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Abstract

Controlling machines with brainwaves can be beneficial to society as they could potentially be used
to reclaim some level of independence for patients that have lost a limb or are paralyzed. However,
reliable control is needed to allow such applications. Different paradigms can be used to evoke brain-
waves on command. These paradigms can be used to interact between the brain and a machine.
These paradigms are called brain-machine interfaces. The discussed focus of this research is elec-
troencephalography which uses an external device attached to the scalp to record the brainwaves.
One of the methods to evoke brainwaves uses external stimuli, of which each stimuli flickers at a fixed
frequency. This paradigm is called steady-state visually evoked potentials. To evoke these brainwaves
the person has to look at the stimuli. In reaction to this, a response is elicited around the stimulus fre-
quency in the brain. These external stimuli can have different characteristics, such as various colors,
sizes, frequencies, and shapes. These properties can affect the quality of the evoked steady-state
visually evoked potentials. The quality of the signal is measured by the ratio between the power of the
”signal” and "noise” which is often referred to as the baseline. This ratio is called the signal-to-noise
ratio and is measured in decibels. The power values are extracted from the power-spectral density
spectrum that is calculated from the electroencephalography.

The quality of a signal is important as the real-time operation of applications is heavily dependent on
the signal quality. A better signal quality means higher accuracy. This is important as it determines the
number of different commands that can be differentiated. It is often desirable to be able to distinguish
between multiple commands as this is often needed to control applications. Due to the increased di-
mensional complexity of adding more commands, accuracy becomes a key factor to realize reliable
control. Hardware is one of the contributing factors that determine signal quality. However, it is very
expensive to change. Another less expensive option could be changing the stimuli characteristics to
maximize the signal-to-noise ratio. Research is still trying to figure out the exact relationship between
stimuli characteristics and signal-to-noise ratio. However, the experiments of previous research lack
the context of the gaze of the subjects to explain the electroencephalography recordings. In this re-
search, this is attempted to be solved using eye tracking. Furthermore, there is a research gap in the
scientific field surrounding signal-to-noise ratio and stimuli characteristics as the effect of surrounding
stimuli on the measured signal-to-noise ratio of the target stimulus has never been investigated.

In this research, the relationship is investigated between the characteristics of the external stim-
uli and interface with respect to the signal quality and how it transfers to an environment with multi-
ple surrounding stimuli. Hopefully, this will allow future research to create better interfaces that use
steady-state visually evoked potentials that are more reliable when distinguishing multiple commands.
Two experiments were shown to dissect the relationship between signal-to-noise ratio and colors (red,
white, green), sizes (10.000, 20.000, 30.000 pixels), frequencies (8Hz, 13Hz, 29Hz, 25Hz), and shapes
(squares, triangles, circles).

The first experiment shows only one stimulus at a time across a combination of all these character-
istics. The second experiment shows all of these 4 characteristics across multiple settings. The other
experiment shows 4 stimuli in a steady-state visually evoked potentials speller consisting of multiple
frequencies that differ by only 0.3Hz. The goal is to look at 1 of the 4 stimuli, which is the target. The
frequency of these stimuli matches one of the frequencies of the earlier experiment. Additionally, all
the stimuli here have the shape of a square. However, the color and size vary across the same settings
as in the earlier experiment.

By comparing the results of these 2 experiments from 6 participants, a comparison can be made be-
tween a single stimulus versus a steady-state visually evoked potentials speller containing multiple
stimuli. The speller contains multiple stimuli as it often has to support multiple commands simultane-
ously to let the brain-machine interface control an application. This comparison of a single stimulus
versus multiple stimuli is to our knowledge novel. To investigate if there are any differences between



the experiments and the different stimuli characteristics, analyses of variances are executed.

When comparing each category of the overlapping stimuli characteristics between the 2 experi-
ments, no significant difference can be found between the means. The results suggest that the effects
of the target stimulus surrounded by multiple stimuli are probably negligible in most cases. Further-
more, both experiments seemed to show significant differences between the frequencies and favored
25Hz. However, other research stated different results. Looking at the results the preference for color
and shape remains indecisive, even though white seemed to show the highest signal-to-noise ratio in
both experiments. Furthermore, it is important to recognize that its difference with respect to the other
colors was not significant in experiment 1. Secondly, the shape preference remains indecisive between
the square and the circle as the best option. Moreover, the property pixel surface seems to have a pos-
itive correlation with the signal-to-noise ratio. Lastly, in an attempt to give the electroencephalography
recordings more context, eye tracking was used during the experiments. This is considered novel to
our knowledge, especially with respect to investigating the influence of stimuli characteristics on the
measured signal-to-noise ratio in steady-state visually evoked potentials-based interfaces. However,
in around half of the participants, eye tracking still seemed to fail a lot. This lowers its supportive role
significantly. The cause is still unknown.
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Introduction

Devices that could communicate with our brains sound quite futuristic and could potentially allow for
new ways to control different types of applications remotely. This might change our relationship with
technology forever. It could mean that you could game in the future without even lifting a finger, control
your home appliances from a distance, hands-free texting, or even brain-controlled drones.

It is not entirely science-fiction, as the neurological scientific field is intensively investigating differ-
ent manners of letting the brain in some way communicate with machines. This "communication” is
realized by letting the machine interpret the different kinds of brainwaves. These types of devices and
frameworks are often referred to as brain-computer interfaces (BCls). BCls can be especially beneficial
to people that have lost a limb or are (partially) paralyzed, which allows them to reclaim a certain level of
independence. BCls in combination with the brain can be used to control different clinical applications,
such as artificial or external limbs. BCls can be intracortical or not. This means that they are implanted
or externally attached to the head. The implanted BCls come with a higher risk to the user. For instance,
the body could reject the implant, which is one of the reasons why external devices are preferred. Multi-
ple methodologies realize BCls. However, the focus of this research is electroencephalography (EEG).

EEG uses external electrodes that measure the electri-
cal activity from the scalp’s surface. It measures millivolts
(mV) over time. This electrical activity is evoked by the
brain. There are multiple methodologies possible to evoke
signals in the brain. These signals can be used as control
signals for BCl-based systems. Motor imagery is an exam-
ple that is evoked by imagining a movement [35]. Motor
imagery often allows for continuous and more fluent con-
trol. However, the problem is that motor imagery is not very
accurate and needs months of training. Furthermore, the
number of different commands possible is limited. Another
method is motor execution. This uses actual movements
of body parts to generate the desired wave to control the
BCl-based application [35]. However, besides the limita-
tion of the number of different commands and accuracy, it
also limits the useability for people that are paralyzed. An-
other option to elicit brainwaves is the use of external stimuli. These methods evoke Visually Evoked
Potentials (VEP’s). These VEP’s can be observed in the occipital and parietal regions [7][35].

An example of a VEP that is used often is P300-waves. They are very accurate, people need less
training, and can support a high amount of different commands [35]. However, the problem is that it
takes a long time to issue just one command. This limits its useability in real-time applications. This
methodology uses a matrix of characters of which a row or a column is elicited at random (see figure
1.1). When the person looks at the desired character and that row or column lights up, a brainwave is
evoked. To do this it needs to go through all the columns and rows. Sometimes even multiple times. A

Figure 1.1: P300-speller matrix [31]

1
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Figure 1.2: (a) The SSVEP-speller matrix.(b) The technical information of each target of the SSVEP-speller. [20]

methodology that overcomes this issue is steady-state visually evoked potential (SSVEP). It reaches
high accuracies, is fast to issue, and needs no training time of the user [22][45]. However, it needs
an external stimulus that is pulsating at a fixed frequency to be evoked. This means that additional
hardware is needed. This is a disadvantage to other control methodologies, such as motor imagery
[35]. According to research, the best regions where SSVEP’s can be measured are the occipital area
and the parietal lobe region of the scalp [7][45].

It is important to recognize that to control applications there is often a need for the ability to distin-
guish between commands. Examples are keyboards and even the remote control of a television. This
means that often multiple external stimuli displayed at different frequencies are needed to be able to
support various commands during operation. These are often displayed on a monitor, forming a matrix.
These types of matrices of stimuli are named SSVEP-spellers. The example shown in figure 1.2 is
used as a keyboard [20]. Depending on the application and the user’s ability to override the system in
case of an error, the amount of accuracy needed in decoding SSVEP’s can become significantly more
important. For example, if a person has to use a robotic arm to pick up a fragile object and place it
somewhere else while avoiding obstacles.

To be able to distinguish between multiple SSVEP’s reliably, which are illicit in response to their cor-
responding external stimulus, it is important to achieve the highest amount of decoding accuracy for
the classification algorithm that interprets the SSVEP’s. This means that the quality of the input data
needs to be as high as possible. The quality of the signal that contains the SSVEP’s can be measured
by the signal-to-noise ratio (SNR) which is measured in decibels (dB). It is defined as the ratio between
the power of the signal and the power of the noise. The power of the noise is some kind of baseline,
which is referred to as noise. An SNR above 0dB indicates that the signal is stronger than the noise.
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Figure 1.3: Power-spectral density plot with SNR plot where the striped line indicates that the stimulus frequency is at 25Hz.

To extract this the measured signal over time is converted to a power-spectral density spectrum by cal-
culating its discrete Fourier transform (DFT) [11][44]. When SSVEP’s are evoked, it yields an increase
in the power somewhere around the stimulus frequency (see figure 1.3) [27]. If this power increases
with respect to the power of the baseline, it means a cleaner signal and a higher SNR. A cleaner signal
yields higher accuracy, which as mentioned before, is important to support multiple commands.

There are numerous parts researched of SSVEP-based frameworks that could potentially influence
the SNR. To get a good perspective of the different parts, the next section will first give an introduction
to the multivariate nature of the SSVEP-based BCls and the according terminology before diving further
into the research that is more related to the main research question (see section 1.1). Examples of
influential parts that could affect the performance of SSVEP-based hardware are the used hardware to
display the stimuli or the type of EEG electrodes used to measure the brainwaves across the surface
of the scalp [45]. Another influential part of the SSVEP-based framework researched to maximize the
SNR and allow for more robust decoding of SSVEP’s are the presented characteristics of the exter-
nal stimuli. It can be flexibly changed, as it does often not require additional hardware. This makes
it a cost-effective solution to increase the SNR in SSVEP’s that use screens to display external stim-
uli. Furthermore, the results of such research can be taken into account when designing future systems.

Investigating the effect of changing the stimuli characteristics has been done before [9][34][36][45][50].
However, there are two problems regarding such research. None of them have attempted to incorpo-
rate eye tracking in the EEG recordings to give them more context [9][34][36][45][50]. Additionally,
never do they investigate if the neighboring stimuli in an SSVEP-speller environment do affect the
actual measured SNR of the target stimulus. This research attempts to solve these problems by inves-
tigating the effect that a combination of different stimuli characteristics has on the measured SNR. This
is tested by performing two experiments of which the results can be used to investigate the effect that
surrounding stimuli of an SSVEP-speller have on the actual measured SNR of the target stimulus. The
main research question can be formally formulated as: "What is the relationship between the stimuli
characteristics and the measured SNR? During the experiments which are performed to answer this
question, eye tracking will be employed to give the EEG recordings more context.
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Figure 1.4: (a) During single graphic stimuli the object appears and disappears.(b) During pattern reversal, the object is
mirrored each time. [50]

1.1. Influential factors in SSVEP-based BCI’s

Here an introduction is given to different contributing factors to SNR in SSVEP-based interfaces and
their corresponding terminology to create a better understanding of the multivariate nature of SSVEP-
based interfaces.

First, the impedance of the electrodes is one of the influential factors that determine SNR. To lower
the impedance of the electrodes conductive gel is often used. Another important aspect of the hard-
ware is that the sample rate can significantly differ between used hardware. The sample rate is directly
correlated to the sampling resolution. The sampling resolution is the time between two neighboring
sample moments of the measured brainwaves. Furthermore, the sample rate should at least be twice
the frequency desired to sample. This sample rate is at least needed to reconstruct the signal and is
named the Nyquist limit in the scientific field surrounding signal analysis [43]. This sample rate limit is
also the reason why some methods used to classify SSVEP’s cannot be used when the sample rate is
too low, as they depend on certain frequencies [17].

Besides the used recording hardware for the brainwaves, the stimulation hardware also has influ-
ential properties. For instance, the requirement of a monitor that displays the stimuli to evoke the
SSVEP’s, which is part of the SSVEP-based interfaces, induces the problem of portability of SSVEP-
based interfaces. This means that it is harder to carry the SSVEP-based interface throughout the day.
This means that it might hinder the viability of the SSVEP-based BCI to be used throughout the day.
Additionally, SSVEP-based interfaces often require a gaze-shifting time between the application that is
controlled and the location of the displayed stimuli of the SSVEP-based interface [41][45]. The gaze-
shifting time is induced because users often want to check if the desired command is issued by looking
at the application that is controlled, which provides visual feedback. However, this decreases the abil-
ity of real-time operation of applications. Some SSVEP-based frameworks have now used augmented
reality (AR) to overcome the problem of gaze-shifting time [5][28][47]. However, using a monitor with
respect to AR or virtual reality (VR) can still pose different results [45]. That the difference in stimula-
tion hardware yields different results is also stated by Volosyak, Cecotti, and Graeser [41]. Volosyak,
Cecotti, and Graeser [41] stated that using an array of LED’s in comparison to using a liquid crystal
display (LCD) screen yielded significantly larger amplitudes.

According to Zhu et al. [50], besides LED’s, most SSVEP-based interfaces use a screen to gener-
ate the stimuli. These stimuli can have different types of appearances. They can show an object that
appears and disappears (see figure 1.4a). Stimuli with a checkerboard or stripe-based pattern (grating
stimulus) are used often. Their patterns are continuously reversed to evoke SSVEP’s. Both types of
stimuli reverse the displayed stimulus and alternate between these two states (see figure 1.4b). In this
research, the focus is on single graphic stimuli that appear and disappear, as seen in figure 1.4a, and
multiple graphic stimuli that appear and disappear at different rates.
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Besides accuracy, there is another metric that is important and is often used to evaluate SSVEP-
based frameworks. The metric that determines if an SSVEP-based framework is suited for online
control of an application is the information transfer rate (ITR) (bits/min) (see equation 1.1).

60
* —

T (1.1)

17
ITR = (logy N +p * logop + (1 = p) * loga [ —p1])

Where p is the recognition accuracy; T is the time to select and issue a target (includes the time
to identify the target, the time needed to switch gaze, and the visual latency); and N is the number
of targets to choose from [45]. This means that there is often a trade-off between accuracy and the
number of stimuli to reach the highest ITR, as accuracy often decreases if it has to distinguish between
more targets due to induced complexity.

ITR depends on accuracy and is a measure that indicates how fast and accurate a BCl-based
framework is, and how much information it can distinguish. The accuracy and ITR do heavily depend
on the SNR. Besides the used hardware (e.g., the EEG headset), numerous parts of the BCl-based
framework influence the SNR.

Furthermore, it is important to recognize that SSVEP’s can be categorized based on the aspect
modulated. These are code(c)-VEP’s, frequency(f)-VEP’s, and time(t)-VEP’s [35]. In t-VEP’s, the or-
der of flashing of different stimuli is orthogonal or almost orthogonal to one another. Because not all
stimuli flicker at the same time, it is the slowest of the 3 categories and does not require training of the
user [35]. Ramadan and Vasilakos [35] reported in 2016 that t-VEP’s reach ITR values of <30 bits/min.
Secondly, f-VEP’s is where a unique frequency is assigned to each stimulus and does not need any
kind of training of the operator, and reaches ITR’s of 30-60 bits/min [35]. Lastly, c-VEP’s use pseudo-
random sequences which are employed and set the time period of the ON and OFF states of the visual
flickers. It is the best-suited method for online control, reaching ITR’s >100 bits/min [35]. However, it
does require training of the user.

Now that a more understanding perspective has been created, let’s dive further into the possible
influential stimuli characteristics on the measured SNR before the subquestions of this research are
stated. Influential factors that are discussed here are the inter-stimuli distance, stimulus color, the
shape of the stimulus, the amount of stimuli, the size of the stimuli, and the used frequencies for the
stimuli [9][34][36][45][50]. These are stated because these influential factors are the most common at-
tributes that are varied across different SSVEP-based interfaces that use a screen to display the stimuli.

1.1.1. Color of the stimulus

To determine the best color for flickering is a hard-to-answer question, as previous research yields
contrary results. Some research stated that using color enhances the SNR, while others do not [8].
Moreover, some research stated white flickering yields the best accuracy and others stated red [1][4][8].
However, Duart et al. [8] stated that this is dependent on the stimulus frequency and that around 5Hz,
red yielded the highest SNR. At 12Hz, Duart et al. [8] stated that they did not perceive any differences
between the red and white color used when showing flickering. A stimulus color that is also investigated
often is the color green [4][8][50].

Cao et al. [4] also compared different colors of stimuli in combination with different frequencies.
They tested green, blue, red, gray, and white, at frequencies between 8Hz and 17Hz. The results of
Cao et al. [4] favored white and then gray. The other colors followed in the sequence are red, green,
and blue.

Duszyk et al. [9] also investigated stimuli frequency and color. They researched the frequencies
14Hz, 17Hz, 25Hz, and 30Hz. The colors investigated are white, red, green, blue, and yellow. The
experiment concluded that the differences between the means were not significant between the colors
except with respect to blue. The top 3 frequencies across their results seemed to be first white, followed
by yellow, and then red. Duszyk et al. [9] did even more extensive research by also investigating the
size of the stimuli, the shape of the stimuli, the influence of a fixation point, and the distance between
stimuli. These characteristics will be discussed later in this chapter.
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Cysewska-Sobusiak and Jukiewicz [6] used rectangular evoked waves at 10Hz, 20Hz, 30Hz, and
40Hz. The colors tested were green, blue, red, yellow, and white. However, the results varied signifi-
cantly across each frequency which made it hard to choose a clear winner. An interesting measurement
was the one at 10Hz, the green color yielded the highest SNR relative to the other colors and varied
a lot across the colors. The colors yellow and red seemed to yield comparable SNR values across all
frequencies. An interesting result was that at the other frequencies besides the 10Hz, the difference
between the SNR values across colors varied less.

Tello et al. [39], also tested different colors of stimuli across different frequencies. However, it used
LED’s to display the colors. Red, green, blue, and yellow, are tested across 8Hz, 11Hz, 13Hz, and
15Hz. They used a method named the multivariate synchronization index to classify the SSVEP’s [48].
The color red yielded the highest average ITR and the highest accuracies across all frequencies.

Besides stimulus color, the background color also affects the decoded SNR, as studied by Zhang
and Chen [46]. This study showed that when comparing backgrounds, black luminance has a positive
effect on the SNR compared to grey luminance.

1.1.2. Size of the stimulus

Duszyk et al. [9] tested different sizes of squares with the sides being the length of 41, 102, 170, and
255 pixels. Overall, the increased pixel size yielded an increased SSVEP magnitude, except for the
30Hz, which yielded the SSVEP magnitude peaking at 170 pixels.

1.1.3. Shape of the stimulus

Duszyk et al. [9] also compared different shapes. They compared circles to squares. Circles yielded
a slight, but not significant, increase in the SSVEP magnitude with respect to squares. This was the
case for all tested frequencies (14Hz, 17Hz, 25Hz, 30Hz) except the 17Hz. Furthermore, it seems that
the most often-used shape in SSVEP’s stimuli when showing a single graphic is square-based [50].

1.1.4. Inter-stimuli distance

Duszyk et al. [9] tested various inter-stimulus distances across various frequencies and yielded mixed
results. They concluded that varying this aspect yielded no significant effect on the SSVEP magnitude.
However, Zhang et al. [45] showed a positive relation between inter-stimuli distance and the measured
accuracy in an AR-SSVEP setup.

1.1.5. Stimuli frequency

Previous works state that frequencies lesser than half the refresh rate are suitable for SSVEP [38][42].
The refresh rate determines which frequencies are easier to display. For example, for a refresh rate of
60Hz divided by a selected integer gives the frequencies that are the easiest to display, such as 30Hz,
20Hz, 15Hz, 10Hz, 8.57Hz, 7.5Hz, and 6Hz [24][41]. However, this is more the case when the flicker
stimulation sequence can only switch between on and off states.

Other research has switched the on and off flickering for a sampled sinusoidal stimulation method (see
equation 1.2) [21][26]. In this equation, i is the index of the frame, which is between 0 and the refresh
rate. Next, ¢ is the phase shift, f is the stimulation frequency, and RefreshRate is the refresh rate of
the monitor. This method allows more flexibility in selecting stimulus frequencies because it can show
values between the on and off states. Some research incorporates the phase shift to increase the
separability between adjacent frequencies, as shown in equation 1.2 [26].

sin(f,é,i) = 0.5(1 4+ sin(2 * 7 = f * (i/RefreshRate) + ¢) (1.2)

The sinus-based stimulation allows more freedom in frequency selection for the displayed stimuli.
It has this property because it can show intermediate values between the on and off states. This is
an important advantage because harmonics should be avoided [38]. This means that at multiples of
stimulus frequencies an increase in amplitude occurs, which should be avoided when selecting the
different stimulus frequencies as a decrease in SNR occurs [38]. This also means that these multiples
of different frequencies cannot be the same. Volosyak, Cecotti, and Graeser [41] made sure that at
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least the first two harmonics between different frequencies cannot overlap, as these can be used for
SSVEP detection.

Besides harmonics, the type of stimulus also seems to greatly affect the SNR. High-frequency stim-
ulus frequencies are more prone to timing issues as a delay of a few ms greatly influences the actual
stimulus frequency compared to lower frequencies. This means that lower frequencies are more ro-
bust to stimuli timing issues. Furthermore, research has shown that high-frequency stimulation is more
prone to evoke fatigue within subjects [23][38]. Some research also states that the smallest response
in amplitudes is seen in the high-frequency spectrum [6][38][42].

Pastor et al. [34] investigated 14 frequencies between 5Hz and 60Hz across 16 subjects, and claim
the amplitude of SSVEP’s peaked at 15Hz in the occipital region.

Duart et al. [8] used an analysis of variance (ANOVA) to determine the best color and frequency
combination that yields the highest SNR. From the 5Hz, 12Hz, and 30Hz, the results yielded a prefer-
ence for 12Hz. It yielded similar results at 12Hz for red and white. However, at 5Hz, green was the
preferred color. That frequency shows different results with different colors is in line with Regan [36].

Cysewska-Sobusiak and Jukiewicz [6] measured the SNR at different colors at 10Hz, 20Hz, 30Hz,
and 40Hz. However, the SNR values were significantly higher at 10Hz and 20Hz. At 20Hz, the highest
mean SNR was reached. Herrmann [18] did mention that they achieved strong resonance peaks at
10Hz, and weaker peaks at 20Hz, 30Hz, 35Hz, and 45Hz. They also stated that the SSVEP spectrum
peaked at the frequencies 10Hz, 20Hz, 30Hz, 40Hz, and 50Hz. This could explain the peaks at 10Hz
and 20Hz measured by Cysewska-Sobusiak and Jukiewicz [6].

Volosyak, Cecotti, and Graeser [41] tested two sets of frequencies on LCD screens. Frequency
set 1, containing 5 frequencies between 6.67Hz and 12.00Hz, yielded overall significantly better accu-
racy and ITR in comparison to the other frequency set, containing frequencies between 13.00Hz and
17.00Hz. SNR thresholding was used as a classification method for over 10 persons.

Looking at all of this research, it would suggest that most research yields the best SNR results for
frequencies around 10Hz and 20Hz.

1.1.6. Fixation point

An interesting aspect often implemented in SSVEP-based interfaces is the use of fixation points in the
middle of the displayed stimuli [37]. It is often believed that this is beneficial to the SNR, as participants
have reported that it helps them focus. Duszyk et al. [9] also compared the influence of the fixation
point on SSVEP magnitude. Experiments revealed no significant differences in this parameter across
all tested frequencies. The results sometimes yielded a higher SNR for a fixation point and sometimes
without. However, participants reported here also that it helped them focus.

1.1.7. Method to evoke wave

Cysewska-Sobusiak and Jukiewicz [6] also investigated the method used to generate the stimuli. They
favored a sinus-based method significantly over a saw-tooth method or a rectangular/square wave.
The rectangular method realized the lowest SNR. Oralhan and Tokmakgi [33] also investigated the in-
fluence that the duty cycle has on the accuracy and ITR when using a rectangular/square wave in a
classification method named canonical correlation analysis (CCA). The duty cycle is the percentage of
the period of a signal the signal is turned on. For example, if a signal is 0.75s of the time on and 0.25s
off during a period, it means that the duty cycle is 75%.

CCA is a method that is commonly used in the BCl-based scientific field. It measures the correlation
between two variables and can be used for identification. In the research of Oralhan and Tokmakgi [33],
the frequencies 6Hz, 12Hz, and 15Hz were also tested. The 15Hz yielded the best results.

Using one-way ANOVA with respect to the classification accuracy, it was concluded that the duty cycle
had a significant effect. Besides square waves, Oralhan and Tokmakgi Oralhan and Tokmakgi [33] also
tested a sort of saw-tooth-based method where the brightness was step-wise increased and decreased.
The saw-tooth-based method and the square-based method both reached the highest average accu-
racy at 40% duty cycles. The saw-tooth-based method reached the highest ITR and accuracy.
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1.1.8. Number of stimuli

The optimal number of stimuli in SSVEP-speller matrices depends on various aspects and does seem
to influence the accuracy and ITR achieved with various decoding algorithms, and the optimal amount
of stimuli may vary between these algorithms [14][45]. Gembler, Stawicki, and Volosyak [14], and
Zhang et al. [45] showed that the highest ITR does not necessarily mean the highest accuracy. An
interesting finding of Zhang et al. [45] was that the location of the stimuli in the matrix might also yield
decoding accuracy differences.

1.2. Our Contribution

In the present study, the influential characteristics of the external stimuli on the SNR are investigated.
This research investigates the role that different stimuli characteristics play and attempts to create in-
sights into how future SSVEP-based interfaces should be designed to maximize the SNR. Besides
testing the effect of different stimuli characteristics on the SNR, it also measures the level of noise
of the surrounding stimuli on the measured SNR of the target stimulus by simulating a SSVEP-speller
environment. These results might show new pitfalls that should be avoided in future research. Addition-
ally, it is important to show novel insights into the correlation between different interface characteristics
as this is still unclear within the scientific field surrounding SSVEP-based interfaces. To dissect the
influence of the interface characteristics on the SNR the following questions are investigated:

» What is the relationship between color and the measured SNR?

* What is the relationship between stimulus size and the measured SNR?

* What is the relationship between shape and the measured SNR?

* What is the relationship between frequency and the measured SNR?

* Do surrounding stimuli in an SSVEP-speller affect the measured SNR of the target stimulus?

To answer these questions different stimulus characteristics are tested over 2 experiments. Exper-
iment 1 shows only a single stimulus at various sizes, shapes, colors, and frequencies. All of these
possible combinations are shown to participants in an attempt to capture how the combination of these
various characteristics contributes to the measured SNR. The second experiment attempts to give
insights into how these different combinations of characteristics may function differently in an SSVEP-
speller matrix environment. To our knowledge, this is novel, as previous research does not seem to
investigate these differences. Therefore, in this experiment each of these variables except shape,
which is kept static at squares, are tested in a 2X2 SSVEP-speller matrix. The other 3 stimuli are the
same size, shape, and color as the target stimulus that is to be recorded. Additionally, the frequencies
of these stimuli are in the neighborhood of the frequency of the stimulus. This is recorded by using a
fixed difference (step size) in Hz between neighboring frequencies.

To give the measurements more context, eye tracking is used which helps explain the possible
deviations in the measurements. This approach using such an experimental paradigm is to our knowl-
edge novel in nature with respect to SSVEP-based interfaces. After investigating previous BCl-based
research, it could be concluded that giving EEG recordings context using eye tracking has never been
attempted before, especially in research investigating the influence of stimuli characteristics on SNR in
SSVEP-based interfaces. To our knowledge eye tracking is only used in hybrid BCls as an additional
manner to issue control commands. An example is Mannan et al. [29].

In the coming chapters, first, the developed SSVEP-based interfaces are discussed. Then, the
experiments of this research are discussed in detail, followed by the chapter that mentions the results.
Lastly, the discussion, limitations, and conclusion of the results are stated at the end of this research.



Developed SSVEP-based interfaces

The developed SSVEP-based interfaces are created by using python to create .mp4’ videos using
AVC1 decoding. The videos are created frame by frame at 60Hz, with a resolution of 1920x1080 pixels.
After that, the videos are converted using the software named Handbrake. The videos are converted to
videos of the same resolution but an adapted framerate of 59.94 frames per second. This is needed in
order to display the videos in the Experiment Builder (v2.3.38) software used to record and display the
experiments. The software is developed by the company SR Research Ltd. The software has built-in
eye tracking and supports EEG recording functionality. The EEG data is recorded in combination with
the software BrainVision Recorder (Brain Products GmbH). A problem within Experiment Builder is that
a significant part of the frames will be dropped if the desired video framerate is equal to or higher than
the framerate of the screen. This means that the stimuli will not be correctly displayed, which makes
the measurements untrustworthy. By converting the videos to a framerate of 59.94, which is slightly
below the actual framerate of 59.999Hz, this was solved and only showed a small drop of around 12
frames in the first 0.25s of the videos.

2.1. Hardware

The developed SSVEP-based interface is shown
on an interface of 60Hz (to be precise 59.999Hz).
The resolution of the screen is 1920x1080 pixels.
The EyeLink Portable DUO is used for eye track-
ing with a sample rate of 2000Hz and is manufac-
tured by SR Research Ltd. The EEG recordings
are realized using the actiCHamp Plus amplifier
of BrainVision in combination with the standard
actiCAP snap, which is a gel-based EEG head-
set. The sample rate is 2500Hz. The conductive
gel used was the ECI Electro-Gel. The system
uses active electrodes. A total of 64 electrodes
are used for the recordings. The electrode loca-
tions recorded are Fp1, Fz, F3, F7, FT9, FC5,
FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1,
Oz, 02, P4, P8, TP10, CP6, CP2, Cz, C4, T8,
FT10, FC6, FC2, F4, F8, AF7, AF3, AFz, F1, F5, Figure 2.1: Experimental setup with hardware

FT7, FC3, C1, C5, TP7, CP3, P1, P5, PO7, POS3,

POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FT8, F6, AF8, AF4, F2, and Iz. The locations
of these electrodes can be seen in figure 2.2.

To realize stable measurements, a headrest is used for eye tracking. Additionally, this helps to
keep the distance between each participant and the monitor used to display the stimuli at a constant
level. This will improve the overall data quality. The distance between the screen and the eyes of each
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participants was kept fixed and measured 68 cm. The used display is of a laptop, the ASUS GX701LV-
D576. This laptop uses the Intel Core i7-10750H CPU @ 2.60GHz processor and the NVIDIA RTX
2060 that has 16GB video RAM to display the experiments and with that the videos. Additionally, the
laptop uses vsync to realize the exact timing of the frames and avoids screen tearing. An overview of
the experimental setup can be seen in figure 2.1.

Electrode Names and Number Labels
Plus 3 spare holders
with empty labels

Figure 2.2: Electrode placement of the EEG headset [10].

2.2. Stimuli

Stimuli are tested in two experimental paradigms. Experiment 1, also named experiment 1x1, displays
a single stimulus at a time. The stimulus here will vary by shape, size, color, and frequency. In exper-
iment 2, also named experiment 2x2, 4 stimuli are presented simultaneously. One stimulus of these
4 stimuli is the target stimulus. This stimulus is displayed at the same frequencies used in experiment
1x1. The other stimuli are shown at frequencies close to the target frequency. The stimuli here will
vary in size and color uniformly. The results of experiment 2 with respect to the results of experiment
1 can be used to give insights into how the effect of multiple stimuli in an SSVEP-speller matrix affects
the recorded SNR of the desired target.

To draw the stimuli OpenCV is used which is an image processing library. It contains draw functions
to draw standard figures such as circles, but also methods to draw (non-)convex shapes.
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2.2.1. Positioning
As mentioned in section 2.1, the display has a size of 1920x1080 pixels. In experiment 1, only one
stimulus is shown with its center at the middle of the screen. Thus, x=960 and y=540 pixels. In experi-
ment 2, 4 stimuli are shown simultaneously. In each quadrant of the screen, a stimulus is shown. This
means that following the (x, y) notation, the shapes are centered at (480, 270), (480, 810), (1440, 270),
and (1440, 810). A visualization of this can be found in figure 3.1.

Important to note is that the origin of images is located in the upper-left corner of the image. The
positive y-axis is oriented downwards.

2.2.2. Shapes and pixel surfaces

In this research, 3 different types of shapes are tested: trian-
gles, squares, and circles. Using the desired pixel surface
that makes up the shape, the corresponding shape is cal-
culated. The corresponding shape may not exactly be the
exact amount of pixel surface that is desired. However, it
will be close to it. The reason is that it was chosen to let the
shapes be symmetrical with respect to its y-axis and its cen-
ter. The reason is that the shapes then have a true center.
There are 3 levels of pixel surfaces tested in this research:
10.000 pixels, 20.000 pixels, and 30.000 pixels. The cor-
responding actual pixels surfaces per shape are shown in

table 2.1. Figure 2.3: Iscoles triangle
Table 2.1: Pixel surface per shape
Shape 10.000 20.000 30.000
pixels pixels pixels
Circle 9.845 19.577 29.525
Square 10.201 19.881 29.929
Triangle 10019 20.289 30.077
Triangles

The triangles are designed to be anisosceles triangle where

all sides have the same length (see figure 2.3). Looking at figure 2.3, side a can be expressed according
to 2.1.

a=§ (2.1)

Equation 2.2 shows the equation of Pythagoras for calculating the sides of a rectangular triangle con-
sisting of sides «, b, and ¢, see figure 2.3.

a® + b2 =¢? (2.2)

When substituting equation 2.1 in equation 2.2, equation 2.3 is achieved.

§F+$:8 (2.3)
C2
Z+N:& (2.4)
2
2_ 2 ©
=t (2.5)
2
wz%f (2.6)
2
b /3E 2.7)
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(a) Green circle at ~ 10.000 pixels (b) Red triangle at &~ 30.000 pixels

Figure 2.4: Examples of stimuli shown in experiment 1

Eventually, b can be expressed in ¢ according to equation 2.8.

po V3 (2.8)
2
The surface can then be expressed according to equation 2.9.
surface:%*2a*b:a*b:g*g*\/§ (2.9)

Equation 2.9 can then be rewritten to equation 2.12, to express the length of side ¢ as a function of
the desired surface.

2
surface = CZ % /3 (2.10)
4 % sur face
2" 2.1
7 (2.11)
4 x sur face
=y —— 212
¢ 7 (2.12)

The location of the desired center coordinate is at point T (see figure 2.3), which is used to define
the points Q, P, and R. However, the actual center of the triangle is the average of the 3 points (Q, P,
R) that make up the complete triangle. This center is calculated first. The x-coordinate of the desired
center coordinate does not need a correction. Only the y-coordinate needs to be corrected. Thus, the
difference between point T and the actual center point of the triangle is calculated on the y-axis. Then
all the points that make up the triangle are corrected by the calculated needed correction. The code
function is named ’_draw_triangles’ and is located in appendix D.1.2.

Squares

The sides of the squares are calculated by taking the square of the pixel surfaces and converting the
not-rounded answer to integer. Then the floor division is taken by dividing the answer by 2 and using
that answer to calculate the upper right corner and upper left corner of the square with respect to the
center coordinate. The code function is named ’_draw_squares’ and is located in appendix D.1.2.

Circles
To approximate the desired pixel surface the radius is calculated according to equation 2.13. The code
function is named ’_draw_circles’ and is located in appendix D.1.2.

radius = int(4/ W) (2.13)
T
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2.2.3. Colors

To investigate how colors affect the SNR the following colors are investigated in combination with a black
background: red, white, and green. The colors of each frame are calculated according to equation 1.2.
However, the phase shift is kept at 0. To visualize how all the attributes, such as color, shape, and size
come together, see figure 2.4 for examples.

2.2.4. Frequencies

In this research, the sampled sinusoidal stimulation method is used without the phase shift to allow
more freedom in selecting the stimuli frequencies in contrast to the earlier mentioned method of divid-
ing the refresh rate by an integer. This is similar to Kanoga et al. [21], who used a sinus-based stimulus.
As no training will be required to evoke the SSVEP’s and only the frequency is modulated, this would
mean the designed SSVEP’s can be classified as f-VEP’s.

Moreover, to investigate what the influence of the stimuli frequencies is on the SNR the following
frequencies will be the target frequencies: 8Hz, 13Hz, 19Hz, and 25Hz. In experiment 1, only one
stimulus is shown at a time. Each stimulus is shown at one of these fixed frequencies. In experiment
2, 4 stimuli are shown simultaneously. The target stimulus will also be one of these target frequencies.
The frequencies of the other 3 surrounding stimuli will be close to the desired target frequency. The
stepsize of these neighboring frequencies is 0.3Hz from the adjacent frequencies. A stepsize of such
magnitude is not uncommon in SSVEP-spellers [26]. The distribution is one frequency lower and two
frequencies higher than the target frequency. Thus, for example, 24.7Hz, 25Hz, 25.3Hz, and 25.6Hz.
A 0.3Hz stepsize means that for an even distribution of intervals around each stimulus frequency, each
interval is defined +0.15Hz with respect to the stimulus frequency. The same interval is used for the
analysis of experiment 1 to create a fair comparison. The reason that an interval is searched is that the
response frequency measured in the brain does not always exactly match the stimulus frequency [27].
For example, Zheng et al. [49] searches an interval of £0.1Hz with respect to the stimulus frequency.
A visualization of the peak measured in SNR that occurs in response to a stimulus frequency can be
seen in figure 1.3. How the SNR is exactly calculated is later explained in section 4.1.1.



Experiments

The experiments were recorded in the cellar of the UMC Amsterdam, which was a former nuclear
bunker. An advantage of this location is that the external noise of electromagnetic fields is minimized
with respect to the EEG recordings. A total of 6 participants of which 3 males and 3 females participated
in the experiments. The age distribution is 24.8+3.4 years. All participants are new to SSVEP, except
participant 1.

The experiments consist of two parts, experiment 1 and experiment 2. Half of the participants start
with experiment 1 and the other half with experiment 2. Participants 1, 3, and 5, started with experiment
1. Participants 2, 4, and 6, started with experiment 2. After that, they execute the other experiment on
the same day.

Before the start of the experiments, each participant is informed and has to give consent for the use
of their recorded information within this research (see appendix E). They are also informed about any
potential risks related to the experiment.

After attaching the EEG headset to each person and infusing it with conductive gel, each person is
seated in a headrest at a fixed distance which measured 68 cm between the eyes and the screen (see
figure 2.1).

The experiments consist of two parts, experiment 1 and experiment 2. Each experiment starts with
validating the impedance to be below 10kQ for each electrode. After that, the eye tracking is calibrated
and an instruction screen is shown. By pressing the SPACE bar on the keyboard the practice trials are
started. Each experiment shows 4 randomly sampled unique trials from all the unique combinations
of interface characteristics covered in the trials. The trials are shown automatically in sequence. Each
trial consists of an instruction screen, which is shown for 2s. This instruction screen consists of a static
image that shows the target to look at using a blue dot (see figure 3.1). After these 2s, the target stim-
ulus starts flickering. Important to note is that the other stimuli will also start flickering in experiment
2. After that, the video is frozen on the last frame and Experimental Builder loads the next trial, which
takes around 1s. This means the total trial duration for each combination is around 7s. After each block
of trials, a 1 min break is induced for each person to relax. After the 1 min break, a drift correction is
performed for the eye tracking. After which, the next block of trials is started. Each experiment consists
of 6 blocks for the experimental trials of which the size is experiment dependent and 1 block of practice
trials which consists of 4 practice trials.

In the analysis of the EEG data, only the last 3.5s of the video is taken to calculate the SNR val-
ues. Reason one is that SSVEP can be stably measured around 250ms after the stimulus onset [40].
Furthermore, Experimental Builder dropped a portion of the frames at the start of the video, causing
artifacts. This is only in the first 0.25s of the video Thus, to receive a clean and stable signal the last
3.5 seconds are taken of the 4s trial.

14
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Moreover, the frequency resolution of the power-spectral density spectrum that results after calcu-
lating the DFT can be calculated according to equation 3.1 with a sampling frequency (F;) of 2500Hz
and a sampling length (n ;) of 3.5s*2500Hz=7500 samples [19]. This results in a frequency resolution
of 2500/(3.5*2500)=0.2857Hz.

5f = (3.1)

3.1. Experiment 1

In experiment 1, a single stimulus is shown across 3 different colors, 4 different frequencies, 3 different
shapes, and 3 different sizes. This makes a total of 3*3*3*4=108 unique combinations of experiments.
Each combination is shown 3 times in total in this experiment. All 108 combinations are shown in a
random order. Then the combinations are randomized and shown again, and then randomized and
shown again. As mentioned earlier, the block of practice trials consists of 4 trials. The experimental
trials, which cover 3 times the 108 combinations, are divided up into 6 blocks, each of 54 trials. This
means that the duration of each block is 54*7s=378s, which is 6.3 min. The total recording duration is
thereby 7s*4 (practice trials)+60s*6+378s*6=2656s, which is ~44.3 min.

3.2. Experiment 2

In experiment 2, 4 stimuli are shown at the same time. It stimulates the target in its ’natural environ-
ment’. It simulates an actual SSVEP-speller as neighboring frequencies only differ by 0.3Hz from one
another. There is always one frequency lower and two frequencies higher than the target frequency.
This means that for 25Hz, 24.7Hz, 25.3Hz, and 25.6Hz are shown across the other 3 stimuli. Simi-
lar frequency differences between neighboring frequencies are often used in SSVEP-speller matrices
containing a significant amount of potential targets [3][20][26][27]. The locations of these neighboring
frequencies besides the desired target to be recorded are randomized.

To indicate where to look during the trial the static photo that is shown before the start of the video
contains a blue dot at the location of the target. This indicates where the participants have to stare
(see figure 3.1).

The trials cover a total of 144 combinations,
following a similar procedure as experiment 1.
All the combinations here are also randomized
in order, and each combination is recorded 3
times. The only difference is that the size of each
block covers here 72 trials. The 144 combina-
tions cover each of the 4 positions and the same
4 frequencies (8Hz, 13Hz, 19Hz, and 25Hz), 3
sizes, and 3 colors as used in experiment 1. The
shapes do not differentiate in this case as other-
wise the number of combinations would be 432,
which is too large to record. All combinations Figure 3.1: Example of a.staticinstruction image for
show a square, as this is most often used in experiment 2
SSVEP-spellers [20][25][26][27][50]. The total
amount of experimental trials is 144*3=432, and the number of practice trials is 4. This results in
432*7s+6*60s=3384s time to record the entire trial, which is ~56.4 min.

3.3. Questionnaire

Before the start of the experiment, the questionnaire is shown to give an idea of which aspects will be
graded by each participant. For each interface characteristic that was changed across the experiments,
the participant could answer: very low(1), low(2), neutral(3), high(4), and very high(5). This means for
every color, every size, every shape type, and for the low frequencies, high frequencies, or middle
frequencies. Additionally, experiment 1 and experiment 2 are separately graded to see if there is any
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difference in the subjective perspective of the participants. Each of the characteristics was graded on
the following attributes: comfort level, the level of focus of the participants, eye irritation, how easy it
was to focus on the center of the stimulus, and if they had to blink a lot (see appendix C).

3.4. The raw data

A visualization of the EEG data measured can be seen in figure 3.2a. It shows the raw unprocessed
data of the 3.5s segment in the form of a power-spectral density plot in combination with the SNR plot
calculated after processing.

For the analysis of the eye tracking data, the whole 4s is taken as this indicates how well the person
was focused during the whole trial. This is realized by segmenting the video from the moment the first
frame was displayed until the 4s timer gave a timeout. The timer was started at the beginning of the
video. An example of the visualized raw eye tracking data in a trial can be seen in figure 3.2b.

PSD spectrum

Power Spectral Density [dB]

SNR spectrum
30

20

SNR

10 ~

T T
10 20 30 40 50 60 70 80 90
Frequency [Hz]

(a) The power-spectral density and SNR plot of the raw data segment. The striped line indicates that
the stimulation frequency is at 25Hz.

(b) The raw eye tracking data visualized during the trial. The green circle is the stimulus and the blue
dots are the gaze of the participant.

Figure 3.2: Visualizations of the raw data measured in a trial of participant 5 during experiment 1



Analysis & Results

One problem during the trials is that the eye tracking in combination with a video showing flickering
stimuli seemed to interfere with one another. This seemed especially the case when there was no light
source in the background behind the display. The speculation is that the reflection of the display in the
eyes causes this. However, still in a large portion of the trials the eye tracking failed when trying to
mitigate this problem (see figure 4.1). The analysis of gaze data will not be discussed in this paper, as
it is used to give the EEG measurements more context. Additionally, it is used to validate if the person
was overall accurate and consistent with looking at the desired stimuli.

In the coming sections, the used methodology for analysis is explained, the influence of the interface
characteristics when combining stimuli characteristics, the influence of stimuli characteristics per exper-
iment, and the differences between the two experiments. After that, the results of the questionnaire
are discussed.

Table 4.1: eye tracking in the overall number of trials

Experiment 1

Experiment 2

No gaze data Gaze data No gaze data Gaze data
Number of o Number of o Number of o Number of o
trials [N] Percentage [%] trials [N] Percentage [%] trials [N] Percentage [%] trials [N] Percentage [%]
p1 64/324 19.8% 260/324 84.2% 42/432 9.7% 390/432 90.3%
p2 38/324 11.7% 286/324 88.3% 32/432 7.4% 400/432 92.6%
p3 174/324 53.7% 150/324 46.3% 153/432 35.4% 279/432 64.6%
p4 25/324 7.7% 299/324 92.3% 65/432 15.0% 367/432 85.0%
p5 94/324 29.0% 230/324 71.0% 156/432 36.1% 276/432 63.9%
p6 228/324 70.4% 96/324 29.6% 246/432 56.9% 186/432 43.1%
Table 4.2: Bad electrode locations. See figure 4.1 for actual values of colors in kOhm.
Experiment 1 Electrode locations Experiment 2 Electrode locations
Red Orange Yellow | Red Orange Yellow
p1 - - C2,CP4, 1z - - POz
p2 FC5, F4, TP10 C6, PO8 F5, F6, FT8, TP7, TP9 FT9 AF8,T8 F7,FT7,FT10
p3 PO4 FC2
p4  F1,FC3,C3,C2, CP2 - Fc1, C1, POz, FCz | C4,C6,Cp6, TP7  Pg,T7 [z F2 F4,F8,TP10,TP8,
CzZ,T7,TP9,TP7,CP4, CP6,
p5 FT10 F6,F8,FT8,C6, AF7  TP8, TP10, T8, P8, PO8, CP3 - '7:,05’3 %%2(21Pg£17 CP1, PZ
6 PO4, 02, 0z, IL ) ) )
p - R - - - -

17
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Table 4.3: Experiment remarks

Electrodes used for analysis Remarks

Experiment 1 Experiment 2

p1 01, 02 01, 02 Right eye was better tracked than left eye.
p2 01, 02 01, 02 Person is color blind and does not see the colors yellow and green.
p3 01,02 01, 02 The right eye had irritation already before start experiments.

Additionally, the participant deviated partially from the questionnaire
p4 01, 02 01, 02 In experiment 2, the eye tracking had trouble with tracking the right eye.
p5 o1 01,02  The impedance of electrode O2 had increased after experiment 1 to yellow.
p6 01, 02 01, 02 Participant had to blink a lot.

4.1. Methodology

The methodology used can be separated into the workflow of the SNR, the method of grouping used to
aggregate data before the statistical analyses are executed, and the workflow of the statistical analyses.

4.1.1. Signal-to-noise ratio workflow
First, the power-spectral density plot (DFT) is
calculated of the EEG recording using Welch’s
method [44]. Then the SNR is calculated ac-
cording to Gramfort et al. [16]. Important to
note is that the SNR never goes below zero as
both power values that make up the ratio have
the same sign [11]. The first step to calculate
the SNR is calculating the power-spectral density
spectrum (the DFT). However, the resolution of
this spectrum is dependent on the sample length.
Using 3.5 seconds for analysis yields a frequency
resolution/stepsize of 0.2857Hz between the fre-
quency bins. When calculating the SNR from this
spectrum it inherits the same frequency resolu-
tion but not the same amount of frequency bins.
Padding is used to solve this issue.

Figure 4.1: The kOhm meter of the electrode cap

SNR is the measure of the relative power between the "signal” and "noise”. According to our def-
inition, SNR is a metric of relative power that compares the power in a specific frequency bin, or the
”signal,” to a "noise” baseline, or the average power in the nearby frequency bins [30]. Similar to Gram-
fort et al. [16], this research uses the average power of the neighboring 3 bins on each side and skips
the first bins that are located directly beside the stimulus frequency bin [16]. Thus, to put this in a
kernel format: [1, 1,1, 0,0, 0, 1, 1, 1]. Then, the kernel is normalized to calculate the weight of each
frequency bin. This yields the normalized kernel: [+, 1,1,0,0,0, 1, 1, 1]. This kernel is used to average
over the bins of the power-spectral density spectrum. After performing this convolutional operation,
the calculated SNR spectrum is padded with Not a Number (NaN) values to match the number of bins

again of the power-spectral density spectrum.

Because the stimulus frequencies were often in between frequency bins the approach of Gramfort
et al. [16] is modified, as it only took the closest frequency bin as the output SNR value. The reason
was that the immediate neighboring frequency bins sometimes had higher SNR values than the one
located closest to our stimulus frequency bin. As mentioned in Liu et al. [27] and Zheng et al. [49],
the peak of the SNR is located close to the actual stimulus frequency. That is why interpolation is
used to calculate the SNR directly at the stimulation frequency and at +0.15Hz from the stimulation
frequency. Interpolation is realized according to the weighted average of the neighboring frequency
bins with respect to the target frequency. Of the two neighboring bins, the one closest to the number
has the largest weight. The interpolation method is called inverse distance weighted (IDW) [15]. In this
approach, it is linear as the power taken is 1. Important to note is that if the target frequency matches
one of the calculated frequencies in the frequency bins, then that value is taken, and no interpolation
is used. After creating the interval consisting of the 3 SNR measurements at the 3 frequencies: [SNR
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at target frequency-0.15Hz, SNR at target frequency, SNR at target frequency+0.15Hz], the average
is taken at each frequency of the frequency interval across the channels. The channels/electrodes av-
eraged over are O1, and O2, located in the occipital region, as this is one of the best areas to measure
them [7][45]. However, due to a faulty electrode, only O1 is used for experiment 1 in participant 5 (see
tables 4.2 and 4.3). Important to note is that using a few channels also means that this research is eas-
ier to replicate for other researchers. From the 3 SNR values that make up the interval, the maximal
value is taken. A summary of all these steps can be found in figure 4.2, which describes the overall
SNR workflow for SNR extraction from trials.

After the SNR is extracted for all the trials for each participant, each combination of stimuli char-
acteristics has 3 SNR values that correspond to the 3 trials performed per trial setting combination
per participant. This means all 108 unique trials have 3 values, as each trial is performed 3 times per
participant. After that, the data of all the participants is aggregated. The aggregation method is further
explained in the next section (section 4.1.2).

4.1.2. Method of grouping

To explain the method of grouping used for the statis-
tical analyses, let's take SNR as an example. When
trying to investigate the relationships between SNR
and stimuli characteristics the data has to be grouped. L/
For each ftrial, the maximal SNR is calculated and
the stimuli characteristics used for each ftrial are regis-
tered.

Let's take experiment 1 as an example. There are v
6 participants that each perform 3 trials per combina-
tion of interface characteristics. This means that in to-
tal 18 trials are performed per combination of interface
characteristics over all the participants. In the experi-
ment, there are 3 colors, 3 shapes, 4 frequencies, and l
3 sizes of stimuli. Let's take the 3 colors as an ex-

ample. Each color covers the 3 shapes, 4 frequen-
cies, and 3 sizes across each color. This means that
each color covers 3*4*3=36 unique combinations of stim- l
uli characteristics. When multiplied by 6 participants

across 3 trials each means that each color group con-
tains the maximal SNR, measured at the stimulus fre-
quencies, of 36*6*3=648 ftrials. This also means that
for each participant there is a total of 36*3=108 tri-
als where the maximal SNR is measured. Thus, to
summarize it, all trials are grouped that meet the re-

Load EEG data of an
experiment

Drop all channels that
are not needed

Exiract the trials of
the experiment using the TTL pulses and
segment into epochs that start 0.5< after the
TTL pulse to 45 after the TTL pulse

Extract 1 trial .-

Compute power-
spectral density plot
by calculating the
discrete fourier
transorm

Calculate SMNR by
dividing the power of
the target frequency bin

quired characteristics of the group that we want to ana-
lyze.

Each of these groups of trials are used to represent
that group for analysis which lead to the results of this
research. The table 4.4 shows the resulting group
sizes when this is performed for both experiments 1 and
2.

Important to recognize is that when statistical analyses are
performed within the same experiment and category, all
the group sizes compared are the same. However, when
this is performed between experiments 1 and 2 for the
color red, it can be seen that the sample sizes are unequal.
To explain the calculation for experiment 2, 1 (color)*3
(pixel surfaces)*4 (frequencies)*4 (for each location)*6 (par-
ticipants)*3 (trials per participant)=864 trials for the color
red.

by the average power
of the neighboring
frequency bins

|

Use linear inverse
distance weighted
interpolation to calculate
SMR values across the
interval

l

Awverage the SNR values
over the channels

|

Take maximal SNR
value and save it for
that trial

Figure 4.2: The SNR workflow for SNR extraction

from trials

MNext trial
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The grouping performed for the questionnaire is done
per metric to compare the differences between each cate-
gory. Let’s take the color red again. Each participant gives one number to grade red with respect to a
metric. Let’'s take comfort as an example. This means that when comparing red to green each group
contains 6 numbers, one for each participant (see table 4.21). This group size is consistent when per-
forming statistical analyses to compare all the metrics between the groups of the aspects of a specific
category of stimuli characteristics.
When calculating the correlation between the metrics (the reason is explained in section 4.6), all the
data is aggregated of each metric. Each metric grades 14 different aspects and each participant grades
each aspect once. This means that the group size for each metric is 14*6=84 values.

4.1.3. Statistical workflow

To investigate the difference between means various statistical methods are applied in sequence. As-
sumed is that the data has a normal distribution in the analyses. In all of the applied tests, a 95%
confidence interval (o« = 0.05) is used. First, Bartlett's method is applied to identify if the variances are
homogeneous or not [2]. If the variances are equal, one-way ANOVA is applied to test if the means are
different [12][32]. If this is the case, Tukey’s post hoc test is applied to determine if these differences
are significant [32]. If the variances are unequal, Welch’s ANOVA is applied to determine if the means
are different [12][32]. If this is the case, the Games-Howell post hoc test is used to determine if the
differences are significant [12][32].

Furthermore, it is important to note that officially the notation for p values lower than 0.001 should have
a notation of p<0.001. However, in the tables of this research, the notation of 0.000 is used. Another
important abbreviation to explain is degrees of freedom (df) which is often used to explain ANOVA tests.
These are also mentioned in the tables 4.5, 4.12, and 4.19, which describe the statistical workflow.

4.2. The influence of the combination of interface characteristics

Visualizations of the combined influence of different interface characteristics on the SNR can be found
in the plots of appendices A and B. The visualizations show the mean and standard deviation of each
group. The actual data that is visualized can be found in tables 4.4 and A.1 (see appendix A). To better
compare the actual results and show that the SNR does not go below zero as the standard deviations
suggest, figures A.17 until A.28, and figures A.41 until A.44 (see appendix A), show the boxplots and
means across the different combinations of settings. The statistical analysis for each specific com-
bination of 3 or more categories of interface characteristics is not performed to see if the means are
different. The reason is that this would make the analyses of the report overly complex, and the dataset
size might be too small to draw any solid conclusions.

Statistical analyses are performed within each category of stimulus characteristics of the experiments
itself. After that, a one-on-one comparison between the experiments is made between the characteris-
tics of each category.

Table 4.4: SNR table showing for each experiment per characteristic per category what the mean SNR and std are.

experiment category group SNR SNR groupSNR SNR groupSNR SNR groupSNR SNR group
groupgroupA groupgroupB groupgroupC groupgroupD
A A num- B B num- C Cc num- D D num-
av- std ber av- std ber av- std ber av- std ber

er- of er- of er- of er- of
age sam- age sam- age sam- age sam-
ples ples ples ples
Experiment 1 pixel surface  [10000 20000 30000] 3.28 3.69 648 3.82 4.71 648 4.12 4.32 648
Experiment 1 color ['green’ 'red’ 'white’] 3.51 426 648 3.68 3.93 648 4.04 4.58 648
Experiment 1 shape ['circles’ 'squares’ 'triangles’] 3.80 4.01 648 4.03 492 648 340 3.79 648
Experiment 1 frequency [8131925] 3.26 440 486 320 3.16 486 3.89 4.16 486 4.62 502 486
Experiment2  pixel surface  [10000 20000 30000] 3.11 345 864 359 392 864 3.99 457 864
Experiment2  color ['green’ 'red’ 'white’] 3.31 4.02 864 3.59 3.89 864 3.78 4.15 864

Experiment2  frequency [813 19 25] 341 426 648 295 2.81 648 3.82 3.97 648 4.07 4.71 648
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Figure 4.3: Experiment 1 boxplot of color

Boxplot SNR for frequency in Experiment 1 without outliers
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Boxplot SNR for pixel surface in Experiment 1 without outliers
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4.3. Experiment 1

Experiment 1 showed a single target stimulus at a time. The stimuli vary across colors, shapes, sizes,
and frequencies. It is used to investigate how different combinations of interface characteristics influ-
ence the measured SNR in an isolated environment.

According to table 4.5, the analysis shows no difference between the means of the different colors
(Welch’'s ANOVA, p=0.097). The mean SNR values for the colors green, red, and white, were 3.51,
3.68, and 4.04dB respectively. However, it shows differences in the category pixel surface (Welch’s
ANOVA, p=0.001), shape (Welch’'s ANOVA, p=0.024), and frequency (Welch’s ANOVA, p<0.001). The
results of the Games-Howell post hoc tests for pixel surface, shape, and frequency, can be found in
tables 4.10 with 4.11, 4.8 with 4.9, and 4.6 with 4.7 respectively.

The results show for the category pixel surface that 10.000 versus 30.000 pixels yields a significant
difference (Games-Howell, p<0.001) between the means. Looking at table 4.4 and figure B.2, a clear
positive relationship can be seen between the increase of the pixel surface and the measured SNR.

For the category shape, the results show only a significant difference (Games-Howell, p=0.025)
between the triangles and squares. Looking at table 4.4 and figure B.4, the triangles report an SNR
mean of 3.40dB, followed by circles with 3.80dB, and squares with 4.03dB.

The category frequency yields multiple significant differences between the means. Between 8Hz
and 25Hz (Games-Howell, p<0.001), 13Hz and 25Hz (Games-Howell, p<0.001), and 13Hz and 19Hz
(Games-Howell, p=0.019). Table 4.4 and figure B.1 show for 8Hz, 13Hz, 19Hz, and 25Hz, the SNR
means of 3.26, 3.20, 3.89, and 4.62dB respectively.

Table 4.5: Experiment 1 analyzation workflow

. p value df be- e Mean
category groups P r‘t’la't‘t’e Za[l':l'lfes ANOVA method ANOVA  tween d:x”‘s'“ differ- Iypet Oftpost
artle quats method groups group ent? oc tes

pixel surface  [10000 20000 0.000 No Welch’'s ANOVA 0.001 2 1280.31 Yes  Games-Howell
30000]

color [green’ ’red’ 0.001 No Welch’'s ANOVA 0.097 2 1288.98 No None
‘white’]

shape ['circles’ 0.000 No Welch’'s ANOVA 0.024 2 1280.03 Yes  Games-Howell
'squares’  'tri-
angles’]

frequency [813 19 25] 0.000 No Welch’'s ANOVA 0.000 3 1062.11 Yes  Games-Howell

Table 4.6: Experiment 1 frequency p value Games-Howell post hoc

frequency | 8 13 19 25
8 0.992 0.106  0.000
13 0.992 0.019  0.000
19 0.106  0.019 0.064
25 0.000 0.000 0.064

Table 4.7: Experiment 1 frequency significant Games-Howell post hoc

frequency | 8 13 19 25
8 X Not significant ~ Not significant Significant
13 Not significant X Significant Significant
19 Not significant Significant X Not significant
25 Significant Significant  Not significant X
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Table 4.8: Experiment 1 shape p value Games-Howell post hoc

shape \ circles squares triangles
circles 0.625 0.148
squares 0.625 0.025
triangles 0.148 0.025

Table 4.9: Experiment 1 shape significant Games-Howell post hoc

Tabl

Shape \ circles squares triangles
circles X Notsignificant  Not significant
squares Not significant X Significant
triangles Not significant Significant X

le 4.10: Experiment 1 pixel surface p value Games-Howell post hoc

Pixel surface | 10000 20000 30000

10000 0.053 0.000
20000 0.053 0.458
30000 0.000 0.458

Table 4.11: Experiment 1 pixel surface significant Games-Howell post hoc

Pixel surface | 10000 20000 30000
10000 X Not significant Significant
20000 Not significant X Not significant
30000 Significant  Not significant X

Boxplot SNR for color in Experiment 2 without outliers
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Boxplot SNR for frequency in Experiment 2 without outliers
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4.4. Experiment 2

Experiment 2 showed 4 stimuli simultaneously, and one of these stimuli was the target stimulus. The
stimuli were shown across the same frequencies, colors, and sizes as in experiment 1. The experiment
is used to investigate how different combinations of interface characteristics influence the measured
SNR in an SSVEP-speller environment. The exact sample sizes used for each group (stimuli charac-
teristic) are stated in table 4.4.

Visualizations of the overall distribution of the SNR measurements can be found in figures 4.7 un-
til 4.9. The visualizations also show the means of each participant and how much they vary across
participants. The exact results for the interface characteristics of experiment 2 can be found in table
4.4, tables 4.12 until 4.18, and appendix B. According to table 4.12, the ANOVA tests indicate different
means for all the categories. The pixel surface (Welch’s ANOVA, p<0.001) category shows significant
differences between means across various pairs of different sizes. The results of the category show
a significant difference between 10.000 and 20.0000 pixels (Games-Howell, p=0.021), and between
10.000 and 30.000 pixels (Games-Howell, p<0.001) (see tables 4.17 and 4.18). The SNR means for
the 10.000, 20.000, and 30.000 pixels, are 3.11, 3.59, and 3.99dB respectively.

Color (One-way ANOVA, p=0.049) yields only a significant difference between the colors green and
white (Tukey’s, p=0.039) (see tables 4.15 and 4.16). For the colors green, red, and white, the SNR
means were 3.31, 3.59, and 3.78dB respectively.

The p-values in the frequency category (Welch’s ANOVA, p<0.001) showed significant differences
in means between various frequencies. This was the case between 8Hz and 25Hz (Games-Howell,
p=0.038), 13Hz and 19Hz (Games-Howell, p<0.001), and between 13Hz and 25Hz (Games-Howell,
p<0.001) (see tables 4.13 and 4.14). The SNR means for 8Hz, 13Hz, 19Hz, and 25Hz, were 3.41,
2.95, 3.82, and 4.07dB, respectively.

Table 4.12: Experiment 2 analyzation workflow

. p value df be- e Mean
category groups P r;’la't‘t‘e Zaﬂgl'f“ ANOVA method ANOVA  tween d:xt"s'" differ- zypet °ftP°St
artle quals method  groups 9™UP ent? oc tes

pixel surface  [10000 20000 0.000 No Welch’s ANOVA 0.000 2 1704.70 Yes  Games-Howell
30000]

color [green’ ’red’ 0.165 Yes  One-way ANOVA 0.049 2 2589.00 Yes Tukey'’s test
‘white’]

frequency [813 19 25] 0.000 No Welch’'s ANOVA 0.000 2 1407.59 Yes  Games-Howell

Table 4.13: Experiment 2 frequency p value Games-Howell post hoc

Frequency | 8 13 19 25
8 0.107 0.276  0.038
13 0.107 0.000 0.000
19 0.276  0.000 0.714
25 0.038 0.000 0.714

Table 4.14: Experiment 2 frequency significant Games-Howell post hoc

Frequency | 8 13 19 25
8 X Not significant  Not significant Significant
13 Not significant X Significant Significant
19 Not significant Significant X Not significant
25 Significant Significant ~ Not significant X




4.5. Experiment 1 vs Experiment 2 27

Table 4.15: Experiment 2 color p value Tukey’s post hoc

Color | green red white
green 0.318  0.039
red 0.318 0.580
white 0.039  0.580

Table 4.16: Experiment 2 color significant Tukey’s post hoc

Color | green red white
green X Not significant Significant
red Not significant X Not significant
white Significant ~ Not significant X

Table 4.17: Experiment 2 pixel surface p value Games-Howell post hoc

Pixel surface | 10000 20000 30000

10000 0.021 0.000
20000 0.021 0.124
30000 0.000 0.124

Table 4.18: Experiment 2 pixel surface significant Games-Howell post hoc

Pixel surface | 10000 20000 30000
10000 X Significant Significant
20000 Significant X Not significant
30000 Significant ~ Not significant X

4.5. Experiment 1 vs Experiment 2

This comparison between a single stimulus versus multiple stimuli is novel to our knowledge. This
comparison answers the question if the surrounding stimuli in an SSVEP-speller affect the measured
SNR of the target stimulus To investigate if there were any differences between experiment 1 and
experiment 2 across the settings a one-on-one comparison is made using the described statistical
workflow. The distribution and sample sizes and means of each characteristic (group) per experiment
can be found in table 4.4. The results of processing each characteristic and comparing the results
between experiments 1 and 2 can be seen in table 4.19. The results show no significant differences
between the means. However, when looking at table 4.4 the means show an overall slight decrease
in each characteristic property of each category. The only exception is frequency 8, which increased
by 0.15dB in experiment 2. The biggest difference between experiment 1 and experiment 2 could be
seen in the 25Hz characteristic, which had 0.55dB decreased in experiment 2.

Table 4.19: One-on-one comparison of each setting between experiment 1 and experiment 2

. p value df be- s Mean

category groups E r‘tllaltlt‘e Za:l:lr;ces ANOVA method  ANOVA tween d::::thsm differ-
artle quat: method groups group ent?

pixel surface 10000 0.070 Yes  One-way ANOVA 0.365 1 1510.00 No
pixel surface 30000 0.130 Yes  One-way ANOVA 0.556 1 1510.00 No
pixel surface 20000 0.000 No Welch’'s ANOVA 0.298 1 1243.27 No
frequency 8 0.446 Yes  One-way ANOVA 0.587 1 1132.00 No
frequency 25 0.142 Yes  One-way ANOVA 0.060 1 1132.00 No
frequency 19 0.281 Yes  One-way ANOVA 0.769 1 1132.00 No
frequency 13 0.005 No Welch’'s ANOVA 0.178 1 973.83 No
color white 0.006 No Welch’'s ANOVA 0.268 1 1313.47 No
color red 0.731 Yes  One-way ANOVA 0.676 1 1510.00 No
color green 0.110 Yes  One-way ANOVA 0.343 1 1510.00 No

4.6. Questionnaire

Each participant was given a questionnaire (see appendix C). The questionnaire is used to capture
the subjective perspective of the participants. These insights could help in finding a balance between,
for example, comfort levels and the measured SNR values for future research. For clarification, a de-



4.6. Questionnaire 28

scription is given for each graded aspect. For instance, black/red in the color section means black
background with the red stimulus.

One important side note has to be taken for participant 3 because the participant deviated from the
questionnaire. After all, this person stated that they experienced different experiences with respect to
the frequency characteristic between experiment 1 and experiment 2. This relative difference was only
1 level in the high frequency and middle frequency. However, in the low-frequency range, the comfort
level scored very high(5) in experiment 1 but very low(1) in experiment 2. Another big difference was
seen in the participant’s focus level, which was high(4) in experiment 1 and very low(1) in experiment 2.
For the other metrics, the difference was non-existent or only 1. To mitigate this problem the average
of the scores between the 2 experiments is taken.

The results of the questionnaire are reported in table 4.21. Pearson’s correlation coefficients are calcu-
lated to see if there is a linear correlation between the metrics used in the questionnaire. This helps in
capturing the level of independent metrics used in the questionnaire. This helps in seeing if a combina-
tion of certain metrics can be related to the measured SNR values of each interface characteristic. The
results can be seen in table 4.20. For clarification, values above +0.7 suggest a strong relationship,
values between +0.5 and 0.7 a moderate relationship, and values between 0.3 and 0.5 a weak
relationship. In short, the closer the values are to +1 the stronger the relationship. The results show a
strong relationship between eye irritation and comfort experienced by the participants. The easiness
to focus on the stimulus center yields a moderate relationship with comfort. The results suggest more
moderate relationships. Examples can be found between a person’s focus level with respect to how
easy it is to focus on the stimulus center, and eye irritation with respect to how easy it is to focus on
the stimulus center.

These relationships also suggest that a statistical analysis between the metrics is not possible, as the
groups for the analysis need to be independent variables. However, analysis internally within the same
metric is still possible. By following the statistical workflow, the results show no significant differences
between the mean values of each setting (e.g., red) of each interface characteristic category (see table
4.22). To clarify the used sample sizes to calculate the coefficients, all data with respect to a specific
metric is combined. An example is comfort. The 6 participants graded 14 aspects across various met-
rics. The graded aspects range from Black/Red color to Multiple stimuli (see table 4.20). This means
that 14*6=84 values are representative of each metric. Thus, to calculate the Person’s correlation co-
efficient between two metrics, each metric has a sample size of 84 values.

Even though there are no significant differences that can be confirmed statistically, there are observ-
able differences in the results of the questionnaire (see table 4.21). At low frequencies, the participants
experienced the highest comfort levels, the lowest eye irritation, and had to blink less compared to the
other frequencies. Additionally, the color red showed the highest comfortability score and the lowest
eye irritation with respect to the other colors. Furthermore, the triangle was experienced as the least
comfortable shape, and participants reported it to be the hardest center of the stimulus to focus on. The
circle, however, was the most comfortable and the easiest to focus on the center of the stimulus. More-
over, the participants stated that they had to blink the least amount at 10.000 pixels. They experienced
20.000 pixels the easiest size for focusing on the center of the stimulus.

Table 4.20: Pearsons’s correlation coefficients calculated between the metrics

r-values Comfort  Person’s focus level  Eye Irritation Easiness to focus on i, t6 plink a lot
stimulus center

Comfort 1.000 0.491 -0.805 0.627 -0.603

Person’s focus level 0.491 1.000 -0.394 0.536 -0.368

Eye Irritation -0.805 -0.394 1.000 -0.562 0.681

Easiness to focus on stimulus center 0.627 0.536 -0.562 1.000 -0.524

Had to blink a lot -0.603 -0.368 -0.524 -0.524 1.000
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Table 4.21: Results of Questionnaire
Metrics  pp1 pp2 pp3 pp4 pp5 pp6 AVERAGE STD
Colors Black/Red Comfort 5 5 2 3 4 4 3.83 1.07
Person’s focus level 5 2 4 4 3 4 3.67 0.94
Eye Irritation 2 1 4 3 2 2 233 094
Easiness to focus on stimulus center 5 3 2 4 4 4 3.67 0.94
Had to blink a lot 2 3 5 4 2 4 3.33 1.1
Colors Black/Green Comfort 4 1 2 5 2 2 2.67 1.37
Person’s focus level 4 2 3 4 2 2 2.83 0.90
Eye Irritation 3 5 2 2 4 4 3.33 1.1
Easiness to focus on stimulus center 4 3 3 4 2 2 3.00 0.82
Had to blink a lot 2 3 3 3 4 4 3.17  0.69
Colors Black/White Comfort 2 3 5 2 4 2 3.00 1.15
Person’s focus level 3 3 3 3 4 4 3.33 0.47
Eye Irritation 4 3 1 4 2 4 3.00 1.15
Easiness to focus on stimulus center 3 3 5 2 4 3 333 094
Had to blink a lot 3 3 2 4 3 4 3.17  0.69
Shapes Triangle Comfort 2 2 1 3 3 4 250 0.96
Person'’s focus level 2 3 4 4 4 2 3.17 0.90
Eye Irritation 4 3 4 3 3 2 3.17  0.69
Easiness to focus on stimulus center 2 3 2 2 3 4 267 0.75
Had to blink a lot 4 3 4 2 2 4 3.17  0.90
Shapes Square Comfort 5 4 3 3 4 4 3.83 0.69
Person’s focus level 4 3 4 2 4 2 3.17 0.90
Eye Irritation 2 3 2 3 3 2 250 0.50
Easiness to focus on stimulus center 4 3 5 4 4 3 3.83 0.69
Had to blink a lot 2 3 3 4 2 3 283 0.69
Shapes Circle Comfort 5 4 5 4 4 4 433 047
Person’s focus level 4 2 4 4 4 2 3.33 0.94
Eye Irritation 2 3 1 1 3 2 200 0.82
Easiness to focus on stimulus center 5 3 5 5 4 2 4.00 1.15
Had to blink a lot 2 3 1 2 3 3 233 0.75
Frequency High frequency Comfort 5 4 1.5 1 2 2 2.58 1.43
Person’s focus level 5 4 1.5 1 3 2 2.75 1.41
Eye Irritation 1 2 4 4 4 4 317 121
Easiness to focus on stimulus center 5 3 3.5 2 3 2 3.08 1.02
Had to blink a lot 1 3 45 3 4 5 342 130
Frequency Middle Frequency Comfort 2 2 3.5 5 3 2 2.92 1.10
Person’s focus level 2 2 2.5 4 4 2 275 0.90
Eye Irritation 4 4 2.5 2 2 4 3.08 0.93
Easiness to focus on stimulus center 2 2 2.5 4 4 2 2.75 0.90
Had to blink a lot 3 3 25 3 3 4 3.08 045
Frequency Low Frequency Comfort 4 4 3 5 4 4 400 0.58
Person’s focus level 4 2 25 3 4 4 3.25 0.80
Eye Irritation 1 2 1 2 2 2 1.67 047
Easiness to focus on stimulus center 4 3 1.5 5 4 4 3.58 1.10
Had to blink a lot 2 3 3 3 2 2 250 0.50
Size stimulus Small size Comfort 5 3 2 2 4 4 3.33 1.1
Person’s focus level 5 2 2 4 4 4 3.50 1.12
Eye Irritation 1 3 2 4 2 2 233 0.94
Easiness to focus on stimulus center 5 3 1 2 3 4 3.00 1.29
Had to blink a lot 1 3 2 4 3 2 250 0.96
Size stimulus Medium size Comfort 4 3 3 3 4 3 3.33 0.47
Person’s focus level 4 2 3 4 3 3 3.17  0.69
Eye Irritation 2 3 2 2 3 2 2.33 0.47
Easiness to focus on stimulus center 4 3 3 4 4 4 3.67 0.47
Had to blink a lot 2 3 2 3 3 3 267 047
Size stimulus Large Size Comfort 2 3 4 5 2 2 3.00 1.15
Person’s focus level 2 3 4 3 2 2 2.67 0.75
Eye Irritation 4 3 2 2 4 4 3.17  0.90
Easiness to focus on stimulus center 1 2 4 5 3 2 2.83 1.34
Had to blink a lot 4 3 2 2 4 4 3.17  0.90
Stimulus mode Single stimulus Comfort 2 4 1 5 3 4 3.17 1.34
Person’s focus level 3 3 2 4 4 2 3.00 0.82
Eye Irritation 4 2 4 2 2 2 267 094
Easiness to focus on stimulus center 3 2 4 4 4 2 3.17  0.90
Had to blink a lot 3 3 4 2 2 3 283 0.69
Stimulus mode Multiple stimuli Comfort 4 2 4 3 2 1 2.67 1.1
Person’s focus level 2 2 5 5 2 2 3.00 1.41
Eye Irritation 2 3 3 4 4 4 3.33 0.75
Easiness to focus on stimulus center 2 3 2 3 1 2 217  0.69
Had to blink a lot 2 3 5 4 4 4 3.67 094
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Table 4.22: Statistical workflow and results of questionnaire
category  groups metric P Variances ANOVA p value df df be- Mean
value equal? method ANOVA within tween differ-
bartlett method groups groups ent?

Colors [Black/Red’ ’'Black/-  Comfort 0.953 Yes One-way  0.057 2 15 No
Green’ Black/White’] ANOVA

Colors [Black/Red’ 'Black/-  Person’s focus level 1.000 Yes One-way  0.063 2 15 No
Green’ 'Black/White’] ANOVA

Colors [Black/Red’ ’Black/-  Eye Irritation 0.923 Yes One-way  0.124 2 15 No
Green'’ 'Black/White’] ANOVA

Colors [Black/Red’ ’'Black/-  Focus level on stimu-  0.718 Yes One-way  0.401 2 15 No
Green’ 'Black/White’]  lus center ANOVA

Colors [Black/Red’ ’Black/- Had to blink a lot 0.662 Yes One-way  0.639 2 15 No
Green’ 'Black/White’] ANOVA

Frequency [High frequency’  Comfort 0.953 Yes One-way  0.057 2 15 No
‘Middle  Frequency’ ANOVA
‘Low Frequency’]

Frequency [High frequency’  Person’s focus level 1.000 Yes One-way  0.063 2 15 No
‘Middle  Frequency’ ANOVA
‘Low Frequency’]

Frequency [High frequency’  Eye Irritation 0.923 Yes One-way 0.124 2 15 No
‘Middle  Frequency’ ANOVA
‘Low Frequency’]

Frequency [High frequency’  Focus level on stimu-  0.718 Yes One-way  0.401 2 15 No
‘Middle Frequency’ lus center ANOVA
‘Low Frequency’]

Frequency [High frequency’  Had to blink a lot 0.662 Yes One-way  0.639 2 15 No
‘Middle  Frequency’ ANOVA
‘Low Frequency’]

Shapes [Triangle’ ’Square’ Comfort 0.953 Yes One-way  0.057 2 15 No
"Circle’] ANOVA

Shapes [Triangle’ ’'Square’  Person’s focus level 1.000 Yes One-way  0.063 2 15 No
"Circle’] ANOVA

Shapes [Triangle’ ’Square’  Eye Irritation 0.923 Yes One-way  0.124 2 15 No
"Circle’] ANOVA

Shapes [Triangle’ ’Square’  Focus level on stimu-  0.718 Yes One-way  0.401 2 15 No
"Circle’] lus center ANOVA

Shapes [Triangle’ ’Square’ Had to blink a lot 0.662 Yes One-way  0.639 2 15 No
"Circle’] ANOVA

Size ['Small size’’Medium  Comfort 0.953 Yes One-way  0.057 2 15 No

stimulus size’ 'Large Size’] ANOVA

Size ['Small size’’'Medium  Person’s focus level 1.000 Yes One-way  0.063 2 15 No

stimulus size’ 'Large Size'] ANOVA

Size ['Small size’’Medium  Eye Irritation 0.923 Yes One-way  0.124 2 15 No

stimulus size’ 'Large Size’] ANOVA

Size [Small size’’'Medium  Focus level on stimu-  0.718 Yes One-way  0.401 2 15 No

stimulus size’ 'Large Size'] lus center ANOVA

Size ['Small size’’Medium  Had to blink a lot 0.662 Yes One-way  0.639 2 15 No

stimulus size’ 'Large Size’] ANOVA

Stimulus ['Single stimulus’  Comfort 0.662 Yes One-way  0.639 1 10 No

mode "Multiple stimuli’] ANOVA

Stimulus ['Single stimulus’  Person’s focus level 0.662 Yes One-way  0.639 1 10 No

mode "‘Multiple stimuli’] ANOVA

Stimulus ['Single stimulus’  Eye lIrritation 0.662 Yes One-way  0.639 1 10 No

mode "Multiple stimuli’] ANOVA

Stimulus ['Single stimulus’  Focus level on stimu-  0.662 Yes One-way  0.639 1 10 No

mode "Multiple stimuli’] lus center ANOVA

Stimulus ['Single stimulus’  Had to blink a lot 0.662 Yes One-way  0.639 1 10 No

mode "Multiple stimuli’] ANOVA




Discussion & Limitations

When looking at the SNR results and their analysis, the results seem to indicate that increased pixel
surface is a contributing factor to the measured SNR. Otherwise said, they have a positively correlated
relationship. Figures 4.5 and 4.9 (see section 4), and figures B.2 and B.6 (see appendix B) show a
positive relationship between the pixel surface and the measured SNR. This seemed to be confirmed
when comparing the 10.000 with the 30.000 pixels, as this seemed to be statistically significant in both
experiment 1 and experiment 2. This result seems to be in line with the results reported by Duszyk et
al. [9], which reported a similar relationship. An interesting result is that the participants had to blink
the least amount at 10.000 pixels, and at 20.000 pixels it was the easiest center of the stimulus to focus
on (see table 4.21). Thus, it can be concluded that the relationship between pixel surface and SNR
can be defined as a positive relationship, meaning that an increase in pixel surface yields an increase
in SNR.

To answer the question surrounding the relationship between the measured SNR and shape the
results showed that the triangles seem to be the least favored by the participants and yielded the low-
est amount of SNR relative to the squares (see tables 4.21 and 4.4). The difference was significant in
experiment 1. Furthermore, even though it is not statistically confirmed, the results do seem to show
a higher overall mean when using a square compared to a circle. This is an interesting result because
Duszyk et al. [9] also reported no significant difference between the two. However, the overall results
of Duszyk et al. [9] seemed to favor the circle.

The participants also experienced the circle to be the most comfortable and easiest to focus on (see
table 4.21). Thus, the overall conclusion is that when using a shape a circle or square is preferred over
a triangle and will likely pose better results.

To dissect the relationship between SNR and color, the SNR results might suggest that in the cate-
gory color, the white color is the best suited as it reached the highest SNR means in both experiments.
However, it needs to be noted that experiment 1 did not show any significance between colors (Welch'’s
ANOVA, p=0.097). However, experiment 2 showed a significant difference between green and white.
Additionally, both experiments showed the same sequence of colors when looking from the lowest to
the highest amount of mean SNR: green, red, and white. This might carefully suggest that white shows
better overall SNR across various SSVEP-based interfaces, but the conclusion remains indecisive.
Duszyk et al. [9] also compared the colors white and red and did also test for no significant differences
between the two colors. Additionally, Duart et al. [8] suggest that the optimal color depends on the
frequency and can show mixed results. Albawardi et al. [1] indicated that green would be a very com-
fortable color. However, even though not confirmed if there are any significant differences (One-way
ANOVA, p=0.057), the questionnaire showed the lowest eye irritation and the highest comfortability
score for the color red (see table 4.21).

Duart et al. [8] stated that different frequencies can yield different SNR values. That varying inter-

face characteristics influence the SNR seems to be suggested when looking at the multi-dimensional
SNR plots (see appendix A, especially figures A.17 until A.28, and figures A.41 until A.44). The results
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do seem to suggest that varying a combination of parameters such as pixel surface, color, shape, and
frequency, might yield different SNR values. This is interesting as it could potentially help explain the
question surrounding the relationship between color, frequency, and SNR, as posed by Regan [36].
Moreover, this could also be participant-dependent, and more characteristics could be an influential
factor. Looking at these results also makes it hard to compare to other research. Additionally, other
research often used different frequencies in the neighborhood of the frequencies in this research, but
not exactly the same [9][8][6]. An interesting result is that both experiment 1 and experiment 2 yield
a significant difference in SNR means between the same 3 pairs of frequencies. This was the case
between 8Hz and 25HZ, 19Hz and 25Hz, and between 13Hz and 19Hz. Both experiments also showed
the same sequence of frequencies when looking from the least mean SNR to the highest mean SNR:
13Hz, 8Hz, 19Hz, and 25Hz. This suggests that 25Hz is favored and would yield the overall highest
amount of SNR. However, as this is hard to compare with other research, it is hard to confirm this with
other research. Pastor et al. [34] tested a wide variety of stimulus frequencies and did not seem to
favor 25Hz, but 15Hz. However, 25Hz is the only actual overlapping frequency in this research. The
participants in this research experienced the low frequencies to be the most comfortable, the lowest
eye irritation, and the least amount of blinks during trials. This is opposed to the 25Hz, which showed
the overall highest amount of mean SNR.

Lastly, when placing a single stimulus in an SSVEP-based interface showing 4 stimuli simultane-
ously, it would make sense that the SNR lowers slightly as other stimuli do induce more visual noise.
This should assumably transfer to the SSVEP response. Even though the mean SNR slightly dimin-
ishes in all characteristics except 1, when comparing experiment 1 to experiment 2, it does not seem
to have a significant influence on the measured SNR (see table 4.19). The results would suggest that
this is not something to worry about, answering the question about the influence of surrounding stimuli
on the SNR of the target stimulus.

Important to recognize is that this work applies only to the use of LCD screens, as different hardware
can pose different results [41][45].

One of the limitations of this work is the small number of participants to draw strong conclusions.
Furthermore, blinks are not detected and filtered within the EEG recordings. This means that the seg-
ments used in the analysis for the SSVEP might contain a lot of noise. Another discussion point is that
the amplitude of SSVEP response grows over time, which might show clearer differences. This can be
explained by lengthier recordings having more signal while the noise is (ideally) random and not fixed to
the stimulation frequency [16]. Another advantage is that this will also increase the resolution between
frequency bins. However, in real-time applications, a small time window will probably be needed, which
would mean the approach in this research is more realistic for such use cases.

Furthermore, using non-linear interpolation in a non-linear environment might not be the best ap-
proach to measure the maximal SNR. However, if the resolution between frequency bins is sufficiently
high the actual error should be minimized. Due to the power-spectral density spectrum having a fre-
quency resolution of 0.2857Hz the maximal interpolation distance with respect to a measured frequency
bin is 0.15Hz, which mitigates this problem quite a bit. Still, non-linear interpolation would be a better
approach in future research. Examples are parabolic and Gaussian interpolation [13].

Another limitation is that no phase shift is incorporated in this research. This means that these re-
sults might not transfer to an SSVEP-based interface where this is applied, such as Jingnan, He, and
Gao [20].

Concerning the dataset, the lack of successful measurements with eye tracking limits the useability
and the supportive role that eye tracking can play. The exact cause of the failure of eye tracking in
these cases is still unknown and yet to be determined.



Conclusion

This multivariate problem is hard to grasp entirely as a combination of many factors influences the re-
sults. However, the results do help answer the main research question about the relationship between
stimuli characteristics and the measured SNR. Overall, it seems that an increased pixel surface does
positively influence the SNR. Important to note is that stimuli of 20.000 pixels seem to be favored by
participants (see table 4.21). Furthermore, red might be a more comfortable color. Additionally, the
highest mean SNR was achieved by the color white in both experiments. This might suggest that white
is the preferred color. However, the significant differences between means were not consistent be-
tween both experiments. Thus, the overall conclusion is that the results do suggest white might be the
best color. Furthermore, an interesting finding is that there seemed not to be a significant difference
between looking at a single stimulus and a single stimulus with surrounding stimuli shown at different
frequencies. The biggest difference was 0.55dB, which indicates the difference is most likely negligible
in most cases. This does suggest that might not have to be considered when designing SSVEP-based
BCls with stimuli that are uniform in appearance except for frequency.

Another interesting result seems to be that when comparing triangles with squares or circles the
triangles are not preferred by participants. Triangles also yielded significantly lower SNR values com-
pared to squares. It is recommended to use either circles or squares. However, there is probably not
a lot of difference between these two as the results favored the squares, but other research showed
slightly higher SNR values for circles [9].

Lastly, the optimal frequency in this research seems to be 25Hz. It yielded the highest SNR values
and significant differences in both experiments. However, it is very hard to compare the results with
other research as the researched frequencies differ a lot.

To better untangle this multivariate problem surrounding SSVEP-based interfaces future research is
necessary. Furthermore, by doing more extensive research across more people stronger conclusions
can be drawn. A total of 6 participants might still show some overall biases. Moreover, the significance
of blinks should be investigated in SSVEP-based measurements. It is important to determine if the
trials that contain them have to be redone or filtered out to draw solid conclusions. Additionally, it is still
strongly suggested to attempt to incorporate eye tracking into the SSVEP-based dataset as this gives
EEG measurements more context, even though it proved to be difficult. Despite in this research, its
supportive role was relatively low in half of the participants, as in most trials the eye tracking was not
recorded. Lastly, a future recommendation is to use non-linear interpolation methods and not linear
interpolation methods to interpolate the SNR spectrum.
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Epilogue

Writing this thesis has broadened my horizon and has pushed my professional ability in writing reports
to a higher level. | am glad to look back at this past period of my life. It was not the smoothest period
and sometimes induced a lot of stress.

As | never had any experience with working with raw eye tracking and EEG data before, this was
a new challenge for me. Due to the unknown nature of this research, | sometimes had to rely on my
supervisor. However, sometimes | was left alone for a few weeks which helped me with my confidence
in navigating unknown territory.

As | had never worked with EEG data before, it was fortunate that my supervisor had already a
setup ready to use in the basement of the Amsterdam UMC. Concerning the calibration, EEG record-
ing, recording eye tracking data, and data logging itself, a lot was already done in a previous project
by my supervisor. A lot of parts could be copied, or they were built in within Experimental Builder. This
allowed for creating a large part of the experiments without any coding. It took a frustrating amount of
time to get the application to run without dropping too many frames.

| also learned to better summarize research reports and relate them to each other to draw conclu-
sions. Furthermore, | have learned how brain-machine interfaces and EEG work, and how statistical
analyses of variances can be applied to compare these results. This helped me in going outside of my
comfort zone and has let me to learn something new.

Fortunately, | already got a lot of experience programming in python, which helped me in generating
the dataset of videos using the library OpenCV in a short period of time. However, using the python
library MNE (EEG library) was something new for me, and | had to learn how to analyze EEG data and
extract the SNR. Fortunately, it is very well documented.

| wrote my own analysis scripts for the EEG and partially for the eye tracking. It is partially because
my supervisor had already written a script that could be used to filter out the fixations within the eye
tracking data. However, | already had written visualizations and analyzed the data using metrics such
as radius and sample points on the stimulus. Additionally, during the experiments, | learned to rely on
others as a second person was needed during testing to attach the headset to my head. This needed
a lot of communication and planning to allow continuous progress within the thesis.

| am happy to be able to say that | can close this chapter in my life and hope to find new challenges
in the future.

S.T. van Vliet
Delft, January 2023
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A.1. 4D plots

In 3D, the relationship is visualized between 3 independent variables on one metric, which means the
plots could be called 4-dimensional.

Experiment 1: frequency vs color vs shape
frequency = 8 Hz
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frequency = 19 Hz
frequency = 25 Hz

15.0
12.5
10.0
7.5
5.0
2.5
0.0
—-2.5

SNR [dB]

white circles

squares

20
triangles &0

green

Figure A.1: Experiment 1 results of SNR between frequency, color, and shape.
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Experiment 1: frequency vs pixel surface vs shape
frequency = 8 Hz
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frequency = 25 Hz
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Figure A.2: Experiment 1 results of SNR between frequency, pixel surface, and shape.
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Experiment 1: frequency vs pixel surface vs color
— frequency = 8 Hz
— frequency = 13 Hz
— frequency = 19 Hz
— frequency = 25 Hz

SNR [dB]

Figure A.3: Experiment 1 results of SNR between frequency, pixel surface, and color.
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Experiment 2: frequency vs pixel surface vs color
— frequency = 8 Hz
— frequency = 13 Hz
— frequency = 19 Hz
— frequency = 25 Hz
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Figure A.4: Experiment 2 results of SNR between frequency, pixel surface, and color.
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A.2. 3D plots

Here the 4-dimensional data is shown at only one frequency per plot. This reduces the 4-dimensional
data to more 3-dimensional data. The plots here show the SNR mean, and standard deviation with
respect to 2 other categories of interface characteristics at that frequency. The value distribution of
the legends is uniformly fixed across the plots as this makes visual comparisons between plots easier.
Additionally, to show that the SNR values never go below zero there are boxplots that show the actual
distribution of the overall data and the means of each participant.

A.2.1. Experiment 1
A.2.2. Heatmaps showing means and standard deviations

Experiment 1: frequency = 8 Hz, frequency-color-shape
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Figure A.5: SNR relationship between color and shape at 8Hz of experiment 1
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Experiment 1: frequency = 13 Hz, frequency-color-shape
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Experiment 1: frequency = 25 Hz, frequency-color-shape
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Figure A.8: SNR relationship between color and shape at 25Hz of experiment 1
Experiment 1: frequency = 8 Hz, frequency-pixel surface-color
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Figure A.9: SNR relationship between pixel surface and color at 8Hz of experiment 1
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Experiment 1: frequency = 13 Hz, frequency-pixel surface-color
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Figure A.10: SNR relationship between pixel surface and color at 13Hz of experiment 1
Experiment 1: frequency = 19 Hz, frequency-pixel surface-color
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Figure A.11: SNR relationship between pixel surface and color at 19Hz of experiment 1
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Experiment 1: frequency = 25 Hz, frequency-pixel surface-color
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Figure A.12: SNR relationship between pixel surface and color at 25Hz of experiment 1
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Figure A.13: SNR relationship between pixel surface and shape at 8Hz of experiment 1
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Experiment 1: frequency = 13 Hz, frequency-pixel surface-shape
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Figure A.14: SNR relationship between pixel surface and shape at 13Hz of experiment 1

Experiment 1: frequency = 19 Hz, frequency-pixel surface-shape

7
Mean SNR [dB] 6 Std SNR [dB]
. &y . &y
G, SOy 3, G, o 3,
r(-,es a@s "'9!@5. 5 -“-::(@S a@s 0‘9"‘@5‘
10000 - 10000 - 2.39 5.82

w

g i
m 20000 -| = — m 20000 -
& = 5

F3 —

- 2 . )

pixel surface [pixels] pixel surface [pixels]
F1l
L1 0 L1

Figure A.15: SNR relationship between pixel surface and shape at 19Hz of experiment 1
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Experiment 1: frequency = 25 Hz, frequency-pixel surface-shape
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Figure A.16: SNR relationship between pixel surface and shape at 25Hz of experiment 1
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Boxplot: Experiment 1: frequency = 8 Hz, frequency-color-shape without outliers
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Figure A.17: SNR boxplot of color vs shape of experiment 1 at 8Hz

Boxplot: Experiment 1: frequency = 13 Hz, frequency-color-shape without outliers
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Figure A.18: SNR boxplot of color vs shape of experiment 1 at 19Hz
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Boxplot: Experiment 1: frequency = 19 Hz, frequency-color-shape without outliers
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Figure A.19: SNR boxplot of color vs shape of experiment 1 at 19Hz
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Figure A.20: SNR boxplot of color vs shape of experiment 1 at 25Hz
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Boxplot: Experiment 1: frequency = 8 Hz, frequency-pixel surface-color without outliers
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Figure A.21: SNR boxplot of pixel surface vs color of experiment 1 at 8Hz
Boxplot: Experiment 1: frequency = 13 Hz, frequency-pixel surface-color without outliers
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Figure A.22: SNR boxplot of pixel surface vs color of experiment 1 at 13Hz
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Boxplot: Experiment 1: frequency = 19 Hz, frequency-pixel surface-color without outliers
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Figure A.23: SNR boxplot of pixel surface vs color of experiment 1 at 19Hz
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Figure A.24: SNR boxplot of pixel surface vs color of experiment 1 at 25Hz
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Boxplot: Experiment 1: frequency = 8 Hz, frequency-pixel surface-shape without outliers
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Figure A.25: SNR boxplot of pixel surface vs shape of experiment 1 at 8Hz

Boxplot: Experiment 1: frequency = 13 Hz, frequency-pixel surface-shape without outliers
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