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A Cache-Based Hardware Accelerator
for Memory Data Movements

Filipa Duarte

Abstract

T
his dissertation presents a hardware accelerator that is able to accel-
erate large (including non-parallel) memory data movements, in par-
ticular memory copies, performed traditionally by the processors. As

today’s processors are tied with or have integrated caches with varying sizes
(from several kilobytes in hand-held devices to many megabytes in desktop
devices or large servers), it is only logical to assume that data to-be-copied
by a memory copy is already present within the cache. This is especially true
when considering that such data often must be processed first. This means that
the presence of the caches can be utilized to significantly reduce the latencies
associated with memory copies, when a “smarter” way to perform the memory
copy operation is used.

Therefore, the proposed accelerator for memory copies takes advantage of
the presence of these caches and introduces a redirection mechanism that links
the original data (in the cache) to the copied addresses (in a newly added in-
dexing table). The proposed solutions avoid cache pollution and duplication
of data, and efficiently schedule the access to the main memory, thus effec-
tively reducing the latency associated with memory copies. Moreover, the
proposed accelerator supports copies of cache line and word granularity, can
be connected to a direct-mapped or a set-associative cache, and can efficiently
reduce the memory copy bottleneck in single core processors and in multi-core
processors that execute a message passing communication model.

The proposed solutions have been implemented in a FPGA as a proof of
concept and incorporated in a simulator running several benchmarks to deter-
mine the performance gains of the proposal. In particular, for the receiver side
of the TCP/IP stack, the proposed solutions can reach speedups from 2.96 to
4.61 times and reduce the number of instructions executed by 26% to 44%.
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Chapter 1

Introduction

D
ata exchange operations exist in several types of processing: in inter-
process communication (multitasking systems); in between processes
running on the same memory space (multi-threading systems) and

in multiprocessing systems. In particular, data exchange between different
address spaces (inter-process communication and multiprocessing) requires
physically moving data in the main memory, and therefore, several accesses to
the memory hierarchy have to be performed. As memory bandwidth is scarce
relative to processor bandwidth, data movements are expensive. One tradi-
tional way to address the imbalance between memory bandwidth and proces-
sor speed is the use of caches. As caches store the most recently used data,
it is only logical to assume that data to be moved (e.g., by the inter-process
communication in a multitasking system or by a multiprocessor system) is al-
ready present within the cache. This is especially true when considering that
such data often must be processed first. Would it be possible, then, to take
advantage of the presence of the caches to significantly reduce the latencies
associated with memory data movements?

This chapter introduces, in Section 1.1, the motivation to address the mem-
ory data movements in a uniprocessor system and extents the motivation to a
multiprocessor in Section 1.2. In Section 1.3, the related works are presented
and in Section 1.4 the research questions addressed in this dissertation are pre-
sented. Finally, Section 1.5 describes the outline of the dissertation.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation

The imbalance between memory bandwidth and processor speed, also refer-
eed as “processor-memory performance gap”, have been demonstrated over
the year using several means. For commercial applications, node idle times
were reported to reach 65% of execution time, and high-performance scien-
tific computations reported to reach 95% node idle times: much of this is due
to memory bottlenecks [53]. Hennessy and Patterson [29] demonstrated that
the processor performance grew from 1980-1998 at 60% per year, while the
access time to the memory improved at 10% per year, giving rise to an increas-
ing “processor-memory performance gap”. Moreover, this trend that existed in
the past, is expected to continue into the future, as depicted in the STREAM
Benchmark Reference Information web-site [85]. Furthermore, the processing
performance from 1985 to 2001 increased at 50% per year on average, and
sustainable memory bandwidth from 1975 to 2001 increased at 35% per year,
on average, over all the systems measured in [85].

To understand better the impact of the memory data movements in the
imbalance between memory bandwidth and processor speed, consider a ex-
tremely used application: the Transmission Control Protocol (TCP)/ Internet
Protocol (IP) processing stack. The TCP was outlined in a 1974 paper by
Kahn and Cerf [11] and was introduced in 1977 on the ARPAnet - and every
network attached to the ARPAnet - forming the first network of computers. In
1980, IP [75] is added to TCP to provide the routing mechanisms of the net-
works. From then on, all networks that use IP are collectively known as the
Internet.

Since August 1981, the Internet Systems Consortium (ISC) [33] keeps a
record on the number of computers connected to the Internet. Besides the
increasing number of users connected to the Internet, one also witnessed an
increase in the variety and complexity of the services available. This imposes
a demand for a faster network and faster computations. Figure 1.1 depicts the
impressive growth in number of computers connected to the Internet and the
evolution on network throughput. As the throughput of the network increases,
the strain put on devices running the TCP/IP stack also increases, due to the in-
creasing demand of performing more complex tasks in short time. The TCP/IP
stack processing overhead is high whenever network bandwidth (packets ar-
riving) is large in comparison to processor and memory bandwidths (packets
processing).

As an example, consider a Pentium M processor (from 2003) with a DDR

2



1.1. MOTIVATION

Internet Evolution
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Figure 1.1: Internet evolution (source: ISC [33])

200 main memory running the TCP/IP stack. This system takes roughly 150
µsec to process 64 kB of data [109]. On a 100 Mbps network, this 64 kB of
data will arrive roughly every 5 msec, however, on 10 Gbps network that time
is roughly 50µsec. Therefore, the time of arrival of packets has become of
the same order of magnitude as the time it takes to process a single packet in
software.

Network processing has been an object of study since its creation. In par-
ticular, in [16], [36], [47], [73] and [109], the authors present profiling in-
formation and different analysis of the TCP/IP stack in software. The main
time-consuming parts were identified to be:

• Operating system integration: The operating system (OS) overhead is
mainly due to interrupt processing, layered drivers and buffers manage-
ment.

• Checksums: Checksum calculations are quite compute intensive, due to
the heavy mathematical calculations needed.

• Memory copies: Memory copies are time-consuming mainly due to
the difference in speed of the processor and the main memory, i.e., the
“processor-memory performance gap”.

3



CHAPTER 1. INTRODUCTION

Because the TCP/IP stack is deeply integrated with the OS, avoiding the
OS integration overhead is a difficult task, though some work has been per-
formed ([77] and [59]). The checksum bottleneck, however is easier to solve.
As the checksum calculations are quite computing intensive, offloading them
from the processor through dedicated accelerator included in the network cards,
turned this quite time-consuming code into a negligible execution time. On the
other hand, memory copies are time-consuming mainly due to the difference
in speed of the processor and the main memory, so a typical offload of such
functionality is not possible.

Analyzing in particular memory copies, Clark et al. [16] in 1989 demon-
strated that 64% of the measured time of the authors experiment was attribut-
able to check-summing and memory data movement, from it 48% was ac-
counted for by data copying. Subsequent work has consistently demonstrated
the same phenomenon, as the earlier Clark et al. study. Kay and Pasquale [36]
reported results that separate the processing times for check-summing and for
memory data movement operations. For the 1500 bytes Ethernet size, 20%
of the total processing overhead time is attributable to data copying and the
checksum accounted for 30% of the same processing time. This values corre-
sponded to around 70% of all processing time of the TCP/IP protocol dedicated
to memory data movements.

As the memory copies cross the processor/memory bus twice per copy
(one transferring the data from the main memory to the processor and another
transferring the data from the processor back to the main memory) it suffers
twice from the “processor-memory performance gap”. The main scheme to
overcome this bottleneck is to utilize direct memory access (DMA) or a com-
bination between DMA and software techniques. However, DMA-based ap-
proaches provide a limited solution mainly due to 3 reasons:

• DMAs are peripheral devices and therefore there is a significant over-
head on the communication between the processor and the DMA device,
as the initialization of the device has to be done explicitly;

• The notification of a DMA transfer completion is performed either through
polling or interrupt, both being expensive;

• DMAs deal mainly with physical addresses and therefore user-level ap-
plication cannot take advantage of them.

The software techniques used in combination with DMA typically restruc-
ture the OS to minimize or completely avoid memory data movements. In

4
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particular, the OS virtual page remapping and the zero-copy techniques were
presented by Druschel et al. [67] and Thadani et al. [37], respectively. How-
ever, OS virtual page remapping is only efficient if the size of the packet is
bigger that the OS virtual page size and the zero-copy technique is only ap-
plicable to the traditional UNIX OS interfaces1. Therefore, the memory copies
bottleneck is still an open issue in today’s networking processing systems.

In order to evaluate the impact of such time-consuming parts of the net-
work processing on a newer network standard, the Bluetooth standard was
profiled, as it also uses the TCP/IP stack2. The main conclusion of the study
was that thememcpyfunction is the most time-consuming function (except the
interrupt-related functions)3. Four actions, that include thememcpy function,
are performed by the OS when handling a Bluetooth ‘file transfer’: ‘frame
acknowledging’, ‘interrupt handling’, ‘receiving packet’ and ‘reassembling
frame’. The copy size used in either these actions is also regular, being 339 bytes
for 4 packets plus 151 bytes for the last packet on the ‘receiving packet’ action
and 1507 bytes when ‘reassembling frame’. A graphical view of these actions
is depicted in Figure 1.2. Therefore, the conclusion goes in the same direction

Receiving Packet

Receiving Packet


Acknowledging


Frame


Acknowledging


Frame

Reassembling


Frame


Reassembling


Frame


Interrupt


Handling


Interrupt


Handling


Repeat if the received


size is different from


frame size


Figure 1.2: Bluetooth actions

of the related work on network processing: memory copies are a bottleneck in
nowadays systems, even for new protocols.

1Further details on DMA and software techniques are introduced in detail in Section 1.3
2The details of this work can be found in Appendix A.
3Thememcpyfunction and its variations are introduced in detail in Section 2.3.
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CHAPTER 1. INTRODUCTION

1.2 Multiprocessor Platforms

Even though certain physical limits have been reached, it is continuously pos-
sible to put more transistors on a single integrated circuit die. However, the
effects of these physical limitations can cause significant heat dissipation and
data synchronization problems. The demand for more capable processors
causes designers to use various methods to increase performance, such as in-
struction level parallelism (ILP) and thread level parallelism (TLP). ILP meth-
ods like superscalar pipelining are suitable for many applications, but are inef-
ficient for others that tend to contain difficult-to-predict code. Many applica-
tions are better suited to TLP methods, and using multiple independent proces-
sors is one common method used to increase a system’s overall TLP. A combi-
nation of increased available space on the integrated circuit die due to refined
manufacturing processes and the demand for increased TLP is the reasoning
behind the creation of multiprocessors, in particular, multi-core processors.

Most commonly the terms multi-core and multiprocessor have been both
used to refer to several processing units4 that are manufactured on the same
integrated circuit die. In this dissertation5, the term multi-core refers to several
processing units manufactured on the same integrated circuit die. In contrast
to multi-core processors, the term multiprocessor refers to multiple physically
separate processing units (not in the same integrated circuit die), which of-
ten contain special circuitry to facilitate communication between each other.
Summarizing:

• Uniprocessor: One processing unit with its caches in one integrated
circuit die with the necessary interfaces to communicate with an main
memory and peripherals;

• Multiprocessor: Several processing units with their caches, connected
through an interconnect network, that allows for distributed execution
of tasks; can be in several or one integrated circuit die.

– Multi-core processor: Several processing units with their caches in
one integrated circuit die and its bus-based interconnection, with
the necessary interfaces to communicate with an main memory and
peripherals;

4Also referred as central processing unit (CPU).
5The definition of the terms multi-core and multiprocessor have evolved to a gray area,

where different authors actually mean different systems.

6
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Multiprocessors systems are built on top of architecturally different plat-
forms that support a wide variety of parallel programming models and com-
munication models. However, the choice for a particular programming model
greatly depends on the communication model utilized, as programs are typ-
ically tailored towards it. Moreover, from the hardware point of view, the
communication model is tightly-coupled with the platform used, as the choice
of the communication model for a particular platform can significantly impact
the performance and ease of use of such systems. The communication models
can be classified as:

• Shared memory: where the communication is implicitly performed via
loads and stores to a global shared address space; and

• Message passing: where the communication is performed explicitly by
utilizing messages containing the data to be communicated, e.g., mes-
sage passing interface (MPI) [55] or SHMEM [79] implementations.

Looking into the hardware support for multiprocessors systems, there is a con-
vergence to mainly two types of platforms:

• Tightly-coupled: multiple processing units connected through a high-
performance interconnect, accessing a shared memory hierarchy and im-
plementing a shared memory communication model.

• Loosely-coupled: nodes of processing units, in which the message pass-
ing communication model is implemented in software across the nodes.
Examples of such systems include Linux Beowulf cluster [4].

An extreme case of tightly-coupled systems is the multi-core processor, where
the number of processing units is small (normally called cores, and reaching a
maximum of 8 per chip) and the interconnect is bus-based. As the cores in a
multi-core processor share the memory hierarchy, the obvious communication
model is the shared memory.

With the increasing demand on processing power, the processing units of a
traditional node of a loosely-coupled system have evolved from a uniprocessor
per node to one or more multi-core processors per node. Therefore, the appli-
cations that were developed for nodes of uniprocessors (that utilize a message
passing communication model) are now being executed in nodes of multi-core
processors. Consequently, there is a need to carefully evaluate the impact of the
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message passing communication model on the multi-core processors. More-
over, research has proven there are benefits in using message passing com-
munication models with tightly-coupled systems (not specifically multi-core
processors) for particular applications ([40], [44] and [78]).

As the message passing communication is performed with send and re-
ceive messages, the manner this data is transferred can impose penalties that
will greatly impact the performance of the overall system. Again, one of the
main bottlenecks identified of using a message passing communication model
concerns the memory data movements. As the trend is to increase the number
of processing units (being cores or dedicated application specific processing
units) in a single integrated circuit die, the impact of memory data movements
is also expected to increase.

1.3 Related Work

A wealth of data from research and industry presented that memory data move-
ments are responsible for substantial amounts of processing overhead, in par-
ticular, memory copies that can be the source of a considerable part of this
processing overhead (as already introduced in the previous sections). It fur-
ther demonstrated that, even in carefully implemented systems, eliminating
these memory copies significantly reduces the overhead, as referenced below.
Firstly, several studies that analyze the TCP/IP stack are presented, followed by
studies that evaluate the impact on caches due to the execution of the TCP/IP
stack. Secondly, several software approaches to the memory copy bottleneck
are presented, followed by the approaches that combine changes to the net-
work cards and software. Thirdly, hardware approaches to the problem are
presented, divided by DMA-based approaches and non DMA-based. Finally,
studies that analyzed memory copy bottleneck in multiprocessor environment
are presented.

Clark et al. [16] in 1989, concluded that the TCP overhead processing
is attributable to both per-packet operations (costs due to the OS integration
such as interrupts, context switches, process management, buffer management,
timer management) and the costs associated with processing individual bytes
(specifically, computing the checksum and moving data in main memory). The
authors found that moving data in main memory is the one of the most impor-
tant of the costs, and their experiments concluded that memory bandwidth is
the greatest source of limitation. The data presented demonstrated that 64%
of the measured time was attributable to per-byte operations, check-summing
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and memory data movement, from it 48% was accounted for by data copying.
Subsequent work has consistently demonstrated the same phenomenon, as the
earlier Clark et al. study. Kay and Pasquale [36] reported results that separate
the processing times for check-summing and for memory data movement oper-
ations. For the 1500 bytes Ethernet size, 20% of the total processing overhead
time is attributable to data copying and the checksum accounted for 30% of
the processing time.

A number of studies reported results that per-byte operations dominate the
processing costs for messages longer than 128 bytes ([13], [16], [21], [36],
[49], [69] and [73]). For smaller messages, the main costs are demonstrated
to be per-packet operations ([12] and [36]). However, the percentage of over-
head due to per-byte operations increases with packet size, since the time spent
on per-byte operations scales linearly with the message size. As networks
get faster, data copying and check-summing become the dominating overhead,
both because the other overheads are amortized over large packets and because
per-byte operations stress a critical resource, the memory bus.

There has been some work evaluating the impact on caches while execut-
ing the TCP/IP stack ([30], [62] and [110]). Nahum et al. in [62] presented
work that reached the following main conclusions, when executing the TCP/IP
stack: i) instruction cache behavior is significant; ii) cold cache performance
falls dramatically; and iii) larger caches and increased associativity improve
performance. Zhao et al. in [110] studied the cache behavior for several
TCP/IP data and implemented a specific and dedicated to networking actions
cache. The authors have demonstrated that the header and the payload do not
present temporal locality (as they have just arrived to the system), however
the payload alone does provide spatial locality. Moreover, Huggahalli et. al.
in [30] demonstrated that almost 100% of all incoming data from the network
card, is subsequently read by the processor. This is the main reason for the
authors proposing an approach to locate the data arriving immediately on the
processor’s cache.

There are many examples of copy elimination by using a variety of dif-
ferent software approaches. Such approaches that typically restructure the OS
software to minimize or completely avoid data movements, have demonstrated
significant improvement in the system performance ([13], [14], [37], [67] and
[68]) The work presented by Thadani et al. [37] extended the traditional UNIX
OS interfaces to avoid transfers of data between user-defined buffers and the
kernel. Therefore, these interfaces lend to an efficient zero-copy data trans-
fer. In this work, the network throughput was improved by more than 40%
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and the processor utilization reduced by more than 20%. The work presented
by Druschel et al. [67], developed a new facility in the OS calledfast buffers
(or fbufs). It combined the virtual page remapping with shared virtual mem-
ory and exploited the locality of input/output (I/O) traffic. The authors claim
that the usage offbufscan provide the same performance as the fastest page
remapping in literature and it offers better performance than shared memory.
The same page remapping concept was also used by Chu [14], with a the copy-
on-write technique. The authors present performance improvement on TCP/IP
stack executing a Solaris OS however, the performance is dependent on the
performance of the cache of the system. Pai et al. [68] presented a unified I/O
buffering system for a general-purpose OS. It provided a layer of abstraction
that eliminates the redundant copies and multiple buffers of data. The authors
provided performance improvements between 40% and 80% on a prototype
implementation in FreeBSD [9]. More recent work by Chase et al. [13], mea-
suring the processor utilization, concluded that avoiding copies reduces the
processing time spent on data access from 24% to 15% at 370 Mbps for 32 kB
data. This is an absolute improvement of 9% due to copy avoidance. The total
processor utilization was 35%, with data access accounting for 24%. Thus,
the relative importance of reducing copies is 26%. At 370 Mbps, the system
is not very heavily loaded. The relative improvement in achievable bandwidth
is 34%. This is the improvement seen if copy avoidance were added when the
machine was saturated by network I/O.

A number of studies performed improvements on the network cards to re-
duce the number of copies ([38], [72], [73], [81], [87] and [92]). Steenkiste et
al. in [38] and [81] presented a Communication Accelerator Board, where at
its core is a memory used for outboard buffering of network packets. More-
over, the memory feeds three DMA engines and provide checksum calculation.
In order for this accelerator to be supported by the OS, the necessary exten-
sions were implemented. The authors claim that their solution can be 3 times
more efficient than the original implementation. Walsh [92] presented a high-
performance network adapter for a bus. This accelerator consists on a data and
control memory interface (to communicate directly with the main memory), a
master and slave interface to the bus and the necessary interfaces to the send
and receive parts of the network card. In order to support such accelerator, the
authors also developed the software, such as a device-driver and small changes
to the OS. More recently, Regnier et al. [72] presented the Embedded Trans-
port Acceleration, where one of the available cores in a multi-core processor
is used to perform a packet processing engine tasks. This implies a parti-
tion of tasks between the general host core and the packet processing engine
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core. Results presented by the authors depict an approximately 50% increase
in transmitting performance and a throughput that can reach 4 Gbps. In [73],
the same authors extend the previous work by introducing a memory-aware
reference stack, that takes advantage of three latency reduction techniques: i)
light-weight threading; ii) direct cache access; and iii) asynchronous memory
copies. The authors show that the combination of these techniques can dou-
ble the network throughput and reduce the number of clock cycles spend per
packet by one third. Finally, remote direct memory access (RDMA) [74] is a
technology that allows computers in a network to exchange data in main mem-
ory without involving the processor, the cache, or the OS of either computers.
Like locally-based DMA, RDMA improves throughput and performance be-
cause it frees up resources. RDMA also facilitates a faster data transfer rate.
RDMA implements a transport protocol in the network card hardware and sup-
ports a feature called zero-copy networking. Zero-copy networking makes it
possible to read data directly from the main memory of one computer and write
that data directly to the main memory of the other computer. The communi-
cation is performed through messages, that are “one-sided” in the sense that
they will be processed by the adapter that receive them without involving the
processor on the system that receives the messages.

Only recently hardware solutions started to appear to solve the data move-
ment costs. The traditional DMA solution has been used extensively to trans-
fer data between network cards and the main memory without much proces-
sor intervention or control. However, it needs to be explicitly initiated by the
OS (since it is treated as a peripheral device). Therefore, a large overhead
is incurred and user applications cannot directly utilize this solution making
it limited in use. Intel’s I/O Acceleration Technology [87] presents a set of
hardware features that also include DMA. It attempts to alleviate the receiver
packet processing overheads by using split headers (TCP/IP processing), an
asynchronous DMA copy engine (memory copies between network cards and
main memory) and multiple receive queues (memory bandwidth). The asyn-
chronous DMA copy engine is in the OS kernel space and has direct access
to the memory to improve performance. However, as it is based on a DMA
device, the accesses to the device have to be explicitly managed by the appli-
cation and, therefore, there are overheads that cannot be avoided.

Non-DMA based solutions were presented in [30], [73], [99] and [109].
The TCP/IP offload engine (TOE) [99] has emerged as an attractive solution
which can reduce the host processor overhead and improve network perfor-
mance at the same time. This is accomplished by offloading the TCP/IP stack
from the processor into a dedicated accelerator that will perform the process-

11



CHAPTER 1. INTRODUCTION

ing involved in the TCP/IP stack ([30] and [73]). Zhao et al. in [109] present
a hardware support for memory copies. This work presents a copy engine that
is able to duplicate the data in the main memory by adding new features to
the traditional memory controller. This provides reduction of cache pollution,
however it will result in an unnecessary overhead if the copied data is used
(touched) by processor, as it was demonstrated by [30].

In multiprocessor environment, memory copies have also been identified
as a bottleneck for several cache coherent systems. Shan et al. in [78] com-
pare the performance of the implementation of the three major programming
models (shared address space, MPI [55] and SHMEM [79]) on a cache coher-
ent multiprocessor. The authors concluded that removing the extra copy and
using lock-free management queues in the message passing models can im-
prove performance, however that implied changing the MPI and SHMEM im-
plementation. With these improvements the three implementations performed
quite similarly up to 16 processors and for small problem sizes. For more
processors and bigger problem sizes, the following situations impact the per-
formance of the system: i) remote accesses of cache line granularity and poor
spacial locality on the remote data; ii) explicit transfers that either put data in
the cache or in the main memory of the destination; iii) difference in cache
conflict behavior; iv) situations when the cache coherence protocol degrades
performance; and v) the implementation of barriers. A more recent study by
Leverich et al. in [44] compares the message passing and shared memory com-
munication model in a chip multiprocessor. The authors demonstrate that both
communication models scale well, however the message passing model ben-
efits from having a cache coherent multiprocessor as it enhances locality and
can actually be easier to use.

One of the first machines supporting shared memory and message passing
communication models were the Cray T3D [19] and the Stanford FLASH [40].
The designers of both machines identified the need to alleviate expensive op-
erations in the path ofsend andreceive messages, in order to provide the
expected performance. For that, the solution relied on avoiding message copy-
ing through direct transfer of data between processes, and overlap computa-
tion with communication. The solution implemented in the Cray T3D was the
use of a system level block transfer engine, which used DMA to transfer large
blocks of contiguous or strided data to or from remote memories. Based on the
Stanford FLASH, Heinlein et al. [28] implemented a custom programmable
node controller containing an embedded processor that can be programmed to
implement both cache coherence and message passing protocols.
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However, the need for a data transfer engine is still a matter of debate. Woo
et al. in [98] analyzed the performance of integrating a data transfer engine in
a system closely resembling the Stanford FLASH architecture. According to
the authors, the benefits of block transfer are not substantial for cache coherent
multiprocessors. The reasons given are: i) the relative modest fraction of time
applications spend in communication; ii) the difficulty of finding enough inde-
pendent computation to overlap with communication latency; and iii) the cache
lines often capture many of the benefits of block transfer. However, in a more
recent work presented by Buntinas et al. in [10], the authors analyze the per-
formance of transferring large data in symmetric multiprocessors. The authors
analyze five different mechanisms (shared memory buffers, message queues,
Ptrace system calls, kernel module copies and network cards) in terms of la-
tency, bandwidth, cache usage and suitability to support message passing com-
munication protocol. The main conclusion is that, as soon as the proper mech-
anism is chosen, these mechanisms do provide performance benefits and are
suitable for message passing, contradicting the conclusions reached by Woo et
al.. Another software solution for optimizing memory copies in multiprocessor
systems has also been presented by Prylli et al. in [71]. The authors designed
and implemented new protocols of transmission targeted to parallel computing
of the high speed Myrinet network. Nieplocha et al. in [63] introduced a new
portable communication library that provides one-sided communication capa-
bilities for distributed array libraries, and supports remote memory copy, ac-
cumulate, and synchronization operations optimized for non-contiguous data
transfers.

Summarizing, DMA-based approaches provide only limited solutions due
to the high overhead introduced to explicitly initialize the devices. Software
techniques are either OS dependent (e.g., [37]), or not valid for all cases (like
when a packet is small then the OS virtual page in the case of [67]). Further-
more, today’s network cards commonly offload the checksums, which removes
the one part of per-byte overhead (the other part is the memory copy opera-
tion). They also coalesce interrupts to reduce per-packet costs. Thus, today
copying costs account for a relatively larger part of processor utilization than
previously, and therefore relatively more benefit is to be gained in reducing
them. Moreover, from the cache studies previously presented, there is a cache
behavior that can be taken advantage of: the fact that the payload presents spa-
cial locality and that almost all the incoming (received) data is subsequently
read by the processor, as presented by [62].

The solutions presented in this dissertation do not incur in the penalties
of the DMA-based approaches and they are not platform or OS dependent.
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Moreover, they take advantage of the presence of the cache (as it was demon-
strated that the performance of the cache can have impact on the performance
of the memory copy). Furthermore, the solutions presented in this dissertation
can also be applicable to multiprocessors platforms and efficiently reduce the
impact of memory copies in message passing communication protocol.

1.4 Research Questions

The previous sections have demonstrated that memory copies are a bottleneck
in several systems (uniprocessor and multiprocessor) and for different stan-
dards (networking standards based on TCP/IP and the message passing com-
munication model). Moreover, the previous proposals to solve this bottleneck
still cannot provide the necessary performance in some circumstances or can
only be applied to limited number of cases. It has been also presented in the
previous sections, that the processor’s evolution has increasingly taken benefit
of the presence of caches, intended to reduce the “processor-memory perfor-
mance gap”. The possible benefits of utilizing such caches and a trend to con-
tinue in such direction has been identified. Therefore, the research questions
this dissertation addresses are:

• Can the presence of caches in today’s processors be exploited to solve
the memory copy bottleneck?

• How do the proposed solutions in this dissertation perform compared
with existing approaches?

• How can the proposed solutions in this dissertation be adapted to support
multiprocessor platforms?

In order to address these questions, prototyping platforms are chosen to im-
plement the proposed solutions. Their hardware implementation will demon-
strate how feasible the solutions are and estimate their real performance. More-
over, in order to study the performance benefits a simulator is utilized. Utiliz-
ing a simulator (with performance numbers from the hardware implementa-
tion) will allow to further perform performance studies for multiple bench-
marks and real applications. The benefits of utilizing these two analysis is
two-fold. A study on raw performance and of the quantity of hardware re-
sources necessary to implement the proposed solutions can be derived from
the prototyping platforms and an event-driven simulator provides the cycle ac-
curate timing evaluation of the proposed solutions. Therefore, these two meth-
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ods provide the possibility of performing an accurate and complete analysis
of the proposed solutions. Moreover, in order to evaluate the multiprocessor
solution, a analytical study is utilized that provides the theoretical benefits of
the proposed solutions.

1.5 Outline

This section discusses the organization of the reminder of the dissertation
which consists of the following chapters:

• Chapter 2 introduces some basic concepts and the necessary background
to better understand the remainder of this dissertation. It introduces the
definition, organization, policies and design of caches and the general
behavior and utilization of a memory copy operation. Moreover, the
platforms utilized in prototyping and simulating the proposed solutions
are also introduced in this chapter.

• Chapter 3 introduces the concept of the cache-based memory copy hard-
ware accelerator. It also describes the design of the proposed solutions
for different cases and presents the expected benefits compared with the
traditional approach.

• Chapter 4 presents the methods utilized to demonstrate the proposed
solutions. It introduces the details of the platforms chosen and the details
of implementation of the proposed solutions on these platforms.

• Chapter 5 introduces the results of the synthetic benchmarks executed in
the previous presented platforms. Moreover, it presents the performance
evaluation of the proposed solutions and discusses the results.

• Chapter 6 describes the applicability of the proposed solutions to a mul-
tiprocessor platform. It describes the system targeted, the analytical
analysis used to demonstrate the benefits of the proposed solutions and
the proof of concept.

• Chapter 7 presents the conclusion of this dissertation and describes the
main contributions of the research. Finally, several future work direc-
tions to continue the described research are presented.
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Chapter 2

Background

I
n many current-day systems, processors perform many of the mentioned
memory copies. Moreover, such processors often are tied with or have
integrated caches with varying sizes (from several kB in hand-held devices

to many MB in desktop devices or large servers), to improve performance.

Section 2.1 motivates the topics presented in this chapter and Section 2.2
presents the necessary concepts on cache design tradeoffs and implementation.
Section 2.3 introduces the memory copy operation in more detail. Section 2.4
presents the prototyping platforms based on the Xilinx Virtex family and Sec-
tion 2.5 introduces the details of the simulator used to demonstrate the perfor-
mance benefits of the proposed solutions. Finally, Section 2.6 summarizes this
chapter.

2.1 Introduction

As presented in the Chapter 1, one traditional way to address the imbalance
between memory bandwidth and processor speed, i.e., the “processor-memory
performance gap”, is the use of caches. Moreover, it was also presented that
the payload of a packet received through TCP/IP does provide spatial locality
and that almost all incoming data from the network card is subsequently read
by the processor (i.e., it has to go through the cache at some point). Therefore,
a “smarter” way to perform the memory copy operation could take advantage
of the presence of the caches. Consequently, in Section 2.2 the concepts on
cache design, tradeoffs and implementation details are introduced.

In Chapter 1 was also motivated that memory copies are a bottleneck in
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today’s processing system. In order to understand the extend of this bottle-
neck, examples where the memory copy operation is utilized and its details are
introduced in Section 2.3.

The solutions presented in this dissertation utilize two different platforms
to demonstrate their benefits: the Xilinx Virtex Field-Programmable Gate Ar-
ray (FPGA) and the Simics simulator. The advantage of using two different
platforms is two-fold. The prototyping in real hardware provides an estimate
of hardware resources utilized and the raw performance of the proposed so-
lutions. The numbers gather when prototyping are afterwards utilized to cor-
rectly model the proposed solutions under the simulator. This approach pro-
vides more accurate measurements when evaluating the proposed solutions
with a simulator. Therefore, Section 2.4 presents the details of the prototyping
platforms, in particular the Xilinx Virtex family, and Section 2.5 introduces the
simulator platform, Simics.

2.2 Caches

The concept of cache became popular in the 1970’s (the papers that introduced
the cache concept and design in 1968 were [18] and [45]) as a way of speeding
up main memory access time. The basic idea of a cache is to predict what data
is required from main memory to be processed. Therefore, a cache is used
by the processor to reduce the average time to access the main memory. The
cache is a smaller and faster memory which stores copies of the data from the
most frequently used memory locations. When the processor wishes to read
from or write to a location in the main memory, it first checks whether a copy
of that data is in the cache. If so, the processor immediately reads from or
writes to the cache, which is much faster than reading from or writing to the
main memory.

The utilization of caches in processors is expected to be more prominent
as technological advances continue to allow more transistors on a single chip
with increasingly less transistors being dedicated to logic. The evolution of
on-chip caches is depicted in Table 2.1.

To understand the impact of the use of a cache, consider a system with
a processor and a main memory that takes 1µsec to read an instruction. A
program is made up of a series instructions each one being stored in a location
in main memory (typically, located in sequential memory addresses), say from
address 100 upwards. The instruction at location 100 is read out from the main
memory and executed by the processor, then the next instruction is read from
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Date CPU Cache size on-chip

April 89 80486DX 8 kB L1

September 91 80486SX 8 kB L1

March 92 80486DX2 8 kB L1

March 93 Pentium (8 kB Inst. + 8 kB Data) L1

March 94 80486DX4 8 kB L1

November 95 Pentium Pro (8 kB Inst. + 8 kB Data) L1 + 256 kB L2

January 97 Pentium MMX (16 kB Inst. + 16 kB Data) L1

May 97 Pentium II (16 kB Inst. + 16 kB Data) L1 + 512 kB L2

August 98 Celeron (12 kB Inst. + 8 kB Data) L1 + 128 kB L2

February 99 Pentium III (16 kB Inst. + 16 kB Data) L1 + 256 kB L2

November 00 Pentium IV (12 kB Inst. + 16 kB Data) L1 + 256 kB L2

May 01 Xeon 8 kB + 256 kB + 512 kB

June 01 Itanium 32 kB + 96 kB + 2 MB

March 03 Pentium M (32 kB Inst. + 32 kB Data) L1 + 1 MB L2

April 05 Pentium D (12 kB Inst. + 16 kB Data) x 2 + 2 MB x 2

July 06 Core 2 Duo (32 kB Inst. + 32 kB Data) x 2 + 2 MB

January 07 Core 2 Quad (32 kB Inst. + 32 kB Data) x 4 + 4 MB x 2

Table 2.1: Cache presence and size evolution

location 101 and executed, then 102, 103, etc. If the processor takes 100 nsec
to execute the instruction, it then has to wait 900 nsec for the next instruction.
Now, lets introduce in the system a cache with an access time of 250 nsec
between the processor and the main memory. When there is a request for the
first instruction at location 100, the cache requests addresses 100, 101, 102
and 103 from the main memory all at the same time, and stores them in the
cache. Instruction at location 100 is passed to the processor for processing,
and the next request, for 101, is provided by the cache. Similarly, 102 and 103
are provided at the much increased speed of 250 nsec. When the processor
requests the instruction at location 104, the process is repeated to reload the
cache with the next instructions being requested. Therefore, a cache provide
fast access to the data, by keeping a copy of a range of sequential memory
addresses.
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The reason why requesting sequential addresses (in the previous example,
the cache sequentially requests locations 100, 101, 102 and 103) pays off is
because program code and data have temporal and spatial locality. This means
that, over short periods of time, there is a good chance that the same code or
data gets reused. In temporal locality, a memory location that is referenced
by a program code or data at one point in time is likely be referenced again
in the near future. In spatial locality, a program code or data is more likely to
reference a particular memory location if the program has referenced a nearby
memory location in the recent past. Realizing that locality exists is key to the
concept of caches as used today.

Therefore, the utilization of the cache reduces the access time of the proces-
sor to data requested. Other intermediary storage devices between the process-
ing unit and the hard disk drive (HDD) intent to achieve the same objective.
The closest storage device (therefore, on-die and the smallest one) from the
processing unit is the register file (RF). Next to it cames the cache, which can
be on-die or off-die. The next intermediary storage device is the main memory
and finally the HDD. Therefore, as the size of the RF is smaller than the cache,
it is accessed faster. The same happens with the cache, as it is smaller then the
main memory, is accessed faster. And finally, the size of the main memory is
smaller than the HDD, thus being accessed faster. Therefore, there is a clear
continuum on distance from the processing unit and size of the intermediary
storage device. Figure 2.1 depicts a schematic analogy of such distance/size
tradeoff.

2.2.1 Cache Organization

Most modern processors have at least three independent caches: an instruction
cache to speed up executable instruction fetch, a data cache to speed up data
fetch and store, and a translation lookaside buffer used to speed up virtual-to-
physical address translation for both executable instructions and data (this last
type of caches are introduced in Section 2.2.6).

A typical instruction or data cache is divided in two main parts: a cache
directory and cache data-array. The cache directory can be seen as a list of
memory addresses of the data stored in the corresponding location of the cache
data-array (which is the one that contains the data). In a typical cache design,
the cache directory is constituted by two different arrays: a tag-array and a
valid-array. Figure 2.2 depicts the referred cache organization. The address
provided by the processor is divided into 3 parts (Figure 2.3 depicts this orga-
nization): the index, the tag, and the offset. The index is used to access the
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Figure 2.1: Typical memory hierarchy.

cache directory and the cache data-array. The tag is used to compare with a
tag already in the tag-array (on a read). If the tag supplied by the tag-array is
the same as the tag of the address requested by the processor and the valid bit
supplied by the valid-array is set, a cache read hit is registered. On a cache
read hit, the data supplied by the cache data-array (the cache line) is accessed
and, based on the offset, the correct word is provided. If a write occurs, the
tag is written to the tag-array. Based on the offset, the correct word is accessed
and its content modified. If the architecture supports byte accesses, besides the
tag, the index and the offset, also a byte write is used to identify which byte,
within the selected word, is to be written.

Reads dominate processor cache accesses. On a read request, if the data
is in cache (read hit), the processor will have the data available on the next
clock cycle, as the data can be read at the same time that the tag-array and
the valid-array are read and compared. Therefore, the data read begins as
soon as the address is available. If the data is not in cache (read miss) the
processor has to stall until data is provided by the main memory (the time
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to provide the data by the main memory is depended on the main memory
technology and implementation). If the read is a miss, the tag-array and the
valid-array are read and compared at the same time as the data is read. There
is no benefit on performing such operation but there is also no harm (except
power consumption), just ignore the value read.

The previous description applies to both instruction and data caches. How-
ever, in an instruction cache there is no write as instructions are only read by
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the processor. Therefore, the next paragraphs describing the behavior of a
write request to a cache do not apply to instruction caches.

On a write request several options are available that constitute performance
tradeoffs. When data is written to the cache, it must at some point be written
to main memory as well. The timing of this write is controlled by what is
known as the write policy. The write policies on write hit often distinguish
cache designs:

• Write-Through: The information is written to both the cache line in the
cache and to the main memory.

– Advantage:

∗ easy to implement;

∗ the main memory always has the most current copy of the data
(consistent).

– Disadvantage:

∗ write is slower;

∗ every write needs a main memory access;

∗ as a result, the system uses more memory bandwidth.

• Write-Back: The information is written only to the cache line in the
cache. The modified cache line is written to main memory only when
it is replaced. To reduce the frequency of writing back cache lines on
replacement, a dirty bit is commonly used. This status bit indicates
whether the cache line is dirty (modified while in the cache) or clean
(not modified). If it is clean the cache line is not written on a miss.

– Advantage:

∗ writes occur at the speed of the cache;

∗ multiple writes within a cache line require only one write to
main memory;

∗ as a result, the system uses less memory bandwidth.

– Disadvantage:

∗ harder to implement;

∗ the main memory is not always consistent with cache.

There are two common options on a write miss:
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• Write-Allocate: The cache line is loaded on a write miss, followed by
the write-hit action.

• No Write-Allocate: The cache line is modified in the main memory and
not loaded into the cache.

Which write policy to choose is dependent on the available hardware re-
sources and the maximum latency allowed by the application. Therefore, a
study of the application behavior should be performed before choosing the
write policy, as there is no perfect option to use.

2.2.2 Cache Miss Types

A cache miss refers to a failed attempt to read or write data in the cache,
which results in a main memory access with much longer latency. In order to
lower cache miss rate1, a great deal of analysis has been performed on cache
behavior. Sequences of memory references performed by benchmark programs
were saved as address traces. Subsequent analysis simulated many different
possible cache designs on these long address traces. Making sense of how the
many variables affect the cache hit rate2 can be quite confusing, however it is
possible to separate misses into three categories:

• Compulsory misses: are those misses caused by the first reference to the
data. These always happen when a application starts executing or when
there is a context switch (swapping between applications) as the data is
not in the cache. This is called cold-start. Cache size and associativ-
ity (introduced in the Section 2.2.3) have no impact in the number of
compulsory misses.

• Capacity misses: are those misses that occur due to the finite size of
the cache. Caches almost always have nearly every line filled with a
copy of some line in main memory, and nearly every allocation of a new
line requires the eviction of an old line. The relation between capacity
miss rate and cache size measures the temporal locality of a particular
application.

1The miss rate is the ratio between the number of accesses (both read and write) that miss in
the cache (i.e., whose data is not present in the cache), and the total number of cache accesses.

2The hit rate is the ratio between the number of accesses (both read and write) that hit in
the cache (i.e., whose data is present in the cache), and the total number of cache accesses.
Therefore, it can also be defined as1−miss rate.
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• Conflict misses: are those misses that could have been avoided, had the
cache not evicted an entry earlier. Conflict misses can be further bro-
ken down into mapping misses (due to mapping of different addresses
to the same index of the cache), that are unavoidable given a particular
amount of associativity (introduced in the Section 2.2.3), and replace-
ment misses (due to the choice of which line to replace), which are due
to the particular victim choice of the replacement policy (introduced in
the Section 2.2.4).

Several factors influence the cache miss rate, which typically result from a
combination of cache size, cache line size, cache associativity (introduced in
Section 2.2.3) and cache policies (introduced in Section 2.2.4).

2.2.3 Associativity

Cache associativity was introduced to reduce the conflict misses. Taking into
account that cache lines are evicted to give place to new cache lines being
loaded, consider an application using data that maps to the same cache line.
Every new load evicts the previous data (stored in the same cache line) that
will be needed after. Being able to store both data (that previously mapped to
the same cache line) reduces the conflict misses. This can be accomplished by
allowing addresses with the same index to be in the cache at the same time,
and use the tag to differentiate among them.

Associativity is a tradeoff. If there are ten places that a new cache line can
be mapped to, then when the cache is checked for a hit, all ten places must
be searched. Checking more places (even if done in parallel) requires more
power and area. On the other hand, caches with higher associativity suffer
fewer conflict misses, so there is less time spent in servicing those misses. To
determine which of the available places is used to hold the just loaded cache
line, a replacement policy is used (introduced in the Section 2.2.4). Therefore,
it is based on the replacement policy that the decision is taken where in the
cache a copy of a particular entry of main memory will go. If the replacement
policy is free to choose any entry in the cache to hold the copy, the cache is
called fully-associative. At the other extreme, if each entry in main memory
can go in just one place in the cache, the cache is direct-mapped. Many caches
implement a compromise and are described as set-associative.

One of the advantages of a direct-mapped cache is that it allows simple and
fast access, as only one index can have a copy of the data (the cache line). That
cache line can be read in parallel with the tag matching calculation, and when
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the matching calculation is finished (and if it is a match) the data is available
to the processor immediately. If the tag does not match the requested address,
there is a cache miss, the data provided by the cache is ignored and an access
to main memory is initiated. On a set-associative or fully-associative cache,
the tag matching cannot be performed in parallel with the access to the data,
as the location of the data is dependent of the tag.

The rule of thumb is that doubling the associativity, from direct-mapped
to 2-way, or from 2-way to 4-way, has about the same effect on hit rate as
doubling the cache size. Associativity increases beyond 4-way have much
smaller effect on the hit rate.

2.2.4 Cache Policies

In order to make room for the new entry on a cache miss (both when writing
and reading), the cache generally has to evict one of the existing entries. The
heuristic that it uses to choose the entry to evict is called the replacement pol-
icy. The fundamental problem with any replacement policy is that it must pre-
dict which existing cache line is least likely to be used in the future. Predicting
the future is difficult, especially for hardware caches which use simple rules
amenable to implementation in circuitry, so there are a variety of replacement
policies to choose from and no perfect way to decide among them. One pop-
ular replacement policy, least recently used (LRU), replaces the least recently
used entry (other replacement policies can be found in [29]). This algorithm
requires keeping track of what was used when, which is expensive if one wants
to ensure the algorithm always discards the least recently used item. In the im-
plementation of this technique, every time a cache line is used, the age of all
other cache lines changes. Therefore, the implementation requires the usage
of “age-bits” to keep information about cache lines accesses and track the least
recently used cache line based on the “age-bits”.

Another issue is the fundamental tradeoff between cache access latency
and hit rate. Larger caches have better hit rates but longer latency. To address
this tradeoff, many processors use multiple levels of caches, with small fast
caches backed up by larger slower caches. Multi-level caches generally operate
by checking the smallest level 1 cache (L1) cache first; if it hits, the processor
proceeds at high speed. If the smaller cache misses, the second larger level 2
cache (L2) cache is checked, and so on, before main memory is checked. As
the latency difference between main memory and the fastest cache has become
larger, some processors have begun to utilize as many as three levels of on-
chip cache. The tradeoff between size and access times was already presented
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in Figure 2.1.

The design tradeoff between cache access latency and hit rate provided
by the utilization of multi-level caches, introduce new design decisions. For
instance, in some processors, all data in the L1 cache must be contained in the
L2 cache. These caches are called strictly inclusive. Other processors have
exclusive caches - data is guaranteed to be in at most one of the L1 and L2
caches, never in both. Still other processors do not require that the data in the
L1 cache also reside in the L2 cache, although it may often do so. There is
no universally accepted name for this intermediate policy, although the term
mainly-inclusive has been used.

The advantage of exclusive caches is that they store more data. This ad-
vantage is larger when the L1 cache size is comparable to the L2 cache size,
and diminishes if the L2 cache is many times larger than the L1 cache. When
the L1 misses and the L2 hits on an access, the hitting cache line in the L2
is exchanged with a line in the L1. Exclusive caches require both caches to
have the same cache lines sizes, so that cache lines can be swapped on a L1
miss, L2 hit. However, this exchange involves more work (specifically, more
transactions on the bus) than just copying a line from L2 to L1, which is what
an inclusive cache does.

One advantage of strictly inclusive caches is that when peripheral devices
(or other processors in a multiprocessor system) wish to remove a cache line
from the processor’s cache, they need only to check the L2 cache (remove
the line in the L2 cache implies removing it also from L1 due to inclusion).
In cache hierarchies which do not enforce inclusion, the L1 cache must be
checked as well. As a drawback, there is a correlation between the associativity
of L1 and L2 caches: if the L2 cache does not have at least as many ways as all
L1 caches in the system together, the effective associativity of the L1 caches is
restricted.

2.2.5 Multiprocessor Cache Coherence

Multiprocessor systems can be viewed as a set of several uniprocessors (as in-
troduced in Section 1.2). As processes (typically one process is assigned to
one processor as explained in Section 1.1) need to work on data, caches were
also introduced to speed up accesses and thus increase performance. There-
fore, typically each processor in a multiprocessor system has, at least one, own
cache.

Data needed by one process/processor might be present in a cache of an-
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other processor (specially true if the data was processed by a process assigned
to another processor). Therefore, caches in a multiprocessor system, may con-
tain several copies of the same data stored in the main memory. Moreover,
when one process/processor updates the data in its cache, copies of data in
other caches in the system will become out of date. Therefore, there is a need
to utilize communication protocols between the cache controllers to keep the
data coherent and consistent. More precisely, coherency defines what value is
returned on a read, and consistency defines when it is available.

Cache coherence defines the behavior of reads and writes to the same mem-
ory location. The coherence of caches is obtained if the following conditions
are met:

• A read made by a processor P to a location X that follows a write by the
same processor P to X, with no writes of X by another processor occur-
ring between the write and the read instructions made by P, X must al-
ways return the value written by P. This condition is related with the pro-
gram order preservation, and this must be achieved even in uniprocessor
architectures.

• A read made by a processor P1 to location X that follows a write by an-
other processor P2 to the same X location must return the written value
made by P2 if no other writes to X made by any processor occur between
the two accesses. This condition defines the concept of coherent view of
memory. If processors can read the same old value after the write made
by P2, it is said that the memory is incoherent.

• Writes to the same location must be serialized. In other words, if loca-
tion X received two different values A and B, in this order, by any two
processors, the processors can never read location X as B and then read
it as A. The location X must be seen with values A and B in that order.

These conditions are defined supposing that the read and write operations are
made instantaneously. Unfortunately, this does not happen given the main
memory latency and the architecture design. This defines the need for consis-
tency models, i.e, determine when the data is available. If, for example, a write
to location X on processor P1 precedes a read to location X on processor P2 by
a very small time, it may be difficult to ensure that the read returns the value
of the data written, since the written data may have not left the processor P1 at
that point. The most straightforward model for consistency is called sequential
consistency. It requires that the result of any execution be the same as if the ac-
cesses executed by each processor were kept in order and the accesses among
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different processors were interleaved. More details on consistency models can
be found in [29].

The two most common types of cache coherence protocols that are typi-
cally utilized are bus-based and directory-based, each having their own benefits
and drawbacks. Bus-based protocols tend to be faster, provided enough band-
width, since all transactions are a request/response seen by all processors con-
nected to a logical or physical bus. The drawback is that bus-based protocols
are not scalable. Every request must be broadcasted to all nodes in a system,
meaning that as the system gets larger, the size of the bus and the bandwidth it
provides must grow. Directory-based cache coherence protocols were invented
as means of dealing with cache coherence in systems containing more proces-
sors than can be accommodated on a single bus. In directory-based systems,
the directory can be held centrally with the main memory or can be distributed
among the caches as singly or doubly linked lists. Therefore, directory-based
protocols tend to have longer latencies but use much less bandwidth since mes-
sages are point-to-point and not broadcast. For this reason, many of the larger
systems (>64 processors) use this type of cache coherency protocol. More
details of both cache coherence protocols can be found in [29].

The most used bus-based cache coherency protocol is the MESI protocol,
where every cache line is marked with one of the four following states:

• M - Modified: The cache line is present only in the current cache, and
is dirty; it has a different value that the one stored in the main memory.
The cache is required to write the data back to the main memory at some
time in the future, before permitting any other read of the data.

• E - Exclusive: The cache line is present only in the current cache and it
is clean; it matches the main memory.

• S - Shared: Indicates that this cache line may be stored in other caches
of the system.

• I - Invalid: Indicates that this cache line is invalid.

All caches on the bus monitor (or snoop) the bus to determine if they have
a copy of the block of data that is requested on the bus. A cache may satisfy
a read from any state except Invalid. The Modified and Exclusive states are
always precise, i.e., they match the true cache line ownership situation in the
system. The Shared state may be imprecise: if another processor discards a
Shared line, and this processor becomes the sole owner of that cache line, the
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line will not be promoted to Exclusive state (because broadcasting all cache
line replacements from all processors is not practical over a broadcast bus). In
that sense the Exclusive state is an opportunistic optimization: if the processor
wants to modify a cache line that is in the Shared state, a bus transaction is
necessary to invalidate all other cached copies. The Exclusive state enables
modifying a cache line with no bus transaction. Table 2.2 depicts the change
of the state of a cache line as the result of either internal or external activity
related to that line.

M E S I

Modified Exclusive Shared Invalid

Is this cache Yes Yes Yes No

line valid?

The copy of this

cache line in out of date valid valid -

memory is

Are there copies of

this cache line in No No Maybe Maybe

the caches of the

other processors?

A write to this does not does not goes to the goes directly

cache line go to the bus go to the bus bus and updates to the bus

the cache

Table 2.2: Cache line state changes due to MESI

An Invalid line must be fetched (changing its state to Shared or Exclusive
states) to satisfy a read. A write may only be performed if the cache line is
in the Modified or Exclusive state. If it is in the Shared state, all other cached
copies must be invalidated first. A cache may discard a non-Modified line at
any time, changing to the Invalid state. A Modified line must be written back
first before discarding it. A cache that holds a line in the Modified state must
snoop (intercept) all attempted reads (from all other processors in the system)
to the corresponding main memory location and provide the data it holds. This
is typically done by forcing the read to back off (i.e., to abort the memory bus
transaction), then writing the data to main memory and changing the cache
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line to the Shared state. A cache that holds a line in the Shared state must also
snoop (intercept) all invalidate broadcasts from other processors, and discard
the line (by moving it into Invalid state) on a match. A cache that holds a line
in the Exclusive state must also snoop (intercept) all read transactions from all
other processors, and move the line to Shared state on a match. The MESI
state diagram is depicted in Figure 2.4.
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Figure 2.4: The MESI state diagram

2.2.6 Address Translation

A different kind of cache from the instruction and data caches presented in
the previous sections, is the translation lookaside buffer (TLB). This cache
performs the bridge between physical and virtual addresses. Each program
running on the processor sees its own simplified address space, which contains
code and data for that program only. Each program places data in its address
space without regard for what other programs are doing in their address spaces.
Virtual memory requires the processor to translate virtual addresses generated
by the program into physical addresses in the main memory. The portion of the
processor that does this translation is known as the main memory management
unit and its fast path performs those translations through the TLB.

Caches have historically used both virtual and physical addresses for both
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cache indexes and tags, although using virtual tags is now uncommon. Virtu-
ally indexed caches use a portion of the virtual address for their index, which
is available earlier than the physical address. If the cache is physically indexed
there is no need to consult the TLB to determine which data to feed back to the
processor, and so the cache can be very fast. The speed of this recurrence (the
load latency) is crucial to the processor’s performance, and so most modern
L1 caches are virtually indexed, which allows the TLB lookup to proceed in
parallel with fetching the data from the cache. But virtual indexing is not the
best choice for all cache levels. It introduces the problem of virtual aliases,
as multiple virtual addresses can map to a single physical address, which in
turn implies that the cache may have multiple locations with a single physical
address. The cost of dealing with virtual aliases grows with cache size, and as
a result most L2 and larger caches are physically indexed.

2.2.7 Cache and Memory Controllers

To implement the policies discussed in the previous sections (direct-mapped
vs full-associative cache; write-through vs write-back cache; write-allocate
vs no write-allocate cache; inclusive vs exclusive cache; coherence protocol;
replacement policy), a cache controller is used. This controller is the logic
that controls the determination of a cache hit or miss and reacts accordingly
(i.e., loads a new cache line from main memory and stores it in the correct
place on the cache, depending on the cache policies). Typically, caches are
implemented using static random access memory (SRAM). Figure 2.5 depicts
a simple write-allocate cache controller finite-state machine (FSM).
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Figure 2.5: A simple write-allocate cache controller
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The cache controller and the memory controller have to work in conjunc-
tion. A memory controller is then the logic that manages the flow of data going
to and from the main memory. Typically, processors have a memory controller
implemented within a chipset located on the motherboard. On the other hand,
more modern processors have a memory controller on the processor die to re-
duce the memory latency. While this has the potential to increase the system’s
performance, it locks the processor to a specific type (or types) of memory,
forcing a redesign in order to support newer memory technologies.

Modern computer systems typically implement main memory using dif-
ferent types of dynamic random access memory (DRAM). Therefore, memory
controllers connected to this type of memory contain the logic necessary to
read and write to the DRAM and to “refresh” the DRAM by sending electri-
cal current through the entire device. Without constant refreshes, DRAM will
lose the data written to it as the capacitors leak their charge within a number
of milliseconds. Reading and writing to DRAM is facilitated by use of multi-
plexers and de-multiplexers, by selecting the correct row and column address
as the inputs to the multiplexer circuit, where the de-multiplexer on the DRAM
can select the correct memory location and return the data (once again passed
through a multiplexer to reduce the number of wires necessary to assemble the
system).

Several types of DRAM are used in modern computer systems. The syn-
chronous DRAM or SDRAM differs from the standard DRAM in that it does
not run asynchronously to the system clock the way DRAM does. SDRAM is
tied to the system clock and is designed to be able to read or write from main
memory in burst mode (after the initial read or write latency) at one clock cy-
cle per access (zero wait states). SDRAM accomplishes its faster access using
a number of internal performance improvements, including internal interleav-
ing, which allows half the module to begin an access while the other half is
finishing one. However, with the “processor-memory performance gap” in-
creasing, there was a need for a new standard: Double Data Rate SDRAM or
DDR SDRAM. DDR SDRAM is similar in function to regular SDRAM, but
doubles the bandwidth of the memory by transferring data twice per cycle - on
both the rising and falling edges of the clock signal.

2.3 Memory Copy Operation

Chapter 1 demonstrated that the memory copy operation is involved in several
tasks (or processes) performed by the OS. As this operation moves data from a
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memory location to another and as accessing the memory is time-consuming,
current applications and the OS can spend a considerable amount of time per-
forming this operation. Two common examples, involving two applications
and the OS, where the memory copy operation is utilized, are depicted in Fig-
ures 2.6 and 2.7.
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Figure 2.6: Memory copy example in thepipe
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Figure 2.7: Memory copy example in the inter-process communication

In the first example, the copy operation between the OS and two applica-
tions utilizes apipe . For security reasons (to avoid that the memory space
of both applications being corrupted) the data transfer has to be performed
through the OS. Application A starts by preparing some data that it wishes
to send to application B. It calls the OS to transfer this information using
the write system call. The OS performs a copy to transfer the data to the
OS memory space using thecopyin function. Then, application B requests
the data using theread system call and the data is copied to application B’s
memory space using thecopyout function. The two applications are able to
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communicate using the OSpipe functionality.

A second example is the memory copy performed by the inter-process
communication. At some point in the execution time, an application performs
a copy of its processes using theclone system call. This requires the OS
to perform a copy to recreate the process and provide it with all appropriate
descriptors used by the parent. In order to minimize the memory utilization,
shared structures are not immediately copied, but are marked copy-on-write by
the OS. Therefore, when process A reads the data, the shared copy of the data
is accessed and no additional memory is required. However, when process B
attempts to write the data, the operation cannot proceed as the write may cause
an incorrect value to be read by process A at a later time. The memory sys-
tem, having marked the data as copy-on-write, throws an exception which is
handled by the OS. The data is copied (utilizing thebcopy function) by the
OS to a new location in the application space and process B’s descriptors are
updated to reflect the change. Execution then returns to process B to complete
the write step.

The previous examples showed how the memory copy operation can be uti-
lized inside of the OS and between applications. In the following, the memory
copy operation is introduced in detail. There are several implementations of
the memory copy operation, the most optimized are hand-written in assembly
for the platform that is going to execute such a code. Moreover, the granularity
of the copy also varies from implementations and depends on the size of the
registers of the processor. This makes this operation platform dependent and
difficult to port to another platform. Figure 2.8 presents an example of simple
implementation in C of a memory copy function, which performs a copy with
a 1 byte granularity (this implementation is the one used in the Linux OS).
Other implementations exists that perform copies on words (4 bytes) or double
words (8 bytes) granularities. Figure 2.9 presents the assembly code of the C
code in Figure 2.8 generated using GCC [84] for an Intel Pentium IV.

The memory copy operation exists in different “flavors”: moving data from
one memory location to another or coping data between two different memory
locations (i.e., keeping the original data). Moreover, there are different im-
plementations for these “flavors”: ISO C and FreeBSD. Functions that start
by memare aligned with the ISO C standard (IEEE Std 1003.1 [32]), while
functions starting withb are part of the Berkeley Software Distribution (BSD)
implementations [25]. The ISO C standard family of functions are:

• void * memccpy(void * s1, const void * s2, int c, size t n);

Thememccpy function copies bytes from memory areas2 into s1 , stop-
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/**


 * Copy one area of memory to another


 * @dst: Where to copy to


 * @src: Where to copy from


 * @size: The size of the area.


**/


void *memcpy(void *dst, const void *src, size_t size)


{


  char *d=(char *)dst;


  char *s=(char *)src;


  while (size--)


     *d++ = *s++;


  return dst;


}


Figure 2.8: C implementation of thememcpyfunction, byte granularity

ping after the first occurrence ofc (converted to an unsigned char) has
been copied, or aftern bytes have been copied, whichever comes first. It
returns a pointer to the byte after the copy ofc in s1 , or a null pointer if
c was not found in the firstn bytes ofs2 .

• void * memchr(const void * s, int c, size t n);

Thememchr function returns a pointer to the first occurrence ofc (con-
verted to an unsigned char) in the firstn bytes (each interpreted as an
unsigned char) of memory areas , or a null pointer ifc does not occur.

• int memcmp(const void * s1, const void * s2, size t n);

Thememcmpfunction compares its arguments, looking at the firstn bytes
(each interpreted as an unsigned char), and returns an integer less than,
equal to, or greater than0, according ass1 is lexicographically less than,
equal to, or greater thans2 when taken to be unsigned characters.

• void * memcpy(void * s1, const void * s2, size t n);

The memcpy function copiesn bytes from memory areas2 to s1 . It
returnss1 .

• void * memmove(void * s1, const void * s2, size t n);

The memmovefunction copiesn bytes from memory areass2 to s1 .
Copying between objects that overlap will take place correctly. It returns
s1 .

• void * memset(void * s, int c, size t n);
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memcpy:


pushl
 %ebp

movl
 %esp, %ebp


subl
 $8, %esp


movl
 8(%ebp), %eax


movl
 %eax, -4(%ebp)


movl
 12(%ebp), %eax


movl
 %eax, -8(%ebp)

.L2:


leal
 16(%ebp), %eax


decl
 (%eax)


cmpl
 $-1, 16(%ebp)


jne
 .L4


jmp
 .L3

.L4:


movl
 -4(%ebp), %eax


movl
 %eax, %edx


movl
 -8(%ebp), %eax


movb
 (%eax), %al


movb
 %al, (%edx)

leal
 -8(%ebp), %eax


incl
 (%eax)


leal
 -4(%ebp), %eax


incl
 (%eax)


jmp
 .L2


.L3:

movl
 8(%ebp), %eax


leave


ret


Figure 2.9: Intel assembly implementation of the previous Cmemcpyfunction

Thememset function sets the firstn bytes in memory areas to the value
of c (converted to an unsigned char). It returnss .

For the BSD family these include:

• void bcopy(const void * s1, void * s2, size t n);

The bcopy function copiesn bytes from memory areas1 to s2 . It
returnss2 . Overlapping addresses are handled correctly.

• int bcmp(const void * s1, const void * s2, size t n);

The bcmp function compares byte strings1 against byte strings2 , re-
turning0 if they are identical,1 otherwise. Both strings are assumed to
ben bytes long. Thebcmp function always returns0 whenn is 0.

• void bzero(void * s, size t n);

Thebzero function placesn null bytes in the strings .
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2.4 The Xilinx Virtex Family

As presented in Section 2.1, the solutions presented in this dissertation were
prototyped using the Xilinx Virtex FPGAs. Prototyping in real hardware pro-
vides an estimate of hardware resources utilized and the raw performance of
the proposed solution. Therefore, this section introduces the details of the cho-
sen platforms of the Xilinx family.

The FPGA is often used for prototyping purpose due to its reconfigurable
nature. Xilinx [101] is one of the major providers of such devices and de-
veloped, in particular, the ML310 [56], the XUP [106] and the ML410 [57]
platforms that were utilized in this dissertation. In the following, the descrip-
tion of the tool suite as well as the details of these platforms are presented.

Xilinx provides the tool-chain to program and debug the mentioned plat-
forms, mainly the Integrated Software Environment (ISE) [34] and the Em-
bedded Development Kit (EDK) [24]. The ISE controls all aspects of the de-
sign flow for a particular design. The EDK is an integrated software solution
for designing embedded processing systems. This pre-configured kit includes
a tool suite as well as all the documentation and the intellectual propriety
cores that can be used for designing Xilinx FPGAs with embedded PowerPC
(PPC) processors. Moreover, it also provides the hardware description lan-
guage (HDL) Xilinx Synthesis Technology (XST), the ModelSim Xilinx Edi-
tion III [58] simulation environment and the Joint Test Action Group (JTAG)
(IEEE 1149.1 standard) programming interface. These tools are used when
working with either Xilinx platforms.

Both the ML310 and the XUP platforms are constituted by one Virtex-II
Pro XC2VP30 FPGA with two PPC 405 cores, FPGA fabric, a 512 MB (on
the ML310) and 2 GB (on the XUP) DDR SDRAM main memory, a Com-
pactFlash card, a 10/100 Ethernet network interface card and other I/O capa-
bilities. When paired with the ISE and EDK and its catalog of intellectual
propriety cores, both the ML310 and XUP can be used to rapidly prototype,
verify system designs and software applications using either stand-alone code
or targeting an OS. In order to configure the platform, Xilinx also provides
the standard JTAG connectivity for debugging and a serial port connection for
communication. The schematic of the ML310 and of the XUP platforms are
presented in Figure 2.10 and Figure 2.11, respectively.

The ML410 (the schematic of the ML410 platform is presented in Fig-
ure 2.12) is an embedded development platform based on the Xilinx Virtex-
4 XC4VFX60 FPGA, also hosting two PPC405 processors, FPGA fabric, a
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Figure 2.10: Xilinx ML310 schematic [101]

CPU Debug Port

100 MHz System Clock

75 MHz SATA Clock
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Platform Flash Configurations (2)

Compact Flash Configurations (8)
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XSGA Video Output
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Virtex-II Pro

FPGA

Figure 2.11: Xilinx XUP schematic [101]

256 MB DDR2 SDRAM main memory, a 10/100/1000 Ethernet network in-
terface card and other I/O capabilities. This platform can also be paired with
the ISE and EDK in order to easily allow applications to execute either stand-
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Figure 2.12: Xilinx ML410 schematic [101]

alone or with an OS.

In order to effectively debug the designs utilized in the mentioned plat-
forms, the ModelSim Xilinx Edition III [58] was chosen. It provides a com-
plete HDL simulation environment that verifies the functional and timing mod-
els of the design and the hardware description language source code. The
HDL utilized in this dissertation is very high speed integrated circuit hardware
description language (VHDL) [89], which is commonly used as a design lan-
guage for FPGA due to its fairly general-purpose. The key advantage of VHDL
when used for systems design is that it allows the behavior of the required sys-
tem to be described (modelled) and verified (simulated) before synthesis tools
translate the design into real hardware (gates and wires).

Both prototyping platforms have a FPGA, as explained previously. There-
fore, in the following it is presented its basic internal organization. A FPGA in
general is a reconfigurable device. Like the name states, it is a gate array which
is programmable by applying an electric field. Once a FPGA is programmed,
the device behaves like real hardware. FPGA of different manufacturers differ
in general layout. The Xilinx FPGA mainly consists of input/output blocks
(IOB), configurable logic blocks (CLB) and routing resources. Figure 2.13
depicts an abstract view of the Xilinx FPGA internal components. Each IOB
can be configured to be an input, output or both (tri-state). A CLB consists of
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Figure 2.13: Abstract overview of the Xilinx FPGA internal components

four slices, each slice having two memory blocks, which can be used as look-
up-table (LUT), random access memory (RAM) memory or read only memory
(ROM) memory. Moreover, a slice also contains two sequential blocks which
can be configured as a flip-flop or as a latch. The Xilinx FPGA also provide
additional block RAM (BRAM) that are true dual port memory blocks, offer-
ing fast and discrete access to large blocks of memory. Note that BRAM are
situated outside of a CLB and have a large capacity (18 kbits) compared to the
memory blocks inside each slice (16 bits). Apart from these common features,
the Virtex-II Pro and Virtex-4 have two PPC blocks.

Two important intellectual propriety cores for this dissertation are the sin-
gle and dual port RAM and the content addressable memory (CAM) cores.
Both intellectual propriety cores are generated using LogiCORE [101]. The
RAM core (both single and dual port) is generated based on the user-specified
width and depth and is composed of single or multiple BRAMs, for both
Virtex-II Pro and Virtex-4 FPGAs. Taking advantage of BRAM’s true dual
port memory block, the implementation of a dual port RAM core [103] can
be easily and efficiently performed. Moreover, by just using one port of the
BRAMs it is possible to implement a single port RAM core [102]. Figure 2.14
depicts the schematic of a dual port RAM core. The CAM core [104] is also
based on user-specified width and depth. The user can select either a LUT
used as 16-bit shift register (SRL16) or a BRAM implementation. A CAM
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Figure 2.14: Schematic of dual port RAM core [101]
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CLK
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Figure 2.15: Schematic of the CAM core [101]

core implemented with SRL16 primitives has a single clock latency on its read
operation and 16 clock cycles latency on its write operation. However, a CAM
core implemented with BRAM primitives has a single clock latency on its read
operation, and two clock cycles latency on its write operation. Figure 2.15 de-
picts the schematic of the CAM core.
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2.5 Simics Simulator

The solutions presented in this dissertation were also implemented in the Sim-
ics simulator. The numbers gather when prototyping in the Xilinx Virtex plat-
forms were afterwards utilized to correctly model the proposed solutions under
the Simics simulator.

Simics [48] is a system level instruction-set simulator. Whereas an emu-
lator is focused on executing a program as quickly and accurately as possible,
a simulator, in addition, is designed from the ground up to gather information
on the execution and in general be a flexible tool. Moreover, Simics is efficient
as it is designed to run simulations very fast and still gather a great deal of
information during runtime.

Simics is a system level simulator, meaning that it models a target com-
puter at the level that an OS acts. Thus, Simics models the binary interfaces to
buses, interrupt controllers, disks, video memory, etc. This means that Simics
can run anything that the target system can, i.e., arbitrary workloads. Simics
can boot unmodified OS kernels from raw disk dumps.

Simics is an instruction-set simulator, meaning that it models the target
system at the level of individual instructions, executing them one at a time.
This is the lowest level of the hardware that software has access to. Simulating
at this level allows Simics to be system level, yet still permits an efficient
design.

Simics fully virtualizes the target computer, allowing simulation of multi-
processor systems as well as a cluster of independent systems, and even net-
works. The virtualization also allows Simics to be cross platform. The end
uses for Simics include program analysis, computer architecture research, and
kernel debugging. The analysis support includes code profiling and memory
hierarchy simulation (i.e., cache hierarchies). Debugging support includes a
wide variety of breakpoint types. The support for system level simulation al-
lows OS code to be developed and analyzed.

In this dissertation, Simics was chosen because it easily allows to create
new hardware to be included in the simulated system and it already provides
a cache model (a comparative study with other simulators is introduced in
Section 4.2). Although Simics does not model any cache system part of the
simulated machine (due to speed of simulation), there are cache models avail-
able that can be inserted on the simulation. As it uses its own memory system
to obtain high speed simulation, including the cache model would slow the
simulation down. Therefore, the memory in Simics is always up to date and
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the accesses are always atomic. The cache model basically includes the penal-
ties associated with each access, depending on where the data/instructions are
located in the memory hierarchy.

2.6 Summary

In this chapter, the general concepts and implementation tradeoffs of caches
were introduced. Caches are used to reduce the average access time to main
memory and, therefore, try to reduce the “processor-memory performance
gap”. By carefully choosing the associativity, the write policies, the cache
size vs distance to the processor and the replacement policy, the hit rate of the
cache can be improved, bringing better performance to the whole system.

Moreover, several memory data movements performed in software were
explained in detail. As memory data movements move or copy data from one
memory location to another, they are bounded by the access time to main mem-
ory and the “processor-memory performance gap”. As the processor speeds are
increasing faster than the memory access times, the impact of these memory
data movements are expected to increase in the future. Therefore, the next
chapter introduces the concept and design of the proposed solutions to reduce
the impact of memory data movements in a computer system, utilizing the
concepts presented on this chapter.

As the proposed solutions were prototyped utilizing the Xilinx tools, the
platforms and the intellectual property cores were also explained in this chap-
ter. Moreover, the performance of the proposed solutions were evaluated uti-
lizing Simics full-system simulator, therefore, a high level description of the
simulator was also introduced in this chapter.
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Chapter 3

Cache-Based Memory Copy
Hardware Accelerator

T
heprevious chapters introduced the memory copy operation as a bottle-
neck in today’s uniprocessor and multiprocessor platforms for several
applications. Furthermore, the solutions proposed in literature are ei-

ther platform dependent or involve increased complexity which prevents them
to be widely applicable. Consequently, a simple and platform-independent
solution needs to be sought after to solve the memory copy bottleneck. More-
over, the presence of caches in processors is common and a trend was identified
that for an increasing number of (including embedded) processors incorporate
these caches. Therefore, a “smart” solution could take advantage of the pres-
ence of caches.

First, this chapter describes the memory copy operation performed in the
traditional manner (in Section 3.1). Then, a cache-based solution is derived
from the previous observations to improve the performance of the memory
copies (in Section 3.2). Subsequently, Section 3.3 presents the design of the
indexing table able to support copies of cache line granularity connected to a
simple direct-mapped cache. Moreover, an indexing table able to handle word
granularity copy and able to be connected to a set-associative cache is also
presented. When discussing the indexing table operation it becomes clear that
there is a need for a load/store unit, which is also described in this section. Sec-
tion 3.4 presents a general implementation discussion and, finally, Section 3.5
summarizes this chapter.
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3.1 Observations

Chapter 1 demonstrated that the approaches presented in related works do not
provide a general or efficient enough solution to the memory copies bottle-
neck. The DMA-based approaches provide only limited solutions due to the
high overhead introduced to explicitly initialize the devices. Software tech-
niques are either OS dependent, or not valid for all cases. Furthermore, today’s
network cards commonly offloads the checksum, which removes the one part
of per-byte overhead (the other part is the memory copy operation). They also
coalesce interrupts to reduce per-packet costs. Thus, today copying costs ac-
count for a relatively larger part of processor utilization than previously, and
therefore relatively more benefit is to be gained in reducing them. Moreover,
from the cache studies presented in Chapter 1, there is cache behavior that can
be taken advantage of. The fact that the payload presents spacial locality and
that almost all the incoming (received) data is subsequently read by the proces-
sor. Therefore, in this chapter a solution is derived from the observations of
the traditional way to perform a memory copy in software.

The memory copy operation performed in the traditional way in software
involves the utilization of many loads and stores by the processor itself to ac-
complish the operation. As an example, consider the C code presented in Fig-
ure 2.8 for thememcpy function, where the copy is performed in “pieces” of
one byte. However, the demand for performance (by using bigger “pieces”
which reduces the number of loads and stores) and the need for flexibility (us-
ing smaller “pieces” in order to perform copies of small sizes) is a difficult
tradeoff. Moreover, due to the copy being performed in “pieces”, the number
of loads and stores involved in a memory copy operation is high. Furthermore,
the number of instructions executed depends not only on the granularity of the
copy (size of the “piece”) but also on the size of the original (to-be-copied)
data1. It is worth mentioning that there has been extensive research on how to
optimize this operation, as presented in Section 1.3.

The previously mentioned loads and stores are executed on processors that
nowadays have caches attached (as introduced in Chapter 2). Therefore, the
execution of the memory copy in the presence of caches in software results in
any of the following unwanted scenarios:

• Large number of instructions: As the data is copied “piece-by-piece”,
the number of instructions needed to load a “piece” to the processor, per-

1The term “original data” is referring to the data that needs to be copied whilst the term
“copied data” refers to the data located at the destination after the memory copy operation.
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form the copy and store the result back in the cache, keeps the processor
tied up with the execution of this operation.

• Eviction of original and copied data from the cache: The interleaving
of loading and storing of data can lead to situations in which: 1) the
original data is being overwritten by the copied data; or 2) the copied
data is being overwritten by the original data being loaded. In case 1),
the need of loading again the original data, incurs in longer delays. In
case 2), the probability of the copied data being needed again after the
memory copy operation is rather high (otherwise, why would a memory
copy be needed?). Consequently, this would mean that after the memory
copy operation has finished, the copied data may have to be loaded again
into the cache.

• Eviction of data not involved in the memory copy operation from the
cache: The loading of the original data and the storing of the copied
data can cause the data previously stored in the cache (not involved in the
memory copy operation) to be evicted due to the possible mapping to the
same cache lines. If this occurs for data needed again after performing
the memory copy operation, it has a large detrimental effect since later
on this data must be read again from the main memory.

• Data duplication in the cache: The cache contains both the original data
and the copied data. This would mean that the data (content-wise) is
present twice in the cache.

Moreover, it is up to the programmer to ensure that, if the source and desti-
nation addresses of a memory copy operation overlap, a particular interface
is used (using the ISO C standard family of functions as an example, if the
addresses do not overlap amemcpy function can be utilized, otherwise the
memmovefunction should be used). Without making this assessment prior to
the execution of the memory copy operation, bytes copied to an intended des-
tination address that overlaps the source address can overwrite and corrupt the
original data. A simple illustration of how this might occur is given in Fig-
ure 3.1. As can be seen, the destination address begins at address 104, which
also happens to be an address within the source address. These data overwrites
can be avoided in a couple of ways: i) determine the overlap and transfer first
those bytes in the source address that overlap with the desired destination ad-
dress; or ii) determine the overlap and transfer bytes from the source address
to the destination address in reverse order. Note that an overlap in the oppo-
site direction (copying a source address to a destination address lower in main
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Figure 3.1: Address overlapping on a memory copy operation

memory) poses no problem for the standard memory copy operation that trans-
fers data in ascending address order. However, the first case suffers additional
overhead in order to calculate, store, and pass different source, destination, and
size variables for multiple memory copy operations, whereas the second solu-
tion must do this only once. Still, the overhead involved in the determination
of the overlapping and deciding on which software interface to use can never
be avoided.

Even though these situations do not pertain the actual memory copy oper-
ation, they are the direct result of it. Therefore, the following section describes
the cache-based memory copy hardware accelerator that reduces the impact of
the mentioned scenarios. In order to make the explanation easier to follow, it
is firstly assumed that the original data is already present in the cache. In the
following sections, the practical implementation is presented, removing this
initial assumption.

3.2 The Concept

As caches store the most recently used data (as explained in Section 2) the data
to-be-copied by a memory copy should be already present within the cache.
Therefore, by initially assuming that the original data is already present in the
cache (in order to make the explanation easier to follow), the memory copy
operation can then be performed by redirecting the destination addresses to
the cache locations containing the original data. Consequently, without losing
generality and without delving into the many details, a memory copy operation
is reduced to a single action of entering the destination address into an indexing
table and creating a pointer to the original data stored in the cache. When the
copied data needs to be accessed, this can be easily performed by extracting
the corresponding pointer from the indexing table and subsequently accessing
the cache using this pointer. An illustration of this method is depicted in Fig-
ure 3.2. The advantages of the cache-based memory copy hardware accelerator
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Figure 3.2: The cache-based memory copy hardware accelerator

is two-fold:

• The memory copy operation is performed in a much shorter time, due
to reduction of the numerous amount of loads and stores. In turn, the
latencies associated with its execution is greatly reduced.

• The ensuing access(es) to all copied data can be performed much faster,
because it simply extracts the corresponding pointer from the indexing
table.

• The earlier described cache pollution does not exist as it is not possible
for the copied data to overwrite cache locations containing the original
data or vice-versa.

• The memory copy operation performed by the cache-based memory
copy hardware accelerator can efficiently deal with overlapping of the
original and copied data memory locations, that would take a software
solution many more cycles.

As the indexing table is accessed in parallel with the cache access, there
will be hits/misses as data is searched both in the indexing table and in the
cache. Table 3.1 summarizes these different cases. As an indexing table entry
is a pointer to the original data in the cache, even if the source and destination
addresses overlap, there will be no impact on the copy performed using the
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cache-based memory copy hardware accelerator. In reality, the overlapping
of the source and destination addresses correspond to case 1) of Table 3.1,
where the original data is in the cache and the copy exists in the indexing table.
Moreover, the storing of the copied data to the main memory is deferred to a
later time in the cache-based memory copy hardware accelerator. In particular,
when either the original or copied data locations are being overwritten or when
the original data location is evicted from the cache, this must be detected and
the appropriate measures must be taken to store the copied data to the main
memory (introduced in detail in Section 3.3.2). Furthermore, the pointer in
the indexing table must be invalidated. This justifies why case 2) of Table 3.1
cannot occur.

Case Indexing Table Cache Comments

1 hit hit Original data in cache and

copy in the indexing table

2 hit miss Cannot occur

3 miss hit Original data in cache and no

copy in the indexing table

4 miss miss No original data in cache and

no copy in the indexing table

Table 3.1: Hit/Miss combination in the cache and indexing table

3.3 The Design

The previous section presented the ideal concept of the cache-based memory
copy hardware accelerator. However, a practical implementation needs to con-
sider the cache organization details and its impact on the accelerator concept.

In the cache-based memory copy hardware accelerator, the indexing ta-
ble is tightly-coupled with a cache. The most simple cache organization is
a direct-mapped cache, as introduced in Chapter 2. Direct-mapped caches
are extremely popular in embedded systems due to their low power per ac-
cess [108]. Therefore, the first design of the cache-based memory copy hard-
ware accelerator connects the indexing table to this particular cache organi-
zation (presented in Section 3.3.1). Moreover, the first design also considers
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that the original data is always present in the cache (a custom load/store unit
to handle the necessary loads and stores is presented in Section 3.3.2).

In the cache-based memory copy hardware accelerator, each entry of the
indexing table points to the cache line that contains the original data. There-
fore, for the first design, a cache line granularity to perform the memory copy
operation was chosen. This size provides a good tradeoff between performance
and hardware resources utilized, as it will be shown later. Moreover, this gran-
ularity can cover all memory copy operation scenarios (including the less ideal
ones). These scenarios entail those memory copies that transfer data smaller
then a cache line, which sizes are not a multiple of a cache line size or those
that are not cache line aligned:

1. The case of a copy being smaller then a cache line size can be solved by
using a software implementation of the memory copy operation without
utilizing the cache-based memory copy hardware accelerator. Due to
the small size of the copy, the penalty incurred by performing the copy
in software is limited (considering an assembly hand-written optimized
copy algorithm for the chosen platform).

2. The case where the source and the destination addresses are miss aligned
by the same amount can be detected and dealt with. Detecting such a
case can be easily performed by looking at the offsets of the source and
destination addresses. The solution is to perform the copies of complete
cache lines utilizing the cache-based memory copy hardware accelerator
and the remainder of the words again using a software implementation.
In this way, the penalty incurred remains small compared with the gains
of using the cache-based memory copy hardware accelerator (as shown
later).

3. In the case where the source and destination addresses are miss aligned
(not by the same amount), the indexing table supporting cache line gran-
ularity copy can no longer be directly applied. Therefore, alternatives
that range from simple padding (by either an intelligent programmer or
a smart compiler) to rewriting part of the application code, can be uti-
lized.

The latter case requires a deep knowledge of the application being executed
and, therefore, it is not the most efficient option. The amount of application
profiling, in order to determine each memory copy source and destination ad-
dresses, and re-writing the application to ensure the alignment of those ad-
dresses makes this solution time-consuming. Moreover, padding the addresses
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in order to align them may fragment the memory and waste this valuable re-
source. As the indexing table able to support cache line granularity copy does
not efficiently cover all spectra of the possible copy operation scenarios, an
indexing table design able to support word granularity copy is also introduced
in this chapter (in Section 3.3.3).

As presented in Chapter 2, there is a trend towards set-associative caches
due to their reduced miss rate. Therefore, this chapter presents the necessary
changes to the indexing table to support set-associative caches in Section 3.3.4.

3.3.1 Indexing Table Supporting Cache Line Granularity Copy

The memory copy operation performs a copy of sizesize from a source ad-
dresssrc to a destination addressdst . The way a memory copy is performed
using the indexing table connected to a cache is to access the indexing table
with the index part of thedst address and to write the index part of thesrc

address, the tag part of thedst address and a valid bit in the entry accessed.
The execution of a memory copy of cache line granularity, then becomes the
filling of the indexing table entry. The time needed to perform this filling is
dependent on the implementation of the indexing table and is addressed in
Chapter 4.

If there is a read hit in the indexing table (calculated based on the tag part of
the address requested by the processor, the tag part of thedst address stored
in the indexing table and the valid bit also stored in the indexing table), the
index part of thesrc address stored in the indexing table (i.e, the pointer to
the cache entry) is provided to the cache. It is worth mentioning that, if there
is a miss on the indexing table, there will be no penalty in the performance
of the system, as the indexing table and the cache are accessed in parallel.
This implies that on a miss in the indexing table, the cache is already being
accessed and returns the data in the same amount of time. On a read hit on
the indexing table, however, the accelerator requires one more clock cycle in
order to retrieve the correct address from the indexing table to provide it to the
cache. Figure 3.3 depicts the indexing table design for cache line granularity
copy. Therefore, the following fields constitute the indexing table:

• The “Val Bit” field stores the validity of an indexing table entry;

• The “Tag DST” field stores the tag part of thedst address;

• The “Index SRC” field stores the index part of thesrc address;
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Figure 3.3: The indexing table design for a cache line granularity copy

When filling the indexing table (the index part of the destination address is
used to access the indexing table), the following actions are performed:

• Load the original data to the cache, if not present yet (using the custom
load/store unit presented in Section 3.3.2). If the cache is a write-back
cache the data evicted from the cache also needs to be written to the
main memory.

• If the cache has any data from the destination addresses and the origi-
nal and destination addresses do not overlap, these cache lines need to
be invalidated, in order to keep consistency between the cache and the
indexing table. However, if the original and destination addresses do
overlap, then there is no need to invalidate the common cache lines, as
it would invalidate original data from the cache (that afterwards needs
to be loaded again to perform the memory copy operation). If the cache
is a write-back cache, when invalidating the cache lines, the data needs
also to be written back.

On a read request (the index part of the address requested by the processor
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is used to access the indexing table), the following actions are performed:

• If the valid bit is set and if the tag part of the address requested by the
processor is the same as the tag stored on the table (a read hit on the in-
dexing table which implies also a read hit on the cache), use the address
provided by the indexing table to access the cache;

• If the valid bit is not set and/or if the tag part of the address requested
by the processor is not the same as the tag stored on the indexing table
(a read miss on the indexing table), use the address requested by the
processor to access the cache. If there is also a read miss on the cache,
more steps need to be performed, which are discussed in the next section.

For a write request (the indexing table is accessed using the index part of
the address provided by the processor), the following actions are performed:

• If the valid bit is set and if the tag part of the address provided by the
processor is the same as the tag stored on the entry of the indexing table
(a write hit in the indexing table):

1. Use the address provided by the indexing table to access the cache;

2. Perform the storing of the copied data (the details on how to per-
form the actual copy is introduced in the next section);

3. Invalidate the indexing table entry;

4. Load the requested data to the cache and change its value (this step
is not necessary if the cache is a write-allocate cache).

• If the valid bit is not set and/or if the tag part of the address provided
by the processor is not the same as the tag stored on the entry of the
indexing table (a write miss in the indexing table):

1. Use the address provided by the processor to access the cache and
the main memory;

2. Write data to the cache and the main memory;

3. If there also is a write hit on the cache, more steps need to be
performed, which are discussed in the next section.

As mentioned before, when either thesrc or dst addresses are being over-
written or when one of thesrc addresses is evicted from the cache, this must
be detected and the appropriate measures must be taken to store the copied
data to the main memory. This is performed by the custom load/store unit
introduced in the next section.
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3.3.2 Load/Store Unit

The previously described mechanism assumed that the direct-mapped cache
already contains the necessary to-be-copied data. As this is not always true,
there is a need to load/store data to/from the main memory from/to the cache.
Therefore, a load/store unit was developed. It is situated between the cache
and the main memory and communicates control signals to direct the behavior
of the cache, the main memory, and the indexing table. The load/store unit
is mainly an FSM with two different paths for the read and write operations.
Furthermore, certain states were specifically introduced to handle the situa-
tions particular to the presence of the indexing table. Figure 3.4 depicts the
FSM of the load/store unit.
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Figure 3.4: Load/store unit finite-state machine

On a read operation, if the address requested by the processor exists in
cache and/or in the indexing table (a read hit on the cache and/or in the index-
ing table) the data is immediately provided to the processor (this is performed
by the READ state of the FSM). If there is a read miss on the cache (which
implies a miss on the indexing table too), the new cache line being brought to
the cache may evict asrc address from the cache (bringing the new cache line
to the cache is performed by the READBURST state of the FSM). If so, the
load/store unit has to perform the storing of the copied data to main memory
(performed by the MEMORYCOPY WRITE state of the FSM). This implies
accessing the indexing table to find thedst address that corresponds to the
evictedsrc data, write thissrc data to thedst address in main memory and
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invalidate the indexing table entry.

If a memory copy is being executed, the load/store unit is responsible for
loading thesrc data from the main memory from size zero (because all data
for the memory copy is already in cache) up to thesize of the memory copy
(this is performed by the READBURST state of the FSM), and write-back any
previous data that these loads may evict from the cache, if it is a write-back
cache (performed by the MEMORYCOPY WRITE state of the FSM).

On a write operation three different situations can occur: a write to asrc

address; a write to adst address; and a write to a normal address (i.e., ad-
dresses that are notsrc or dst addresses). For the last case, the load/store
unit is responsible for the regular storing of data to the main memory, as a tra-
ditional load/store unit would perform (this is performed by the WRITE state
of the FSM). If the write address is asrc address, the indexing table is looked
up to find the correspondingdst address. Thesrc data is written-back to the
main memory to thedst address and the correspondent entry of the indexing
table is invalidated (performed by the MEMORYCOPY WRITE state of the
FSM). After these steps, the systems behaves as a standard write hit (as the data
to be modified/written to is already in the cache). If the write address is adst

address, the load/store unit, besides performing the same steps as executed for
a write to asrc address, additionally has to load to the cache the copied data
(that was just written in the main memory), if the cache is not a write-allocate
cache, in order to be modified (this is performed by the READBURST state
of the FSM).

It is also worth mentioning that the load/store unit benefits from the func-
tionality of nowadays memories, that allow bursts of data to be read. The
load/store unit generates addresses until a limit is reached (limit being either
the size of a memory copy or a cache line) which implies a delay to access the
first word equal to the read latency of the main memory and the next requested
word is provided every clock cycle. Another advantage is that thesize of a
memory copy is known in advance which enables the possibility of request-
ing all the necessary data and only paying once the initial main memory read
latency.

The combination of the cache (independent of its organization), the index-
ing table (independent of copy granularity it supports) and the load/store unit
constitute what is referred in this dissertation as the cache-based memory copy
hardware accelerator.
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3.3.3 Indexing Table Supporting Word Granularity Copy

As mentioned in Section 3.2, the cache line granularity copy can be less effi-
cient in certain cases (in particular when the source and destination addresses
are miss aligned not by the same amount). Therefore, an indexing table able
to support word granularity copy is presented, once it supports such cases.
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Figure 3.5: The indexing table design for word granularity copy

The index part of thesrc address stored in the indexing table can, in re-
ality, refer to a previous or subsequent cache line depending on the word re-
quested. Therefore, a new field of the indexing table (referred to as “Offset
Calculation” field in Figure 3.5), is introduced. This field stores the difference
between the offsets of thedst andsrc addresses in the indexing table, which
allows to calculate the correct address to access the cache. Besides, an entry
of the indexing table is now referring to one word instead of one cache line.
Therefore, in order to access the correct word, it is needed the offset part of
the address to access the indexing table. Summarizing, the indexing table now
has to have as many entries as the number of words stored in the cache.

The processor requests an address constituted by areq tag , areq index
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Figure 3.6: Examples to demonstrated the offset calculation

andreq offset . If the requested address corresponds to a copied value, the
indexing table provides the index part of thesrc address, stored in the “In-
dex SRC” field, and the difference between the offsets of thedst and src

addresses, stored in the “Offset Calculation” field. The algorithm to provide
the correct address to the cache, i.e., theindex cache andoffset cache ,
is dependent on the cache line size (in the algorithm presented below, a cache
line refers ton words2):

cal = req offset - Offset Calculation;

2For the reminder of this dissertation the default value ofn, i.e., a cache line size is 8 words.
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if cal > n - 1 then
index cache = Index SRC + 1;
offset cache = cal - n;

elsif cal < 0 then
index cache = Index SRC - 1;
offset cache = cal + n;

else
index cache = Index SRC;
offset cache = cal;

end if;

A couple of situations need also to be considered. In the case the calcula-
tion rolls over (i.e., if it crosses the tag boundary), there will be no implication
on the system, as only the index part of the address is used and the tag part of
the address is not used to access the cache. In this case, index 0 is accessed as
it refers to the subsequent cache line where the requested word is (this is the
intended behavior). Another situation is that this solution requires one more
clock cycle in the critical path (i.e., providing the data to the processor) com-
pared with the indexing table that supports cache line granularity copy. This
is due to an extra addition to calculate the word being accessed, however this
extra time can be hidden on the cache access time (depending on the cache
design). Moreover, the expected benefits of the solution (i.e., being able to
perform memory copies with word granularity much faster then the software
approach) should cover this extra penalty.

Consider four examples to illustrate the algorithm where the cache line size
is 8 words. The first two examples are based on Case a) from Figure 3.6 (“Off-
set Calculation”: offsetdst - offsetsrc = 5 - 1 = 4 ), while the remainder
two examples are base on Case b) of the same Figure (“Offset Calculation”:
offsetdst - offsetsrc = 2 - 4 = -2 ).

Example 1: The processor requestsreq index 15 , req offset 2 (this
means the copy of the wordF). From Case a) of Figure 3.6, the “Index SRC”
field of the indexing table will return1 and the “Offset Calculation” field re-
turns4. This means the address provided to the cache is:index cache = 0

andoffset cache = 6 , corresponding to wordF, as expected.

cal = 2 - 4 = -2 < 0 =>
=> index cache = 1 - 1 = 0;
=> offset cache = -2 + 8 = 6;

Example 2: The processor requestsreq index 14 , req offset 6 (this
means the copy of the wordB). From Case a) of Figure 3.6, the “Index SRC”
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field of the indexing table will return0 and the “Offset Calculation” field re-
turns4. This means the address provided to the cache is:index cache = 0

andoffset cache = 2 , corresponding to wordB, as expected.

cal = 6 - 4 = 2 =>
=> index cache = 0;
=> offset cache = 2;

Example 3: The processor requestsreq index 14 , req offset 7 (this
means the copy of the wordF). From Case b) of Figure 3.6, the “Index SRC”
field of the indexing table will return0 and the “Offset Calculation” field re-
turns-2 . This means the address provided to the cache is:index cache =

1 andoffset cache = 1 , corresponding to wordF, as expected.

cal = 7 - (-2) = 9 > 7 =>
=> index cache = 0 + 1 = 1;
=> offset cache = 9 - 8 = 1;

Example 4: The processor requestsreq index 15 , req offset 2 (this
means the copy of the wordI ). From Case b) of Figure 3.6, the “Index SRC”
field of the indexing table will return1 and the “Offset Calculation” field re-
turns-2 . This means the address provided to the cache is:index cache =

1 andoffset cache = 4 , corresponding to wordI , as expected.

cal = 2 - (-2) = 4 =>
=> index cache = 1;
=> offset cache = 4;

With this simple algorithm and using also the offset part of the address
provided by the processor, the problem of alignment can be solved and copies
of word granularity can be performed.

3.3.4 Indexing Table Supporting Set-Associative Caches

Until now the indexing table was connected to a direct-mapped cache. On
the other hand, this type of caches have increasingly been replaced by set-
associative caches, due to their performance improvement. However, when
including the cache associativity, the available number of cache entries de-
creases. As each entry of the indexing table points to a cache line3, the number

3In order to also support word granularity copy with set-associative caches, the “Offset
Calculation” field can also be included in the indexing table. In this dissertation, however, the
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of entries of the indexing table have to be the same as the cache entries. More-
over, as the size of the copy depends on the number of entries of the indexing
table and on the cache line size, the maximum size of the copy is then reduced.
Therefore, an indexing table able to support associativeness is a requirement.

A solution is to use more bits to access the indexing table. Instead of just
using the index part of the address requested/provided by the processor, new
bits are included, which number depends on the number of ways of the cache
the indexing table is connecting to. This technique will create more entries in
the indexing table (a new entry per way), i.e., each index can refer to as many
entries as many ways the cache has. When filling the indexing table, the entry
corresponding only to the index part of address (the new bits are zero), is used
first, and only if that entry is taken than the following entry is used. This has
a performance impact on performing a copy as the time to fill the indexing
table is now dependent on the number of ways the cache has. However, the
bigger size of the copy (i.e., more entries of the indexing table are used) the
more time the processor would spend executing a memory copy in software.
Therefore, the increase in time to fill the indexing table is still much smaller
then the software version.

As there is an increase in the number of entries of the indexing table to
check on a read or write request (as there is an entry per way), performing a
sequential search is not the most efficient way. A solution is to use a CAM
core for the “Tag DST” field of each index (i.e., each index refers to as many
entries as many ways the cache has) and a RAM core for the other fields of
the indexing table (a description of the CAM and RAM cores was presented in
Section 2.4). This means that there will be as many CAMs as the indexes, each
CAM with as many entries as the ways of the cache. By searching this field,
the first step to determine if it is a hit in the indexing table can be performed
efficiently in one clock cycle. The content of the “Tag DST” field, accessed
based on the index part of the address provided/requested by the processor, is
afterwards (second step to determine a read hit on the indexing table) feed in
parallel to the “Val Bit” and the “Tag + Index SRC” fields to determine the
index of thesrc in the cache. A read hit in the indexing table will then take
two clock latency (one clock cycle for the CAM of the “Tag DST” field plus
one clock cycle for both “Val Bit” and “Tag + Index SRC” fields). Again, as
the indexing table and the cache are accessed in parallel there is no penalty on
a read miss on the indexing table. The indexing table connected to a 4-way
associative cache is depicted in Figure 3.7.

indexing table connected to a set-associative cache is only able to support cache line granularity
copy.
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Figure 3.7: The indexing table design for a 4-way associative cache

As introduced in Section 2.2.4, a cache coherence protocol keeps informa-
tion on the state of each cache line. These states are depending on the presence
of the cache line in only one or more than one caches in a multiprocessor sys-
tem and on the content of the cache line being different or not from the one in
the main memory. Therefore, a cache supporting a cache coherence protocol
includes some bits per cache line to store its state. The number of bits stored
depends on the type of protocol implemented. As introduced in Section 2.2.4,
the MESI cache coherence protocol is widely utilized. The MESI protocol
supports four states: Modified, Exclusive, Shared and Invalid, which implies
the need of two bits to encode each state.

As the indexing table stores a pointer to the original data in the cache, it
effectively extends the size of the cache by including entries with the copied
data. These entries should also hold a state, as the system supports cache
coherence protocol. Therefore, in order to support the MESI cache coherence
protocol, the indexing table also needs to include a field where the state of
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each cache line is kept. That is referred as “MESI” field in Figure 3.7 and
whenever there is an access to the “Val Bit” and “Tag + Index SRC” fields also
the “MESI” field is accessed to determine/update the state of the entry.

3.4 Communication Issues and Cost Estimative

In this section, general implementation issues in designing the cache-based
memory copy hardware accelerator are discussed. One of the first issues to ad-
dress is the communication between the accelerator and the processor. Mainly
two options are available from the hardware point of view: i) bank of regis-
ters to transfer the input parameters; and ii) assigning a particular address to
each input parameter. The first option is the traditional way to implement the
communication between the accelerator and the processor. The last option is
possible only if the addresses used to transfer the parameters are reserved (the
program cannot use these reserved addresses except to communicate with the
accelerator, i.e., any load or store to any reserved address will result in access-
ing the accelerator) and therefore is not the most common one. From the soft-
ware point of view there are also two options to transfer the input parameters to
the accelerator: i) a memory-mapped device-driver; and ii) an instruction-set
architecture extension. The first option utilizes a particular file of the OS that
contains the memory mapping of addresses. Any write or read to a particular
location of this file will result in accessing the accelerator. To use this option
there is also a need to implement either a polling or interrupt mechanism to
start and end the execution of the accelerator and resume the execution of the
program. The instruction-set architecture extension can implement a single in-
struction to substitute the software memory copy calls. Therefore, the use if
this new instruction will transfer the necessary parameters to the accelerator
and start the execution of the memory copy operation. It is worth mentioning
that any combination of software and hardware options is possible.

The traditional way to implement the communication interface in the ac-
celerator is through the register bank. Assigning addresses to each parameter
to transfer might result in reserving too many addresses for the communica-
tion (depending on the number of parameters to pass). Moreover, reserving
addresses can only be performed if the programmer has complete control of
the application including the addresses generated by the compiler (in order to
ensure that the reserved addresses are not used except to communicate with
the accelerator). As it will be shown later, the option used in prototyping the
cache-based memory copy hardware accelerator presented in this dissertation
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is the later one. As the software utilized was hand-written and completely un-
der control of the programmer, there was no need to implement a register bank
to transfer parameters. For the software, the traditional communication mech-
anism is the use of a memory-mapped device-driver. This option can be easily
implemented and does not require access to the processor hardware, as the
case of the instruction-set architecture extension. However, as it will be shown
later, the penalty of using such a communication mechanism is not negligible.
Therefore, when utilizing a simulator to demonstrate the performance benefits
of the cache-based memory copy hardware accelerator, the instruction-set ar-
chitecture extension was used (as it can be easily implemented in a simulator).

Another issue to consider is the hardware cost of the cache-based mem-
ory copy hardware accelerator (for each cache organization and indexing table
type). Moreover, the address bus size used to connect the cache and the index-
ing table also have impact on the hardware costs. As presented previously, the
indexing table stores the tag and index parts of the addresses used in the mem-
ory copy. The number of bits stored have impact on the size of the memories
used to implement the indexing table. The bigger the number of bits stored the
more hardware resources are necessary.

In order to estimate the size of the indexing table for different caches or-
ganizations, a detailed study was performed. Assuming a cache size of 1 MB
(a typical size for caches nowadays) and varying the cache line size and as-
sociativity, the hardware resources are estimated for both the indexing table
and the cache. Figure 3.8 depicts the increase (in percentage) of the hard-
ware resources used in the indexing table compared with the ones used only
in the cache. Assuming now a direct-mapped cache with a cache line size
of 32 bytes and varying the cache size and the address bus size, again the
hardware resources are estimated for both the indexing table and the cache.
Figure 3.9 depicts the increase (in percentage) of the hardware resources used
in the indexing table compared with the ones used only in the cache.

The main conclusions reached from a careful analysis of Figures 3.8 and 3.9
are:

• The increase in the cache line size reduces the percentage of hardware
resources utilized on the indexing table compared with the cache (from
20% down to 2.5%). This is expected as one cache line now contains
more data, so one entry of the indexing table points to more data.

• The increase on associativity does not have a big impact on the percent-
age of hardware resources utilized on the indexing table compared with
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HW costs analysis for different cache designs and indexing table types - 1MB Cache
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Figure 3.8: Hardware costs for different cache designs and indexing table types

HW cost analysis for increased cache sizes and address bus sizes - 32B cache line 
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Figure 3.9: Hardware costs for different cache sizes and address bus sizes

a cache (values around 17%). The reason for this is that in order to sup-
port associativity, the cache itself increases the number of bits stored in
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this way reducing the impact of the bigger number of bits also stored in
the indexing table.

• The increase of the cache size does not have a big impact on the per-
centage of hardware resources utilized on the indexing table compared
with a cache (values around 10%). This is expected as the number of
bits stored increase both in the indexing table and the cache.

• Finally, the analysis of increasing the address bus size demonstrates that
the size of the bus does increase the percentage of hardware resources
utilized on the indexing table compared with a cache (from 10% to 20%).
The reason for this is the increase on the number of bits stored (in partic-
ular due to the size of the tag, that typically increases when the address
bus size is increased).

The increase in the percentage of hardware resources utilized on the indexing
table compared with a cache for the different situations is mitigated due to
the effective cache size increases for a program executing a large number of
copies. Moreover, due to the effective increase of the cache size, it is also
expected that the hit rate of the cache also increases.

3.5 Summary

This chapter presented the concept of the cache-based memory copy hard-
ware accelerator, as a combination of a cache (independent of its organiza-
tion), an indexing table (independent of the copy granularity it supports) and a
load/store unit. Moreover, the design of the indexing table able to support
cache line and word granularity copies and set-associative caches was dis-
cussed. The cache-based memory copy hardware accelerator does not incur
in performance penalty on a read hit on the cache and read miss on the in-
dexing table. However, on a read hit on the indexing table there is a need of
one more clock cycle to access the copied data. Furthermore, the options to
communicate with the accelerator (from the software and hardware points of
view) were presented as well as a detailed study was performed to estimate
the necessary hardware resources need to implement the cache-based memory
copy hardware accelerator.

The next chapter introduces the methods used to demonstrate the benefits
of the cache-based memory copy hardware accelerator. The details of plat-
forms used to execute the synthetic benchmarks and take performance mea-
surements are introduced.
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Chapter 4

Uniprocessor Platform

T
he cache-based memory copy hardware accelerator introduced in the
previous chapter is implemented in real hardware using reconfigurable
technologies, i.e., a FPGA, and incorporated into a simulator running

several benchmarks to determine the performance gains of the proposal.

This chapter introduces the platforms utilized to demonstrate the cache-
based memory copy hardware accelerator. Section 4.1 describes the prototyp-
ing platform and the implementation tradeoffs for the cache-based memory
copy hardware accelerator. Section 4.2 introduces the simulator platform and
presents the simulation parameters. Finally, Section 4.3 summarizes the main
points presented in this chapter.

4.1 Prototyping Platform

The concepts presented in Chapter 3 were implemented on hardware. Two op-
tions for digital systems implementation can be found: application specific in-
tegrated circuit (ASIC) or FPGA. The design flow of an ASIC device involves a
wide variety of complex tasks, including placement and physical optimization,
clock tree synthesis, signal integrity analysis, and routing using different tools
suite. When compared to ASIC devices, the design flow of FPGA devices is
very simple and is accomplished, by the majority of the FPGA providers, with
a single software tool. Therefore, potentially it is possible to reduce the com-
plexity of the design process as well as significantly reduce cost. Figure 4.1
presents a comparison of the design flow of both technologies.

Therefore, the FPGA was chosen as digital support for prototyping the
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Figure 4.1: ASIC vs FPGA design flow [3]

cache-based memory copy hardware accelerator. Moreover, the FPGA tools
suite does provide a simulation environment that enables the verification of
the functional and timing models of the design, as introduced in Section 2.4.
This simulation environment provides an estimative of area utilization as well
as timing, an important part in analyzing the performance of a design. As
the focus of this dissertation is on performance analysis, the simulation en-
vironment of the digital support chosen, in this case FPGA, is enough. The

68



4.1. PROTOTYPINGPLATFORM

data provided by this environment is sufficient to provide a estimative of the
cache-based memory copy hardware accelerator raw performance. This data
is utilized afterward to perform a system performance analysis using the sim-
ulator presented in Section 2.5.

As introduced in Section 2.4, Xilinx [101] is one of the major providers
of FPGA devices. Moreover, the Virtex-II Pro FPGA was within the most
widely deployed devices from Xilinx in the beginning of this work. By that
time, Virtex-4 FPGA had just became available and, therefore, the tools suite
to support the design in these devices were not mature enough. The first im-
plementation of the cache-based memory copy hardware accelerator was then
performed in a Virtex-II Pro. However, during the course of the work, some
limitation of the device chosen became clear (as introduced in the next section)
that justified moving to a Virtex-4 FPGA. During this time, the tools suite had
time to mature and were able to provide the necessary performance and ease
of use required for the work performed in this dissertation.

4.1.1 Virtex-II Pro Platform

The cache-based memory copy hardware accelerator is implemented on the
simulation environment targeting a XUP [106] platform, containing a Virtex-
II Pro XC2VP30 FPGA with two PPC405 cores, although only one is used (the
details of the platform was introduced in Section 2.4).

The PPC located within the Virtex-II Pro FPGA contains two interfaces
that are capable of accessing memory: the on-chip memory (OCM) interface
and the processor local bus (PLB) interface. These interfaces have different
architectures, timings, and protocols, which affect their relative performance.
The OCM is a dedicated interface between the PPC and BRAMs in the FPGA.
Some key features of this interface are:

• It provides fast access to a fixed amount of instruction and data memory
space;

• It provides an instruction-side OCM (ISOCM), 64-bit data bus and a
data-side OCM (DSOCM), 32-bit data bus;

• It provides independent clock inputs for the ISOCM and DSOCM and
for the PLB.

The PLB is the main processor bus; some key features of this bus are:
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• The instruction cache unit (ICU) and data cache unit (DCU) masters
provide the interface between the processor and the PLB;

• The ICU/DCU masters attach to the PLB through separate address, read
data, and write data buses with a plurality of transfer qualifier signals;

• The data buses are 64 bits wide and the address buses are 32 bits wide;

• It is capable of doing an 8-word cache line transfer;

• The PLB arbiter controls the access to the PLB slave devices attached to
the bus.

Figures 4.2 illustrates how the processor interfaces with the OCM and the PLB
buses.

Processor

Memory
Controller

System
Memory

Processor
Local Bus

I-Cache
Controller

I-Cache
Array

Instruction-Cache
Unit

Instruction
OCM

D-Cache
Array

D-Cache
Controller

Data-Cache
Unit

Data
OCM

Execute GPRs

Figure 4.2: The PPC memory system [101]

The PLB has a very large address space compared to the OCM; altogether,
the PLB can address 4 GB of memory. The DSOCM and ISOCM interfaces
can physically address up to 16 MB of BRAM, however, the amount of BRAM
available for OCM is limited by the number of BRAMs in the FPGA being
used.

The PLB operating frequency is dependent on the maximum operating fre-
quency of the PLB arbiter and the number of peripherals that are connected to
it. The PLB is restricted to operate at an integer ratio (1 to 16) of the processor
frequency. In the same way, the OCM frequency is dependent on the amount
of memory that is connected to it (typically BRAM). Additionally, the routing
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between the OCM controllers and the BRAM uses general FPGA routing re-
sources. Therefore, the larger the memory attached to the interface, the slower
the interface may run. The OCM’s operating frequency, like that of the PLB,
must be in integer ratio (1 to 3) to the processor frequency. The DSOCM,
ISOCM, and PLB are all independent of each other and can operate at differ-
ent frequencies.

The PLB is a decoupled bus, meaning that its address, read data, and write
data buses are not coupled to one another. Therefore, an address cycle can
overlap with data cycles, and a read cycle can overlap with a write cycle. The
PLB can do this because all masters have their own address, read data, write
data, and transfer qualifier signals. Bus slaves also have address, read data,
and write data buses, but these buses must be shared. In contrast to the PLB,
the OCM interface is a coupled bus. Like the PLB, there are separate read
and write data buses for the ISOCM and DSOCM, but each address cycle is
immediately followed by (coupled to) a corresponding data transfer. Because
the OCM controllers are dedicated interfaces, decoupling the buses would not
increase their bandwidth.

The PLB is a shared bus and can support eight masters and eight slaves, in
the Virtex-II Pro FPGA. The PPC has two masters on the PLB: the DCU and
the ICU. All devices connected to the PLB must share the bandwidth that is
available on the bus. Obviously, other masters on the bus can interfere when
the processor would like to access data or instructions. The OCM, however, has
two dedicated memory interfaces: the Data-Side and Instruction-Side. There-
fore, the processor never has to wait for data or instructions because another
device is accessing them.

The fact that the PLB must share its bandwidth with many masters and
slaves makes it a nondeterministic bus. This means that the timing is variable.
For instance, if the processor is executing a function in which the data/instruc-
tions are not already in the cache, the time that function takes to execute is de-
pendent on how much traffic is on the PLB. Because the OCM is a dedicated
interface, it is a deterministic bus. A given set of instructions being fetched
from ISOCM will always take the same amount of time, assuming the instruc-
tions do not require data that is stored in main memory. Table 4.1 summarizes
the main characteristics of both the OCM and PLB.

In general, the OCM and the PLB are by nature very different bus inter-
faces, both having its advantages and disadvantages. Furthermore, the typical
OCM utilization is very similar to the PPC cache, i.e., they both help offload
traffic from the PLB. It has similar performance to the PPC cache when both
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OCM PLB

Dedicated Interface Shared Bus

Deterministic Bus Nondeterministic Bus

Coupled Bus Decoupled Bus

Memory Size: 16 MB Memory Size: 4 GB

Table 4.1: OCM vs PLB comparison

are operating at the same frequency. As the OCM has an access time equivalent
to a standard cache access [100], the DSOCM is chosen to connect the cache-
based memory copy hardware accelerator (i.e., the data cache, the indexing
table and the load/store unit) to the processor. As only the data side is imple-
mented (the cache-based memory copy hardware accelerator concerns only the
data part), BRAMs are utilized on the PLB to store the instructions part of a
program. A linker script is used to assign the data to the BRAMs memory on
the OCM and the instructions to the PLB BRAMs memory. Figure 4.3 depicts
the described system.
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Figure 4.3: System used to prototype

The interface that the DSOCM provides [105] has 22 bits address bus (bits
0 to 7 and 30 to 31 are reserved by the processor), 32 bits of separate read
and write data bus and 4 bits of byte write bus. The byte write bus is used to
identify, on a write, how many bytes are being transferred. Figure 4.4 depicts
the DSOCM interface to the processor and to peripherals. TheDSCNTLVALUE,
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theDSARCVALUEand theTIEDSOCMDCRADDRare control registers.
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On-Chip Memory 
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Figure 4.4: DSOCM controller interfaces [101]

The DSOCM bus of Virtex-II Pro is expected to provide the data that the
PPC requested in two clock cycles1. The cache-based memory copy hardware
accelerator requires a non fixed amount of time (most probably bigger than
two clock cycles) to perform a memory copy. The solution implemented in
this dissertation is to disable the clock of the PPC (keeping the clock of all
other parts of the system running) while the accelerator is executing the mem-
ory copy. Using this approach, the PPC will stop its execution, giving the
necessary time for the accelerator to finish the memory copy operation. As the
DSOCM allows a idle time of two clock cycles, the first clock cycle is used to
determine if the PPC is requesting a memory copy operation or not. If it is,
then the clock of the PPC is disabled, and the memory copy is executed in the
accelerator. When the accelerator is performing the copy of the last cache line
(which is known as the size of the copy is known in advance), the clock of the
PPC is enabled again, in order to take advantage of the second clock cycle to
stabilize the PPC. Although this is not the best practice, it proved to be stable
enough to perform the necessary verification of the cache-based memory copy
hardware accelerator implemented in the Virtex-II Pro FPGA.

As mentioned before, the indexing table works in conjunction with a cache.
Therefore, the PPC internal caches (both the instruction and data caches of
16 kB, two-way associative) are disabled and a direct-mapped cache is imple-
mented. This is necessary because the cache-based memory copy hardware

1The previous chapter introduced an indexing table able to support word granularity copies.
This solution incurred in an extra clock cycle due to an addition in the critical path to calculate
the word being accessed. However, as stated, this extra clock cycle can be hidden under the 2
clock cycle delay imposed by the PPC.
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accelerator needs to have access and control over the cache. The cache im-
plemented is a 32 kB direct-mapped, write-through, write allocate cache with
32 bytes cache lines (this is one of the simplest implementation, as explained
in Section 2.2.4). This implies that, from the 22 bits of the address (provided
by the DSOCM), 10 bits are for the index (to address 1024 entries of one word
each), 3 bits for the offset (to access one word per entry) and the remainder
9 bits are for the tag part of the address. The cache implementation is depicted
in Figure 4.5 and is constituted mainly by the BRAMs available in the FPGA
fabric to store the tag, the valid bit and the data (respectively in the tag-array,
the valid-array and the data-arrays, as introduced in Section 2.2.1). As each
data-array stores one word in each entry, to implement a 32 kB cache, eight of
such data-arrays are required. This implies that the processor can only access
one word and not one byte in this cache implementation.
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Figure 4.5: Cache implementation

The tool utilized to implement each cache array, i.e, each RAM core, is
LogiCORE (as introduced in Section 2.4). The number of BRAMs required
depends on the value of the data width utilized. The number of slices re-
quired depends on the way the memory depth is constructed which in turn
depends on the data width and the implementation of any necessary decoding
and multiplexing. For some memory depths, extra logic is required to decode
the address and multiplex the outputs. CLBs can be used to provide this func-
tionality. Moreover, the use of BRAMs as implemented by LogiCORE allows
the possibility to initialize the contents of the tag-array, the valid-array and the
data-arrays. Therefore, the assumption that the data is present in the cache at
the moment a memory copy operation is executed, can be easily implemented
on the Virtex-II Pro FPGA. Therefore, the limitations of this implementation
are:

• The DSOCM bus on the Virtex-II Pro does not provide a signal to sign
the completion of an operation, therefore, the clock of the PPC is dis-
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abled during execution of a copy operation;

• The data to-be-copied is assumed to be present in the cache at the time
of executing a memory copy operation; therefore, the contents of the
implemented cache are initialized according to the code to be executed.

The cache and the indexing table able to support cache line granularity
copy are implemented in VHDL and synthesized for the Virtex-II Pro XC2VP30
FPGA. The ModelSim XE-III [58] simulation environment is utilized to ver-
ify the HDL source code and the functional and timing models of the designs.
Table 4.2 presents the estimation of the percentage of resources needed.

Total Cache Indexing

Available Table (CL)

Slices 13696 46 (<1%) 421 (3%)

Flip-Flops 27392 39 (<1%) 482 (1%)

LUTs 27392 79 (<1%) 597 (2%)

IOBs 556 74 (13%) 96 (17%)

BRAMs 136 18 (13%) 28 (20%)

Gclk 16 1 (6%) 5 (31%)

Table 4.2: Resource estimation on the Virtex-II Pro XC2VP30 FPGA

4.1.2 Virtex-4 Platform

In order to solve the previous limitations, a second implementation of the
cache-based memory copy hardware accelerator is performed in the simulation
environment targeting the ML410 platform, containing a Virtex-4 XC4VFX60
FPGA, with two PPC405 cores, although only one is used (the details of the
platform were introduced in Section 2.4).

The ML410 platform, as it is based on a Virtex-4 FPGA, has a different
interface between the PPC and the DSOCM. This difference is reflected in
two signals provided by the interface to sign the completion of an operation
(the signals,DSOCMRDWRCOMPLETEand DSOCMRDADDRVALID, are depicted
in Figure 4.4). These signals are necessary in order to allow the cache-based
memory copy hardware accelerator to start and stop executing a memory copy
operation, as the accelerator requires a non fixed amount of time to perform
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the operation (the time needed depends on thesize of the memory copy).
Utilizing the completion signals, the approach used in the Virtex-II Pro FPGA
to allow for variable execution time of the peripheral connected on the OCM,
i.e., disable the PPC clock while executing a memory copy operation is not
used anymore, making the design in a Virtex-4 FPGA more stable than the one
implemented in the Virtex-II Pro.

Besides the differences due to the use of the completion signals in the
Virtex-4 FPGA, the design of the cache itself is also changed when imple-
mented in the Virtex-4 FPGA compared with the implementation on the Virtex-
II Pro FPGA. The main difference between the cache implemented in the
Virtex-4 and a standard one (or the one implemented in the Virtex-II Pro FPGA
depicted in Figure 4.5) is the use of dual-ported memory in the cache directory
(i.e., in the valid-array and in the tag-array), which allows for checking if data
is in the cache, while loading data to a different address (performed by the
load/store unit), when executing a memory copy.

The load/store unit is based on the design of [20] and [22]. The first [20]
design moved the main memory on a Virtex-II Pro from the PLB to the OCM
bus, performing the necessary signal translation between both buses. The work
of [22] further extended the design to the Virtex-4 FPGA. The load/store unit
utilizes the data interface to the main memory on the Virtex-4 FPGA and in-
cludes the necessary FSM extensions to support a memory copy operation.

The cache, the indexing table able to support cache line granularity copy
and the load/store unit were implemented in VHDL and synthesized for the
Virtex-4 XC4VFX60 FPGA. The ModelSim XE-III [58] simulation environ-
ment was utilized to verify the HDL source code and the functional and timing
models of the designs. Table 4.3 presents the estimation of the percentage of
resources needed.

4.1.3 Cache-Based Memory Copy Hardware Accelerator Imple-
mentation in Xilinx

In the previous subsections, the differences in the design of the cache-based
memory copy hardware accelerator due to the platforms constrains (i.e., Virtex-
II Pro or Virtex-4) were presented. However, the common design tradeoffs
(i.e., those not dependent on the being implemented on the Virtex-II Pro or
Virtex-4 but depending on using Xilinx FPGA as prototyping platform) are
introduced in this subsection.

The PPC is running at 100 MHz in all experiments presented in this dis-
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Total Cache Indexing

Available Table (CL)

Slices 25280 301 (1%) 5475 (21%)

Flip-Flops 50560 68 (<1%) 1294 (2%)

LUTs 50560 531 (1%) 7987 (15%)

IOBs 352 129 (36%) 129 (36%)

BRAMs 232 18 (7%) 120 (51%)

Gclk 32 1 (3%) 5 (15%)

Table 4.3: Resource estimation of the Virtex-4 XC4VFX60 FPGA

sertation, however the PPC is able to run at 300 MHz. The reason behind
choosing a frequency lower then the maximum available is due to the use of a
cache on the OCM. In a standard implementation of a processor and its cache,
both are running at the same frequency. In the prototyping platform, the cache
implemented is connected to the OCM, as introduced in the previous sections,
becoming an external cache running at the same frequency as the OCM, the
bus it is connected to. Moreover, the frequency achievable by the OCM is
dependent on the amount of BRAMs connected to it (as explained in the Sec-
tion 4.1.1, the bigger the amount of BRAMs connected to the OCM the slower
the bus can run). As the cache and the indexing table are implemented on this
bus, it can not achieve the 300 MHz of the PPC. Therefore, in order to have
the PPC, the cache and the indexing table on the OCM, running at the same
frequency the value of 100 MHz was chosen.

In order to perform a memory copy, there is a need to pass the parameters
src , dst andsize to the accelerator. A possible way is to reserve partic-
ular addresses to pass the parameters and enable the accelerator to recognize
these addresses (other options were presented in Section 3.4). The data on
the data buses has the values of each parameter and each reserved address in
the address buses enables a buffer to store the value of the parameter. There-
fore, these values can be utilized after, if needed be. Subsequently, to perform
the parameters communication between the software and the accelerator, the
memory copy calls of any program are substituted by2:

2The reserved addresses in this implementation are 0xA1FFFFF4 to pass thesize para-
meter, 0xA1FFFFF8 to pass thesrc parameter, 0xA1FFFFFC to pass thedst parameter and
0xA1FFFFF0 to start the execution of the accelerator.
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size = (int * )0xA1FFFFF4;

* size = // bytes to copy
src = (int * )0xA1FFFFF8;

* src = // src address
dst = (int * )0xA1FFFFFC;

* dst = // dst address
start = (int * )0xA1FFFFF0;

* start = 0x1; // start the accelerator

For a direct-mapped cache, the number of cache lines in the cache and the
number of entries of the indexing table have to be the same (as each entry in the
indexing table points to a cache line). Besides, the indexing table needs to be
looked up for the cases when asrc address is being evicted from the cache or
when asrc or dst addresses are being overwritten. This can be accomplished
by using “brute force approach” of performing a sequential search in the in-
dexing table. However, such an approach would result in a delay dependent on
the size of the indexing table and, consequently, not realistic. Therefore, the
“Lookup” field is introduced in the indexing table (in Figure 4.6, Figure 4.7
and Figure 4.8).
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Figure 4.6: The indexing table implementation for a cache line granularity copy
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The “Lookup” field is actually constituted by a CAM core (introduced in
Section 2.4). As the performance of the CAM can deeply impact the perfor-
mance of the cache-based memory copy hardware accelerator, the implemen-
tation using BRAM is chosen as it provides the smallest number of cycles
latency on a write operation. The CAM implementation chosen has a single
clock latency on its read operation, and two clock cycles latency on its write
operation. As the CAM, containing the index part of thesrc address, is on
the critical path of the cache-based memory copy hardware accelerator, the
performance of a memory copy operation is bounded to the write time of this
memory, i.e., two clock cycles. Therefore, a lookup in the indexing table for
the mentioned cases behaves like the following:

1. On a standard read miss in the cache, a new cache line is loaded. Due to
possible mapping to the same cache line, this may evict asrc address
from the cache. In order to identify such a case, the index part of the
address requested by the processor (which corresponds to the new cache
line being loaded) is used to search the “Lookup” field of the indexing
table. If this address is present in the “Lookup” field, the CAM returns
the entry that has a match (which corresponds to the index part of the
dst address). This is then used to access the “Val Bit”, the “Tag DST”
and the “Index SRC” fields of the indexing table. The output of the “Val
Bit” field is used to determine if this is a valid entry. If it is, this means
that the cache line being loaded will evict asrc address from the cache
and that the storing of the copied data needs to be performed. The output
of the “Index SRC” field provides the corresponded entry of the cache
to be copied (the index part of thesrc address). The index part of the
dst address (given by the entry of the CAM) combined with the output
of the “Tag DST” field constitute the completedst address (there is no
need for the offset part of the address because a complete cache line is
being loading). This address plus the data read from the cache is written
to the main memory by the load/store unit and the entry of the indexing
table is invalidated (i.e., the “Val Bit” field is unset).

2. On a write to asrc address, the index part of the address provided by
the processor is used to search the “Lookup” field of the indexing table
to determine if thesrc address is present. If it is, the CAM returns the
entry that has a match (which corresponds to the index part of thedst

address). This is then used to access the “Val Bit”, the “Tag DST” and
the “Index SRC” fields of the indexing table. The output of the “Val
Bit” field is used to determine if this is a valid entry. If it is, this means
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that it is a write to asrc address and that the storing of the copied data
needs to be performed. The output of the “Index SRC” field provides
the corresponded entry of the cache to be copied (the index part of the
src address). The index part of thedst address (provided by the CAM)
combined with the output of the “Tag DST” field constitute the complete
dst address (there is no need for the offset part of the address because
a complete cache line is being written). This address plus the data read
from the cache is written to the main memory by the load/store unit and
the entry of the indexing table is invalidated (i.e., the “Val Bit” field is
unset).

3. On a write to adst address, the index part of the address provided by the
processor is used to access the indexing table, and determine if the “Val
Bit” field is set and if the “Tag DST” is the same as the tag provided by
the processor. If this situation happens, there is a write to a copied value
and, therefore, the storing of the copied data needs to be performed. The
index part of address provided by the processor is then used to directly
access the “Index SRC” field of the indexing table. The output of the
“Index SRC” field provides the corresponded entry of the cache to be
copied (the index part of thesrc address). The address provided by the
processor, which is thedst address, and the data read from the cache is
written to the main memory by the load/store unit and the entry of the
indexing table is invalidated (i.e., the “Val Bit” field is unset).

It is important to mention that case 1) is performed for every cache read
miss. Moreover, cases 2) and 3) are performed in parallel (as there is a need to
determine if the write is to asrc address, adst address or neither). As case 2)
first accesses the “Lookup” field and case 3) first accesses the “Val Bit” and the
“Tag DST” fields, cases 2) and 3) can be performed at the same time, in order
to determine which type of writes is being requested (i.e., thesrc address, the
dst address or neither) and not impose additional delay.

A comparison between the number of entries and the number of bits stored
for each entry (for the cache, the indexing tables able to support cache line
and word granularity copy and set-associative caches) is also presented. The
direct-mapped cache requires 10 bits per entry (for 1024 entries) on the cache
directory plus 32 bytes (256 bits) to store the data. For the indexing table
able to support cache line granularity copy, 20 bits are stored for each entry
(for the same 1024 entries). As the indexing table supporting word granularity
copy is accessed using the index plus the offset parts of the address (10 bits
for the index part plus 3 bits for the offset part), it accesses 8192 entries and
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stores 29 bits per entry. Finally, for the support of set-associative caches (in
particular for a 4-way associative cache), the indexing table is accessed using
12 bits (4096 entries), it requires a new entry per way, and stores 31 bits.

Comparing the number of bits needed for the cache with the indexing ta-
bles supporting cache line and word granularity copies, and 4-way associative
cache, there is an increase in the number of bits used in the indexing table.
For the indexing table supporting cache line granularity copy this increase is
only 7.5% and 12% for the 4-way associative cache. However, for the indexing
table supporting word granularity copy the increase in hardware resources is
bigger, in this particular case of 84%. On the other hand, by using the index-
ing table, the effective size of the cache is increased, as bothsrc anddst are
always accessible. These results confirm the initial expectations presented in
Section 3.4.

4.2 Simulation Platform

As introduced in Section 2.2.6, in order to provide a bigger addressing space
than the physical memory available, nowadays processors (and the PPC in-
cluded) benefit from the presence of the TLB. This hardware enables the virtual-
to-physical address translation needed to provide the user with a virtual mem-
ory.

The OS developed for the XUP and ML410 platforms (the MontaVista
Linux 2.4.22 [60]) requires the use of the TLB present on the PPC. However,
only the PLB bus is able to access the TLB. As the OCM bus does not have
access to it, there is no support of virtual-to-physical address translation on
this bus, as reported by [22]. Therefore, the available OS for the platforms
cannot be used as is. One can find other implementations of the Linux OS that
do not require access to the TLB, however using one of these would require
porting such implementation to the platform, which is a tedious operation.
Another option, would be to migrate the cache-based memory copy hardware
accelerator to the PLB, which would have impact on the performance of the
cache-based memory copy hardware accelerator, due to the handshaking pro-
tocol on this bus. Therefore, in order to perform a complete system analysis
(including the Linux OS) of the previously described accelerator, a simulator
is used. Moreover, as presented in the beginning of this chapter, the simulation
environment of the prototyping platforms provides the necessary raw informa-
tion (area and timing estimates) to, afterwards, be feed into the instruction-set
simulator. Therefore, in order to identify the simulator that can provide the
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necessary features to evaluate the cache-based memory copy hardware accel-
erator, a comparative study between the most used simulators is performed.

The IBM full-system simulator [8], internally referred to as “Mambo”, is
an execution-driven simulator, that facilitates the experimentation and evalua-
tion of a wide variety of system components for PPC 970. The “Mambo” is a
complete simulation infrastructure that enables systems and software develop-
ers to run a variety of data collection and analysis tools to gather multiple types
of system metrics at varying levels of granularity. The simulator’s functional
fidelity and runtime performance allows a full OS, such as Linux, to be run in-
teractively in simulation. In this manner, the simulator allows applications that
require inter-process or complex OS interactions to execute in a complete sys-
tem environment. In addition to this full OS mode, the simulator also provides
a “stand-alone” environment for self-contained applications, in which the sim-
ulator intercepts and marshals the application’s system calls to the underlying
host to optimize execution.

SimOS [76] is another complete machine simulation environment designed
for the efficient and accurate study of both uniprocessor and multiprocessor
computer systems. SimOS simulates computer hardware in enough detail to
boot and run commercial OS. SimOS provides models of the MIPS R4000 and
R10000 and Digital Alpha processor families. In addition to the processor,
it simulates caches, multiprocessor memory buses, disk drives, ethernet, con-
soles, and other devices commonly found on these machines. By simulating
the hardware typically found on commercial computer platforms, the simulator
is able to easily port existing OS to the SimOS environment.

The SimpleScalar [80] tools suite is a system software infrastructure used
to build applications for program performance analysis, detailed micro-architec-
tural modelling, and hardware-software co-verification. Using the SimpleScalar
tools suite, users can build modelling applications that simulate real programs
running on a range of modern processors and systems. The tools suite includes
sample simulators ranging from a fast functional simulator to a detailed, dy-
namically scheduled processor model that supports non-blocking caches, spec-
ulative execution, and state-of-the-art branch prediction. SimpleScalar sim-
ulators can emulate the Alpha, PISA, ARM, and x86 instruction-sets. The
tools suite includes a machine definition infrastructure that permits most ar-
chitectural details to be separated from simulator implementations. Complex
instruction-set emulation (e.g., x86) can be implemented with or without mi-
crocode, making the SimpleScalar tools particularly useful for modelling CISC
instruction-sets.
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Simics [48] is a system level instruction-set simulator. It allows for device
modelling and to execute unchanged OS. Moreover, it provides caches and
memory hierarchy models and a cycle accurate measurement of the simulated
system (more details of this simulator were introduced in Section 2.5).

Table 4.4 compares the mentioned simulators in the features important for
this dissertation, and clear identifies Simics as having all the requirements for
the intended work.

IBM Mambo SimOS SimpleScalar Simics

Allows to develop YES (although is YES (not

new hardware? not open-source) YES easily) YES

Simulates memo-

ry hierarchy? YES YES YES YES

Allows cycle accu-

rate measurement? YES YES YES YES

Allows to boot OS? YES YES YES (not easily) YES

Provide up-to

-date support? NO NO NO YES

Last Update 2006 1998 2004 2008

Table 4.4: Simulators comparison

Therefore, the Simics full-system simulator is used to model the cache-
based memory copy hardware accelerator. Moreover, the knowledge gained
when implementing the cache-based memory copy hardware accelerator in the
prototyping platforms (mainly in terms of latency) is used to correctly model
the accelerator in the Simics simulator. Simics models the world as a series
of disjoint events, where each event occurs at some specific time. Events can
query and modify the simulated state, and post new events. However, Simics
simulates a processor at the instruction-set level, the lowest level that is readily
visible to software. This lets it run unmodified binary code for the complete
software stack of a system.

A Simics device model models the real hardware and is transparent to the
software, so that the software does not notice the difference between the model
and the real hardware. The model provides the functional behavior of the
hardware as seen by the software. Since Simics usually controls both parties
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in any transactions at the hardware level, hardware-hardware interfaces can
usually be heavily simplified. For example, transactions on a memory bus or
hardware interconnect are usually modelled as atomic, rather than composed
of individual steps where buses are arbitrated, addresses written, data read, etc.
Another example is the standard Simics cache model: the caches hold no data,
they just keep track of what items are in the cache, and inform the processor
model of the delay associated with each memory access. The actual data is
acquired from the simulator memory, regardless of what cache level the item
was found in.

g-cache is the standard Simics cache model. It handles one transaction
at a time in a flat way: all needed operations (write-back, load, etc.) are per-
formed in order and at once. The cache returns the sum of the stall times
reported for each operation. As the goal is to study the timing behavior of
the transactions (as they go through the indexing table and the cache), then
the transactions should have differentiated times depending where they finish
(on which level the transaction finds the data), which implies the possibility
of stalling the processor. To be able to stall the processor, any model should
be connected to the timing-model interface. This type of simulation modifies
the execution, since for example interrupts will be influenced by the timing
provided by the model.

In order to perform a performance analysis of the cache-based memory
copy hardware accelerator, besides the cache model there is a need to also
model the indexing table. Simics provides a sample device that can easily be
modified to the purpose of this dissertation. The model of the cache-based
memory copy hardware accelerator also has to be able to stall the processor,
therefore, the timing-model interface also has to be used. Moreover, because
the indexing table is directly connected with a cache, another interface needed
is the interface to the cache model. Therefore, all memory transactions go
through both the indexing table and the cache model.

As presented in Section 3.4, to allow the communication of the necessary
src anddst addresses and thesize to the accelerator, two different ways
were studied: a memory-mapped device-driver and an instruction-set architec-
ture extension. In the first case, the parameters are communicated to the cache-
based memory copy hardware accelerator by accessing the OS/dev/mem file.
This special file, accessed through a memory-mapped device-driver [86], al-
lows read and write accesses to the virtual memory address space for the cur-
rent process, as it is seen by the OS. Before issuing a read or write operation,
the /dev/mem file is looked up to determine the relevant address in virtual
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memory, which impose some delay in passing the necessary parameters.

For the instruction-set architecture extension, a single instruction is imple-
mented, and used to substitute the software function calls. Simics provides
a sample decoder module that can easily utilized to extend the instruction-set
architecture of the processor simulated. This module identifies an opcode (that
has to be an un-used opcode of the processor instruction-set architecture) and
utilizes the registers used in the instruction to pass the parameters. Moreover,
this instruction, besides communicating to the accelerator the necessary para-
meters, performs the necessary checks of the boundary conditions (is the size
of the copy smaller or bigger than the accelerator can support?; aresrc and
dst addresses cache line aligned?). All memory copies function calls were
substituted by the either of the two ways to access the accelerator in all the
benchmarks used to verify the cache-based memory copy hardware accelera-
tor.

The cache-based memory copy hardware accelerator is modelled together
with a standard Pentium 4 processor at 2 GHz running the standard Linux 2.4
kernel. The L1 cache design has a separate instruction and data cache. Both
caches are write-through, write-allocate direct-mapped cache with 512 cache
lines each one with 64 bytes. The total size of the caches is then 32 kB (corre-
sponding to the maximum size of a copy) and the replacement policy is LRU.
The L2 cache is a unified instruction and data cache, 8-way associative write-
back cache with 128 bytes cache line and 2 MB size. The cache hit penalty
(both read and write for both instruction and data caches) is two clock cycles.

As mentioned in Section 4.1, the use of a CAM to search the indexing
table bounds the performance of the accelerator. As the CAM takes two clock
cycles to be written to, the time to fill the indexing table, as well as the time
needed to handle the write to thesrc and thedst addresses and to handle a
cache miss that may evict asrc address from the cache, are bounded by the
CAM time. Moreover, for all these cases, the total delay should also include
the time to access the L2 cache (as all cases requires the storing of the copied
data in the L2 cache). For a read hit on the indexing table, as the access is
performed directly (there is no need to wait for the CAM match) the delay is
just one clock cycle plus the read hit time of the L1 data cache. On a read miss
on the indexing table, there is no penalty as the cache and the indexing table
are accessed in parallel.

As presented in Section 2.2.6, in order to increase the size of the ad-
dress space of the applications compared with the physical space available,
the processor utilizes the virtual-to-physical address translation mechanism.
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CPU

Type Pentium 4

Frequency 2GHz

CPI 1

Operating System Linux 2.4

Caches

L1 I/D Caches 32 kB, 64B cache line,

direct-mapped, write-

-through, write-allocate

L1 Hit Time 2 clk

L2 Unified Cache 2 MB, 128B cache line,

8-way, write-back

L2 Hit Time 15 clk

Cache-based Memory Copy Hardware Accelerator

Fill Indexing Table Time 2 clk per cache line

copied

Indexing Table Read Hit Time 1 clk + L1 cache

read hit time

Time to handle cases 1, 2 and 3 of Section 4.12 clk

Write-back the evicted data L2 access time

Main Memory

Type SDRAM DDR2 400 MHz

Avg. Access time 240 clk

Table 4.5: Simulation parameters

The cache-based memory copy hardware accelerator fills the indexing table,
stating with the first destination address and sequentially fills the consecutive
ones until the size of the copy is reached. The destination addresses only are
guaranteed to be consecutive if they are virtual addresses (consecutive virtual
addresses can map to several non consecutive block of physical addresses).
Therefore, the indexing table needs to use virtual addressing. Moreover, in or-
der to have consistency between the indexing table and the cache, this imposes
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that the cache has also to be at least virtually indexed. The use of virtual tags
is not required, however it might reduce the delay (if the cache lookup takes
less time then the TLB lookup).

Finally, the main memory is modelled with an average latency of 240 clock
cycles which corresponds to an average access time of 80 nsec of a DDR2
SDRAM 400MHz. The simulation parameters are described in Table 4.5.

4.3 Summary

This chapter introduced the platforms used to implement the cache-based mem-
ory copy hardware accelerator introduced in the previous chapter. The details
of each platform and of the implementation of the cache-based memory copy
hardware accelerator were presented. The implementation constrains that drive
the performance of the cache-based memory copy hardware accelerator were
also introduced. In particular, the need of a new field in the indexing table,
the “Lookup” field, is introduced. Moreover, the impact of this field in the
complete design is also discussed. The resource utilization on the prototyping
platforms were presented, as well as a study of the number of bits stored in
the indexing table and in the cache (to determine the increase in hardware re-
sources due to the utilization of the indexing table). Finally, the modelling of
the cache-based memory copy hardware accelerator in the simulator was also
presented.

The next chapter presents the results of the benchmarks utilized to demon-
strate the benefits of the proposal and its performance gains. Synthetic bench-
marks were executed in the prototyping platform, while the performance study
was performed in the simulator.
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Results of the Uniprocessor Platform

T
his chapter presents the results of the benchmarks utilized to demon-
strate the benefits of the cache-based memory copy hardware acceler-
ator and its performance gains. Synthetic benchmarks are executed in

the previously introduced prototyping platforms, while the performance study,
utilizing both the STREAM [52] and the LMbench [54] benchmarks and the
receiver side TCP/IP benchmark is performed in the previously introduced
simulator. The results present the raw performance of the cache-based mem-
ory copy hardware accelerator when prototyped in the Xilinx platforms and
provided the necessary input to correctly model the accelerator in the simu-
lator. The performance study in the simulator demonstrated speedups up to
4.61 times.

Section 5.1 presents the raw performance of the indexing table able to sup-
port cache line granularity copy, and Section 5.2 introduces the results with
the load/store unit. Section 5.3 presents the raw performance for the indexing
table able to support word granularity copy. Section 5.4 presents the perfor-
mance study performed with the simulator and finally, Section 5.5 summarizes
the results presented in this chapter.

5.1 Indexing Table Supporting Cache Line Granular-
ity Copy

This section first presents and compares the waveforms (generated by the Mod-
elSim XE-III [58] hardware simulator) of the indexing table supporting cache
line granularity copy and of the optimized hand-coded in assembly software
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implementation of a memory copy operation. Subsequently, this section presents
the results for the best and worst cases in software and compares them with the
worst case utilizing the accelerator, for an increasing number of cache lines,
for both clock cycles measurement and throughput. The implementation of
the indexing table supporting cache line granularity copy is performed on a
Virtex-II Pro, as introduced in Section 4.1.1.

In order to validate the design and determine the raw performance of the
cache-based memory copy hardware accelerator, the execution of a single
memory copy operation of 4 cache lines performed with the accelerator is de-
picted in Figure 5.1 (the setup time is not shown for clarity). Moreover, in
order to compare it with the software approach, the waveform of a software
memory copy operation of 32 bytes (corresponding to one cache line; in in-
terest of clarity the waveform for 4 cache lines is not included) is depicted in
Figure 5.2. It is worth mentioning that the software code is hand-written in
assembly for PPC and that the source and the destination addresses are aligned
for both the execution with the accelerator and without.

For the software implementation of the memory copy operation, there is a
period to calculate if the addresses overlap and if there are bytes or words to
perform the memory copy operation on. This time is 74 clock cycles and the
total time to perform a memory copy of one cache line in software is 143 clock
cycles. For a memory copy of 4 cache lines (or 128 bytes) the software imple-
mentation takes 374 clock cycles (not depicted in interest of clarity). Perform-
ing the memory copy operation using the accelerator, there is also a setup time
of transferring thesrc anddst addresses and thesize of 28 clock cycles.
On a copy of one cache line the accelerator takes 2 clock cycles, consequently
the total time to perform a memory copy of one cache line is 30 clock cycles.
Therefore, on a copy of one cache line, the cache-based memory copy hard-
ware accelerator performs 79% better than the software implementation. For a
copy of 4 cache lines, the accelerator takes 36 clock cycles, which corresponds
to a reduction of execution time of 90% compared with the software. Table 5.1
presents the number of clock cycles and the percentage of improvement that
a copy of 1, 5 and 1024 cache lines (which corresponds to the maximum the
accelerator allows) take executing in software and with the accelerator. Gener-
alizing, a memory copy performed with the accelerator takes 28 clock cycles
of setup time plus 2 clock cycles per cache line.

Figure 5.3 depicts the performance (in terms of throughput and clock cy-
cles) of a memory copy executed in software and with the accelerator, for
different sizes. As expected, the benefit of the cache-based memory copy hard-
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Copy of 1 Copy of 5 Copy of 1024

Cache Line Cache Lines Cache Lines

SW memory copy 143 clk 419 clk 70730 clk

Acc. memory copy 30 clk (79%) 38 clk (91%) 2076 clk (97%)

Table 5.1: Performance of memory copies for cache lines
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Figure 5.3: Memory copy throughput for cache lines

ware accelerator increases with the size of the copy.

A comparison was also performed between the proposed cache-based me-
mory copy hardware accelerator with AltiVec [2] solution. In [2], the authors
present values for a copy of 160 bytes around 586 Mbps (the picture presented
does not allow to determine exact values, and no values are referred in the
text). As the PPC runs at 750 MHz in [2], this corresponds to around 210 clock
cycles. The PPC used with the cache-based memory copy hardware accelerator
is running at 100 MHz and a memory copy can be performed in 38 clock
cycles, for the same 160 bytes (5 cache lines). This is approximately 80%
better than [2], in terms of clock cycles, although the throughput achieved is
only 421 Mbps (due to the difference in the PPC clock).
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5.2 Load/Store Unit

To validate the design, first it is presented the waveforms of executing a mem-
ory copy of 4 cache lines with the optimized hand-coded in assembly software
(in Figure 5.4) and, next, the same 4 cache lines are copied using the acceler-
ator (in Figure 5.5), both with subsequent reads and writes to the original and
copied data. This implementation of the indexing table is able to support cache
line granularity copy and is implemented in the Virtex-4 FPGA.

Afterwards, in order to show the advantages of the cache-based memory
copy hardware accelerator, a synthetic benchmark based on a real application
is created. It is based on the data collected by [23] (and presented in Appen-
dix A), which describes the procedure to reassemble a frame of the Bluetooth
protocol in the Linux OS. Bluetooth reassembles a frame in order to create
a frame the same size as a Ethernet frame (1500 bytes), that is afterwards
processed through TCP/IP. The Bluetooth performs this by executing the mem-
ory copy operation 4 times with size 339 bytes plus one of 151 bytes. As these
numbers are not cache line aligned, 4 memory copies with a size of 352 bytes
plus one of 96 bytes (corresponding of4x11 cache lines+ 1x3 cache lines)
were performed. The Bluetooth protocol uses consecutivesrc addresses to re-
assemble one frame, which means that the data has to be loaded from the main
memory for every memory copy (in the accelerator case). For thedst ad-
dresses, the Bluetooth protocol also uses consecutive addresses, which means
there is no need to write-back to the main memory (in the accelerator case).
For the accelerator, the complete synthetic benchmark takes 906 clock cycles
while the software version takes 6263 clock cycles. This implies that, for
this synthetic benchmark, the accelerator achieves a speedup of approximately
7 times compared with the software version.

Subsequently, the results for the best and worst cases in software are pre-
sented and compared with the worst case of utilizing the accelerator, for an
increasing number of cache lines. Figure 5.6 depicts the worst case scenario
for the cache-based memory copy hardware accelerator, which is no data re-
quired for the memory copy is in cache (all the data has to be loaded from
the main memory) and the memory copy is overwriting previously performed
memory copy (every cache line has to be written-back to the main memory).
The best case scenario for the software version is having all the required data
in cache, while the worst case is not having it.

As expected, the benefit of the accelerator increases with the increase of
the size of a memory copy. For a memory copy of only one cache line, there
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5.3. INDEXING TABLE SUPPORTINGWORD GRANULARITY COPY
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Figure 5.6: Memory copy throughput with the load/store unit

is no clear benefit of the worst case of utilizing the accelerator compared with
either the best or worst case software solutions. However, for bigger sizes the
accelerator is capable of reducing the memory copy latencies by 82% (for a
copy of 8192 bytes or 256 cache lines) compared with the best case for the
software implementation.

5.3 Indexing Table Supporting Word Granularity Copy

This section presents the synthetic benchmarks used to demonstrate the ben-
efits of using the indexing table able to support word granularity copy im-
plemented in a Virtex-II Pro FPGA. For the cache line granularity copy, the
accelerator needs 28 clock cycles to communicate with the parameters and
2 clock cycles to actually fill the indexing table (this time is bounded by the
time it takes for the CAM to be written, referred in Section 4.1). For the word
granularity copy the same 2 clock cycles are needed, however as an entry in
the indexing table now refers to a word and not to a cache line, this is the time
needed to fill a word in the indexing table.

Table 5.2 presents the number of clock cycles and percentage of improve-
ment that a copy of 1, 8, 40 and 8192 words take when executed in software
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Copy of Copy of Copy of Copy of

1 Word 8 Words 40 Words 8192 Words

SW memory copy 89 clk 143 clk 419 clk 70730 clk

Acc. memory copy 30 clk 44 clk 108 clk 16412 clk

(66%) (69%) (74%) (77%)

Table 5.2: Performance of memory copies for words

and with the accelerator. Generalizing, a memory copy performed with the
accelerator takes 28 clock cycles of setup time plus 2 clock cycles per word.
Figure 5.7 depicts the performance utilizing the accelerator compared with the
software implementation of memory copy for different number of words (rep-
resented in bytes instead of words). As expected, the benefit of the cache-based
memory copy hardware accelerator increases with the size of the copy.
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Figure 5.7: Memory copy throughput for words

Again, a comparison was performed between the cache-based memory
copy hardware accelerator with the AltiVec [2] solution. A memory copy can
be performed in 108 clock cycles using the cache-based memory copy hard-
ware accelerator, while the AltiVec solution takes 210 clock cycles, for the
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same 160 bytes. This is approximately 48% better than [2], in terms of clock
cycles, although the throughput achieved is only 148 Mbps (due to the differ-
ence in the PPC clock frequencies).

5.4 Performance Study

In order to determine the performance of the cache-based memory copy hard-
ware accelerator, the simulator described in Section 4.2 is utilized. The input
parameters of the simulator are based on the information gathered in the pre-
vious section, mainly latency information. First, it is presented the results
of using a memory-mapped device-driver to access the cache-based memory
copy hardware accelerator, and secondly, the results using the instruction-set
extension are discussed.

5.4.1 Memory-Mapped Device-Driver

In order to determine the raw throughput that the accelerator can provide, the
STREAM [52] benchmark and the LMbench [54] were used, as both bench-
marks test the memory copy performance utilizing different algorithms. STREAM
benchmark compares several copy kernels:copy 32, copy 64, copy 32x2 ,
copy 32x4 and glibc memcpy . The first four kernels perform copies on
loops of either integers (32 bits) or doubles (64 bits), using two or four inter-
mediary variables. Theglibc memcpy uses the standardglibc algorithm
implemented in the Linux OS, which is optimized in assembly. A call to the
accelerator is also included in this benchmark in order to compare it with the
mentioned kernels.

The LMbench consists on several applications although only one is used to
measure memory bandwidth (thebw mem), and it provides the average through-
put and execution time at which a processor can move data. The benchmark
is executed in software (which utilizes theglibc bcopy function) and after-
wards it is executed calling the accelerator. The execution times and through-
put are gathered for both cases. This benchmark is used to measure the im-
pact of changing the memory latency, the cache line size and the processor
frequency on the performance of the accelerator and on theglibc bcopy

function.

The STREAM benchmark provides the average throughput measured over
1000000 executions, the process is repeated 10 times and the best time is dis-
played. It provides the throughput for copies of arrays of 800 bytes (to test the
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L1 cache throughput). The STREAM benchmark does not use the copied data
(the copied data is not written-back to the main memory) and executes several
copies in order to average the results. Therefore, the accelerator has, for each
repetition, to write-back the previously performed copy, fetch the necessary
data from the main memory into the cache and fill the indexing table, which is
the worst-case scenario for the accelerator.

The LMbench, on the other hand, estimates the necessary number of iter-
ations that provide an accuracy of 95% of the execution time [54]. Looking at
the number of iterations, the number is higher on LMbench than on STREAM,
which leads to the conclusion that LMbench is more accurate then STREAM.
This is the reason why STREAM was chosen to compare the accelerator to
other copy algorithms and the LMbench to further study the impact of chang-
ing the memory latency, the cache line size, and the processor frequency.

LMBench/STREAM Comparison - Latency
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Figure 5.8: Average latency of LMbench and STREAM benchmarks

The first analysis, depicted in Figures 5.8 and 5.9 present a comparison of
the average latency and throughput of both benchmarks utilizing the accelera-
tor for different copy sizes. The steps in Figure 5.8 are due to the report of the
measurement. As the benchmarks are executed on top of an OS, their report
depends on the state of the system. Therefore, the reported values can change
slightly for each execution. In order to minimize this unwanted influence,
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LMBench/STREAM Comparison - Throughput
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Figure 5.9: Average throughput of LMbench and STREAM benchmarks

the benchmarks are executed 10 times and the average values are presented.
Moreover, in absolute times, these steps correspond to a difference in latency
of 45 nsec for LMbench and of 100 nsec for STREAM therefore negligible.
As explained earlier, LMbench is more accurate than STREAM thus it is not
surprising the average throughput to be slightly higher than the one presented
by STREAM.

The subsequent analysis is performed by comparing the accelerator with
other copy algorithms, such as the STREAM kernels. Figure 5.10 depicts
the average execution time and Figure 5.11 depicts the average throughput
comparisons. It is clear from the figures that for copies smaller than 512 bytes
(4 cache-lines) the accelerator presents a penalty compared with theglibc

memcpy algorithm. However, as soon as the sizes of the copies increase the
benefit of using the accelerator becomes evident, and can reach, for copies
of 32 kB, an average execution time speedup of approximately 121 times. In
Section 5.2, it was presented 82% reduction of the execution time (comparing
the accelerator execution time and theglibc memcpy execution time) for
copies of 256 cache lines, which corresponded, on the prototyping platform,
to a copy of 8 kB. For the same size of a copy, it is now possible to reach
a reduction of the execution time of 94.5%. The reason for this increase in
performance is due to the size of a cache line. The implementation performed
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STREAM Benchmark - Latency
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Figure 5.10: Average execution time for STREAM benchmark

STREAM Benchmark - Throughput
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Figure 5.11: Average throughput for STREAM benchmark

in the prototyping platform has a cache line of 32 bytes, while in with the
simulator it is 64 bytes. In summary, the accelerator is able to roughly double
the average throughput for every double copy size and it provides roughly a
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constant latency independent of the copy size. The throughput provided by
the glibc memcpy decreases with the size of the copy (increasing the copy
size from 64 to 128 bytes will increase the average throughput by 16% while
increasing the copy size from 16 kB to 32 kB will only increase the throughput
by 0.08%). On latency, theglibc memcpy increases the latency by roughly
45% for every doubling the copy size.

In order to understand the impact of changing some parameters of the
system, the LMbench kernel was used for copy sizes up to 32 kB. Table 5.3
presents the average throughput and execution time of the baseline scenario,
which corresponds to a memory latency of 240 clock cycles, a cache line size
of 64 bytes and a processor frequency of 2 GHz.

Baseline Freq = Lat = Cache line

Scenario 6 GHz 180 clk = 128 B

SW Acc. SW Acc. SW Acc. SW Acc.

Throughput 0.025 30.28 0.025 30.23 0.033 40.36 0.025 30.28

(Gbps)

Execution 1.316 0.011 1.317 0.011 0.983 0.008 1.316 0.011

Time (msec)

Table 5.3: Impact of changing several parameters of the system

The processor frequency was increased to 6 GHz, an increase of 66%
to simulate the impact of future processors (with higher frequencies) on the
copies algorithms. In order to have correct simulations, it was also need to in-
crease by the same amount the modelled latencies of the accelerator (the cache,
the indexing table and the main memory) because the model is based on the
number of cycles of the processor. Therefore, the penalty of filling the index-
ing table is now of 4 clock cycles instead of the previously modelled 2 clock
cycles, and the penalty of a write to either thesrc or dst addresses is also
4 clock cycles. For the cache a hit penalty (both read and write for both in-
struction and data caches) is now 4 clock cycles and the main memory latency
is now 480 clock cycles. Table 5.3 presents the correspondent results. The
increase in frequency does not have an impact for either theglibc bcopy or
the accelerator, because the copy algorithms are not computing-intensive but
memory-intensive.

In order to model the impact of future generations of memories, the impact
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of decreasing the memory latency to 180 clock cycles (60 ns, a decrease of
25%), was simulated. Table 5.3 also presents the correspondent results. As
expected there is an average reduction of 25% on both the average throughput
and execution time.

And finally, the cache line size was increase to 128 bytes, an increase of
50%. Table 5.3 presents the correspondent results. It would be expected to
have a increase in the accelerator average throughput and execution time, be-
cause it is actually using a bigger block to perform the copy. However, because
the penalty of fetching data from the main memory is dominant, the benefit of
increasing the cache line size is not visible.

It is important to mention the impact that accessing the accelerator has on
these results. When the memory latency is decreased there is a decrease on
the accelerator’s average throughput and execution time. However, when the
cache line size is increased, there is no change on the average throughput or
execution time, when it should. The reason for this behavior is due to the way
the accelerator is accessed. As explained before, the accelerator is accessed
through a memory-mapped device-driver, so in order to access it there is the
penalty of performing system calls and memory copies to communicate with
the OS. Therefore, reducing the memory latency will reduce the time to per-
form the necessary memory copies and consequently reduce the access time of
the accelerator (as depicted in Table 5.3). However, increasing the cache line
size has no visible increase on the average throughput or execution time. The
conclusion is that the accelerator is bounded by the access time and not by the
copy size. This justifies the implementation of an instruction-set architecture
extension.

5.4.2 Instruction-Set Architecture Extension

This section presents the results of the cache-based memory copy hardware
accelerator, now using an instruction-set architecture extension. The same
STREAM benchmark is used to study the performance.

Table 5.4 depicts the results reported by the benchmark itself and Table 5.5
depicts the statistics reported by the accelerator. The speedup on the execution
time of the STREAM benchmark, when utilizing the accelerator compared
with utilizing the glibc memcpy algorithm is 1.2 times while the reduction
of the average execution time is 45%. As expected the number of writes to
either thesrc or thedst addresses are small due to the write-back of the copy
previously performed before each new iteration.
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STREAM Memory Benchmark

Total memory required = 16 MB.

Number of runs = 10

1st level cache Working on Arrays of 800 B.

Function Rate (Mbps) Avg. Time (ns)

copy 32 212.31 14.25

copy 64 294.38 13.43

copy 32x2 140.58 19.33

copy 32x4 150.15 30.89

glibc memcpy 600.37 2.66

Accelerator 722.34 2.21

Table 5.4: STREAM benchmark results

STREAM Benchmark

Number of Copies 100000

Number of Read Hits in the Indexing Table18

Number of Writes to thesrc Address 180

Number of Writes to thedst Address 44

Table 5.5: Memory copy statistics for the STREAM Benchmark
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As the STREAM benchmark is a synthetic benchmark, the cache-based
memory copy hardware accelerator is also evaluated with a more realistic
workload. The receiver side of the TCP/IP stack is bounded by memory copies
(as mentioned in Section 1). Therefore, a user-space implementation of this
part of the stack is used to evaluate the accelerator. Several packets are cap-
tured by sending a file of 10 MB over a TCP connection. The file is divided into
8418 packets of which 92.8% have 1260 bytes (the typical packet size ranges
between 800 bytes and 1500 bytes). The packets captured are fed into the re-
ceiver side of the TCP/IP stack in user-space, measured the average number of
cycles per packet and repeated the process 10 times.

The execution time of the receiver side of the TCP/IP stack using the
glibc memcpy algorithm took on average 54972 cycles/packet while with
the utilization of the accelerator the execution time was reduced to 11930 cy-
cles/packet. It is worth mentioning that this numbers are given by the applica-
tion itself and not measured in the simulator (the application returns an approx-
imation due to interference of the OS). In order to have more accurate results,
the execution time and number of instructions executed are also measured with
the simulator. Table 5.6 presents the statistics gathered by the application, the
simulator and by the cache-based memory copy hardware accelerator itself.

From Table 5.6, a speedup of 4.61 times can be calculated (corresponding
to a 78% reduction in execution time), when the accelerator is used. Besides,
there is also a reduction of 44% of the number of instructions executed (be-
cause no loads and stores are used) and a higher cache hit rate compared with
the software version (because thesrc data is fetch from the main memory to
the cache while executing the memory copy).

The receiver side of the TCP/IP stack does not include the reading of the
copied data by the application that is receiving this data (as it can be noticed
by the zero read hits in the indexing table in Table 5.6). In order to correctly
evaluate the cache-based memory copy hardware accelerator, a read of every
packet received is included in order to mimic the normal behavior of an appli-
cation. Table 5.6 also presents the statistics for this case. The simulator reports
a speedup of 2.96 times (corresponding to a 66% reduction in execution time).
The reason for this decrease is the increase in execution time of the receiver
side of the TCP/IP stack, as seen by the number of instructions executed (in
this case, the accelerator only reduces by 26% the number of instructions com-
pared with the software case). Therefore, the clear benefits of the cache-based
memory copy hardware accelerator are diluted over the total execution time,
however still achieves a higher cache hit rate than the software.
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Standard TCP/IP stack

Application Stats
SW Execution Time 54972 cycles/packet

Acc. Execution Time 11930 cycles/packet

Simulator Stats

SW # Instructions 25256762

SW Execution Time 232 msec

SW L1$ Read Hit 92.12%

SW L1$ Write Hit 89.53%

Acc. # Instructions 13968064

Acc. Execution Time 51 msec

Acc. L1$ Read Hit 98.05%

Acc. L1$ Write Hit 96.02%

Accelerator Stats

# Copies 8414

# Read Hits Index. 0

# Writes SRC Addr. 262

# Writes DST Add. 481685

TCP/IP stack with reads

Application Stats
SW Execution Time 98693 cycles/packet

Acc. Execution Time 57097 cycles/packet

Simulator Stats

SW # Instructions 534685789

SW Execution Time 268 msec

SW L1$ Read Hit 92.77%

SW L1$ Write Hit 90.24%

Acc. # Instructions 180120983

Acc. Execution Time 90 msec

Acc. L1$ Read Hit 97.82%

Acc. L1$ Write Hit 96.18%

Accelerator Stats

# Copies 8414

# Read Hits Index. 4299

# Writes SRC Addr. 22686

# Writes DST Addr. 1194569

Table 5.6: Memory copy statistics for the TCP/IP stack
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Synthetic benchmark of 32 copies

SW Execution Time 457291 cycles

Acc. Execution Time 13905 cycles

# Copies 32

# Read Hits Index. 0

# Writes SRC Addr. 31

# Writes DST Addr. 0

Synthetic benchmark of 32 copies with reads

SW Execution Time 1162650 cycles

Acc. Execution Time 897626 cycles

# Copies 32

# Read Hits Index. 479

# Writes SRC Addr. 0

# Writes DST Addr. 7943

Table 5.7: Memory copy statistics for the synthetic benchmark

In order to evaluate the impact of changing the number of packets processed
by receiver side of the TCP/IP stack, the experiment is repeated with a smaller
file. The execution time of the receiver side of the TCP/IP stack using the
accelerator compared with utilizing theglibc memcpy algorithm (measured
by the simulator) is 5.68 times speedup, where the accelerator kept the same
average cycles per packet (the software time increased). In the case that a read
is included in each packet, the speedup is 3.48 times, for reasons explained in
the paragraph before.

To evaluate the benefits of the accelerator in the case that several copies
are performed but the data is not read immediately after, a synthetic benchmark
that performs 32 memory copies to consecutive addresses is created. The num-
ber of copies performed is the maximum allowed by the cache-based memory
copy hardware accelerator for the simulated setup. The measurement evaluates
the performance of the accelerator without and with reads of the data after all
32 copies have been performed. Table 5.7 depicts the results.

If no reads are performed, meaning the execution time of the application
is much smaller, the benefit of the cache-based memory copy hardware accel-
erator is bigger, as expected. The speedup for the case where no reads are

108



5.5. SUMMARY

performed is 32.8 times and where reads are performed drops to 1.29 times as
the execution time increased by 60%.

5.5 Summary

This chapter presented the results of the benchmarks used to demonstrate the
benefits of the cache-based memory copy hardware accelerator on the pro-
totyping platforms. The indexing table is able to perform a copy in 28 clock
cycles plus 2 clock cycles per cache line or word (depending on the granularity
of the indexing table utilized). Moreover, accessing the cache-based memory
copy hardware accelerator through a memory-mapped device-driver has im-
pact on the performance of the system, as demonstrated by the performance
study on the simulator. When the access is performed through an instruction-
set architecture extension, a speedup ranging from 2.96 to 4.61 times for the
receiver side TCP/IP benchmark is achieved, when utilizing the cache-based
memory copy hardware accelerator compared with the software implementa-
tion of the benchmark. Moreover, there is also a reduction on the number of
instructions executed ranging from 26% to 44%, due to removing the loads
and stores needed to execute the memory copy operation in software.

The next chapter extends the cache-based memory copy hardware acceler-
ator to support multiprocessor platforms.
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Chapter 6

Multiprocessor Platform

T
he previous chapters introduced the cache-based memory copy hard-
ware accelerator (with the indexing table able to support cache line and
word granularity copy and its load/store unit), the platforms used to

demonstrate its benefits and the performance gains. This chapter introduces the
applicability of the cache-based memory copy hardware accelerator to a multi-
core processor (utilizing the indexing table implementation for set-associative
caches). The utilization of the accelerator can provide up to 50% reduction
on the average number of cycles executed per instruction for one of the cores
in the system (which takes into account the presence of the other cores of the
system) for the best case.

This chapter is organized as follows. In Section 6.1, the typical implemen-
tation of a message passing communication model for a multi-core proces-
sor is presented, and it presents the applicability of the cache-based memory
copy hardware accelerator to the message passing communication model. Sec-
tion 6.2 introduces the analytical analysis used to demonstrate the accelerator
feasibility and Section 6.3 presents the results. Finally, Section 6.4 summarizes
this chapter.

6.1 Observation

As discussed in Chapter 1, multi-core processors have become a commodity
and, therefore, they have been deployed in loosely-coupled systems, which
implement a message passing communication model. This communication
model is based on two main operations, namelysend and receive (or its
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variations, i.e., various forms of blocking and non-blocking operations). Only
the structures (header queues and payload buffers) involved in the message
passing send/receive are allocated in a shared address space during the initial-
ization process. The header queues hold information about the messages (e.g.,
type, size, tag, etc.), and also the payload for short messages. The payload
buffers contain the payload for large data messages. There are three data ex-
change mechanisms: eager, rendezvous and get. Which mechanism is used
in a particular instance is determined by the implementation, depends on the
size of the memory data movement and its performance depends on the under-
lying platform. The referred mechanisms mainly rely on copying the data to
and from the header queues and the payload buffers and they use thememcpy

function to accomplish it.

A typical implementation of the mentioned mechanisms to send and re-
ceive data over a message passing communication model, is depicted in Fig-
ure 6.1. The sending process copies the message along with other information
required for message matching, to the shared memory area (Shared Buffer in
Figure 6.1). The receiver process can then match the tags of the posted re-
ceives and, accordingly, copy the correct message to its own buffer (Receive
Buffer in Figure 6.1). Although this approach involves minimal setup over-
head, it requires the use of at least two copy operations that will keep the core
performing the memory copy busy for the duration of the copy.
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3 - Write the Send Buffer into the Shared Buffer in cache A;


4-a - Update the content of the Shared Buffer in the main memory;


4-b - Bring the Shared Buffer into the cache B, if it is not there;


5 - Bring the Receive Buffer into the cache B, if it is not there;


6 - Write the Receive Buffer into the Shared Buffer in cache B;

7 - Update the content of the Shared Buffer in the main memory.


Figure 6.1: A typical message passing protocol
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The cache-based memory copy hardware accelerator can be utilized to al-
leviate the bottleneck imposed by the memory data movements, mainly due to
the memory copies involved in the send/receive message passing communica-
tion model. It takes advantage of having a data L1 cache tightly-coupled to
each core, a shared L2 cache for all cores, and a bus-based interconnect net-
work, that provides the necessary functionality for the cache coherence proto-
col. Therefore, the indexing table implementation presented in Section 3.3.4 to
support set-associative caches and the MESI protocol is used and is connected
to a L2 cache.

Figure 6.2 depicts a multi-core processor with 3 cores with a message
passing communication model. The cache of each core can have cache lines
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Figure 6.2: Multi-core processor with 3 cores

belonging to either the Send or Receive Buffers involved in thesend and
receive operations of the message passing communication model. When
a send operation is issued by one core, all the cores in the system need to
write-back any cache line in its L1 cache that belongs to the Send or the Re-
ceiver Buffer. This can be done by changing the state of the cache line (part of
the cache coherence protocol) in order to trigger a write-back of the cache line
to the L2 cache. On the execution of thesend operation, the L2 cache loads
the necessary data, if it is not there yet, and fills the indexing table. When the
receive operation is issued by a particular core, the cache line of the Re-
ceiver Buffer it refers to, will cause a miss in its L1 cache. This will trigger
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a request of the data on the bus that will be served by the L2 cache. The re-
quested cache line is loaded from the L2 cache, using the indexing table, into
the L1 cache that requested it. This implies a change in the cache line state to
Shared in the L1 cache and to Modified in the L2 cache. When a cache line in
the L1 cache, part of the Receiver Buffer, changes status from Modified to any
other state, the L2 cache needs to write it back to the main memory. If another
core requests a cache line that is in the indexing table, the L2 cache serves the
request and provides the cache line, changing the state of its the cache line to
the appropriated one.

In order to analyze the benefits that the cache-based memory copy hard-
ware accelerator can have in a multi-core processor, the queue theory [26] was
used to perform an analytical analysis of the system. The queuing theory ap-
plied was based on the work of [50] and [51]. The input parameters for the
model of the cache-based memory copy hardware accelerator are based on the
accelerator implementation on the prototyping platforms and on the simulation
results presented in Chapters 4 and 5. The next section describes this analysis.

6.2 Analytical Analysis of the System

In the simplest form, any processing system can be considered to be composed
of a number of servers with a specific service time. These servers can be any
shared resources with a queue, such a bus or a memory. The queuing theory
correctly models the performance of such servers in a complex system and,
therefore, can be utilized to model a processing system. The request rate to
each server in the system is assumed to follow a Poisson distribution, which
allows the use of relatively simple equations to depict queue sizes and queue
delays1. The service time of each server is assumed to be either constant or
exponential (both analysis are performed). Therefore, the modelled system
falls in Kendall’s notation [26] M/D/1 (Poisson input, deterministic/constant
service time, one server) or M/M/1 (Poisson input, exponential/Poisson service
time, one server).

The ideal performance of a processing system is measured in cycles per
instruction (CPI) when executed with an infinite cache (CPI[∞]), i.e., when
the L1 cache acts as if there were no cache misses and thus no fetch penalties.
However, the actual performance of a system (CPI[system]) with a memory

1Studies by [39] and [41] present traces which closely approximate a Poisson distribution.
For the cases where the traces deviate from a Poisson distribution, there is no simple method to
evaluate the impact of the memory hierarchy.
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hierarchy is considerably less due to the stalls and delays caused by the cache
misses and thus the fetching actions. In reality, a processor and its L1 cache are
the sources that generate the outstanding misses to the memory hierarchy, and
therefore also responsible by the fetching actions. This additional delay, mea-
sured as cycles per instructions, is typically known as the finite cache penalty
(FCP ). These two parameters are added together to obtain the actual process-
ing system performance:

CPI[system] = CPI[∞] + FCP. (6.1)

A problem in all analytical queuing analysis is to determine the queue de-
lays at each server. In particular, the open queue theory requires that the num-
ber of requests at each server cannot be fixed at any point in the system. In fact,
all queues must theoretically be capable of unlimited length. However, in a real
multi-processor system, each processor typically permits only a fix number of
outstanding misses to exist within the memory hierarchy at any time. The rea-
son is that the outstanding misses stall the processor which cannot continue
processing until the fetches (due to the misses) are fulfilled. This means that
the maximum requests for fetching is fixed for all the queues within a memory
hierarchy at any instant of time. Of course, the number of requests could be
fewer than the maximum at any instant, only the maximum is fixed. Therefore,
there is a negative feedback process in the memory hierarchy which in prac-
tice, guaranties small and self-limited queues. Consequently, there is no need
to complicate the model using closed queue theory to model the system. More-
over, the accuracy of the open queue theory was compared with a closed queue
theory and the results showed a 3% to 10% maximum difference (these results
are demonstrated on [50] and [51]). The accuracy of the open queue theory
was also measured to be approximately 3% compared with data gathered by
real systems measurements.

Another way of viewing the mentioned negative feedback is the following.
TheFCP delays depend on the request rates for the memory hierarchy, which
are inversely proportional to theCPI - the smaller theCPI is, the faster
the instructions are processed, thereby generating more memory hierarchy re-
quests. The increase in memory hierarchy requests create larger queue delays,
which then increaseFCP value and theCPI value, reducing the queue de-
lays, and so on and so forth. Thus, the analysis require an iterative calculation,
but it will converge in a maximum of 10 interactions.

In a system with a multi-level cache hierarchy, each main memory access
can incur in a different delay determined by which level of the hierarchy con-
tains the desired access at that moment. TheFCP delay, is then, the weighted
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sum of the hits at each level multiplied by the delay per hit at each level. The
FCP equation for a uniprocessor with tandem caches (3 level hierarchy) is:

FCP = (mr1 −mr2)T2 + (mr2 −mrmain)Tmain

+ mrmainTmain

= mr1[(1− mr2

mr1
)T2 +

mr2

mr1
Tmain]

(6.2)

where themrk are the miss rates andTk are the fetching times of each cache
level,k = {1, 2,main}.

In a memory hierarchy in which misses can occur at various levels, the
probability of a miss reaching any given cache level will vary as determined
by the given miss rates for each cache. This is expressed as the visitation
probability (V ), which is simply the hit probability per L1 cache miss request.
From Equation (6.2), the visitation probability at each level can be determined
to be simply:

V2 = 1− mr2

mr1

Vmain =
mr2

mr1

(6.3)

To determine the fetching time of each level (i.e., the value ofTk, with
k = {1, 2,main}), it is assumed that each cache is simply an individual server.
In a simple open queue system, the queue length at an individual server is de-
termined by the utilization (U ), which itself depends on the request rate (R)
and the service time (S) of the server. For a memory hierarchy, the visitation
probability has to be included in the utilization of each server. For a uniproces-
sor with tandem caches (3 level hierarchy), the utilization of each server is
then:

U2 = V2 × S2 ×R

Umain = Vmain × Smain ×R
(6.4)

where the request rate is given byR = mr1/(CPI[system]×TCPU ) (i.e., the
request rate is inversely proportional toCPI[system] providing the negative
feedback process in the memory hierarchy and the reason for an iterative calcu-
lation). Assuming a constant service time, the total delay for the uniprocessor
with tandem caches (3 level hierarchy) case is:

T2 = V2 × S2 × (1 +
0.5U2

1− U2
)

Tmain = Vmain × Smain × (1 +
0.5Umain

1− Umain
)

(6.5)
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And the queue size is:

Q2 =
U2 − 0.5U2

2

1− U2

Qmain =
Umain − 0.5U2

main

1− Umain

(6.6)

As the targeted cache is a write-back L1 cache, when a cache miss re-
quires the replacement of a cache line, this cache line must be written to a
higher cache level. This is referred as cast-out (CO), and typical values range
from 20% to 40% (as reported by [50] and [51]). The use of the cache-based
memory copy hardware accelerator influences this parameter. If thesrc ad-
dress is not present in the cache at the moment of filling the indexing table, it
has to be fetched from the main memory. The same situation happens if a miss
in the L1 cache also misses in the L2 cache. Both situations will probably evict
some cache lines from L2 cache, which will increase theCO.

A memory hierarchy that provides the critical word first is assumed. If
the processor requires another word in the cache line that is being transferred
at the moment, the processor must wait until it is available. This is referred
as trailing-edge (TE) delay, which typically ranges from 10% and 30% (as
reported by [50] and [51]). With the use of the cache-based memory copy
hardware accelerator, it is necessary to also consider the case of a first read to
a copied address, that will always miss in all L1 caches. These accesses have
go to the L2 cache, and if another word is requested while the cache line is
being transferred, there will be an increase of theTE delay.

With the usage of the cache-based memory copy hardware accelerator, the
copied data is also accessible in the L2 cache, as well as the data that was
already in the cache before the copy was performed. This means that bothsrc

anddst addresses are available through either the indexing table or the cache
itself, without evicting any cache lines. This implies a decrease in the original
L2 miss rate (mr2).

Besides, due to the increase of the cast-outs (CO) of the L2 cache, there
will also be an increase in the visitation probability (V ) of the main memory.
This increase in theV of the main memory due to the presence of the accel-
erator (that increases theCO of the L2 cache) is modelled through a factor of
eviction (FE). Therefore, the visitation probabilities (V ) presented in Equa-
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tion (6.3), becomes:

V2 = 1− mr2

mr1

Vmain =
mr2 + FE ×mr2

mr1

(6.7)

The final model is based on Equation (6.2), whereTk is given by Equa-
tion (6.5),Uk is given by Equation (6.4) andVk is given by Equation (6.7),
with k = {1, 2,main}. It must be noted that the accelerator is not modelled
as another server in the system. However, its impact is modelled in the val-
ues attributed to the L2 miss rate (mr2), the visitation probability of the main
memory (Vmain), the cast-outs (CO) and the trailing-edge (TE) delay.

The impact of using the accelerator in a uniprocessor with a L1 cache,
a L2 cache and a main memory is studied in the next section, to evaluate the
model. Summarizing, the L2 cache and the main memory service times and the
cache line sizes utilized in this analytical analysis are the same as the ones used
in Simics simulator (in Section 4.2), the miss rates of both caches (mr1 and
mr2) are also provided by Simics simulator (in Chapter 5) when executing the
TCP/IP benchmark and the values of the cast-out (CO) and trailing-edge (TE)
delay are given by [50] and [51] (based on real application measurements). The
factor of eviction (FE) is related with the accelerator and, because there is no
measurements for it, a wide enough range of values are evaluated to determine
the impact of utilizing the accelerator.

In a multi-core processor like the targeting one (Figure 6.2), it is also nec-
essary to analyze the impact of shared resources in the system, namely the bus.
The utilization of the bus depends of several situations:

• It depends on the number of misses generated by the three cores and
their L1 cache, which affects the amount of data transferred on the bus;

• It depends on the cache coherence protocol, i.e., a read miss in one L1
cache that can hit in any other L1 cache and a write that either forces the
invalidation or the update of the data in the others L1 cache.

The use of a shared bus changes the previously described visitation proba-
bilities in Equation (6.3). The probability of visitation of the bus is 1, because
all misses in any L1 cache imply utilizing the bus. The probability of visiting
the L2 cache is now not only dependent on the miss rate of each L1 cache
(OwnL1), but also on the miss rate of other L1 caches (OtherL1) that share
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the bus. Besides, the number of hits/misses of a particular cache line in the
OtherL1 is also dependent on the application. [46] presents some typical val-
ues for the hit rate inOtherL1, which are in the range of 10% to 50%. This
parameter will referred as the hit rate inOtherL1 (HRO1). Therefore, the
new visitation probability (V ) for each core in the system is:

Vbus = 1

V2 = 1−HRO1− mr2

mr1

Vmain =
mr2 + FE ×mr2

mr1
, whereFE = 0, if the accelerator is not used

(6.8)

To determine the service time (S) of the shared bus, there is a need to know
the amount of data transferred, the bus cycle time and the bus width. A bus
that has separate lines for data and control has two different services times:

Scontrol = bus cycle time× control request size

bus control width

Sdata = bus cycle time× L1 cacheline size

bus data width

(6.9)

Therefore, the total utilization (U ) of the shared bus, both control (CB)
and data (DB), due to misses in any of the three L1 caches (OwnL1), in the
other L1 caches (OtherL1), and due to the cast-outs (CO) is:

UOwnL1DB = Vbus × Sdata ×R

UOwnL1CB = Vbus × Scontrol ×R

UOwnL1CO = CO × Vbus × Sdata ×R

UOtherL1DB = 1/3× Vbus ×HRO1× Sdata ×R

UOtherL1CB = 1/3× Vbus ×HRO1× Scontrol ×R

(6.10)

And the corresponding delay (T ) for both control (CB) and data (DB) busses,
due to misses in any of the three L1 caches (OwnL1), in the other L1 caches
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(OtherL1), and due to the cast-outs (CO) is:

TOwnL1DB = Vbus × Sdata × (1 +
0.5UOwnL1DB

1− UOwnL1DB
)

TOwnL1CB = Vbus × Scontrol × (1 +
0.5UOwnL1CB

1− UOwnL1CB
)

TOwnL1CO = CO × Vbus × Sdata

× (1 +
0.5UOwnL1CO

1− UOwnL1CO
)

TOtherL1DB = 0.5× Vbus ×HRO1

× Sdata × (1 +
0.5UOtherL1DB

1− UOtherL1DB
)

TOtherL1CB = 0.5× Vbus ×HRO1

× Scontrol × (1 +
0.5UOtherL1CB

1− UOtherL1CB
)

(6.11)

For the queue sizes (Q) for both control (CB) and data (DB) busses, due
to misses in any of the three L1 caches (OwnL1), in the other L1 caches
(OtherL1), and due to the cast-outs (CO):

QOwnL1DB =
UOwnL1DB − 0.5UOwnL12

DB

1− UOwnL1DB

QOwnL1CB =
UOwnL1CB − 0.5UOwnL12

CB

1− UOwnL1CB

QOwnL1CO =
UOwnL1CO − 0.5UOwnL12

CO

1− UOwnL1CO

QOtherL1DB =
UOtherL1DB − 0.5UOtherL12

DB

1− UOtherL1DB

QOtherL1CB =
UOtherL1CB − 0.5UOtherL12

CB

1− UOtherL1CB

(6.12)

The trailing-edge (TE) delay due to other L1 caches (OtherL1) and L2 cache
(L2) is given by:

TOtherL1TE = (
L1 cacheline size

bus data width
− 1)

TE × bus cycle time

TL2TE = (
L2 cache line size

bus data width
− 1)

TE × bus cycle time;

(6.13)

120



6.2. ANALYTICAL ANALYSIS OF THE SYSTEM

Until now it is assumed a constant service time for each server (M/D/1).
As this parameter models the time each resource of the system takes, it is in-
teresting to study the impact of changing this value. Therefore, the following
assumes an service time of each server to be exponential (M/M/1). Subse-
quently, the delay given by Equation (6.5) and Equation (6.11), became:

T2 = V2 × S2 × (1 +
U2

1− U2
)

Tmain = Vmain × Smain × (1 +
Umain

1− Umain
)

TOwnL1DB = Vbus × Sdata × (1 +
UOwnL1DB

1− UOwnL1DB
)

TOwnL1CB = Vbus × Scontrol × (1 +
UOwnL1CB

1− UOwnL1CB
)

TOwnL1CO = CO × Vbus × Sdata

× (1 +
UOwnL1CO

1− UOwnL1CO
)

TOtherL1DB = 0.5× Vbus ×HRO1

× Sdata × (1 +
UOtherL1DB

1− UOtherL1DB
)

TOtherL1CB = 0.5× Vbus ×HRO1

× Scontrol × (1 +
UOtherL1CB

1− UOtherL1CB
)

(6.14)

And the corresponding queue sizes:

QOwnL1DB =
UOwnL1DB

1− UOwnL1DB

QOwnL1CB =
UOwnL1CB

1− UOwnL1CB

QOwnL1CO =
UOwnL1CO

1− UOwnL1CO

QOtherL1DB =
UOtherL1DB

1− UOtherL1DB

QOtherL1CB =
UOtherL1CB

1− UOtherL1CB

(6.15)

Finally, the total delayTtotal for each core in the multi-core processor is
given by the summation of Equation (6.5), Equation (6.11) and Equation (6.13)
(with the visitation probability given by Equation (6.8)), for a constant service
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time. If a exponential service time is used the total delay (Ttotal) is calculated
by the summation of Equation (6.14) and Equation (6.13) (with the visitation
probability given by Equation (6.8)). TheCPI for each core in the multi-core
processor is then given by:

CPI[system] = CPI[∞] + mr1 × Ttotal (6.16)

Again, the impact of using the accelerator in a multi-core processor each
with a L1 cache, a shared L2 cache and a main memory is studied in the next
section, to evaluate the model. Summarizing, thebus data width, control -
req size, bus control width andbus cycle time are typical values and the
hit rate inOtherL1 (HRO1) is given by [50] and [51] (based on real applica-
tion measurements).

6.3 Results

First, the uniprocessor case is analyzed, in order to evaluate the model. Fig-
ure 6.3 depicts the impact of increasing themr2 and theFE values on the
FCP , compared with the baseline scenario described in Table 6.1. The default
values depicted in the second column correspond to the typical values used in
real systems. In particular, the L2 cache and the memory service times and the
cache lines sizes are the same as the used in Chapters 4 and 5 for the Simics
simulator; theHRO1, CO andTE delay are given by [50] and [51] (based on
real application measurements) and the cache miss rates were observed when
the accelerator was implemented in Simics simulator. The other parameters
are typical values. TheFE is related with the accelerator and, because there
is no possibility of performing measurements to determine its value, a wide
enough range of values is evaluated to determine the impact of utilizing the
accelerator. The third column presents the parameter’s range used to evaluate
the system, as these are the parameters that either depend on the application
(HRO1), or on the use of the accelerator (mr2 andFE), as introduced in the
previous section. As Figure 6.3 depicts the analysis of the uniprocessor case,
theHRO1 is zero, as there are no other cores in the system when evaluating a
uniprocessor.

It is clear from Figure 6.3 that the accelerator can provide benefits for a
wide range ofmr2 andFE values and that, in the best case, those benefits can
reach a decrease ofFCP of 57.1% (the bestFCP is when the value ofmr2 is
0.5% and the value ofFE is 1% and is compared with theFCP of the baseline
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Parameter Default Value Range

L2 Cache Service Time (S2) 15 clk (also used in Simics) -

Memory Service Time (Smain) 240 clk (also used in Simics) -

L1 Cache Miss Rate (mr1) 10% (returned by Simics) -

L2 Cache Miss Rate (mr2) 3% (returned by Simics) 0.5% to 3%

Hit RateOtherL1 (HRO1) 20% (given by [50] and [51]) 10% to 50%

Factor of Eviction (FE) 0% (wide range of values) 1% to 40%

Cast-Outs (CO) 20% (given by [50] and [51]) -

Trailing Edge (TE) delay 10% (given by [50] and [51]) -

L1 cachelinesize 32 bytes (typical value) -

L2 cachelinesize 128 bytes (typical value) -

bus data width 8 bytes (typical value) -

control req size 1 bytes (typical value) -

bus control width 1 bytes (typical value) -

bus cycle time 1 clk (typical value) -

Table 6.1: Parameters defining the system modelled
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Baseline vs Acc. uniprocessor analysis
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Figure 6.3: Uniprocessor analysis

scenario). However, if theFE and themr2 values are too high, then the uti-
lization of the accelerator can actually decrease the performance. On the other
hand, this is not a realistic scenario, once the presence of the accelerator will
always decrease the value ofmr2. Moreover, the previous section also men-
tioned the possible influence of theCO value and of theTE delay. Therefore,
the value ofCO and theTE delay was increased by 20%, which increased the
FCP by 1.2% for the first case and 4.5% for the second. Subsequently, these
parameters have a small impact in the uniprocessor system.

As mentioned before, one of the parameters of the multi-core processor
depends on is the application, modelled through theHRO1 value. Therefore,
the impact of changing this parameter’s values is studied and the benefits of
one of the cores in the system (as the model calculates theFCP of one of the
cores taking into account the presence of the others) is analyzed. Figure 6.4
depicts the impact of changing theHRO1 values, compared with the baseline
scenario. As expected, the increase inHRO1 value reduces theFCP of the
system compared with the baseline scenario.

As demonstrated for the uniprocessor, the usage of the accelerator is mod-
elled mainly through themr2 and theFE values. Therefore, the cache-based
memory copy hardware accelerator for a multi-core processor is evaluated by
analyzing the impact on theFCP that the accelerator have for different para-
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Figure 6.4: Hit Rate in OtherL1 (HRO1) analysis

meter’s values. Figure 6.5 depicts the percentage ofFCP decrease compared
with the baseline scenario by increasing themr2 and theFE values in a multi-
core processor, keeping the remainder of the parameters with the default values
described in the Table 6.1.

Baseline vs Acc. multi-core analysis - constant service time
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Figure 6.5: Multi-core processor analysis with constant service time
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From the previous analysis it is possible to reach aFCP decrease of 54.1%
for one of the cores for the best case (the bestFCP is when the value ofmr2

is 0.5% and the value ofFE is 1% and is compared with theFCP of the
baseline scenario). The theoretical worst case is when the value ofmr2 does
not decrease and the value ofFE is bigger then zero. In such a case, the
accelerator will actually have a negative impact on the system. However, as
mentioned for the uniprocessor case, this is not a realistic scenario once the
presence of the accelerator will always decrease the value ofmr2.

Figure 6.6 depicts the same analysis, now assuming a exponential service
time for each server. For this case it is possible to reach aFCP decrease of

Baseline vs Acc. multi-core analysis - exponential service time
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Figure 6.6: Multi-core processor analysis with exponential service time

54.6% for one of the cores for the best case (the bestFCP is when the value of
mr2 is 0.5% and the value ofFE is 1% and is compared with theFCP of the
baseline scenario). Moreover, an exponential service time imposes increase on
the baselineFCP by 9.2%, compared with the constant service time. How-
ever, the different service times in the servers has a smaller impact on the usage
of the accelerator, approximately 7.9%. Moreover, the impact on using an ex-
ponential service time for the cache-based memory copy hardware accelerator
is bigger for highermr2.

As mentioned in the previous section, the other parameters that also have
impact in the system are theCO value and theTE delay. However, as demon-
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strated for the uniprocessor case, these have small impact on the system.

6.4 Summary

This chapter presented the applicability of the cache-based memory copy hard-
ware accelerator, with the indexing table able to support set-associative caches,
to a multi-core processor utilizing a message passing communication model.
An analytical analysis based on open-queues theory was used to evaluate the
cache-based memory copy hardware accelerator. The parameters that have
higher impact on the system’s performance are the second level cache miss
rate and the cache line eviction. The utilization of the accelerator can provide
up to 50% reduction on the average number of cycles executed per instruction
for one of the cores in the system (which takes into account the presence of the
other cores of the system) for the best case.

Next chapter will conclude this dissertation and present future work.
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Chapter 7

Conclusions

T
his dissertation introduced the memory copy operation and its bottle-
neck. Subsequently, a cache-based memory copy hardware accelerator
that is able to reduce the impact of such operation in a computer sys-

tem is presented. The accelerator was implemented in reconfigurable hardware
to demonstrate its feasibility and performance gains. The performance gains
were incorporated in a simulator to further investigate applications that utilize
the memory copy operation.

In this chapter, concluding remarks are provided, the major achievements
of the investigation are presented and possible future research directions are
highlighted. This chapter is organized as follows. In Section 7.1, a summary of
the main conclusions of this dissertation is presented. In Section 7.2, the major
contributions described in the dissertation are listed and finally, in Section 7.3,
several possible future research directions are presented.

7.1 Summary

In Chapter 1 it is argued that memory copies are a bottleneck in several sys-
tems (uniprocessor and multiprocessor) and for different standards (network-
ing standards based on TCP/IP and the message passing communication model).
Moreover, the proposals in related works to solve this bottleneck still cannot
provide the necessary performance in some circumstances or can only be ap-
plied to a limited number of cases.

Furthermore, it was identified that the processor’s evolution have increas-
ingly taken benefit of the presence of caches, intended to reduce the “processor-

129



CHAPTER 7. CONCLUSIONS

memory performance gap”. As caches store the most recently used data, it is
only logical to assume that data to-be-copied by a memory copy is already
present within the cache. This is especially true when considering that such
data often must be processed first. Therefore, a solution to solve the memory
copy operation bottleneck taking advantage of the presence of caches is logical
to pursue.

In Chapter 2, the general concepts and implementation tradeoffs of caches
were introduced. Caches are used to reduce the average access time to main
memory and, therefore, try to reduce the “processor-memory performance
gap”. By carefully choosing the associativity, the write policies, the cache
size vs distance to the processor and the replacement policy, the hit rate of the
cache can be improved, bringing better performance to the whole system.

Moreover, several memory data movements performed in software were
explained in detail. As memory data movements move or copy data from one
memory location to another, they are bounded by the access time to main mem-
ory and the “processor-memory performance gap”. As the processor speeds are
increasing faster than the memory access times, the impact of these memory
data movements are expected to increase in the future.

As the cache-based memory copy hardware accelerator was prototyped
utilizing the Xilinx tools, the platforms and intellectual property blocks were
also explained in this chapter. Moreover, the performance of the cache-based
memory copy hardware accelerator was also evaluated utilizing Simics full-
system simulator, therefore, a high level description of the simulator was also
introduced in this chapter.

Chapter 3 presented the concept of the cache-based memory copy hard-
ware accelerator, as a combination of a cache (independent of its organiza-
tion), an indexing table (independent of the copy granularity it supports) and a
load/store unit. Moreover, it discussed the design of the indexing table able to
support cache line and word granularity copy and set-associative caches.

The cache-based memory copy hardware accelerator does not incur in per-
formance penalty on a read hit on the cache and read miss on the indexing
table, however on a read hit on the indexing table there is a need of one more
clock cycle to access the copied data. Furthermore, the options to communi-
cate with the accelerator (from the software and hardware points of view) were
presented as well as an analytical study was performed to estimate the nec-
essary hardware resources need to implement the cache-based memory copy
hardware accelerator.

Chapter 4 introduced the platforms used to implement the cache-based
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memory copy hardware accelerator. The details of each platform and of the
implementation of the cache-based memory copy hardware accelerator were
presented. The implementation constrains that drive the performance of the
cache-based memory copy hardware accelerator were also introduced. In par-
ticular, the need of a new field in the indexing table, the “Lookup” field, is
introduced. Moreover, the impact of this field in the complete design is also
discussed. The resource utilization on the prototyping platforms were pre-
sented, as well as a study of the number of bits stored in the indexing table
and in the cache (to determine the increase in hardware resources due to the
utilization of the indexing table). Finally, the modelling of the cache-based
memory copy hardware accelerator in the simulator was also presented.

Chapter 5 presented the results of the synthetic benchmarks used to demon-
strate the cache-based memory copy hardware accelerator on the prototyping
platform. The indexing table is able to perform a copy in 28 clock cycles
plus 2 clock cycles per cache line or word (depending on the indexing ta-
ble utilized). Moreover, accessing the accelerator through a memory-mapped
device-driver has impact on the performance of the system, as demonstrated
by the performance study on the simulator. When the access is performed
through an instruction-set architecture extension, a speedup ranging from 2.96
to 4.61 times for the receiver side TCP/IP benchmark is achieved, when uti-
lizing the cache-based memory copy hardware accelerator compared with the
software implementation of the benchmark. Moreover, there is also a reduc-
tion on the number of instructions executed ranging from 26% to 44%, due to
removing the loads and stores needed to execute the memory copy operation
in software.

Chapter 6 presented the applicability of the cache-based memory copy
hardware accelerator, with an indexing table able to support set-associative
caches, to a multi-core processor utilizing a message passing communication
model. An analytical analysis based on open-queues theory was used to eval-
uate the cache-based memory copy hardware accelerator. The parameters that
have higher impact on the system’s performance are the second level cache
miss rate and the cache line eviction. The accelerator can provide up to 50%
reduction on the average number of cycles executed per instruction for one of
the cores in the system (which takes into account the presence of the other
cores of the system) for the best case.

The answers to the research questions presented in Section 1.4, can there-
fore be summarized as follows:

• Can the presence of caches in today’s processors be exploited to solve
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the memory copy bottleneck? Yes, by introducing a redirection mech-
anism that links the original data (in the cache) to the copied addresses
(in a newly added indexing table), the memory copy operation can be
performed in much shorter time. Moreover, the ensuing access(es) to all
copied data can be performed much faster, the cache pollution existent
in the traditional way of performing a memory copy no longer exists
with the cache-based memory copy hardware accelerator. Furthermore,
the cache-based memory copy hardware accelerator can deal efficiently
with overlapping of the original and copied data memory locations.

• How do the proposed solutions in this dissertation perform compared
with existing approaches? The raw performance of the indexing table is
able to perform a memory copy in 28 clock cycles plus 2 clock cycles per
cache line or word (depending on the granularity of the indexing table
utilized). Moreover, for the receiver side of the TCP/IP stack bench-
mark, the cache-based memory copy hardware accelerator can achieve a
speedup ranging from 2.96 to 4.61 times, while reducing the number of
instructions executed by 26% to 44%, when compared with the software
implementation of the benchmark.

• How can the proposed solutions in this dissertation be adapted to support
multiprocessor platforms? An indexing table that is able to support set-
associative caches and cache coherence protocols was also presented in
this dissertation. Moreover, an analytical analysis based on open-queues
theory was presented. It demonstrated that the cache-based memory
copy hardware accelerator can provide up to 50% reduction on the aver-
age number of cycles executed per instruction for one of the cores in the
system (which takes into account the presence of the other cores of the
system) for the best case.

7.2 Main Contributions

In this section, the main contributions of the research described in this disser-
tation are highlighted:

• A hardware unit that performs memory copy operations using an addi-
tional indexing table in an existing cache organization, was introduced.
The use of an indexing table connected to the cache avoids duplicating
data in caches, because the copy (of the original data) is simply rep-
resented by inserting an additional pointer to the original data that is
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already present in the cache. This pointer allows the copied data to be
accessed from the cache. The indexing table also offloads the proces-
sor as it is no longer required to perform the copies byte by byte (or the
largest data unit the utilized architecture supports). Moreover, it can sup-
port the case where the original and the copied addresses overlap, which
has a big performance degradation on the software implementation of
the memory copy operation.

• An indexing table able to support cache lines and word granularity copy
was also presented. The indexing table performs a memory copy oper-
ation of one cache line in 30 clock cycles and performs memory copies
of cache lines sizes varying from 32 bytes to 256 bytes (which are com-
mon values for cache lines), 79% to 93% faster than an optimized soft-
ware implementation, respectively. Moreover, the indexing table also
performs a memory copy of one word and of eight words (one cache
line), 66% and 69% faster than an optimized software implementation,
respectively.

• A new load/store unit attached to the cache, the indexing table and
the main memory controller were presented. The unit is able to au-
tonomously load/store data from/to the main memory to/from cache nec-
essary to perform the memory copy operation, when the data was not
present in the cache. Moreover, as the size of the to-be-copied data
is known beforehand, the new unit is able to fully utilize the available
bandwidth between the cache and the main memory. In addition, this
approach allows the load latency to be reduced. A synthetic bench-
mark based on the reassembly of a Bluetooth frame was utilized to
demonstrate that the cache-based memory copy hardware accelerator
(the cache, the indexing table and the load/store unit) provides a speedup
of approximately 7 times, for the experimented benchmark, compared
to an optimized (hand-coded in assembly) software solution. It was also
presented a comparison between the worst case utilizing the accelera-
tor with the best case for the software solution that demonstrated the
accelerator brings increasing benefits for bigger number of cache lines
copies.

• The integration, through a memory-mapped device-driver, of the cache-
based memory copy hardware accelerator in a complete computer sys-
tem was also presented. The results of executing two benchmarks suites,
LMbench and STREAM were introduced and demonstrated that the uti-
lization of the accelerator can provide up to 121 times average execution
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time speedup for copies of 32kB, when compared with the execution
of the benchmarks without the accelerator. The impact of changing the
processor frequency, the memory latency and the cache line size was
analyzed and the conclusions reached was that the cache-based memory
copy hardware accelerator is access bounded and not copy bounded.

• Subsequently, an instruction-set architecture extension by one instruc-
tion was introduced. It demonstrated that the cache-based memory copy
hardware accelerator is able to provide 4.61 times speedup for the re-
ceiver side of the TCP/IP stack and 1.2 times speedup of raw throughput
for the STREAM benchmark, when compared with the execution of the
benchmarks without the accelerator

• Finally, the cache-based memory copy hardware accelerator was inte-
grated in a multi-core processor supporting message passing communi-
cation model. The indexing table able to support set-associative caches
and the cache coherence protocol was coupled with a set-associative
shared second level cache. The benefits were demonstrated through an
analytical analysis based on open queues theory. The parameters that
have higher impact on the system’s performance are the second level
cache miss rate and the cache line eviction. The utilization of the accel-
erator can provide up to 50% reduction on the average number of cycles
executed per instruction for one of the cores in the system (which takes
into account the presence of the other processors of the system) for the
best case.

7.3 Future Research Directions

The following propose future research directions and improvements to the
work presented in this dissertation:

• In this dissertation, a cache-based memory copy hardware accelerator
was developed to particularly accelerate thememcpy or bcopy func-
tions. However, functions that copy memory regions and stop after
encountering a particular occurrence (i.e.,memccpy), or functions that
set a particular memory region to a predefined value (i.e.,memset or
bzero ) are also common. The cache-based memory copy hardware
accelerator can easily be adapted to perform these other memory re-
lated functions. In order to support such functionalities, the cache-based
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memory copy hardware accelerator needs to have a new load/store unit
that is able to read the data that is being loaded from the main memory to
perform the memory copy (if the data is not in the cache) or being able
to read the contents of the cache (if the data is already in the cache) to
identify the occurrence of a particular value or to set the memory region
to a particular value.

• In this dissertation, a study of the applicability of the cache-based mem-
ory copy hardware accelerator in a multi-core processor was performed.
However, this study was performed using an analytical analysis. In order
to study more accurately the benefits that the cache-based memory copy
hardware accelerator can have in a multi-core processor, it is interesting
to test the proposed system in a platform. This may be performed by
using an extension to the Simics simulator (that includes detailed mem-
ory hierarchy simulation for multi-core processors) or by implementing
a multi-core processor in a FPGA and connect the cache-based memory
copy hardware accelerator. However, by performing this last option it
is envisioned to encounter problems due to lack of physical space in the
device to implement two L1 caches (one for each PPC in the platform),
one shared L2 cache, a shared bus to connect both L1 caches and the L2
cache and finally the cache-based memory copy hardware accelerator.

• In this dissertation, a cache-based memory copy hardware accelerator
that effectively reduces the number of accesses to the main memory was
presented. Moreover, because the copy addresses are sequential and the
size of the copy is known in advance, those accesses to the main memory
are sequential and can be performed taking advantage of the burst mode
present in today’s memories. This implies that the address decoder of
the memory controller needs to perform much less decoding operations
to write a memory copy performed with the accelerator. Furthermore,
because memory accesses are power hungry (in particular due to the
decoding operation), it is expected that the cache-based memory copy
hardware accelerator can also provide reduction in the power consump-
tion of a system. An interesting research direction would be to study the
power consumption associated with a memory copy performed in the
traditional software way and compare it with a memory copy performed
with the cache-based memory copy hardware accelerator.

• In this dissertation, a load/store unit to load and store the data to/from
the main memory was presented. This unit performs the loading of the
data to the cache (if the data is not there yet) at the same time the index-
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ing table is being filled. However, some processor architectures support
prefetching which allows to load the data in advance, much before be-
ing needed. Such a functionality is supposed to bring benefits to the
cache-based memory copy hardware accelerator, once it might reduce
the loading time of the data to the cache before performing the copy.
A performance study with an architecture that supports prefetching can
demonstrate the benefits to the cache-based memory copy hardware ac-
celerator.

• A technique that has became increasingly popular within multi-processor
systems is the transactional memory model. A transaction is a sequence
of instructions that are guaranteed to execute and complete only as an
atomic unit. Each transaction produces a block of writes which are com-
mitted to shared memory only as an atomic unit, after the transaction
completes execution. Once the transaction is complete, the hardware
must arbitrate system-wide for the permission to commit its writes. Af-
ter this permission is granted, the processor can take advantage of high
system interconnect bandwidths to simply broadcast all writes for the en-
tire transaction out as one large packet to the rest of the system. Snoop-
ing by other processors on these store packets maintains coherence in
the system, and allows them to detect when they have used data that has
subsequently been modified by another transaction and must rollback. A
study of a possible integration of the transactional memory model with
the cache-based memory copy hardware accelerator is a very interesting
research direction to pursue.
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Bluetooth Profiling

T
heLinux OS and the BlueZ [7] stack (the official Bluetooth standard [6]
implementation for Linux OS) were installed in two systems the in
order to retrieve the profiling information of the Bluetooth standard.

The systems used to perform the experiments are the following:

• A desktop Intel Pentium 4 (at 2.80 GHz) running Linux 2.4.22.

• The Xilinx ML310 Embedded Development Platform [56] with a Virtex
II Pro FPGA containing two Power PCs 405 (at 300 MHz). The Linux
MontaVista 2.4.24 [60] is running only on one of the Power PCs (the
other is not used).

One of the most interesting applications (profiles) that can be executed
over Bluetooth is ‘file transfer’. As expected, ‘file transfer’ will also utilize
part of the TCP/IP stack of Linux. The Bluetooth USB adapter from Con-
ceptronic [17] was used to provide the necessary radio connection between
the systems. In order to do a ‘file transfer’, a file of 50 MB was created and
transferred between the Bluetooth devices.

The profiler used to retrieve the profiling information is part of the Linux
kernel, and the application that is able to interpret that information is also a
kernel build-in application,readprofile . To identify the Bluetooth func-
tions, the Bluetooth stack has to be statically linked into the ML310 platform
Linux kernel. It is important to mention that the Bluetooth standard is executed
on top of the Linux OS, which is not a deterministic application. Depending
on the state of the system, the OS will react differently. Therefore, in order
to retrieve meaningful data, 20 identical and independent trials of the same
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experiment were performed. The trials were performed without rebooting the
system and the profiler was restarted for each trial.

In Table A.1, the first 40 rows of the profiling information of one of these
trials, sorted by number of ticks (N.Ticks), are presented. The N.Ticks is a
value returned by the profiler representing the number of times a particular
function was running on the processor when the system was interrupted by the
profiler to retrieve the profiling information.

Table A.2 presents the first 40 rows sorted by Normalized Load, which is
another value returned by the profiler. It is calculated by dividing the number
of ticks recorded by the profiler for a function by the function size (i.e., length
of the address space in memory) [97]. Therefore, it is safe to assume that
functions rating high in both lists (Table A.1 and A.2) occupy the processor
and are, therefore, the most time-consuming.

From Tables A.1 and A.2, eight Bluetooth functions can be identified:hci

usb rx complete , l2cap recv acldata , hci usb rx submit , hci send

to sock , hci rx task , hci acldata packet , hci recv frame , bnep

rx frame , and a mixture of OS and TCP/IP functions. Moreover, in the ma-
jority of time, the processor is controlling interrupts (e.g.,sti end , sti ,
which occupied 95% of the time), their execution (e.g.,hc interrupt , spee-

-do interrupt , trident interrupt ) or copying data within the main
memory (e.g.,memcpy). The interrupt-related functions are the most time-
consuming ones, however they are less good candidates to be implemented on
an accelerator. The reason for this is because each time an interrupt is issued,
the way the OS deals with it is depended of the state of the system. There-
fore, the executed code may be slightly different each time the same interrupt
is issued.

A comparison of the number of ticks of the Bluetooth functions and the
memcpy function is depicted in Figure A.1. It is clear thatmemcpy is more
time-consuming than any other Bluetooth function.
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N.Ticks: Function Name:
69274 sti end
2247 sti
1136 saveflagsptr end
153 memcpy
150 hcinterrupt
138 speedointerrupt
127 tridentinterrupt
126 XSysAceRegRead32
81 sohcisubmit urb
68 copy tofrom user
67 XSysAceRegWrite32
64 dl donelist
62 hci usb rx complete
61 l2caprecv acldata
61 dl transferlength
59 tcp recvmsg
52 hci usb rx submit
48 sysselect
48 kmalloc
47 hci sendto sock
45 kfree skb
44 hci rx task
43 skbunderpanic
41 fget
39 normalpoll
38 doselect
37 kmem cachealloc
36 DoSyscall
35 tty poll
35 powersave
35 saveflagsptr
33 free pagesok
32 tcp rcv established
31 hci recv frame
31 bneprx frame
30 tcppoll
30 hci acldatapacket
29 taskletaction
28 tcpv4 rcv

Table A.1: The first 40 rows of the profiler sorted by number of ticks
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Normalized Load: Function Name:
2164.8125 sti end
28.0875 sti
11.3600 saveflagsptr end
1.5000 XSysAceRegRead32
1.2885 XSysAceRegWrite32
0.9808 memcpy
0.6029 fget
0.6000 kmalloc
0.5040 tridentinterrupt
0.4375 saveflagsptr
0.3913 DoSyscall
0.3074 hcinterrupt
0.3017 powersave
0.2315 speedointerrupt
0.1906 dltransferlength
0.1862 ttypoll
0.1616 dldonelist
0.1449 hciusb rx complete
0.1318 taskletaction
0.1310 hcirx task
0.1230 hcirecv frame
0.1206 copy tofrom user
0.1160 kfree skb
0.1066 hciusb rx submit
0.1048 normalpoll
0.0934 kmemcachealloc
0.0882 hciacldatapacket
0.0822 hcisendto sock
0.0786 l2caprecv acldata
0.0714 doselect
0.0714 tcppoll
0.0694 skbunderpanic
0.0671 sohcisubmit urb
0.0441 sysselect
0.0326 free pagesok
0.0280 bneprx frame
0.0273 tcprecvmsg
0.0180 tcpv4 rcv
0.0149 tcprcv established

Table A.2: The first 40 rows of the profiler sorted by Normalized Load
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Samenvatting

Een op-cache-gebaseerde hardwarematige versneller voor het
verplaatsen van gegevens in het geheugen

Deze dissertatie presenteert een hardwarematige versneller die in staat is
grote (ook niet-parallelle) verplaatsingen van gegevens in het geheugen te ver-
snellen en vooral het kopiëren van geheugen, traditioneel uitgevoerd door de
processoren. Omdat hedendaagse processoren verbonden of uitgerust zijn met
cachegeheugens van variërende groottes (van enkele kilobytes in handheld
apparaten tot vele megabytes in desktop computers en grote servers), is het
niet meer dan logisch aan te nemen dat de te-kopiëren gegevens reeds aan-
wezig zijn binnen het cachegeheugen. Zeker als we in ogenschouw nemen dat
dergelijke gegevens vaak eerst verwerkt moeten worden. Dit betekent dat de
aanwezigheid van cachegeheugens aangewend kan worden om de latentie in-
herent aan het kopiëren van geheugen significant te verminderen, wanneer een
“slimmere” manier om het geheugen te kopiëren wordt gebruikt.

Daarom haalt de voorgestelde versneller voor het kopiëren van geheugen
voordeel uit de aanwezigheid van deze cachegeheugens en introduceert een
doorverwijzingsmechanisme dat de originele gegevens (in het cachegeheugen)
verbindt met de gekopieerde adressen (in een nieuw toegevoegde indexeringsta-
bel). De voorgestelde oplossingen vermijden cache pollution en duplicatie
van gegevens en plannen de toegang tot het hoofdgeheugen efficiënt in, aldus
wordt de latentie inherent aan het kopiëren van geheugen doeltreffend vermin-
derd. Bovendien ondersteund de voorgestelde versneller kopieën van cache
line en word granulariteit, kan het verbonden worden met een direct-mapped
of een set-associative cachegeheugen en kan het doelmatig het knelpunt van
het kopïeren van geheugen in single core processoren en multi-core proces-
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soren, die een message passing communicatiemodel uitvoeren, verminderen.

De voorgestelde oplossingen zijn als conceptversie geı̈mplementeerd in
een FPGA en gebruikmakend van een simulator werden verscheidene bench-
marks uitgevoerd om de prestatiewinst van het voorstel te bepalen. In het
bijzonder aan de ontvangerskant van de TCP/IP stack zijn de voorgestelde
oplossingen in staat snelheidswinsten tussen de 2,96 en 4,61 maal te behalen
en het aantal uitgevoerde instructies met 26% tot 44% te verminderen.
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