devices.

Version Approaches

A fix that reduces the number of flags, is to keep track of version numbers on objects
and compare the number to detect if the object has changed after the last update. An
improvement on the weakness of this idea, is to use timestamps instead of version
numbers on objects. This works because timestamps can be used to give a version
that is can be used globally for all objects. This means that the timestamp, of the last
synchronization with a certain device, is enough to calculate the changed objects in
that time range.

22

3.1. Theoretical Models

Change log Approach

The second approach, that is used for tracking changes on data, is tracking changes
in a log. The algorithm searches for all the changes that have occurred ahead of the
last synchronizations and sends those to the other device to replay the changes on that
device and vice versa. It could also work on sorted data, if the changes would have
additional position information. This method works on a finer grained level which
helps improving conflict resolution. Change log is an approach popular in source code
revision control solutions.

3.1.4 Comparison

The previous paragraphs described the approaches to synchronization in theory and
some of their properties. To have a better overview of the methods we compare on the
following attributes:

• Memory The impact of the method on memory. For example, the additional
memory that is needed.

• Computation The calculation that is needed with a focus on the impact for
mobile devices.

• Bandwidth The amount of communication that is used in addition to sending
the changes.

• Network The network architectures that are allowed by the approach: one-to-
one, one-to-many and many-to-many

The wholesale approach biggest disadvantage is that all data is sent to the other host,
which is very bandwidth expensive. The wholesale requires from the host to determine
the changes by comparison. This is not a complex computation, but a high amount of
data could make it expensive.

The mathematical approach uses the solutions of the set reconciliation problem,
which is optimized for minimal communication. Nevertheless, this optimization comes
at price of more computation. Adding a step of mapping from data to integers intro-
duces overhead in computation and bandwidth.

The incremental approaches in general try to optimize on communication cost. The
single flag approach is simple and has a minimum amount of overhead. The bigger
problem comes that it is only applicable to synchronize with one device. Increasing
the number of flags to the number of devices is a possible solution. However, applying
this to a network with many devices would mean a high overhead compared to the size
of the objects.

Using versions as replacement of flags reduces the overhead on the objects, but
requires additional computation to identify the objects. The comparison needs to know
version numbers for objects, which increases the bandwidth for sending version data.
The timestamp as version reduces the bandwidth and makes it possible to query for
changes instead of comparison for each object.

Tracking changes in a log is more expensive in space if there is a high number of
changes since it needs to keep track of all changes. However, when the change log

23

3. DATA SYNCHRONIZATION

can be cleaned often it is not that expensive. The synchronization requires merging of
changes instead of simple conflict resolution.

The weaknesses and strengths of the various approaches in those topics are partly
described by Agarwal et al. [7, 8]. A overview of the comparison is given in Table 3.5.

In general, the timestamp approaches seems to be the most scalable. More specif-
ically, depending on the context of the synchronization problem, the flag, timestamp
versioning or change log are the best known approaches.

Incremental

Wholesale Mathematical F MF OV TV CL

Memory + + + - - + + +/-

Computation +/- - - + + - +/- -

Bandwidth - - + + + - + +

Network

1-1 + + + + + + +

1-n + + +/- + + + +

n-n + + - + + + +

F = Flags, MF = Multiple Flags, OV = Object Version, TV = Timestamp Version, CL = Change Log

- - = Verry Weak , - = Weak, +/- = Neutral, + = Strong

Table 3.5: Comparison between the synchronization approaches

3.2 Activities

Synchronization is often seen as a one step process of interchanging data, but this is
not correct. The following three steps are separated in the process of synchronization
[13]: identify updates, propagate updates and detect and resolve inconsistencies. The
following paragraphs will describe in more details the responsibilities of those three
procedures.

Identification of updates

The identification of updates is interesting when working with incremental updates in-
stead of the wholesale method. Wholesale does a comparison to find changes. After
sending all the data, this problem is trivial and will not allow any optimization. The
identification of updates is not always seen as part of the synchronization itself and is
regularly supplied by the actual data storage facilities. That facility has better control
and overview on changes of the data and will be better in the view of separation of
concerns. So in general the identification of updates could be given as parameter to
the synchronization algorithm or should be accessible through easy queries on the ob-
jects properties. The following three type of modifications on data can be distinguish:
mutation, creation and deletion. Those three groups in general require different inter-
pretation, which means that the algorithm needs this as additional information next to
the fact of modification.

24

3.3. Summary

Propagation of updates

The distribution of changes to the other client is the core of the synchronization. It is
a simple step that takes care of the incoming requests for synchronization and maps
data updates into serializable changes. The actual representation of data and execution
order of this part depends on the algorithm, but in general it represents the communi-
cation layer for synchronization. This activity is in addition responsible for applying
the changes to the database if they are allowed.

Detection and resolution of inconsistencies of data

The actual changes that are applied to the data could deliver inconsistency. This will
be problematic to the application that is using the data. It is preferred to check the
changes before finalizing them to storage. Meaning that this process must be weaved
through the actual propagation of updates to find errors early on and regard or fix
the modification. There are several ways to have inconsistencies, the normal conflicts
are updates on objects that are already locally modified. Another way is introduced
by users that could not be trusted. Those users need to be checked whether the data
received is conform the specifications. Depending on the demands and the algorithm
there are various ways to fix those problems, where the easiest way is to regard the
changes.

A more single fitting purpose is security, which might be considered data incon-
sistency when a person changes data that it is not allowed to change, but that does not
apply to all security issues. It could be perceived as a combination of this process and
propagation of updates.

3.3 Summary

Data synchronization is a well researched subject and even has a mathematical repre-
sentation of the problem (set reconciliation problem). The theory distinguishes three
categories of synchronization algorithms (Section 3.1):

• Wholesale (Figure 3.2): All data is transferred to the remote client that calcu-
lated the differences.

• Mathematical (Figure 3.3): Solutions of the set reconciliation problem are
mapped to the synchronization problem concept.

• Incremental (Figure 3.4): Solutions that track changes and only send changes
from a specific time range to acquire incremental updates.

Each of the solutions has its advantages and disadvantages that are summarized in
Table 3.5. The synchronization process can be broken down into three steps: update
identification, propagation, and consistency detection and resolution (Section 3.2).

The next chapter will continue with the information gathered from this and previ-
ous background chapters to create requirements for a data synchronization framework
between web and mobile applications.

25

Chapter 4

Synchronization Framework
Requirements

The previous part has described the context and the theory of the synchronization prob-
lem for this thesis. This information is needed to formulate the requirements of the
solution, which are useful as guideline for building and evaluating the solutions pre-
sented in this thesis.

There are several views regarding the tool requirements. The first separation can
be found between the core synchronization problem and its context delivered by the
web and mobile platform. The partitioning of the tool itself can be separated in the
following two parts: The application developers part and the part that is actual used by
the application. Both parts have different stakeholders and deal with different aspects
of the solution.

There is also a general breakup of requirements, which is used in this section:
functional (Section 4.1) and non-functional (Section 4.2) requirements.

4.1 Functional Requirements

The final solution should generate from extended WebDSL code a synchronization
framework that allows mobile devices with a Mobl variant of the application to syn-
chronize a restricted set of data with the WebDSL application. The solution will be
focused on the generated Mobl part and integration. Nevertheless, it should be possi-
ble for other remote applications to use the synchronization framework. The functional
requirements described below are summarized in Table 4.1.

4.1.1 Data Synchronization

The main part of the solution is the synchronization of data and can be split up in the
processes as described in Section 3.2.

Identification of updates
The role of identification of updates in the solution is to find a generic way to get the
updates after the last synchronization. The actual functionality of keeping track might
not be part of the synchronization, instead it should be a low cost solution to find the
updates. The web application needs a solution to acquire updates for all devices, while
the mobile application only needs to keep track of its own changes.

27

4. SYNCHRONIZATION FRAMEWORK REQUIREMENTS

Propagation of updates
The updates should be sent or received on request from the mobile application. To
make this possible there is a need for webservices to send requests to the web applica-
tion. Both applications also need a mapping from and to a serializable representation
of the data model to communicate changes.

Detection and resolution of inconsistencies of data
The updates could bring along inconsistencies and therefore should be checked. This
can only be limited to available knowledge that is declared in the code of the applica-
tion. The second source of problems with data are changes on objects that are already
changed by another source, which should be detected by the algorithm. Next to detec-
tion it should prevent that those updates are persisted, which creates an erroneous state
of the database. This could be done by reverting or fixing the updates.

4.1.2 Interface

While the solution might try to reduce the interaction with users to a minimal, but
there is still a need to define interfaces for each user. The interfaces can be separated
for each of the following users groups:

Application developer In this group there can be a separation between the developer
of the web and mobile application. The web developer needs an interface to define syn-
chronization specific features. For the mobile application developer there is a demand
for an interface that can be called within the actual application to send synchronization
requests and interaction with the algorithm where needed.

Application user The actual user of the application should not experience a change
in the web interface. For the mobile application there is a new interface itself, but that
is not part of this solution. The actual experience with the end user should be limited
to none. On the other hand, the developer might use part of the generated code for the
interface to display status of the synchronization process.

Remote application developer There should be a possibility for a remote applica-
tion to use this synchronization interface. This would be the same interface for the gen-
erated code. However, the remote application should create its own synchronization
implementation for his software to supply the interface with the correct information.

4.1.3 Data restriction

In general, mobile applications do not have access to all data because of hardware
limitations and security reasons. The synchronization framework should have similar
functionality by restricting the data in several manners as stated below.

Global restrictions It should be possible to remove or simplify the data model that is
synchronized with mobile devices. For example, remove properties that are application
specific and not used by the mobile application.

28

4.2. Non-Functional Requirements

User specific restrictions Only global restrictions are not enough, it should be pos-
sible to restrict data to a level that only part of the user group can retrieve or modify
the data. For example, a user can only get his own address information and no other
users are allowed to retrieve this private knowledge.

User defined restrictions Since there is a possibility that applications have a huge
data set to transfer. The solution must be able to only synchronize parts of the data.
The user must have the possibility to influence on which data is synchronized. At the
same time, it should be usable. Those requirements forces the solution to partly derive
the data selection.

4.1.4 Code generation

This thesis presents a generative approach to the synchronization problem and because
of that a part of the requirements is generation of code. The generation can be split up
into WebDSL and Mobl code and the required parts are listed below:

• WebDSL

– mappers for objects to a serializable representation
– mappers from serialized object to an internal data representation
– synchronization algorithm including identification of updates and incon-

stancy handling
– webservices for interaction with the synchronization by remote applica-

tions

• Mobl

– modified model representation of the data model defined in WebDSL
– mappers for objects to a serializable representation
– mappers from serialized object to an internal data representation
– functions to abstract calls to webservices
– integration of synchronization parts into general functions

4.2 Non-Functional Requirements

The focus of the implementation is on fulfilling functional requirements, while often
the success depends more on the non-functional qualities of the software. The previous
section covers the functional aspects while this section will describe the requirements
on non-functional topics: Usability, scalability, applicability, adaptability, security and
robustness.

4.2.1 Usability

Nielsen et al. describe usability as: How well can users use the functionality [28]. In
Section 4.1.2 already introduced the group of users and the specific interface for those
users and is used in this section to define some usability requirements for the solution.

29

4. SYNCHRONIZATION FRAMEWORK REQUIREMENTS

Goal Requirement

Data synchronization

• Identification of updates on mobile and server side

• Mapping data between serializable and local format

• Sending updates between mobile and web application

• Detection of inconsistencies in updates

• Resolution of inconsistencies in updates

Interface

• Interface to customize and use generated code

• Interface for synchronization process status

• webservices for other applications to access data

Data restriction

• Restrict data model for synchronization

• Restrict access to data based on user rights

• Partial data synchronization selectable by user

Code generation

• Model representation for Mobl

• Mappers to (de)serialize objects

• webservices for communication

• Synchronization algorithm

• Integration functions

Table 4.1: Summary of partitioned functional requirements

Application developer

The developers of the WebDSL application needs to be able to enable the correct syn-
chronization behavior with simple additions to the application code. The additional
syntax needs to be in same style as the other sublanguages of WebDSL and have to be
declarative, so that it is easy to understand the semantics of the written code. When
it is possible, the solution should reuse information of the application code instead of
adding duplication. Identically the Mobl developer should have almost no work to in-
tegrate the generated code into the application. Minimal and natural are the keywords
to strive after for this user group.

Application user

The actual users do not have direct contact with the generated code. Still, it is part of
the application and on execution could interfere with the usability of the total applica-
tion. There are two general characteristics of mobile applications where the solution
could interfere: reactiveness and offline capabilities. The reactiveness constraint is that
while using the synchronization algorithm the mobile application or at least the GUI

30

4.2. Non-Functional Requirements

Goal Requirement

Usability
• Simple interfaces for users

• Minimalistic interaction

Scalability
• Must be able to handle multiple clients

• scale with bigger amounts of data

Applicability
• The framework can be generated for all data models that

can be specified within the web application

Adaptability
• Modification possibilities to tweak generated code

• Synchronization algorithm should not require changes

Security & Robustness

• Possibility to define access control on request/modification
of data

• Should be able to deal with non valid input of webservices

• Protect database against invalid updates

Table 4.2: Summary of the non-functional requirements

part of it should not be blocked. The offline capabilities can be read as that an applica-
tion is not obligated to be online all the time. This constraints that the synchronization
cannot depend on its connection with the server and have to cache the changes locally.

Another problem is hardware limitations on mobile devices and should be consid-
ered while developing the algorithm. The following properties are influenceable by
the solution: bandwidth, computation and memory. Memory and bandwidth can only
be limited to size of actual data and requires to use an incremental approach. The so-
lution for computation can be found by offloading computation work to the server side
as much as possible.

Remote application developer

The remote application developers are not the main target group for the solution, but
should be at least taken into account that they could use the synchronization webser-
vices. Therefore, they should be simple and not send Mobl specific data. It should be
possible to easily retrieve data from the application and with its own implementation
of keeping track of changes could use the synchronization part as well.

4.2.2 Scalability

The scalability of the solution has two viewpoints: the number of clients it can han-
dle to keep working and the size of data in the application without failure. The first
viewpoint is a concern that is dependent on the usage of the application and how of-
ten people actually would synchronize their mobile client. Assuming synchronization

31

4. SYNCHRONIZATION FRAMEWORK REQUIREMENTS

is not required regularly, this problem is not that big and could be solved partly by
introducing more machines with replicated databases.

The scalability of size of data is more interesting topic of synchronization, since
this has a high influence for usage of the tool, for bigger applications. Smaller appli-
cations could already have a reasonable amount of data stored. Users do not see the
direct problem. Although they do not like to wait too long for the data to be retrieved.

4.2.3 Applicability

The target for the software is web and mobile applications in general. This means that
the generation, which is based on the sources of existing web applications, should al-
low to generate a working synchronization framework for every web application. The
synchronization is based on the defined data model, meaning that the generation needs
to cover all possibilities that are allowed in the model of the web application. How-
ever, it could be that technical limitations in the mobile application target languages
restricts the possible options.

4.2.4 Adaptability

The goal for this solution interface is to be a minimal and simple for the users, this
comes at a price of assumptions and default solutions. The synchronization algorithm
itself should be complete and not require any modification. Some other parts of the
generated code that influences the process or data could be customizable. For example,
restriction on data is already part of the functional requirements. Other parts like data
mappers and default integration functions in Mobl code are possible targets that need
application specific adaptions.

4.2.5 Security and Robustness

Security issues could find place on the mobile and web variants of the application. The
data restrictions (Section 4.1.3) should limit the security issues on the mobile devices.
The web application has a harder job with security, since it cannot trust the clients
because of the following two reasons: Clearly, the situation is that the synchronization
webservices are open to any software and therefore cannot be trusted in general. The
second user is the Mobl client that is generated and could be seen as safe. Nevertheless,
both user and mobile application developer could change the data in a way that is not
valid for the web application. To be sure that is not the case it is better to assume that
also those clients cannot be trusted.

Similar to data restrictions on sharing data, the requirements state functionality
for access control on data modifications. The web application developer remains re-
sponsible for security on the application and needs to define specific rules for data
restrictions. Another possible breach that the framework needs to keep in mind is SQL
injections, an attack which is a popular method to modify the database and gain con-
trol over an application [23]. The framework used for accessing data could already
implement this. When this is not the case, input strings should be validated or escaped
to prevent those attacks.

Robustness has to deal with the same factor as the previous paragraph that the users
of the webservices cannot be trusted to deliver an input that is conform the expectations

32

4.3. Summary

of the algorithm. Validation on the input is a part of the solution, this mean that at
least the data is conform the presumptions. The input format of the webservices for
changes could be different in format and it should not crash the application or break
the algorithm.

4.3 Summary

The chapter presents requirements for a generative solution for synchronization be-
tween mobile and web applications. It uses the previous information of Chapter 3 to
determine conditions for synchronization. The information from Chapter 2 is applied
to add and adapt requirements for the domain of web and mobile applications.

The requirements are divided into functional (Section 4.1) and non-functional
(Section 4.2) concerns. Generally, the solution must have the following functional-
ity:

• Data synchronization framework

• Interface for all the user groups

• Data restriction possibilities

• Code generation for both web and mobile part of the framework.

The non-functional requirements are more general view of topics that contribute to the
success of the tool. Important factors for this tool are: Usability, scalability, applica-
bility, adaptability, security and robustness (Section 4.2.5). An overview of the most
important requirements is summarized in Table 4.1 and Table 4.2.

The requirements described in this part will be used while developing the motivat-
ing example (Chapter 5) and the final solution (Chapter 6 and Chapter 7). They are
also used to evaluate the result of the software.

33

Chapter 5

YellowGrass Mobl
Motivating Example

In the previous chapters a theoretical approach is used to find data synchronization
problems and state the requirements for the problem of data synchronization between
web and mobile applications. We have chosen for a motivating example to discover
and attempt to solve core problems before the abstraction and generation would be in-
troduced. The YellowGrass application should show difficulties of the synchronization
concepts in practice.

This chapter describes the motivating example. Starting with the approach descrip-
tion in Section 5.1 and introduction to the application YellowGrass1 in Section 5.2.
The second part gives an overview of the design (Section 5.3) and the implementation
details (Section 5.4). Finalizing this chapter with an evaluation (Section 5.5) of the
motivating example.

5.1 Approach

The synchronization problem within a new context of web and mobile applications is
complex in such a way that direct implementation of the generation would be a naive
approach. In this thesis we have chosen to follow the approach that is used by E. Visser
in “WebDSL: A Case Study in Domain-Specific Language Engineering” [34]. The
main steps are domain analysis, motivating example, generalization and generation as
displayed in Figure 5.1. The domain analysis focus is on the theory of the problem and
is in this thesis described in Chapter 2 and 3.

Domain Analysis Motivating Example Generalization GenerationApply
Theory

Evaluate &
Abstract

Embed
knowledge

Figure 5.1: Approach used for developing this thesis solution

1http://yellowgrass.org

35

http://yellowgrass.org

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

The motivating example stage is meant to implement a solution that is based on the
theory delivered by the domain analysis. It adds a practical element that shows un-
expected problems on implementation and integration aspects of the problem domain.
The code base of the implementation is used as basis for the generalization.

The generalization is achieved by evaluating to find and solve shortcomings of the
implementation of the example. Additionally, it requires abstraction on the example
to have a generalized solution, which is usable for the generator. The generation is
the final step in the approach and implements generation of the solution for a wider
range of applications. This step is reached by making templates out of the generalized
solution.

This chapter describes the architecture and implementation of the motivating ex-
ample and an evaluation, which is used for the generalized solution. The outcome
of the stages: generalized solution and generative approach are described in detail in
Chapter 6 and 7.

The basic application was built from a simplified model of the application and only
data was retrieved through some basic webservices. There were several iterations to
improve the application and synchronization. Starting with simple retrieval of data,
the following steps were implemented for synchronization: sending changes, retrieve
updates and sending creations. The additional functionality was implemented during
previous steps. This functionality is more focused on the context of mobile applica-
tions like: authentication, offline capability and validation. Those steps drove some of
the changes in the framework. This chapter will use the last version of the motivat-
ing example to describe the details of the implementation. This includes interesting
changes that were applied to improve the solution.

5.2 YellowGrass

This section describes the YellowGrass application which is used as basis for the mo-
bile application. The description of the application is separated into an explanation of
the functionality, the important pages of the GUI and the model.

5.2.1 Functionality

YellowGrass is a tag based issue tracker written as web application in WebDSL. The
basic feature is to report and keep track of issues of (software) projects, through com-
ments and status events. As stated in the first sentence it is tag based and those tags
are used for the following purposes:

• grouping of issues on topics

• voting and following of issues by users

• assign issues to team members

• tagging of tags
The tagging of tags (meta tagging), is meant for grouping of tags, currently this is
used to mark special tags. For example, issues with a release tag are used to display a
roadmap of the project.

36

5.2. YellowGrass

5.2.2 Graphical User Interface

The previous sections describes the functionality of the application. Much of this
functionality is linked with the GUI. This section displays the more interesting pages
of YellowGrass and explains the information shown on the pages.

Home Page

The home page of YellowGrass is displayed in Figure 5.2. It gives an overview of the
popular Projects and Issues. The top of the bar contains information of the current
user.

Figure 5.2: YellowGrass homepage

Figure 5.3: A YellowGrass Project page

37

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

Project Page
The project page of YellowGrass shows is a portal to issues, tags and member of the
project. It allows to edit the project and navigate to wide range of related pages. Fig-
ure 5.3 shows an example of such a project pages. The page contains a description of
the projects, interesting open issues and a navigation bar. This bar includes different
navigation options for issues, a link to the roadmap and possibility to create a new
issue.

Issue Page
The issues contains the most important data of the application. This makes the view an
important part of the application as well. Figure 5.4 shows an example of an issue page.
It displays basic information about the issue like description and title. Additionally, it
contains status information in the form of a log. This log shows changes and comments
made to the issue. Another important aspect is that it has an interface for managing
tags on a issue.

Figure 5.4: A YellowGrass Issue page

Roadmap Page
The roadmap is a feature of the application to keep track of changes related to version
of the application. The roadmap page as displayed in Figure 5.5 is mainly to show the
status and issues grouped by version description.

Mobile Scenarios

The described pages above show the important information of the application for users.
The information from the previous paragraphs can be used to predict various scenarios
that should be available in a mobile application of YellowGrass. Most of the pages are
focussed on accessing information of the projects. The main information is currently
stored in issues. This would mean that the mobile application should allow easy acces-
sibility of issues with the related information like comments and tags. This includes

38

5.2. YellowGrass

the modification and creation of issues because that is probably the main feature what
people will use the mobile application for. Additionally, the application should have
some view to display information of the project including the roadmap.

Figure 5.5: YellowGrass Roadmap page

5.2.3 Data Model

The pages and the functionality are based on the underlaying data model. The model
is explained in this section to get a full grasp on the application. Figure ?? displays
the model of the YellowGrass application. The simplified version of the model can be
explained as a project with issues and members, where the issues have tags and a log
of events for the specific issue. The next paragraph will explain each of the classes in
more detail.

Project Central entity that represents the (software) projects which holds issues and
users. Users can be split into members, who are working on the project, and
followers, users that are interested in a project and are notified on updates. There
is an additional private flag for projects that are closed to nonmembers.

Issue Representation of the issues and changes on a project. An issue has in addition
status, author, events and tag information stored to document process of the
issue.

IssueGhost A copy of issue to allow non registered users to create issues. The copy
is used to store information until the issue is confirmed and transformed into a
normal issue.

Tag Tags are used to group issues and it can contain other tags to operate as grouping
on the level of tags.

User User entity is a representation of registered actors within the system. The user is
mainly used to refer to as owner of objects. The entity stores personal informa-
tion and a string representation of the user that is used as a tag name for special
tags, which refers to users.

39

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

Event It is a generalization of the events that can happen within issues and uses a
timestamp to track occurrences, which is used to sort the events.

Comment Comment is a proxy for the most occurring event of placing comments
on an issue, which adds additional textual information about the issue and the
process of implementation.

TagRemoval & TagAddition Events that are applied to the tags property of an issue
and correspond to their names.

IssueClosed & IssueReopen Events that display the status changes an issue went
through.

IssueMoved Special event that represents a move of an issue to another project and
includes a link to the new issue.

This completes the list of the entities in the YellowGrass model and description of
the YellowGrass application. The following sections will describe and evaluate the
extension of the application, starting with the architecture design.

5.3 Architecture Design

The implementation of YellowGrass Mobl is meant as an experiment on feasibility
of the synchronization between WebDSL and Mobl applications and will be used to
deduce abstraction for further development.

This section explains the architecture design of the motivating example. The fol-
lowing viewpoints are used to give an overall impression of the functioning of the
application: Context (Section 5.3.1), Decomposition (Section 5.3.2) and Control Flow
(Section 5.3.3).

5.3.1 Context

YellowGrass Mobl is an addition to the original application.Figure 5.6 displays how
the application and the Mobl additions are placed into the context. The boundary of the
system restricted to the server with the YellowGrass applications, since other entities
cannot be controlled. The role of the entities in the ecosystem are explained below.

YellowGrass The original web application has its original functionality and is ex-
tended with the purpose of central communication point for synchronization.
The Mobl applications are able to request data and send changes that then will
be processed by the web application.

YellowGrass Mobl The Mobl application implements part of the GUI of Yellow-
Grass in a mobile variant. To display information it needs data, this is gathered
through synchronization with the web application and persist it locally. The ap-
plication also tracks changes to send them on the next synchronization attempt
with the server.

YellowGrass Mobl sources The actual application runs on the mobile devices. Nev-
ertheless, the application sources are served by the server.

40

5.3. Architecture Design

YellowGrass

YellowGrass mobl
sources

Server

YellowGrass
developer

Project
member

Project
user

PC

Mobile device

YellowGrass mobl

System boundary

Arrows display usage relations

Figure 5.6: Context diagram of the motivating example

PC The PC is a medium for accessing the web application and delivers a universal
display through the medium of web browsers.

Mobile device The mobile device loads the YellowGrass resources and executes the
Mobl application locally.

Server A central point that services as remote access point for both the web and the
mobile application to request functionality or resources from the WebDSL ap-
plication.

YellowGrass developer The person responsible for maintaining and developing both
web and mobile application of YellowGrass. The developer is not a direct actor
in the system. Although he has to deal with the code that is written for this
motivating example.

Project member The project member is part of the user group that develops the
project that uses YellowGrass to document issues. The member can use both
the web and mobile application to modify the status and general information of
the project on YellowGrass.

Project user The project user is a person that uses the application of a project, which
is tracked on YellowGrass. The actor uses both applications to report and look
up issues.

This concludes the context of the motivating example and will continue with the de-
composition in the next section.

5.3.2 Decomposition

The motivating example consists of an extension to original web application and a
new mobile application. The Mobl code can be separated into two parts depending if

41

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

it is interesting regarding synchronization framework, the remaining code will be put
into another module. An overview of the separations and components are shown in
Figure 5.7. This section will describe the functionality and responsibilities for each of
the components.

Webservices

The synchronization requires a communication layer between the web application and
the mobile application. In the case of web applications it is common to use webservices
for this purpose.

WebDSL
The main functionality of the synchronization is implemented by the webservices com-
ponent. Functionality of the webservices is to facilitate entry points for mobile appli-
cations, which enables the possibility to request or send data from the application. The
component started simply with just map the requested objects to JSON and send those
objects to the mobile application. However, the expansion of the motivating example,
in functionality of synchronization, added extra responsibilities for this component.
The final version has extended the responsibilities with the following synchronization
concepts: apply and find updates, and also detect and resolve inconsistencies.

Mobl
The webservice library offers entry points for Mobl code to call the webservices that
are specified in the webservices component of WebDSL. In addition, to making the
services available in Mobl, this component also maps the parameters to a correct for-
mat that is expected by WebDSL services. The result that is handled by a mapper is
specified in this component, but declared in the JSON mappers component.

Offline Service Wrapper

The offline service wrapper takes care of the possibility that a mobile device has no
internet connection. Every service that is called is wrapped with a check whether there
is an internet connection or not. The idea is that the function call does not have to
take care of connection status. The specified actions differ for each function, but in
general when there is no connection the function tries to return local data. When the
functionality depends on up-to-date data, it will return an error since there is no valid
return value.

JSON Mappers

The webservices are used to send information in the form of objects. However, the
information stored on the devices is in a native format. This format is hard to inter-
pret for the other application. This means that both the web and mobile application
require mappings from and to a serializable format. In this case we have chosen for
the lightweight JSON representation.

42

5.3. Architecture Design

Web services

Authentication

RoadmapJSON mappers

Web service library

JSON mappers

Offline service
wrapperAuthentication Synchronization

Service calls

YellowGrass

User interface Application logicData model Access control

Data model User interface Application logic

remaining application aspacts

YellowGrass
extension

YellowGrass mobl
 application

Arrows display dependency relations

Figure 5.7: Decomposition diagram of the motivating example

43

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

WebDSL
The translation is based on the data model from the main application and uses a default
mapping from WebDSL types to known types in JSON. Each entity has three kinds of
mappers:

• Minimal: Returning a representation which just contains information needed
for references in other objects.

• Simple: Only containing the properties which are basic types of WebDSL, so
without references to other objects.

• Full: A full representation of the object for properties that are mappable to
JSON.

The mappers include for each entity a function that applies the values of a JSON object
to the local storage.

Mobl
The mapping of Mobl entities to JSON is delivered by libraries. Those require a pa-
rameter which defines the properties to be included in the JSON representation of the
objects. This component also declares calls and parameters for the mapping. The
processing of the JSON objects in the result depends on the functionality of the web-
service. In general, the mapper extract useful information from the JSON. This infor-
mation is then persisted or returned to the offline wrapper component.

Synchronization

Synchronization is the core component to make the application working because the
general functionality of the application is based on data gathered through the synchro-
nization. While the core of synchronization is a part of the webservices in WebDSL
the Mobl uses a separated module. The module manages integration of webservice
calls by ordering and checking if all data is up to date. The webservices require spe-
cific input to make the synchronization algorithm work. This component gathers the
required data from the database for each of the synchronization functions.

Authentication

Authentication is not directly coupled to the synchronization problem itself. However,
YellowGrass contains data that should not be shared with all users. This requires a
system for access control, which is only possible if there is authentication.

The authentication component handles the functionality of authentication for mo-
bile devices. There are several forms of authentication functionality that is needed for
mobile devices:

• Registration and coupling of mobile device to the user.

• Authentication of mobile device with credentials.

• The possibility to undo the authentication or registration.
44

5.3. Architecture Design

WebDSL
The WebDSL component contains functions that extend the application with additional
functionality to allow this different approach of authentication for mobile devices. It
extends the model with a devicekey entity which is linked to the user entity.

Mobl
The Mobl components has similar functionality to enable the user to authenticate
through the webservices. In addition, it stores information that is required for au-
thentication, so the application can log in automatically. For security reasons it has
the responsibility to delete local data when a user is logged out to ensure that sensitive
data is not accessible by other users.

Roadmap

The roadmap is not directly expressed in the model. Instead a relatively expensive
operation is used to calculate the roadmap. This module is created to make this infor-
mation available without expensive calculations in the mobile application.

The roadmap component is responsible for the alternative of the calculation of the
roadmap for the mobile application. This modification is an experiment to offload the
calculation of roadmap, since in the original implementation it is a heavy computation
for mobile devices. The component calculates the roadmap and maps the result to a
JSON format which is usable for the Mobl application to represent the roadmap.

Remaining Mobl Modules

The Mobl application involved also other components in the development because
it was built from the scratch it needed other functionality that were non specific to
the synchronization. Those components where less interesting for the synchronization
process, but have shown integration problems and shortcomings of the synchronization
approach on time of development. The remaining part can be described as a simplified
implementation of the original YellowGrass application in Mobl, which depends on
the local data which is gathered through the synchronization, authentication and other
webservices. The remaining segment contains the data model, user interface and ap-
plication logic. The data model is most interesting of those modules, since most of the
synchronization components are based on the model.

The total of those modules covers the complete functionality of the motivating
example. More detail of the functionality will be explained in Section 5.4.

5.3.3 Control Flow

The previous section has shown the components and the dependencies, but misses the
actual order and flow between the components. This section presents the workflow of
the application as displayed in Figure 5.8.

45

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE
Ye

llo
w

G
ra

ss
m

ob
l

U
I/l

og
ic

Au
th

en
tic

at
io

n/

Sy
nc

hr
on

iz
at

io
n

O
ffl

in
e

se
rv

ic
e

w
ra

pp
er

JS
O

N
 m

ap
pe

rs
W

eb
 s

er
vi

ce

lib
ra

ry

W
eb

 s
er

vi
ce

s
JS

O
N

 m
ap

pe
rs

Au
th

en
tic

at
io

n/
R

oa
dm

ap

lo
gi

n

re
tu

rn

au
th

en
tic

at
e/

re
gi

st
er

 d
ev

ic
e

re
tu

rn

au
th

en
tic

at
e/

re
gi

st
er

 d
ev

ic
e

re
tu

rn

re
tu

rn

to
W

eb
D

SL

re
tu

rn

[a
ut

he
nt

ic
at

e/
re

gi
st

er
 d

ev
ic

e]

re
tu

rn

au
th

en
tic

at
e/

re
gi

st
er

 d
ev

ic
e

re
tu

rn

to
JS

O
N

re
tu

rn

au
th

en
tic

at
e/

re
gi

st
er

 d
ev

ic
e

ge
tT

op
Le

ve
lE

nt
iti

es

re
tu

rn

ge
tT

op
Le

ve
lE

nt
iti

es

re
tu

rn

ge
tT

op
Le

ve
lE

nt
iti

es

re
tu

rn
re

tu
rn

to
JS

O
N

[g
et

To
pL

ev
el

En
tit

ie
s]

re
tu

rn

ge
tT

op
Le

ve
lE

nt
iti

es

sy
nc

hr
on

iz
e

re
tu

rn

sy
nc

hr
on

iz
e

re
tu

rn

sy
nc

hr
on

iz
eE

nt
ity

+

re
tu

rn

se
le

ct
En

tit
ie

s

re
tu

rn

re
tu

rn

re
tu

rn
re

tu
rn

re
tu

rn

to
JS

O
N

re
tu

rn

to
W

eb
D

SL

re
tu

rn

[s
yn

ch
ro

ni
ze

En
tit

y]

re
tu

rn

sy
ch

ro
ny

ze
En

tit
y

re
tu

rn

[g
et

R
oa

dm
ap

]

re
tu

rn
re

tu
rn

to
JS

O
N

[m
od

ify
D

at
a/

se
le

ct
En

tit
ie

s]

re
tu

rn

Lo
op

 o
f m

ai
n

ac
tiv

ity

W
eb

D
SL

/m
ob

l b
or

de
r

[] = optional, / = or , + = multiple times

Figure 5.8: Sequence diagram of the motivating example

46

5.3. Architecture Design

General Flow

Before discussing the various steps within the application, it is good to have an overview
of the general flow in the application. The first step is to log in to the application with
the mobile device. Following with getting the topLevel entities and select useful en-
tities that represent partitions that the user want to have synchronized. Synchronize
the entities to have the latest version locally. As last step, interact with the application
which possibly effects the data. The steps of synchronization and interaction will be
repeated to keep the data up-to-date. This flow is an abstraction and allows variations.
Nevertheless, those deviations will not introduce new situations that are not covered
by the previous steps.

Detailed Flow

This section will give more details over the steps described in the previous section. The
following main steps that can be distinguished are: authentication of the user, selecting
of partitions and synchronization.

Authentication
As described in the component description is authentication split up into two parts:
Registration of device and authentication of user and device for current session. De-
pending on the current information stored on the mobile device it can directly authen-
ticate, otherwise it has to request registration. The request goes through the offline
wrapper, then mapped to JSON, which will be sent to the server. There it is mapped
back to values of WebDSL, so it can be passed to the authentication component, which
returns a result with possible registration key. The result goes in similar way back to
the authentication component of Mobl.

Select Partitions
Synchronization requires a selection of entities, this is only possible if there is a min-
imal representation of objects making it possible to recognize and select partitions of
data. In YellowGrass Mobl this is fulfilled by requesting simplified versions of se-
lectable entities. This is done by simple request via a webservices, which maps the
entities to a simplified JSON representation and sends them back. Afterwards, the top
entities can be selected for the synchronization process.

Synchronization
The last step is the biggest and most occurring process element. It represents the
synchronization process of the data, in the first request it will only request data. The
synchronization has been split up into multiple blocks of objects. For each block it
finds the changed objects and maps them to JSON representation. In WebDSL it is
mapped to local representations and afterward applied to the database. In the second
step it finds the updates (where needed uses the Roadmap component) and maps those
objects to JSON so that they can be returned to Mobl. At the other side the mappers
persists the changes to the local database so that it can be accessed and modified before
the next round of synchronization.

The control flow concludes the architecture design of the motivating example. The
next section will describe the more detailed implementation work.

47

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

5.4 Implementation Details

The previous section describes the architecture of the motivating example and with that
has given an impression how the application works. This section gives deeper insight
in some parts of the application. The more interesting parts of the application for
synchronization can be found in: offline functionality (Section 5.4.1), synchronization
algorithm (Section 5.4.2) and the model-to-model mapping (Section 5.4.3).

5.4.1 Offline functionality

Most mobile applications are (partly) usable without internet connection. For web
based applications like YellowGrass Mobl it is harder to be available without connec-
tion because of the remote resources. The same counts for data based applications,
since those applications also require remotely stored data. This should be fixed by the
synchronization solution itself.

Mobl is a client side based solution, therefore, it is possible to have the application
working without internet when the sources are locally available. The current HTML5
specifications specify a solution for this problem in the form of an offline manifest,
where it is possible to specify the behavior of a web application when there is no
internet access available [37].

The second problem is the unavailability of webservices due to the fact that a
mobile device can be offline. This requires a solution where the data is stored locally
and tracking of changes. There are also functions that can only be executed when there
is a connection, for example authentication. The first approach for offline webservices
is based on request of data for specific functionality on the application and when there
was no connection the local data was returned instead of the data from WebDSL. This
method requires much knowledge about the functionality of each service to return
correct local data. To improve the situation the default approach changed to work on
local data and use synchronization to make the local storage up-to-date.
The functions that require a connection for execution started with authentication and
roadmap functionality. The first attempt was to store the webservice calls until the
connection was restored. There are some pitfalls in this concept, firstly discovery of the
connection status. In theory it is simple to determine internet connectivity. However,
several approaches that are used in practice where all problematic. Incorrect (in corner
cases) or slow response are the general disadvantages even for the HTML5 proposed
function for this purpose.

The other problem is how to let users know when the function is executed and how
to show the result that is returned. Normally the function would be executed when the
connection is restored. Although this moment is not always clear to the user. Possible
interaction before or after the execution might be a valid solution. However, for the
user this would make the workflow unpredictable and perhaps even incomprehensible.

In the last implementation most of this functionality was removed and only the
authentication services required a connection. When there is no connection the au-
thentication will use the last know state to keep the application usable. It tries to
simulate the same behavior as with the synchronization that is accessible through local
storage and it can be updated when there is a connection. This flow of data within the
motivating example with off- and online state is displayed in Figure 5.9.

48

5.4. Implementation Details

(a) online

(b) offline

red arrows indicate removed links due to missing previous link

Figure 5.9: Graphical display of connections between server and application in off-
and online mode

5.4.2 Synchronization

Synchronization is main functionality and added value of the motivating example.
Therefore, it is interesting to have more insight in the working of the synchroniza-
tion. This section gives more details of the synchronization algorithm. It is split up in
how the activities of synchronization are implemented and how the data is partitioned
to make the data selectable.

Activities

In Chapter 3 describes that synchronization is split up in the three activities: detection
of updates, propagation of updates, and detection and resolution of inconsistencies.
The following paragraphs will explain how those activities are filled in within this
example.

Identification of updates
The Mobl application only synchronizes with one source (the WebDSL application).
This makes flag synchronization the best solution. Keeping flags for every object
has a minimal amount of overhead and is simple to apply. The flags are required
to manually set or unset. Nevertheless, it should be possible to set this automatically
with modification of the Mobl compiler.

The identification of updates on the server side is more complicated because of the
multiple clients it has to deal with. Versioning of objects is an obvious solution, since
the version is already tracked by WebDSL. The problem is that for identifying the up-
dates it requires the version of each object delivered by the previous synchronization,
which adds a parameter for the synchronization webservices. Figure 5.10 displays the
pseudocode of both parts.

49

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

function synchronizeFindUpdates(objects)
updates := new Set()
foreach object in objects where object.modified or object.created
updates.add(object)

return updates

(a) Mobl

function synchronizeFindUpdates(previousObjects)
updates := new Set()
foreach object in previousObjects
currentObject := loadObject(object.id)
if object.version < currentObject.version
updates.add(currentObject)

return updates

(b) WebDSL

Figure 5.10: Pseudocode for identification of updates used in the motivating example

Propagation of updates
The next step is the propagation of updates. This is a simple step, in case of Mobl ap-
plication it sends an object with id and version for every object it needs to synchronize.
If an object is modified or created it adds all other fields to the JSON representation
of the object. WebDSL receives all object representations, depending on the version
number and availability of other fields it decides what to do. In the case of extra fields
available in addition to the identifier and version, the object is recognized that it is new
or modified. If the version is 0 and identifier is unknown in the database it creates a
new object and applies the modifications. For objects that have versions that are higher
(this means that the object is not changed on the server) and have a known identifier,
the server will load the object and apply the changes from the JSON object.

The last step is to find the changed objects, which is implemented by comparing
the version numbers of the JSON object and the local object. When the version num-
ber of the local object is higher than the received version, the object is perceived as
changed after the previous synchronization. Therefore, it needs to send a new version
to Mobl where they are applied to the persisted data. Both algorithms are displayed in
pseudocode in Figure 5.11.

Detection and resolution of inconsistencies of data
The final step of synchronization is the detection and resolution of inconsistencies.
This step is simplified for the motivating example and is based on an underlying frame-
work in WebDSL. WebDSL allows to specify validation rules on the data model. The
code checks all modified objects if they satisfy to those validation rules. The database
transaction is canceled when an update infringes one of the validation rules on the
model, which means that the change is not persisted. As an additional check the ver-
sion of the object is compared with the version on the server to prevent updating of
objects that are already updated on the server. The validation and rollback is done in
the background, which is expressed in the pseudocode. The other change is given by
Figure 5.13, which is like a slight modification of the algorithm of Figure 5.11.

50

5.4. Implementation Details

function synchronizePropagateUpdates(objects)
JSON := new JSONArray()
modified := synchronizeFindUpdates(objects)
foreach object in objects
if object in modified
JSON.add(object.toJSON())

else
ref := new JSONObject(id=object.id, version=object.version)
JSON.add(ref)

updatesFromServer := sendAndRecieveUpdates()
foreach JSONObject in updatesFromServer
persistJSON(JSONObject)

(a) Mobl

function synchronizePropagateUpdates(JSONArray)
foreach JSONObject in JSONArray
if JSONObject.numberofproperties > 2
if JSONObject.version == 0 and unusedId(JSONObject.id)
createObject(JSONObject.id)

localObject := loadObject(JSONObject.id)
localObject.applyChanges(JSONObject)

updates := new JSONArray()
modifiedObjects := synchronizeFindUpdates(JSONArray)
foreach object in modifiedObjects
updates.add(object.toJSON())

return updates

(b) WebDSL

Figure 5.11: Pseudocode for propagation of updates in the motivating example

function synchronizePropagateUpdatesAndPreventInconsitencies(JSONArray)
foreach JSONObject in JSONArray
if JSONObject.numberofproperties > 2
if JSONObject.version == 0 and unusedId(JSONObject.id)
createObject(JSONObject.id)

localObject := loadObject(JSONObject.id)
if JSONObject.version == 0 or
JSONObject.version == localObject.version
localObject.applyChanges(JSONObject)

updates := new JSONArray()
modifiedObjects := synchronizeFindUpdates(JSONArray)
foreach object in modifiedObjects
updates.add(object.toJSON())

return updates

Figure 5.12: Pseudocode for preventing of inconsistencies of updates in the motivating
example

51

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

Partitioning

One of the requirements is to only synchronize a selectable part of the data. To prevent
that it is needed to select every object, partitioning is required. The approach used in
the motivating example is done by viewing the data model as a graph, where property
types are seen as outgoing edges. Data can be separated on relations with an object of
the type TopLevelEntity, by selecting a specific entity to be the root (topLevelEntity).
A possible problem is that there could occur cycles and even one object could relate
to all other objects and break the partitioning solution. Links to objects of the type
TopLevelEntity are removed to solve that problem.

The algorithm uses the status of local objects in Mobl to find update by finding
objects that are incomplete, only having id and version, and request those objects from
the server. Following the order of the graph makes this approach more efficient. To
prevent more cycles the graph is transformed to a tree by deleting edges from node x
to node y that are not part of the shortest path from the root to node y.

function model2tree(entities,topEntity)
graph := model2graph(entities)
foreach node in graph.nodes
node.shortestPath := shortestPath(graph, topEntity.name, node.name)

foreach edge in graph.edges
if not edge.to.shortestPath.contains(edge)
graph.remove(edge)

return graph

function model2graph(entities)
nodes := new Set()
foreach entity in entities
nodes.add(entityToNode(entity))

foreach entity in entities
from := nodes.get(entity.name)
foreach property in entity
to := nodes.get(property.type)
from.add(to)

return new Graph(nodes)

Figure 5.13: Pseudocode for transforming data model to graph tree representation

For YellowGrass, Project is the most obvious choice for selecting as the topLevelEn-
tity, almost all data is coupled to the projects and the number of entities is within a
normal range to use as selection mechanism. Also, from the view of the domain it is
intuitive to select Project for coarse grained division of data. Applying the model2tree
algorithm on the class diagram given in Figure ?? delivers the tree presented in Fig-
ure 5.14. A breadth-first approach is applied to decide the order of synchronization on
entities.

52

5.4. Implementation Details

Project

UserIssue

Tag Event

Figure 5.14: Tree representation of the YellowGrass model after applying the
model2tree algorithm

5.4.3 Model-to-Model

The data model is very important for the data synchronization and would be easiest
if they would be equal. This is not possible, since Mobl does not have the same ex-
pressiveness power for data models as WebDSL. The mapping was a manual process
with in-between modifications when encountering problems. This section describes
encountered problems and patterns that are found in the creation of the data model.

The approach is to keep as close as possible to the model of WebDSL, making a
simple copy of the data model is a good start for the creation. Afterwards, simplify
the entities by removing unwanted properties and entities that are not needed for the
functioning of the mobile application. For all properties find a type in Mobl that is
similar or at least can express the same data as the WebDSL type.

With this approach we found two nontrivial issues: List and Set, and inheritance
hierarchy. For list and set Mobl has one possible replacement variant and that is the
Collection type, which indeed can express both types. However, when this type is used
it needs an inverse relation with another property, which is not always defined by the
original model. Fake properties where added for the mapping of collections. Extending
of entities is not supported in Mobl and needs a manual solution, in this case the choice
was to just use Comment for replacement of the Event type as simplification. This
solution is only possible because other entities where not used within the YellowGrass
Mobl application.

In the decomposition viewpoint (Section 5.3.2) the Roadmap component is de-
scribed as a modification to remove the roadmap calculation from the mobile applica-
tion. To have the roadmap offline available it needs a model to persist the data, imple-
mented by an additional Release entity. This entity is not available within WebDSL
and cannot deal with modifications.

This completes the implementation details of the YellowGrass Mobl application.
The next part of this chapter is the evaluation of the application.

53

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

5.5 Evaluation

The motivating example has as goal to discover problems that are encountered when
solving synchronization between web and mobile applications and having a baseline
for the final solution with a generative approach. This example is mostly tested on
integration level by using the application and observe the state of the data on server and
client side. The shortcomings encountered are discussed in Section 5.5.1. In addition,
Section 5.5.2 describes the process and results of data chunking for synchronization.

5.5.1 Shortcomings

During the development and use of the motivating example certain shortcomings where
exposed. Some of the flaws are fixed within the development and the previous sections
described the interesting changes. The second category are problems that have a bigger
impact or are more particular to the generative approach. Those problems will be
discussed in this section and are listed below.

• The solution for finding updates on the server side delivers a considerable amount
of overhead for the mobile client.

• The approach for data partitioning is incomplete.

• An additional component for heavy calculation like the Roadmap module is not
an optimal solution for this type of problems.

• Lacking of robustness and security aspects.

• The choice for selecting Comment as representation for all sub types is not sat-
isfying for all purposes.

Update Identification
The identification of updates on the server side is done by comparing the version num-
bers for each object. This requires to keep old version numbers for each device or the
device has to deliver the version numbers, like implemented in the motivating example.
The tracking of version numbers in the mobile application increases the overhead for
the mobile device. The mobile application has to query and transform all the objects
to JSON, which is relatively cheap operation, but becomes expensive through the huge
amount of objects. Next to computation it also delivers extra bandwidth, with a small
change set, the overhead could even be larger than the updates send and received.

Data Partitioning
The model2tree approach presented in Section 5.4.2 is used to separate and define the
order of the synchronization. This intuitive approach to the problem was not correct
because sometimes new objects where not retrieved on synchronization. A possible fix
could be checking for objects that are incomplete and synchronize those objects until
the number of object that are not synchronized is reduced to zero. This implementation
would guarantee the completeness, but requires massive querying for checking the
status of the objects. The solution also weakens the purpose of the tree, since it can be

54

5.5. Evaluation

executed in any order, still using the correct order will in most cases reduce the number
of cycles needed to synchronize al entities.

The choice in YellowGrass to select Project as top level entity is obvious and the
price of not being able to use GhostIssue is not problematic, since it is not used in
mobile application. Removing some of the entities could become a bigger problem.
For example, in the case that the model is more of a collection of graphs instead of one
fully connected graph it is impossible to select only one root. To make all data available
it is needed to have multiple top level entities and causes that the tree solution is not
applicable anymore.

Heavy Computations

The Roadmap component was an experiment to delegate heavy computation from the
mobile device to the server. The approach that is implemented is to calculate on the
server and simulate an addition to the data model for the mobile application. This
component shows that in principle it is possible to implement, but it is hard to totally
simulate the behavior of normal entities. In the case of this application it shows a
weakness of the model and in general could conclude that adjustment of the model or
partitioning of the calculation is preferred.

Robustness and Security

At development of the motivating example some of the security and robustness issues
are neglected, since it was outside the scope for this application. For security a few
easy checks were added to not retrieve private projects and its data. Wrong input was
not possible since it was restricted to the Mobl application developed during this pro-
cess, which means that robustness problems are limited. The checking and resolving
of inconsistencies in the updates where enough to have robust solution for this appli-
cation. For further development and usage both should be lifted to a higher level.

Inheritance Hierarchy

The solution used for inheritance hierarchy within the data model is to select one entity
within the sub types. While for YellowGrass this was a valid choice without losing too
much of the data. This approach will not work for most of the situations where multiple
of the subtypes are needed by the mobile application. A general approach to separate
or combine the subtypes is probably a better solution.

This list of shortcomings were discovered during implementation and testing. The
next section describes an experiment for further evaluation of the motivating example.

5.5.2 Webservice Data Chunking

One of the approaches tested to improve the scalability of the data synchronization, in
the motivating example, is data chunking of the webservices. The bigger amounts of
data applied at once to the mobile storage could be constraining. To find out what the
influence is of chunking a test with splitting the objects by sending smaller packages.
This section describes the test situation and the results of this experiment.

55

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

Experiment setup

The experiment is set up to discover whether data chunking influences the time of the
synchronization. The best situation would be something similar to normal usage with
one server and a mobile device. Nevertheless, simplification would not change the
outcome as long as the results are produced by the same enviroment. The experiment
is executed on one PC (quad-core 1.6 GHz and 4Gb ram), which contains the WebDSL
and one Mobl instance. The Mobl application is based on HTML5 technologies and is
therefore accessible through web browsers. In the experiment the Chrome browser is
used, since it supported all HTML5 functionality that Mobl requires and the inspection
tools gave possibility to inspect the process.

The experiment exists of two goals, the first is to find an optimal size of chunks
to a medium sized data set of YellowGrass which contains 229 issues and the updates
transferred are 224 kB of size. The second part is to take different sizes of data sets
and find out if the effect of chunking holds on the whole range.

Results

The first experiment starts with some basic values for size and added some extra data
points between 10 and 25 objects in a chunk to increase the precision in the range
of the optimum. The results are displayed in Figure 5.15 and shows an optimal size
around 20 objects in one chunk. Also, it is shown that small sizes for chunks make the
effect negative while on bigger chunks the influence of chunking disappears.

0 20 40 60 80 100 120 140
39

40

41

42

43

44

45

46

47

chunk size

tim
e(

s)

Figure 5.15: Results of chunking data of webservices with constant data set and vary-
ing chunk size

56

5.5. Evaluation

Using the optimal size found in the previous experiment, executed the next experiment
on different data sets varying in size, expressed in number of issues and size of updates.
Figure 5.16 shows a small tough increasing effect of the chunking. The increase of size
of updates supports the positive effect and shows that number of objects seems to be
more of concern for the algorithm then the size of the objects.

0 200 400 600 800

0

100

200

300

number of issues

tim
e(

s)

chunk 20
no chunk

0 200 400 600 800 1,000 1,200

0

100

200

300

size received updates(kB)

tim
e(

s)

chunk 20
no chunk

Figure 5.16: Results of comparing chunking and non chunking with varying size of
data set

Discussion

For interpretation of the result we have to take into account the big variances in the data
gathered from the experiment. The browsers seems to have problems with delivering
constant values, but the average and the trimmed average of show a similar trend. The
conclusions from the experiment is that chunking has a positive effect on the time
needed for synchronization. On the other hand, the improvement is only a small part
of total time consumed.

More worrying is the scalability aspect, while considering some overhead in the
synchronization algorithm the time was still a lot higher than expected. Further inspec-
tion with the profiler shows that 98% of the time was spent in native browser code. In
the case of synchronizing objects can be reduced to the handling of webservices and
the usage of the local database. The webservice interaction should be limited and sim-
ple so the database querying is the most likely cause. Logging of the queries showed
a huge amount of queries for search purposes. Therefore, the experiment is repeated
with all the search annotations removed form the model. To show the effect of persist-
ing changes an additional test is added, which is executing a second synchronization
that contains no updates.

57

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

Results continued

The first experiment showed a general improvement of more than 50% in time reduc-
tion. The pattern found in the previous experiment is contradicted by the results of
this experiment, since the optimum was found in bigger chunk sizes and also reduced
the improvement in time to minimum amount as displayed in Figure 5.17. This ex-
periment indicates that most likely the chunking effect only has some value when the
search annotations are added.

0 20 40 60 80 100 120 140 160 180 200
20

20.2

20.4

20.6

20.8

21

21.2

21.4

chunk size

tim
e(

s)

Figure 5.17: Results of chunking data of webservices with constant data set and vary-
ing chunk size (removed search annotations)

The results gathered by increasing the size of the data sets only supports the indication
that the effect is minimal, since in general the chunked version seems to be slower or
equal to the normal version as displayed in Figure 5.18. The more surprising part is
that the reduction of time increases even more when data sets are bigger in size.
As stated before an additional experiment is added to find out what the overhead is
in the synchronization algorithm. The results in Figure 5.19 shows that less than a
second is required if no updates are encountered. The chunking effect is similar as in
the previous results of this section.

Discussion continued

The new results show big improvements in the form of speedup and contradict the
story of the effect of chunking. The second part where varying the size of data sets
encountered similar results and even changing chunk of 20 to different values did not
present any result to prefer chunking. Even with search enabled the improvement is
small and comes with a price of additional complexity for the algorithm.

58

5.5. Evaluation

0 200 400 600 800

0

20

40

60

80

number of issues

tim
e(

s)

chunk 20
no chunk

0 200 400 600 800 1,000 1,200

0

20

40

60

80

size received updates(kB)

tim
e(

s)

chunk 20
no chunk

Figure 5.18: Results of comparing chunking and non chunking with varying size of
data set (removed search annotations)

0 20 40 60 80 100 120 140 160 180 200

0.1

0.15

0.2

0.25

0.3

0.35

chunk size

tim
e(

s)

Figure 5.19: Results of chunking data of webservices (without updates) with constant
data set and varying chunk size (removed search annotations)

59

5. YELLOWGRASS MOBL

MOTIVATING EXAMPLE

The last plot displays that a small amount of resources is needed for synchroniza-
tion without updates and therefore we can conclude that the core of the algorithm is
just a small part of the total time spent for synchronization. The other time that is
needed in the synchronization is in serialize and persisting of updates and cannot be
reduced. The only way to limit the time is by reducing the size of updates.

In general the graphs do not show a signficant improvement when the data is chun-
ked. The full synchronization requires a considerable amount of time, while the in-
cremental updates prove to be more scalable. The most expensive part of the synchro-
nization seems to be in the underlying persisting of updates in the mobile application.
This is a restriction included with the choice of target language.

5.6 Summary

This chapter describes the process and the implementation of the motivating example
for a synchronization framework between web and mobile application. It is based on
YellowGrass, an existing web application for tracking issues. In the example a mobile
variant is created, which is based on data delivered by synchronization. Discovery and
solving of particular issues of synchronization is the goal, with consideration to reuse
solutions for the generative approach.

The architecture is described in the following viewpoints: Context (Section 5.3.1),
Decomposition (Section 5.3.2) and Control Flow (Section 5.3.3). The architecture
describes the general working of the YellowGrass Mobl application and in the im-
plementation details explain the interesting parts of the synchronization related code.
Containing a detailed description of the following topics: offline functionality (Sec-
tion 5.4.1), synchronization algorithm (Section 5.4.2) and the model to model mapping
(Section 5.4.3).

Finally, this chapter evaluates the motivating example and has the following short-
coming that needs to be improved for the final solution:

• The solution for finding updates on the server side delivers a considerable amount
overhead for the mobile client.

• The approach for data partitioning is incomplete.

• An additional component for heavy calculation like the Roadmap module is not
optimal fix.

• Lacking of robustness and security aspects.

• The choice for selecting Comment as representation for all sub types is not sat-
isfying for all purposes.

An experiment to test the effect of data chunking on webservices shows little too no
improvement with chunked data. The tests show some other interesting facts: Indexing
for search purposes in Mobl is really heavy on the synchronization process and the time
consumption is mainly in the update propagation.

60

Chapter 6

Architecture Design

The final goal for this thesis is a solution for data synchronization between web and
mobile applications, which requires a small amount of effort from the developer. In
the previous chapter we introduced the motivating example. This example is a mobile
application, which is a mobile application for the existing web application based on
data synchronization. However, a generative solution requires a different approach, it
has to find abstractions which are applicable to a wide range of web applications.

The total solution consists of an addition to the WebDSL compiler that generates
WebDSL and Mobl code which forms a data synchronization framework. This chapter
explains the architecture of the additional compiler components and generated code.
Implementation details of the solution are discussed in Chapter 7.

To give a good overview of the architecture of the solution, multiple viewpoints
are used. The viewpoints that are used in Section 5.3 will be extended to improve the
understanding of the solution. The context, Section 6.1, of the solution is described as
an overview of the system and it users to show how the solution fits into the picture.
Section 6.2 breaks down the software in components to describe its functionality for
each of the components. This is followed by a control flow, Section 6.3, to describe
the usage and internal relations of the components. The data external to the system is
explained in Section 6.4, which should give insight in the required information needed
for the solution. The last viewpoint is security and robustness in Section 6.5. This
viewpoint is added because they are important assets for web applications.

6.1 System Context

The context for this solution is similar to that of the motivating example presented in
Section 5.3.1. The difference in generated code can be found in the abstraction on
application level because instead of YellowGrass it applies to all sorts of WebDSL and
Mobl applications. The generative approach adds components to the context namely,
the compilers that are used for compilation of the applications. The system boundary
has moved away from the application to the compiler part because there is no influ-
ence on the specific applications that can use the tool for data synchronization. The
roles of the entities within the context are displayed in Figure 6.1 and explained in the
following part.

61

6. ARCHITECTURE DESIGN

S
erver

W
ebD

SL applicationG
enerated

synchronization

code

m
obl application sources

G
enerated

synchronization

code
O

riginal application

Application
user

PC

M
obile device

m
obl aplication

System
 boundary

O
riginal application

W
ebD

SL com
piler

Synchronization
addition

O
riginal com

pilerM
obl com

piler

O
riginal com

piler

Application developer

Application developer

Language developer

Language developer

Arrows display usage relations

Figure 6.1: Context diagram for generative solution

62

6.2. Decomposition

The direct users of the compiler extension are the application developers. Those
developers take an original WebDSL application and use the compiler extension to
generate code, the synchronization framework. The generated files are then used by
the developer to include them in the original WebDSL and Mobl application. The
compile result of the combined code for both applications are put on the server so they
are ready to be used.

The application user can use both the web as the mobile version to access the ap-
plication. The synchronization addition does not change anything for the user to the
original WebDSL application. However, the user can now also use the Mobl applica-
tion to access and modify the data. The synchronization allows the Mobl application
to request data and send modifications.

The system boundary shows the part, which this thesis shows the scoop of the
solution. The central part is the synchronization addition to the compiler, which de-
pends on modules from the original WebDSL and Mobl compiler. The output of this
addition, a set of generated WebDSL and Mobl files, is another important part of the
solution. Language developers are responsible for maintainance and development of
the compilers. This includes the additional module for synchronization and its output.

6.2 Decomposition

This section will state the decomposition of the generative solution. The decompo-
sition is separated in two parts that of the generated code (Section 6.2.1) and of the
compiler extension (Section 6.2.2). Both sections will describe its components and
their responsibilities within the system.

6.2.1 Generated code

The framework that is generated by the compiler extension is evolved out of the mo-
tivating example. There are application specific parameters for the generation, but the
general architecture is the same. It has a similar decomposition as presented in Sec-
tion 5.3.2 because it is guided by the motivating example. Components with equal
names are included in this solution. This does not imply the same responsibilities. An
overview of the decomposition is shown in Figure 6.2.

Webservices
The main point of the synchronization framework is focused in the webservices. The
synchronization and the core algorithm of the synchronization can be found in this
module.

The webservices component is the biggest component. We have chosen not to
separate those concerns because generated code does not concern the same demands
as manually written code. An advantage is that it improves and simplifies the control
on the level of webservices. The seven main services and functionalities are displayed
in Figure 6.3. The next paragraphs provided explanation of their responsibilities.

63

6. ARCHITECTURE DESIGN

Web services Related entitiesJSON mappers

Web service library

Simple viewsModel

Authentication Synchronization

Service calls

Generated
 WebDSL

code

Generated
mobl
code

Access control

Arrows display dependency relations

Figure 6.2: Decomposition diagram for generated code of the generative solution

Web services

Front-end

TimestampSend Updates Persist
Modifications Authentication

Detect and
Resolve

 Inconcistencies

Input Checking

Services

Arrows display dependency relations

Figure 6.3: Decomposition diagram for web services component

64

6.2. Decomposition

Front-end

The front-end of the webservices is an entry point to provide a general interface for
webservices, which consists of registration, dispatching and basic error handling of
services. The front-end can use the normal service names without name conflicts with
existing web pages.

Send Updates

One of the activities of synchronization is the handling of updates. The component in-
cludes for each Entity a service that finds and sends updates based on the combination
of, the timestamp of the last request and the partition identifiers.

Persist Modifications

The mobile application sends their modifications to the server in two forms: new and
edited objects. Those updates are applied to the database when they do not create
inconsistencies in the database.

Input Checking

The webservices are open for any form of JSON input. However, the services require
specific formats and those are not checked on calling. The webservice module checks
for every use of the JSON object if the parameter is available and contains the correct
type. When this is not the case, the services will contineu to the next step and return
an error. The entity specific input checking is handled by the mappers.

Detect and Resolve Inconsistencies

Detection of inconsistencies is done at the level of webservices. Before applying up-
dates it checks if the object is out of date, and after the modifications the object is
checked if it does still comply to the validation rules of the model. When some incon-
sistency is discovered during the process, a rollback is triggered so that the database
stays correct.

Authentication

The authentication consists of simple services that have to be available for access con-
trol on synchronization. It provides registration and (de)authentication for users of
mobile devices.

Timestamp

The updates require for an incremental approach a timestamp to define the last syn-
chronization. The time on mobile devices cannot be used, since they could be different
from the one used by the server. This difference is caused by manual setting of time
or use of different timezone. To solve the problem, the component offers a request for
current timestamp on the server.

65

6. ARCHITECTURE DESIGN

Webservice Library
The module in the mobile part separates the synchronization and webservices. This
module makes webservices available to the Mobl application. It maps the parameters
to the right format and sends the request to the webservices. When the service returns it
is passed to the specified mapper to handle the result. The mappers are included in this
module, since the motivating example shows that the services are highly dependent on
the mappers and are very small and simple.

Synchronization
This is the core of the synchronization in the mobile application. Most of the synchro-
nization algorithm is calculated on the server. Nevertheless, the mobile application
is responsible for delivering the correct input for the algorithm. This component is
focused on integration and usability for the application developer. It delivers some
integration functions so that synchronization can be minimized to a few function calls.
It also delivers some views that can be used to display status from the synchronization,
or for selecting topLevelEntities.

JSON mappers
The mappers have the responsibility to map objects to JSON format, to be serialized for
the webservices. The serialize mappers are equal to those described in Section 5.3.2,
which are split up in a minimal, simple and full version.

The modification mappers have to deal with two variants: modification and cre-
ation of objects. The synchronization algorithm takes care of this difference and makes
it possible that the same mapper can be used for both instances. As stated before an
additional responsibility for the mappers is to check if the JSON objects are in the
correct format for that entity and return errors and warnings when encountered.

Related Entities
For the improvement of bandwidth and computation for the mobile devices, the syn-
chronization algorithm has chosen another approach, where the objects requested are
not added as parameter. This has as consequence that a different approach is needed
to calculate the objects that are part of a partition. This component is responsible for
calculating for each entity which objects are in the partition of a given object.

Model
The model is a simple component and has no real functionality. However, it is a impor-
tant part of the synchronization framework. This component defines the persistent data
model and is used throughout the whole mobile application. This includes the basis
of the synchronization framework by enabling libraries for data access and mapping
functions.

Access Control
The data of the web application should be secure. This requires an additional layer in
the framework to restrict data access based on user information. The access control on
the synchronization algorithm cannot be applied on the level of services because user
access to objects depends on the requested data. This component specifies for every
entity functions which can be used to check if a user is allowed to read, write or create
an object.
66

6.2. Decomposition

Authentication
The access control requires authentication of users, but it can also be useful for other
mobile application functionality. This component delivers an interface for the devel-
oper to use authentication within the mobile application. The component uses the
credentials to register the device and stores the registration result to authenticate the
device in the future, without requiring credentials. In case of deauthentication or denial
of authentication the component is responsible for removing all local data to prevent
data leakage.

Simple Views
At development of the motivating example, I discovered that a big part of the devel-
opment time is in the GUI part of the application. This part of the application is not
a required part for the synchronization. For this reason, the final solution includes a
simple GUI to enable simple testing of the synchronization.

Normally views are highly dependent on the application and do not allow abstrac-
tion. The solution we used in this thesis for this problem is to generate a data browser.
It enables the user to browse through the data by clicking on properties and modify
simple property with basic types. The views are not meant for the final version of the
application because it enables users to modify all data without restrictions.

Modified versions of those views are used as default to show the related object of
synchronization errors. This is done to improve usability by showing users the objects
instead of the identifiers. It is most likely that the end application prefers another
approach of showing errors.

Next to the components of the generated code that are described in this section
there are components in the compiler those will be described in the next section.

6.2.2 Compiler extension

The compiler extension is an additional set of components that are added to the com-
piler of WebDSL. The decomposition is based on the decomposition of the generated
code and each part is responsible for generation of the similar named component.
Those components are displayed in Figure 6.4. The diagram shows two outstanding
particularities compared to the previous diagram.

The first characteristic is that this diagram has a low number of dependencies. The
generation has a low-level of dependencies, since in general it gathers all required
information from the source analysis that is part of the original compiler. This means
that each of the components is independent of the information that is delivered by the
other components of the extension.

The second difference is that some of the components are separated into smaller
components, this has to do with the fact that some of the generated components are
bigger and has several main responsibilities, those responsibilities are separated in the
compiler by subcomponents.

67

6. ARCHITECTURE DESIGN

Related entities

WebDSL
 Generation

Access control

Web Services

Web service
interface

Authentication
services

Sync
services

Mappers

To JSON mapperUpdate mappers

Web Services

MappersWeb service
interface

Simple views

Model2Model

Authentication

Synchronization

ViewsIntegration functions

Mobl
 Generation

Arrows display dependency relations

Figure 6.4: Decomposition diagram for compiler extension of the generative solution

6.3 Control Flow

The previous section introduces the components of the system and its dependencies.
The control flow is meant to give a better impression of the execution and order of the
system. This section also separates the two parts because they are executed indepen-
dently from each other and therefore do not influence the execution order of the other
code.

6.3.1 Generated Code

The generated code is evolved from the structure of the motivating example. There-
fore, the code has a similar execution to that of Section 5.3.3. The abstraction that
is applied does not influence that general flow, namely: authentication, get and select
partitions and synchronization. The last step is a repeated process to send modifica-
tions and update the local data. The control flow of the generated code is displayed in
Figure 6.5 and shows a simplification on the Mobl side. This is caused by the fact that
the application workflow itself is unknown for the synchronization framework.

68

6.3. Control Flow

Authentication/
Synchronization Web services JSON mappers Access Control

mobl application
authenticate/

register device

return

authenticate/
register device

return

[authenticate/register device]

return

getTopLevelEntities

return

getTopLevelEntities

return

return

mayViewgetTopLevelEntities

synchronize

return

getTimeStamp

WebDSL/mobl border

Related entitesWeb service
library

return

toJSON

return

sendNewObjects

return

return

mayCreate

return

toWebDSL

sendModifications

return

return

mayModify

return

toWebdsl

getUpdatesEntity+

return

return

getRelatedObjects

toJSON

return

mayView

return

[showErrors]

[continue]

[showErrors]

[continue]

getTimeStamp

return

sendNewObjects

return

return

return

return

sendModifications

getUpdatesEntity

[] = optional, / = or , + = multiple times

Figure 6.5: Sequence diagram for the generated code of the generative approach

Authentication and Select Partitions

Authentication and selection of partitions are not really changed compared to that of
the motivating example. The only considerable change is the allowance of multiple
entities to represent a partition although this does not change the execution process.
The difference that can be found in the sequence diagram is caused by applied abstrac-
tions and the change of responsibilities for each of the components. The only addition
is that access control adds a check on objects to verify if objects are allowed to be sent.

69

6. ARCHITECTURE DESIGN

Synchronization

The synchronization process has changed considerably by the modifications to the
algorithm and therefore this paragraph will be more elaborated. The synchronization
process has been split into: get timestamp, send new objects, send modified objects
and request updates.

Firstly, a simple server request to get a timestamp from the server is needed to
update the local timestamp of last synchronization. This is requested from the server
to have a guaranteed correct and equal time range for next synchronization. The time
of the mobile devices should not be used because the timezone can be different and
can be modified by the user.

The sending of new objects, requires all new objects which are mapped to JSON so
that the can be sent to WebDSL. On the WebDSL side the objects are checked on access
control to verify that the user is allowed to create the object. When this is the case
the objects are mapped to WebDSL objects and without inconsistencies are persisted
to the database. Errors and warnings occurred in this process are returned to Mobl
application, where they are possibly shown to the user to interact before continuing
the synchronization process. The step of sending modifications is similar to this step.

The last step requires updates from the server, which is done separately for each
entity. All identifiers of selected partitions with a timestamp of previous synchroniza-
tion are send from the Mobl application. The identifiers are used to find all related
entities for the partitions. After checking whether the objects are changed and allowed
to propagate, the objects are transformed and returned to Mobl.

6.3.2 Compiler extension

The control flow within a compiler is different from normal applications. The exten-
sion to the compiler cannot be seen separately from the compiler. The process within
the compiler can be interpreted as a pipeline of actions that are executed on the source
to produce an executable. A simplified overview of the pipeline in the WebDSL com-
piler is displayed in Figure 6.6. More information on the execution order and pipeline
of WebDSL are described in the paper ”Code generation by model transformation: a
case study in transformation modularity” [20]. The next part will explain step for step
the working of the pipeline.

The input source files delivered to the compiler are first parsed, which delivers an
Abstract Syntax Tree (AST). This tree is first normalized to remove redundant syntax
forms. This makes the input ready for type and name analysis. This analysis consists
of declaring information, renaming to unique names and complete check of type cor-
rectness. After the first analysis, there is a stage to check for extra constraints. This
allows additional checks related to domain and language knowledge. When no errors
are encountered the AST is transformed to elements of the core language. This step is
called desugaring and is meant to simplify the code generation. The code generation
consists of two steps. Firstly, model to model transformation, which transforms the
tree with core elements to elements of the target language Java. Secondly writing the
Java AST to files.

70

6.4. Information Architecture

Parse Normalize

Declare

Rename

Type-check

Constraints

Desugar Model
Transformation

Write to
File

Source

Target
Executable

Code Generation

Name/Type analyze

Figure 6.6: A schematic display of the WebDSL compiler pipeline

The compiler extension for synchronization is a code generation part and is added in
the end of the pipeline. The additional syntax that was needed for the synchronization
is added in the original compiler and required some additions in the other stages. The
execution order shows the reason for the low number of dependencies, since the infor-
mation used is already gathered in the previous stages. The implementation requires
and specifies an order in the execution. Nevertheless, this order can be changed to any
order of execution of the components.

This section wraps up the details of the working of the final solution more details
will be explained in the next chapter. The following section will describe the external
data used by the framework.

6.4 Information Architecture

The information architecture is meant to give insight in the information that is required
by the solution. There is a high amount of internal passing of information on param-
eters, but often this is straightforward passing of objects. This section focuses on the
data that is shared with external sources.

6.4.1 Generated Framework

The generated code of WebDSL and Mobl communicates through webservices. When
looking at the level of the framework the communication is internal. However, the
webservices are open to be used by other remote applications. WebDSL should not
act different between the generated Mobl application or other applications that access
the services. That means that both using the same API and the services should be
considered external information. It is interesting for understanding the algorithm and
possible developers for remote applications to see what parameters are required and
what data is returned by the webservices.

71

6. ARCHITECTURE DESIGN

There are eight sort of services with different purposes as described in Table 6.7.
The services all return an error and result, which makes it possible to have result and
error messages for the same request. This gives the services the possibility to return
information about the process in addition to the result, which can be useful for the
remote application actions.

The input and output for each of the services is given in Table 6.8. The services
often require more complex structures to communicate, those types are explained in
Appendix A

Service Description

Register Device Allows the user to register device with user credentials

Authenticate Device Enables to authenticate device with devicekey

Logout Logs out current device for the user

Get TopLevelEntities Returns a list of all objects corresponding to a partition

Get Timestamp Returns a timestamp of the current time on the server

Send New Objects Enables creation of new objects for remote devices

Send Modified Objects Enables modification of objects for remote devices

Get Updates Entity Returns list of changed objects from given partitions

Table 6.7: List of webservices with corresponding description of functionality

Service Parameter Result Error

Register Device UserCredentials DeviceKey String*

Authenticate Device DeviceCredentials Boolean String*

Logout {} Boolean String*

Get TopLevelEntities {} EntityListObject* String*

Get Timestamp {} Long String*

Send New Objects EntityListObject* {} [ErrorObject,
String]*

Send Modified Objects EntityListObject* {} [ErrorObject,
String]*

Get Updates Entity PartitionListObject EntityObject* String*

{} = empty object, * = zero or more , [] = grouping

Table 6.8: The webservice interface specifications of the generated code

72

6.4. Information Architecture

6.4.2 Compiler Extension

The compiler uses different information than that of the generated code. This is be-
cause the generation is based on information of the source code that is available in
the compiler (Section 6.3.2). The information it uses is restricted mostly to the data
model. The information gathered from the original compiler is described in the fol-
lowing paragraphs.

Entities
Entities are used as core information of WebDSL applications. They are used to de-
scribe the data model of an application. Figure 6.9 shows an example of such an entity.
This entity contains a list of properties, but it can contain also other code like functions.
The information that is required for the generation of the synchronization framework
is the name of the entity and the properties it contains.

entity Project {
title :: String (search)
description :: WikiText
owner -> Person (inverse=Person.projects)

}

Figure 6.9: Example of an entity in WebDSL

Properties
The properties are part of an entity and contain its own information. The basic infor-
mation of a property is its name and type. It is possible to add additional information
to the properties with annotations. Figure 6.9 shows the additional annotations search
and inverse relation. The model-to-model transformation tries to reuse this information
for the generated Mobl model.

Hierarchy Information
The data model of WebDSL can contain additional information, that of the inheritance
hierarchy of entities. An entity can define a relation of a parent entity. As example a
user can be a specialized form of person, which is shown in Figure 6.10. This relation
means that the child entities inherits the properties of his parent.

entity Person {
firstName :: String
lastName :: String
fullName :: String
projects -> Set<Project>

}

entity User:Person {
username :: String
password :: Secret

}

Figure 6.10: Example of inheritance in data model of WebDSL

73

6. ARCHITECTURE DESIGN

Security Information
The synchronization framework contains an addition to the original authentication
code. To extend this functionality it requires the entity with the properties that are
used for authenticating a user. Figure 6.11 shows an example of code that is used in a
WebDSL application to define the principal information. This line enables authentica-
tion and access control for the WebDSL application.

principal is User with credentials username, password

Figure 6.11: Example of principal declaration in WebDSL

Type Information
The last part of information required from the compiler is type information. This in-
cludes the types of the properties, but also of expressions. The type information is
mainly used for map WebDSL to Mobl types.

This concludes the information that is used from the original compiler for the code
generation. However, there is additional information required for the generation.

DSL Addition

The information required of WebDSL applications requires an addition to the syntax.
However, this addition needs to be inline with the design choices made in WebDSL.
This requires that the addition is separated from the other DSLs to keep the separa-
tion of concerns. Another important aspect is that try to make the DSL as formal as
possible.

This paragraph covers the additional syntax elements added. Those elements are
explained with an example. Additionally, an explanation is given of what information
it contains and where it is used for.

entity Project {
title :: String (search)
description :: WikiText
owner -> Person (inverse=Person.projects)

synchronization configuration {

}
}

Figure 6.12: Example of synchronization configuration declaration

Main Declaration
The DSL contains a main entry to separate the synchronization code from the rest of
the application code. An example of this is given in Figure 6.12. It shows an additional
code part in the entity. We have chosen to add this to the entity body because all
the required information is entity based. The syntax itself does not modify the code
generation so it only needs to be added for specifying one of the options.

74

6.4. Information Architecture

TopLevel Entity
The synchronization framework uses object relations for data partitions. Objects are
used to represent data partitions. This requires from the user or developer to select a
subset of objects to be partitions. This selection is done on entity basis. An entity can
be selected to be a toplevel node for data partitioning. Figure 6.13 shows an example
of such a declaration. This example displays that the toplevel entity requires a string
property to represent data partitions. In the example we chose title as name property
because it is a short, unique and effective description of the object. We have chosen
to enforce this name property for the usability of the synchronization framework as
end users. Selection of partitions by a meaningful string is prefered over the usage
of UUIDs. In the framework it uses the UUID of the object to prevent conflicts by
changing the title.

entity Project {
title :: String (search)
description :: WikiText
owner -> Person (inverse=Person.projects)

synchronization configuration {
toplevel name property : title

}
}

Figure 6.13: Example of toplevel entity declaration in synchronization configuration

entity Person {
firstName :: String
lastName :: String
fullName :: String
projects -> Set<Project>

synchronization configuration {
restricted properties : firstName, lastName

}
}

Figure 6.14: Example of restricted properties declaration in synchronization configu-
ration

Property Restriction
The synchronization framework allows modification on the model to simplify the
model on mobile application. This simplification must be selected by the developer
to restrict the data model on entity basis. The configuration allows restriction on own
properties only. The example in Figure 6.14 displays that the properties firstName and
lastName are removed from the model on mobile side. Recommended is to remove
properties from the model if they are not used for the mobile application. A possi-
ble choice is duplication of information like in the example, which also contains the
fullName.

75

6. ARCHITECTURE DESIGN

Security Rules
The framework has added support for access control, which will be explained in the
next section. The basic concept is that a developer can define rules to restrict data
access based on the user. Since it is based on the current user, the application should
have declared a principal. This is done on object level. There are three different levels:
read, write and create. The developer has to specify a boolean expression for each of
those levels. Figure 6.15 shows an extension to the earlier example of the project entity.
The added rules specify that that everybody can read the data. However, modifying the
project object can only be done by the project owner. The restriction for creation of
objects is that the user at least has to be logged in.

entity Project {
title :: String (search)
description :: WikiText
owner -> Person (inverse=Person.projects)

synchronization configuration {
toplevel name property : title
access read: true
access write: currentPrincipal() == owner
access create: isLoggedIn()

}
}

Figure 6.15: Example of security rules declaration in synchronization configuration

This is concludes the DSL that is added to WebDSL, to provide the addition required
information. The next section will state the security and robustness details of the
framework.

6.5 Security and Robustness

Security and robustness are important factors for web systems, which in the motivating
example did not have too much priority. This section explains what principles are
applied to improve both aspects for the generated code. The aspects are to a certain
extent also important for the compiler. However, the code does not influence those
aspects at the level of architecture.

6.5.1 Security

In the case of the synchronization (in general also for web applications), security is
focused on data. This is mostly protection against data leaking and prevention of
unwanted modifications in the database. The first step in securing is the limitation of
the model so that information like passwords are never shared. To further reduce the
data leaking, every object can have an access control rule that specifies if an object
may be synchronized by that user. Extra levels are added for creation and modification
so that there is also protection for the database. This measure is totally dependent
on the developer specifying correct rules. Another measure to protect the database

76

6.6. Summary

is delivered by WebDSL, when only setting properties of objects, SQL injections are
prevented.

Additional security is added to authentication process by using devicekeys instead
of storing the user password. This allows the device to log in automatically with-
out storing password of the user. The user can deregister the device if it is seized,
preventing other people from misusing the application. Deauthentication notices by
the authentication module will lead to resetting the local database. An extra security
layer can be added for the webservices by accessing the application through HTTPS.
However, this is not forced and should be manually enabled for web applications.

6.5.2 Robustness

Robustness is basically the code taking care of unexpected input without making the
system unstable. The security measurements already reduces the changes of unex-
pected input by restricting users. Nevertheless, it is true that even trusted users could
apply unexpected modifications to objects. The unknown remote applications using
the webservices are even more free on their input.

The most important measure is taken by checking all JSON input on availability
and correct type of the parameter before it is used. Additional to this check are the
validation rules applied on objects, those are checked before persisting the changes to
the database. This prevents inconsistent data which could lead to unwanted behavior
of the system.

Another possibility to get unstable systems is delivered by concurrency in the sys-
tem. This is not the case in the solution, since all the service calls are executed in
separate threads and do not interact with other system functionality. This gives as ad-
vantage that wrong services calls are isolated from the rest, making it impossible to
damage other processes.

There is no possibility that the algorithm shows unexpected behavior, since the
synchronization framework has no functionality for suspicious code to be executed.
The algorithm is of course dependent on the input of the services. Although it cannot
create never-ending loops.

6.6 Summary

This chapter introduces the final solution, a generative approach for synchronization
between web and mobile applications, by describing the architecture of the system
on the hand of the following viewpoints: Context (Section 6.1), Decomposition (Sec-
tion 6.2), Control Flow (Section 6.3), Information Architecture (Section 6.4), and Se-
curity and Robustness (Section 6.5).

The context gives an overview of the system as displayed in Figure 6.1, which is
a generalization of the motivating example plus an addition of the compilers that are
used for the code generation.

Decomposition of the generated code as displayed in Figure 6.2 has the motivating
example as starting point and therefore it has similar components. However, some
of the responsibilities have changed. The compiler extension is basically a one to one
mapping for every component of generated code, it has a component that is responsible

77

6. ARCHITECTURE DESIGN

for generating the equally named component. Figure 6.4 shows that the components
in the compiler have almost no dependencies.

The reason for the low number of dependencies can be found in the fact that the
pipeline of the WebDSL compiler (Figure 6.6) delivers decoupling of stages. The exe-
cution of the compiler extension finds place in the last stage namely, code generation.
The control flow of the generated code (Figure 6.5) is in general the same to that of
the YellowGrass Mobl. The biggest difference is caused by the modifications in the
synchronization algorithm.

The information flow is more interesting on the level of communication with ex-
ternal systems. In the case of the generated code this is done through webservices.
The webservices interfaces are summarized in Table 6.8 and Table A.1. The code gen-
eration requires information from the source code. For customization of the generated
framework addition information was needed and is delivered by an extension of the
language.

Security and Robustness are two important non-functional aspects for web sys-
tems. Specialized access control for objects verifying the input are the most substantial
additions in the generated code to support both aspects. The next chapter will go into
more details of the solutions and explains interesting implementation properties of the
solution.

78

Chapter 7

Implementation

The previous chapter introduced the generative approach to data synchronization for
web and mobile applications, by explaining the architecture from several viewpoints.
This chapter focuses on the interesting details of the implemented and generated code
of this thesis solution.

The generated code is a product from the compiler extension code. That makes it
a separate process as discussed in the previous chapter. For that reason this chapter
will use the separation between runtime and generation to discuss the implementation
details in Section 7.1 and Section 7.2.

The solutions described in Chapter 5 and 6 plus the first part of this chapter is
focused on general solution that is non-specific to the target languages WebDSL and
Mobl. The second goal of this chapter is to explain some target language specific
difficulties that needed to be solved to get the synchronization framework working
(Section 7.3).

7.1 Generated Code

The motivating example was a starting point for the generated code. Nevertheless,
some of the modifications are thorough and change how the code works. A big part
of the implementation is a straightforward translation of the functionality described
in the architecture design (Chapter 6). The more complicated implementations are
found in the following functionality: Synchronization (Section 7.1.1), Related entities
(Section 7.1.2) and Simple views (Section 7.1.3).

7.1.1 Synchronization

The main functionality for the generated framework is synchronization. It has to deal
with several aspects that all have to be integrated into the synchronization algorithm.
The algorithm has changed to reduce computation and bandwidth on the mobile de-
vices. The pseudocode of the synchronization steps can be found in Appendix B

An example of the synchronization is displayed in Figure 7.1. This example shows
first full synchronization cycle. The mobile application first requests all the partitions,
this makes it possible to select one for next step by setting the true flag. After that the
timestamp is requested for later purposes. The next two steps represent the request of

79

7. IMPLEMENTATION

all data objects for the selected data partition. The last step is to modify the lastSync
property of the partition with the timestamp requested earlier. The rest of this section
will explain each of the steps of the synchronization activities for both server and client
side.

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync id Name

Project Person

getTopLevelEntities

[Project : {1,p1}{2,p2}]

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync

1 p1 false 0

2 p2 false 0

id Name

Project Person

select partition p1

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync

1 p1 true 0

2 p2 false 0

id Name

Project Person

getTimeStamp

{12345}

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync

1 p1 true 0

2 p2 false 0

id Name

Project Person

getProject
{Project: {1,0}}

[{1,p1,[3,4]}]

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync

1 p1 3,4 true 0

2 p2 false 0

id Name

Project Person

getPerson
{Project: {1,0}}

[{3,ps3},{4,ps4}]

id Name Members

1 p1 3,4

2 p2 4,5

id Name

3 ps3

4 ps4

5 ps5

Project Person

id Name Members Sync LastSync

1 p1 3,4 true 12345

2 p2 false 0

id Name

3 ps3

4 ps4

Project Person

green = modified data, orange = second modification

Figure 7.1: Example of a synchronization with a clean mobile application

80

7.1. Generated Code

Identification of Updates

The first step of synchronization is identification of updates. In the improved synchro-
nization algorithm we have chosen to for a new separation in the process. It is split
up in first synchronizing the updates from the mobile client to the server. After that
synchronizing the updates from the server to the mobile device.

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 1234 false true

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

6 ps6 false true

Project Person

sendNewObjects
{Person:[{6,ps6}]}

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

6 ps6 2200

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 1234 false true

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

6 ps6 false true

Project Person

sendModifiedObjects
{Project:[{1,p1,[3,4,6]}]}

id Name Members Modified

1 p1 3,4,6 2210

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

6 ps6 2200

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

6 ps6 false false

Project Person

green = modified data, orange = second modification

Figure 7.2: Example of a synchronization with a changed data in the mobile applica-
tion

The algorithm for update identification in Mobl splits synchronization of new and
modified objects and does not require a list of objects that have to be synchronized.
The new function queries for each entity in the data model if instances of that entity
are new by checking if the created flag is set and then put those objects in a list.
Discovering of new objects functionality is displayed as second step inFigure 7.2 and.
The two additional fields new and edit are used to check for modified and created
objects.

The server side identification got more complicated because it gets a list of parti-
tions instead of all objects that are requested. Each entity in the data model has a sepa-
rate function that returns the related objects of the given partitions. For each TopLevel
object it finds all the objects of the entity type in a partition, which is explained more
elaborated in Section 7.1.2.

A last check is added to filter out the objects that are not changed after the previous
synchronization. This can be done by comparing the timestamp it gets from the request
and the last modified timestamp of the object. As you can see in the second and third
step of Figure 7.3. The time in modified field is higher than that of the timestamp from
the request. 81

7. IMPLEMENTATION

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

id Name Members Modified

1 p1 3,4,6 1500

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

6 ps6 1500

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

getProject
{p1,1234}

[{1,p1,[3,4,6]}]

id Name Members Modified

1 p1 3,4,6 1500

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

6 ps6 1500

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

getPerson
{p1,1234}

[{6,ps6}]

id Name Members Modified

1 p1 3,4,6 1500

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

6 ps6 1500

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 2000 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

6 ps6 false false

Project Person

green = modified data

Figure 7.3: Example of a synchronization with a changed data in the web application

Propagation of Updates

The second step, the propagation of updates, can be separated in two main activities:
sending the updates, and converting and persisting the updates to local values. A
simplified approach would be to map the updates to JSON and send them over. The
receiving side would get the JSON and map them to the local values in the database.

For the mobile application the function is reduced to those simple steps. The syn-
chronization function first sends the new objects, then the modified objects, as rep-
resented in second and third step of Figure 7.2. This can be followed by an update
request for every entity, which are mapped and persisted locally, which is displayed
from step two in Figure 7.3. An explanation of the overall synchronization process is
described in Section 6.3.1.

The synchronization process is driven by the mobile application, which has sepa-
rated the synchronization algorithm in three stages. This required the following three
features on the side of WebDSL: processing modifications, processing creations and
propagation of local updates.

The processing of modified objects is implemented as follows: Finding the correct
type for each of the objects. Based on the type and the id of the object, it can load the
local object. The object is then used to map and apply changes that are specified by
the input. This mapping is done by the editmapper that is generated for every Entity.

The creation of objects is similar to that of modifying objects. However, it is
possible that several new objects are created that refer to each other. This situation
could create errors on applying updates therefore an extra step is added. The additional
code creates all the objects before the properties are set.
82

7.1. Generated Code

Detection and Resolution of Inconsistencies

The last part contains detection and resolution, which are integration tasks. Detection
is done in entity bound functions. This information is gathered in a global synchro-
nization algorithm function. With this approach it can decide and take action based
on the errors. The main goal is maintaining an error free database on the server. The
generated framework also implements some functionality to prevent inconsistencies in
the database on the mobile application.

Detection
The detection of inconsistencies is often done in entity bound functions because there
is information available to verify whether there are inconsistencies within the updates.
This causes that the detection is spread throughout the generated code in several ele-
ments. For the server application, detection is done by three different checks: outdated
updates, validation rules and additional mapper input checks.

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

id Name Members Modified

1 p1' 3,4 1500

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4,6 true 1234 false true

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

sendModifiedObjects
{Project:[{1,p1,[3,4,6]}]}

{id:1 error: out of date
restore: {1.p1',[3,4]]}}

id Name Members Modified

1 p1' 3,4 1500

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1' 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

green = modified data, orange = second modification

Figure 7.4: Example of synchronization with conflicting changed objects

A conflict with changed object on both sides is shown in Figure 7.4. The algorithm
checks if the local object is not changed after the previous synchronization. This is
done by comparing the version number of the local object and the update. This is
shown in Figure 7.5. The update is only applied when the version is greater or equal
to the local object, otherwise an error is returned.

The validation of objects is functionality that is created by the WebDSL compiler
based on the rules specified on the entity. It consists of a method call that validates the
object and returns a list of errors for violated rules. The returned errors are added to a
list of errors for the object. The last step is implemented by additional checks on the
mapping of the objects and consists of additional type input checks. The mapper can
be overwritten for adaptation purposes, which means it allows the developer to add
other checks on the input.

83

7. IMPLEMENTATION

1:Project

name= p1
Members = [3,4]
version = 5

WebDSL

1:Project

name= p1
Members = [3,4,6]
version = 5

Mobl

1:Project

name= p1
Members = [3,4,6]
version = 6

(a) No conflict

1:Project

name= p1'
Members = [3,4]
version = 6

WebDSL

1:Project

name= p1
Members = [3,4,6]
version = 5

Mobl

1:Project

name= p1'
Members = [3,4]
version = 6

(b) Outdated object

green = correct update, red = incorrect update

Figure 7.5: Example situations conflict detection and resolution for objects

The detection of inconsistencies with new objects is similar to that of modified objects,
but there is no possibility that a new object is out of date. An example of this is shown
in Figure 7.6.

The mobile application does not have its own functionality to detect inconsisten-
cies because local changes are sent and checked by the server. The possible inconsis-
tencies are found in the step that propagates the updates. For detection of incorrect
objects it uses the errors based on updates returned from the server.

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

7 p1 true 0 false true

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

sendNewObjects
{Project:[{7,p1,[]}]}

validation:
non unique name
access control:
user not allowedid Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

7 p1 true 0 false true

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

{id:7 errors:
[non unique name,
user not allowed]}

id Name Members Modified

1 p1 3,4 1000

2 p2 4,5 1200

id Name Modified

3 ps3 1100

4 ps4 1050

5 ps5 1150

Project Person

id Name Members Sync LastSync New Edit

1 p1 3,4 true 1234 false false

2 p2 false 0 false false

id Name New Edit

3 ps3 false false

4 ps4 false false

Project Person

green = modified data, red = deleted data

Figure 7.6: Example of synchronization with conflicting new objects

84

7.1. Generated Code

Resolution

The resolution of problems often depends on the source. The solution used in this
thesis is to have a high-level approach for resolution. This gives the opportunity to
keep the process simple and have the responsibility of the resolution in one place.

The resolution of outdated objects is not needed, since it is detected before apply-
ing the changes, see Figure 7.7b. This is possible because the version can be checked
before applying changes. The checking of correctness for objects might depend on a
multiple fields of an object. Therefore, we have chosen to use rollback functionality
of the database transactions, which cancels out the changes after they are applied to
the object. The new transaction for every object makes it possible that only updates of
the current object are not applied. The example in Figure 7.7c displays this situation.
The modifications to new objects is similar to those applied for modified objects. Al-
though an additional step is needed for new objects, which is deleting the object from
the database to prevent ghost objects. This is shown in the last part of Figure 7.7.

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

Project

1:Project

name = p1
members= [3,4,6]
version = 5

id Name Members Version

1 p1 3,4,6 6

2 p2 4,5 8

Project

Before
AfterUpdate

5 >= 5

(a) No conflict

id Name Members Version

1 p1' 3,4 6

2 p2 4,5 8

Project

1:Project

name = p1
members= [3,4,6]
version = 5

id Name Members Version

1 p1' 3,4 6

2 p2 4,5 8

Project

Before
AfterUpdate

5 < 6

(b) Outdated object

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

Project

1:Project

name =
members= [3,4]
version = 5

Project

Before
AfterUpdate

id Name Members Version

1 3,4,6 6

2 p2 4,5 8

Validation: Empty name not allowed

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

Apply

Rollback

(c) Incorrect modification

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

Project

9:Project

name =
members= [3,4]
version = 0

Project

Before
AfterUpdate

Validation: Empty name not allowed

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

Create

Delete

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

9

Apply

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

9 3,4 1

id Name Members Version

1 p1 3,4 5

2 p2 4,5 8

9

Rollback

(d) Incorrect creation

green = correct update, red = deleted data

Figure 7.7: Example situations conflict resolution for updates in web application

The mobile application did not need functionality for detection of errors. However, the
errors can influence the incorrectness of the local database. After propagation of new
and modified objects, it is possible to interact with the local data based on the errors.
It is needed to clean up the local database before continuing synchronization.

85

7. IMPLEMENTATION

The cleanup is integrated within the general mobile application synchronization
function. Both modifications and creation have a similar approach: first clearing the
flags of the correct objects to prevent that correct updates are applied multiple times.
Followed by the possibility for the application to interact with local data. This gives the
possibility to fix incorrect objects and retry the synchronization. When continuing the
synchronization the algorithm assumes that the errors are approved so that the invalid
changes can be rejected and restored to a correct state.

The first step is to select all objects which have a flag for modified or created. The
difference of new and modified can be found in the way to resolve the inconsisten-
cies. New objects are simply deleted from the database as displayed in the last step
of Figure 7.6. The modified objects are restored to valid state given by the server and
changing the dirty flag to false. This is shown in step three and four of Figure 7.4.

Access control

An addition to the synchronization algorithm is access control, customized rights for
objects based on the current principal. Figure 7.6 displays an example where the access
control is triggered, which restricts the user from creating the object. The integration
is to check the specified rules for each modified object but also for each object that is
propagated to the mobile application. The difference is that for the creation check a
static function is used. This is done because at the moment of creation there are no
values that can be used to authenticate the user. Both creations and modifications are
checked before applying the updates to prevent bypassing of security rules.

7.1.2 Related Entities

The previous section explained the core of synchronization however, data partitioning
is needed to make synchronization scalable for good usability. In the final solution
we have chosen to use a version based on the idea used in the motivating example.
The idea used in the example is to have Toplevel objects which could be selected and
then request all objects that are linked to the object by properties recursively. In Mobl
this is simply tracked by the local database, since only objects that are related are
stored locally. To improve the synchronization for the mobile devices this calculation
is moved to the server. This requires a different approach for the calculation of related
entities.

Figure 7.8 shows an example execution of the idea behind the calculation of related
entities. A Toplevel object is chosen to start and puts all objects linked by outgoing
edges in the result and queue. While the queue is not empty it takes an object and
adds the related entities of that object into the queue en result if they are not already
discovered.

The serialization in code of this approach is a straightforward transformation of the
described steps in the previous paragraph. However, the synchronization framework
requires some tweaking to make it usable in the current framework. The implementa-
tion of the algorithm is shown in Figure B.8.

86

7.1. Generated Code

Project
P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {}
Result = {1} Project

P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {3,4}
Result = {1,2,3,4}

Project
P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {4,6}
Result = {1,2,3,4,6} Project

P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {6}
Result = {1,2,3,4,6}

Project
P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {7}
Result = {1,2,3,4,6,7}

Project
P1

Issue
I2

Tag
T7

Tag
T6

Issue
I5

Issue
I4

Issue
I3

Queue = {}
Result = {1,2,3,4,6,7}

green = included entity, yellow = new related entity, bold line = selected object

Figure 7.8: Visual representation of the calculation for related entities

7.1.3 Simple views

The simple views display data through GUI and allows browsing to other objects by
clicking on properties. The properties with simple types are easy to display by using
standard input fields as displayed in Figure 7.9a. Similar approach could be used for
properties with entity type. This would mean that a ’inputField’ template has to be
generated for each entity and the same for the collection view (Figure 7.9b). Higher
abstraction and templates as first class citizens allow to abstract even more in the views.
Figure 7.9c shows that the view is given by the parameter in the template. The required
view is deducted from the type of the property. This approach has less code and more
abstraction, making it easier to reuse within the application. For example, the display
could be used to display the objects that are related to the returned errors.

87

7. IMPLEMENTATION

The views conclude the interesting implementation details of the generated frame-
work. The next section will describe the implementation details of the compiler that
generates this framework.

entity Project {
title : String
description : String
size : Num
owner : Person

}
screen viewProject(object : Project) {
inputfield("title", object.title)
inputfield("description", object.description)
inputfield("size", object.size)

}

(a) View with simple type properties and model

screen viewProject(object : Project) {
inputfield("title", object.title)
inputfield("description", object.description)
inputfield("size", object.size)
fieldbutton("owner", object.owner)

}
template fieldButton(labeltext : String, object : Person) {
button(labeltext, onclick = { goto showPerson(object) })

}

(b) Specialized button template for entity types

screen viewProject(object : Project) {
inputfield("title", object.title)
inputfield("description", object.description)
inputfield("size", object.size)
fieldbutton("owner", object.owner, showPerson)

}
template fieldButton(labeltext : String, object : Entity, view : Control<Entity>) {
button(labeltext, onclick = { goto view(object) })

}

(c) Improved specialized button template for entity types

Figure 7.9: Example for implementation of simple views in generated Mobl code

7.2 Compiler Code

The general working of the compiler extension is generation based on templates with
application specific parameters. Those templates can already be found in the pseu-
docode in the previous sections, where several placeholders are used to represent ap-
plication specific information. A big share of the templates for the framework are
generated for every entity within the data model. That means that in general the gen-
eration is a map over the list of entity names for a template. Many templates are
straightforward and interesting details of the generated code are already discussed in
the previous section. This section contains more detailed information where the gen-
eration deviates from the straightforward mapping in this case the following parts are
included: model-to-model, authentication and access control.

88

7.2. Compiler Code

7.2.1 Model-to-Model

The mapping from model to model is in principle pretty simple, for every entity make
an entity for Mobl. Then for every property in an entity make a property in the equally
named entity. The only thing it needed afterwards, is to map every type from WebDSL
to a type in Mobl to complete the properties.

Project

+ title String
+ owner: Person

Project

+ title: String
+ owner: Person

To Mobl

(a) default

Project

+ title String
+ owner: Person

Project

+ title: String
+ owner: Person
+ sync : Boolean
+ lastSync : DateTime

To Mobl

(b) toplevel

Project

+ title: String
+ owner: Person
+ description: WikiText
+ members: List<Person>
+ number: Int
+ money: Float
+ created: DateTime

Project

+ title: String
+ owner: Person
+ description: String
+ members: Collection<Person>
+ number: Num
+ money: Num
+ created: DateTime

To Mobl

(c) specialized types

Project

+ title: String
+ owner: Person
+ password: Secret
+ logo: Image

To Mobl

Project

+ title: String
+ owner: Person

(d) unsupported types

Figure 7.10: Examples for model-to-model transformations in different situations

Figure 7.10 shows four examples for the model-to-model transformation. The first one
shows the default situation where the model stays the same. In Figure 7.10b the entity
has been selected as toplevel entity, which gives the Mobl entity two extra properties
for the functionality of the synchronization framework. The third example shows that
the specialized types of WebDSL are represented by the more general type in Mobl
entity. For example, the types Email and Wikitext do not exist in Mobl and need a
different representation.

The last example shows what happens in the situation of non supported types. The
entity remains however, the properties with unsupported types are removed from the
model. The main reason for not supported types are listed below:

• Mapping: There are types that are not easy to map if there is not a type that rep-
resents a similar values. Even if there is a possible mapping it should still make
sense and be usable. For example, the File is not supported in Mobl, but could
be represented as a string of the actual byte values. This string representation it-
self does not give a useful representation and is almost impossible to manipulate
without invalidating the file.

• Security: There might security issues when mapping a type, in case of WebDSL
this only applies for the Secret type. It implies that the value is meant to be
private and not shared. Even when it would be encrypted it is better to never
share those values.

• Size: The space on mobile devices is limited and this makes it unwanted to have
some values taking all space. File and Image are such types which are in average
huge in size compared to other values. In practise some basic types like String
and List could also become large. On the other hand, this is normally not the
case.

89

7. IMPLEMENTATION

7.2.2 Authentication

The authentication module is an extension on the current authentication system in
WebDSL. The mobile devices use device keys instead of user password to authenticate
itself on the server. There are some particular aspects that are not found in other gen-
eration parts. Figure 7.12 shows an example of the generated authentication module
of WebDSL. The code contains many templates that do not require input for genera-
tion. The more interesting aspects of the templates is that it adds an entity and extends
the principal entity with a property and some help functions that are left out from the
example. This is only added when authentication is enabled for the web application as
well.

entity User {
username :: String
password :: Secret

}
principal is User with credentials username, password

(a) Example program

extend entity User {
devicesKeys -> Set<DeviceKey>

}
entity DeviceKey {
description :: String
key :: String := id

}

(b) Generated authentication module

Figure 7.11: Example of authentication module generation

7.2.3 Access control

The access control on objects is an extension to the current existing rules for pages
and templates. A similar implementation is used for objects, the developer can spec-
ify three boolean expressions for an entity. The synchronization algorithm uses the
generated functions which contains the evaluation of those rules. An example for the
generation of those three functions is shown in Figure 7.12. There is a small difference
between the three functions, namely the mayCreate function is static. There is only one
expression for every method, this makes it easy to create a return statement from the
expression. The generation of the functions bodies have a fallback true expression in
the case there is no rule specified for the specific entity.

This completes the details of the implementation for the general solution. Never-
theless, the implementation also contains interesting implementation work related to
the chosen tools. This will be explained in the next section of this chapter.

90

7.3. Technical Difficulties

entity Project {
title :: String (search)
description :: WikiText

synchronization configuration {
access read: true
access write: currentPrincipal() == owner
access create: isLoggedIn()

}
}

(a) Example program

extend entity Project {
function mayRead() : Boolean {
return true;

}
function mayWrite() : Boolean {
return currentPrincipal() == owner;

}
static function mayCreate() : Boolean {
return isLoggedIn();

}

(b) Generated access control module

Figure 7.12: Example of access control generation

7.3 Technical Difficulties

While this thesis presents an implementation for WebDSL and Mobl, the focus is on a
solution that is applicable to other target languages in the domain of web and mobile
applications. The implementation has some interesting problems and solutions that
are specific to WebDSL and Mobl. This section will describe interesting problems that
influenced the final solution. The difficulties encountered can be separated into two
parts: limitations encountered by the model to model transformation (Section 7.3.1)
and synchronization algorithm (Section 7.3.2).

7.3.1 Model Limitations

Programming languages always contain their own way of specifying data models
within the application. Most of those differences are syntactic and therefore can be
expressed in other languages as well. In the case of WebDSL and Mobl the syntax is
similar to each other. However, the semantics differ since they are designed for differ-
ent domains. The mobile domain does not require the same complexity, since mobile
applications deal with simpler data structures. The restrictions that are encountered
within the mapping of the model are: no model hierarchy support, restricted collection
support and expensive search indexing.

91

7. IMPLEMENTATION

Inheritance Hierarchy

As experienced in the motivating example Mobl does not support inheritance hierarchy
within the data model. In WebDSL application this is often used, which means that it
has to be solved to make the synchronization framework usable. The solution used in
the motivating example, only support one class of the hierarchy, is not good enough
for general solution.

There are several ways to remove the hierarchy out of the data model. Figure 7.13
displays an example of inheritance and the effect of several solutions. The solution
used for the motivating example is displayed in Figure 7.13b, which directly shows
its shortcoming of losing information. A better solution is to simulate inheritance in
a flat data model. There are two solutions to do this, separating (Figure 7.13c) or
combining (Figure 7.13d) the classes. Separating the hierarchy is done by deleting all
hierarchy and include all the properties of the parents in the class itself. The side-effect
is that for every property referring to a superclass it needs to add a property for all the
subtypes. The combining of classes into one class is done by collecting all properties
in the parent and adding an extra field that contains the actual type of the object. This
combining does not require other entities to deal with the modifications.

Separation and combining are both good solutions to simulate inheritance hierar-
chy in Mobl, we have chosen to only use combining. This has mainly to do with the
fact that the extra properties on an entity for every child class makes it hard to use,
since requiring the actual value of a property referring to such a class must be done
by combining the values of multiple properties. The other reason is that the impact is
restricted to the entity itself.

The impact on the transformation from model-to-model is limited to remove all
sub classes and move all properties to the parent. Additionally, it influences all other
WebDSL code that has to deal with the JSON input. This has as effect that many of
the generation templates have an extra version with added checks to find out the actual
type of the input.

Collections

Collections in WebDSL exists in the form of sets and lists where Mobl only supports
the general collection type to represent both forms. In addition, Mobl requires an
inverse property for every collection property, where WebDSL allows the annotation
instead of forcing it. In Figure 7.14 shows an example of the steps that are used for
collections in the model-to-model transformation. The approach can be described by
the following steps:

• First find all collection properties that do not have an inverse annotation or the
inverse property is excluded with restricted property option.

• Followed by generating an extra property for the entity, which already includes
an inverse property itself.

• The last step is to get the stored inverse properties from the compiler and add
them to the property. This step is done in the stage that the properties are mapped
from WebDSL to Mobl.

92

7.3. Technical Difficulties

Vehicle

+ owner : Person
+ maxPassengers : Int

Person

+ name : String
+ vehicles : Set<Vehicle>

Bike

+ luggageCarrier: Bool

Car

+ nrDoors : Int

(a) Example model with inheritance hierarchy

Car

+ owner : Person
+ maxPassengers : Int
+ nrDoors : Int

Person

+ name : String
+ vehicles : Set<Vehicle>

Bike

+ luggageCarrier: Bool

(b) Removed hierarchy by selecting one class

Vehicle

+ owner : Person
+ maxPassengers : Int

Person

+ name : String
+ vehicles_vehicle : Set<Vehicle>
+ vehicles_Car : Set<Car>
+ vehicles_Bike : Set<Bike>

Bike

+ luggageCarrier : Bool
+ owner : Person
+ maxPassengers : Int

Car

+ nrDoors : Int
+ owner : Person
+ maxPassengers : Int

(c) Simulating hierarchy by separation

Vehicle

+ owner : Person
+ maxPassengers : Int
+ nrDoors : Int
+ luggageCarrier: Bool
+ type : String

Person

+ name : String
+ vehicles : Set<Vehicle>

(d) Simulating hierarchy by combination

Figure 7.13: Solutions by example for missing inheritance hierarchy support in data
model

93

7. IMPLEMENTATION

Project

+ title: String
+ owner: Person(inverse=Person.projects)
+ members: Set<Person>

Person

+ name: String
+ projects: Set<Project>

(a) Input data model

Project

+ title: String
+ owner: Person(inverse=Person.projects)
+ members: Set<Person>

Person

+ name: String
+ projects: Set<Project>

(b) Find collection properties without inverse

Project

+ title: String
+ owner: Person(inverse=Person.projects)
+ members: Set<Person>

Person

+ name: String
+ projects: Set<Project>
+ generated_inverse_members: Set<Project>(inverse=Project.members)

(c) Create extra property

Project

+ title: String
+ owner: Person(inverse=Person.projects)
+ members: Collection<Person>(inverse=Person.generated_inverse_members)

Person

+ name: String
+ projects: Collection<Project>(inverse=Project.owner)
+ generated_inverse_members: Collection<Project>(inverse=Project.members)

(d) Map to Mobl and in-
clude extra inverse annotations

Figure 7.14: Solutions by example for no inheritance hierarchy support in data model

Search

WebDSL and Mobl have the functionality that allows auto indexing of objects. How-
ever, we found in Section 5.5 that the indexing of objects in Mobl is significantly
slowing down the synchronization. The search is not part of the synchronization and
influence the speed. Therefore, we have chosen as default behavior in the transforma-
tion is to remove all search annotations and add only search annotation to the name
property of TopLevelEntities. The added annotations are required to make it easy to
find and select objects. This approach is not optimal and could be improved by adding
extra syntax that allows the developer to specify search annotations for the Mobl enti-
ties.

7.3.2 Synchronization Limitations

The synchronization algorithm requires control over objects and database. This is often
not within the capability of the normal code and should be implemented within the
compiler. The following three features had to be implemented within the compiler to
support the synchronization solution: Timestamp versioning on objects, automatically
setting of flags and control on the rollback of transactions.

Timestamp Versioning

The motivating example uses the version numbers of the objects to identify updates.
This is done automatically for entity objects that are persisted. However, to improve
the synchronization algorithm it is better to have timestamps instead of version num-
bers. This change requires a hook in the current versioning system and uses 2 extra
properties on all entities: created and modified. The created property is only set for
new objects, while the modified property is set when at least one of the properties has
changed.

94

7.4. Summary

Auto flagging

Mobl has an internal persisting framework, which tracks changes to persist them to the
database. Non of that information is persisted or directly accessible. The compiler is
extended such that each entity has two extra properties: created and dirty, which are
boolean flags to track status of the objects. In addition, the persistence framework had
to be adapted to automatically set those flags on creation or changes of the property.
There are some corner cases which need to be handled. The first intervention that
needs to be excluded, is that when changing the flag it should not be seen as mod-
ification of the object. This needs to be prevented because when setting the flag it
would trigger itself to be set creating an endless loop. The second problem is that it
cannot distinguish differences from the synchronization and the changed made by the
application. Therefore, an additional flag in the system framework is added which dis-
ables the tracking on synchronization. This means that changes and creations during
synchronization are not discovered.

Rollback of Transactions

To resolve inconsistencies in the database rollback functionality is used, which is part
of WebDSL functionality. The original compiler approach is an automatic validation
and possible rollback at the end of each request. Synchronization can be seen as a
batch of changes. For batches it is unwanted to have validation and rollback on the
whole set of changes, since one incorrect update would revert all changes in the batch.
The second problem of the original approach is that it only uses the validation rules on
the model, other inconsistencies cannot be used to trigger a rollback.

We added functionality to the compiler to allow to start and rollback transactions
manually. Those functions allow to split up the batch in separate transactions and
only fixes the changes with inconsistencies. There is a problem with splitting up the
transactions for creating objects. The objects have to be created before the actual
values are applied. This variation forces the use of different transactions, which makes
it impossible to roll back only a single object. We have chosen to do a rollback for all
new objects. Although the mobile application can retry the propagation with changes
to solve the conflicts.

7.4 Summary

This chapter shows implementation details of this thesis solution separated into three
parts: The framework delivered by the generated code, The compiler extension that
generates the framework and difficulties that are specific to the target languages WebDSL
and Mobl.

The generated code basis started from the motivating example. Changes have
been applied to abstract and improve on shortcomings of the motivating example. The
biggest differences to the code can be found in synchronization, data partitioning and
view generation. The synchronization has changed by using a different approach that
is compatible with the new data partitioning. The synchronization functions have some
extra responsibilities as is described in Section 7.1.1. The data partitioning is needed

95

7. IMPLEMENTATION

to have an approach that allows users to select parts of the data to retrieve without too
much effort. A few entities are used to specify the partitioning representation. The
partition is calculated by related entities, this calculation is shown by an example in
Figure 7.8. The view generation is added to have an easy data browser which allows a
quick start when developing the Mobl application and is explained in Section 7.1.3.

The compiler code is basically template generation that is often based on the list of
entities. However, some of the generation parts are more complicated. This is the case
for the following parts: model-to-model, Mappers, Related entities, authentication and
Access control. The generation of those components are explained in Section 7.2.

The last part of this chapter includes some details that are specific to the target
languages of this thesis. There are two main parts where we encountered difficulties:

• model-to-model transformation is required for the synchronization framework
to work. The general problem is that not all the properties of the data model
can be expressed in Mobl. The following difficulties were encountered and ex-
plained in Section 7.3.1: no support for inheritance hierarchy in data model,
collection properties require inverse annotations, expensive indexing of objects
and restricted set of types.

• synchronization algorithm requires some control on the level of the persistence
framework and database, but this abstracted by the language. The following
modifications where made in the compiler code for a functional synchronization
framework: Automatic timestamp for modifications, automatic setting of flags
for Mobl on modifications and manual control on transactions to allow rollback
of single inconsistencies.

This and previous chapter describes the solution of this thesis and its implementa-
tion. The next chapter will evaluate the solution to check if it satisfy the requirements
and discover possible weaknesses.

96

Chapter 8

Evaluation

The two previous chapters introduced a generative approach for a synchronization
framework between web and mobile applications. Chapter 4 states a list of require-
ments for functionality and non functional requirements that the framework should
fulfill. This chapter uses this list of requirements as guideline to evaluate the solution.
The chapter is separated into evaluation of functional (Section 8.1) and non-functional
(Section 8.2) requirements. To validate the scalability of the framework it includes an
experiment (Section 8.3 and Section 8.4).

8.1 Evaluation of Functional Aspects

The functional requirements are objective definitions of functionality that should be
included and working in the product. The evaluation of those requirements can be
done by objectively checking the list. The functional requirements for this solution are
summarized in Table 4.1. In a simple interpretation it could be stated that the product
can only be delivered if all the functional requirements are fulfilled. The previous
chapter describes the implementation of the solution, which can be used to review the
requirements. In addition to that, the product has been tested at development time by
adapting the model and reviewing the results and differences between each version.
Next to manual testing there are some integration tests on the webservices to check the
functionality of the synchronization framework. This section will have a quick review
on the main features: synchronization, interface, data restriction and code generation.

Synchronization
The general steps that in synchronization can be described as: identification, propaga-
tion, and detection and resolution of inconsistencies on updates. The first two steps:
identification and propagation are required minimum for a working synchronization
approach. Section 7.1.1 explains in detail which algorithms are implemented for syn-
chronization within the solution. The implementation covers the three steps fully.

To propagate updates it is required that the objects are transformed into valid and
serialized instances on both sides. In the case of Mobl most of the functionality is built
in already, only a mapping to the correct function calls is added. WebDSL lacks this
functionality and therefore needs generated mappers based on the data model. The
functionality of the generation of those mappers is explained in Section 6.2.1.

97

8. EVALUATION

Interface
The current implementation has four different interfaces:

• A small set of additions to WebDSL syntax to adapt the code generation (Sec-
tion 6.4.2).

• Webservices that allow communication with mobile devices and other remote
applications (Section 6.4.1).

• Mobl integration functions and views to insert the synchronization into the ap-
plication.

• A generated data browser for the Mobl application (Section 7.1.3).

Those four cover the interfaces that are specified in the requirements and gives possi-
bilities for all user groups to interact with the solution where required.

Data Restrictions
The underlying problem of data restriction is that in most cases it is not possible (or
wanted) to have all data available for the mobile applications. The requirements state
three approaches to reduce the amount of data by restrictions. The solution implements
all three with following parts of the implementation:

• Restricting properties on data model for simplification.

• Access control on objects to define user related restrictions of synchronized ob-
jects (Section 7.2.3).

• Selectable data synchronization implemented as partitions with TopLevel enti-
ties and related entity relation (Section 7.1.2).

Code Generation
The requirements state that the solution requires a list of elements that should be gener-
ated. This might not satisfy the goal of this thesis, which is a complete synchronization
framework. The fact that small amounts of additional code are needed after generation
shows the completeness of the generated code. The additional code that is required
for mobile application is limited to the import and calling of synchronization frame-
work. This only delivers a simple application with an available data browser and the
possibility to synchronize data.

This completes the list of functional evaluation of the solution. However, the eval-
uation is not complete. The requirements also contain non-functional demands. The
next part of this chapter will evaluate those requirements.

98

8.2. Evaluation of non-Functional Aspects

8.2 Evaluation of non-Functional Aspects

The non-functional requirements are complicated to define in strict rules. Instead, they
are often described in how the system should be functioning when it encounters certain
(abnormal) conditions. This softer approach of stating requirements has a disadvantage
on validation. A simple checklist does not fit this purpose a more persuasive text with
valid arguments is a different solution. Experiment results can be used to support the
arguments and make it more objective. This section will argue on each of the topics
that are summarized in Table 4.2 and how the tool fulfills those requirements.

Usability

The usability requirements state two general focus points for usability: simple and
minimal. There are different interfaces for each of the user groups: application devel-
oper, mobile application user and remote application (developer).

The application developer has to deal with two interfaces: The additional syn-
tax that is required for the generation and the generated Mobl code which has to be
included within the application. The minimal syntax that is required is a simple def-
inition that states the TopLevel entity. Additionally, it is possible to specify some
restricted properties and access control rules. This is as minimal as it can be, since this
information cannot be extracted from the normal application code and is required for
a functional framework. Defining some boolean expression and references should not
be complex for a developer.

The integration within the application could be easy and minimalistic by just in-
cluding two function calls. The functions allow some parameters for tweaking. There
is a possibility that other behavior or interaction is wanted for an application. This has
as disadvantage that it loses the minimalistic character, when the developer chooses
to change the functions. There are additional abstractions in the generated code on
different levels of the synchronization algorithm for easy reuse of parts. Something
similar is applicable for the generated WebDSL code. WebDSL allows overriding of
functions, which makes it possible to tweak some of the functions like the mappers.
This is not an optimal interface, but should only be needed exceptionally.

The synchronization is a process that should not require much interaction with the
user. The current approach in this tool has three points of interaction: selecting the
partitions, triggering the synchronization and error handling on feedback of synchro-
nization steps. Those points can be implemented to work without interaction to the
user, but this requires specialized code based on application behavior. Meaning that
the current implementation gives a minimalistic and simple interface that is applicable
for all applications, but optimal result can only be achieved by implementation of the
application developer.

The remote application can use the webservices that are generated as part of the
synchronization framework. Those services are meant for synchronization with mobile
applications and require some information from the remote application. The design is
optimized for the communication in the framework. A second focus was to keep it un-
derstandable and usable for other applications. It fails to fully satisfy the requirement
on simplicity, but that is due to the trade-off on other (more) important requirements.

99

8. EVALUATION

In addition to the minimal and simple requirements, the framework should also
take into account the limitations of mobile devices. The incremental approach of up-
dates should reduce the bandwidth and computation costs. To achieve low cost for
mobile device the computation has been moved as much as possible to the server. The
mobile client only has to deal with mapping and query of local data.

Scalability

One of the bigger requirements for a synchronization solution between web and mobile
clients is the scalability factor. The nature of web applications is that it can handle
numerous users at the same time. For the solution this meant that it should be possible
for all users to have mobile devices that can synchronize with the server. The impact
on the server can be separated in two dimensions that of CPU time and disk space.

The normal usage of web applications deals with many small requests, since ev-
ery page request requires some small amount of computation. The synchronization
requires more computation on request. On the other hand, the number of request is
significantly smaller. This is due to the fact that the synchronization only consist of
a limited number of webservice calls and does not have to be executed frequently. It
only requires a single thread on a server for a device and is limited by the speed of the
mobile device (Section 8.3.3) to process the results, which means a high amount of
idle time which can be used to handle other requests.

The impact on space is even less constraining, the server does not keep any extra
information for synchronization algorithm. Therefore, extra devices will not increase
the database size and cannot constrain the scalability.

In addition to the scalability found in the number of clients, there is also the size of
the application that could affect the scalability of the synchronization framework. The
impact of increasing size in data (model) is evaluated by the experiment described in
Section 8.3.

Applicability

The applicability requirement is that the solution should be able to generate a synchro-
nization framework for every WebDSL application. In the strict case it is true that
every application that has selected a TopLevel entity is able to generate a function-
ing synchronization framework, since the generation deals with all possible inputs of
models. There are some remarks on this notion because not all types of WebDSL are
(fully) supported and some data models might not have a perfect performance in the
framework.

The non supported types is an issue that is derived from the constraints of the tar-
get language and mobile domain and is discussed in Section 7.3.1. The performance
penalty in some models has to do with the calculation of related entities. The wrong se-
lection of TopLevel entities or fully (non) connected object graphs show the weakness
of the partitioning approach. Figure 8.1 displays situations that cover those weaknesses
of the partitioning approach and are discussed in the following paragraphs.

100

8.2. Evaluation of non-Functional Aspects

TopLevel Objects

Object Object

Other Objects

Object Object

Object

Object Object

Object

(a) Optimal situation

TopLevel Objects

Object Object

Other Objects

Object Object

Object

Object Object

Object

(b) Highly connected object graph

TopLevel Objects

Object Object

Other Objects

Object Object

Object

Object Object

Object

(c) Wrong selection of TopLevel entities

TopLevel Objects

Object Object

Other Objects

Object Object

Object

Object Object

Object

(d) Unreachable object

TopLevel Objects

Object Object

Other Objects

Object Object

Object

Object Object

Object

(e) Unbalanced object graph

Figure 8.1: Visual representation of object graphs representing weaknesses of data
partitioning approach

101

8. EVALUATION

The optimal object graph for the partitioning solution used in this thesis is dis-
played in Figure 8.1a. The first unwanted situation is that the graph is highly con-
nected, which most likely delivers the situation that there is no partitioning anymore
(Figure 8.1b). A possible solution is to remove the edges that are crossing the partition,
which is possible in the generation by adding restricting properties.

Selection of TopLevel entities is a manual task. When the developer does not really
have good insight the data model and the object graph it is possible that a situation
appears as showed in Figure 8.1c. The solution is often quite simple by selecting other
TopLevel entity. However, this requires some extra effort from the developer to inspect
the data model and object graph.

There are two other situations that might be encountered and possibly deliver un-
wanted behavior. A possibility is that not all the objects are (indirectly) connected to
a TopLevel object (Figure 8.1d). The question is if this delivers wanted or unwanted
behavior. If it is an unused object, the behavior is as it should be. When it is an isolated
entity type, the choice can be made to make it a TopLevel entity which resolves the
problem as well.

The last situation is something which most likely will happen in all cases, namely
an unbalanced partitioning (Figure 8.1e). It is questionable if this is problematic or
unwanted. This depends on the situation, for example in YellowGrass the behavior
is related to the fact that the size of the projects are diverse, which creates uneven
partitioning. In this case, it is not incorrect since only related entities to the project are
retrieved. However, when the separation by related entities is not as directly related to
the application it is most likely that it will retrieve unwanted objects.

Adaptability

Adaptability is a double-edged sword for most code generation approaches [36]. The
goal is to have a complete solution that is directly usable in all cases. However, the
reality often shows that there are cases that are not covered by the tool. A way to
solve this is to allow adaptability or insertion in the generated code. This approach has
as weakness that there is no control on this additional code and therefore cannot be
checked on correctness. The requirements for this thesis are similar: The focus should
be on a complete covering implementation which works for all inputs, but there must
be possibility to adapt the generated code for tweaking certain aspects.

The generated code can be separated into two parts: core synchronization algo-
rithm and helper functions. The core should never be adapted for application specific
features, since those are requested through helper functions. The helper functions on
the other hand can be adapted to deliver different input to the core algorithm. There
are two ways to adapt those functions. One is the interface delivered by additional syn-
tax in WebDSL(Section 6.4.2). The second way of tweaking is to override or extend
functions in WebDSL. This allows to change any function in the code base including
the generate code. This should only be done on helper functions like mapper or related
entities and only when it is not possible to tweak with the DSL extension.

102

8.3. Experiment in the Scalability of the Synchronization Framework

Security and Robustness

The security and robustness are two topics in software projects that are always prob-
lematic. Big and important systems often require perfect scores on these topics. Al-
though reality shows that even those systems contain flaws. In the case of the syn-
chronization framework, robustness is very easy to achieve, since it does not interact
with other processes in the system and cannot change the working of the web applica-
tion. The only thing it might do is change data that changes the working of some other
aspects of the application. However, this is more a security issue then a robustness
flaw.

Security is a much harder problem for a synchronization framework, since there is
a possibility that (untrustworthy) users can change data directly in the database. The
synchronization framework has three checks added for security reasons:

• Access control to limit the data access based on the user (Section 7.2.3).

• Validation on the objects before persisting them to the database (Section 7.1.1).

• Additional input checks on the objects protecting against incorrect input param-
eters.

The biggest disadvantage is that the security of the synchronization is bounded by
the effort of the developer to specify correct and complete access control rules and
validation expressions. Without those there is a high chance that a user can abuse the
weaknesses to steal protected data or corrupt the database.

8.3 Experiment in the Scalability of the Synchronization
Framework

Web applications have to deal with scalability because of database size and user amounts.
This means that the synchronization framework must be able to deal with those amounts
as well. The solution tries to reduce the amount by partitioning and restricting the data.
However, it is not clear what the influence is when changing the variables for size and
complexity of data.

The experiment uses a similar setup as used for the experiment in the motivating
example (Section 5.5.2). Containing a laptop with tomcat instance as web server and
a chrome browser to simulate the mobile devices. Each test has its own application
with specific goals and will be explained separately. Each of the experiments consists
of two parts: A full synchronization that returns all the full objects in the partition
and a second synchronization which returns no objects since nothing has changed in
between. The last variant is used to test the overhead of the algorithm and find out if
the bottleneck is on the server or client side. This als shows the advantage of using an
incremental approach. The non clean update should should be in same range with a
full synchronization that has the same number of objects. This is because the algorithm
is not significantly different in those cases, only a higher overhead which is displayed
by the second synchronization.

103

8. EVALUATION

The goal of the experiment is to test scalability in size of the data. There are multi-
ple parameters that influence the size and complexity of the database. The parameters
that could influence the data are separated into objects (Section 8.3.1) and entity (Sec-
tion 8.3.2) specific parameters.

The second part of the experiment, testing the framework on existing web applica-
tions is described in Section 8.4.

8.3.1 Object Level Scalability

On object level there are three ways to influence the complexity and size of data:
The number of objects, the size of objects and the number of edges. Each of those
parameters are tested with different sizes to test if there is a relation between size and
execution time. The second step is to determine how big the impact is and whether
this is problematic for scalability.

The first experiment uses a simple model containing 6 entities as displayed in
Figure 8.2. Increasing the number of objects of A, which are all linked to the TopLevel
object, gives an increase of 5 extra objects, namely for every entity an extra object in
the total partition.

TopLevel

+ field: String

A

+ field: String

B

+ field: String

C

+ field: String

D

+ field: String

E

+ field: String

1
1..n/5

Figure 8.2: Class diagram of linear model for the experiment with increasing number
of objects

Figure 8.3 shows the results for the experiment of increasing number of objects in a
partition. The line increases more than linear, but still polynomial with the number
of objects transferred. The second synchronization shows a linear increase although
not as steep as the total synchronization. Secondly, it shows that the overhead of the
synchronization algorithm is not so high. In the case of 10000 objects the overhead in
the algorithm is smaller than 2h and seems to point to a bottleneck on the client side.

104

8.3. Experiment in the Scalability of the Synchronization Framework

0 0.2 0.4 0.6 0.8 1

·104

0

200

400

600

800

1,000

number of objects

tim
e(

s)

(a) full synchronization

0 0.2 0.4 0.6 0.8 1

·104

0

0.5

1

1.5

2

number of objects
tim

e(
s)

(b) second synchronization

Figure 8.3: Results of scalability experiment based on increasing number of objects in
partition

The next experiment is increasing the size of the objects. The previous model makes
it hard to increase all the objects to a wanted format. We simplified the model to
include the TopLevel with a single entity that contains more properties (Figure 8.4).
The extra properties are inserted to make it easier to scale up the size of the objects.
The experiment has a small adjustment, instead of using the total synchronization time
it only looks at the synchronization of the objects of type A.

TopLevel

+ field: String

A

+ field1: String
+ field2: String
+ field3: String
+ field4: String
+ field5: String
+ field6: String
+ field7: String
+ field8: String
+ field9: String
+ field10: String

1
1000

Figure 8.4: Class diagram for the experiment with increasing size of objects

The results of this experiment (Figure 8.5) seem to display a linear increase when the
objects become have a significant size. It should be taken into account that average
size of object bigger than a few kB, could become problematic for the database size
limitations on mobile devices. The effect in the second synchronization do not display
a significant relation in the smaller values, however the bigger object sizes show a
linear increase in time. It is within expectations that the size of objects in kB should

105

8. EVALUATION

0 20 40 60 80 100 120 140
0

10

20

30

40

size of object(kB)

tim
e(

s)

(a) full synchronization

0 20 40 60 80 100 120 140
0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

size of object(kB)

tim
e(

m
s)

(b) second incremental synchronization

Figure 8.5: Results of scalability experiment based on increasing size for each of the
1000 objects

only influence the server when loading the object and mapping the object. The second
synchronization does not use any mapping, which means that the increase is due to the
loading of the bigger objects.

The increase of time to more than 40 second on 150 kB object size is more wor-
rying, since there is a chance that bigger objects are used in the system. Section 8.4.1
tells more about the size of objects in two existing web applications. This data sup-
ports the assumption that most objects are small and that there is a verry small amount
of objects wich is in the range of 10 to 1000 kB. To test the impact of increasing the
size of a few objects. The experiment is repeated with only 10 objects instead of 1000.

The results show that there is still a linear increase on the size in kB for the objects.
However, even at 1000 kB for each object the increase in time is less than a second
(Figure 8.6). Which is more likely scenario for a normal system and is better scalable
than a high average for the object size.
The last parameter in the object level experiments is the number of edges. An edge
in the object graph is a reference from an object to another object by property value.
Changing the number of edges cannot be reduced lower than the number of objects,
since the partition algorithm requires at least one incoming edge for every object. So
instead we test by increasing the number of incoming edges for each object. Figure 8.7
shows adapted model for this experiment. The edges are generated and linked to ran-
dom objects instead of having copies of each edge.
The impact of the increasing number of edges looks like a less than linear relation
between number of edges and synchronization time required as shown in Figure 8.8.
The relation in the second synchronization seems to be linear, which makes sense,
since the edged are used for the calculation of the partition.

106

8.3. Experiment in the Scalability of the Synchronization Framework

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

size of object(kB)

tim
e(

s)

(a) full synchronization

0 200 400 600 800 1,000
0

1 ·10−2

2 ·10−2

3 ·10−2

4 ·10−2

size of object(kB)

tim
e(

m
s)

(b) second incremental synchronization

Figure 8.6: Results of scalability experiment based on increasing size for each of the
10 objects

TopLevel

+ field: String

A

+ field: String

B

+ field: String

C

+ field: String

D

+ field: String

E

+ field: String

1
500

1

n

1

n

1

n

1

n

1

n-1

Figure 8.7: Class diagram for the experiment with increasing number of incoming
edges for each object

107

8. EVALUATION

0 20 40 60 80 100
0

20

40

60

80

number of incoming edges for each object

tim
e(

s)

(a) full synchronization

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of incoming edges for each object
tim

e(
s)

(b) second incremental synchronization

Figure 8.8: Results of scalability experiment based on increasing incoming references
for each of the 500 objects

8.3.2 Entity Level Scalability

The data model itself is not per definition changing the size of the data. Nevertheless,
the increasing complexity of the model might be a side-effect of increasing functional-
ity of the application. Another reason for testing the complexity of the model is that the
code generation depends on entities and properties, which definitely means that more
code has to be executed when the data model increases in size. The two parameters
that mark the increase of the data model are the number of entities and properties.

In the first experiment the number of entities is tested. The data model is changing
for every input, but the basic model is similar to the one in Figure 8.2. The variation
can be found in the length of the chain for the number of entities. To reduce the
influence of the other factors the number of objects and edges are kept the same for
every execution.
The results (Figure 8.9) show a big increase for the first additional entities. After a
more stable part of the following 15 entities, a linear relation seems to be raising.
In comparison to the previous results there is a lot more overhead in synchronization
algorithm. Comparing the two synchronization times it seems that biggest part from
the increase in time of the full synchronization is caused by the increase in overhead.

The other test on data model level is that of the number of properties. A cus-
tomized variant of Figure 8.4 is used to get a good and controllable situation for the
experiment. The values in the properties are reduced in length to counter the influence
of the increasing object size due to additional properties.

The result of this experiment are displayed in Figure 8.10. The total synchroniza-
tion results show some fluctuations. However, there is a small or even no effect on time
for additional properties. The second graph shows a linear increase for extra proper-
ties. The additional price of 50 milliseconds for 100 properties seems to be very little.
Certainly when you take into account that 100 properties on an entity is abnormal
amount.

108

8.3. Experiment in the Scalability of the Synchronization Framework

0 20 40 60 80 100 120
0

5

10

15

20

25

30

number entities

tim
e(

s)

(a) full synchronization

0 20 40 60 80 100 120
0

2

4

6

8

10

12

number entities
tim

e(
s)

(b) second incremental synchronization

Figure 8.9: Results of scalability experiment based on increasing number of entities in
data model with 720 objects

0 20 40 60 80 100
0

1

2

3

4

5

6

number properties

tim
e(

s)

(a) full synchronization

0 20 40 60 80 100
0

20

40

60

80

100

number properties

tim
e(

m
s)

(b) second incremental synchronization

Figure 8.10: Results of scalability experiment based on increasing the number of prop-
erties for an entity with 1000 objects of constant size

Figure 8.9a and Figure 8.10a show a few fluctuations that are outside the expected
range. The values are averages of several runs to counter fluctuations in measure times.
However, the stability of execution time on the browser is not as stable as in a normal
experimental setup. This is moste likely the cause for the fluctuations in the results of
both diagrams.

109

8. EVALUATION

8.3.3 Discussion

The results of the experiment show in the worst case a linear relation for increasing
data size influenced by the following parameters: number of object, size of object,
number of edges and number of entities in the data model. A linear relation between
input size and execution time could be interpreted as scalable process. An additional
factor for is that the experiment has a direct connection and neglects the value of data
transfer. This will increase the time for synchronization, although sending data is a
linear process bound to the amount of data that is transferred. The additional price for
data communication will not make the solution less scalable.

The more negative part of the result is that the synchronization itself is not cheap,
the results show high synchronization times for increasing number of edges and ob-
jects. Certainly the 1000 objects is within the range of normal amounts, but that already
takes more than 25 seconds. Luckily the results of second synchronizations results in
times that are far better and within amounts that users will accept.

The difference shows that most of the time is on the client side and has to do with
persisting the changes to the local database. This is not something that can be offloaded
to the server, which keeps it problematic that it cannot be improved on that factor.
This most likely tells us that the implementation of Mobl’s persistence framework is
expensive and the bottleneck for the synchronization.

The numbers do not directly imply failure for the solution. While it is true that
the full synchronization is expensive, it is only required once after that the time will
be reduced significantly to only retrieve new and changed objects. Additionally, the
synchronization can be done in the background, which allows the application (partly)
to be used while synchronizing. Still improvements on the time are preferable for a
successful synchronization framework.

The next section show continues the experiment on existing web applications, to
validate if the results of this section is in line with the framework applied to real appli-
cations.

8.4 Experiment with Existing Web Applications

The experiment in the previous section was focused on testing the influence of the
input parameters of the framework with a simple application. This section uses existing
applications and applies the framework to those applications. The experiment tests the
applicability and includes testing the scalability of the framework on bigger databases.
The applicability can be separated into: Does the solution generate a correct working
framework. The second part is; can we define usable partitioning for the users so that
the framework is usable.

This section starts with some insight in the size of the data of the existing appli-
cations. We revisit the web application of the motivating example YellowGrass (Sec-
tion 8.4.2). This gives the possibility to compare the final solution to the manual
implemented example. The second application is Researchr1, which is currently the
largest WebDSL application.

1http://researchr.org

110

http://researchr.org

8.4. Experiment with Existing Web Applications

8.4.1 Object and Database Sizes

In the previous part of the evaluation we already tested on scalability of the input
factors. This section states a couple of numbers on the two web applications. Those
numbers should give better insight in the size of the current applications and gives
some comparison material for the previous results.

Table 8.11 displays the average, maximum size and number of objects of both
applications. The total database of YellowGrass has around 10 thousand objects, which
is the same number as the maximum used in Figure 8.3. The Researchr database
is much bigger with 25 million objects. The average object size of YellowGrass is
bigger, but both are around 0.5 kB. Researchr contains the biggest object with a size
of slightly more than 600 kB.

Figure 8.12 and Figure 8.13 display the distribution of the object sizes in the
databases. We observe that both applications have the biggest share of objects in the
first 5 kB. Less than 1% of the objects are found in the rest of the range. In general,
the distribution of object sizes of both applications are similar.

Application Objects Average Object Size(B) Maximum Object Size(kB)

YellowGrass 10399 627 106

Researchr* 25178824 467 683

* = the average and maximum are based on 2% random objects from the the database

Table 8.11: Numbers on the data in the databases from the existing applications Yel-
lowGrass and Researchr

The basic set of calculations for this section became complex when we scaled the
problem up from YellowGrass to Researchr. The running time of those calculations
for YellowGrass is less than a minute. Estimated time of those calculations on a server
is more than a week. After more analysis, we found that the time was mostly spend on
database queries. Some of the objects took more than 10 seconds to load. Therefore,
we used 2% random objects of the Researchr database to calculate those numbers.

8.4.2 YellowGrass

The motivating example is developed on YellowGrass, which is explained in Sec-
tion 5.2. The goal of testing the framework on this application is to test if the frame-
work is usable and how it performs compared to the manual implementation. The ex-
periment tests the synchronization based on size of the objects in the partitions. This
contains a first full and a second incremental synchronization.

The first part of the experiment used the number of objects in a partition as size.
Figure 8.14 shows that there is a linear increasing line for both synchronizations. The
numbers of the full synchronization are in line with Figure 8.3. Comparing both second
synchronizations show that the ones of YellowGrass are more than a second slower.
The results based on the size of the objects instead of the number of objects supports
those results, as is displayed in Figure 8.15

111

8. EVALUATION

0–
5

5–
10

10
–1

5
15

–2
0
20

–2
5
25

–3
0
30

–3
5
35

–4
0
40

–4
5
45

–5
0
50

–5
5
55

–6
0
60

–6
5
65

–7
0
70

–7
5
75

–8
0
80

–8
5
85

–9
0
90

–9
5

95
–1

00

10
0–

10
5

10
5–

11
0

0

20

40

60

80

100

120

45

10 8
3

1 2 1 0 0 0 0 0 2 0 0 1 0 1 1 0 1

object size range(kB)

nu
m

be
ro

fo
bj

ec
ts

Figure 8.12: Distribution of the object sizes in the database from the existing applica-
tion YellowGrass

Generated Framework vs. Motivating Example

YellowGrass is used as basis for the motivating example and the framework evolved
out of that result. Evaluating this framework with YellowGrass gives the possibility to
compare the generated solution to the manual implementation. Where the framework
improved on some of the shortcomings of the manual implementation, it is also more
general than the motivating example which could influence the performance as well.
Figure 8.16 displays the synchronization times for the corresponding partitions. The
smaller partitions seem to be faster in motivating example, while the bigger are up to 30
seconds faster than the motivating example. The second incremental synchronization
for the motivating example is only covered by Figure 5.17, which represents a medium
sized partition. Comparing that to the results of Figure 8.17b, can conclude that the
motivating example is faster in the second synchronizations. Combining this with the
other comparison, tells us that the generated framework has more overhead.

Some notes have to be placed on the comparison because there are several differ-
ences between both versions. The motivating example has a simpler model, which
included less properties and less objects for the same partition. On the other hand,
the motivating example has extra functionality for the roadmap, which is not included
in the generated framework. There has also been some development on the WebDSL
compiler, which might influence the performance of the web application. However, in
the experiment of the motivating example we already encountered that the time spend
on the server side, for bigger partitions, is minimal compared to time spend on the
mobile device.

112

8.4. Experiment with Existing Web Applications

0–
5

5–
10

10
–1

5
15

–2
0
20

–2
5
25

–3
0
30

–3
5
35

–4
0
40

–4
5
45

–5
0
50

–6
0
60

–7
0
70

–8
0
80

–9
0

90
–1

00

10
0–

15
0

15
0–

20
0

20
0–

25
0

25
0–

30
0

30
0–

40
0

40
0–

50
0

50
0–

60
0

60
0–

70
0

0

50

100

150

200

250

300

350

400

450

500

451

110

52

24
9 9 2 3 1 3 1 3 0 1 4 3 4 1 0 2 0 1

object size range(kB)

nu
m

be
ro

fo
bj

ec
ts

Figure 8.13: Distribution of the object sizes from 2% random objects in the database
from the existing application Researchr

8.4.3 Researchr

Researchr is a WebDSL application that indexes scientific publications. The applica-
tion allows users to find, collect, share and review publications[35]. For the experiment
we first explain the important details of the data model. Followed by an explanation
of the partitioning choices which are needed to generate a framework. Completing the
section with the results of the experiment.

Data Model

The data model is an important aspect for a synchronization framework. The model
of Researchr is big and complex. Since this is important we will discuss the most
important entities including: Publication, Person, User, Bibliography, Journal, Confer-
enceSeries, Alias, Tag and PublicationList

The most important entity is the Publication, since the functionality of Researchr
is focused on publications. It has several subtypes such as Proceeding, Book, Mas-
terThesis and Article. A publication contains some standard information like: title,
abstract and year. The entity also contains references to wide range of other entities,
but the most important ones are the authors and publications.

113

8. EVALUATION

0 500 1,000 1,500 2,000
0

10

20

30

40

50

number of objects

tim
e(

s)

(a) full synchronization

0 500 1,000 1,500 2,000
0

0.5

1

1.5

2

2.5

number of objects
tim

e(
s)

(b) second incremental synchronization

Figure 8.14: Results of scalability experiment with existing application YellowGrass
based on increasing size of partition measured by the number of objects in a partition

0 500 1,000 1,500
0

10

20

30

40

50

partition size(kB)

tim
e(

s)

(a) full synchronization

0 500 1,000 1,500
0

0.5

1

1.5

2

2.5

partition size(kB)

tim
e(

s)

(b) second incremental synchronization

Figure 8.15: Results of scalability experiment with existing application YellowGrass
based on increasing size of partition measured by the sum of the size for each object
in a partition

114

8.4. Experiment with Existing Web Applications

Disn
ix

Asp
ec

tJF
ron

t

Stra
teg

oS
he

ll

Aco
da

NixO
S

Drya
d

Stra
teg

oX
T

Spo
ofa

x
0

10

20

30

40

50

60

70

80

0.9
2.4 3.4

5.9 6

9.7

48.1
50.2

0.2 1 2.1
3.7 5

9.5

68.5

80.3

tim
e(

s)
Synchronization Framework

Motivating Example

Figure 8.16: Comparison of performance between motivating example and synchro-
nization framework

The application contains several entities that represent people within the application.
The most important ones are Person and User. Person represents a person that is
unique within the application. It contains some basic information about the person and
references to publications which he collaborated on. User is a common entity whitin a
web system to represent users. They contain user related application information like:
email, username and password. It also contains references to other entities to represent
personal preferences. Both entities share a link to couple both as reference so that it
is easy to couple information from both objects for the same person. AbstractAuthor
is another entity that is often used to represent a person in the system. This entity is
closer coupled to publications since it represents an author of a paper. This means that
the system contains a lot of duplicates for a person because each publication has a new
object for each author.

Bibliography represents a list of publications composed by a user or a user group.
The bibliography contains often publications of the same topic. Users can use this to
keep track of publications, for example a list of publications that the user examined for
his own publication.

Journals and conferences are two common ways to publish scientific work. The
application contains Journal as higher level which contains JournalVolumes and Jour-
nalIssues with their corresponding publications that were published in it. Similar Con-
ferenceSerie has Conferences with its proceedings.

115

8. EVALUATION

Alias is an entity that is used to couple different names to the same object. For
example, a person can be known by several names or notations of the same name.
Instead of duplicating information an Alias object is used to represent those variants.

Tags are used to couple group objects of different types with a specific topic. This
gives the possibility for users to create relations between objects that are not yet defined
by the model.

PublicationList is entity to keep track of certain publication lists which share a
common object. For example, TagPubicationList keeps a list of all publications with
a certain tag. This entity can be replaced with search functionality and can be seen as
redundant. [33].

Partitioning

The synchronization framework requires that the developers specify the toplevel en-
tities and restricted properties if necessary. The explanation of the model and the
applications show that publications are the main data of the application. This means
that toplevel entities should give a group of publications as partition. Additionally,
toplevel entities should not have to many objects so that a user is still able to easily
select partitions. The combination of those factors can be found with the entities: User,
Person, Journal, ConferenceSeries, Bibliography and Tag.

As stated before the querying performance of the Researchr database was problem-
atic especially for the Tag entity. Which forced us to remove this entity from the model
for the purpose of synchronization. References to PublicationList where removed be-
cause of redundancy. Another problem we encountered was highly connected object
graph which required some extra restricted properties. This requires experience with
the application and understanding of the model. While we focus on delivering the
best partitioning there is high possibility that our choices do not deliver the optimal
solution.

Each of the five topEntities has between 1000 and 3000 objects and gives a total of
around 11000 partitions. This is still high amount of partitions, but would be usable in
term of finding and selecting partitions. A bigger problem is that getting and storing
all the partition information in the Mobl application is expensive. It takes around 45
minutes to store all those objects.

Results

The experimental setup has changed to a more powerful computer. This was necessary
because the application required more memory than there was available in the previous
setup. The new computer has 6 gB of ram and a quadcore cpu(3.0 GHz).

The goal of the experiment is to test the scalability of the framework when used
on an existing application with a bigger database. Figure 8.17 shows that there is a
big difference in performance compared to YellowGrass. The line still looks linear
increasing to the input, however, at a much higher cost. The full synchronization is
around factor 5 slower, while the second synchronization is 80 times slower compared
to the results of Figure 8.14. This means that the overhead and time spend on the server
for a bigger and more complex application like Researchr has a big impact.

116

8.4. Experiment with Existing Web Applications

0 1,000 2,000 3,000 4,000 5,000 6,000
0

500

1,000

1,500

2,000

number of objects

tim
e(

s)

Bibliography
Journal

ConferenceSeries
User

Person

(a) full synchronization

0 1,000 2,000 3,000 4,000 5,000 6,000
0

100

200

300

400

500

600

number of objects

tim
e(

s)

Bibliography
Journal

ConferenceSeries
User

Person

(b) second incremental synchronization

Figure 8.17: Results of scalability experiment with existing application Researchr
based on increasing size of partition measured by the number of objects in a parti-
tion

The entity partitions differ from each other in time for same partition sizes. The biggest
difference between those partitions is the composition of objects. This shows that some
of the object types require more time than others. When comparing the partitions in
object sizes this difference is already smaller, which is displayed in Figure 8.18.

8.4.4 Discussion

The results of YellowGrass show similar numbers as the previous experiment. The per-
formance is linear, however full synchronization takes a lot of time mostly on storing
the objects on the mobile device. The synchronization framework shows improve-
ments over the manual implementation of the motivating example. This shows that
the adaptions done to improve weaknesses from the motivating example had a positive
impact on the performance.

The experiment of Researchr contains two parts, the partitioning and the scalabil-
ity. The partitioning for Researchr shows that it is possible with current approach to
specify useful partitions in the data. In general, the partitioning of such a big database
is problematic. The number of partitions and size of partitions are dependent of each
other. Removing more data from the partitions is a possibility. However, there is a
high chance that this restricts the functionality of the mobile application.

The partitioning of Researchr shows that even highly connected object graphs can
be partitioned with current approach. We discovered two improvement possibilities,
which could have given slightly better results. The first possibility is to make dis-
tinction between restricted and removed properties. It is currently possible to make

117

8. EVALUATION

0 1,000 2,000 3,000 4,000
0

500

1,000

1,500

2,000

partition size(kB)

tim
e(

s)

Bibliography
Journal

ConferenceSeries
User

Person

(a) full synchronization

0 1,000 2,000 3,000 4,000
0

100

200

300

400

500

600

partition size(kB)
tim

e(
s)

Bibliography
Journal

ConferenceSeries
User

Person

(b) second incremental synchronization

Figure 8.18: Results of scalability experiment with existing application Researchr
based on increasing size of partition measured by the sum of the size for each object
in a partition

distinction by overriding the related function, but it would be better to make a setting
of this possibility. Secondly, is an improved way to specify related entities. The so-
lution allows to specify inclusion and is similar for all inputs. Nevertheless, there is a
chance that the same object has a different roll in other partitions. An option is that the
function can decide on possible parameters to include properties. Another adaption
would be that you want to specify that an object is related. However, it should not use
the related objects of that object.

The results of Researchr show a scalability issue. Only smaller partitions are us-
able, the bigger partitions require such amount of time that it conflicts greatly with
the usability. The application is already usable when it is synchronizing, even so, the
time required for synchronization of a partition is in our opinion to high. Of course
one of the causes is the size of the partitions. Nevertheless, there are other factors that
produce the problem. A basic problem is the time spend on queries for loading objects
on the server. This increased the partition calculation time greatly. The time spend
on queries is problematic for each synchronization approach, even the simple job of
making JSON objects of all the data in the system was not feasible within the normal
time restrictions. The increasing size of the database from YellowGrass to Researchr
shows that there is an issue of scalability for WebDSL. The increase in database size
was not equal to increase for the time spent on loading objects. The Mobl application
shows a similar effect. The mobile application cannot deal with a large number of
objects and this is mainly because of the persistence framework used by Mobl, which
we have already discussed in previous experiments.

118

8.5. Summary

The overhead could be reduced by combining the object request into one service.
This would reduce the overhead cost and reduce the server time by a constant fac-
tor, but will put more strain on the mobile application and has negative effect on the
usability for remote application developers.

We have to conclude that the total solution for synchronization including the WebDSL
and Mobl application have a scalability issues in size and complexity of data. It is pos-
sible that big improvements on Mobl and WebDSL persistence allow to re-evaluate the
current approach. A better solution to the problem is a different approach of selecting
data.

8.5 Summary

This chapter evaluates the solution based on the requirements stated in Chapter 4. The
functional requirements are straightforward and easy to confirm. The solution gen-
erates a full synchronization framework containing functionality for all three steps in
the process. It contains interfaces for (remote) application developers and application
users. Additionally, the tool supports data restrictions through: property restriction,
object access control and selectable data partitioning.

The non-functional requirements are more complicated to confirm and can be con-
flicting with each other. The following topics are discussed for fulfilling of require-
ments:

• Usability: The interfaces for the users are minimized and simplified where pos-
sible and keeps in mind the additional constraints delivered by mobile devices.

• Scalability: The synchronization requests are heavier than the average page
request. Although it should be no constraint for the amount of mobile devices
due to the limited number of requests needed for synchronization.

• Applicability: The generation supports all possible data models from WebDSL,
but not all possibilities will have a good partitioning in the framework. The
implementation of data partitioning is a general solution for separating data by
relationship. Figure 8.1 shows several situations to cover the weaknesses of the
partitioning approach.

• Adaptability: The current implementation allows some adaptability through
extra WebDSL syntax plus full possibility to adapt functions of the generated
code.

• Security and Robustness: While the solution provides a possibility to spec-
ify access control rules and validation expressions. Both levels of success are
restricted to the effort of the developer to specify those rules.

An experiment is used to evaluate the scalability in data size and complexity for the
framework. The results show a linear relation between time and the number of objects,
edges, entities and the size of objects. The full synchronization can take a considerable
amount of time although this is only required on a clean database and can be done
asynchronously. The incremental approach should allow the further updates to be
much shorter in time.

119

8. EVALUATION

The experiment with YellowGrass shows similar results as the other experiment
and has improved compared to the motivating example for total synchronization of
bigger partitions. The results of the experiment with Researchr show that the solution
is applicable to more complex and bigger applications. On the other hand, it exposes
scalability issues for the total synchronization solution, while the application can be
used in s.

In Chapter 9 shows related work to place the solution in a context. In addition, we
extend the evaluation and discuss possible improvements in future work (Chapter 11).

120

Chapter 9

Related Work

This thesis introduces a data synchronization for web and mobile applications. Cur-
rently, there are several implementations of mobile applications that use some sort
of data sharing gathered from mobile applications. We give an overview on general
approaches used in popular applications and compare them in functionality to the solu-
tion in this. Secondly, we look at existing frameworks that offer data synchronization
solutions for mobile applications.

9.1 Existing Approaches in Popular Applications

There are many applications with different purposes or categories. We can separate five
types of applications when we look at data communication: games, social networks,
information systems, messaging platforms and applications that use files. Each of
those categories have a different purpose roles for data, which requires a different
approach.

Games
In the past games where mainly offline applications that did not share any data. How-
ever, with the increasing quality and quantity of the internet connections the game
development has been shifting to online functionality. The same has been happening
for mobile games. Where even a big share of the single player games share data for
several purposes.

The information shared is often that of the current status of the game. This infor-
mation is stored locally and only synchronized when the internet connection is avail-
able. This allows gamers to play the game when there is temporarily no connection.
On synchronization the server is always correct, which prevents users from cheating
by local data modification.

The biggest difference with the synchronization of this thesis can be found in the
fact that the game data is often small and does not require different representations for
the client and the server.

Social Networks
Social networking is a popular activity, certainly under the younger people. The social
applications allow to create a network of information shared with other users. Each

121

9. RELATED WORK

social network has a different purpose, but in general, the data they use is similar and is
limited to texts, photos and videos. Most of the applications have diverse information.
Nevertheless, the data views can be separated into a three sort of views: latest activity
overview, search functionality and data view pages. Often, the application loads on
start the latest activity to update the overview, the other pages are loaded on request.
The data for the overview is cached locally so you can browse the activities offline.
However, all other functionality requires a connection to gather or send data.

The biggest difference is found in the fact that it requires an internet connection
for most of the functionality. This makes it impossible to use it with longer periods of
no available connectivity.

Information Systems
Many applications offer information to the user for example: latest news or movie de-
tails. They are very diverse in the quantity and the dynamics of the data. This delivers a
range of synchronization approaches. When data is big and often changing there is no
added value in synchronization. On the other hand, there are applications that allow to
synchronize full data, which makes it possible to fully use the application offline. The
information applications have an in between variant of data synchronization. For ex-
ample, news applications often use the activity overview approach of social networks
to load latest news and caches it locally to read it without connection.

There are several data synchronization approaches used by information systems.
The biggest difference is found in the fact that it only requires reading of data and not
the modification aspects of synchronization.

Messaging Platforms
Messaging has always been a popular communication alternative to calling on mobile
phones. This created a market for applications that allowed users to message each other
for free. Those applications extended to not only send text, but also photos, videos,
sounds and location information. The message sending can be seen as a synchroniza-
tion of data between two or more post mobile devices. The server allows sending of
messages without requiring that both devices are connected. This system works like
a mail system where the server has a mailbox for every user and delivers it when it is
connected.

This approach allows creation, but does not allow modifications to already sent
data. Additionally, it has a different architecture namely, the mobile devices have
central role and the server is used as a hub.

File Utilities
File utility applications are in general editors or viewers of various file formats. Those
tools are used on documents that are stored locally. While files can be transferred to
the mobile device through several ways. A popular approach is to use cloud storage
services like dropbox1. Since the storage is big and the application only requires a few
documents it selects the documents that should be synchronized.

The biggest differences with synchronization solution for this thesis can be found
in the data. The cloud storage facilities use a simple model to represent files. This
includes that files do not refer to each other.

1https://www.dropbox.com

122

9.2. Mobile Data Synchronization

9.2 Mobile Data Synchronization

In Chapter 3 we discussed the background of synchronization problem it gives an
overview of different approaches with several examples. This section will describe
various existing approaches from full database solutions up to frameworks for full
data synchronization in mobile applications.

The several approaches presented in the synchronization chapter had their strengths
and weaknesses as summarized in Table 3.5. This shows that the incremental ap-
proaches are more suitable for synchronization with mobile devices. SyncML [31]
was given as an example for such an approach. SyncML is actually just a protocol
developed for unifying several data synchronization approaches. This protocol is only
meant for synchronization layer and should work independent of the data source. It
provides a general solution for synchronization problems, but can be modified on al-
most every aspects. To be independent of the data source, the protocol requires on
synchronization input from the client to deliver the changed data. While this protocol
is more than a decade old it is still widely used for backing up a synchronizing data on
mobile devices. Next to that it has provided a basis for custom synchronization solu-
tions in mobile applications. It is difficult to compare SyncML since there are several
implementations that differ in functionality. Generally, we could say that SyncML is a
broader solution and covers more than just web and mobile application domain. How-
ever, it misses the application awareness, which leads to more implementation effort
for a developer for similar functionality.

Xmiddle[25] is a data synchronization middleware solution for data sharing of
XML data. It uses trees representation, which can have shared subtrees with other
devices. There is no server and the devices can all have different data with shared parts
for different devices. The subtrees are synchronized when the devices are connected
with each other. This is a full application implementation and is based on XML data
storage, which is not optimal for direct access of big data. The middleware is limited
in extra functionality like security and validation.

The tree representation for data synchronization is also used by Syxaw[24]. The
synchronization solution is not based for XML data stores, but for file synchroniza-
tion. Nevertheless, the solution is XML-aware, which meant that when XML files are
synchronized they are merged. This means that it could be used for the same purpose
as Xmiddle. Syxaw provides an interface to share subtrees of the file system with other
devices. It uses a central object provider to access the files for the application, but also
provides extra functionality for the file synchronization. This object provider can be
extended by developers to change for example merge approaches.

Industrial Solutions

The previous solutions are non commercial solutions for synchronization on mobile
devices. On the other hand, there are several solutions used by the industry. This sec-
tion gives an overview of popular synchronization solutions used in industry. One of
those is the Microsoft Sync Framework [1, 6], which provides data and file synchro-
nization for different platforms. The synchronization solution is an extra layer on the
data source. It used extra storage for synchronization metadata. The synchronization
is based on .NET databases however, it allows other sources like RSS feeds as data in-

123

9. RELATED WORK

put. The framework does not force a specific architecture so it can support peer-to-peer
network as well as a client-server approach. The basic synchronization only requires a
few lines of code to specify the synchronization scope and the connection. However,
for most cases you need to customize behavior like conflict resolution. The solution is
quite complete, but it is bound to Microsoft technologies. This makes it hard to cover
the mobile domain for a wide range of devices.

Oracle has already technology for replicating databases on servers. It used this
knowledge for a data synchronization solution for mobile devices as Oracle Database
Mobile Server[3]. It uses a server to communicate synchronization messages between
the central database and mobile clients. The synchronization is a background process
on the mobile devices and separated from the application. It supports SQL lite, which
is a popular lightweight embedded database that can be used on diverse range of mobile
devices. A special feature is automatic synchronization, which is based on condition
to trigger the synchronization. It can also synchronize by manually calling the API.
The synchronization solution is more separated from the application, which comes
with less influence on the actual synchronization process. This makes it harder to have
custom validation and authentication of users.

Mobilink [2, 15] a part of SQL anywhere takes a low-level approach because it
works on the level of the database. Similar to the solution form oracle this database
replication approach runs as a seperate process. The architecture of SQL Anywhere
requires a server (Mobilink) for the synchronization process between a central database
and mobile clients. This architecture enables that it can handle diverse databases and
sources like XML and Excel files. To restrict the data it uses conditions that specify
row and column filters for every table. The users are special entities in the database
for authentication and for user based data filtering.

The previous solutions were based on problems of data replication on data store
level. However, db4o2 delivers a persisting solution for Java and C# and includes an
object database. The database engine abstracts away most of the data storage facility
functionality. The db4o has its own replication framework namely, db4o Replication
System (dRS)[30, 14]. It can be used to synchronize with remote applications includ-
ing mobile variants. The abstraction of the underlying database forces dRS to abstract
on the data storage. The API adds a replicate call for objects to specify that object
needs to be replicated to another device. It is a simple approach that allows high in-
fluence on synchronization. However, it comes at a price that it requires more manual
code to create a more complex solution. The data store abstraction gives the possibility
for more freedom in databases by using Hibernate as an alternative persistence frame-
work. The dRS takes a similar approach to that of the solution of this thesis by having
abstractions on the problem domain. Nevertheless, it misses abstractions on complex
topics like automatic data selection.

Burckhardt et al. [12] describe that the consistency of shared data with high num-
ber of mobile devices is challenging. Therefore, they propose a different approach on
data synchronization for mobile applications. Their solution starts with simplifying the
possible data to a restricted set of cloud types. Every client keeps a log of changes on
data. On synchronization the clients sends those change logs to the server. The server
combines the change logs into a graph of changes and solves conflicts where encoun-

2http://db4o.com

124

http://db4o.com

9.2. Mobile Data Synchronization

tered. When combined the server sends the values that have been changed since the
last synchronization. This makes the mobile device up-to-date, which means that it can
start with a clean log. This reduces the data storage on the clients. The server keeps
all change logs in a graph. When new information is introduced by other clients it can
recalculate the values. This solution is comparable to the newer source code version
solutions like git3 and mecurial4. Those version control systems uses graphs to keep
track of changes and can be used to combine other versions. This solution is special-
ized for the use of mobile applications. However, it is questionable if the simplification
of types can be combined to make it usable in combination with web applications.

3http://git-scm.com
4http://mercurial.selenic.com

125

http://git-scm.com
http://mercurial.selenic.com

Chapter 10

Summary and Conclusions

This chapter contains a summarization (Section 10.1) of this thesis and the conclusions
based on the research questions in Section 10.2. The last part of this chapter states the
software contributions in Section 10.3.

10.1 Summary

The thesis consists of three parts: Analysis and Requirements, Motivating Example
and Final solution. Each are discussed separately in the continuation of this section.

Analysis and Requirements

Chapter 2 introduces and analyzes the popular development domains of web and mo-
bile applications to find characteristics that influences the synchronization process.
The hardware limitations of mobile devices are part of the context and constrain the
possible synchronization approaches. It describes the three different areas where it dif-
fers the most compared to conventional software, namely: intrinsic properties, stake-
holders and discipline variety. The chapter contains an introduction to the target lan-
guages WebDSL and Mobl. Both are DSLs written in Spoofax and include separation
of concerns by sublanguages. The target languages could be substituted with other
languages. However, the selected languages deliver an advantage by additional ab-
stractions over the domain.

Synchronization is a well known and researched subject in different domains like
database replication and source code version control. Chapter 3 analyzes the existing
solutions and knowledge of the synchronization problem to require insight for a solu-
tion. Synchronization can be separated into three stages: identification, propagation,
and consistency detection and resolution of updates. The solutions for synchronization
problems can be separated into three categories:

• Wholesale (Figure 3.2): Full transfer of data to calculate differences.

• Mathematical (Figure 3.3): Solutions for the set reconciliation problem mapped
to synchronization domain.

• Incremental (Figure 3.4): only sends updates that are calculated locally based
on meta data in objects.

127

10. SUMMARY AND CONCLUSIONS

The known solutions have each their advantages and disadvantages, which are sum-
marized in Table 3.5.

The analysis of the synchronization, web and mobile domain leads to a list of re-
quirements that are stated in Chapter 4. Those requirements are used as guideline
for development and validation of the motivating example and final solution. The
functional requirements describe a generated synchronization framework based on the
source code of web application. It should contain interfaces for (remote) application
developers and application users. Additionally, it must be possible to synchronize par-
tial data for the mobile domain requires that does not allow the huge amounts of data.
The non-functional requirements state that the solution should consider the follow-
ing topics as important: usability, scalability, applicability, adaptability, security and
robustness.

Motivating Example

The application YellowGrass Mobl is used as motivating example to gather practical
insight in addition to the information discovered during the analysis of the domains.
The example serves supplementary goal of delivering code that can be used for tem-
plates in the code generation of the final solution. Chapter 5 describes the architecture
design and the interesting implementation details of the example, wich is a manu-
ally implemented data synchronization solution between WebDSL and Mobl variant
of YellowGrass. The evaluation shows that much of time is spend on the mobile client
and for better results it should reduce calculations by offloading it to the server.

Final Solution

The final solution is based on the analysis of the domains and the evaluation of the
motivating example. The solution includes an additional layer of abstraction, which
is generation of the framework. This code generation is based on the source file of
the web application. The solution generates additional code for WebDSL and Mobl to
create a synchronization framework. Chapter 6 describes the architecture design of the
solution, which started from the motivating example and evolved into the final solution.
The synchronization framework contains a data browser as an initial GUI. Security in
an important factor for web systems and requires extra attention when extending the
application. Therefore, we included access control on objects into the framework,
which creates a dynamic security system for the data based on current principal.

The highlights of the implementation details are explained in Chapter 7. The gen-
eration is mainly based on templates in combination with entity information. Model-
to-model transformation is an exception on the template based approach and is based
on mapping of types from WebDSL to Mobl (Section 7.2.1). One of the more inter-
esting topics is an explanation of the partitioning approaches, which is based on object
relations and is described in Section 7.1.2. The solution covers an approach that is
can be used with different target languages. Nevertheless, there are other problems
that were encountered in the process, which are language specific. Examples of addi-
tional limitations specific to the target languages include: no support for hierarchy in
data model, collection properties require inverse annotations and automatic tracking of
status for objects.

128

10.2. Conclusions

Chapter 8 contains the evaluation of the solution based on the requirements listed
in the similar named chapter. The functional requirements are covered with follow-
ing description. The solution generates a full synchronization framework containing
functionality for all three steps in the process. It contains interfaces for (remote) appli-
cation developers and application users. In addition, the tool supports data restrictions
through: property restriction, object access control and selectable data partitioning.

The evaluation is extended with an experiment, to test the scalability of the frame-
work based on various parameters to increase the size and complexity of data. The
results show a linear relation between time and the number of objects, edges, entities
and the size of objects. The full synchronization takes a considerable amount of time,
nevertheless the incremental update reduce the time to a tolerable level. Second part
of the experiment was applied on existing applications. The results on YellowGrass
showed some improvement compared to the motivating example. Researchr exposed
scalability problems in synchronization time with bigger applications.

10.2 Conclusions

Research Question A How do existing synchronizations solutions apply to the
domain of web and mobile applications?

Synchronizations is a well-known solution used in several problem domains, where
several of those include extensive research. The current knowledge that the synchro-
nization approach used depends on the domain, which is in this case web and mobile
applications. Chapter 2 analyzes both domains and explains the differences between
conservative, web and mobile application development.

The existing approaches described in Chapter 3 shows examples of implementa-
tions that are used in the domain of mobile devices. The incremental solutions and
in particular the timestamp versioning and the changelog are good applicable to the
domain of web and mobile applications. However, the existing solutions lack some
specialization to be used in practice. The next paragraphs will explain the differences
that need to be solved.

The interesting software related topics that introduce extra complexity are: data
model, interface and security. Data is an important part of synchronization and uses
a model for interpretation. The domain of web and mobile differ in the form that
often the mobile application uses a simpler representation for the same type of data.
The different representation implies that the synchronization requires transformations
steps between different formats so that both applications can use the same data.

Synchronization requires an interface for communication between the clients. Syn-
chronization solutions often have their own implementation of communication layer
that is used for direct communication with remote hosts. Web applications have their
own standard for communication layer, namely: webservices. The difficulty intro-
duced with webservices is that they are open accessible for the world. They could
be secured to only accept certain applications. However, it is more common that the
services are open for other applications as well.

129

10. SUMMARY AND CONCLUSIONS

Web applications are open and accessible for everyone and contain data from all
the users of the system. This amplifies the need for a good security measurements
compared to conventional software. The data synchronization would extend the web
application and allows access to require data and possibility to modify data. This gives
additional entry point that should be protected against erroneous input and restrict
access based on user rights.

The hardware for web applications are one or multiple servers that serve the web
application. Those servers are quite powerful and should not restrict the calculation
or space that is needed for synchronization. Nevertheless, they should deal with many
requests. This demands two properties of a synchronization solution: It should be non
blocking to allow other page or service requests. It should be scalable in the form that
it can handle synchronization for many mobile clients.

The mobile application runs on mobile devices which differ much in several hard-
ware specifications. The synchronization should be possible on wide range of devices
so it should assume low hardware specifications. The synchronization is mostly con-
strained by the connectivity, available memory and computation power. The connec-
tion on mobile devices delivers two problems:

• The server is not always available, meaning that the synchronization should al-
low that it can work even with gaps of disconnection.

• The connection is slow and expensive, meaning that the synchronization should
reduce the amount of data that is communicated.

The available amount of memory on mobile applications is limited to a small share of
the space on the device. Therefore, it cannot handle the amount of data that is used
for the database from the web application. Simplification and reduction of objects is
necessary to make synchronization feasible for a mobile platform. The computation
on mobile devices is slower and less powerful than average computers, which implies
that it cannot be used for expensive computations.

Research Question B How can we automate the creation of incremental data
synchronization between web and mobile applications?

Chapter 6 and Chapter 7 describe a solution that generates an incremental data syn-
chronization framework. The generation mostly contains of templates that are filled
with application information. This means that the solution is based on the source of
the web application and requires the following information: entities, properties, type
information, security rules, entry point, property restriction.

A complete synchronization solution requires implementation of: detection of up-
dates, propagation of updates, and detection and resolution of inconsistencies. In-
cremental updates are required for a usable solution in mobile and web applications.
The incremental approach requires additional information in the detection to discover
updates in specific time range.

130

10.2. Conclusions

The synchronization algorithm is part of the framework, which at least should
contain the following components in addition to the algorithm:

• A (generated) data model for the mobile client to interpret data on mobile de-
vices

• Mappers to transform objects and updates to (de)serialized forms

• A Communication layer to propagate updates to remote devices

The base components should be extended with the following components to fully sat-
isfy the demands:

• Access Control to secure the synchronization framework based on user privi-
leges

• Authentication is required to use the full possibilities of the access control sys-
tem

• Object Validation to improve inconsistency detection of updates

• Partitioning functions for partial data synchronization

• Integration functions to reduce interaction and improve usability

Research Question C How can we optimize a synchronization algorithm to use
a minimal amount of computation on mobile devices?

The first question already encountered the restrictions of the mobile devices. To in-
crease the usability of the synchronization framework it should focus on dealing with
the restrictions. Memory and connectivity are hard restrictions which cannot be solved
by software. Instead, they should be considered as environment of the problem. Com-
putation on the other hand is much more flexible, since the work can be calculated
remotely and then be used locally.

This requires from the synchronization that most of the work is done on the server
to reduce load for devices. The first step in synchronization is the identification of up-
dates. This calculation depends on which sort of synchronization solution is used. The
only approach that allows to offload this computation is wholesale, since it requires the
server to have all data from the remote to calculate the differences. The incremental
solutions only require a small amount of computation to find updates and can be for-
mulated into database queries. Finding updates on the server requires information of
the status of objects on the mobile device. Sending version information for all objects
must be prevented to reduce communication cost.

Propagation of updates is a process of sending the updates to the other client.
For mobile devices this includes sending the local changes and persisting the remote
changes. The computation seems to be minimal, but actually requires some amount of
computation for mapping to different data representation. The full mapping cannot be
calculated on the server side, since it has to obey the format of the webservice protocol.
The possible reduction can be found in using a protocol with data representation close
to that of the mobile application.

131

10. SUMMARY AND CONCLUSIONS

The last step for synchronization is detection and resolution of inconsistencies
in updates. Detection and resolution should always be done to prevent an incorrect
database on the server. The reason to calculate this on the server is that mobile clients
cannot be trusted. Resolution for those inconsistencies are also required on the mobile
application, which prevents that incorrect data is kept in the system. Including detec-
tion and resolution results in the feedback from the server would prevent that mobile
clients need local detection and resolution calculations.

10.3 Software Contributions

In addition to the conclusion on the research questions this thesis contains the three
following main software contributions:

WebDSL extension: generating data synchronization frameworks

The first technical contribution is an extension to WebDSL that is able to generate a
synchronization framework for Mobl (and possible other remote) application, based on
the source code of the web application. The framework contains the following special
functionality:

• A (restricted) representative model of the WebDSL application in Mobl

• Mapper functions to transform updates to several representations

• Keeping track of changed objects for incremental updates

• Automatic Data partitioning for selective synchronization

• Validation of updates by model validation, preventing data inconsistencies

• Access control for: read, create and modify restrictions on object level

• Additional functionality for easy integration within the WebDSL and Mobl ap-
plication

Data browser

The fourth addition is a generated data browser for the Mobl application. It uses the
data model extracted for the synchronization to generate a view for every entity. A de-
veloper can use those views to display objects and edit simple type properties. Buttons
are added for properties that refer to other objects to browse through the local data.
This extension is meant as a quick start for developing a mobile application.

132

10.3. Software Contributions

Remote device authentication module

The last additional feature of the contributions is an additional module for the WebDSL
application that allows remote devices to authenticate with the server using a device
keys instead of a password. This allows more secure authentication and possibility
to de-authenticate devices remotely without changing the password. This module is
required for use of full functionality of the framework and also contains a Mobl mod-
ule. However, it can be used separately for other authentication purposed with remote
devices.

133

Chapter 11

Future Work

This chapter contains interesting future work related to the solution of this thesis and
can be separated into the following topics: fine grained synchronization, automatic
partitioning and total solution.

11.1 Fine Grained Synchronization Framework

The current solution in this thesis is mainly based on the level of objects. However,
this approach has its weaknesses namely:

• Updates contain unnecessary data, so can be reduced in size.

• Updates might trigger false positives in form of conflicts, since updates are done
on different properties.

• Access control only allows total restriction of objects, instead of partial proper-
ties.

• Small modification for property requires rewrite of total function for entity.

• Applications with high amount of object have to deal with big or many parti-
tions.

The following paragraphs describe possible approaches which can be used to improve
or solve those weaknesses.

Reduced Updates
The current implementation traces updates with extra properties tracking the status on
object, by flags or timestamps (Section 7.1.1). This allows only status for objects and
does not tell which properties are changed. To reduce the size of updates and remove
unnecessary data it is required to track status on properties.

A possible solution is one that is used in the synchronization solution by Burck-
hardt et al. [12]. Their solution is based on keeping track of changes instead of status
on objects or values. The weakness is that it misses grouping of updates and it is ex-
pensive in space to keep multiple versions of properties. This approach could work
on mobile devices where the log is short, since it can be cleared after synchronization.
However, the server cannot clear this log after synchronization. It can only be cleaned
when it knows that all devices are up to a certain point in the log.

135

11. FUTURE WORK

Another solution is that of status tracking on the level of property values instead
of objects. This approach has a higher initial overhead for objects, but is constant in
relation to the amount of changes. This delivers a more scalable approach for client
and server.

Improved Inconsistency Detection
The solution provides inconsistency checking based on the versions of the current
object in the database and in the update (Section 7.1.1). This is a pessimistic approach
because there is a possibility that the changes do not interfere with each other. When
keeping track of local changes it is possible to compare versions of the property values
to detect inconsistencies. This will decrease the number of false positives and therefore
increase the user friendliness of the framework.

Property Restriction with Access Control
The access control for the synchronization framework allows to write boolean ex-
pressions that define rules to restrict data access based on the current principal (Sec-
tion 7.2.3). However, in practice it is not always that strict that a user is restricted for
the whole object. A better way is to use a restricted set of properties. The last sentence
already gives away the core of a possible solution. This would be an modification that
returns a set of allowed (or restricted) properties instead of using a boolean value.

Fine Grained Adaptation of Generation
The WebDSL source is used as input for the code generation. Some additional syntax
was added to adapt the generated functions (Section 6.4.2). This does not completely
cover the possible adaptations that can be used within the synchronization framework.
In the current implementation those functions can be overwritten. However, this re-
quires implementation for the whole entity and includes boilerplate code. Possible
extensions to the WebDSL compiler can be added to specify modifications on property
level. Currently, for a solution we would focus on the mapping of property values to
and from (de)serialized form. Nevertheless, there could be other adaptions for other
functions like related entity calculation.

Fine Grained Partitioning
The evaluation with Researchr showed that there is a scalability issue. Most of the
time is spent on persisting the object to the local database. Reducing the partition sizes
would be a good approach. Certainly, when you take into consideration that current
mobile applications also try to limit the amount of objects. The current solution allows
to define smaller partitions, but this will create a high amount of partitions. This is not
really user friendly, since it increases the time to synchronize the list of partitions and
the easiness of selecting the partitions.

A possible approach is on-demand requesting of objects. There are two disadvan-
tages to this approach, which influences the usability.

• Offline Capability: When the mobile application is offline you can only use
available objects. This effect is the same for the current solution. However,
the current solution gives the possibility to easily request a set of objects before
loosing connectivity. While the on-demand approach would be limited to the
objects that have been used before.

136

11.2. Improved Data Partitioning

• Reactivity: The mobile application has to wait for the object to be returned
from the server. The time required for an single object from the sever can in-
crease to more than 10 seconds. Even if the would be around halve a second the
interactivity will be dramatic for a user.

11.2 Improved Data Partitioning

The data partitioning used in this thesis, based on object relations, is not optimal for all
situations. The following problems are encountered with the use of current solution:

• The automatic partitioning is nontrivial and could deliver non optimal divisions.

• The partition calculation is expensive compared to web page request and is cal-
culated for every synchronization request.

The following paragraphs suggest possible approaches to counter the problems that
have been described above.

Partitioning Based on Run-Time Information
The current partition is based related on the information in the source code of the web
application. This information is limited to the entities and properties plus some extra
information delivered by the WebDSL extension (Section 7.1.2). The problem is that
the source code only gives information how entities relate. However, the partitioning
should be based on the object level information. This is in some situations problematic
for the related entity calculation (Figure 8.1). The developer can tweak the behavior of
the calculation although it requires from him to have good insight in the object graph
of the application.

It would be preferable if this calculation or tweaks could be done automatically.
This might be possible if it is calculated at run-time, where it can use the object infor-
mation available that is available. Additionally, it could use other information like the
usage of relations to determine weights for edges. It is not clear if this can be tweaked
on the run-time or that it requires modification of the code.

Caching of Related Entities
Every request for updates in the synchronization framework requires to gather all ob-
jects of a partition, which is done using the calculation of the related entities (Sec-
tion 7.1.2). It is a relatively expensive calculation and is executed often, certainly
when increasing the users of the mobile application.

Another approach of this calculation is to store the value as set of entities as prop-
erty of an object. It needs to recalculate the value when the object has changed one of
its outgoing edges. It is much more efficient to calculate on change instead on request
when the application deals with many users. However, there is a problem that the re-
lated entities calculation is based on the objects of the outgoing edges. This means
that change of an object should also trigger calculation of related entities for objects
that have outgoing edges to the current object. This requires reverse information for
incoming edges, which delivers extra overhead. A similar problem occurs for calcula-
tion of search indexes for objects. This indexing problem is solved in Hibernate Search
[11].

137

11. FUTURE WORK

11.3 Total Solution

The motivation for this thesis is based on the fact that many web applications also have
a mobile variant, which creates code duplication. This synchronization framework is
a first step to a possible more general goal of simplification of creation of mobile
application for web applications. The next step would be to generate more of the
mobile application based on the source code of the web applications. We can separate
two sorts of code that is lacking in the generation: Action and UI code. The next
paragraph will discuss those two topics and what are the obstacles.

Action Code
It seems an interesting approach to do similar calculations of the web application in
the mobile variant. This is most likely limited to the calculations that are simple and
do not require a big share of the database to be available. Code like methods could
be interesting for functionality in the application. It would be an improvement to have
functions for validation expressions and access control rules to enhance the synchro-
nization framework. Those functions could be used to validate before the propagation
and reduce the number of errors that could possibly be returned. This approach has as
restriction that it can not calculate the collisions with possible other (remote) updates.

A first step that could be done to extend the synchronization framework is to port
the validate expressions. This requires that the expressions in validation rules are trans-
formed to Mobl equivalent variants. The syntax of both languages are quite similar and
would seem to be fairly easy to adapt. This transformation will run into problems be-
cause it is missing the functions that can be called within the expression. Extending
the transformation to include possible methods and functions will expose the missing
of library functionality. Those should be implemented manually to cover those pos-
sibilities. Assuming that this is possible it would seem to be fine. Nevertheless the
predicate that the syntax similarity implies semantic equality is fragile. So all trans-
formations require to preserve semantics to be sure that this would work. Related to
this topic is PIL. PIL is a language with basic building programming building blocks
and transformation to other languages. This enables generation of implementations for
multiple target languages with one code base. [21].

UI code
The solution of this thesis generates a data browser to have a simple UI. The generated
UI would be much more usable if it would use the existing templates to generate views
for the mobile application. UI transformation triggers some different difficulties as
explained in the next paragraphs.

The code that is used for UI is a different perspective than that of action code.
Where action code wants to preserver semantics of the code, UI is more concerned
about displaying the same information in an optimal way for the target device. The
target devices for mobile and web applications differ in screen size and input hardware.
This actually requires a paradigm shift to display similar information.

Simple input and output templates could be mappable from a web variant to one
that can be used for mobile devices, since they are simple and do not require much
knowledge about the other view elements. On the other hand, the bigger views, which
are combinations of multiple templates have to deal with reordering of elements or

138

11.3. Total Solution

even splitting up in separate views. This is often a form of taste of the users and de-
velopers, which is a subjective interpretation. It seems that because of subjectivity, the
best case scenario could be delivered using heuristics that could guess a transformation
on views. The generation of some basic templates might already reduce workload and
duplication to a minimum.

139

Bibliography

[1] Introduction to microsoft sync framework. http://msdn.microsoft.com/

en-us/sync/bb821992.aspx, 2009.

[2] Mobilink: Getting started. http://dcx.sybase.com/1200/en/pdf/

mlstart12.pdf, 2010.

[3] Oracle database mobile server: Developers guide. http://docs.oracle.com/
cd/E35865_01/doc.1120/e29740.pdf, 2012.

[4] Cisco visual networking index: Global mobile data traffic forecast up-
date, 2012Ű2017. http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html, 2013.

[5] February 2013 web server survey. http://netcraft.com, February 2013.

[6] Introduction to sync framework database synchronization. http://msdn.

microsoft.com/en-us/sync/bb887608, July 2013.

[7] Sachin Agarwal, David Starobinski, and Ari Trachtenberg. On the scalability
of data synchronization protocols for pdas and mobile devices. Network, IEEE,
16(4):22–28, 2002.

[8] Sachin Kumar Agarwal. Efficient reconciliation of unstructured and structured
data over networks. PhD thesis, Boston University, Boston, MA, USA, 2006.
AAI3186484.

[9] Open Mobile Alliance. Syncml specifications. http://technical.

openmobilealliance.org/technical/syncmlindex.aspx.

[10] Appcelerator. Naive vs. html5 mobile app development: Which op-
tion is best? http://www.appcelerator.com.s3.amazonaws.com/pdf/

appcelerator-whitepaper-native-html5.pdf, 2012.

[11] Emmanuel Bernard, Hardy Ferentschik, Gustavo Fernandes, Sanne Grinovero,
and Nabeel Ali Memon. Hibernate search, apache luceneŹ integration : Ref-
erence guide 4.3.0.final. http://docs.jboss.org/hibernate/search/4.3/

reference/en-US/pdf/hibernate_search_reference.pdf, 2013.

141

http://msdn.microsoft.com/en-us/sync/bb821992.aspx
http://msdn.microsoft.com/en-us/sync/bb821992.aspx
http://dcx.sybase.com/1200/en/pdf/mlstart12.pdf
http://dcx.sybase.com/1200/en/pdf/mlstart12.pdf
http://docs.oracle.com/cd/E35865_01/doc.1120/e29740.pdf
http://docs.oracle.com/cd/E35865_01/doc.1120/e29740.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://netcraft.com
http://msdn.microsoft.com/en-us/sync/bb887608
http://msdn.microsoft.com/en-us/sync/bb887608
http://technical.openmobilealliance.org/technical/syncmlindex.aspx
http://technical.openmobilealliance.org/technical/syncmlindex.aspx
http://www.appcelerator.com.s3.amazonaws.com/pdf/appcelerator-whitepaper-native-html5.pdf
http://www.appcelerator.com.s3.amazonaws.com/pdf/appcelerator-whitepaper-native-html5.pdf
http://docs.jboss.org/hibernate/search/4.3/reference/en-US/pdf/hibernate_search_reference.pdf
http://docs.jboss.org/hibernate/search/4.3/reference/en-US/pdf/hibernate_search_reference.pdf

BIBLIOGRAPHY

[12] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P Wood.
Cloud types for eventual consistency. In ECOOP 2012–Object-Oriented Pro-
gramming, pages 283–307. Springer, 2012.

[13] Todd Ekenstam, Charles Matheny, Peter L. Reiher, and Gerald J. Popek. The ben-
gal database replication system. Distributed and Parallel Databases, 9(3):187–
210, 2001.

[14] Eric Falsken. Enabling the mobile enterprise with db4o. http://db4o.com/

about/productinformation/whitepapers/db4o%20Whitepaper%20-%

20Enabling%20the%20Mobile%20Enterprise%20with%20db4o.pdf, 2006.

[15] Eric Giguère. Mobile data management: Challenges of wireless and offline data
access. In Data Engineering, 2001. Proceedings. 17th International Conference
on, pages 227–228. IEEE, 2001.

[16] Google. Managing html5 offline storage. https://developers.google.com/
chrome/whitepapers/storage, 2012.

[17] Danny M. Groenewegen, Zef Hemel, and Eelco Visser. Separation of concerns
and linguistic integration in WebDSL. IEEE Software, 27(5):31–37, 2010.

[18] Danny M. Groenewegen and Eelco Visser. Integration of data validation and user
interface concerns in a dsl for web applications. Software and Systems Modeling,
12(1):35–52, February 2013.

[19] Zef Hemel, Danny M. Groenewegen, Lennart C. L. Kats, and Eelco Visser. Static
consistency checking of web applications with WebDSL. Journal of Symbolic
Computation, 46(2):150–182, 2011.

[20] Zef Hemel, Lennart C. L. Kats, Danny M. Groenewegen, and Eelco Visser. Code
generation by model transformation: a case study in transformation modularity.
Software and Systems Modeling, 9(3):375–402, June 2010.

[21] Zef Hemel and Eelco Visser. PIL: A platform independent language for retar-
getable DSLs. In Mark G. J. van den Brand, Dragan Gasevic, and Jeffrey G.
Gray, editors, Software Language Engineering, Second International Confer-
ence, SLE 2009, volume 5969 of Lecture Notes in Computer Science, pages 224–
243. Springer, 2009.

[22] Zef Hemel and Eelco Visser. Declaratively programming the mobile web with
mobl. In Kathleen Fisher and Cristina Videira Lopes, editors, Proceedings of the
2011 ACM international conference on Object oriented programming systems
languages and applications, OOPSLA 2011, pages 695–712, New York, NY,
USA, 2011. ACM.

[23] Stephen Kost. An Introduction to SQL Injection Attacks for Oracle Developers.
Integrigy Corporation, 2004.

[24] Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Syxaw: Data syn-
chronization middleware for the mobile web. Mobile Networks and Applications,
14(5):661–676, 2009.

142

http://db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-%20Enabling%20the%20Mobile%20Enterprise%20with%20db4o.pdf
http://db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-%20Enabling%20the%20Mobile%20Enterprise%20with%20db4o.pdf
http://db4o.com/about/productinformation/whitepapers/db4o%20Whitepaper%20-%20Enabling%20the%20Mobile%20Enterprise%20with%20db4o.pdf
https://developers.google.com/chrome/whitepapers/storage
https://developers.google.com/chrome/whitepapers/storage

Bibliography

[25] Cecilia Mascolo, Licia Capra, Stefanos Zachariadis, and Wolfgang Emmerich.
Xmiddle: a data-sharing middleware for mobile computing. Wireless Personal
Communications, 21(1):77–103, 2002.

[26] Julie McKeehan and Neil Rhodes. Palm OS programming: the developer’s guide,
chapter 14-16. O’Reilly Media, Incorporated, 2001.

[27] Emilia Mendes, Nile Mosley, and Steve Counsell. The need for web engineering:
An introduction. Web Engineering, pages 1–27, 2006.

[28] Jakob Nielsen and JoAnn T Hackos. Usability engineering, volume 125184069.
Academic press San Diego, 1993.

[29] Nokia. Managing mobility: An it perspective. http://www.majorcities.eu/
generaldocuments/pdf/nokia_managing_mobility.pdf, 2006.

[30] Jim Paterson and Stefan Edlich. The definitive guide to db4o. Apress, 2006.

[31] Ligang Ren and Junde Song. Data synchronization in the mobile internet. In
Computer Supported Cooperative Work in Design, 2002. The 7th International
Conference on, pages 95–98. IEEE, 2002.

[32] Ari Trachtenberg, David Starobinski, and Sachin Agarwal. Fast pda synchroniza-
tion using characteristic polynomial interpolation. In INFOCOM 2002. Twenty-
First Annual Joint Conference of the IEEE Computer and Communications Soci-
eties. Proceedings. IEEE, volume 3, pages 1510–1519. IEEE, 2002.

[33] Elmer van Chastelet. A domain-specific language for internal site search. Mas-
ter’s thesis, TU Delft, August 2013.

[34] Eelco Visser. WebDSL: A case study in domain-specific language engineering. In
Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative and Transfor-
mational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, volume 5235 of Lecture Notes in Computer Science, pages 291–
373, Braga, Portugal, 2007. Springer.

[35] Eelco Visser. Performing systematic literature reviews with researchr: Tool
demonstration. Technical Report TUD-SERG-2010-010, Software Engineering
Research Group, Delft University of Technology, Delft, The Netherlands, May
2010.

[36] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann Mats He-
lander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engi-
neering: Designing, Implementing and Using Domain-Specific Languages. dsl-
book.org, 2013. http://dslbook.org.

[37] W3C. A vocabulary and associated apis for html and xhtml: W3c can-
didate recommendation 17 december 2012. http://www.w3.org/TR/2012/

CR-html5-20121217/browsers.html#offline, 2012.

[38] George White. Web sql database gotchas. http://cantina.co/2010/10/08/
web-sql-database-gotchas/, 2010.

143

http://www.majorcities.eu/generaldocuments/pdf/nokia_managing_mobility.pdf
http://www.majorcities.eu/generaldocuments/pdf/nokia_managing_mobility.pdf
http://www.w3.org/TR/2012/CR-html5-20121217/browsers.html#offline
http://www.w3.org/TR/2012/CR-html5-20121217/browsers.html#offline
http://cantina.co/2010/10/08/web-sql-database-gotchas/
http://cantina.co/2010/10/08/web-sql-database-gotchas/

Appendix A

WebService Data Types

This table displays all non default JSON data types that are used by the generated
webservices for synchronization.

Type Fieldname Type Description

UserCredentials

username String username of current actor

pw String password of current actor

devicename String unique description for device

DeviceKey key String unique key to authenticate device

DeviceCredentials

username String username of current actor

devicename String unique description for device

devicekey String unique key to authenticate device

EntityListObject
name String type of the objects in the list

value EntityObject* list of objects

PartitionListObject
name String type of the TopLevelEntity

value PartitionObject* list of partition objects

PartitionObject
id String identifier for object representing partition

lastSynced Long timestamp of previous synchronization of partition

ErrorObject

ent String type of object

id String identifier to represent object where errors occurred on

errors ErrorTypeObject* list of errors occurred on entity

restore1 EntityObject server representation of object to fix local object

ErrorTypeObject
message String error message

type String level of the error

EntityObject Propertyname* PropertyType JSON representation of entity object

* = zero or more
1Only available in ErrorObjects of Send Modified Objects service.

Table A.1: The specification of types used by the webservices of the generated code

145

Appendix B

Pseudo Code Synchronization
Algorithm

This Chapter contains the pseudo code for the synchronization algorithm used in the
final solution.

147

B. PSEUDO CODE SYNCHRONIZATION ALGORITHM

function synchronizeFindNewObjects()
updates := new JSONArray()
[[// blok is replicated for each entity in data Model
objectlist := JSONObject()
objectlist.name := "<ENTITY>"
newObjects := JSONArray()
foreach object in <ENTITY>.all() where object.created
newObjects.add(object.toJSON)

objectlist.value := newObjects
updates.put(objectlist)

]]
return updates

(a) Mobile

function synchronizeFindUpdatesFor<ENTITY>(partitionList)
updates := new Set()
foreach objectlist in partitionList
switch objectlist.name
[[// blok is replicated for each TopLevelEntity in the data Model
case "<TOPLEVELENTITY>":
foreach topObject in objectlist.value
topLevelObject := loadObject(topObject.id, "<TOPLEVELENTITY>")
partition := getAll<ENTITY>ForPartition(topLevelObject)
timestamp := topObject.lastSync
foreach object in partition where object.modified > timestamp
updates.put(object)

]]
return updates

(b) Server

<X> = placeholder for entity name

Figure B.1: Pseudocode for identification in generated synchronization framework

function synchronize()
timestamp := getTimestamp()
newObjects := synchronizeFindNewObjects()
result := SendNewObjects(newObjects)
modifiedObjects := synchronizeModifiedObjects()
result := sendModifiedObjects(modifiedObjects)
partition := getSelectedPartitions()
[[// blok is replicated for each entity in data Model
updates := getUpdates<ENTITY>(partition)
foreach JSONObject in updates
<ENTITY>.persistJSON(JSONObject)

]]
foreach object in partition
object.lastSync := timestamp

(a) Mobile

function sendModifiedObjects(entityLists)
foreach entityListObject in entityLists
switch entityListObject.name

[[// blok is replicated for each Entity in the data Model
case "<ENTITY>":
foreach object in entityListObject.value
localObject := loadObject(object.id, "<ENTITY>")
edit<ENTITY>Mapper(localObject, object)

]]

(b) Server processing modifications

function sendNewObjects(entityLists)
foreach entityListObject in entityLists
switch entityListObject.name

[[// blok is replicated for each Entity in the data Model
case "<ENTITY>":
foreach object in entityListObject.value
newObject := new <ENTITY>(object.id)
newObject.save()

]]
foreach entityListObject in entityLists
switch entityListObject.name

[[// blok is replicated for each Entity in the data Model
case "<ENTITY>":
foreach object in entityListObject.value
localObject := loadObject(object.id, "<ENTITY>")
new<ENTITY>Mapper(localObject, object)

]]

(c) Server processing creations

function getUpdates<ENTITY>(partitionList)
result := JSONArray()
updates := synchronizeFindUpdatesFor<ENTITY>(partitionList)
foreach object in updates
result.add(object.toJSON())

return result

(d) Server propagating local updates

<X> = placeholder for entity name

Figure B.2: Pseudocode for propagation of updates in generated synchronization
framework

148

1 function sendModifiedObjects(entityLists)
2 var errors := JSONArray()
3 foreach entityListObject in entityLists
4 switch entityListObject.name
5 [[// blok is replicated for each Entity in the data Model
6 case "<ENTITY>":
7 foreach object in entityListObject.value
8 localErrors := JSONArray()
9 localObject := loadObject(object.id, "<ENTITY>")

10 if(object.version >= localObject.version)
11 edit<ENTITY>Mapper(localObject, object, localErrors)
12 foreach error in localObject.validate()
13 localErrors.put(createWarning(error))
14 else
15 localErrors.put(createError("outdated object"))
16 if(localErrors.length > 0)
17 errors.put(createErrorObject(localObject, localErrors))
18
19]]
20 return errors

<X> = placeholder for entity name
createWarning and createErrorObject are functions which transform the input to correct JSON format

Figure B.3: Improved pseudocode for detection of inconsistencies in generated syn-
chronization framework

149

B. PSEUDO CODE SYNCHRONIZATION ALGORITHM

1 function sendModifiedObjects(entityLists)
2 var errors := JSONArray()
3 foreach entityListObject in entityLists
4 switch entityListObject.name
5 [[// blok is replicated for each Entity in the data Model
6 case "<ENTITY>":
7 foreach object in entityListObject.value
8 localErrors := JSONArray()
9 localObject := loadObject(object.id, "<ENTITY>")

10 if(object.version >= localObject.version)
11 edit<ENTITY>Mapper(localObject, object, localErrors)
12 foreach error in localObject.validate()
13 localErrors.put(createWarning(error))
14 else
15 localErrors.put(createError("outdated object"))
16 if(localErrors.length > 0)
17 errors.put(createErrorObject(localObject, localErrors))
18 if (containsError(localErrors))
19 rollbackAndStartNewTransaction();
20]]
21 return errors

<X> = placeholder for entity name
createWarning and createErrorObject are functions which transform the input to correct JSON format

Figure B.4: Improved pseudocode for resolution of inconsistencies in generated syn-
chronization framework

150

1 function synchronize()
2 timestamp := getTimestamp()
3 newObjects := synchronizeFindNewObjects()
4 errors := SendNewObjects(newObjects)
5 clearNew(getIDs(errors))
6 returnErrors(errors)
7 clearNew([])
8 modifiedObjects := synchronizeModifiedObjects()
9 errors := sendModifiedObjects(modifiedObjects)

10 clearDirty(getIDs(errors))
11 returnErrors(errors)
12 restoreObjects(errors)
13 clearDirty([])
14 partition := getSelectedPartitions()
15 [[// blok is replicated for each entity in data Model
16 updates := getUpdates<ENTITY>(partition)
17 foreach JSONObject in updates
18 <ENTITY>.persistJSON(JSONObject)
19]]
20 foreach object in partition
21 object.lastSync := timestamp

<X> = placeholder for entity name
getIDs makes a list of object identifiers of all the objects in the error list.

returnErrors gives the possibility to interact based on the errors, possibly could stop the synchronization.

Figure B.5: Improved pseudocode in mobile application for resolution of inconsisten-
cies in generated synchronization framework

151

B. PSEUDO CODE SYNCHRONIZATION ALGORITHM

1 function clearDirty(excludedObjects)
2 [[// blok is replicated for each Entity in the data Model
3 foreach object in <ENTITY>.all() where object.dirty == true
4 if(object.id not in excludedObjects)
5 object.dirty := false
6]]
7
8 function clearNew(excludedObjects)
9 [[// blok is replicated for each Entity in the data Model

10 foreach object in <ENTITY>.all() where object.created == true
11 if(object.id not in excludedObjects)
12 objecte.delete()
13]]
14
15 function restoreObjects(errors)
16 foreach error in errors
17 if(error.restore)
18 switch error.ent
19 [[// blok is replicated for each Entity in the data Model
20 case "<ENTITY>":
21 <ENTITY>.persistJSON(error.restore)
22]]

<X> = placeholder for entity name

Figure B.6: Pseudocode of resolution functions for mobile application in generated
synchronization framework

1 function getUpdates<ENTITY>(partitionList)
2 result := JSONArray()
3 updates := synchronizeFindUpdatesFor<ENTITY>(partitionList)
4 foreach object in updates where object.mayRead()
5 result.add(object.toJSON())
6 return result

<X> = placeholder for entity name

Figure B.7: Improved pseudocode in mobile application for resolution of inconsisten-
cies in generated synchronization framework

152

1 function getAll<ENTITY>ForTopEntity(TopLevelEntities)
2 todo := new Queue()
3 seen := new Set()
4 found := new Set()
5 foreach topLevelEntity in TopLevelEntities
6 seen.add(topLevelEntity)
7 if(topLevelEntity instanceof <ENTITY>)
8 found.add(topLevelEntity)
9 else

10 related := getSetWhereNotSeen(seen, topLevelEntity.getRelatedEntities())
11 todo.addAll(related)
12 seen.addAll(related)
13 while(todo.length > 0)
14 entity := todo.next()
15 if(entity instanceof <ENTITY>)
16 found.add(entity)
17 if(!isTopLevelEntity(entity))
18 related := getSetWhereNotSeen(seen, entity.getRelatedEntities())
19 todo.addAll(related)
20 seen.addAll(related)
21 return found
22
23 function getSetWhereNotSeen(seen, addition)
24 newObjects := Set()
25 foreach object in addition where object not in seen
26 newObjects.add(object)
27 return newObjects

<X> = placeholder for entity name
isTopLevelEntity is a help function that checks whether an object is a TopLevelEntity

getRelatedEntities method returns a set of objects accumulated for all entities in its properties

Figure B.8: Pseudocode for gathering object of partitions in generated synchronization
framework

153

	Cover Page
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Outline

	Web & Mobile Applications
	Web Applications
	Conventional vs Web Engineering
	Web Application Aspects

	Mobile Applications
	Web vs Mobile Applications
	Hardware limitations
	Development Platforms

	Target Languages
	WebDSL
	Mobl

	Impact on synchronization
	Software influence
	Hardware influence

	Summary

	Data Synchronization
	Theoretical Models
	Wholesale Approach
	Mathematical Approach
	Incremental Approaches
	Comparison

	Activities
	Summary

	Synchronization Framework Requirements
	Functional Requirements
	Data Synchronization
	Interface
	Data restriction
	Code generation

	Non-Functional Requirements
	Usability
	Scalability
	Applicability
	Adaptability
	Security and Robustness

	Summary

	YellowGrass Mobl Motivating Example
	Approach
	YellowGrass
	Functionality
	Graphical User Interface
	Data Model

	Architecture Design
	Context
	Decomposition
	Control Flow

	Implementation Details
	Offline functionality
	Synchronization
	Model-to-Model

	Evaluation
	Shortcomings
	Webservice Data Chunking

	Summary

	Architecture Design
	System Context
	Decomposition
	Generated code
	Compiler extension

	Control Flow
	Generated Code
	Compiler extension

	Information Architecture
	Generated Framework
	Compiler Extension

	Security and Robustness
	Security
	Robustness

	Summary

	Implementation
	Generated Code
	Synchronization
	Related Entities
	Simple views

	Compiler Code
	Model-to-Model
	Authentication
	Access control

	Technical Difficulties
	Model Limitations
	Synchronization Limitations

	Summary

	Evaluation
	Evaluation of Functional Aspects
	Evaluation of non-Functional Aspects
	Experiment in the Scalability of the Synchronization Framework
	Object Level Scalability
	Entity Level Scalability
	Discussion

	Experiment with Existing Web Applications
	Object and Database Sizes
	YellowGrass
	Researchr
	Discussion

	Summary

	Related Work
	Existing Approaches in Popular Applications
	Mobile Data Synchronization

	Summary and Conclusions
	Summary
	Conclusions
	Software Contributions

	Future Work
	Fine Grained Synchronization Framework
	Improved Data Partitioning
	Total Solution

	Bibliography
	WebService Data Types
	Pseudo Code Synchronization Algorithm

