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Gert-Jan C. LOKHORST

AN ALTERNATIVE INTUITIONISTIC
VERSION

OF MALLY’S DEONTIC LOGIC

A b s t r a c t. Some years ago, Lokhorst proposed an intuitionistic

reformulation of Mally’s deontic logic (1926). This reformulation

was unsatisfactory, because it provided a striking theorem that

Mally himself did not mention. In this paper, we present an alter-

native reformulation of Mally’s deontic logic that does not provide

this theorem.

.1 Introduction

Some years ago, Lokhorst proposed an intuitionistic reformulation of Mally’s
deontic logic (1926) [3]. This reformulation was unsatisfactory, because it
provided a striking theorem that Mally himself did not mention, namely
⌥(A_¬A). In this paper, we present an alternative reformulation of Mally’s
deontic logic that does not provide this theorem.
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.2 Definitions

Heyting’s system of intuitionistic propositional logic h is defined as
follows [1, Ch. 2].

Axioms: (a) A ! (B ! A).

(b) (A ! (B ! C)) ! ((A ! B) ! (A ! C)).

(c) (A ^B) ! A; (A ^B) ! B.

(d) A ! (B ! (A ^B)).

(e) A ! (A _B); B ! (A _B).

(f) (A ! C) ! ((B ! C) ! ((A _B) ! C)).

(g) ? ! A.

Rule: A,A ! B/B (modus ponens, MP).

Definitions: ¬A = A ! ?, > = ¬?, A $ B = (A ! B) ^ (B ! A).

The second-order intuitionistic propositional calculus with
comprehension C2h is h plus [1, Ch. 9]:

Axioms: Q1 (8x)A(x) ! A(y).

Q2 A(y) ! (9x)A(x).
Q5 (8x)(B _A(x)) ! (B _ (8x)A(x)), x not free in B.

Q6 (9x)(x $ A), x not free in A.

Rules: Q3 A(x) ! B/(9x)A(x) ! B, x not free in B.

Q4 B ! A(x)/B ! (8x)A(x), x not free in B.

Definition: ? df
= (8x)x [1, Ch. 9, Exercise 10].

An intuitionistic version of Mally’s deontic logic ⌥C2h is C2h plus
[4, Ch. I]:

A1 ((A ! ⌥B) ^ (B ! C)) ! (A ! ⌥C).

A2 ((A ! ⌥B) ^ (A ! ⌥C)) ! (A ! ⌥(B ^ C)).

A3 (A ! ⌥B) $ ⌥(A ! B).

A4 ⌥>.

A5 ¬(> ! ⌥?).

Some comments on ⌥C2h:

1. Mally wrote !A instead of ⌥A. He read !A as “it ought to be case
that A” or “it is required that A is the case.” He read A ! !B as “A
requires B.”
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2. Definition: U
df
= >. Mally read U as “the unconditionally required”

or “what conforms with what ought to be the case.”

3. Definition:

Udf
= ?. Mally read

U

as “what conflicts with what ought
to be the case.”

4. Mally wrote 9U ⌥U instead of A4. We regard 9U ⌥U as ill-formed,
because we view U as a constant. We therefore replace 9U ⌥ U by
(9x)((x $ U) ^ ⌥x) (this is formula T1500 in the Appendix below).
This agrees with Mally’s informal interpretation of 9U ⌥U.

.3 Theorems

Definition 1. Let A be a formula in the language of ⌥C2h. By induc-
tion on the number of connectives in A we define two translations, [A]+ and
[A]�, of A into the formulas of C2h as follows:

1. If A is atomic, then [A]±
df
= A.

2. [?]±
df
= ?.

3. [A1 ⌦A2]±
df
= [A1]± ⌦ [A2]±, where ⌦ is ^, _ or !.

4. [(Qx)A(x)]±
df
= (Qx)[A(x)]±, where (Qx) is (8x) or (9x).

5. [⌥A]+
df
= [A]+ and [⌥A]�

df
= ¬¬[A]�.

Theorem 1. (After [2, Theorem 1, p. 312].) If A is a theorem of ⌥C2h,
then [A]± is a theorem of C2h.

Proof. By induction on the construction of the proof of A. Base case:
for each axiom A of ⌥C2h, [A]± is a theorem of C2h, as can easily be
checked. Inductive step: MP, Q3 and Q4 preserve this property. Suppose
that the theorem holds for A, B and that ⌥C2h provides A/B by rule R

(induction hypothesis). We show that C2h provides [A]±/[B]± by R.
Case R of:

• MP: let A

df
= C, B

df
= C ! D. C2h provides [A]±/[B]± by R,

because [A]± = [C]± and [B]±
df
= [C ! D]±

df
= [C]± ! [D]±.

• Q3: let A

df
= C(x) ! D, B = (9x)C(x) ! D, x not free in D. C2h

provides [A]±/[B]± by R, because [A]±
df
= [C(x) ! D]±

df
= [C(x)]± !

[D]± and [B]±
df
= [(9x)C(x) ! D]±

df
= (9x)[C(x)]± ! [D]±.
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• Q4: let A
df
= C ! D(x), B = [C ! (8x)D(x)]±, x not free in C. C2h

provides [A]±/[B]± by R, because [A]±
df
= [C ! D(x)]±

df
= [C]± !

[D(x)]± and [B]±
df
= [C ! (8x)D(x)]±

df
= [C]± ! (8x)[D(x)]±.

⇤

Theorem 2. (After [2, Theorem 1, p. 312].) Let p be an atomic formula.

There is no formula A in the language of C2h such that ⌥C2h ` ⌥p $ A.

Proof. From Theorem 1. If for some formula A of C2h, ⌥C2h ` ⌥p $
A, then C2h ` ¬¬p $ A and C2h ` p $ A, since [A]± is A. Hence
C2h ` p $ ¬¬p, but this is false. ⇤

Definition 2. For theories T based on intuitionistic logic, if A is an
arbitrary formula of the language of T , then A is stable in T if and only if
T provides ¬¬A ! A.

Theorem 3. ⌥A is not stable in ⌥C2h.

Proof. From Theorem 1. [¬¬⌥p ! ⌥p]+ (
df
= ¬¬p ! p) is not a theorem

of C2h. ⇤

Theorem 4. ⌥C2h provides A1–A5 and all theorems of [4, Chs. I–II]

(see Appendix), except:

T12c ⌥(A ! B) $ ⌥¬(A ^ ¬B).

T12d ⌥¬(A ^ ¬B) $ ⌥(¬A _B).

T13a (A ! ⌥B) $ ¬(A ^ ¬ ⌥B).

T13b ¬(A ^ ¬ ⌥B) $ (¬A _ ⌥B).

T14 (A ! ⌥B) $ (¬B ! ⌥¬A).

Proof. From Theorem 1. For each formula A on the above list, [A]+ is
not a theorem of C2h. Additionally, [T13b]� is not a theorem of C2h. ⇤

Theorem 5. ⌥C2h does not provide ⌥(A _ ¬A).

Proof. From Theorem 1. [⌥(p _ ¬p)]+ (
df
= p _ ¬p) is not a theorem of

C2h. ⇤
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.4 Conclusion

The intuitionistic reformulation of Mally’s deontic logic proposed in [3] pro-
vided ⌥(A _ ¬A). This formula is not a theorem of ⌥C2h. Moreover,
Mally did not mention this formula. ⌥C2h is, in a sense, therefore more
adequate than the intuitionistic reformulation proposed in [3], even though
the latter reformulation lacked only T13b (from the formulas mentioned in
Theorem 4).

.Appendix

All theorems from [4, Ch. II], as listed in [5, pp. 121–123], plus one theorem
that seems to have been overlooked in [5, pp. 121–123], namely T1500 (cf. [4,
Ch. I, axiom IV]). All theorems are derivable in ⌥C2h, except those marked
with a † (Theorem 4).

T01 (C ! ⌥(A ^B)) ! ((C ! ⌥A) ^ (C ! ⌥B))
T02 ((C ! ⌥A) ^ (C ! ⌥B)) $ (C ! ⌥(A ^B))
T1 (A ! ⌥B) ! (A ! ⌥>)
T20 (A ! ⌥?) ! (8x)(A ! ⌥x)
T200 (8x)(A ! ⌥x) ! (A ! ⌥?)
T3 ((C ! ⌥A) _ (C ! ⌥B)) ! (C ! ⌥(A _B))
T4 ((C ! ⌥A) ^ (D ! ⌥B)) ! ((C ^D) ! ⌥(A ^B))
T5a ⌥A $ (8x)(x ! ⌥A)
T5b (8x)(x ! ⌥A) $ (8x)(x ! ⌥A)
T6 (⌥A ^ (A ! B)) ! ⌥B
T7 ⌥A ! ⌥>
T8 ((A ! ⌥B) ^ (B ! ⌥C)) ! (A ! ⌥C)
T9 (⌥A ^ (A ! ⌥B)) ! ⌥B
T10 (⌥A ^ ⌥B) $ ⌥(A ^B)
T11 ((A ! ⌥B) ^ (B ! ⌥A)) $ ⌥(A $ B)
T12a (A ! ⌥B) $ (A ! ⌥B)
T12b (A ! ⌥B) $ ⌥(A ! B)
†T12c ⌥(A ! B) $ ⌥¬(A ^ ¬B)
†T12d ⌥¬(A ^ ¬B) $ ⌥(¬A _B)
†T13a (A ! ⌥B) $ ¬(A ^ ¬ ⌥B)
†T13b ¬(A ^ ¬ ⌥B) $ (¬A _ ⌥B)
†T14 (A ! ⌥B) $ (¬B ! ⌥¬A)
T15 (8x)(x ! ⌥U)
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T1500 (9x)((x $ U) ^ ⌥x)
T16 (U ! A) ! ⌥A
T17 (U ! ⌥A) ! ⌥A
T18 ⌥ ⌥A ! ⌥A
T19 ⌥ ⌥A $ ⌥A
T20 (U ! ⌥A) $ ((A ! ⌥U) ^ (U ! ⌥A))
T21 ⌥A $ ((A ! ⌥U) ^ (U ! ⌥A))
T22 ⌥>
T230 > ! ⌥U
T2300 U ! ⌥>
T23000 ⌥(U $ >)
T24 A ! ⌥A
T25 (A ! B) ! (A ! ⌥B)
T26 (A $ B) ! ((A ! ⌥B) ^ (B ! ⌥A))
T27 (8x)( U! ⌥¬x)
T270 (8x)( U! ⌥x)
T28

U! ⌥ U

T29

U! ⌥U
T30

U! ⌥?
T31 (

U! ⌥?) ^ (? ! ⌥ U
)

T310 ⌥(

U$ ?)
T32 ¬(U ! ⌥?)
T33 ¬(U ! ?)
T34 U $ >
T35

U$ ?
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