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Abstract

Earthquake prediction has raised many concerns nowadays, due to the massive
loss caused by earthquakes, as well as the significance of accurate forecasting. Lots
of trials have been investigated and experimented but few achieved satisfying results
on short-term prediction (i.e., usually those earthquakes that will happen in three
months). It is cardinal to detect strikes within a few minutes or hours in advance.
In this paper, given thirty seconds of waveform signal before earthquakes happen, we
compare the performances of three different recurrent neural networks, namely vanilla
recurrent neural network (RNN), long short-term memory (LSTM) and bidirectional
LSTM, on earthquake prediction. We choose recurrent neural networks because their
inner structures take advantage of learning the temporal dependencies from time series
sequence. Results show that LSTM has better performance predicting on unseen data
than the other two networks.

Keywords: Earthquake Prediction, Time Series Model, Recurrent Neural Net-
work, Long Short-term Memory, Bidirectional Long Short-term Memory, Over-fitting,
Grid Search

1 Introduction
Earthquake is recognized as one of the most devastating natural disasters on earth, which
usually causes massive loss in human world. Thus, it is essential to predict when and where
they will take place, although it is a challenging task as their intrinsic nature is random [1].

According to [2], widely used earthquake prediction approaches nowadays can be divided
into four categories. The first two approaches were popular with inadequate amount of
earthquake data, i.e., 1) mathematical tools like FDL [3] and 2) precursor-based methods
which retrieve geographical features such as seismic anomalies [4], cloud image [5] and animal
behaviour [6]. Then, machine learning methods came to stage because of more and more
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earthquakes happening, leading to larger datasets. One type of them called artificial neural
network was utilized by Maria Moustra et al. [7] to predict earthquake in 2011. The model
achieved accuracy of almost 70 percent, which was not that decent at the moment. From
the research it was concluded that less number of attributes in the dataset as well as the
class imbalance leaded to the unsatisfying result.

Finally, deep learning approaches have been applied to predict earthquake recently.
Mohsen Yousefzadeh et al. [8] evaluated deep neural network (DNN) model that classi-
fied magnitudes of earthquakes happening in the next seven days using a newly introduced
parameter Fault Density (based on the concept of spatial effect). Result showed that DNN
outperformed other machine learning models with test accuracy around 79% on magnitudes
higher than 8. Combining characteristics of convolutional neural networks (CNN) and re-
current neural networks, Luana Ruiz et al. [9] introduced a network called Graph Con-
volutional Recurrent Neural Network (GCRNN) to identify the epicenters of earthquakes
happened in two months. GCRNN made use of convolutional filter to keep the number of
trained parameters independent of the time sequences taken as input. With considerably
less parameters taken into consideration, GCRNN achieved accuracy around 33% for both
30-seconds wave and 60-seconds wave. Furthermore, a variant of recurrent neural network
called long short-term memory (LSTM) was applied by Q.Wang et al. [2] to learn the
temporal-spatial dependencies of earthquake signal, and thus to predict earthquake. The
accuracy was around 75%, although they took the earthquake data within one year as input.
In addition to that, Parisa Kavianpour et al. [10] proposed a CNN-LSTM combined network
to also learn spatial-temporal dependencies of earthquake signal. They evaluated the model
performance in 9 areas of mainland of China with number of all earthquakes happening in
one month between 1966 and 2021 as input. They also took other earthquake features into
consideration such as latitude and longitude. They compared the performances of several
models such as MLP and SVM and CNN-LSTM achieved the highest score.

Most of the experiments conducted by scientists and researchers in this field considered
to predict earthquakes in a long run (earthquakes that will happen several months or even
several years later). However, our task addressed in this paper expects to identify the
earthquake that will happen in 30 seconds. Regardless of probably inaccurate result of long-
term prediction (not accurate to a single day), 30 seconds gives people time to react and thus,
avoid unimaginable outcome. The research question is How do individual time series model
compare with each other (vanilla RNN, LSTM, Bi-LSTM)? Specifically, we will evaluate
the performance of each model on earthquake prediction using various evaluation metrics
and make comparisons among them.

2 Methodology
In this section, we first introduce the three deep neural networks and motivate why they are
suitable for earthquake prediction task. Then metrics used to evaluate the performances of
the networks will be explained in detail.

2.1 Deep Learning Approach
We introduce the three types of recurrent neural networks and present their strengths re-
spectively for easy comparison.
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2.1.1 Recurrent Neural Network - vanilla RNN

Based on David Rumelhart’s work in 1986 [12], recurrent neural network (RNN) was invented
to be capable of learning temporal dynamic behaviour. It reads data in a sequential manner
(one at a time) and its internal architecture ensures that the prior input is considered when
computing the output of the current input [13]. To be specific, at each step, calculations are
done in an RNN cell to produce the output which is also known as hidden state. The output
is then transmitted to the next cell and combined with the next input in the sequence to
generate the next output, as shown in Figure 1. In short, RNN is able to ’remember’ the
information retrieved from the previous step, and thus learn the sequential features to predict
on unseen data. And that explains why RNN is suitable for earthquake prediction task. With
such chain type architecture, RNN can deal with problems such as handwriting recognition
which converts the sequential information generated when writing on the handwriting device
into text [15] and speech recognition [16].

Figure 1: RNN architecture. Output of the cell will be joined with input of next cell to
generate next output [14]

On the other hand, however, traditional RNN suffers from a drawback called gradient
vanishing/exploding with which the gradient values shrink or blow up during the back-
propagation process, which either prevents the weights from updating or causes the model
to be unstable [17]. Intuitively, vanilla RNN gradually ’lose’ information of the data it
reads in previously. That is why vanilla RNN has an unsatisfying performance on carrying
information from long sequences [18].

2.1.2 Long short-term Memory

To overwhelm the shortcoming of vanilla RNN above-mentioned, long short-term memory
(LSTM) was introduced. As the name suggests, it was designed to hold on to long-term
dependencies. LSTM is a variant of traditional RNN so it is equipped with the functionalities
of vanilla RNN. Its gating mechanism is what sets it apart. Its input gate, forget gate and
output gate together filter out useless information and maintain the gradient values during
training process, and then back-propagate them through layers so that the network can
retain more data for further processing [13]. To be precise, apart from short-term memory,
the forget gate is added to carry long-term memory, as highlighted in Figure 2.
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Figure 2: Inner structure of a LSTM cell. Forget gate mechanism is highlighted. [19]

2.1.3 Bidirectional long short-term memory

Bidirectional long short-term memory (Bi-LSTM) is an extension of LSTM consisting of
two LSTMs which process data forward and backward, respectively, allowing the network to
preserve the information both from the past and future. The network structure of Bi-LSTM
is depicted in Figure 3. Benefiting from the architecture, Bi-LSTM is extremely powerful in
the aspect of context classification and prediction, language translation [20] for example.

Figure 3: Architecture of Bi-LSTM. [23]

2.2 Performance Evaluation Metrics
There are only two possible outcomes of the networks we introduced above: 0 standing
for the prediction that an earthquake will not happen and 1 for the prediction that an
earthquake is expected to happen. For such binary classifier, we primarily choose confusion
matrix as one of the evaluation metrics [21]. The real meaning of each matrix component
in earthquake prediction task is listed.

• True Positives (TP): The number of times the model correctly predicts that an earth-
quake will happen in the next 30 seconds.

• True Negatives (TN): The number of times the model correctly predicts that an earth-
quake will not happen in the next 30 seconds.
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• False Positives (FP): The number of times the model wrongly predicts that an earth-
quake will happen in the next 30 seconds.

• False Negatives (FN): The number of times the model wrongly predicts that an earth-
quake will not happen in the next 30 seconds.

We claim that FN raises the most serious concerns for the reason that an earthquake
will cause massive loss if it is predicted to not happen. Meanwhile, we also pay attention
to FP. It can bother the society with a evacuation drill if the earthquake eventually doesn’t
happen but is predicted to happen. Therefore, among the meaningful evaluation metrics
derived from the confusion matrix, positive predictive value related to FP (PPV, also known
as precision) and true positive rate related to FN (TPR, also known as sensitivity or recall)
are used in our case. They are defined as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
Interpreted from the formulas, precision means the number of earthquakes that do happen
among all that are predicted to happen. Recall means the number of earthquakes that are
predicted to happen among all that do happen. Recall rate is penalized whenever a FN
appears. Similarly, precision rate is penalized whenever a FP appears. Thus, to reduce the
penalty caused by FN and FP, recall and precision are expected to be as high as possible.

To balance the effects precision and recall have on the evaluation, another metric named
f1-score is used. It is defined as the harmonic mean [22] of the precision and recall:

F1 score =
2TP

2TP + FP + FN

Finally, test accuracy is included in the metrics, to directly show the overall performance
of the model on unseen data, given that the dataset is relatively balanced. It is defined as
the percentage of correct predictions for the test data:

Accuracy =
TP + TN

TP + TN + FP + FN

3 Implementation
In this section, we first give details on the procedures taken to process the raw earthquake
data that happened in New Zealand from 1st January 2016 to 31st December 2020 until
obtaining a balanced dataset for training, testing and validation. All the data can be found
on the website of the International Federation of Digital Seismograph Networks (FDSN)
[24]. Next, Details on the architecture design of three deep neural networks mentioned in
Section 2.1 are given. Finally, we present the over-fitting problem encountered during the
implementation and how such issue was solved.

3.1 Data Preprocessing
In this section, we explain the steps taken to build the earthquake dataset. Section 3.1.1
describes the captured area and active stations that detected earthquakes. Section 3.1.2
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explicates how the earthquakes data is downloaded and filtered to obtain a balanced dataset.
Next, Section 3.1.3 gives information about processing seismic waveform and lastly, final
processed dataset is obtained after filtering stations based on a certain criteria in Section
3.1.4

3.1.1 Area of Interest and Stations

First of all, we define a bounding box1 to figure a geographical area in which the earthquakes
happened. A bounding box restrains an area determined by four coordinates (two longitudes
and two latitudes in our case). The area defined gives geographical outline of mainland of
New Zealand. Then we choose 58 stations2 within the area. The map of New Zealand and
geographical distribution of stations can be found in Figure 4.

(a) Coordinates specifying the
Bounding Box for the New Zealand
earthquake dataset

(b) Geographical distribution of
the selected 58 stations

Figure 4: Area and stations defined by the Bounding Box

3.1.2 Earthquake Filtering

Next we request information of all earthquakes that happened in the Bounding Box in the
mentioned time period3. For each earthquake, the available information makes up of time,
latitude, longitude, magnitude and depth measurements. After filtering out the data without
any of these characteristics, we obtain 122465 earthquakes, as depicted in Figure 5.

Furthermore, we plot the distribution of magnitude and depth of the earthquakes filtered,
in Figure 6a and 6b, respectively. As can be seen from the charts, majority earthquakes
happened with magnitude around 2 and with depth less than 200 kilometers. Thus, to leave
out those earthquakes at the tail that might cause the dataset to be imbalanced and to
make sure the earthquakes are comparable between each other, we filter earthquakes with

1https://wiki.openstreetmap.org/wiki/Bounding_Box
2We use ’Station Service’ [24] to obtain information related to stations. Note that we only consider

stations that were active after 2016.
3information related to earthquakes can be downloaded with ’Event Service’ [24].

6



Figure 5: All earthquakes defined by Bounding Box in given time period

magnitude between 1 and 3, and with depth less than 200 kilometers. This step leaves
approximately 100.000 earthquakes.

(a) Distribution of magnitude (b) Distribution of depth

Figure 6: Histograms of magnitude and depth for the gathered earthquakes

3.1.3 Seismic Waveform

We then investigate the seismic waveform [25] of the earthquakes. For each of them, we
retrieve the waveform time series of 30 seconds before the earthquake taking place, measured
along vertical axis and recorded of 100 HZ, i.e. 100 samples per second. Figure 7 shows
the signal detected by three random stations. Next, we normalize the signals to make sure
that they are in the same range for all stations, resulted in Figure 8. Furthermore, data
with high frequency usually contains noise that can be transmitted to the network, which
can negatively influence the result [26] and data with low frequency has risk of lacking
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useful data features. Considering the time and device quality constraint, as well as model
performances, we choose to downsample4 the waveform to 50 HZ, as shown in Figure 9.

Figure 7: Original seismic signal for three random earthquakes

Figure 8: Normalized seismic signal for three random earthquakes

Figure 9: Downsampled seismic signal for three random earthquakes

To obtain normal waveform data, an algorithm is designed to find the maximum interval
between the timestamps that two earthquakes happened. Intervals are sorted in descending
order and starting from the biggest interval, a range of waveform in the middle is selected (we
consider them as calm moments). If the timestamp of the waveform is not in the earthquake
data list, then the waveform is classified as a normal waveform signal. This process results
in approximately 160k normal signals.

3.1.4 Station Filtering

The number of pieces of earthquake data and normal waveform data varies among the
selected 58 stations. For each station, we plot the number of earthquake signals and normal

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html
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waveform signals, as shown in Figure 10. The way we assign earthquake signal and normal
waveform signal is described in Section 3.3.

Figure 10: Number of earthquake signals and normal waveform signals assigned to each of
58 stations

As can be seen from the figure, the number of earthquake signals and normal waveform
signals for some stations witnesses a huge disparity. The difference can lead to an extremely
high training accuracy after even 1 epoch, which is not useful in the final evaluation. Thus,
to reduce such bias, we set a threshold: those stations with number of normal waveform
signals 2 times larger than the number of earthquake signals are discarded. This leaves in
total 27 stations, shown in Figure 11.

Figure 11: Stations index and number of earthquake signals and normal signals after filtering

3.2 Network Architecture Design
Once the dataset is well preprocessed, architecture for the networks should be designed. We
first illustrate the architecture design of vanilla RNN, LSTM and Bi-LSTM for which a group
of fixed parameters are given under the condition of cross validation (will be introduced in
Section 3.4.3). Note that for this section, we only give the set of fixed parameters. Ranges of
network parameters will be provided when grid search on hyperparameters comes to stage in
Section 3.4.4. Then we elaborate the over-fitting problem during training phase and several
trials to solve the issue. It is worth mentioning that network structures are designed to be
simple in order to get free from long process time taken by cross validation and grid search.
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3.2.1 Vanilla RNN Architecture

The network structure of vanilla RNN is designed as follows. An RNN layer with 128 neurons
first reads in the input data, one sample at a time out of 1500 (30 seconds of waveform, each
second has 50 samples). The last two dimensions of the input data (length of the whole
sequence ’length’ and dimension of input ’H_in’) are flattened to one-dimensional tensor
shown as length * H_in. A dropout layer with dropout rate 0.2 is then connected to ensure
that output of activation function of random 1/5 neurons are set to 0. Since the earthquake
prediction is a binary classification task, the connected linear layer (also known as dense
layer or fully connected layer) transforms the output vector with dimension length * h_out
to a number with the same dimension as that of the label (0 and 1 in our case). Finally, the
number is squeezed by Sigmoid activation function into a probability between 0 and 1 and
taken as output.

3.2.2 LSTM Architecture & Bi-LSTM Architecture

The structure of LSTM is designed to be highly similar to that of vanilla RNN. The difference
is that LSTM defines a LSTM layer with 128 neurons instead. The architecture for Bi-LSTM
is different by having two bidirectional LSTM layers. The input size of the first LSTM layer
and hidden size share the same with vanilla RNN, while the input size for the second layer
is two times that of hidden size. It is because the input of second layer needs to carry
information both for forward propagation and backward propagation.

3.3 Experimental settings
For each earthquake and normal signal, we first assign it to the closest station by calculating
great-circle distance [27]. The input data for training consists of 30 seconds of waveform
signal with 50 samples per second assigned to each of the 58 stations. The models are trained
station-wise, with network input size of 1 at a time, representing 1 sample. The output of
the network is the probability that the input sequence is classified as an earthquake. The
likelihoods below 0.5 are truncated to 0, meaning normal behaviour and the ones larger
than or equal to 0.5 are regarded as 1, representing earthquake behaviour. To use cross
validation (will be mentioned in Section 3.4.3), 10% of the dataset is used for testing set.
The other 90% is equally divided into 5 subsets of which 1 is for validation and the other
4 is used to train the model during each iteration. The number of epoch is decided by
Early Stop technique [28], which is another way to prevent over-fitting (will be mentioned
in Section 3.4). We force the training process to stop if the validation loss doesn’t decrease
for consecutive 7 epochs. Aiming at reduce the effect caused by over-fitting, we average
the results over 5 iterations. Details on each parameter settings are given in the following
section.

3.4 Over-fitting & Solution
Over-fitting points to a problem that the model fits closely or even perfectly to a specific
dataset which is usually the training set in machine learning tasks, but may therefore fail
to perform well on unseen data which is usually the test set [29]. More generally, the model
may be negatively affected by the useless information in training set so that it is not able to
learn the data features very well. We thus propose regularization (dropout included), cross
validation and grid search on hyperparameters to solve the issue.
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3.4.1 Regularization

Regularization is a commonly used approach that adds a penalty term to the loss function
on training set to prevent over-fitting problem [30]. In cases that the data possesses a large
number of useful features which are not expected to thrown away, regularization is utilized
to reduce the weight of those features, and therefore reduce the complexity of the learned
model. L2 regularization (also known as weight decay) is applied to our models and ranges
for trials are included in Section 3.4.4.

3.4.2 Dropout

In 2014, Nitish et al. [31] introduced an approach called dropout aiming to solve over-fitting
problem. According to the paper, dropout is a technique that during the training process
of the model, random neurons are temporarily discarded from the network according to a
certain probability (set the output of activation function of such neurons to 0), which is
equivalent to finding a thinner network from the original network. Ranges for trials on our
models are included in Section 3.4.4.

3.4.3 Cross validation

Cross validation was introduced to let the model learn as many data patterns as possible,
and reduce the noise that probably leads to high bias and variance [32, 33]. For our case, a
variant called k-fold cross validation is used. As the name suggests, k-fold cross validation
evenly splits the dataset into k subsets, each representing one fold. Then the model will be
trained for k iterations. During each iteration, one out of the k subset is used for validation
and the other k - 1 subsets are used as training set. Finally, the test error is usually averaged
over k trials to get overall performance of the model [34]. For the earthquake prediction
task, we set k = 5 due to time limit. 10% of the dataset was used for test set and the other
90% was evenly divided into 5 folds.

3.4.4 Grid Search on Hyperparameters

Another approach proposed to optimize the hyperparameters settings is called Grid Search
[35]. Grid search is a technique that exhaustively searches and evaluates every possible
combination of a set of parameters within a certain range. It is used to optimize the model
performance with the help of k-fold cross validation and reduce the effect has by over-fitting.
For the task we make use of a powerful toolkit called NNI5 to automate hyperparameter
tuning. The grid of hyperparameters optimized with grid search for all three models is
depicted in Figure 12.

Figure 12: Range of hyperparameters for grid search

5https://nni.readthedocs.io/en/stable/
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4 Results
As explained in Section 3.1.4, the last step of data preprocessing leaves 27 stations in total
for later experiment. The first trial with a group of fixed parameters reveals that 5 of 27
stations have over-fitting problem. Therefore we directly apply grid search on each of them
with each network model. We present the performance before (shown in Figure 13) and
after (shown in Figure 14) doing grid search for one certain station. Results for other four
stations are in Appendix A.1.

Figure 13: Performance of station 18 before Grid Search

(a) Grid Search result of station index 18 for vanilla RNN

(b) Grid Search result of station index 18 for LSTM

(c) Grid Search result of station index 18 for Bi-LSTM

Figure 14: Grid Search result of station index 18 with three models

To evaluate the performance of each model on the other 22 stations, we choose Boxplot
to display the distribution of scores for each evaluation metric. Boxplot of each metric for
each model is depicted in Figure 15. Distribution of each evaluation metric of each model
for each station over 5-fold cross validation can be found in Appendix A.2.

Finally, regarding the accuracy of each model, by averaging the number of each evaluation
metric over 22 stations and 5-fold cross validation, we obtain the overall performance of each
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Figure 15: Boxplot of evaluation metrics over 22 stations for each model (for each model,
values from left to right is accuracy, precision, recall, f1-score)

model, shown in Figure 16.

Figure 16: Averaged result of each evaluation metric for three models

5 Responsible Research
First and foremost, one of the typical ethic concerns related to machine learning tasks is that,
different from problems that can be explained or resolved with a well-designed algorithm,
machine learning tasks usually cannot guarantee a satisfying result for a variety of reasons.
In our case for instance, it is hard to find a balanced point between data that has much
noise and data that loses useful properties during preprocessing phase. We chose to use
the data with frequency of 50 HZ. However, the optimal result may be obtained with other
frequencies and it is infeasible to brute-force all possibilities because of time limit of the
research. In addition, changes in each network layer during training process are difficult to
track comparing with supervising changes in a formula or an algorithm. Thus, a machine
can still make wrong prediction on classification tasks even with a well-trained model, which
should be taken cautiously when solving problems with machine learning approaches.

Besides, experiments during the research were designed to be reproducible and repeat-
able. To be specific, data retrieval and preprocessing mentioned in Section 3.1 are well
documented in notebook. Content of each step is integrated in single block with detailed
and clear comments. Architecture design for each network in Section 3.2 and experiment
settings in Section 3.3, as well as hyperparameter optimization are explained thoroughly so
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that any researcher possessed with basic knowledge on deep neural network is able to re-
produce the program. Furthermore, restrained by the time given and device quality, results
were run over a large dataset multiple times with help of cross validation and grid search on
hyperparameters. By doing so, adverse effects had by bias and variance of the dataset are
mitigated. Other than that, we guarantee that all the data and results were made without
manipulation, fabrication or trimming. Finally, it should be pointed out that the source
code is proprietary but can be provided upon request.

Regarding the usage of raw data, we clarify that all the data are made open-sourced and
free of charge. The website and related projects are sponsored by New Zealand Government
with help of its agencies.

6 Discussion
In this section, we first interpret the results presented in Section 4 and evaluate performances
of all three models, followed by what can be improved for future work.

6.1 Evaluation
Firstly, results in Section 4 and Appendix A.1 reveal the fact that grid search does improve
the overall prediction accuracy on some stations, for example, from around 55% to over
62%, but not all. It might be because parameter ranges are set to be relatively small. Thus,
over-fitting still exists but it is no doubt that model performance is increased by grid search.

Then, as can be seen from Figure 15, LSTM model tends to outperform other two in all
these four metrics. Most of the values lie in higher positions with respect to accuracy and
recall, which means that it correctly predicts the most earthquakes among all that happen.
But some outliers in precision show that among its predictions that earthquakes will happen,
some of them have very low probability to actually happen. Comparing with LSTM, outliers
in accuracy and recall of vanilla RNN and Bi-LSTM illustrate that their predictions are not
very stable and they are prone to more mistakes.

When it comes to the overall numerical results in Figure 16, accuracy indicates that
LSTM performs the best out of three models. Bi-LSTM has the highest TN score and the
lowest TP score, showing that it is better at predicting normal behavior than at predicting
earthquakes.

Furthermore, all three models have higher accuracy under the condition that label is false
(the ratio of FN to FP), meaning that they are all better at correctly classifying normal
signals. But for earthquake signals, they tend to wrongly classify them as normal signals.

To summarise, LSTM have the best performance in our earthquake prediction task,
probably because the gating mechanism guarantees its power at carrying information in
long sequential data. On the other hand, RNN still suffers from loss of information from
long sequence. For Bi-LSTM, it performs better than RNN and we claim that architecture
design of two layers might cause it to learn more data features with noise. In all, we human
beings are more desired to be sensitive at earthquakes so that we can take action to avoid
loss rather than having satisfying result on classifying normal behavior. Therefore it is still
a challenging task to correctly predict earthquakes.
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6.2 Future Work
Time limit and device quality restraint obstruct some ideas and trials. First, regardless of
the over-fitting presented by a few stations, it can be observed from the other few stations
that training accuracy and validation accuracy fluctuated within a range during training
and validation process. We claim that it is probably due to the simple network architecture
design. So we can increase the number of layers for each network so that they are able to
learn more sequential characteristics from the data [36].

Regarding to dealing with over-fitting, other approaches can be experimented, batch
normalization [37] for instance. Apart from a variety of approaches to try, the range of
hyperparameters can be extended. Particularly, weight decay can have more options to
choose from. Also a range of hidden size of the network can be included.

What’s more, grid search on all 27 stations can be deployed to find common hyperpa-
rameters.

At the same time, data with different frequencies is worth trying in order to find a
balance point between data with many characteristics and data with few characteristics.

Finally, the result of this research demonstrated the fact that earthquake prediction is
still a challenging problem. Thus, different types of deep learning methods can be used,
either alone or combined [38] so that people can learn what can be the optimal solution to
such time series forecasting tasks.

7 Conclusions
This paper raised a question on how do individual time series models, namely vanilla RNN,
LSTM and Bi-LSTM compare on short-term earthquake prediction (30 seconds before earth-
quake). To answer the question, 30 seconds waveform signals of earthquakes happening
between 2016 and 2020 in mainland New Zealand were retrieved and preprocessed together
with generated normal behaviour signals as dataset. We chose to assign detected earth-
quakes and normal signals to the closest station. The networks were designed and trained
station-wise with 30 seconds data as input. Training and validation process revealed that
some stations had over-fitting problem. Several approaches such as regularization and grid
search were applied trying to solve the issue. Regardless of the fact that the issue remains
because of research time limit, the performances of the models have been improved. The
final results showed that all three models perform better at correctly classifying normal
behaviour signals rather than earthquake signals. Among the three models, LSTM has the
best performance, with an averaged accuracy around 66.5% on predicting with unseen data,
while Bi-LSTM tends to be negatively affected by data with noise. More approaches such
as deepening the networks and training with data of different frequencies can be carried out
in the future to improve the accuracy.
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A Appendix

A.1 Results of Grid Search on Station 17, 24, 30 and 51

Figure 17: Performance of station 17 before Grid Search

(a) Grid Search result for vanilla RNN

(b) Grid Search result for LSTM

(c) Grid Search result for Bi-LSTM

Figure 18: Grid Search result of station index 17 with three models

Figure 19: Performance of station 24 before Grid Search
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(a) Grid Search result for vanilla RNN

(b) Grid Search result for LSTM

(c) Grid Search result for Bi-LSTM

Figure 20: Grid Search result of station index 24 with three models

Figure 21: Performance of station 30 before Grid Search
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(a) Grid Search result for vanilla RNN

(b) Grid Search result for LSTM

(c) Grid Search result for Bi-LSTM

Figure 22: Grid Search result of station index 30 with three models

Figure 23: Performance of station 51 before Grid Search
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(a) Grid Search result for vanilla RNN

(b) Grid Search result for LSTM

(c) Grid Search result for Bi-LSTM

Figure 24: Grid Search result of station index 51 with three models
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A.2 Boxplot of each evaluation metric of three models for each of
22 stations

(a) Boxplot of accuracy of three models for each of the 22 stations

(b) Boxplot of precision of three models for each of the 22 stations

(c) Boxplot of recall of three models for each of the 22 stations

(d) Boxplot of f1-score of three models for each of the 22 stations

Figure 25: Boxplot of evaluation metrics of three models for each of the 22 stations (for
each station, values from left to right is Accuracy, precision, recall, f1-score)
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