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ASML is one of the world’s largest suppliers of lithography systems
for the semiconductor industry. ASML designs and develops ma-
chines that are used to print circuits on silicon wafers, to produce
IC chips. These circuits have to be printed with accuracy of upto
2 nm. For this purpose, the machines incorporate several measure-
ment systems. The Parallel Integrated Lens Interferometer At Scan-
ner (PARIS) sensor is responsible for measurement of lens aberra-
tions. The PARIS measurement has a tight timing budget. Cur-
rently, the software stack of PARIS runs on a single core PowerPC
processor based board and a quadcore SUN M3000 server, which is
shared with other components in the machine, making the execution
time non-deterministic with a variation of up to 30%. Further, there
is a risk that as further enhancements are made, the PARIS software
stack will not be able to meet the worst case execution time (WCET)
specification. In this thesis we propose a multicore hardware plat-
form such that the execution time of the PARIS software stack is
deterministic and is at least reduced to half of the current execution
time. This proposal is based on the results of the study conducted
on the PARIS software stack to understand the computing needs,
the type and the amount of parallelism present in the algorithms.

The results show an approximate gain of 9x for algorithms deployed on the GPU. This results in an ap-
proximate 3x performance gain for the software execution time and 2x gain in the application performance.
However, a GPU based solution requires high investment of time, effort and thus has a high impact on the
organization and ASML’s product platform. An optimal solution proposed is a platform based on two Intel
i7 processors which provides for an approximate 2.4x performance gain for the software execution time and
1.8x gain for the entire application with lower impact on the organization and ASML’s product platform.
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Introduction 1
In the semiconductor industry lithography is an important process that determines the
technology node of semiconductor devices. ASML is one of the world’s largest suppliers
of lithography systems. ASML designs and develops machines that are used in the
manufacturing of complex integrated circuits (ICs). These machines accept silicon wafers
and print the image of the circuit design on them. A chip is built by stacking up multiple
layers of material. Each layer is created using lithography.
In the accelerating world of technology, IC chip manufacturers are required to incorporate
more transistors on a chip of the same area to keep pace with Moore’s Law [5]. In order to
shrink the transistor size with every new generation of IC chips, the lithography machines
must be able to print finer features on the wafer. Simultaneously, IC manufacturers
require that the lithography machines work faster to produce more wafers per hour,
since it translates to a higher IC production rate and correspondingly, an increased
profit for them. Consequently, ASML always strives to improve its machine design in
terms of accuracy and throughput of wafers.

Light 

source

Illuminator 

lens

Reticle

Projection lens

Wafer

Figure 1.1: An abstract representation of a pattern being printed on a wafer

Explaining in an abstract way, as shown in Fig. 1.1, to print a pattern on the wafer, a
beam of laser UV light is passed through the pattern which is to be printed on the wafer,
known as reticle. After this, the light passes through a projection lens which projects
the pattern on the wafer.
Since the resolution requirement is high and the overlay budget is as low as 2 nm for
the first few layers, a number of sensors are used to make sure that the requirements of

1



2 CHAPTER 1. INTRODUCTION

accuracy are met.
Fig. 1.2 shows how a perfect lens will behave if a light originating from a point source is
passed through it. However, in a real lens, small deviations or aberrations occur. This
leads to a phase shift of light rays passing through the lens and results in deviated wave
front as shown in Fig. 1.3.

Spherical 

wave front

Wafer

Point 

source

Projection 

lens

Figure 1.2: A perfect lens producing a spherical wave front

Deviated 

wave front

Wafer

Point 

source

Projection 

lens

Figure 1.3: A real lens with aberrations producing a deviated wave front

The deviations of the disturbed wave front from the spherical wave front are a mea-
sure of the lens aberrations, or errors. These aberrations come partly during the lens
manufacturing process, but are mainly due to warm-up of the parts of the lens system
during production. The aberrations in turn can be corrected for by tuning the lens set-
tings. If not corrected, the features printed on the wafer are not properly aligned and
accurate.



1.1. PROBLEM DESCRIPTION 3

One of the sensors in the machine is capable of measuring the wave front at wafer level be-
fore exposing a wafer lot1. The software stack of this sensor is responsible for controlling
the measurement sequence and calculating the measurement results. These results are
then used by Metrology, which is a client for the sensor software stack to correct the lens
settings and minimize the effects of lens aberrations. The sensor measurement results
are expressed in Zernike polynomials [6] which are a way to represent the aberrations
mathematically.

Seven, 

source 

mark pairs

Projection 

lens

PARIS 

sensor 

camera

Light 

source

Electronics data path

Frame processing

Mathematical representation 

of lens aberrations

Parallel processing of seven 

field points

Computing elements (SUN M3000, PowerPC 

750GX)

<Figure has not been made public due to confidentiality>

Figure 1.4: Lens aberrations measurement with PARIS sensor

For the next generation system a new sensor, Parallel ILIAS or PARIS sensor has
been developed. The PARIS sensor is capable of measuring the lens aberrations before
exposing a wafer instead of per lot, as in the case of ILIAS. The PARIS sensor measures
seven field points of the wave front in parallel, as shown in Fig. 1.4.

1.1 Problem description

The PARIS sensor measurement and calculation of Zernike polynomial coefficients are an
overhead during production of wafers. The throughput of the machine can be increased
if this overhead is reduced and hence there is a tight time budget. Currently PARIS
measurement is done in 250 ms and the Zernike calculation are done in 66 ms. Out of

1A set of wafers that pass through the machine one after the other
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this 66 ms, approximately 40 ms is “post processing software” execution time. Details of
the Zernike calculation time are discussed in Section 2.4.
Further improvements and enhancements are regularly being done to the software stack
which is always increasing the execution time. Some of the proposed enhancements are
to be done on a per-pixel basis and are expected to be computing intensive.
The PARIS sensor software stack currently runs partially on a single core PowerPC based
board and partially on a quadcore processor based server by SUN as shown in Fig. 1.4.
The SUN server is a shared resource which is also used by other software components
of the machine; hence the execution time for the PARIS software stack is unpredictable.
There is a risk that software may compete for computing resources in future and it will
not be able to meet the Worst Case Execution Time (WCET) specification.

1.2 Motivation

During the past decade, the computing industry has witnessed a paradigm shift from
single core to multicore processors. The heat dissipated by high frequency single core
processor chips became a problem and increasing the clock frequency for better perfor-
mance was no longer a viable option. The performance gained by exploiting implicit
parallelism was also diminishing. Consequently, the need was felt to move towards mul-
ticore processors and exploit explicit parallelism.
A single chip with multiple cores, sharing different architectural components, capable of
executing threads in parallel is the industry’s answer to keep pace with Moore’s law [5].
However, this means a paradigm shift in application development to achieve optimal
performance on these new multicore platforms.
The software and algorithm designers have to ensure that enough parallelism exists in
the algorithms and the implementation is such that parallel execution is not hindered.
A critical problem is establishing which hardware platform should be used to optimally
execute the software.

1.3 Project goal

The main objective of this project is to propose a multicore hardware platform that
optimally executes the PARIS sensor software stack. The primary requirements of the
proposed platform are:

1. Reducing the Zernike calculation time (41.19 ms) by atleast a factor of two.

2. The execution time of the PARIS sensor software becomes deterministic with mil-
liseconds precision.

3. It has sufficient capacity to handle future enhancements.

Design changes required to optimally execute the PARIS software stack on the mul-
ticore platform should be proposed. Moreover, a prototype implementation has to be
developed as part of the project, demonstrating the capabilities of the platform and the
performance gain that can be achieved by the proposed changes in the PARIS software
stack.



1.4. APPROACH 5

1.4 Approach

An initial study will be conducted to understand the PARIS sensor system which in-
cludes the functionality of the system, electronic environment of the system, the current
hardware platform and the software architecture.
Next, a timing analysis of the software stack will be performed to identify the algorithms
with high execution time. A detailed analysis of these algorithms will be done, identify-
ing the reasons which make these algorithms time consuming and strategies to extract
parallelism from these algorithms will be proposed.
We then study different hardware platforms under consideration and perform experi-
ments with some of the algorithms of the PARIS sensor software stack on these plat-
forms. An estimation of the performance gain that can be achieved using the proposed
parallelization strategies on the multicore platforms will be made. Next we define the
comparison metrics and evaluate the hardware platforms on these metrics. Based on the
results of this evaluation, an optimal multicore hardware platform will be proposed.
Prototype implementation of the PARIS software stack involved in the Zernike polyno-
mial coefficients will be developed on the proposed multicore platform to demonstrate
the capabilities of the platform and the performance will be measured.
The performance on the multicore platform will be evaluated and compared to the initial
implementation and to the timing specifications. Causes of any unexpected results will
be determined

1.5 Report organization

This section gives an overview of the organization of this thesis. Chapter 2 starts with
an explanation of the functionality of the PARIS sensor in detail. It also describes the
architecture, components of the software stack, electronics environment of the sensor and
the current hardware platform. Then the results of the timing analysis are discussed.
In Chapter 3, the algorithms with high execution time are studied and different strate-
gies to parallelize them are investigated.
In Chapter 4, the different multicore hardware platforms (CPU, GPU and FPGA) under
consideration are introduced. The comparison metrics defined to evaluate the hardware
platforms are presented and the results of the evaluation are discussed. Chapter 5 pro-
vides the details of the prototype implementation including the problems faced, related
optimizations done and performance gain achieved.
In Chapter 6 the performance results on different hardware platforms are compared with
the baseline. Chapter 7 provides a conclusion to the thesis and recommendations for the
future. Appendix A discusses the algorithms used in PARIS software stack and Ap-
pendix B presents the reduction algorithm and optimizations which were used in this
thesis. Appendix C discusses the calculations and assumptions used in the comparison
of performance results.
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PARIS Sensor 2
A wafer undergoes two sequences within the ASML lithography machine - Measure and
Expose as shown in Fig. 2.1. In the Measure sequence, the wafer position, height and
local tilt are measured. On the Expose side, aberrations in the projection lens and the
amount of light needed are measured after the reticle has been aligned with the wafer.
The wafer is then exposed to the image to be printed on it. Due to the requirement
of high throughput, both the sequences are expected to be of as small time duration as
possible.

The PARIS sensor measurement sequence is part of the Expose sequence and is an
overhead in production. The client of the PARIS sensor system, the Metrology layer,
requests the PARIS sensor system to perform a scan and return the Zernike polynomial
coefficients. Metrology then uses these values to tune the settings of the lens elements
in such a way such that the effect of lens aberrations is reduced.
The main motives of introducing PARIS sensor were to increase the accuracy of the
pattern printed on the wafer by measuring the lens aberrations on a per-wafer basis and
at the same time increase the throughput by reducing the time taken for measurements.
While the ILIAS sensor was used to measure lens aberrations per lot, PARIS offers fast
and accurate aberration measurements that can be done on per-wafer basis which would
have not been possible with ILIAS sensor within the time budget.

2.1 Functional overview

A limited functional view and flow of calculations is shown in Fig. 2.2. The details of
the sequence of execution and algorithms cannot be made public due to confidentiality.

Measurement sensor 
systems

Measure

Circuit design

Expose
ASML lithography machineASML lithography machine

Wafer 
input

Wafer 
output

Figure 2.1: Measure and Expose sequence
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Ghost Correction
….

Finalize Phase Fit
Phase Unwrapping

Update Errors
Solve Zernike

….
...

Frame processing

Ghost Correction
….

Finalize Phase Fit
Phase Unwrapping

Update Errors
Solve Zernike

….
...

7 field points

Figure 2.2: Functional overview and flow of calculations

As soon as a frame from the camera is available, there are a number of algorithms
which are applied on per-frame basis. These algorithms are a part of the “frame
processing” stage. After the frame processing, the frame is split into seven field points
and each field points is completely independent from the other and is processed by a
separate process. These seven parallel processes are referred to as “PARIS processes”
from further onward in this document.

2.2 Software components

The software components involved in the PARIS sensor system are shown in Fig. 2.3.
Since most of the components are shared with ILIAS sensor, the relationship is shown
as well.

The details of the section cannot be made public due to confidentiality

2.3 Electronic environment

This section introduces the hardware platforms on which the PARIS software stack
executes. Fig. 2.4 shows the current electronic environment of the PARIS sensor.

SUN M3000, a quadcore, server platform [7] is a shared computing resource in the
machine and is used by different components of the machine. The SUN M3000 has a
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Figure 2.3: PARIS and ILIAS software components
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Figure 2.4: PARIS electronic environment

SPARC64 VII+ quad core processor, which allows simultaneous multithreading and is
capable of executing two threads per core in parallel. The SUN M3000 runs at a fre-
quency of 2.86 GHz [7].
The driver module for PARIS runs on a PowerPC IBM 750GX microprocessor. It op-
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29.39511.8163

Figure 2.5: Time taken by activities in post processing time budget

erates on 931 MHz frequency. For PARIS, the PPC board is regarded as an advanced
frame grabber.
The actual frame size captured by the PARIS sensor camera is calibrated and varies per
machine. The PARIS camera sends the frames to the PPC. As soon as PPC receives a
frame, it performs signal checks. After this, it sends the frame to SUN M3000 through
a Gigabit Ethernet network. This network is shared across the machine.

2.4 Processing time

In this section the time taken by different activities during the time budget is explained.
Afterwards, the results of the experiments conducted to measure the execution time are
discussed.
The time budget for PARIS includes following activities:

1. Camera afterglow time.

2. Transfer time from the PARIS sensor to PowerPC board

3. Processing time on the PowerPC board

4. Ethernet network transfer time from PowerPC board to SUN M3000

5. Processing time on SUN M3000

The average time taken by the activities included in the post processing budget is
shown in Fig. 2.5. The results shown in the figure are from the measurements done on
a machine in production context.

The camera afterglow time is fixed (3 ms) while based on experiments, the transfer
time from camera to PPC was found to be 16 ms on average. The processing time on
PPC is 11.8 ms on average.
An important fact that must be taken into account is that the measurement of the
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Figure 2.6: Variation of post processing software execution time in four experiments

Ethernet network transfer time is done under minimum load conditions where only the
data required for PARIS is being sent over the Ethernet network. As the network is
shared across the machine, the performance of the network is not stable and it is not
guaranteed that the required bandwidth will be available in production context.
Execution time on SUN M3000 was found to be 29.39 ms on average and the measured
worst case execution time was 36.465 ms as can be seen from Fig. 2.6. Since the software
executes on SUN M3000 server, which is a shared resource in the machine, the variation
in the time measurements is justified as other software components use the SUN M3000
at the same time.
Number of measurements conducted on the machine was limited by access time to the

machine. The number of results is insufficient to determine the actual WCET, but it can
be concluded from the available results that the execution time on shared SUN M3000
is non-deterministic.
Further, measurements were performed on a dedicated M3000 to get accurate execution
time value for the software processing time. On the test bench, execution time was
measured to be 28.82 ms on average with a variation of about 3 %. The variation can
be attributed to the fact that there are seven processes that are initiated in parallel to
work on seven field points. Out of these, each process on average takes 24.56 ms when
executed in parallel with all the other six processes.

A detailed investigation showed that there are three algorithms which together
contribute 88 % to the average execution time (24.56 ms) of each process. These modules
are “Finalize Phase Fit”,“Phase Unwrapping” and “Solve Zernike”. Rest of the time is
taken by frame processing algorithms and other supporting functions used. The average
execution time of these algorithms is shown in Fig. 2.7.
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Figure 2.7: Execution time of PARIS algorithms with seven active processes

A detailed study of these algorithms in Chapter 3 identifies the reasons that make
these algorithms time consuming. The algorithms are also analyzed for the type and
amount of a parallelism and this is also discussed in Chapter 3.



Software Analysis and
Parallelism 3
Based on the results of execution time measurement of PARIS sensor system in Chapter
2, this chapter presents a detailed analysis of algorithms that contribute heavily to
the post processing execution time. The focus of this analysis is on identifying the
parallelism present and proposing different strategies to parallelize these algorithms.
In addition, we also analyze the algorithms in terms of branching behavior, precision
requirements etc. as this could play an important role in selecting the hardware platform.

The strategy followed is to first focus on the algorithm that takes highest percentage
of execution time and then the second highest and so on. In next three sections we
discuss these algorithms in detail and present our analysis for each of the algorithms.
We conclude this chapter by presenting a summary of our analysis.

To remove the effect of executing seven processes on a four core processor in parallel
and to get accurate measurements of the computing need of the algorithms, we disabled
six PARIS processes. From our measurements, we identified three algorithms that take
88 % of the software post processing execution time (18.2 ms when only one PARIS
process executes) as shown in Table 3.1. Out of these three algorithms, two are executed
one after the other as can be seen in Fig. 3.1. Fig. 3.2 shows the flow of data in between
these algorithms.

Ghost Correction
….

Finalize Phase Fit
Phase Unwrapping

Update Errors
Solve Zernike

….
...

Frame processing

Ghost Correction
….

Finalize Phase Fit
Phase Unwrapping

Update Errors
Solve Zernike

….
...

7 field points

Figure 3.1: Sequence of algorithms
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Algorithms Baseline execution time (ms) Percentage

Phase Unwrapping 8.8 48

Solve Zernike 4.6 25

Finalize Phase Fit 2.8 15

Rest 2.0 12

Table 3.1: Execution time of different algorithms when only one PARIS process executes

Finalize 
Phase Fit

Phase 
Unwrapping

Solve Zernike

DC, phase and contrast 
values per pixel

Unwrapped phase 
values per pixel

DC and  contrast 
values per pixel 

Phase fit parameters 
(β1, β2,β3), per pixel

Zernike vector

Figure 3.2: Data flow diagram

3.1 Phase unwrapping

From Table 3.1, we can see that phase unwrapping algorithm takes 48 % of the execu-
tion time. In this section we first give an introduction of what phase unwrapping is
and why is it required in the scan sequence. Then we discuss the algorithm and its
implementation. Based on this discussion we present possible strategies to exploit the
parallelism in the algorithm. In accordance with our global approach we also analyze
precision requirements and branching behavior of the algorithm.

3.1.1 Introduction

It is a common case in interferometry that the phase is calculated by an expression with
the arctangent function. This mathematical function returns values that are between -π
and +π . Hence the result is given modulo 2π and discontinuities with values near to
-π and +π are found in the phase distribution. Unwrapping is the procedure by which
these discontinuities are resolved and the result is converted into the desired continuous
phase function [9]. This is done by adding or subtracting multiples of 2π to the wrapped
phase variation to remove the phase jumps.
Consider an example where the phase varies linearly for a row of pixels in a detector, as
shown in Fig. 3.3. When this is demodulated using the arctangent function, it results
in wrapped phase with discontinuities and jumps while the physical phase only varies
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Figure 3.3: Phase varies linearly in a row of pixels
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Figure 3.4: Wrapped phase after demodulation

slightly. This effect can be seen in Fig. 3.4.

Thus, essentially a phase unwrapping algorithm must specify a way to detect these
discontinuities in the wrapped phase and then remove these discontinuities, resulting in
an unwrapped phase. The same concept is used in two dimensional phase unwrapping.
Theoretically, phase unwrapping seems a relatively simple problem but, when working
with real images which have a lot of noise, procedures have to be designed to deal
with many different issues. Discontinuities in the phase wraps, high local variations of
signal-to-noise ratios are some of the problems that a phase unwrapping algorithm has
to overcome. The algorithm used in PARIS is known as quality guided phase unwrapping.

Quality guided phase unwrapping

In quality guided phase unwrapping algorithm, the unwrapping path is related to the
quality of edges. Hence the two main issues in the algorithm are:

1. Choosing the reliability function to determine the quality of each pixel.

2. The design of the unwrapping path.
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(i-1, j-1)

(i, j+1)(i-1, j+1)

(i-1, j) (i, j) (i+1, j)

(i, j-1) (i+1, j-1)

(i+1, j+1)

Figure 3.5: A 3 X 3 grid

Reliability function

An edge is an intersection of two pixels that are connected horizontally or vertically.
Any pixel can construct an edge with its orthogonal neighboring pixels. Thus the
boundary of the grid, in this case is not included in the set of edges. To determine the
quality of an edge, first we need to determine the quality of the pixels that constitute
the edge.
The criterion to determine the quality of a pixel is based on the phase differences
between a pixel and its neighbors. The pixels with low phase difference with respect
to their neighbors are considered to be of better quality. By using second differences,
a better detection of possible inconsistencies in the phase map can be achieved [9]
with minor increase in computations. The calculation of second differences for a pixel
in an image is explained with the help of Fig. 3.5 and Eqn. 3.1. To calculate the
second difference for a pixel, the phase values of its horizontal and vertical neighbors
are required.

H(i, j) = γ[φ(i− 1, j) − φ(i, j)] − γ[φ(i, j) − φ(i+ 1, j)]

V (i, j) = γ[φ(i, j − 1) − φ(i, j)] − γ[φ(i, j) − φ(i, j + 1)]
(3.1)

where φ(i, j) represents the phase value of (i, j) pixel and γ[] operation is explained in
Eqn. 3.3.

R(i, j) = DC(i, j) ∗ Contrast(i, j) ∗ exp
(
− 16

4π2
(
H(i, j)2 + V (i, j)2

))
(3.2)

where, H(i,j), V(i,j) are calculated using Eqn. 3.1.

As in case of first differences, pixels with low second phase difference values are
considered to be of better quality. Finally, to determine the reliability of the pixel, DC
and contrast values are also used as shown in Eqn. 3.2. Fig. 3.6(A) shows a part of an
image whose pixel reliability values are shown.
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Figure 3.6: Reliability values of pixels (A) and reliability values of edges (B)

The reliability of an edge is computed by adding the reliability values of the pixels
that constitute the edge as shown in Fig. 3.6(B) . Finally, reliability of the edges is used
in deciding the unwrapping path.

Unwrapping path

Once the reliability of each edge has been computed, the unwrapping path is decided
based on the reliability of the edges. The edge with the highest reliability is unwrapped
first while the edge with the lowest reliability is unwrapped last.
As can be seen from the flowchart in Fig. 3.7, after computing the reliability of each
edge, each pixel is initialized with an invalid group identifier, indicating that it does
not belong to any group. Then the pixels constituting the edge with highest reliability
are unwrapped to each other and the process of grouping starts. The unwrapping
procedure is done by grouping pixels to decrease the effect of low reliability pixels on
the unwrapped phase value and to decrease the computation time.

3.1.2 Implementation and analysis

In the current implementation, the algorithm is divided into three functions. First
function computes the reliability of each pixel, the second computes reliability of each
edge. Then, the process of grouping and unwrapping of pixels starts. The timing
measurement of each of these functions is shown in Fig. 3.8.

In this section we briefly explain the implementation of these three functions and
then analyze these algorithms for parallelism present, precision requirements etc.

3.1.2.1 Compute Pixel Reliability

As explained in the previous section, the reliability of each pixel is computed using second
differences. This is done using a nested loop, traversing the grid in row-major method.
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Figure 3.7: Flowchart for phase unwrapping algorithm
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3.1. PHASE UNWRAPPING 19

Thread 1 Thread 2

Thread 3 Thread 4

Thread 1

Thread 2

...

…

Thread N

(A) (B) (C)

Figure 3.9: Data parallelism, parallel threads process different rows (A), division of data
for processing in a grid structure (B) and each pixel is processed by a different thread in
parallel (C)

Using the first differences, the horizontal and vertical second differences are computed.
They are combined using an exponential function to compute the reliability of each pixel
with Eqn. 3.2. The reliability values are then normalized with respect to the highest
pixel reliability in the grid.

Parallelism As this algorithm works on the entire grid of pixels and the computations
are only dependent on the orthogonal neighboring pixels, a major part of this algorithm
is embarrassingly data parallel and all the loop iterations can be performed in parallel.
The algorithm can be split into computationally parallel tasks as well where computation
of horizontal and vertical second differences can be done in parallel. Hence there could
be multiple ways to extract parallelism in this algorithm. Fig. 3.9 and Fig. 3.10 show
some of the proposals in which the algorithm can be parallelized.

Fig. 3.9(A) shows that the frame can be split by rows and then for each of the group
of rows reliability values can be calculated in parallel. The granularity can be very fine
and each row can be processed by a separate thread. The frame can also be split into
a grid where each box can be processed by a separate thread as shown in Fig. 3.9(B).
The granularity can be as fine as processing each pixel in a separate thread as can be
seen in Fig. 3.9(C).

We could also exploit computational parallelism that exists in the algorithm. The
horizontal and vertical second differences can be calculated in parallel for the entire
grid in separate threads and after that the reliability values can be computed using the
results from thread 1 and 2. This scenario is shown in Fig. 3.10(A).
To combine data and computational parallelism, the computation of reliability values in
the previous step can be done in parallel for different parts of the grid as shown in Fig.
3.10(B). All the threads computing the reliability of pixels in different parts of the grid
can execute in parallel.
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Figure 3.10: Computational parallelism, thread 1 and 2 compute horizontal (HD) and
vertical (VD) difference after which thread 3 computes reliability values (A), combination
of computational and data parallelism where computation of reliability is data parallel
(B) and extension of (B) where HD and VD are also computed in a data parallel way
(C).

This can be further extended and the second differences can also be calculated in
parallel for different parts of the grid after which reliability can also be calculated in
parallel for same parts of the grid as shown in Fig. 3.10(C).

In the same algorithm, pixel with the maximum reliability value is found. The
problem is a reduction problem and exhibits coarse grained parallelism. It can be solved
using a parallel divide and conquer approach to reduce the execution time.
Each thread first finds the pixel with the maximum reliability in its own data set in
parallel with other threads and then out of the all local maxima calculated, the global
maxima is calculated as shown Fig. 3.11.

Precision requirements In the algorithm, to store the first differences and second
differences of phase values of the pixels, double floating point precision variables were
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Figure 3.11: A parallel divide and conquer approach to reduction operation

used. In our study we analyzed that this was not required as the phase values itself are
stored in single precision.
To compute reliability of pixels, double precision exponential function is used. In our
discussions with the physicists, we found that the exponential function was used to
get the properties of the exponential curve and the exact values were not necessary.
However, the order of reliability values computed was still required to be the same. We
concluded that an implementation with single precision was required to keep the order
of the reliability values same. Hence instead of a double precision, it is possible to use
the single precision exponential function.

Branching behavior In the algorithm, first difference is calculated and Eqn. 3.3 is
applied. This constraint introduces 4 branches inside the loop.

D1 = φ(i, j) − φ(i+ 1, j)

ifabs(D1) ≥ 0.5,

D1 = D1 − floor(D1 + 0.5)

(3.3)

We discussed with the physicists if this could be reduced by removing these con-
straints from the first differences and applying it on the second differences. This would
have reduced the branches to half. However, this change affects the algorithm and po-
tentially the outcome. Functional experiments are needed to qualify such a change.

3.1.2.2 Compute Edge Reliability

To compute the reliability of each edge, again the whole grid is traversed in a row major
way with a nested loop, skipping the border pixels. For the inside edges, the reliability
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values of the pixels forming the edge are added and the index of the constituting pixels
are stored in a structure variable.
After the reliability value of each edge has been calculated, the array of structure is
sorted in a descending order of reliability values.

Parallelism The function can be divided into two logical parts:

1. Compute the reliability of all the edges.

2. Sort the edges according to their reliability values.

Computing the reliability of each edge is an embarrassingly parallel algorithm as
reliability of each edge depends only on the neighboring pixels. In the implementation,
border pixels and edges are skipped and a separate counter is incremented to count the
number of edges whose reliability is computed. This makes the iterations of the loop
dependent on the previous iteration and hinders the possibility to exploit parallelism in
the algorithm.
A possible way to change the algorithm for eliminating this dependency is to use the
same counter for edges as used for traversing the pixels. This would imply that the
border pixels and edges are not skipped during the traversal. To avoid the effects of
this change in the next algorithms, the pixel index and reliability of each border edge
should be set to a negative (invalid) value during traversal and this condition must be
checked in the next algorithm for invalid edges.
After the above design change in the algorithm, data parallelism can be exploited in
this algorithm and Fig. 3.9 is also applicable to this algorithm.
To exploit computational parallelism, reliability values for horizontal and vertical edges
can be calculated in parallel in separate threads as shown in Fig. 3.12(A). Further
to combine computational and data parallelism the frame can be divided into a grid
or by rows and within these parts reliability for horizontal and vertical edges can be
calculated in parallel as shown in Fig. 3.12(B).

The second part is sorting of the edges by their reliability values in decreasing order.
Sorting operation is, of course not an embarrassingly parallel algorithm. However, a
number of approaches have been presented to gain from parallelism in sorting algorithms
[10]. We experiment with different parallel approaches to sorting in Chapter 4.

Precision requirements This algorithm does not involve many calculations and all
the operations are done using integers. There is nothing here where changing the current
precision would reduce the execution time.

Branching behavior From our analysis, we found that there are two conditional
branches in the loop whose result can be determined at the compilation time and hence
with slight modification to the algorithm, these branches can be removed.



3.1. PHASE UNWRAPPING 23

Thread 1:
Compute 
reliability 

for 
horizontal 

edges

Thread 2:
Compute 
reliability 

for vertical 
edges

Thread 1(a) Thread 2(a)

Thread 1(..)

Thread 1(N) Thread 2(N)

Thread 2(..)

(A) (B)
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Figure 3.13: A part of the image denoting pixels, edges and their reliability

3.1.2.3 Grouping and Unwrapping

With the reliability of edges calculated, the process of grouping and unwrapping begins.
As shown in the flowchart in Fig. 3.7, initially none of the pixels belong to any group.
Then, the edges are processed in decreasing order of their reliability values and pixels
are grouped and their phase values unwrapped according to the conditions shown in Fig.
3.7.

Parallelism The algorithm here changes the phase value of pixels based on one of
the edges that that the pixel has. If two edges which are formed by the same pixel
are processed in parallel, the phase value of that pixel would become non-deterministic.
Hence it is not possible to exploit parallelism.

For example, if we use two parallel threads to process the sorted list of edges. Then
the following case, illustrated with the help of Fig. 3.13 is possible. Since edge E3
would have considerably higher reliability value as compared to edge E2, it is possible
that two different threads process edges E3 and E2 at the same time. While thread 1
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would be unwrapping pixel P1 and P2 and modify their phase values, thread 2 would
be unwrapping pixel P2 and P4 and modifying their pixel values at the same time. This
would lead to non-deterministic behavior where phase value of P2 is non-deterministic.

Precision requirements The only calculation done here is the modification of phase
value, which is done in single precision and this cannot be changed due to the accuracy
requirements. All the other processing in this step of the algorithm is done using integers.

Branching behavior This phase has a lot of single and nested branches because of
the nature of the algorithm to classify and group pixels based on their reliability values.

Concluding the analysis of the phase unwrapping algorithm, we would like to say that
this algorithm presents an excellent opportunity to reduce execution time by exploiting
parallelism. Calculating pixel and edge reliability are embarrassingly parallel while the
reduction and sorting operations can be parallelized using a parallel divide and conquer
approach. The Grouping and unwrapping procedure is inherently serial and cannot be
parallelized but it only takes 1.2 ms and execution time can be reduced by using a faster
hardware platform.
Since the precision requirements in phase unwrapping are not critical and single precision
calculations suffice, we can efficiently use a broad spectrum of hardware platforms which
could further decrease the execution time.
We now discuss the second most time consuming algorithm, the Solve Zernike algorithm.

3.2 Solve Zernike

Solve Zernike algorithm is used to fit a Zernike polynomial curve on the data series. As
shown in Fig. 3.2 it computes the Zernike polynomial coefficients with phase, DC and
contrast values as inputs.

3.2.1 Introduction

The Solve Zernike function is the largest in terms of LOC out of the three functions
analyzed. The function can be divided into three logical steps.

1. Normalize and Remove.

2. Fit Zernike to Data.

3. Calculate Residual and Check Quality.

In this section we explain the algorithm by briefly explaining all the steps.

Normalize and Remove

In this step DC and contrast values are normalized and pixels with very low DC or
contrast values are removed from the “valid pixel list”. If the total number of rejected
pixels is high, the scan is aborted and an error is generated.
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Fit Zernike to Data

In this step, Eqn. 3.4 is solved using valid pixels. Here A is the Zernike matrix, G a
diagonal matrix with weights, w a vector with measured wave front and z the vector
with Zernike coefficients [11].

(ATGA) ∗ z = ATG ∗ w (3.4)

First the right-hand side of this equation is calculated:

B = ATG ∗ w (3.5)

It is a straightforward matrix multiplication. In the next step, the left-hand side
of Eqn. 3.4 is solved by Cholesky decomposition [12] of the matrix (ATGA) using the
LAPACK numerical library [13]. The result is a vector z with the Zernike coefficients.
Next we calculate the residuals using fitted Zernike coefficients.

Calculate Residual and Check Quality

To check the quality of the Zernike fit, the residuals are calculated by subtracting the
“calculated wave front values” from the measured wave front values. The residual is
calculated over all entries in the vector w using Eqn. 3.6.

Residual = w −A ∗ z (3.6)

If the residual for a pixel is higher than a threshold value, then the pixel is added to
the “flyer pixel list”. If the number of pixels in the list exceeds the allowable limit, then
a refit is performed (step 2-3). There is a limit for maximum number of refits which
allows for the algorithm to converge. If the residual values are still higher, an error is
generated and the scan is aborted.
Fig. 3.14 shows the data flow and dependencies between the three logical steps of the
Zernike fit algorithm.

3.2.2 Implementation and analysis

The algorithm is implemented using a lot of sequential steps where the output of a step
is input of the next one. The number of iterations of most of the loops is small and
not all loops are embarrassingly parallel. In this section we explain different parts of
the algorithm from the implementation perspective and present our analysis of these
components.

3.2.2.1 Normalize and Remove

Normalizing the DC and contrast values is done in a separate function which takes
700us. The grid is first divided into regions. The DC and contrast values of the
pixels are then normalized. This is done in two separate loops where the first loop
is used to calculate the number of pixels and summation of DC and contrast value
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Figure 3.14: Data flow diagram for Solve Zernike algorithm

per-region. The second loop is used for actually normalizing the DC and contrast
with respect to the summation values. This process is shown in the flowchart in Fig. 3.15.

Pixels with low DC or contrast values are removed in separate loops for the two
shearing directions. Processing in one shear direction is independent of the other shearing
direction and can be done in parallel.

Parallelism In the normalization phase, the first loop where the summation is cal-
culated exhibits coarse grained parallelism. The divide and conquer approach can be
used to exploit the coarse grained parallelism. In the phase unwrapping algorithm, we
proposed a parallel approach in the reduction operation for calculating the maximum
value. This is shown in Fig. 3.11. The same approach can be used for computing the
summation of all the DC and contrast values.
The second loop which normalizes all the values with respect to the sum is an embar-
rassingly parallel loop where iterations can be executed independently, in parallel and
the approach shown in Fig. 3.9 can be applied here.
During removal phase processing for two shearing directions is done sequentially. How-
ever, the operation is independent of the shearing directions and hence the valid pixels
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Figure 3.15: Flowchart for Normalize and Remove

list can be changed for both the shearing directions in parallel.

Precision requirements In this function DC and contrast values are used which
are stored in single precision, however their sum is stored in double precision and the
addition operation hence also becomes a double precision operation. This can be replaced
by changing the output variable to a single precision variable.

Branching behavior There are branches in the loop to check for different regions.
These are necessary and cannot be reduced.

3.2.2.2 Fit Zernike to Data

In this step, first a loop is used to solve the right side of Eqn. 3.4. According to our
measurement, the loop that multiplies the measurement vector (w) with the design
matrix (A) takes the longest time in the entire Solve Zernike function.
Next, the equation is solved by using Cholesky decomposition. This is done using an
ASML library function. The timing diagram in Fig. 3.16 shows that execution time for
this function is low, hence this function is not analyzed further.

Parallelism The loop in which measurement vector (w) is multiplied with the design
matrix (A) exhibits coarse grained parallelism which can be exploited. It is again
a reduction operation and strategy shown in Fig. 3.17 can be applied here where n
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Figure 3.16: Execution time for matrix-vector multiplication and Cholesky decomposi-
tion
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Figure 3.17: Parallel vector-matrix multiplication: Each thread processes a column or a
group of columns and computes one or more elements of the resulting vector. Different
colors represent different threads processing different columns in the process

threads can calculate different elements of resulting vector in parallel.

Precision requirements The matrix-vector multiplication is done using double pre-
cision. Changing the operation to single precision resulted in loss of accuracy and the
global requirements of accuracy (0.01 nm) were not met. Hence using double precision
cannot be avoided here.

Branching behavior There are no unnecessary conditional branches used in the al-
gorithm.
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Figure 3.18: Vector subtraction for two shear directions can be done in parallel with two
threads
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Figure 3.19: Subtraction of two vectors done by 1 thread per vector element for all
elements in parallel.

3.2.2.3 Calculate Residual and Check Quality

In this step, the Zernike polynomial coefficient vector (Z ) is multiplied to the design ma-
trix (A) as per Eqn. 3.6. In the next step the result is subtracted from the measurement
vector using two loops for two shear directions.

Parallelism The matrix vector multiplication operation is a reduction operation. The
strategy shown in Fig. 3.17 can also be applied here. The second operation of this
algorithm is subtraction of the resultant vector from the measurement vector. Currently,
it is done using two separate loops for two shear directions.

These two loops can also execute in parallel as they are independent of each other
as shown in Fig. 3.18 .The granularity of parallelism here can go up to per-element
operation as shown in Fig. 3.19.

Precision requirements All calculation in this algorithm are done using double pre-
cision and they are necessary to meet the accuracy requirements.
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Branching behavior There are no unnecessary branches used in the implementation
of this algorithm.

Concluding the analysis of Solve Zernike algorithm, we believe that this algorithm
would be difficult to parallelize and would still not give as much gain as can be expected in
the previous phase unwrapping algorithm. Instead of two big loops in phase unwrapping,
there are many small loops in this algorithm which are sequential. The loops except
for one, have lower number of iterations in comparison to loops in phase unwrapping
algorithm and are also not embarrassingly parallel.
Now, we analyze the algorithm which takes the least baseline execution time out of the
three time consuming algorithms identified.

3.3 Finalize Phase Fit

Finalize phase fit is part of the phase fit algorithm. In the Fast Zernike scan sequence,
Phase fitting is done to fit a sine curve to the phase values obtained. The process involves
constructing a sine curve which best fits the phase values obtained.

3.3.1 Introduction

Curve fitting is the process of constructing a curve, or mathematical function that has
the best fit to a series of data points, possibly subject to constraints. Curve fitting can
involve either interpolation, where an exact fit to the data is required, or smoothing, in
which a ”smooth” function is constructed that approximately fits the data.
The curve fitting algorithm used in the implementation consists of three steps:

Initialize Phase Fit Fitting the function exactly to the first three frames.

Update Phase Fit Recursively applying the rest of the frames to the fit.

Finalize Phase Fit Calculating phase from fit results.

This procedure starts with an exact fit of the first three frames, known as interpola-
tion. There are three unknowns (β1, β2, β3) for the function to be fitted in Eqn. 3.7.

Intensity = β1 + β2 ∗ cos(φ) + β3 ∗ sin(φ). (3.7)

To start, the first three frames for each shear direction need to be collected in memory.
The rest of the frames are processed as soon as they become available. After a frame has
been processed it is not needed any more and can in principle be overwritten in memory
by a new frame.
Then, for fourth and the fifth frame, a smoothing function is used which approximately
fits the data.
Finally after the fifth frame has passed through the smoothing function, the DC, phase
and contrast values are calculated in the third step using the Eqn. 3.8.
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Algorithm Baseline execution time (ms)

Update Phase Fit 0.24

Finalize Phase Fit 2.8

Table 3.2: Execution time of comparison of phase fit algorithms

Start

Stop

Calculate DC, contrast and phase 
value for each pixel

Figure 3.20: Flowchart for Finalize Phase Fit algorithm

DC = β1

Contrast =

{
0 ifβ1 ≤ 0√

β2
2+β

2
3

β1
ifβ1 > 0

}
(3.8)

Phase =

{
0 ifβ2andβ3 = 0

−atan2(β3β2 )

}
(3.9)

For our analysis, we only need to focus on the processing done on the fifth frame of
the second shear direction as it is done during the post processing time budget.

3.3.2 Implementation and analysis

The algorithm is implemented using three functions where each function represents the
steps of the algorithm which have been described in the previous section.
Out of the three functions, only Update Phase Fit and Finalize Phase Fit are exe-
cuted during the post processing time budget. Their execution time is shown in Table 3.2.

Since the execution time of Finalize Phase Fit algorithm is more than ten times the
execution time of Update Phase Fit and also contributes 15.38 % (Table 3.1) to the post
processing software execution time in our baseline, we focus on analyzing and reducing
the execution time of Finalize Phase Fit algorithm.
In this function, the DC, contrast and phase values are calculated for each pixel using
the three unknowns which were estimated after the second step of the algorithm. This
is done in a loop traversing all pixels in the grid.

While DC values are directly assigned, contrast and phase values are calculated using
Eqn. 3.8. Out of all the algorithms that we worked on during this project, this function
has the lowest number of (LOC).
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Figure 3.21: Computational parallelism in Finalize Phase Fit algorithm

Parallelism Finalize Phase Fit is an embarrassingly parallel algorithm where calcula-
tion of each pixel is completely independent of the other pixels. The algorithm is both
embarrassingly data parallel and embarrassingly compute parallel. On each pixel, DC,
Phase and contrast can be computed in parallel.
For data parallelism, Fig. 3.9 is also applicable to this algorithm. The possible way to
exploit computational parallelism is to calculate DC, phase and contrast values in three
separate threads for the entire grid as shown in Fig. 3.21.

Further to combine computational and data parallelism, DC, contrast and phase
values can be computed in parallel threads for each pixel. For e.g. each pixel can be
processed by 3 threads which each compute the DC, contrast and phase values for that
pixel. Total threads that can be used in parallel are three times the number of pixels.
However, overhead of creating parallel threads and accessing data from the memory
would be the limitation here which is dependent on different hardware platforms.

Precision requirements The computed phase, DC and contrast are stored as single
precision values. However, the inputs β1, β2, β3 from Eqn. 3.7 are stored as double
precision values. The functions used for the calculation of contrast and phase are also
double precision functions. There was no defined precision specification for this algorithm
and only the precision required in the Zernike polynomial coefficients is defined to be
0.01 nm.
We performed experiments by changing the inputs from double to single precision and
also changing the mathematical functions from double to single precision functions. We
were able to meet the precision requirements of the final Zernike polynomial coefficients
up to 0.0001 nm with the IEEE 754 floating point compliant units.
Hence, it is possible to use floating point calculations in this algorithm with reducing
the quality of the result but still meeting the budget.

Branching behavior There are constraints for calculation of phase and contrast as
shown in Eqn. 3.8 which introduce branching in the current implementation. We ana-
lyzed these branches and concluded that they are indeed required here and cannot be
removed.

To conclude, Finalize Phase Fit is an embarrassingly parallel algorithm. It is also the
smallest algorithm in terms of lines of code and the execution time is least out of the three
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analyzed algorithm. The effort required for parallel implementation for this algorithm
would be the least out of the three algorithms.

3.4 Conclusion

After analyzing the three time consuming algorithms, we find that there is sufficient
parallelism to exploit and a considerable performance gain on different hardware
platforms can be expected.
While Finalize Phase Fit is an embarrassingly parallel algorithm, the Phase Unwrapping
algorithm also has some embarrassingly parallel parts. The sorting and reduction
problems in Phase Unwrapping can also benefit from a parallel reduction approach.The
Phase Unwrapping algorithm also has a step which is sequential in nature and cannot
be parallelized. The performance gain here will come from a faster, single hardware
core. The Solve Zernike algorithm is complex and has a lot of sequential steps. These
steps themselves are loops, with small number of iterations.

Algorithm Parallelism Precision required

Phase Unwrapping Sufficient parallelism to exploit Single floating point, with no
loss in accuracy

Solve Zernike Low parallelism, sequential steps Mostly double precision, sin-
gle precision in some parts

Finalize Phase Fit Embarrassingly parallel Single floating point suffices,
double precision preferred for
accurate results

Table 3.3: Summary of analysis

Table 3.3 summarizes our analysis for the three algorithms. Since the parallel parts
of the algorithms are not continuous and there are some sequential parts in between the
algorithms, using an off-chip accelerator would require design choices to be made for
algorithm mapping considering the execution time and data transfer time between the
processor and the accelerator.
In the next chapter, we focus on different hardware platforms under consideration and
discuss how suitable are these analyzed algorithms for execution on multicore and many
core hardware platforms and what performance gain could be expected for these algo-
rithms and the entire post processing software stack.
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Hardware Platforms 4
Having analyzed the time consuming algorithms in Chapter 3, we now focus on hardware
platforms. In this chapter we first discuss about the need of the investigation to find
a new multicore hardware platform and expectations from it. Next, we introduce the
multicore hardware platforms and different programming models under consideration.
Then a discussion is presented on the choice of metrics on which these platforms will be
compared. We also rank these metrics according to their importance from the PARIS
sensor system development group’s perspective.
We compare the hardware platforms under consideration on these metrics. Based on
the comparison of hardware platforms on the ranked comparison metrics, we propose a
suitable hardware platform and programming tools for the PARIS sensor system.

4.1 Need of a dedicated hardware platform

We introduced the current hardware platform for the PARIS sensor system in Chapter 2
but we now focus on the need of a new hardware platform and some expectations from it.
From Fig. 2.6, it is clear that using a shared SUN M3000 for PARIS computations results
in variable execution time. Using two separate processing units (PowerPC board and
SUN M3000) connected using an Ethernet network which is shared across the machine
leads to non-deterministic data transfer time, adding to the variability of the execution
time. The combined effect of these two problems leads to a condition where the WCET
deadline is not met.
Since the PARIS sensor system is still in development phase and frequent addition of
algorithms is done, it is necessary that the execution time of the current algorithms be
reduced so that there is enough capacity for future additions.
A solution to this problem could be to use a dedicated hardware platform for the PARIS
sensor system which can atleast reduce the execution time of the current algorithms
by a factor of two. This solution solves all current problems related to execution time.
Since it is a dedicated hardware platform, the execution time can be expected to be
deterministic. Using a single platform reduces the amount of data transferred over the
Ethernet network. Instead of transferring data for processing (approximately 161 KB
per-frame, for ten frames), only the final computed results (approximately 1.75 KB) will
be transferred over the Ethernet network. This decreases the load over the network and
also the transfer time. This reduction is beneficial not just for the PARIS sensor system
but also good for other systems which use the Ethernet network to transfer results of
their computation to the central SUN M3000 system.

PARIS sensor application presents parallelism at a high abstraction level where each
field point can be processed independently in parallel with other field points. Further,
we analyzed that the time consuming algorithms present an opportunity to exploit par-

35
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Figure 4.1: Performance increases while frequency decreases in dual-core processor [1]

allelism at a lower abstraction level. Exploiting this parallelism to reduce the execution
time is an obvious choice. A platform with at least seven cores allows each field point to
be processed on a separate core, with no communication required. A platform capable
of executing at least 14 threads in parallel allows the processing of each field point to
be split up across at least two threads.
We now introduce different multicore platforms under consideration for our investigation.

4.2 Hardware platforms under consideration

In the past decade, the computing industry has experienced a paradigm shift from single
to multicore processors. This shift was primarily induced by increase in the power con-
sumption of the high frequency single core chips which resulted in high heat dissipation.
With increasing the frequency of the chip no longer a viable option, the performance of
single core chips was stalling [1].
The multicore design enables two or more cores to run at somewhat slower speeds and
at much lower temperatures. The combined throughput of these cores delivers a pro-
cessing power greater than the maximum available today on single-core processors and
at a much lower level of power consumption [1] as shown in Fig. 4.1.

The improvement in performance gained by the use of a multicore processor is highly
dependent on the algorithms used and their implementation. In particular, possible gains
are limited by the fraction of algorithm that can be run in parallel on multiple cores;
this effect is described by the Amdahl’s law [14]. In the best case, so-called embarrass-
ingly parallel algorithms may realize speedup factors near the number of cores. Most
applications, however, are not accelerated that much. The parallelization of software is
a significant on-going topic of research.
With the advent of multicore processors, selecting the optimal hardware platform for the
software has become a critical problem. There are no well laid rules to select a hardware
platform based on the characteristics of the application.
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Figure 4.2: Hardware platforms under consideration

In this section we introduce all the hardware platforms under consideration (shown in
Fig. 4.2) and discuss their architecture, libraries and standards that are used to program
them.

4.2.1 Multicore CPU

A multicore processor implements multiprocessing in a single physical package. De-
signers may couple cores in a multicore device tightly or loosely. Tightly coupled cores
share more resources than loosely coupled cores. For example, cores may or may not
share caches and they may implement message passing or shared memory inter-core
communication methods.

Multicore systems deliver benefits to multi-threaded programs. The only way to
exploit the available CPU cores efficiently is through parallelism. So far, parallelism is
mainly being used by operating systems at the process level to provide a seamless multi-
tasking, multiprocessing experience. On the application-development side, thread-based
concurrent programming is the predominant mechanism for implementing parallelism.
In May 2007, Intel fellow, Shekhar Borkar stated that “The software has to also start
following Moore’s Law, software has to double the amount of parallelism that it can
support every two years” [15]. Since the number of cores in a processor is set to increase
to keep with Moore’s Law, it only makes sense that the software running on these cores
takes this into account [16].

Programming Models

To develop multithreaded applications a number of programming models, libraries and
standards have been developed. Some of these are OpenMP [17], Pthreads [18] and
other proprietary libraries like Intel thread building blocks (Intel TBB) [19]. For this
thesis, the OpenMP and Pthreads libraries were considered for implementation. Both
the libraries have their own positives and negatives and there are a number of articles
comparing the two [20, 21]. Based on the comparison in the articles and analysis of the
algorithms in Chapter 3, it was decided that if multicore CPUs are to be used as a
platform for PARIS, then OpenMP would be used to exploit the parallelism.
To utilize multiple-cores or processors, it is needed that some parts of the code are
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Figure 4.3: Comparison between GPU and CPU design strategy.

written to be executed in parallel. This is usually done by creating multiple threads
and assigning each thread to a part of the application to be executed. The OpenMP
API covers user-directed parallelization, wherein the programmer explicitly specifies the
actions to be taken by the compiler and runtime system in order to execute the program
in parallel. OpenMP-compliant implementations do not check for data dependencies,
data conflicts, race conditions, or deadlocks, any of which may occur in conforming
programs. Application developers are responsible for correctly using the OpenMP API
to produce a conforming program. Following is a basic example, to show the usage of
an OpenMP API to parallelize a for loop.

1 #pragma omp p a r a l l e l for
2 for ( int i = 0 ; i < 512 ; i++)
3 {
4 array [ i ] = array [ i ] ∗ array [ i ] ;
5 }

In this example the directive # pragma omp parallel for gives a message to the
compiler that the content within the brackets can be executed in parallel. The content
in the for-loop will then be compiled in such way that it will be executed in parallel.

4.2.2 Graphics Processing Unit

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 256 as
“the world’s first GPU”. GPUs were developed with the intention to off load the CPU
of tasks typical to graphical, image and video processing and execute them on the GPU.
A GPU is tailored for compute intensive, highly parallel operations and for this reason;
GPUs have many parallel execution units and lower clock speed. GPUs have faster and
advanced memory interfaces as they need to shift around a lot more data than CPUs.

The GPU and CPU design strategy are compared in Fig. 4.3. The CPUs dedicate
chip area and transistors to execute one or a few threads as fast as possible by providing
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an intelligent control unit with speculative, out of order execution, a faster on chip
memory for low data access latency etc. The GPUs, on the contrary use the high
transistor count to make the workload (as many threads as possible) run as fast as
possible.
At the level of abstraction in Fig. 4.3, the GPU looks like sea of computational units
with only a few support elements an illustration of the key GPU design goal, which
is to maximize floating-point throughput. Since most of the circuitry within each
core is dedicated to computation, rather than speculative features meant to enhance
single-threaded performance, most of the die area and power consumed by a GPU goes
into the application’s actual algorithmic work.

GPU computing is not meant to replace CPU computing. Each approach has ad-
vantages for certain kinds of software. CPUs are optimized for applications where most
of the work is being done by a limited number of threads, especially where the threads
exhibit high data locality, a mix of different operations, and a high percentage of condi-
tional branches.
GPU design aims at the other end of the spectrum: applications with multiple threads
that are dominated by longer sequences of computational instructions. Over the last few
years, GPUs have become much better at thread handling, data caching, virtual mem-
ory management, flow control, and other CPU-like features, but the distinction between
computationally intensive software and control-flow intensive software is fundamental.
The GPU available for experimentation during this thesis is based on the Fermi archi-
tecture [22] by NVIDIA. In a personal computer, a GPU can be present on a video card
and connected to the CPU via PCIe as shown in Fig. 4.4 or in certain CPUs, on the
CPU die (Intel Integrated Graphics, AMD APUs).

Programming Models

Efforts to exploit the GPU for non-graphical applications have been underway since
2003. GPUs were programmed using high-level shading languages such as DirectX [23],
OpenGL [24]. These early efforts that used graphics APIs for general purpose computing
were known as GPGPU programs.
While the GPGPU model demonstrated spectacular performance improvements, it faced
several problems. The programmer had to possess intimate knowledge of graphics APIs
and GPU architecture which made programming the GPU a very complex task. Basic
programming features such as random reads and writes to memory, double precision
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calculations, were not supported. This meant that most scientific applications could not
be run on the GPU.
To address these problems, NVIDIA introduced CUDA [4] which enabled the GPU to be
programmed with a variety of high level languages. Instead of programming dedicated
graphics units with graphics APIs, the programmer could now write C programs with
CUDA extensions and target a general purpose, massively parallel processor. Different
standards have been developed since then to program the GPUs including OpenCL and
OpenACC.
An open standard, OpenCL [25] can be used for writing programs that execute across
heterogeneous platforms consisting of CPUs, GPUs and other processors. It includes
a language for writing kernels (functions that execute on OpenCL devices) and APIs
that are used to define and then control the platforms. OpenCL can be used to give an
application access to a GPU for non-graphical computing.

OpenACC is another open programming standard for parallel computing which has
been developed by Cray, Nvidia and PGI [26]. It is designed to simplify programming
of heterogeneous CPU/GPU systems [27].
Similar to OpenMP, the programmer can annotate C, C++ source code to identify the
areas that should be accelerated using PRAGMA compiler directives and additional
functions. Unlike OpenMP, code can be started not only on the CPU, but also on the
GPU. This makes programming the GPU easier as the programmer does not have to
worry about explicit memory transfers.
However, OpenACC is new and the drivers for the GPU are not yet mature. The ease
in programmability comes at a cost of execution time performance [28]. In a real time
system like PARIS, where performance is a high priority, OpenACC, in its current state
of development cannot be used.
An important capability which was required to implement PARIS sensor system
algorithms on a GPU was the asynchronous execution on CPU and GPU, such that
data transfer overhead between the two could be minimized. This is not yet efficiently
implemented in OpenCL [29]. Hence it is proposed that if GPUs are chosen as a
hardware platform for the PARIS sensor system, then CUDA would be used for devel-
opment. An implication of using CUDA is that we become dependent on NVIDA as a
sole developer of GPUs that support CUDA. Until OpenCL implements asynchronous
execution features efficiently, this is the only possible choice.
In NVIDIA’s CUDA software platform, the computational elements of algorithms which
execute on the GPU are known as kernels. These kernels can blend with the existing
code and only the code executing on the GPU and related CUDA API calls need
to be added. An application or library function may consist of one or more kernels.
Kernels can be written in the C language extended with additional keywords to express
parallelism directly rather than through the usual looping constructs.
Once compiled, kernels consist of many threads that execute the same operation in
parallel: one thread is like an iteration of a loop. Multiple threads are grouped into
thread blocks. All of the threads in a thread block can cooperate and share memory as
shown in Fig. 4.5.
Thread blocks can coordinate the use of global shared memory among them but may
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execute in any order, concurrently or sequentially. We present a simple example of how
a CUDA kernel which finds the square of the elements in an array is called.

Figure 4.5: CUDA thread hierarchy. [2]

1 int e lements = 512 ; // number o f e lements
2 int threads = 32 ; // number o f threads , to be de f ined by the programmer
3 f loat ∗C array , ∗G array ; // po in t e r s f o r array on CPU and GPU
4 . . . . . // a l l o c a t e memory on CPU and GPU
5 . . . . . // t r an s f e r array e lements to GPU
6 cudaSqKernel<<e lements / threads , threads>>(G array ) // CUDA kerne l c a l l e d
7 . . . . . // t r an s f e r r e s u l t from GPU to CPU
8 . . . . . // f r e e memory

1 // This example assumes t ha t the array e lements have been t r an s f e r r e d
e x p l i c i t l y to the GPU memory .

2 g l o b a l void cudaSqKernel ( f loat ∗ array )
3 {
4 int i = blockIdx . x ∗ blockDim . x + threadIdx . x ; // indexer de f ined wi th

i n t e r n a l CUDA va r i a b l e s
5 array [ i ] = array [ i ] ∗ array [ i ] ; // square opera t ion
6 }

4.2.3 Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to
be configured by a customer or a designer after manufacturing. There are several
manufacturers that produce FPGAs. A couple of these are Xilinx and Altera. Each of
these manufacturers have their own architectural implementation, but the basics are
the same. This thesis will refer to the architectural implementation of Xilinx, because
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Figure 4.6: FPGA internal structure based on the Xilinx architecture style [3]

Figure 4.7: Internal structure of a CLB [3]

the Xilinx Vivado, discussed in this section, is used in this thesis for experiments. The
basics of an FPGA architecture are shown in Fig. 4.6 [3].

An FPGA is a semiconductor device consisting of configurable logic blocks (CLBs),
interconnects, and input output blocks (IOBs) that allow implementing complex digital
circuits. On the outside of the FPGA the IOBs form a ring for connection I/O pins
that are situated on the exterior of the FPGA. Inside this ring lies a rectangular
array of logic blocks.As shown in Fig. 4.7, a typical FPGA logic block consists of a
lookup table (LUT) and a flip-flop. Modern FPGA devices also include higher-level
functionality such as Digital Signal Processing (DSP), high-speed IOBs, embedded
memories (BRAM) and embedded processors. The programmable interconnect wires
are required to connect CLBs to other CLBs and CLBs to IOBs.
Modern FPGAs consist of tens of thousands of CLBs and a large programmable
interconnection network.

FPGAs can be reprogrammed many times to perform a different function. For pro-
gramming the FPGA, code written in a Hardware Description Language (HDL) is used,
for example VHDL [30]. With the inheritance of speed and parallelism from a hardware
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solution, FPGA-based co-processors are used to execute compute intensive tasks while
maintaining the flexibility of a software programmable solution.
For the PARIS development team, it was necessary to keep abstraction level high and
not to focus on hardware development. The team that develops PARIS has little or no
knowledge about hardware development languages and FPGAs. Migrating from current
PARIS software code to VHDL would also be time consuming. Using FPGAs was only
possible with a tool which could translate C code to VHDL or if, using VHDL develop-
ment with FPGAs was the only possible option and no other hardware platforms were
found suitable.

Xilinx Vivado Design Suite

The Vivado Design Suite is a system-centric design environment that accelerates IP
development and integration. It enables designs to be created easily, meet timing more
quickly, and automate the developer’s preferred design flow [31].

Vivado accelerates design implementation and verification by enabling C, C++ spec-
ifications to be directly synthesized into VHDL or Verilog, after exploring a multitude
of micro-architectures based on design requirements. Functional simulation can be per-
formed in C, providing order of magnitude acceleration over VHDL or Verilog simulation.
This provides a faster and more robust way of delivering quality designs [31].

The keys benefits of Vivado are:

• Integrated Eclipse C Development Tool environment to specify, compile, simulate,
and debug C/C++/SystemC

• Automatic extraction of parallelism at instruction level and task level

• Automated verification through co-simulation with original C-based test bench

We did experiments with the Vivado and started with the Finalize Phase Fit algo-
rithm. The reasons for choosing this algorithm were:

• Smallest algorithm in terms of LOC.

• Embarrassingly parallel.

In our experiments, we were not able to directly generate the parallel implementation
of the algorithm because:

• The algorithm uses arctangent function of the math library. The current version
of Vivado (2012.2) does not support it.

• The C to VHDL translator fails to parallelize the algorithm if there is a mathemat-
ical operation being performed inside a conditional branch which is in the parallel
algorithm.

Although there were workarounds to these problems, implementing these
workarounds in PARIS software stack would be a laborious task. Besides a number
of math library functions, other functions such as sorting and reduction which are di-
rectly available with Standard Template Library (STL) are not yet supported by Vivado.
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These functions are needed in abundance in the measurement systems group because of
the nature and application of the algorithms.
Hence, after a discussion with the PARIS development team representative, we concluded
that in the current level of maturity, it is not possible to use tools like Vivado. However
there is definite potential for future development in such technologies.

Since traditional HDL development would have a high organizational impact and
would require too much effort for the PARIS development team and Vivado cannot be
used, we do not consider the possibility of using a FPGA based hardware platform in
further analysis.

4.3 Comparison metrics

To compare the hardware platforms under consideration for the PARIS sensor system,
we defined and ranked a set of comparison metrics. These comparison metrics include
not only quantifiable metrics such as application speedup, precision requirements, cost
etc. but also include on non-quantifiable metrics (within the scope of this thesis) which
are important for the PARIS development team. We present these metrics in order of
their importance.

1. Application speedup
Application speedup was considered to be a highest priority metric. Speeding up
the PARIS sensor application on the dedicated platform would mean that there is
enough computational budget for future enhancements and addition of computa-
tion algorithms to the sensor application.

2. Execution time variation
In Chapter 2, we showed with the measurements on the machine that using shared
computing resources for PARIS resulted in high variation of execution time. This
is a major problem in a real-time system such as PARIS. Hence execution time
variation is a very important metric and it is expected from the proposed hardware
platform that the execution time is deterministic within milliseconds precision.

3. Precision requirements
We know that the final precision required in Zernike polynomial coefficients is
0.001 nm. In Chapter 3, we discussed that some of the algorithms in the PARIS
software stack require calculations to be performed in double precision. Hence,
it is important that the proposed hardware platform is able to provide support
for double precision calculations without a high penalty in the execution time
performance.

4. Development time and cost
The time and cost needed to make the changes in the software are also an issue
of concern. Since the PARIS sensor system is still in its early days, constant
modifications are made to the algorithms. Sometimes, new algorithms are added
to the execution sequence. The costs incurred and time spent in maintenance and
iterative development is thus also an important metric.
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5. Match with competencies
The current team working on the PARIS sensor has a good understanding of the
PARIS sensor system. It is important that the team is able to work with the new
hardware platform without too much effort needed to understand the complexities
of the new platform and development models.

6. Maturity of tools
The platform proposed for the PARIS sensor system should be well supported and
the tools used for development should be mature. Mature tools with good support
will reduce the development time required. Thus, it is important that the tools
used for PARIS sensor software are developer friendly and mature.

7. Manufacturers and Vendors
A preference for any organization is that it should not be dependent on one man-
ufacturer for the hardware platform. Since the development efforts based on the
platform will have associated cost and time, we would not want to be in a situation
where the hardware platform is no longer supported/available by the manufacturer
while ASML still needs it for their machines. Thus we would like to have clear
knowledge about the lifetime of the platform, road-map for the future etc.

8. Cost of platform and tools
ASML is a low volume manufacturing company and the PARIS system is a small
part of the manufacturing cost. The actual cost of the hardware platform (within
comparable limits) is of least importance to ASML out of the concerned metrics.

4.4 Hardware platform comparison

In this section, we present the comparison of the hardware platforms based on the metrics
defined in the previous section. The details and results of the experiments conducted to
measure the quantifiable metrics are also presented within the comparison.

1. Application speedup
Since Application speedup is a high priority metric, we conducted a number
of experiments to estimate and predict the speedup that would be possible by
deploying the PARIS sensor application on different hardware platforms. The goal
of these experiments was not only identifying a particular hardware platform but,
finding out how the application speedup scales up with increasing the number of
cores/ threads etc. and compare it with theoretical estimates. We share some of
the results in this section.
To do these experiments, we separated the three most time consuming algorithms
from rest of the application which were identified in Chapter 3. These in total
constitute 88 % of the execution time and provide sufficient representation of
the post processing software. Separating these algorithms would make the
experimentation less time consuming.
Since the seven PARIS processes are completely independent of each other and
require no communication in between them, we decided to experiment with only
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Figure 4.8: Finalize Phase Fit algorithm on different hardware platforms.

one PARIS process at this stage. If all seven PARIS processes would execute,
the overhead of executing seven processes on a platform with less number of
cores would dominate. To get the real computation time for the algorithms and
estimate the number of cores required for optimal execution, this was necessary.
To consider the possibility of exploiting parallelism, within one PARIS process,
the above step was necessary because of the limited number of cores available
in the experimental multicore CPU platform available. In Chapter 6 we also do
experiments with two and four PARIS processes executing on the multicore CPU.

Experiment 1: Embarrassingly parallel algorithm
The first experiment we conducted was with the Finalize Phase Fit algorithm as
it represents the category of embarrassingly parallel, computation intensive algo-
rithms. For the CPU, the implementation was straightforward and required only
the insertion of OpenMP pragmas to experiment with parallelism. The GPU im-
plementation required the use of CUDA APIs to first transfer the input array to
GPU and then let the CUDA cores process the data in parallel and then transfer
the results back to CPU.

The results of this experiment are shown in the graph in Fig. 4.8. The baseline
execution time for the algorithm on SUN M3000 is 2.8 ms. With two threads, the
execution time reduces to 2 ms. On Intel i7, the single thread implementation is
about three times faster than the implementation on SUN M3000.
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Figure 4.9: Speedup of Finalize Phase Fit algorithm vs. number of threads.

This can be attributed to improved architecture of i7 with faster data access and
on chip accelerators for mathematical operations.
With 4 threads, the performance further improves. However, as shown in Fig. 4.9
the core utilization drops, and the application speedup does not scale up linearly
with increase in number of threads, in spite of the algorithm being embarrassingly
parallel.This can be attributed to high number of cache misses and cache flushing
when multiple threads want to have different data in the cache at the same time.
The optimal core utilization is achieved with one or two threads for both SUN
M3000 and Intel i7. With this experiment, we conclude that Intel i7 is better in
terms of speedup and core utilization when compared to SUN M3000.

On the GPU, we get a speedup of around 100x in the execution time. However,
this does not include the time spent in transferring data from CPU to GPU and
vice versa. If we add that up, the total time becomes 300µs and the speedup
reduces to about 9x when compared to the baseline on SUN M3000. This gives
us an indication that transferring of data between the CPU and GPU via the
PCIe bus, using the CUDA API is a bottleneck and would require optimization.
More details about the GPU implementation and data transfer time are shared in
Chapter 5.

Experiment 2: Partially parallel, sorting algorithm

We decided to experiment with a partially parallel, sorting algorithm which is
part of the Phase Unwrapping algorithm 3.1.2.2 and is used to sort an array
of structures. Currently the qsort function of the STL library [32] is used.
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Figure 4.10: Sorting implementation with different threads on experimental hardware
platforms

Although sorting is not an embarrassingly parallel algorithm, a number of parallel
approaches to sorting exist. For sorting on multicore CPUs, we experimented
with a combination of OpenMP and qsort implementation. The results from our
best implementation are shown in Fig. 4.10. For sorting operations on the GPU,
we were able to find a number of papers that established the fact the sorting
operation shows performance gain on GPUs [33–35]. However, all the research
work focused on large data sets (1- 10 million elements or more). To the best of our
knowledge, we could find limited mention and no reference to any research work
on estimating the performance of sorting algorithms on GPUs with small data sets.

On the GPU, with modifications to the structure being sorted, we were able
to use the Thrust library [36]. Details of these modifications are discussed in
Chapter 5. The results of the experiments on sorting algorithm are shown in
Fig. 4.10. While the baseline execution time is 3401µs, the execution time of
our OpenMP parallel implementation is 820µs with two threads on Intel i7, a
speedup of more than 4x. For our GPU implementation using the Thrust library,
the execution time is 483µs, a speedup of more than 7x. With the results of
these experiments, we conclude that a parallel approach to sorting is possible and
provides definite gains. The general line of thought suggests that GPUs are only
suitable for embarrassingly parallel algorithms, or for partially parallel algorithms
that work on huge data sets. From our experiments, we show that even for small
data set (∼32000 elements), a partially parallel operation like sorting does show
considerable performance improvement.
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Implementation Execution time (ms) Speedup

Baseline 18.60

Seven threads on SUN
M3000

17.8 1.05x

Seven threads on quad-
core Intel i7

9.5 1.97x

Table 4.1: Execution time and speedup of seven field point implementation on CPUs

Experiment 3: Finalize Phase Fit and Phase Unwrapping on multicore
CPUs

In this experiment, we worked with seven field points instead of one. This was done
to understand how the performance scales up on CPU when seven field points are
processed in parallel. We implemented Finalize Phase Fit and Phase Unwrapping
algorithms on the CPU. In Chapter 5 we discuss the GPU implementation of these
two algorithms for seven field points. This experiment serves as a benchmark to
compare the GPU and CPU performance for these two algorithms for seven field
points.
The results of this experiment are discussed in Table 4.1. The baseline time for
these two algorithms for seven field points has been estimated using calculations
shown in Appendix C.

Having analyzed the algorithms in previous chapter and based on the results of
the experiments presented in this chapter we can estimate the PARIS performance
on CPUs. On a 4 core intel i7, we expect a speedup of approximately 2x in
the post processing software execution based on the results discussed in Table
4.1. Extrapolating these results, we expect a 3-4x speedup in the post processing
software if the application is deployed on a similar platform as the experimental
CPU platform but with 8 cores instead of 4.
From our experiments we found that considerable effort would be required to deploy
the application on the GPU, but that effort spent would also provide considerable
performance gain. We also conclude from our experiments with the GPU the
following:

(a) Communication overhead between CPU and GPU dominates and hence only
those functions whose execution time on GPU and the time required for com-
munication is less than the execution time on the CPU, should be mapped to
GPU.

(b) To avoid communication over PCIe, preferably, only functions that execute
one after the other in continuation should be mapped on the GPU.

(c) Not every algorithm maps well on the GPU. Control-flow intensive, nonpar-
allel algorithms generally do not show double digit performance gain on the
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GPU and hence should only be mapped if they fall between two algorithms
that show considerable performance gain on the GPU.

(d) Mapping the algorithms on the GPU might require restructuring the data
structures to optimize the performance. Memory hierarchy of the GPU should
be exploited for higher gain.

Based on the results of the experiments we expect a speedup of around 10x for the
algorithms mapped on the GPU. This would mean a 5-7x speedup for the entire
post processing software when compared to average baseline (∼40 ms).

Summarizing this discussion on execution time speedup, we expect to see a 3-4 x
speedup on a octa-core CPU and 5-7 x speedup on the GPU. The speedup achieved
on the GPU will highly depend on the deployment strategy and optimization of
data transfers between CPU and GPU and vice versa.

2. Execution time variation
During our experiments on the dedicated hardware platforms, we observed varia-
tion in execution time within milliseconds precision. According to the guidelines,
this is acceptable. The dominating reason for this variation is the non-real time
operating system being used. Addition of GPU as an accelerator does not cause
any noticeable change in the variation of the execution time.

3. Precision requirements
CPUs and modern day GPUs both provide support for double precision arithmetic
and hence both the platforms are able to meet the precision requirements. On
GPUs however, double precision arithmetic is considerably slower than single pre-
cision arithmetic as shown in Fig. 4.11. Hence, care should be taken to avoid
double precision arithmetic wherever possible for better performance on GPUs.

4. Development time and cost
Development on multicore CPUs would require the use of OpenMP to exploit paral-
lelism while using GPUs implies using CUDA APIs and explicit memory transfers.
Although, GPU development cost will be somewhat higher, we do not expect much
difference in development time. There are only three time consuming algorithms
out of which only two have sufficient parallelism to be mapped onto the GPU
which is already being done in this thesis. However, maintenance might become
an issue as addition of new algorithms would require further analysis to decide
if they should be mapped on the GPU or the multicore CPU. Thus, we expect
development time and cost to be higher for GPU based hardware platform.

5. Match with the competencies
Both OpenMP and CUDA would be new for the group. During our experiments,
we found that OpenMP was easier to get acquainted with while CUDA took more
time. Although, this is an opinion but, we expect the same for the group working
for PARIS sensor software development.
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Figure 4.11: Theoretical floating point operations per second of various CPUs and GPUs.
[4]

6. Maturity of the tools
OpenMP has been in use for more than 15 years while CUDA is still less than
10 years old. However, in the past few years CUDA has been extensively used
to exploit the powerful GPUs for general/scientific computing. While the GNU
debugger is capable of debugging OpenMP programs, tools provided by NVIDIA
have to be used for development, debugging and optimizing CUDA code. These
tools are advanced, mature and provide a graphical, interactive interface to the
developers. For both the programming models, OpenMP and CUDA, extensive
support is available online on public forums. NVIDIA also has a strong presence
in online forums and can also provide dedicated support for the tools if required.
Therefore, we find no major difference between the two hardware platforms in
terms of maturity of tools, on the other hand, if present trends of interest [37]
continue, we expect to see much more active development in GPU programming
using CUDA.

7. Manufacturers and vendors
There are a number of manufacturers for multicore CPU like Intel, AMD, IBM etc.
and there is a wide variety of options to choose from. OpenMP being an open,
portable standard, does not reduce the platform choice in multicore CPU domain.
There are also a number of programming models for GPUs. However, currently,
we can only use CUDA because of the specific needs of our application. Hence we
are limited to using only NVIDIA GPUs. This is one of the major drawbacks for
opting for a GPU based solution. However, NVIDIA’s GPU architecture roadmap
in Fig. 4.12 is a positive. NVIDIA has been able to meet the targets that it has
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Figure 4.12: NVIDIA architecture development roadmap

set in the past with Tesla and Fermi architectures. The new Kepler architecture
is also out in the market and as we see in Chapter 5, it would provide further
acceleration for our GPU implementation. The architecture specification of the
Volta, set to be released in 2016 have already been presented by NVIDIA and they
plan to wait till 2020 before releasing the next architecture. NVIDIA’s support
and backward compatibility for it’s earliest CUDA GPUs makes it easier to choose
NVIDIA GPUs.
Besides CUDA, OpenCL and OpenAcc discussed in section 4.2.2 are two open
standard for GPU development that are promising. If they include the capability
of asynchronous execution on CPU and GPU in future, it will be possible to use
them for the PARIS sensor system. This would allow to consider other GPU
manufacturer, ATI.

8. Cost of platform and tools
A GPU based platform would always need a CPU. The GPU acts as a “co-
processor” to the CPU. In our case we would require the same multicore CPU
in both the platform choices. Hence, the cost of a GPU based platform would
be higher. However, the GPU used for experiments only costs $350 USD [38] and
therefore the platform cost difference is insignificant. There might be however other
hardware costs associated with using GPUs, such as using extra cooling solutions,
etc.. Study of these costs is beyond the scope of this thesis and left as future work.

In Table 4.2, we summarize the comparison of hardware platforms.
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Metric Proposed multicore
CPU

Proposed multicore CPU with
GPU

Application
speedup

3-4x a 5-7x b

Execution time
variation

Deterministic with mil-
liseconds precision

Deterministic with millisec-
onds precision

Precision No effect on perfor-
mance

Performance decreases if dou-
ble precision is used

Development
time and cost

Low Medium

Match with com-
petencies

High Medium

Maturity of tools High High c

Manufacturers
and vendors

Intel, IBM, AMD etc. NVIDIA, ATI d

Cost of platform
and tools

Low Slightly higher

Table 4.2: Summary of hardware platform comparison

aOcta-core CPU
bWith an efficient deployment strategy reducing the data transfer time
cBesides CUDA, OpenCl and OpenAcc are promising technologies
dATI GPUs can only be used in future if OpenCL or OpenAcc is used

4.5 Proposed hardware platform

Based on the analysis of the PARIS post processing software, comparison of hardware
platforms and discussion with PARIS software development group, we decided to inves-
tigate the performance of the PARIS software stack on a GPU based hardware platform.
With this prototype we will try to achieve the estimated performance gain (Table 4.2)
practically when all seven detector ROIs are processed in parallel.
While the multicore CPU performance estimation is easier, GPU performance is a dif-
ficult task without actually implementing a prototype. With seven parallel processes
running, GPU performance estimation becomes even more difficult. This prototype will
help us estimate the performance of the PARIS software stack on the GPU based hard-
ware platform.
Going for a GPU based solution in this thesis would help the sensor development teams
to understand the capability of the hardware platform which would not have been pos-
sible for them in their normal work schedule. The GPU based hardware platform, if it
is able to meet the estimated performance gain would provide a long term solution for
the PARIS sensor software stack and also create an option to exploit for other sensor
development teams in future.
An important research contribution of this prototype implementation would be an es-
timation of the performance of different types of algorithms (embarrassingly, partially
parallel) on GPUs if they work on small data sets and have real time requirements.
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In the next chapter we discuss the prototype implementation on the GPU, the opti-
mizations made and their performance gain.



Prototype Implementation and
Optimizations 5
In this chapter we discuss the prototype implementation developed. We present the
optimizations made and the performance gain achieved in various steps, leading to the
final prototype implementation. We analyze the implementation in terms of resource
utilization of critical parts and discuss how we propose to improve it. Limitations due
to hardware platform and possibilities for further speeding up the algorithm are also
discussed wherever possible.
After discussing the implementation steps, we present the performance details of the
prototype implementation.

5.1 Deployment decisions

Based on the analysis of algorithms in Chapter 3 and architecture study of hardware
platforms in Chapter 4 we discussed and compared a number of deployment strategies. At
an algorithmic level, we could eliminate most of the approaches based on the conclusions
drawn from experiments on the GPU in Chapter 4. We discuss two strategies here
which are similar at an algorithmic level but different on a system level. We could not
conclude which strategy would give better system performance based on logic, previous
experiments and knowledge about GPU capabilities. We implement both the strategies
and compare the system execution time to conclude which is better for the system.

Fig. 5.1 shows how algorithms could be mapped on the CPU-GPU hardware platform
for a single field point. To process seven field points on the platform efficiently and
execute algorithms asynchronously, we make use of “CUDA streams”. For an optimal
execution, we expect an execution time line similar to one shown in Fig. 5.2. The time
line shows how two field points will be processed on the new platform. The figure can
easily be extended for seven field points. The “can do processing” phase in each field
point processing can be used to execute algorithms on CPU in parallel to GPU execution.
This will allow us to utilize the precious CPU time efficiently.
In the GPU available for experimentation, it is not possible to process different field
points in parallel. We discuss about this limitation further in the chapter.
Strategy 1 is shown in Fig. 5.1 on the proposed multicore hardware platform and is also
discussed next.

Strategy 1

1. The Finalize Phase Fit algorithm, being embarrassingly parallel is deployed on the
GPU.

55



56 CHAPTER 5. PROTOTYPE IMPLEMENTATION AND OPTIMIZATIONS

Zernike polynomial 
coefficients.

Pixel reliability 
value per-pixel

Phase Unwrapping

Finalize 
Phase Fit

PCIe bus

Compute 
Pixel 

Reliability

Compute 
Edge 

Reliability

Unwrapped phase 
value per-pixel

Grouping 
And

 Unwrapping

Fit 
Zernike to 

data

DC, wrapped phase and 
contrast values for each 

pixel

DC and 
contrast 

value per -
pixel

Phase fit parameters 
(β1,β2,β3) per- pixel

CPU GPU

Edge reliability and pixel 
index value for each 

edge 

Normalize 
& remove

Calculate 
Residual & 

Check Quality

Valid pixel list

Design & weight 
matrix

Solve Zernike

Tim
e (n

o
t to

 scale)

Figure 5.1: Data flow between algorithms deployed on the proposed multicore platform
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2. Embarrassingly parallel and partially parallel parts of Phase Unwrapping algo-
rithm are deployed on the GPU to reduce their execution time considerably. The
non-parallel part of Phase Unwrapping algorithm (Grouping and Unwrapping) is
deployed on the CPU.

3. OpenMP is used with Solve Zernike algorithm and it is deployed on the multicore
CPU to reduce the execution time of the loops in Solve Zernike algorithm.

4. The “Normalize and Remove” algorithm , discussed in Section 3.2.2.1 is a part
of the Solve Zernike algorithm. It is independent of Phase Unwrapping results
and can execute after Finalize Phase Fit algorithm. Hence it can be processed in
parallel on the CPU while parts of Phase Unwrapping are executing on the GPU.
However, this might increase the GPU execution time.

5. Since the rest of the algorithms take only 12 % of the time (Table 3.1), these are
deployed as it is on the multicore CPU.

Strategy 2

As discussed earlier, on an algorithmic level, both Strategy 1 and Strategy 2 are the
same and the platform chosen (CPU or GPU) is the same for all the algorithms in both
the strategies. Strategy 2 differs from Strategy 1 in terms of data transfers.
In Strategy 2, we transfer the results of the Finalize Phase Fit algorithm to the CPU
together with the results of the Phase Unwrapping algorithm. This eliminates the
possibility of executing the “Normalize and Remove” algorithm on the CPU in parallel
to GPU execution. However, this might reduce the GPU execution time by allowing for
higher overlap of execution and communication.

We implement both the strategies to conclude which gives a better system perfor-
mance.

5.2 Implementation

Due to limitation of time during this project, it was decided that only the algorithms
that are mapped on to GPU will be developed as a proof of concept. For algorithms
mapped on the CPU, we will extrapolate the results of the experiments on CPU in the
previous Chapter to provide an estimation of the final speedup.

Approach

We decided to start our prototype implementation based on the code written for exper-
iments performed and build up on it in an iterative manner. The prototype implemen-
tation was developed in the following steps.

1. We first reduced the execution time and data transfer time for single field point
implementation for Finalize Phase Algorithm.



58 CHAPTER 5. PROTOTYPE IMPLEMENTATION AND OPTIMIZATIONS

2. Then, we enabled processing of the seven field points on the GPU. We optimized
this by pipelining the access to GPU and allowing asynchronous execution on CPU.

3. For Phase Unwrapping algorithm:

(a) We deployed Calculate Pixel Reliability algorithm discussed in Section 3.1.2.1
on the GPU for seven field points.

(b) Next, we deployed the algorithm to find the pixel with maximum reliability on
the GPU for seven field points. This was the first non-embarrassingly parallel
algorithm being deployed on the GPU in our implementation. We modified
the “parallel reduction” approach discussed in Section 3.1.2.1 to better utilize
the computational units and memory hierarchy of the GPU. We discuss these
modification later in this section and compare the results.

(c) Afterwards, we deployed Compute Edge Reliability algorithm on the GPU.
We removed the divergent branches inside the loop as discussed in Section
3.1.2.2 to suit the architecture of GPU core.

(d) Finally, we deployed an optimized parallel sorting algorithm to sort the struc-
ture on the GPU.

5.2.1 Finalize Phase Fit

During our experiments with the Finalize Phase Fit algorithm in Chapter 4 we observed
that although the execution time reduced by approximately 100 times, the data transfer
time between CPU and GPU and vice versa was the bottleneck and needed to be reduced.

Reducing the execution time The 100x reduction in the execution of the basic
GPU implementation was when the calculations were done using double precision
arithmetic. From our experiments, we concluded that we do meet the final precision
requirement of 0.01 nm with single precision calculations. However we do affect the
accuracy of the results of Finalize Phase algorithm and the execution time only decreases
to 21µs as shown in Table 5.1.

Implementation Execution time (µs) Speedup

Baseline 2800

Double precision on
GPU

28 100x

Single precision on GPU 21 133.3x

Double precision on
GPU with 48KB L1
cache

16 175x

Table 5.1: Execution time and speedup of Finalize Phase Fit algorithm
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To further reduce this execution time and still perform calculations in double preci-
sion to maintain the accuracy, we decided to use the fast, on-chip memory. The on-chip
memory in a GPU is user/application configurable and is divided into two parts:

• A Level 1 cache.

• Shared memory

The difference between the two is that while the contents of the shared memory
are handled explicitly by the code, the L1 cache is automatically managed. The total
on-chip memory can be configured as 48 KB of shared memory and 16 KB of L1 cache
and vice versa.

To ease the programming and yet benefit from the fast memory we configured the
on-chip memory as 48 KB of L1 cache and rest to be used as shared memory. After
this change, the execution time for double precision calculation for Finalize Phase Fit
decreased to 16µs. The speedup achieved for the execution time of this algorithm is
shown in Table 5.1.
We also decided to keep this configuration of on-chip memory for all the algorithms
where we do not need to share data in between parallel threads.

Reducing the data transfer time We know that transferring more data in a single
API is more efficient than transferring less data and enables higher utilization of the
PCIe bus [39]. Concluding from the report [29] we know that transferring 1 byte of
data takes the same amount of time (23µs average) as 1 kilobyte if CUDA API shown
in listing below is used.

1 cudaError t cudaMemcpy (void∗ dst , const void∗ src , s i z e t count , enum
cudaMemcpyKind kind ) ;

2 // d s t − Des t ina t i on memory address
3 // src − Source memory address
4 // count − S i z e in b y t e s to copy
5 // kind − Type o f t r a n s f e r

From this we conclude that the transferring data via the PCIe bus using CUDA API
has very high latency.
In the experimental platform available, the GPU is connected to the CPU using a
16 lane, second generation PCIe bus (PCIe 2.0 * 16 ). This bus gives a maximum
theoretical throughput of 500 MB/s per lane. Thus the maximum throughput that can
be achieved using this bus is calculates using Eqns. 5.1 and 5.2.

Maximum throughput = 16 ∗ 500MB/s = 8GB/s (5.1)

Since 8/10 bit encoding is used, 20 % of the bandwidth is gone. Hence the effective
theoretical throughput that can be achieved is shown in Eqn. 5.2.

Effective throughput = 80% of 8GB/s = 6.4GB/s (5.2)
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In our measurements we found that the average achieved throughput was 2.67 GB/s.
We did the following changes to reduce the data transfer time by trying to achieve the
peak effective throughput.

1. Optimization 1: Use single data transfer API
To reduce the transfer time we did experiments and found that transferring data
using a single API call takes less time than transferring the same amount of data
in small chunks using multiple API calls. The exact difference depends on the
amount of data sent and the number of API calls used.
In our case, we require approximately 367 KB of data to be transferred from CPU
to GPU per field point. We observed an acceleration of 1.48x in data transfer
time when we transferred data using a single API call for one field point. The
comparison of absolute values is shown in Table 5.2. After this optimization, the
achieved throughput increased from 2.67 GB/s to 3.98 GB/s an improvement of
49 %. The PCIe bandwidth utilization can be computed by using the throughput
achieved and peak effective throughput improved from Eqn. 5.2. The PCIe
utilization increased from 41.7 % to 62.1 %.

Implementation Transfer time (µs) Speedup Throughput (GB/s) Utilization

Multiple API 137 2.67 41.7%

Single API 92 1.48x 3.98 62.1%

Table 5.2: Optimization 1: Data transfer time from CPU to GPU, speedup, throughput
and bandwidth utilization

To do this optimization, we had to change the input and the output data structure.
The three separate input arrays (β1, β2, β3, described in Eqn 3.8) were packed in one
structure array so that they could be transferred using single API call. Similarly,
the three output arrays (phase, DC, contrast) were packed in a single structure
array.

2. Optimization 2: Use “pinned” memory
To further reduce the transfer time, we performed one more optimization. Instead
of allocating memory directly on the host (CPU) side, we used the CUDA API
(CudaMallocHost) to allocate “pinned” memory on the CPU as shown in the code
listing below.

1 cudaError t cudaMallocHost (void ∗∗ ptr , s i z e t s i z e ) ;
2 // p t r − Pointer to a l l o c a t e d hos t memory
3 // s i z e − Requested a l l o c a t i o n s i z e in b y t e s

cudaMallocHost allocates host (CPU) memory that is page-locked and accessible
to the device (GPU). Since the memory can be accessed directly (using DMA) by
the device, it can be read or written with much higher bandwidth than pageable
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Figure 5.3: PCIe throughput achieved in 3 implementations

memory obtained with functions such as malloc. To transfer data for which
memory is allocated using cudaMallocHost, call to cudaMemcpyAsync, shown in
listing below has to be used.

1 cudaError t cudaMemcpyAsync (void∗ dst , const void∗ src , s i z e t count ,
enum cudaMemcpyKind kind , cudaStream t stream = 0)

cudaMemcpyAsync is asynchronous with respect to the CPU, so the call may
return before the copy is complete.
After this optimization, the transfer time for one field point further accelerated
by 1.53x when compared to transfer time after optimization 1 as shown in
Table 5.3. The bandwidth utilization is now 95.56 % which is considerably high.
Fig. 5.3 compares the throughput of baseline implementation with multiple
API calls, implementation using single API call and implementation using single
asynchronous API call.

The copy can optionally be associated to a stream by passing a non-zero stream
argument. If the stream is non-zero, the copy may overlap with operations in other
streams. This is a crucial benefit of using “pinned memory” and CUDA streams. Another
major benefit of this optimization was that it allowed asynchronous execution on CPU
and GPU and transfer of data between GPU and CPU at the same time. This will be
beneficial when all seven field points are deployed on the hardware platform. It will
enable transferring of data for one field point while the other is being processed on the
GPU. This is further discussed in next section.
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Implementation Transfer
time (µs)

Step
speedup

Cumulative
speedup

Throughput
(GB/s)

Utilization

Multiple API 137 2.67 41.7%

Single API 92 1.48x 1.48x 3.98 62.1%

Using
“pinned”
memory

60 1.533x 2.28x 6.11 95.56%

Table 5.3: Optimization 2: Data transfer time from CPU to GPU, speedup and through-
put
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receive
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Figure 5.4: Time line showing processing of 2 field points on GPU without the use of
streams.

5.2.2 Seven field points on the GPU

After having optimized data transfer at a field point level in previous optimization, we
decided to develop the implementation where all seven field points are deployed on the
GPU. Our initial implementation used the GPU in a sequential, serial way. This resulted
in a linear extrapolation of execution time from one to seven field points for the Finalize
Phase Fit algorithm on the GPU and lot of idle time on CPU as shown in Fig. 5.4.

It can be seen from Fig. 5.4 that their are lot of “idle” spaces on all the resources
(CPU, GPU and the PCIe bus). The results of this basic implementation are shown in
Table 5.4.

Using “pinned” memory allowed us to use CUDA streams. Using streams provides
us with following benefits.

1. Asynchronous execution on CPU and GPU. This means that if an algorithm is
executing on the CPU using one data set, another algorithm on the GPU could
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Field points Total (execution + transfer) time (µs)

Single 60 + 16 + 35 = 111

Seven 7 * (Single) = 777

Table 5.4: Total (execution and transfer) time for Finalize Phase Fit algorithm

Implementation Total (execution +
transfer) time (µs)

Increase

Single field point 111

Seven field points without streams 777 7

Seven field points with streams 660 5.94

Table 5.5: Benefit of using CUDA streams with seven field points for Finalize Phase Fit
algorithm

execute using a different data set.

2. We could pipeline the usage of the GPU. For example while data for field point ‘2’
is being transferred from CPU to GPU, processing for field point ‘1’ can be done
on the GPU.

Both these benefits are crucial for the PARIS software. Due to the first benefit,
we can execute “ Normalize and Remove” algorithm 3.2.2.1 on the CPU while other
algorithms execute on the GPU. Since in this implementation, we only develop the
algorithms that are deployed on the GPU the performance improvement due to first
optimization cannot be measured.

In our experiments using streams we found that the total time, instead of increasing
linearly, increased only by 5.94 times for seven field points as shown in table 5.5.

Fig. 5.5 shows the screen shot of the results of our experiment. The screen shots

Data transfer from CPU 
to GPU per-field point

Execution on GPU

Data transfer from 
GPU to CPU per-field 

point

Stream/ field point break up of PCIe and GPU usage 

PCIe and GPU usage 

660µ s

Finalize Phase Fit

Computation on GPU

Memcopy CPU to GPU

Memcopy GPU to CPU

Figure 5.5: Execution of Finalize Phase Fit on GPU using streams for seven field points.



64 CHAPTER 5. PROTOTYPE IMPLEMENTATION AND OPTIMIZATIONS

used in this thesis to show the execution of the algorithms have been taken using the
NVIDIA Visual Profiler (NVVP). From the figure it is clear that although, the “idle
spaces” have reduced when compared to Fig. 5.4, there are still many idle spaces while
the data is being transferred using CUDA streams. This space will be utilized and idle
time would decrease as we add more algorithms in our implementation on the GPU.
We estimate that as we add more algorithms on the GPU, this optimization of using
CUDA streams will provide higher performance gain. During the time when data transfer
for field point two occurs, more algorithms for field point one can execute on the GPU
without adding to the total executing time.
A limitation of the GPU available for experiments was that it only had one “copy engine”
and one “compute engine”. Consequently, only data transfer in one direction could
overlap with execution on the GPU as shown in Fig. 5.5 . It is possible to overlap data
transfer in both directions with execution on the GPU. This is possible in the latest,
more expensive GPUs from NVIDIA which have two “copy engines” and one “compute
engine”.
For example, in the time line shown in Fig. 5.5, if the transfer of results from GPU to
CPU could overlap then the total GPU time will decrease from 660µs to approximately
460µs, an improvement of around 30 %.
After successfully creating a foundation of deploying seven field points on the GPU with
the simplest Finalize Phase Fit algorithm, we moved on to deploying the more complex
Phase Unwrapping algorithm on the GPU.

5.2.3 Phase Unwrapping

We discussed the Phase Unwrapping algorithm in Section 3.1. In this section we discuss
the implementation of parts of the Phase Unwrapping algorithm on the GPU one by
one.

Compute Pixel Reliability

The Compute Pixel Reliability algorithm was divided into two parts for GPU implemen-
tation. These are:

1. Calculate pixel reliability

2. Find pixel with maximum reliability

Calculate pixel reliability
Deploying calculate pixel reliability algorithm on the GPU was easy and similar to de-
ploying Finalize Phase Fit algorithm. In this algorithm also, we do per-pixel processing
and each pixel is processed by a separate thread on the GPU. However, we do need the
phase value of the neighboring pixels to process each pixel.
Following modifications were done in the algorithm to optimally deploy it on the GPU:

1. Modification in data access because of the modifications done to the data structure
in optimization 1 of Finalize Phase Fit algorithm.
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Implementation Execution time (µs) Speedup

Double precision exponential
function

30

Single precision exponential
function

16 1.875x

Single precision exponential
function with 48KB L1 cache

10 3x

Table 5.6: Performance improvement in GPU implementation of calculate pixel reliability
algorithm

2. Based on the study of the accuracy required for exponential function in Section
3.1.2.1, we changed the double precision exponential function to hardware accel-
erated (intrinsic) exponential function provided the CUDA API. This is not com-
patible with IEEE 754 floating point standard but satisfies the requirements of the
algorithm.

Because of the optimization above, the execution time of calculate pixel reliability
is reduced to 16µs. Further, after changing the configuration of on-chip memory, the
execution time decreased to 10µs. The absolute value of execution time and the speedup
is presented in Table 5.6. We do not compare the execution time with the baseline
implementation because the baseline implementation of Compute Pixel Reliability
includes the computation of pixel with maximum reliability value in the same loop.
In our implementation, we do this in a separate step to efficiently utilize the GPU for
both the algorithms which have different type of parallelism. Hence we compare the
execution time with the baseline by adding the execution time for finding the pixel with
maximum reliability in the next section.

The screen shot of the time line of the implementation of Finalize Phase Fit and
calculate pixel reliability for seven field points is shown in Fig. 5.6. As can be seen
the execution of both the algorithms still overlaps the data transfer over the PCIe.
Although the execution time of the both the algorithms is 26µs per field point, it does
not add to the total execution time on the GPU and it is still 660µs. A clear benefit of
using streams which can be further increased as we deploy the next algorithm.

Find pixel with maximum reliability

In this section we discuss the the algorithm to find the pixel with maximum reliability.
This problem is a reduction operation and we follow a parallel approach as discussed in
Section 3.1.2.1. However to optimize the performance on the GPU architecture we modify
our approach of accessing the elements of the array. We discuss these modifications in
this section. Our first implementation on the GPU is pictorially depicted in Fig. 5.7.

The kernel code for this implementaion is presented in Section B.1 of Appendix
B. The execution time for this implementation on the GPU was 80µs. On analysis
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Figure 5.6: Execution of calculate pixel reliability and Finalize Phase Fit on GPU using
streams
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Figure 5.7: Pictorial representation of our first implementation of the algorithm to find
pixel with maximum reliability on the GPU

we found that it suffered from problems which have been discussed in Section B.1 and
could be improved.
The pictorial representation of the improved implementation is shown in Fig. 5.8
and the execution time reduction is compared in Table 5.7. The kernel code for this
implementation has been presented in Section B.2.

Comparison of execution time of calculate pixel reliability and finding pixel with
maximum reliability in the baseline implementation and in our implementation is shown
in Table 5.8.

After the pixel with maximum reliability has been found, rest of the pixel reliability



5.2. IMPLEMENTATION 67

      10              5                7               16            11             13               9               14    

      11            13               9              16             11             13                9              14    

      11            16               9              16             11              13              9               14    

0 1 2 3

0 1

      16              16            9               16             11              13              9             14    

0

Values 
(shared memory)

Thread IDs

Values 

Thread IDs

Values 

Thread IDs

Values 

Figure 5.8: Pictorial representation of our improved implementation of the algorithm to
find pixel with maximum reliability on the GPU

Implementation Execution time (µs) Speedup

Basic 80

Improved 5 16x

Table 5.7: Performance comparison of two implementations on GPU of algorithm to find
pixel with maximum reliability

values are normalized w.r.t the highest reliability value. This again, is an embarrassingly
parallel operation and takes approximately 5µs on the GPU as compared to 800µs on
the SUN M3000.

Fig. 5.9 shows the time line of the implementation when the following algorithms
are deployed on the GPU.

1. Finalize Phase Fit

2. Compute Pixel Reliability

Implementation Execution time (µs) Speedup

Baseline on SUN M3000 2200

GPU 15 146.66x

Table 5.8: Acceleration of Compute Pixel Reliability algorithm on the GPU



68 CHAPTER 5. PROTOTYPE IMPLEMENTATION AND OPTIMIZATIONS

Stream/ field point break up of PCIe and GPU usage 

PCIe and GPU usage 

Data transfer from CPU 
to GPU per-field point

Execution on GPU

Data transfer from 
GPU to CPU per-field 

point

Finalize Phase Fit

Computation on GPU

Memcopy CPU to GPU

Memcopy GPU to CPU

Calculate Pixel Reliability

Max Pixel Reliability

Normalize Reliability

Figure 5.9: Time line showing execution of Finalize Phase Fit and all parts of CPR on
the GPU.

(a) Find reliability of all the pixels.

(b) Find the pixel with maximum reliability.

3. Normalize all pixel reliability values w.r.t pixel with the maximum reliability.

The total execution time is still 660µs as the execution of all the algorithms is
still overlapped by data transfer. In the next section we discuss the implementation of
Compute Edge Reliability algorithm.

Compute Edge Reliability

The algorithm can be divided into two logical parts:

1. Calculate the reliability of all the edges.

2. Sort the edges according to their reliability values.

Calculate reliability of all edges
The algorithm to calculate reliability of all the edges is an embarrassingly parallel
algorithm as discussed in Section 3.1.2.2. However, we had to change the implemen-
tation so that the loop iterations could become independent and the algorithm could
be efficiently deployed on a parallel architecture. After the change, the algorithm was
deployed on the GPU and our implementation on the GPU showed a speedup of 109 x
in the execution time performance as shown in Table 5.9. Further, on re-configuring the
on-chip memory, the execution time decreased to 7µs, improving the speedup to 171 x.
The total execution time is still 660us as the execution still overlaps with data transfer.

This algorithm results in new data (reliability value of edges and a list which stores
the constituent pixel ids of each edge). This data has to be sorted in decreasing order
and sent back to the CPU. We discuss the implementation of parallel sorting algorithm
in next section.
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Implementation Execution time (µs) Cumulative speedup

Baseline 1200

GPU 11 109x

48KB L1 cache on GPU 7 171x

Table 5.9: Performance improvement in Calculate Edge Reliability algorithm

Implementation Execution time (µs) Speedup

Baseline 3401

On GPU using Thrust library 483 ∼7x

custom implementation on GPU 223 ∼15x

Table 5.10: Performance improvement in sorting of edges

Sort the edges according to their reliability value
For sorting on the GPU, a number of a libraries are available including the well known
Thrust [36] and CUDPP [40] etc.. In our experiment in Section 4.4, we used the Thrust
library to sort the structure shown in listing below based on the reliability value.

The experimental result had shown a performance improvement of around 7x over
the baseline as shown in Fig. 4.10 . However, when we tried to implement sorting using
Thrust library for seven field points, the performance degraded and it affected the per-
formance of other algorithms as well.
After analysis we found that the Thrust library is not compatible with CUDA streams
and hence whenever a sorting call was made, the asynchronous stream operations stalled
and sorting algorithm would execute.
This increased the execution time from 660µs to 5 ms. On further research, we found, to
the best of our knowledge none of the libraries offered a sorting function compatible with
CUDA streams. This meant that we had to develop our own sorting implementation on
the GPU.
We found some sorting implementations provided by NVIDIA [41,42]. These implemen-
tations were already optimized for GPU execution but had to be tailored to our specific
problem and according to the GPU available for experimentation. For example, the
merge sort implementation in [42] was implemented for sorting integer values and we
had to modify it to sort structure values based on a integer key. We had to change the
data structure which stored the reliability of the edge and the index of pixels constituting
an edge.
After the modification and using the sorting implementation from [42], the execution
time of sorting algorithm was measured to be 223µs per field point. This is an approx-
imate improvement of 2 x when compared to experimental results of Chapter 4 which
were based on development using the Thrust library. The comparison of baseline, ex-
periments using the Thrust library and our final sorting implementation are shown in
Table 5.10 and in Fig. 5.10.

However, the sum of data transfer time and execution time of the algorithms imple-
mented on the GPU increases from 660µs to 1936µs. This is because of the addition of
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Figure 5.10: Execution time of sorting in different implementations
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Figure 5.11: Time line representing execution of all algorithms deployed on the GPU
and data transfer

the sorting algorithm to the execution sequence and transfer of the sorting results from
GPU to CPU.
The time line representing the execution of all the algorithms deployed on the GPU and
the data transfers is shown in Fig. 5.11.

Alternative Approach
In the implementation represented in Fig. 5.11, the phase, DC and contrast values are
transferred back to the CPU after sorting the edge reliability values. Another approach
could be to send these values back to CPU before sorting operation on the GPU. This
would enable execution of “Normalize and Remove” algorithm of Solve Zernike on the
CPU in parallel (asynchronously) to execution on the GPU. This is the Strategy 1 which
we discussed in Section 5.1 of this chapter.
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Figure 5.12: Alternative approach: time line representing execution of all algorithms
deployed on the GPU and data transfer

The time line representation of this approach is shown in Fig. 5.12. The GPU
execution time of this approach is 2140µs, which is 204µs higher when compared to
our previous approach (Strategy 2 discussed in Section 5.1) . However, the benefit of
utilizing the precious CPU time compensates for this increase. This approach results in
lower GPU performance but is capable of higher “system performance”. The “Normalize
and Remove” algorithm which takes 700µs per field point in the baseline can execute on
the CPU while the processing is still being done on the GPU.

5.3 Conclusion

Fig. 5.11 shows that data transfers from CPU to GPU and vice versa for all field
points, except for one in each direction are overlapping with the execution. Thus we
hide the “latency” of transferring data. We could have also reduced the execution time
of algorithms by a more detailed analysis of the results provided by the NVVP and doing
more optimization with the algorithms.
However, as we saw from the start of this Chapter, execution time acceleration was never
an issue with the GPU. Even the non-embarrassingly parallel algorithm like sorting
showed an approximate 15 x performance gain in comparison to the baseline while the
embarrassingly parallel algorithms showed a performance improvement of over 100 x in
all cases. The baseline execution time and the execution time of algorithms on the GPU
is shown in Fig. 5.13. The scale of the graph is logarithmic. It can be seen from the
figure that the least performance gain is in the sorting algorithm. This was expected as
sorting is not an embarrassingly parallel algorithm.
Another important conclusion that can be drawn from Fig. 5.13 is that although the
order of execution time is same for all the algorithms under consideration on the CPU, it
is not the case on the GPU. The sorting algorithm takes ∼ 14 x the time taken by second
highest time consuming algorithm on the GPU (Finalize Phase Fit). This stresses the
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Figure 5.13: Execution time (µs) comparison of algorithms deployed on GPU

need of suitability of the algorithm for massively parallel architectures such as that of a
GPU.

The real issues were data transfer latency, GPU being inefficiently utilized and CPU
being idle. We were able to reduce and hide data transfer time completely with execution
of algorithms. The problem of CPU being idle was also solved. However, we could only
solve the problem of inefficient GPU utilization partially.
As can be seen from Fig. 5.11 and 5.12 there are still idle spaces in processing of each
field point on the GPU. These spaces are caused by limitation of the GPU available for
the experiments. The GPU is based on the Fermi architecture which does not support
overlapping Kernel execution for multiple streams on the GPU. Only the last Kernel of
a stream in an execution sequence can overlap with the first kernel of another stream.
Support for overlapping execution of Kernels from different streams is provided in the
latest Kepler architecture from NVIDIA. Kepler provides 32 hardware managed connec-
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tions between the CPU and the GPU while in Fermi there is only 1 and all software
streams are multiplexed into it. The occupancy achieved by sorting kernels is in the
range of 55 % to 69 %. Thus we could achieved higher accuracy and higher performance
if sorting on different field points could execute in parallel on the GPU.
We expect that on a Kepler based GPU, the idle space in processing of each field point
would decrease drastically which would have a positive impact on the execution time
performance on the GPU.

After deploying sorting algorithm successfully on the GPU and comparing the output
values with the baseline implementation, we have successfully completed our prototype
implementation. In the next chapter we compare our GPU implementation performance
with the baseline, the estimation made in Chapter 4 and other models which we describe
in Chapter 6.
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System Performance
Comparison 6
In Chapter 5 we discussed the steps that led to our prototype implementation. In this
chapter we discuss and compare system performance of different hardware platforms
composed using CPUs and GPUs. We discuss the performance improvement for each of
these platforms compared with the baseline performance shown in Fig. 6.1.

6.1 SUN M3000 server with a GPU

In this section we discuss the performance of a platform consisting of the GPU and
the current shared SUN M3000 platform. Fig. 6.1 shows the baseline performance of
the PARIS post processing software stack. From the calculations shown in Appendix
C, we know that the Phase Unwrapping and Finalize Phase Fit (part of processing on
SUN M3000) algorithms take approximately 18.6 ms in the baseline execution time. Our
prototype implementation using Strategy 1 on the GPU of the same algorithms takes
2.1 ms as discussed in Section 5.3.
To estimate the system performance of PARIS on the SUN M3000 - GPU platform we
assume the following:

1. The GPU is connected to the SUN M3000 platform using PCIe 2.0.

2. The data transfer time from CPU to GPU and vice versa remains the same for this
platform as for the prototype implementation platform in Chapter 5.

29.39511.8163

Figure 6.1: Average time taken by activities during post processing time budget on SUN
M3000 and PowerPC based platform

75
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Figure 6.2: Average time taken by activities during post processing time budget on GPU,
SUN M3000 and PowerPC based platform

3. The algorithms deployed on the GPU in the prototype implementation of Chapter
5 are deployed on the GPU in this hypothetical implementation as well and have
the same execution time.

4. Rest of the algorithms are deployed on SUN M3000 and PowerPC as in the baseline
implementation and have the same execution time (approx. 10.8 ms from calcula-
tions in Appendix C).

Considering the above assumptions, the system performance on the GPU and SUN
M3000 platform can be estimated. Thus the baseline execution time of 29.39 ms on
SUN M3000 is now replaced with 10.8 ms on SUN M3000 and 2.1 ms on GPU, adding
to 12.9 ms as shown in Fig. 6.2.

However, this platform is not practically feasible because CUDA drivers are not yet
available for Solaris operating system. Moreover, this platform does not solve the issue
of variability in the execution time as the SUN M3000 and the shared Ethernet network
are still used in the system.

6.2 Intel i7 processor with GPU

In this section we estimate the performance on a platform consisting of a GPU and a
dedicated quadcore Intel i7.
We assume that the same algorithms are deployed on the GPU as in the implementation
of Chapter 5 and execute in 2.1 ms. For algorithms that were deployed on the SUN
M3000 and took 10.8 ms, we extrapolate the results of experiments performed on Intel i7
in Chapter 4. Based on the results discussed in Table 4.1 we estimate a 2 x performance
gain. In this model, we also assume that the algorithms which were earlier deployed
on PowerPC and took 11.8 ms to execute, are now deployed on Intel i7. We make an
assumption of a minimum 2 x performance gain for them as well.
Considering the above performance gain, the expected execution time line of the PARIS
post processing is shown in Fig. 6.3. The software execution time adds up to 13.4 ms
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Figure 6.3: Average time taken by activities during post processing time budget on GPU
and Intel i7 based platform

as shown in the figure.

The performance achieved is shown in Table 6.1. This platform also ensures de-
terministic execution time with milliseconds precision as discussed in experiments of
Chapter 4. Since there is no shared Ethernet network used to transfer data, this system
is expected to have a deterministic performance.

6.3 Intel i7 processor

In this section we estimate the performance on a quadcore Intel i7 which is capable of
executing eight threads concurrently. We assume that the seven threads process seven
field points.
We extrapolate the results of experiments discussed in Chapter 4 for the entire software
stack which was executing on SUN M3000 earlier. Thus, we expect that the execution
time will decrease from 29.39 ms to approximately 14.7 ms . We assume the same reduc-
tion of 2 x for algorithms that were previously deployed on the PowerPC reducing their
execution time from 11.8 ms to 5.9 ms.
Using these extrapolated results and the assumption, the expected performance is shown
in Fig. 6.4 and compared to baseline performance in Table 6.1.

6.4 Two Intel i7 processors

In this section we estimate the PARIS performance on a platform with two Intel i7
processors. Fig. 6.5 shows the two Intel i7 processors based platform. In this platform
we assume the following:

1. The data transfer time between both the CPUs is same as data transfer time
between a CPU and GPU of our prototype implementation.
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Figure 6.4: Average time taken by activities during post processing time budget on Intel
i7 based platform

Processor 1

Algorithms earlier on PowerPC

Processor 2

Frame processing

FP4FP1 FP2 FP3 FP5 FP6 FP7

Collect results

Figure 6.5: Processing on two processor platform

2. We assume that four field points are processed on one Intel i7 while the other
processes three field points and the algorithms that were earlier deployed on Pow-
erPC. Each field point is processed by two threads which allows to parallelize the
algorithms according to the strategies discussed in Chapter 3.

3. Since 4 field points are processed on an i7 processor in parallel with 3 field points
on another i7 processor, we assume that the upper bound on execution time is
provided by the timing measurement of 4 field point processing.

From our experiments on Intel i7 we found that processing 4 field points using eight
threads takes 6.8 ms for Finalize Phase Fit and Phase Unwrapping algorithms. This is a
speedup of approximately 2.75 x when compared to the baseline on SUN M3000 which
has been estimated to be approx. 18.6 ms in Appendix C. We extrapolate this gain to
Solve Zernike algorithm as well. Since we did not implement other algorithms using
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Figure 6.6: Average time taken by activities during post processing time budget on a
platform with two Intel i7 processors

Platform Post pro-
cessing
time (ms)

Software
execution
time (ms)

Post pro-
cessing
speedup

Software
execution
speedup

Baseline SUN
M3000

65.19 41.19

Shared SUN
M3000 with GPU

48.7 24.7 1.33x 1.66x

Intel i7 with GPU 32.4 13.4 2.01x 3.07x

Intel i7 39.6 20.6 1.64x 1.99x

Two Intel i7 36.06 17.06 1.80x 2.41x

Table 6.1: System performance comparison on discussed hardware platforms

OpenMP, we estimate a single thread performance gain of 2 x as in previous cases for
these algorithms. Thus, three algorithms under consideration which took 88 % of the
baseline have a 2.75x performance gain while the rest of the algorithms which take 12 %
of the execution time in the baseline are assumed to have a minimum 2x performance
gain.
We also assume that the algorithms which were earlier on PowerPC have a performance
gain of 2 x as in previous cases. The estimated time line is shown in Fig. 6.6. The
performance improvement at a system level is compared with other implementations in
Table 6.1.

6.5 Conclusion

In this chapter we estimated the system performance on different hardware platform
models based on experiments, prototype implementation, assumptions etc. The compar-
ison is shown in Table 6.1.

Out of the discussed platforms, two (Intel i7 processor with GPU and two Intel i7
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processors) platforms meet the performance goals set in Section 1.3 of this thesis. The
performance estimated on these platforms can further be improved by using some of the
suggestions discussed in Chapter 7.



Conclusion and Future Work 7
Having compared the prototype solution developed with other possible solutions in the
previous chapter, we now present the conclusion to this thesis. We also discuss some of
the future work that could be done to further improve the performance of the PARIS
sensor system. This also includes some technologies to look out for in the near future
and some suggestions to the software development team.

7.1 Conclusions

In this thesis we analyzed the PARIS sensor software stack and found that there was a
good opportunity to exploit parallelism in the algorithms to reduce the execution time.
The current hardware platform however, is not capable of this because of the limited
number of cores. We also observed that since a shared computing platform and Ethernet
network are used, the execution time is non-deterministic.
To solve these problems, we considered three hardware platforms (CPU, GPU and
FPGA). Based on the analysis of software and comparison of hardware platforms, we
proposed that both multicore CPU and GPU based platforms will be able to meet the
performance requirement to reduce the execution time to 50 % of the current execution
time. We did not do detailed performance analysis with FPGAs due to reasons discussed
in Chapter 4.
In Chapter 6 we discussed four hardware platform models based on CPUs and GPUs
and found that two of them will be able to meet the performance expectations that we
had from the new hardware platform. Each of the hardware platforms will provide for
different performance improvement as shown in Table 6.1. However, each of them would
require different investment of time and money and would have a different impact on the
organization as discussed in Section 4.4. Higher performance would come at a higher cost
and impact. Therefore it depends on the concerned department to choose a hardware
platform according to the performance requirement and other aspects as well.
Fig. 7.1 shows a graph that compares the expected performance of different hardware
platforms and the impact they are expected to have on the organization and their prod-
uct platform. While the performance refers to the execution time speedup, impact can
be thought of in terms of cost of development, effort required, compatibility with the
machine hardware etc.

As can be seen from Fig. 7.1, the GPU based solutions have high impact. This is
in accordance with our discussion in Section 4.4 where we compared different hardware
platforms. However, the combination of Intel i7 and GPU also gives the best performance
among the compared hardware platforms. Hardware platform based on two Intel i7 pro-
cessors is expected to have the second highest performance but second lowest impact and
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Performance

Impact on ASML’s product 
platform and organization

Intel i7

SUN M3000 
with GPU

Two Intel i7 

Intel i7 with GPU

Figure 7.1: Performance vs. impact for different hardware platforms

hence falls in the optimal region. The other two platforms (SUN M3000 with GPU and
Intel i7) do not meet the criteria of reducing the execution time by half. Considering the
current performance requirements and the PARIS team development skill set, platform
consisting of two Intel i7 processors provides an optimal solution.
Adapting to the GPU and Intel i7 based solution will have an high impact on the orga-
nization and will require considerable effort. However, to obtain that extra performance,
GPUs are the way to go ahead. The development cost and impact on the machine will
be high initially, but once GPUs are integrated into ASML machines, they will provide
for a long term solution for the computing needs. Not only for PARIS, but the expertise
and experience gained after implementing a GPU based solution will promote it’s use in
other components of the machine and reduce development cost and time on the GPUs.

Concluding, investing in GPUs for PARIS will take high initial effort but the long
term gain that the GPUs might provide could more than compensate for this first big
step.
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7.2 Future work

In this section, we discuss the recommendations which could be useful for the PARIS
sensor development team to further improve the performance. Due to lack of time and
limitations in the scope of this thesis, we were not able to quantify these improvements.
We divide this section into three parts.

1. Modifications to the current software stack

2. Suggestions for the development team

3. Technologies to look out for

These are further discussed in this section.

Modifications to the current software stack

In this section we describe some of the changes to the software stack that would result
in a reduction of execution time and the effort required to make these changes.

1. Use of shared memory instead one process “pushing” data
In the current implementation, when the division of processing seven field points
in separate processes occurs, then data is pushed to all the seven processes se-
quentially. This results in low overlap of execution for the seven processes and
thus higher execution time. If shared memory is used, all the PARIS processes can
access the data after it has been written by the frame processing step. This will
eliminate the need of copying data and reduce the execution time.

2. Change from a process to a thread based implementation
In the current implementation, the seven field points are processed in seven sepa-
rate “processes”. A “process” is an operating system level entity. The other option
available is to change from “process” implementation to a “thread” based imple-
mentation. “Threads” are supported at hardware level and hence will provide for
higher performance, avoiding the expensive context switching between processes
and other overheads.
This change would come at a cost of making all the code and libraries thread safe
and testing the code. Considering the size of the code, this might be too much
work for performance gain and it is advised to do this modification only as the last
resort to improve performance.

Suggestions for development team

1. Feedback to the algorithm development team
Currently, people with a physics background develop the algorithms that are used
for the PARIS sensor. These engineers may or may not have knowledge of where
the computing world is heading. With the advent of parallel architectures and
multicore processors becoming common in the industry, it is necessary that the
software development team gives necessary feedback to the physics engineers to
develop more parallel algorithms with low divergent branches.
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2. Evaluate use of double precision calculations
During our study of time consuming algorithms we found that double precision
calculations had been used in all the algorithms without checking if there was a
need for it. At some of the places we could change it to single precision but at
some places, such a change would need to qualify tests which we could not do
during this thesis. It is advisable to check if using double precision calculations
is a requirement to obtain the desired accuracy in the results. This would give a
performance gain depending on the platform (higher gain on GPUs and moderate
gain on CPUs).

Technologies to look out for

1. Single chip with integrated graphics
Some of the desktop processors from Intel, AMD etc. come with an integrated
graphics card on chip with the main multicore CPU. Such a hardware platform
would reduce/remove the overhead of copying data between CPU and GPU mem-
ory. Present day CPUs with integrated GPUs can be programmed with OpenCL
but this is a new development and the drivers are still in the alpha stage. Secondly,
to the best of our knowledge, no octacore CPU yet comes with an integrated GPU.
This is something to keep an eye for, octa or more core CPUs with integrated on
chip graphics card that could be programmed using OpenCL or OpenACC.

2. Development of OpenCL, OpenACC
In this thesis we were limited to using CUDA because of performance benefits.
However OpenCL and OpenACC are developing fast and are expected to provide
better performance in comparison to what they offer now. Both of them would
allow us to use other GPUs and remove the dependency on NVIDIA as sole supplier
for GPUs. OpenACC is also expected to reduce development cost with some
performance trade-off.

3. Kepler architecture from NVIDIA
As discussed in Chapter 5, the Kepler architecture from NVIDIA provides features
enabling parallel Kernel execution across CUDA streams. This would further re-
duce the GPU time. The gain from this cannot be easily approximated without
actually doing experiments on a Kepler based GPU.
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List of definitions

Diffraction The diffraction phenomenon is described as the apparent bending of waves
around small obstacles and the spreading out of waves past small openings.

Focal plane The focal plane represents the area in a camera where light is focused.

Grating A grating is an optical component with a periodic structure, which splits and
diffracts light into several beams traveling in different directions.

Interference In physics, interference is a phenomenon in which two waves superimpose
to form a resultant wave of greater or lower amplitude.

Lens aberrations In an ideal optical system, all rays of light from a point in the object
plane would converge to the same point in the image plane, forming a clear image.
The influences which cause different rays to converge to different points are called
aberrations.

Wave front In physics, a wave front is the locus of points having the same phase: a
line or curve in 2D, or a surface for a wave propagating in 3D.
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Description of Algorithms A
A.1 Description of Algorithms

The details of this section cannot be made public due to confidentiality
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Algorithms for Reduction on
GPU B
This appendix discusses the reduction algorithm used to find the pixel with maximum
reliability.

B.1 Basic algorithm

The kernel code for our first implementation is shown in the listing below. This kernel
is recursively invoked until the problem of finding the pixel with maximum reliability is
reduced to only 1 pixel.

1 g l o b a l vo idreduce1 ( int∗ g idata , int∗ g odata )
2 {
3 extern s h a r e d int sdata [ ] ;
4 // each thread l oads one element from g l o b a l to shared memory
5 unsigned int t i d = threadIdx . x ;
6 unsigned int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
7 sdata [ t i d ] = g i d a t a [ i ] ;
8 sync th r ead s ( ) ;
9

10 // do reduc t i on in shared memory
11 for (unsigned int s = 1 ; s < blockDim . x ; s ∗= 2)
12 {
13 i f ( t i d % (2 ∗ s ) == 0)
14 {
15 sdata [ t i d ] = sdata [ t i d + s ] > sdata [ t i d ] ? sdata [ t i d + s ] : sdata [ t i d

] ;
16 }
17 sync th r ead s ( ) ;
18 }
19 // wr i t e r e s u l t f o r t h i s b l o c k to g l o b a l memory
20 i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;
21 }

The kernel code listing showed above suffers from following problems which lead to
higher execution time.

• The modulus (%) operator used for interleaved memory access is very slow.

• The divergent branch inside the loop makes threads divergent and reduces the
performance.
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B.2 Improved algorithm

The kernel code of our improved algorithm is shown in the listing below.

1 // perform f i r s t l e v e l o f reduct ion ,
2 // read ing from g l o b a l memory , w r i t i n g to shared memory
3
4 unsigned int t i d = threadIdx . x ;
5 unsigned int i = blockIdx . x ∗ ( blockDim . x ∗ 2) + threadIdx . x ;
6 sdata [ t i d ] = g i d a t a [ i + blockDim . x ] > g i d a t a [ i ] ? g i d a t a [ i + blockDim . x ]

: g i d a t a [ i ] ;
7 sync th r ead s ( ) ;
8
9 // r e v e r s e loop and thread id based s e q u en t i a l addre s s ing as shown in Fig .

5 .8
10 for (unsigned int s = blockDim . x / 2 ; s > 0 ; s >>= 1)
11 {
12 i f ( t i d < s )
13 {
14 sdata [ t i d ] = sdata [ t i d + s ] > sdata [ t i d ] ? sdata [ t i d + s ] : sdata [ t i d ] ;
15 }
16 sync th r ead s ( ) ;
17 }



Calculations for Execution
Time C
This appendix discusses the calculations and estimates used to approximate the execution
time for Finalize Phase Fit and Phase Unwrapping algorithms on different hardware
platforms.

C.1 Estimation of baseline performance

To estimate the time taken by these two algorithms in the baseline, we use the following
steps.

• From Table 3.1 we know that Finalize Phase Fit and Phase Unwrapping algorithm
together take approximately 63.3% of the execution time for one field point.

• We assume that they take the same percentage of execution time when seven field
points are computed.

• From Fig. 2.5 we know that baseline time for processing seven field points on SUN
M3000 is 29.39 ms.

• Now, time taken by these two algorithms can be estimated as shown in Eqn. C.1.

T7,Finalize Phase Fit, Phase Unwrapping = 63.3% of 29.39ms = approx. 18.60ms (C.1)

Thus, Finalize Phase Fit and Phase Unwrapping take 18.60 ms in the baseline. This
implies that the time taken by rest of the algorithms in the baseline can be computed
as shown in Eqn. C.2.

T7,Rest of the algorithms = (29.39 − 18.60)ms = approx. 10.80ms (C.2)
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