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Railway track design & degradation
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Delft, The Netherlands
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Abstract. The long-term behaviour of railway track has attracted increasing
attention in recent years. Improvements in long-term structural performance
reduce demands for maintenance and increase the continuous availability of
railway lines. The focus of this paper is on the prediction of the sensitivity of a
track design to long-term deterioration in terms of track geometry. According
to the state of the art literature, degradation is often investigated using empirical
models based on field measurement data. Although a rough maintenance fore-
cast may be made employing empirical models, the predictions are not generic,
and the physical processes which govern track degradation under train operation
remain unclear. The first aim of this study is to present a mathematical model
to elucidate the underlying physics of long-term degradation of railway tracks.
The model consists of an infinitely long beam which is periodically supported
by equidistantly discrete sleepers and a moving unsprung mass which represents
a travelling train. The mechanical energy dissipated in the substructure is pro-
posed to serve as a measure of the track degradation rate. Secondly, parametric
studies on energy dissipation are conducted to identify effects of various track
design parameters on the susceptibility of the track to degradation, as well as
the effect of the train speed. It has been shown that the track/subgrade stiffness
is the most influential parameter on degradation whereas other system parame-
ters do influence the degradation rate but at lower magnitudes. The conclusions
can be used to optimise the track design in the early stage for better long-term
structural performance of railway tracks.

1 Mathematical formulation

To model the wheel/track interaction, the rail is represented by an infinite Timoshenko beam
resting on equidistantly discrete supports of identical properties as shown in Fig. 1. EI,
G and ρA are the bending stiffness, shear modulus and mass per unit length of the beam,
respectively. κ is the shear coefficient of the cross section of the beam. For each support,
the sleeper is modelled as a rigid mass Ms with ls being the distance between neighbouring
sleepers. The railpad that connects the sleeper and the rail is modelled as a spring-dashpot
element with stiffness kp and viscosity cp, respectively. kb and cb represent the stiffness and
the damping of the ballast. Moreover, the track is coupled to the unsprung wheel mass mw
moving at velocity v through a linearised contact spring of stiffness kH .
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Figure 1. A moving wheel on a periodically supported beam [1].

Using the Timoshenko beam theory, the equations of motion for the rail can be written
as:

ρA
∂2wb(x, t)
∂t2 −κAG

∂2wb(x, t)
∂x2 +κAG

∂ψb(x, t)
∂x

=−Fc(t)δ(x−vt)−
Ns/2∑

i=−Ns/2

Ri(t)δ(x−ils),

ρI
∂2ψb(x, t)
∂t2 −EI

∂2ψb(x, t)
∂x2 −κAG

∂wb(x, t)
∂x

+κAGψb(x, t)=0,

(1)

in which δ(·) represents the Dirac-delta function. wb(x, t) and ψb(x, t) denote the vertical dis-
placement and the rotation angle of the beam, respectively. Due to the periodicity assumption,
the following relationship can be established between the reaction force of the ith support,
i.e. Ri(t), and the reaction force of the 0th support R0(t),

Ri(t) = R0(t − ils

v
). (2)

The contact force Fc(t) and reaction force of the 0th support R0(t) are defined in the
following equations:

Fc(t) = kH (wb(vt, t) − ww(t)) , (3)
R0(t) = kp{wb(0, t) − ws,0(t)} + cp{ẇb(0, t) − ẇs,0(t)} (4)

where ww(t) is the displacement of the wheel and ws,0(t) is the displacement of the middle
sleeper at x = 0. Considering the interaction force between the rail and the 0th sleeper
defined in Eq. (4), the equation of motion of the sleeper is

Msẅs,0(t) = R0(t) − cbẇs,0(t) − kbws,0(t). (5)

The equation of motion of the moving wheel can be written as follows,

mwẅw(t) = kH (wb(vt, t) − ww(t)) + mtotg, (6)

where mtotg is half the axle load. The following periodicity conditions are satisfied:

wb(x + ls, t +
ls

v
) = wb(x, t), ψb(x + ls, t +

ls

v
) = ψb(x, t)

ww(t +
ls

v
) = ww(t), Fc(t +

ls

v
) = Fc(t).

(7)
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mwẅw(t) = kH (wb(vt, t) − ww(t)) + mtotg, (6)

where mtotg is half the axle load. The following periodicity conditions are satisfied:

wb(x + ls, t +
ls

v
) = wb(x, t), ψb(x + ls, t +

ls

v
) = ψb(x, t)

ww(t +
ls

v
) = ww(t), Fc(t +

ls

v
) = Fc(t).

(7)

Therefore, the contact force can be expressed as a Fourier series,

Fc(t) =
+∞∑

m=−∞
F̄me jm( 2πv

ls
)t (8)

where j2 = −1 and F̄m are the unknown frequency-dependent coefficients of the contact
force. Furthermore, Eq. (7) can be utilized in order to find a periodicity condition on the
beam displacement and rotation, in the frequency domain,

ŵb(x, ω) = e jωls/v ŵb(x + ls, ω), ψ̂b(x, ω) = e jωls/v ψ̂b(x + ls, ω). (9)

Taking into consideration the latter relationships, it can be concluded that the displacement
and rotation of the infinite beam are spatially periodic and they can consequently be expressed
using the following Fourier series,

ŵb(x, ω) = e− jωx/v
+∞∑

m=−∞
W̄m(ω) e jm( 2π

ls
)x, ψ̂b(x, ω) = e− jωx/v

+∞∑
m=−∞

ψ̄m(ω) e jm( 2π
ls

)x, (10)

where W̄m(ω) and ψ̄m(ω) are the unknown frequency-dependent coefficients of the displace-
ment and rotation responses. The responses of the rail, sleepers and the wheel can be solved
in frequency domain. The time domain solution is obtained by inverse Fourier transform. For
details of the solving procedure reference is made to [1].

2 Parametric study of track design and degradation

Degradation of track geometry is associated with non-elastic soil-ballast behaviour and en-
ergy dissipation in the substructure. Therefore, the latter is chosen as a measure for evaluating
the long-term performance of railway track in service. A parametric study is conducted to il-
lustrate the effect of various track design parameters on energy dissipation in the substructure.
The nominal values of the wheel/track system are: (1) EI = 4.25MNm2, ρA = 54.4kgm−1

and κ = 0.34 for the rail; (2) Ms = 142.5kg for sleepers and the distance between sleepers
ls = 0.6m; (3) kp = 1000MNm−1 and cp = 30kNm−1s for railpads; (4) kb = 50MNm−1

and cb = 55kNm−1s for ballast; (5) mw = 900kg for the wheel mass and the linearised con-
tact stiffness kH =

3
√

3 × 1022 · Q where Q = 100kN is the static wheel load. These values
correspond to typical Dutch railway track [1, 2].

2.1 Mechanical energy dissipation in the substructure

The mechanical energy dissipated in the substructure, for a single passage of the moving
wheel, and for the position at the 0th support is given by:

Ediss,0 =

∫ +∞
−∞

cb vs,0(t)2dt (11)

where vs,0(t) is the time domain velocity of the sleeper at x = 0.

2.2 Receptance of an individual sleeper

Before proceeding to the parametric study, the wheel/track receptance is examined. The
receptance is widely used in the literature to demonstrate the properties of railway tracks e.g.
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Figure 2. Receptance of an individual sleeper.

[3–5]. Since the dissipated energy is associated with the response of the sleeper as shown
in Eq. (11), therefore, the receptance of an individual sleeper under stationary harmonic
load and wheel both positioned on the rail above a sleeper is shown in Fig. 2. The way the
receptance is calculated is described in [1]. Three different unsprung wheel mass values are
used to show its importance on the frequency response of the sleeper. Nominal values of
other track parameters given previously are adopted. The unsprung mass causes a significant
decrease of the first and second resonant frequencies.

2.3 Effects of ballast and railpad properties

The ballast/soil properties play an important role in the energy dissipation in the subgrade.
Fig. 3(a) shows the effect of ballast stiffness on dissipated energy. Generally, the higher the

Figure 3. Effects of ballast/subgrade properties on the dissipated energy: (a) cb = 55kNm−1s; (b)
kb = 100MNm−1. Nominal values for other parameters.

track stiffness, the lower the dissipated energy. However, for higher track stiffness, dissipation
peaks appear at specific speeds. At these speeds, the sleeper passing frequency v/ls or its
multiples coincide with the first resonant frequency in the system receptance in Fig. 2 [1].
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track stiffness, the lower the dissipated energy. However, for higher track stiffness, dissipation
peaks appear at specific speeds. At these speeds, the sleeper passing frequency v/ls or its
multiples coincide with the first resonant frequency in the system receptance in Fig. 2 [1].

The speeds at which peak values of dissipated energy occur are of practical importance since
they fall into the operational speed range of conventional trains. In Fig. 3(b), the track
stiffness is fixed to kb = 100MNm−1 and the effect of ballast damping on dissipated energy
is investigated. As expected, higher damping results in a higher dissipated energy level in
absolute sense. However, it becomes also clear that the magnitude of the dissipation peaks
is influenced significantly by the damping value; also the speed corresponding to these peaks
shifts upward.
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Figure 4. 3D plot of dissipated energy for ballast stiffness range 30 − 200MNm−1 and railpad stiffness
range 30 − 1000MNm−1 for speed: v = 80km/h on the left; v = 140km/h on the right.

3D plots of dissipated energy level for different combinations of ballast and railpad stiff-
ness are shown in Fig. 4 for two typical operational speeds of conventional trains: freight and
passenger trains. At v = 80km/h, for a specific kb, the dissipated energy (and therefore the
expected degradation) grows with increasing railpad stiffness. In contrast, energy dissipation
decreases with higher track stiffness. The effect of the track stiffness exceeds that of the rail-
pad stiffness. At speed v = 140km/h, the situation is more complicated, due to the fact that
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railpad stiffness range 30 − 1000MNm−1.



6

MATEC Web of Conferences 211, 11006 (2018) https://doi.org/10.1051/matecconf/201821111006
VETOMAC XIV

this speed falls into the range where peak energy dissipation may occur as shown in Fig. 3.
Low track stiffness, roughly below 70MN/m is always unfavourable. A track stiffness around
100 MN/m can be seen to minimise energy dissipation independent of the railpad stiffness.
For higher track stiffness, the magnitude of the railpad stiffness starts to play a significant role
and therefore clearly needs optimisation.

The possibilities of the developed methodology are illustrated in Fig. 5, showing a con-
tour plot of the dissipated energy in the substructure, as a function of both track stiffness and
railpad stiffness, for three different train speeds. The system parameter combination zones
with the lowest energy dissipation for any train speed combination can be easily identified.
These kind of maps can be plotted for any parameter combination, allowing for an optimised
track design under specific conditions.

2.4 Effects of other parameters

In the previous, parameters such as the wheel mass, the distance between neighbouring sleep-
ers, mass of the sleepers, railpad damping and rail cross-sectional profile were not discussed.
Apart from the rail profile, they play less significant roles with respect to the expected degra-
dation [1]. Higher unsprung mass decreases the speed with peak energy dissipation. This is
because larger wheel mass moves the first resonant frequency of the sleeper receptance to a
lower value as shown in Fig. 2. Decreasing sleeper distance leads to lower energy dissipa-
tion, but on the other hand adapting this distance is often not a feasible option. The dissipated
energy decreases for a stiffer rail profile. The railpad damping and the sleeper mass have very
limited effect on the dissipated energy in the substructure for typical Dutch railway track.

3 Conclusions

In this paper, a two-layer frequency-domain track model is employed to deal with wheel/track
interaction. The focus is placed on the mechanical energy dissipated in the substructure,
which is proposed to serve as a measure of the expected track degradation. Effects of various
wheel/track parameters on energy dissipation are investigated, as well as the effect of the
train speed. The nominal values of these parameters are from Dutch railway practice. The
most important system parameter is the track/subgrade stiffness. The degradation increases
with the train speed and with softer subgrade in general. However, stiff subgrades appear
more sensitive to particular train velocities (100-200km/h) since the energy dissipation may
have peak values. Larger subgrade damping attenuates these peaks and shifts them to a larger
speed. It is also concluded that increasing railpad stiffness causes higher degradation rates.
Therefore, a combination of low railpad stiffness and high track stiffness is preferred in many
cases of track design. Larger sleeper distance also increases dissipated energy. In contrast,
application of a stiffer rail profile decreases the degradation rate. Unsprung vehicle mass
and sleeper mass have very limited influence on geometrically perfect tracks with a uniform
stiffness profile (apart from the discrete supports) considered in this paper.
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