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Automatic Atlas-Based Segmentation
of Brain White Matter in Neonates at Risk
for Neurodevelopmental Disorders

L. Fonseca, C. van Pul, N. Lori, R. van den Boom, P. Andriessen, J. Buijs,
and A. Vilanova

Abstract Very preterm infants, <32 weeks gestation, are at high risk for brain
injury. Cognitive deficits are often diagnosed at a later stage, since there are
no available predictive biomarkers in the neonatal period. The maturation of
specific white matter (WM) brain structures is considered a promising early-stage
biomarker. With Diffusion Tensor Imaging (DTI) tractography, an in vivo and non-
invasive evaluation of these anatomical structures is possible.

We developed an automatic tractography segmentation pipeline, which allows
for maturation assessment of the different segmented WM structures. Our segmen-
tation pipeline is atlas-based, specifically designed for premature neonates at term
equivalent age. In order to better make use of global information from tractography,
all processing is done in the fiber domain. Segmented fiber bundles are further auto-
matically quantified with respect to volume and anisotropy. Of the 24 automatically
segmented neonatal tractographies, only three contained more than 30%mislabeled
fibers. Results show no dependency toWM pathology. By automatically segmenting
WM, we reduced the user-dependency and bias characteristic of manual methods.
This study assesses the structure of the neonatal brain based on an automatic WM
segmentation in the fiber domain method using DTI tractography data.
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1 Introduction

Each year, over half a million babies in Europe are born prematurely. Very preterm
infants, <32 weeks gestation, are at high risk for cognitive deficits without major
motor deficits [33]. Therapy can be effective, especially when started at early
postnatal age, which is a stage characterized by high brain plasticity. However, many
patients are diagnosed at a later and more rigid neurdevelopmental stage. In order to
offer patients the best possible chances of rehabilitation, early postnatal predictive
biomarkers are necessary [9, 13, 16, 38].

Deviations in the development of white matter structures are considered promis-
ing early-stage biomarkers. Cognitive development is related to the maturation
of the brain networks, the WM structures. These structures can be in vivo and
non-invasively reconstructed by Diffusion Tensor Imaging (DTI) tractography
[2, 22, 23]. Diffusion of water molecules in the brain is restricted by the underlying
anatomical structure, becoming anisotropic for voxels containing WM. Even in
newborns, despite their lower brain maturation, tractography can be used to
reconstruct WM structures. Analysis of the WM structures can be used to show
abnormalities in diffusion tensor parameters and in fibers being associated with
maturational problems [3, 12, 14, 29, 30, 32].

In order to assess maturation of specific WM anatomical structures, i.e., bundles,
these structures need to be first identified among the complete fiber dataset. This
is made possible by a segmentation process that classifies the fibers into different
bundles. Although segmentation can be done manually [14, 30, 39], it requires
extensive knowledge about complex WM fiber anatomy, introduces user bias, and
can become too time consuming for practical use. Furthermore, some structures
have challenging shapes that are difficult to segment manually.

Automatic segmentation methods have been developed for adult tractography
[6, 11, 17, 26, 27, 40], however, they need to be redesigned to account for the under-
developed stage of the neonatal brain, since neonatal tractography results in a lower
number of fibers, displays smaller and broken fibers that cannot be ignored, misses
anatomical structures yet to develop, and has a higher sensitivity to partial volume
effects due to their smaller brain size [24, 29, 45].

Improvement of the tractography algorithm can be used to mitigate some of
the previous referred problems. Nevertheless, such improvements involves making
assumptions that will generate other issues. Some DTI atlas-based methods use
voxel level scalar-data [1, 8, 31], which is mainly based on local information. On
the other hand, fiber-wise methods employ global information, which can allow for
a better overview of the WM anatomical structures, and eventual abnormalities on
these structures [6, 15, 18, 20, 25, 26, 42, 46].

In addition, with the eventual goal of modeling and analyzing WM fibers, it is
advantageous to process the fibers themselves, instead of DTI scalar-data. There-
fore, we developed an automatic tractography segmentation pipeline tailored for
neonatal brains, which allows for subsequent maturation assessment. Segmentation
is atlas-based, specifically designed for premature neonates at term equivalent age
(TEA).
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Our automatic tractography segmentation pipeline neonate data is based on 3D
distances between fibers like in O’Donnell et al. [26], and it is specifically tailored
for dealing with the neonatal tractography characteristics.

2 Material and Methods

2.1 Subjects

Máxima Medical Center (MMC) provided clinical data for this study. In total,
30 patients with an MRI-scan were included. All MRIs were conducted as part
of routine clinical practice. According to Dutch Law on Medical Research with
Humans (WMO) a waiver for ethical assessment was provided by the local Medical
Ethical Committee of MMC, considering that anonymous data collection was
performed. The preterm neonates (n = 13, of whom 11 born at a gestational age less
than 32 weeks) were all scanned at term equivalent age. Full-term neonates were
scanned (n-17) in the second week postnatally. For each patient the relevant clinical
information was available.

For preterm infants, the MRI injury was scored according to Woodward
et al. [44]. The Woodward scoring system takes into account deviations or
abnormalities in WM, subarachnoidal space, basal ganglia, and determines the
presence of cysts ventricular dilation, and hemorrhage as described in Kooij [14]
and van Pul et al. [30]. The scores were classified in normal (Woodward score for
WM of 5–6), mild (Woodward score for WM of 7–9), moderate (Woodward score
for WM of 10–12), and severe (Woodward score for WM of 13–15) pathology.
For full-term newborns suspected from hypoxic-ischemic encephalopathy the
Shankaran method [34] was used, and pathology was defined again to the groups
normal (Shankaran score normal), mild (Shankaran score 1A), moderate (Shankaran
score 1B) and severe (Shankaran score 2).

2.2 Data Acquisition

The data was acquired on a Philips Achieva 3.0 T MRI-scanner. The DTI-sequence
was performed with b-values 0 and 800 s/mm2 in 32 directions using a single-shot-
EPI sequence, with TE=TR D 48=7745ms using a SENSE factor 2, in less than
5min scan time. The dataset consists of 50 adjacent slices, each slice with 128 �
128 voxels, each voxel corresponds to a size of 1:44 � 1:41 � 2mm. Correction of
movement artifacts and eddy current distortions in the DWI images was performed
with the Philips software from the scanner workstation. The DTI sequence was part
of the regular MRI series also including T1 and T2 series.
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2.3 Tractography

2.3.1 Masking

Previous to tractography, a skull-stripping method is applied in order to reduce the
number of spurious fibers. For the neonatal DTI data, best results are found for a
hybrid method which combines a threshold clipping approach with morphological
operators.1 The skull-stripping mask is created by processing of the b0 image from
DTI. An empirical investigation of the optimal parameters for neonatal datasets is
conducted. Optimal parameters do not result in holes in the mask, and contain no
non-brain regions, like facial and neck area and regions outside the skull.

First, a histogram of the b0 image is computed, for which values above a lower
and upper threshold are set to 0. Best results for our dataset are found for upper and
lower thresholds of 85% and 99:9% of the intensity value distribution. This mask is
then further processed by application of morphological operators. First, satellites
are removed. We apply a connected component analysis for 26-connectivity.
Components below 100 voxels are considered satellites and deleted. Second, holes
are filled by using a smart closing operator. A smart closing operator is defined
similar to a normal closing operator, i.e., dilation followed with erosion, having in
addition the property of conserving the initial mask outside contour. It does so by
comparing the after-closingmask with a complementary image of the before-closing
mask [37]. The structural element comprises a 3-D 6-connectivity.

Third, the image is smoothed by a 3-D Gaussian kernel. For the tested dataset,
best results were empirically found for a standard deviation, � , of 10 voxels, which
is smaller than typically used in adults because of the smaller brain size of neonatal
patients. The smoothed result is again converted into a mask by assigning the value
true to voxels higher than 0:5; this can be seen as a second erosion procedure. After
smoothing, the mask gets its satellites removed and holes filled once more. The
mask is then applied to the multiple DW images.

2.3.2 Tractography

Tractography is performed with a deterministic streamline based full brain seeding
algorithm [36], implemented in the software developed at the Biomedical Image
Analysis Group from the University of Eindhoven, vIST/e.2 The tracking parameters
used are specific for the patient type of neonates at term age, as suggested by van
Pul et al. [29, 30]: minimum fiber length of 20mm, Cl [43] for minimum anisotropy
index of 0.12, maximum fiber angle of 10ı and minimum seed distance of 0.5
voxels. The results of the tractography are tractograms, i.e., full brain fiber tracts,
which are in the order of thousands of fiber tracts.

1http://vistalab.stanford.edu/.
2http://sourceforge.net/projects/viste/.

http://vistalab.stanford.edu/
http://sourceforge.net/projects/viste/
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2.4 Atlas Creation

The preterm neonatal atlas is built from the tractograms of three preterm neonates
without pathology imaged with DTI at TEA from a previous study (Kooij [14],
van Pul [30], permission granted). These datasets were acquired using the same
type of scanner and protocol as the data of this current study. The atlas represents
the common fiber patterns among healthy neonatal DTI tractography results. The
tractograms from two of the patients are aligned with the third patient by affine
registration of the linear anisotropy, Cl maps, with the software package SPM8.3

After registration, all fibers from the three patients are clustered by applying an
Affinity Propagation Method [5] to facilitate the manual atlas labeling, and distance
metric described in Sect. 2.5.1. The parameters of the clustering are set to maximize
cluster correctness. A cluster is correct if it contains fibers that belong just to one
bundle, i.e., anatomical structure, however, it does not necessarily need to contain all
fibers from that bundle. A bundle can contain a combination of two or more clusters.

All clusters were visually inspected by three experts (two neonatologists and
an MR physicist with >10 year experience with DTI ) and labeled according to
anatomical structure based on the WM atlases by Mori et al. [23] and Wakana
et al. [39]. In this way all fibers were divided into the following bundle labels:
CC (corpus callosum), CR (corona radiata, left and right), SS (sagittal stratum, left
and right), CG (cingulum), FX (fornix), MCP (middle cerebellar peduncle), cheeks,
artifacts, and other. An image of the atlas is presented in Fig. 1.

2.5 Data Processing

The processing pipeline of the DTI data to segment has the following steps: Trac-
tography; Clustered-based sampling; Registration; Labeling; and Propagation—as
schematically represented in Fig. 2. The tractography set is first sampled using a

Fig. 1 Atlas of preterm
neonates imaged at
TEA—lateral view. Label of
segmented structure is
depicted by a color-key, at
right side of the image

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Fig. 2 Schematic representation of the processing pipeline. Columns depict the processing step
and the two lines depict if the fibers are on subject coordinates space or atlas coordinates space

clustering algorithm, selecting the cluster fiber representatives. This first step is
applied to both atlas and subject tractography sets. After, the subject sampled fiber
set is registered to the atlas sampled fiber set, passing from the subject space to the
atlas space. Still in the atlas space, the subject sampled fiber set is labeled. The final
step of propagation is in the subject space, labeling the complete subject fiber set.
Each of these steps will now be explained further. The tractography step corresponds
to the method described already in Sect. 2.3.2.

2.5.1 Cluster Based Sampling

Sampling of the fibers is applied in order to add robustness and reduce computa-
tional costs in subsequent processing steps. Fibers from the same anatomical bundle
can have different lengths and the amount of fibers can differ across bundles. Due
to this, sampling cannot be performed randomly across structures, since we need all
important bundles represented in the downsampled set. Our sampling method starts
by computing similarities, i.e., within similarities, for each pair of fibers within the
subject. Next, these similarities are used for clustering by Affinity Propagation [5],
consequently finding the cluster fiber representatives. The sampled dataset is then
downsampled to these cluster fiber representatives. A scheme of this data flow is
depicted in Fig. 3.

We developed a distance measure adapted for neonatal data which is based
on the Hausdorff distance. Distances in fibers are usually based on point-wise
spatial distance between the reconstructed fibers points. We encountered problems
with the common distance measures used for adult tractograms, e.g., average
mean distance [21], due to the presence of broken reconstructed fibers in neonatal
tractography. This is mainly due to the presence of low anisotropy areas. Adaptation
of the tracking algorithm can mitigate the issue of broken fibers, but not without
introducing assumptions, and, therefore, other issues. Ignoring short fibers, as it
is commonly done for adult brains, would discard a large part of the tractogram.
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Fig. 3 Sampling data flow. Within similarities are stored in a matrix which the cluster algorithm
makes use of

dCH(fi, fk) dCH(fk, fi) dCHS and dAH

Fig. 4 Illustration of classic Hausdorff distance and our proposed adaptation. First row shows
parallel fibers of different lengths that belong to the same bundle. Second row crossing fibers
that belong to different bundles. First two columns shows dCH from red to blue fiber and vice
versa. Last column shows in green the dCHS giving similar distance for parallel and crossing fiber
configurations. dAH is shown in orange with larger distance for crossing fibers than for parallel

Therefore, it is not desirable to penalize the distance between fibers due to the
fiber length. On the other hand, we want to penalize crossing or diverging fibers.
Most measures proposed for the adult brain [6, 15, 19, 21], e.g., average mean or
Hausdorff do not fulfill our requirements. Some measures [6, 15, 19] avoid finding
point to point correspondencewhich dominates the computational costs by mapping
fiber-curve parametrizations. These measures penalize short fibers, diverging or
crossing fibers equally and, therefore, these different cases cannot be discerned.
Wassermann et al. [42] have a different approach where the fibers are represented
implicitly.Wassermann et al. [42] distancemeasures looksmainly at the overlapping
area, so fibers that are diverging and have a small overlap have the same distance
than fibers with a full overlap but different lengths.

We developed a simple adaptation of the classic Hausdorff distance (see Fig. 4).
The classic Hausdorff distance, dCH.fi; fk/, is the maximum distance of the point-
wise minimumdistances between the fibers fi and fk. In other words, it is the greatest
of all the distances between each point in one fiber to its closest point in the other
fiber.
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This distance can be defined as:

dCH.fi; fk/ D maxpr2fi.minpl2fk jjpr � pljj/ (1)

where pr and pl stand for coordinate point belonging to the fibers fi and fk
respectively notice that dCH.fi; fk/ ¤ dCH.fk; fi/. In order to make the distance
symmetric the maximum is taken as shown:

dCHS.fi; fk/ D max.dCH.fi; fk/; dCH.fk; fi// (2)

Our adapted distance measure simply takes the minimum instead:

dAH.fi; fk/ D min.dCH.fi; fk/; dCH.fk; fi// (3)

The behaviour of dAH is similar to the Hausdorff distance when fibers have
similar length. On the other hand, using this adapted measure, crossing or diverging
fibers of different lengths will have a relatively large distance to parallel or
overlapping fibers of different lengths (see Fig. 4). This facilitates the inclusion of
broken parallel fibers in the corresponding bundle, and at the same time discarding
crossing or diverging fibers. Despite not being a metric and also less robust than
other measures proposed in literature, we still decide to use dAF since it suits our
requirements.

In the next step, for the clustering we use the Affinity Propagation algorithm
(AP) [5, 17]. Besides the subject fiber set, also the atlas fiber set is downsampled to
improve the registration process. An image of the downsampled atlas is shown in
Fig. 5 for the anatomical significant labels.

Fig. 5 Downsampled Atlas. Same color code as in Fig 1
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Fig. 6 Correctness study for
cluster preference parameter
(x-axis). Y-axis depicts
correctness and number of
clusters, left and right
respectively
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Affinity Propagation was chosen from the studied clustering methods as it allows
producing clusters containing reconstructed fibers from not more than one WM
anatomic structure [17]. For this clustering technique, the number of clusters is not
a predefined value, but depends on previously chosen preference values. Data points
with a high preference are more likely to be chosen by the clustering algorithm as
a cluster center, than data points with a low preference. Because there is no a priori
knowledge about which fibers are more appropriate to become cluster centers and
constitute the down-sampled dataset, preference is made equal for all fibers. In order
to optimize the preference value, i.e., produce cluster containing fibers from nomore
than one anatomical structure of interest, a correctness test is conducted (Fig. 6),
for the atlas fibers, for which the ground truth of the anatomic labels is known. A
balance was found between cluster correctness and the number of clusters, resulting
in a choice for the preference value of �200, as it produces slightly more than 200
clusters with a correctness of 95%. After clustering, the cluster fiber representatives
form the downsampled tractogram. For comparison of the subject tractogram with
the atlas, also a downsampled atlas tractogram was made, shown in Fig. 5 with the
anatomical labels.

2.5.2 Registration

Registration involves applying a transformation model to the subject fiber points,
in order to correct for head position inside the scanner and variation of head size
and shape between subjects and the atlas. Our transformation model is based on an
affine transformation [20, 26, 46]. The optimal affine transformation is found in the
fiber domain, i.e., fiber-wise, based on 3D fiber distances minimization.
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In order to accelerate convergence, a first initialization is achieved by aligning
the center of mass of the downsampled subject’s tractogram and the center of mass
of the atlas. After the initialization, the used registration algorithm is based on the
work from O’Donnell et al. [26] with adult tractograms. O’Donnell also developed
a Hausdorff inspired distance via a probability density distribution. This probability
density function describes how probable it is for that subject fiber to have close-by
neighbor atlas fibers. The equation is as follows:

ı.fi; fk/ D e�
�
d.fi;fk /

�

�2

Z
(4)

where � is defined as a radius of interest where distances outside this radius will
have similarities close to 0. Z is a normalization constant, and therefore will not
influence the optimization procedure. Similarities of the subject fiber to all the
atlas fibers are then combined in one similarity probability density function [26].
In order to maximize this similarity probability its entropy is minimized [35], using
a cost function. Last iteration cost-function value can be further used for quantitative
evaluation of segmentation results. The optimization algorithm applied is a direction
set method named COBYLA, which stands for Constrained Optimization by Linear
Approximation [28]. For our neonatal data, the best results are empirically found
for the value of � equal to 3mm. This is smaller than in adults due to the smaller
size of the neonatal brain.

In our application of the O’Donnell algorithm, best registration results are
obtained while optimizing iteratively between four distinct deformation-types:
translation, rotation, scaling and shearing. For each of these deformation types, a
transformation is probed in a domain of three degrees of freedom (DoF), i.e., one
for each spatial coordinate. Due to the difficulty of registering the cluster center
fibers corresponding to the CG (cingulum) anatomy, translation and rotation are
performed once more.

2.5.3 Labeling

After registration, computation of similarity between every registered cluster fiber
representative and every cluster atlas fiber representative is calculated. The adapted
Hausdorff distance presented in Sect. 2.5.1 is used again for the similarity metric.
Each cluster center registered fiber receives the label of the atlas cluster center fiber
towards which it has the smallest distance.

2.5.4 Label Propagation

The label of the cluster fiber representative is propagated to all the fibers that
belong to the cluster it is representing. It is therefore possible to return to the



Automatic Atlas-Based Segmentation of Brain White Matter in Neonates at. . . 365

full tractography dataset, without any deformation performed to the fibers. Volume
and averaged values of anisotropies can be calculated per segmented structure
automatically using vIST/e.4 Averaged anisotropy values correspond to a weighted
average of the anisotropy of all voxels in that segmented structure: the anisotropy
value of a voxel is included as many times as the number of fibers passing through it.

3 Evaluation

Of 30 available neonatal datasets, six contained large MRI artifacts which highly
disrupted the DTI anatomical structure information and failed in the first step of the
pipeline. For the remaining 24 datasets, the complete pipeline could be executed.
The processed data was from 13 term borns and 11 preterms at term equivalent
age, of whom eight patients were classified as having no abnormalities, seven had
mild abnormalities, eight moderate abnormalities and one with severe pathology.
On average, the processing took 2–8 h to produce an automatically labeled data.
This time varies with the number of fibers in the subject tractograms which is in the
order of thousands. The main computational costs are related to the calculation of
the within similarities measurement for the cluster-based sampling which has not
been optimized.

A qualitative evaluation of the segmented tractography was performed by two
MRI experts. For each segmented structure, the number of incorrectly labeled fibers
is evaluated, based on visual inspection. The ratio between incorrectly labeled fibers
and the total number of fibers per segmented structure is further referred to as the
percentage error. For minor structures, FX, CG, MCP, IFO, segmentation errors are
considered less severe than segmentation errors at major structures in the neonatal
brain: the CRs and CC. The segmentation performance is divided in four classes:

4 Good: All segmented structures have less than 10% of error;
3 Sufficient: Major structures until 10% of error, but minor structures until 50% of
error;

2 Moderate: Major structures with error between 10% and 30%, minor structures
until 50% of error;

1 Bad: All the structures, major and minor, with more than 30% of error.

Of the 24 analyzed datasets, the segmentation results were scored in these four
performance classes: three were classified as Bad segmentation, four as Moderate
segmentation, seven as Sufficient segmentation, and ten as Good segmentation.
An example of a segmentation for each segmentation class, is shown in Fig. 7.
The main structures in neonatal datasets (corpus callosum and corona radiate) are
easily recognized in the patient with classification Good. For the Moderate and Bad
examples, the automatic fiber clustering and segmentation contains visible errors.

4http://sourceforge.net/projects/viste/.

http://sourceforge.net/projects/viste/
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Fig. 7 Tractography segmentation examples for each quality class, posterior view. From left to
right and top to bottom: Good segmentation performance example; Sufficient segmentation per-
formance example, Moderate segmentation performance example; Bad segmentation performance
example; the color of the structure and its anatomical label are displayed in the legend

Table 1 Distribution of segmentation performance classes and pathology scores

Segmentation

Pathology 1-Bad 2-Moderate 3-Sufficient 4-Good

No 1 2 3 2 8

Mild 1 2 1 3 7

Moderate 1 0 3 4 8

Severe 0 0 0 1 1

Total 3 4 7 10 24

As shown in Table 1, there is no correlation between segmentation performance
and presence of pathology. We can observe that patients in whom segmentation
perform badly (score 1), the pathology was not severe. Patients with no abnormal-
ities and mild abnormalities are distributed among all four classes of segmentation
performance. Patients with no abnormalities are in greater number in the class
Sufficient, and patients with mild abnormalities in the class Good. Patients with
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Fig. 8 Segmentation results for patients with severe WM abnormalities, posterior views. From
left to right: (a) patient with CC agenesis with no further WM pathology, classified with Good
segmentation performance; (b) patient with large WM abnormalities (signal intensity) and widened
ventricles classified with Good segmentation performance; (c) patient with severe WM signal
abnormalities classified with Bad segmentation performance, anterior part of the CC is segmented
as FX

moderate abnormalities are also in greater number in the class Good. The patient
with severe abnormality also had segmentation performance classified as Good.

Figure 8 presents the segmentation results for three patients with severe WM
pathology. The first patient had no corpus callosum (CC), this is called CC-agenesis.
The segmentation pipeline still processed well the tractogram and no CC was
segmented for this patient but all the other structures could be observed. An
arrow was inserted in the typical CC region in the image Fig. 8, for ease of
interpretation. This patient had large areas of diffuse white matter signal intensity
abnormalities but could still be segmented with our pipeline and was classified as
having a Good segmentation performance. The third patient, also with white matter
signal abnormalities, shows poor segmentation performance and the segmentation
performance was scored as Bad, since the CC (a main structure) is clearly showing
mislabeled fibers. For this last patient the frontal part of the CC, in yellow, is also
erroneously labeled as FX, in green (also pointed out by an arrow).

Looking in more detail to the registration process, it shows that the cost-function
value (CF value) obtained at the end of the registration process has a lower average
value in the group with Good performance. A plot of the distribution of last cost-
function value per segmentation performance class is presented in Fig. 9. The last
cost value gives an indication of the quality of the registration, the lower the value
the better the registration was matched.

Patients with a last CF-value bigger than 35 were individually assessed; this
corresponded to three patients. These three patients had no severe white matter
pathology: one had even no abnormalities, the other two had mild abnormalities
due to residuals from a hemorrhage. Therefore, it can be observed that the deviation
from a normal brain was not the reason for the lower quality results.
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Fig. 9 Distribution of last CF value per segmentation performance class

For the complete analyzed dataset, only 30% of the patient tractography results
contained spurious fibers, i.e., fibers that did not belong to any anatomical structure
and only arise due to scanning or processing errors. Without skull-stripping, all
tractography results contained spurious fibers. Existence of spurious fibers is almost
evenly present for all the four performance classes, so segmentation performance is
not dependent on this step.

4 Discussion

We have implemented an automatic pipeline that segments Diffusion Tensor Images
of neonates automatically into images displaying the main WM structures in the
neonatal brain. The method is automatic, without user interaction, and tailored for
the evaluation of the neonatal brain. Main pipeline embedded methods and their
relation to the segmentation results are here discussed: (1) the tensor fitting and
tractography algorithm, (2) the tractography neonatal TEA atlas, (3) the skull-
stripping method, (4) the cluster-based sampling method, and (5) the fiber-wise
registration and correspondent fiber similarity metrics.

1. The tractography algorithm used is a simple FACT based method [36]. Subjects
with poor segmentation performance often show partial volume effects in the
clustering results (e.g., crossing over of fibers from one structure to another).
Partial volume effects have not been addressed by our pipeline. Crossing over
of fibers from different structures occurred usually between the CC and FX, or
between CC and CG. For some patients a partial volume effect is also observed
between CC and the CR. Improvement of tensor fitting accuracy is constrained by
practical reasons in neonatal clinical practice. The DTI protocol on many clinical
scanners is still limited to a maximum of 32 diffusion directions. If additional
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packages are purchased scanning in more directions become possible, however,
that requires longer scan time, making it not easy to apply in the neonatal popula-
tion in a routine clinical setting. Improvement of the tractography algorithm itself
can be used to mitigate but not solve some of the previous referred problems.
Nevertheless, such improvements also involves making assumptions that might
not suit our other constraints of our problem. An interesting direction would be
to explore approaches like the one presented by Durrleman et al. [4] or Wang et
al. [41] where segments of fibers are considered rather than the full length fibers.
This will, however, increase the complexity of the pipeline given the considerable
different nature of the proposed approaches.

2. Regarding the used atlas, it is built based on three datasets of neonates. Though,
we consider these datasets as quite representative of neonatal TEA DTI data,
using more data sets for the atlas construction might improve the accuracy of the
results. In addition, it is important to note that although the atlas contains classes
of spurious fibers, i.e., fibers that did not belong to any anatomical structure,
these can only arise due to scanning or processing errors. Future atlas versions
should consider removal of spurious fibers categorization and address them in the
segmentation pipeline only with a good skull-stripping method or other outlier
detection.

3. The applied skull-stripping reduces spurious fibers to 70%, therefore, reducing
calculation of similarities for fibers without anatomical interest. However, there
is empirical parameter tuning needed that should be addressed in the future.

4. The cluster-based sampling is still quite a computationally costly, as the cluster
method in itself computes similarity metrics. Still, performing registration and
label attribution using as input a sampled set was found to improve the accuracy
of these pipeline steps, in contrast with using the complete tractogram for
representing the atlas and the patient fibers. Computational costs were not the
focus of this chapter, and we believe that computation costs can still be further
reduced by using sparse distance matrices calculations, e.g., space subdivisions
strategies like octrees.

5. For all factors probed to investigate what is affecting segmentation performance,
only the registration accuracy seemed to matter. In particular a peculiar curved
shape of the CC often lead to an excessive shrinking of the fibers in the
registration step. Excessive shrinking might be caused due to an ineffective
tuning of the registration constraint parameters, and/or due to the fact this kind
of CC shape is not represented in the atlas, and/or even due to an inadequate
similarity measure for the registration between atlas and subject fibers. Possible
ways to tackle this can include applying a different deformation model which
allows for local transformation, like elastic and fluid deformations—with the
need of then defining optimal constraints for these models. Another direction
would be to tune the similarity metric being used for registration specifically for
dealing with neonatal data, like the one being used for the cluster-based sampling.
It would be interesting to investigate other registration approaches in this context,
for example, the registration approach proposed by Garyfallidis et al. [7].



370 L. Fonseca et al.

As an end note, it is also important to refer that FX segmentation results still do not
allow for an accurate investigation of this structure anisotropy. There are still too
many erroneous fibers present. Guevara et al. [10] and O’Donnell et al. [25] also
found for their methods that the association type fibers, FX and CG for the used
atlas labels, were the ones more difficult to segment.

5 Conclusions

Our study shows that is feasible to automatically segment WM structures in the
neonatal brain, by using an atlas-based and fiber-wise processing of DTI data. We
observe that our fiber-wise method, i.e., making use of global information, allows
for the radiologist and neonatologist to have a better overview of the patient’s WM
anatomical structure and eventual abnormalities. An automatic segmentation also
means less user-dependency and a less time-consuming analysis, thus allowing
to study WM maturation in an easier and more objective way. Segmentation
performance showed not to be influenced by presence of WM pathology in subjects,
even when anatomical structures were missing due to severe WM deviations.
Indicating that is a good segmentation approach to be used when pathology is
present.

In order to improve further registration quality, we believe that future work
should aim to increase atlas variability but probably even more important to probe
similarity metrics between fibers that are less computational expensive but still
adequate for neonatal tractography. In addition, it might be of interest to extend the
atlas for representing all gestational ages, for allowing study of full-term neonates
at risk of neurodevelopmental disorders.
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