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Abstract

Recognising the user’s locomotive intentions is crucial for the correct functionality of exoskeletons
and active orthoses. For gait applications, extrapolating control inputs from the arm swing may be
worthwhile, since arm oscillations naturally occur during human locomotion. A similar method would
be unaffected by severe impairments of the lower limbs, and there is evidence suggesting enhanced
results of gait rehabilitation when arms and legs exercise together. In this thesis, we propose a control
algorithm to drive online a lower limb exoskeleton through the arm swing. Contrary to a previous
EMG-based approach by La Scaleia et al. (2014), our algorithm exploits shoulder kinematic data to
mimic “single swinging”, a natural mode of human interlimb coordination which is characterised by
each arm swinging in-phase with the contralateral leg. Our proposed control architecture relies on two
major modules: an Arm Observer and a Gait Generator. The Arm Observer consists of an adaptive
frequency oscillator which extrapolates the frequency and phase of the arm swing by receiving online
measurements of the angular shoulder position in the sagittal plane. This data is used by the Gait
Generator to compute lower limb trajectories, based on regression models from a previous study by
Koopman et al. (2014). We validated our controller through human-subject experiments, involving
three participants walking on a treadmill with and without a lower limb exoskeleton, the Lopes II. When
feed by data associated with natural walking, our adaptive frequency oscillator could very precisely
replicate the arm swing frequency, stride cadence and timing of shoulder flexion peaks when walking
faster than 0.5 m/s. When wearing the exoskeleton, our algorithm allowed the participants to cope
with constant and variable treadmill velocities in the range of 0.5-1.25 m/s. As such, the results of this
thesis show that our proposed approach can extend the applicability of arm-based control to walking
speeds suitable for gait rehabilitation and assistance.
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�
Introduction

The interest in robotic gait rehabilitation and assistive technologies has noticeably increased over the
last few years. A significant reason for that is the consistently increasing number of people who might
benefit from such applications, caused by contemporary challenges such as global ageing populations
and increments of patients with impaired mobility [4, 37]. Among the proposed solutions, the design
of exoskeletons and active orthoses is a popular topic under investigation. In principle, these devices
are expected to tackle crucial problems of gait rehabilitation and assistance. For instance, they could
enable intense and repeatable training sessions without imposing an excessive physical burden on the
therapists [4]. Furthermore, these devices can empower the end-users to partake in daily activities
that require net-positive energetic outputs (e.g. stair climbing, running, jumping) [9, 37].

Designing an exoskeleton is not simple, and it requires to address problems belonging to a wide
range of engineering disciplines [4, 47]. Among the many design challenges, the development of
proper control architecture is crucial to promote a reliable human-machine interaction. As shown in
figure 1.1, the general schematic of a controller for a lower limb exoskeleton is usually organised as
a hierarchical structure composed of three main parts: the high, mid and low levels [37]. The high
level is responsible for perceiving the user’s locomotive intents. The mid level maps these detected

Figure 1.1: Generalized control framework for active lower limb prostheses and orthoses (P/O device). “Safety” includes
all possible mechanisms (mechanical passive and actively controlled) to ensure an user-machine safe interaction. Figure
retrieved from [37].
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2 1. Introduction

intentions into a set of target states for the robot actuators. The low level sends commands to the robot
motor(s) to reduce the error between the desired and current device states. Ideally, the overall control
structure should make the user perceive the wearable device as a natural extension of his/her own
body, thus allowing a large variety of movements without an excessive cognitive load [37]. To reach
this ideal functionality, and according to the just described architecture, the controller needs inputs
from the user that are as representative as possible of both the desired motion and the current state of
the human-machine interaction.

Biological information is usually redundant, which means that multiple signals from different body
regions could be representative of similar control actions [4, 37]. Therefore, there is not a unique
choice of user’s signals to quantify locomotive intentions. A popular choice among the literature is to
pick signals directly from the user’s legs [44], often in the form of EMGs [37]. These data are among
the most representative of human gait dynamics, because of the primary propulsive role of the lower
limbs during bipedal locomotion. However, the main impediment of leg-based signals is that their
measurement often requires the residual functionality of at least one of the two limbs. Unfortunately,
this condition is not met by patients with a severe motor impairment of the lower body, which in turns
are also those individuals who might benefit the most from assisting and rehabilitating technologies.

To overcome this problem, Brain-Computer Interfaces (BCIs) are appealing solutions. Brain signals
contain the richest amount of information and can be used to extract features relevant to a large variety
of locomotive actions [37]. However, this type of biological data is challenging to measure and process,
mostly because brain activity is characterised by a dynamic interplay between several conscious and
unconscious mental processes [5]. Another complication is that rhythmic movements, such as those
of the limbs during bipedal locomotion, are likely primarily generated in the spinal cord [48]. Therefore,
a conspicuous rate of gait-related neural information would not be carried by brain signals. Eventually,
BCIs usually impose an intense cognitive effort on the user, who also needs extensive training before
learning how to operate them correctly [35].

A less bio-inspired, but quite popular approach due to its easy implementation, is the design of
“manual controllers". This category includes all those solutions where the user sends commands to
the device by performing actions external to natural walking: for instance, by assuming specific trunk
postures, moving the fingers into certain positions or pressing buttons on a remote [37]. These control
strategies are not constrained to any physiological aspect of the gait. As such, they offer a vast number
of design possibilities, seldom limited by the creativity of the designer. However, their “artificial nature"
makes them often suboptimal concerning seamlessness and intuitiveness of the command actions
[37].

The arm swing is a subtle feature of human locomotion since the upper limbs are not primarily
recruited in the gait generation. Nevertheless, the motion of the arms occurs quite naturally while
walking and there are reasons to believe that it can serve as a valid source of control signals for
an exoskeleton [21]. For instance, the arms share with the legs the property of being a peripheral
source of biological data, thus unaffected by concomitant mental activities and likely representative of
neuronal computations in the spinal cord [21, 24]. At the same time, an arm-based controller might
extend the use of lower limb exoskeletons to patients with entirely lost functionality of the legs, but
still in control of the upper body. This control strategy might even benefit gait rehabilitation regarding
treatment effectiveness, as many studies suggest that reactivation of neuronal pathways in the lower
limbs is facilitated by including the arm swing within the training protocol [10, 24, 50].

1.1. Interlimb coordination: current understanding

For a long time the arm swing was regarded as a passive phenomenon driven by the gait dynamics,
and thus merely investigated. From the second half of the twenty-century, the interest in human inter-
limb coordination increased consistently. This was mostly because of two major findings associated
with walking while naturally swinging the arms: a faint muscle activity in the upper limbs [1] and a
reduced metabolic cost of locomotion [6, 26, 38, 45]. Nowadays, it is still debated why the arm swing
occurs and how it correlates to the movement of the rest of the body [24]. However, a part of the litera-
ture suggests that during natural walking upper and lower limbs move following two speed-dependent
coordination patterns [7, 11, 17, 42]. The first mode, often referred to as “single swinging” [43], occurs
at walking velocities higher than 0.75-0.8 m/s and it is characterised by each arm oscillating in-phase
with the contralateral leg. The stride cadence entrains the upper limb oscillations, and thus the fre-
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Figure 1.2: Model of shoulder accelerations transmitted by the trunk during walking, according to [17]. (a) Above 0.75 m/s,
torsional rotation at the stride frequency is the dominant component of the trunk motion. Such a rotation transmits out-of-phase
acceleration components at the shoulder girdle, promoting single swinging. (b) Below 0.75 m/s, sagittal rotation at the step
frequency becomes the dominant component of the trunk motion. Such a rotation produces in-phase acceleration components
at the shoulder girdle, causing the transition to double swinging. Figure retrieved from [17].

quency ratio between arm and leg rotations is 1:1.
At gait speeds below 0.8 m/s, the arm swing becomes less vigorous, with the upper limbs moving

in parallel with each other and twice as fast as the legs. The step cadence now entrains the arm os-
cillations, making the frequency ratio between the arm and leg movements equal to 2:1. This second
mode is often referred to as “double swinging" [43]. However, it is still argued whether it is a consistent
feature of interlimb coordination since some experimental studies show that the transition is subject-
specific, could involve only one side of the body, or even not occur at all [17]. Even the experimental
protocol might influence the occurrence of double swinging: for instance, walking on a treadmill rather
than overground was found to promote the preservation of single swinging [3].

Independently of the adopted mode of interlimb coordination, the amplitude of the arm swing is
proportional to the walking speed [3, 7, 20, 33], even though some studies argue that this correlation
is the artefact from a primary dependence on the step length [8, 22, 36]. Some articles report the
presence of side asymmetries in the amplitude of the arm oscillations, but still, the literature is am-
biguous about this finding: Gutnik et al. [12] observed the dominant hand swinging more vigorously,
while others found the left arm to move with larger rotations, despite any hand dominance and side
asymmetries in the lower limbs [2, 20, 25].

There are many hypotheses regarding the mechanism that causes human interlimb coordination.
One possibility is that the synchronisation of the upper and lower limbs is analogue to that occur-
ring in a system of coupled compound pendulums. As such, the natural pendulum frequency of each
limb was suggested to be the leading factor in determining the existence of two interlimb coordination
modes and the associated transition [42, 43]. This view, however, has also received some criticism [7],
and more likely, different factors contribute to the generation of interlimb coordination. For instance,
the trunk might mediate the relative motion of the limbs, by adjusting its torsional elasticity [18] or, as
shown in fig.1.2, by changing the dominant acceleration component transmitted to the shoulder girdles
[17].

According to the detected EMG signals in the shoulder and arm muscles during normal walk-
ing, the central nervous system (CNS) also seems to play an active role in the generation of interlimb
coordination [1, 15, 19]. The muscle activity supporting the arm swing is quite weak (about 5% of
maximum voluntary contractions [13]) and predominantly carried by the anterior and posterior deltoids
[19]. Because of the observed weakness, it can not be excluded that its primary function is to stabilise
the shoulder joints against foot contact with the ground [28]. However, a more leading hypothesis is
that rhythmic muscle contractions in the upper and lower limbs are produced by central pattern gen-
erators (CPGs) [24]. A CPG consists of networks of oscillating interneurons located in the spinal cord
that can produce rhythmic muscle activity without the need of any rhythmic input [48]. Despite their
ability to operate as stand-alone units, there is enough evidence supporting a close interplay of CPGs



4 1. Introduction

Figure 1.3: The most credited model of the CPG distribution within the CNS. A yin-yang symbol indicates a CPG network.
It is hypothesised that each limb has its own CPG unit and that a “common core” (grey box) regulates their coordination.
The overall CPG structure works in synergy with supraspinal information and somatosensory feedback to generate the basic
rhythmic motor output. Figure adapted from [48].

with both supraspinal neuronal activity and somatosensory feedback (see fig.1.3) [48, 49]. However,
direct evidence of CPGs in humans is still missing, since impractical and ethically challenging to collect
[48–50]. Even more challenging is to identify the exact web of interneurons forming a CPG network,
which are often indistinguishable from those controlling peripheral reflexes [48]. Nowadays, the most
credited hypothesis is that each limb has one CPG structure and that a “common core” provides their
synchronisation (see fig 1.3). The nature of this “common core” is debated: it might be a pool of shared
interneurons, a set of propriospinal connections, or even a physiological organ not yet identified [48].

1.2. Arm-based control: state-of-art

Even though very scarce in number, some studies have investigated control algorithms and regression
techniques to extract gait dynamics from data associated with the arm swing. For instance, Chéron
et al. [5] demonstrated that a dynamic recurrent neural network, composed by 20 hidden units, can
reconstruct (offline) the elevation angles of the thigh, shank and foot by using as input the EMG sig-
nals of the anterior and posterior deltoids. Yoon et al. [46], instead, developed a full-body rehabilitation
robot whose control architecture adapts the training speed based on the interaction torques between
the machine upper levers and the user’s arms.

Among this limited group of articles, the work of La Scaleia et al. [21] emerges as the most interest-
ing. This study is the only one which proposes an arm-based controller for piloting in real-time a lower
limb exoskeleton. In particular, La Scaleia et al. [21] proposed an algorithm that predicts online the
kinematics of a forthcoming step based on EMG measurements of the anterior and posterior deltoids,
as shown in fig.1.4. Their arm-based controller first reduces the deltoid EMG data into two signals
by combining the activity of the antagonist, contralateral muscle pairs: the activity of the left anterior
deltoid is summed to that of the right posterior deltoid, and vice-versa. This sensory fusion technique
permits to partially compensate for the weakness of the shoulder muscular activity associated with the
arm swing. Then, the two resulting signals are filtered and the time elapsed between two consecutive
peaks, one per each signal, is computed. This time variable defines the desired duration of the forth-
coming step, and a set of predefined joint trajectories for the lower limbs are stretched accordingly.

First, this arm-based controller was validated offline by feeding pre-recorded deltoid EMGs that
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Figure 1.4: (A) Algorithm proposed by La Scaleia et al. [21]. The upper traces are the real left and right shank angles. EMGs
of the deltoid muscles are displayed in the central plot, as rectified (grey) and low-pass filtered (2Hz, black) signals. At the end
of each step (ti), the instant of EMG peak (⌧i) is searched within the predefined time window [⌧i�1 +�, ti], with � being a
hard-set value. A peak is defined as the instant at which the voltage exceeds a threshold which was empirically adjusted per
each participant (green line). The duration of the forthcoming step is then defined as Ti = ⌧i�⌧i�1. (B) Predicted kinematics.
Figure retrieved from [21].

were measured during walking at constant and variable gait speeds. Then, La Scaleia et al. [21] tested
two real-time implementations, both including healthy participants. In the first protocol, people were
asked to drive an avatar in a virtual reality environment. The majority of the participants could generate
stable walking of the avatar for an entire minute, at both constant and variable walking speeds in the
range of 3-5 km/h. During the second experiment, one single person was trained to drive an actual
exoskeleton with their arm-based controller implemented on. This participant could execute 7 to 10
consecutive steps without interruptions.

1.3. EMG-dependent arm-based control: limitation

Despite reporting two successful implementations involving actual participants, La Scaleia et al. [21]
proposes a control algorithm which has a critical limitation: it depends on EMG measurements of the
deltoid contractions. Recording appropriately this type of physiological data can be challenging and
usually requires extensive signal processing techniques to decode the raw information meaningfully
[29]. When dealing with the muscle contractions associated with the arm swing, the situation is made
even more challenging by the weakness of this muscular activity. La Scaleia et al. [21] only partly
tackled the issue by combining signals of the side-antagonist deltoids. Eventually, they had to ask the
participants to emphasise their arm rotations when testing the arm-based controller. Furthermore, the
study does not specify the relation of this emphasised arm swing amplitude with the walking speed:
participants might have maintained a constant amplitude across the speed conditions, and produced
different gait velocities by just changing the swing frequency. During normal walking, however, the am-
plitude of the arm swing is proportional to the walking speed, with very weak oscillations for the slower
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gaits. As such, the proposed EMG-based algorithm might not be suitable for real gait rehabilitation and
assistance scenarios, which involve much slower walking speeds (typical range: 0.5-4 km/h [16]) than
those tested in [21].

1.4. Thesis objective and novelty

This thesis project aimed to extend the applicability of an arm-based controller for a lower limb ex-
oskeleton to a range of speeds suitable for gait rehabilitation and assistance. The novelty of our study
is to propose a method based on the kinematics of the arm-leg coordination. Compared to previous
techniques based on the muscle activity of the upper body [5, 21], this method does not require com-
plex signal processing or emphasised rotations of the arms. By not constraining a priori the arm swing
amplitude, we also expected our control strategy to promote a more natural adaptation of the arm
swing amplitude to the gait velocity.

1.5. Report structure

The current report is organised as follows. Chapter 2 describes the structure of our proposed controller.
It contains the explanation of the biological foundation for our algorithm, an overview of the control
architecture and the mathematical descriptions of the composing modules. Chapter 3 explains the
experimental protocol that we used to validate our algorithm and the metrics that we computed for the
result analysis. Chapter 4 reports the results of the experiments, organised in a case-study fashion.
Discussion and conclusions are given in Chapters 5 and 6, respectively.
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This chapter describes the arm-based controller which we propose with this thesis project. The first
section explains the biological foundation of the method and the type of interlimb coordination pro-
moted. Later, an overview of the control architecture is given, contextualising the controller role within
the human-machine interaction. Eventually, this chapter describes the main modules composing the
control structure. The discussion, however, is restricted to the theoretical characterisation of the al-
gorithm, that is on the mathematical representation of its fundamental components. In this way, the
description of the algorithm is kept independent from those aspects uniquely related to the actual ex-
oskeleton on which it is applied. The description of the model-based code that we used to validate our
algorithm on a physical exoskeleton is given in Appendix B.

2.1. Biomimicking single swinging: moving beyond EMG-based

control and its limitations

The work of La Scaleia et al. [21] has shown the feasibility of controlling a lower limb exoskeleton
through the arm swing (see Chapter 1). However, the algorithm which they proposed relies on the
deltoid muscular activity to generate the gait. Such a design choice is limiting. In particular, it forced
emphasised arm swing amplitudes for the range of walking speeds that they studied, 3-5 km/h. During
normal walking, the arm swing amplitude is proportional to the gait velocity and approaches quite small
oscillations when walking slower than 2.7 km/h. Considering also that gait rehabilitation and assistance
involve training speeds much slower than those tested by La Scaleia et al. [21], relying on EMG data
weakens the applicability of their proposed algorithm.

Analysis of the literature on the interlimb coordination points out that upper and lower limbs move
according to specific coordination modes (single and double swinging), each associated with a specific
interlimb frequency- and phase-locking (see Chapter 1). In this thesis, we propose a control architec-
ture that uses arm-related kinematic data to generate the joint trajectories for a lower limb exoskeleton.
By moving beyond the use of EMG data, this method has the potential to overcome the limitations in
[21], and extend the feasibility of arm-based control to a range of speeds more appropriate for gait
rehabilitation and assistance.

The arm-leg coordination established by our algorithm mimics single swinging. In particular, it
makes the contralateral upper and lower limbs have the same frequency and phase of rotation, with a
peak of shoulder flexion coinciding with the contralateral heel-strike. According to part of the literature
[3], the actual phase offset between heel-strikes and peaks of shoulder flexion is speed dependent (but
convergent to zero as the walking speed increases). We decided not to implement this dependence on
the speed because the literature neither accurately quantifies it, nor describes the influence of wearing
an exoskeleton on it. As such, we simplified the design by assuming a perfect coincidence between
heel-strikes and flexion peaks. Later, we checked the validity of this assumption through our experi-
mental analysis (see Chapter 4). Because of similar literature uncertainties, we did not implement a
transition to double swinging when the walking speed reduces below a certain threshold.

7
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Figure 2.1: Architecture of our arm-based controller (dark grey area) and its function within the human-machine interaction.
The controller receives the user’s angular shoulder position, ✓IN , from which the Arm Observer estimates the frequency !
and phase � of the arm swing. The Mapping Function module estimates the user’s desired walking speed v from ! and
converts � into the phase of the stride cycle �S . Then, the Trajectory Generator uses this information to compute two vectors
containing joint angular positions, ~✓J , and velocities, ~̇✓J . These vectors constitute the target dynamics for the exoskeleton.
The Mapping Function and Trajectory Generator compose the Gait Generator module (light grey area). In parallel to the latter,
the Safety Mechanism triggers gait termination (decoupling dotted line between the arm-based controller and the exoskeleton)
if a faulty estimation of � occurs. All the variables just presented are time-dependent, which was not explicitly illustrated for
better readability.

2.2. Control architecture

Figure 2.1 depicts the architecture of our arm-based controller and its interaction with the user and the
exoskeleton. The control structure consists of three main components: the Arm Observer, the Gait
Generator and the Safety Mechanism. The Arm Observer contains an adaptive frequency oscillator
which estimates the frequency, ! (t), and phase, � (t), of the arm swing from real-time measurements
of the angular shoulder position in the sagittal plane, ✓IN (t). The Gait Generator converts the two
outputs of the Arm Observer into joint reference trajectories for the exoskeleton, expressed as vectors
of joint angular positions and velocities, ~✓j (t) and ~̇

✓j (t) respectively. Specifically, it performs this
function through two submodules:

• Mapping Function: converts ! (t) into the expected walking speed, v (t), and � (t) into an esti-
mation of the phase of the stride cycle, �S (t);

• Trajectory Generator: receives v (t) and �S (t) as inputs, and by means of regression models
inspired by the work of [16], produces the vectors ~✓j (t) and ~̇

✓j (t) .

In parallel to the Gait Generator, the Safety Mechanism continuously inspects the estimated phase of
the shoulder rotation, looking for a non-monotonic progression of � (t). If a similar situation occurs, this
module triggers gait termination to prevent dangerous discontinuities in the robot trajectories.

Our proposed control architecture does not require any data processing of its input signal, ✓IN (t),
since the adaptive frequency oscillator already embeds filtering properties. The controller needs the
data of only one shoulder to work, but it does not allow to start the gait. Also, the adaptive frequency
oscillator requires a few arm swing cycles to converge to the shoulder signal. When testing the algo-
rithm on a real-time implementation, we started the gait in position control (see Chapter 3), with the
Arm Observer receiving the shoulder rotation signal, but the Gait Generator decoupled from the ex-
oskeleton. Only after convergence of the adaptive frequency oscillator, the control mode was switched
from position to arm-based control, as explained in Appendix B.

2.2.1. Arm Observer

The Arm Observer is composed of an adaptive frequency oscillator, which is a non-linear dynamic
system capable of synchronising with a given periodic input. The literature contains several articles
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proposing techniques to design adaptive frequency oscillators. In this thesis, we considered the work
of Ronsse et al. [34], which is in turn based on the adaptation rule described in Righetti et al. [30]. We
chose this specific implementation because of its:

1. rapid convergence and excellent tracking of almost harmonic signals, as we expected the shoul-
der rotation to be during the arm swing;

2. embedded zero-delay filtering properties, and thus intrinsic robustness against input noise;

3. previous records of successful use in rehabilitation/assistance robotics [34];

4. straightforward interpretation of the tunable parameters;

In mathematical terms, this adaptive oscillator consists of the following set of equations, which we
present separated into three groups just for allowing a better description:

✓ (t) = ↵0 (t) + ↵1 (t) · sin (� (t))

�̇ (t) = ! (t) + ⌫ · F (t) · cos (� (t)) (2.1)
���������������
F (t) = ✓IN (t)� ✓ (t) (2.2)

���������������
!̇ (t) = ⌫ · F (t) · cos (� (t))

↵̇0 (t) = ⌘ · F (t)

↵̇1 (t) = ⇢ · F (t) · sin (� (t)) (2.3)

where t is the independent time variable and ẋ the time derivative of a generic x variable, ✓ (t) the
oscillator output state, ↵0 (t) and ↵1 (t) the offset and amplitude of the oscillations respectively, � (t)
the oscillator phase, with � (t) 2 [0, 2⇡], ✓IN (t) the (periodic) driving input, ! (t) the oscillator natural
frequency, and ⌫, ⌘ and ⇢ learning coefficients.

An intuitive understanding of the behaviour of this dynamical system is as follows. The first two
equations (eqs. 2.1) represent the dynamics of a phase oscillator with offset and amplitude that are
time-variable, and with frequency � (t) that depends on the error between the target signal and the os-
cillator state, F (t) (eq. 2.2). The remaining equations (eqs. 2.3) ensure that the offset, amplitude and
frequency of the oscillator converge to values that minimise this error, thus making ✓ (t) converging to
✓IN (t) . In a different perspective, this adaptive frequency oscillator can be seen as a sinusoid which
adapts its amplitude, offset and frequency so to match a target signal.

The learning behaviour is controlled by the coefficients ⌫, ⌘ and ⇢, with higher values producing
a faster synchronisation. However, setting high learning parameters comports larger fluctuations of
↵0 (t), ↵1 (t) and ! (t), which are destabilising for the oscillator dynamics and can prevent the synchro-
nisation to occur. Therefore, there is a trade-off to pay between high responsiveness of the system and
the stability of its synchronising behaviour. In [34], the following learning parameters were used: 20, 5
and 5 for ⌫, ⌘, ⇢ respectively. After some pilot tests, we chose smaller values for our implementation:
6.5, 1.5 and 1.5 respectively. Higher gains comported too aggressive dynamics, often resulting in a
non-monotonic progression of � (t) and gait termination triggered by the Safety Mechanism.

2.2.2. Mapping Function

The role of the Mapping Function module is to convert the outputs of the Arm Observer into inputs for
the Trajectory Generator. In particular, this latter module requires two signals: a target walking speed,
v (t), and an estimation of the phase of the stride cycle, �S (t).

By rearranging some of the equations described in [16] (see Appendix A), we derived first a relation
between v (t), expressed in m/s, and the stride cadence !S (t), expressed in Hz:

v (t) = 4 !
2
S (t) · �0 + �2 · h

1� 4�1 · !2
S (t)

(2.4)

where: h is the patient height, �0, �1 and �2 regression coefficients measured in [16] and equals
to �0.532, 0.020 and 0.47, respectively. During single swinging, the stride cadence is equal to the
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Figure 2.2: Key-events that were selected for the regression model of Koopman et al. [16]. The walking speed influences the
shape of the joint trajectories, and thus the location of the key-events with respect to the percentage of the gait cycle. Figure
adapted from [16].

frequency of the arm swing. By assuming that the parameter ! (t) of the adaptive frequency oscillator
approximates closely the value of the arm swing frequency, in equation 2.4 we replaced !S (t) by ! (t),
with this latter quantity previously converted from rad/s to Hz.

In order to estimate the phase of the stride cycle, we looked once again into the biomechanics of
single swinging, which are characterised by contralateral arm and leg oscillating in phase with each
other. Thus, we approximated �S (t) with the phase of the adaptive frequency oscillator � (t), which in
turn estimates the phase of the arm swing. � (t) is computed by the Arm Observer in radiant, while the
Trajectory Generator needs �S (t) in the percentage of a stride cycle. As such, we implemented the
following relation:

�S (t) =
100

2⇡
(� (t)� ⇡/2) (2.5)

where �⇡/2 is necessary to match the maximum flexion of the right shoulder, which occurs at � (t) '
⇡/2, with a left heel-strike, which must occur at �S (t) = 0% according to conventions in the Trajectory
Generator. As explained above, our algorithm requires the signal of only one shoulder to work, and the
literature does not provide convincing pieces of evidence to prefer one body side (see Chapter 1). We
decided to use the right shoulder because easier to match with the stride cycle conventions used in
the Trajectory Generator. In our experimental analysis, we partly investigated the dependence of our
algorithm functionality on the input shoulder (see Chapters 4).
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2.2.3. Trajectory Generator

Based on the method proposed in Koopman et al. [16], the Trajectory Generator produces pre-defined
joint trajectories that are eventually sent to the exoskeleton as the vector signals ~✓j (t) and ~̇

✓j (t). Each
reference trajectory is generated by interconnecting a number (2 to 6) of key-events with a 3rd or 5th
order spline. The key-events consist of the heel-strike, which defines the start of the stride cycle, and
a set of extreme values in the joint angular position and velocity profiles (see fig. 2.2). As such, each
key-event characterises a specific phase of the stride cycle in terms of joint angle, angular velocity and
angular acceleration (for 5th order), or joint angle and angular velocity (for 3rd order). Considering a
5th order spline1, the i-th key-event of the j-th joint, Kj,i, is described as:

Kj,i =
⇣
�j,i, ✓j,i, ✓̇j,i, ✓̈j,i

⌘
(2.6)

where: �j,i is the phase of the stride cycle associated with Kj,i, and ✓j,i, ✓̇j,i, ✓̈j,i are the corresponding
joint angular position, velocity and acceleration, respectively. The four parameters defining a key-event
can vary according to the gait speed and user’s length. This aspect is modelled in the Trajectory
Generator by computing the variables in equation 2.6 through the following regression models:

�j,i = (�1j,i+ �2j,i · v+ �3j,i · v2+ �4j,i · h) (mod100)
✓j,i = Y 1j,i+ Y 2j,i · v+ Y 3j,i · v2+ Y 4j,i · h
✓̇j,i = Y Y 1j,i+ Y Y 2j,i · v+ Y Y 3j,i · v2+ Y Y 4j,i · h
✓̈j,i = Y Y Y 1j,i+ Y Y Y 2j,i · v+ Y Y Y 3j,i · v2+ Y Y Y 4j,i · h

(2.7)

where: ( mod 100) indicates the phase wrapping (�j,i resets to 0 after reaching 100%), h is the patient’s
body length, v (t) is the target walking velocity, and �•j,i, Y •j,i, Y Y •j,i and Y Y Y •j,i are regression
coefficients determined by measuring several (healthy) gait trajectories [16]. The time dependence
of v (t) in the set of equations 2.7 was dropped for better readability only. The Trajectory Generator
assumes the gait to be symmetric: the reference trajectories are initially determined for the left leg, and
those of the right side are produced by adding/subtracting 50% to the �1 parameter of each key-event.
Therefore, the Trajectory Generator fully characterises the robotic gait once it receives as inputs: an
estimation of the stride cycle phase, the patient’s length and a target walking speed.

2.2.4. Safety Mechanism

The Safety Mechanism controls that the � (t) parameter of the adaptive frequency oscillator pro-
gresses monotonically. According to equation 2.5, a non-monotonic progression would result in a
non-monotonic growth of the gait phase �S (t), a trend that compromises the functionality of the Tra-
jectory Generator. In order to avoid such a scenario, the Safe Mechanisms subtracts the current and
previous values of � (t):

�� (t) = � (t��t)� � (t)

where �t indicates the integration time between two consecutive algorithm iterations. Then, gait ter-
mination is triggered if the following condition is true:

�� (t) 2 (0,⇡]

The presence of an upper boundary is crucial since � (t) drops from 2⇡ to 0 at the end of a shoulder
rotation cycle. Including an upper threshold consents to interrupt non-monotonic progressions of � (t)
while allowing its phase wrapping.

The Safety Mechanism can trigger gait termination, but can not execute the breaking action directly.
This is because the algorithm for executing gait termination usually depends on the exoskeleton in use.
As such, we report this part of the controller in Appendix B.

1The formulation for a 3rd order spline is obtained by removing the acceleration terms.
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This chapter describes the experimental protocol that we used to evaluate the correct functionality of
our arm-based controller when applied on real-time implementations. First, the materials are intro-
duced, emphasising on the description of the lower limb exoskeleton that we used in our experiments.
After, participants and testing conditions are described. The chapter ends by presenting the metrics
that we selected for the result analysis. Appendix E gives more details on the exact formulations that
we used to compute these metrics.

Figure 3.1: Our experimental set-up. a) Lopes II (University of Twente, Enschede, the Netherlands). b) MVN Link IMS (Xsens
Technologies B.V., Enschede, the Netherlands). Picture retrieved from [32].

3.1. Materials

To validate our arm-based controller on a real-time implementation, we implemented the algorithm on
the Lopes II (Fig.3.1-a), which is a treadmill-based lower limb exoskeleton developed at the University
of Twente [23]. The robot has several degrees of freedom (table 3.1), but only eight are actuated: hip
flexion/extension, hip abduction/adduction, knee flexion/extension, pelvis forward/aft and pelvis medi-
olateral. The Lopes II is driven by admittance control, and thus it can operate by receiving as input
target trajectories and stiffness per each actuated degree of freedom.

13
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Table 3.1: Lopes II joint degrees of freedom (actuated and/or measured), with abbreviations as used in the Lopes Development
Library. Positive directions refer to the user’s point of view.

# Abbreviation Joint description 
Positive direction  

(for HLC) 
Actuated Measured 

1 PX Pelvis forwards/backward Forwards Y Y

2 PZ Pelvis left/right Right Y Y

3 LHA Left hip abduction/adduction Abduction Y Y

4 LHF Left hip flexion/extension Flexion Y Y

5 LKF Left knee flexion/extension Flexion Y Y

6 LAP Left ankle plantarflexion Plantarflexion - Y

7 RHA Right hip abduction/adduction  Abduction Y Y

8 RHF Right hip flexion/extension Flexion Y Y

9 RKF Right knee flexion/extension Flexion Y Y

10 RAP Right ankle plantarflexion Plantarflexion - Y

11 PY Pelvis up/down Up - Y

12 PAX Pelvis axial rotation Right hip forward - Y

13 POB Pelvis obliquity Left hip up - Y

�1

Setting a stiffness coefficient to zero makes the system renders itself transparent along the de-
gree of freedom associated with that parameter. Setting all joint stiffness coefficients to zero is called
“Zero Impedance mode”, and results in the robot minimising the effects of its dynamics on the user.
On the contrary, very high stiffness coefficients make the robot tracking the given trajectories while
resisting to any perturbation exerted by the user. For our experiments, we chose a very stiff set-up
for the hip and knee degrees of freedom, with each corresponding stiffness coefficient equal to about
1300 Nm/rad. This was because of the group of participants involved in our experiments: they were all
healthy individuals, and thus potentially able to correct and stabilise wrongly-generated trajectories un-
der more compliant configurations. Furthermore, a stiff response of the Lopes II is more representative
of full-motion assistance and early rehabilitation stages, i.e. those critical conditions in which the user’s
impairment is so severe to make the robot largely in charge of the gait production. On the contrary,
we set the stiffness of the pelvis degrees of freedom to zero, in an attempt to imitate the dynamics of
mobile exoskeletons, which are usually not actuated at this joint. Still, this is a rough approximation
since the Lopes II differs from mobile devices for several aspects: it misses ankle actuation, does not
allow to tilt over the ankle with straight leg-trunk complex, and overall provides more support against
falls thanks to its rigid structure. Furthermore, reproducing a behaviour typical to all exoskeletons is
tricky, or even impossible, considering that every device dynamics are made unique by the specific
hardware components and low-level control strategies.

The are multiple sensors instrumented in the Lopes II (and its treadmill), which allow recording
both joint kinematics and ground-foot contact dynamics. Sensors and actuators communicate with the
Low-level Controller (LLC), a PC which runs on Linux Real-Time and takes care of the low-level control
of the system. The high-level control is carried by the High-level Controller (HLC), a Matlab/Simulink -
xPC Target (the Mathworks, Natick, MA) in communication with the LLC by a UDP interface. Therefore,
to test our arm-based controller with the Lopes II, we implemented our algorithm in a Matlab/Simulink
Real-Time model and downloaded it in the HLC. More details on this are given in Appendix B.

To measure the shoulder angular positions, participants wore the full-body inertial motion capture
system MVN Link IMS (Xsens Technologies B.V., Enschede, the Netherlands) (see figure 3.1-b). Since
we used the software provided by the manufacturer (MVN 2018 0.3) to integrate the raw sensor data,
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Figure 3.2: Treadmill speed profiles for task 2.

the sagital angular positions of each shoulder joint was defined according to the in-built Xsens Biome-
chanical model. We also performed sensor calibration and model scaling according to manufacturer
recommendation [32]. Communication between the MVN studio software and the Lopes II xPC-Target
was carried by UDP transmission.

3.2. Participants

Three healthy people took part in the experiments: participant 1 (gender: female, age: 28, height:
1.78 m), participant 2 (gender: male, age: 40, height: 1.90 m) and participant 3 (gender: male,
age: 30, height: 1.83 m). All the participants were volunteers and signed a consent form before
taking part in the research (see Appendix C). None of these people had ever practised with our arm-
based controller before, but all of them were acquainted walkers of the Lopes II. This condition was
an essential prerequisite because, during a pilot test with people who were new to the Lopes II, we
observed users to struggle in maintaining a natural arm-leg coordination when walking wearing the
exoskeleton (even with the system in Zero Impedance mode). This is a reasonable finding considering
that the device inevitably perturbs the wearer’s gait, making a novel user in need of some training
sessions before feeling comfortable with the system dynamics.

3.3. Walking Tasks

The experimental protocol included two walking tasks. The first one (task 1) consisted of walking at a
constant treadmill speed for two minutes, for a total of five speed-conditions: 0.25, 0.50, 0.75, 1.00 and
1.25 m/s. Considering that 0.75 m/s is the threshold speed below which double swinging might occur
(see Chapter 2), and to reduce order effects associated with transitions in interlimb coordination, we
sorted the trials into two sequences, to which we assigned the participants randomly:

• Sequence 1 = 0.75 m/s ! 0.50 m/s ! 0.25 m/s ! 0.75 m/s ! 1.00 m/s ! 1.25 m/s

• Sequence 2 = 0.75 m/s ! 1.00 m/s ! 1.25 m/s ! 0.75 m/s ! 0.50 m/s ! 0.25 m/s

In this way, it was also possible to gradually increase the difficulty of the task, assuming that 0.75 m/s is
a reasonably easy speed to maintain for a user trained with the Lopes II and that the transition to more
extreme conditions is increasingly challenging. We included a second trial of 0.75 m/s walking as an
intermediate condition, which served as wash-over between velocities that are characteristic of single
or double swinging. During this intermediate test, we did not record any data. Failure to complete
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one trial comported to skip to the intermediate 0.75 m/s condition, or to terminate the experiment if
the latter condition had been already tested. In case a participant found difficult to walk at 0.75 m/s,
the experiment would have continued based on the participant’s feedback, that is his/her preference
for which of the five walking conditions to test. Nevertheless, this scenario never happened, and all
participants could always complete two-minute walking at 0.75 m/s.

The second task (task 2) consisted of walking with the Lopes II while the treadmill speed changed
according to two possible patterns, as shown in figure 3.2. We randomly assigned each participant to
one of the two speed-profiles.

Later on, we will refer to the term “trial” to indicate an attempt to complete either a two-minute
walking condition of task 1 or a full profile of speed variation of task 2. For both tasks 1 and 2, we gave
to each participant the possibility to repeat a certain trial as many times as desired. We declared a trial
failed only if a participant felt uncomfortable in attempting/repeating it, or if time constraints forced us
to move forward with the experiment.

3.4. Control Modes

We tested two different control modes for the Lopes II:

• Arm-based control, during which the user drove the exoskeleton with our arm-based controller.
The right shoulder was always the limb controlling the system;

• Position control, during which the exoskeleton joint trajectories were only depended on the on-
going treadmill speed. This mode was a default controller of the Lopes II (see Appendix B).

Position-control served: (1) as a baseline for some metrics that we used in the result analysis; (2) to
understand the arm swing promoted by the Lopes II; (3) to initialise the gait (see Chapter 2).

Each participant completed task 1 and 2 with each controller, with random assignation of tasks and
control modes. Participants could ask a few minutes of rest at any moment during the experiments.

Besides walking with the Lopes II, participants also completed task 1 by walking on the Lopes II
treadmill without wearing the exoskeleton. For convenience, we will refer to this testing condition as
“natural walking”. During natural walking, the Arm Observer module (see Chapter 2) was still receiving
the shoulder rotation, allowing us to analyse the capacity of the adaptive oscillator in (1) synchronising
to healthy data and (2) reproducing stride properties, such as stride cadence and onset of heel-strike.
In other words, data from natural walking served to validate the Arm Observer as a method to charac-
terise the arm-leg coordination by exclusively recording shoulder kinematic information.

We asked participants to use their right shoulder to drive the exoskeleton for a matter of practi-
cality when combining the Arm Observer with the Gait Generator (see Chapter 2). Still, the literature
suggests that the arm swing presents side asymmetries, and we wanted to evaluate their effects on
our controller functionality. Therefore, during natural walking, we ran in parallel two Arm Observer
modules, each feed by one of the two shoulder signals.

3.5. Data Analysis

When running the experiments, the Matlab/Simulink - xPC-Target received data from the sensors of
both the Lopes II and Xsens suit. Precisely, it logged the following signals, at 1 kHz sampling rate:

• the left/right angular shoulder positions in the sagittal plane, ✓IN (t); (⇤)

• the left/right adaptive frequency oscillator parameters ✓ (t), ! (t) and � (t); (⇤⇤)

• the joint (angular) velocities, ~̇✓ (t); (⇤⇤)

• the joint interaction forces, ~T (t); (⇤⇤)

• the vertical ground reaction forces and position of the center of pressure; (⇤⇤)

Signal(s): (⇤) directly measured by the Xsens suit sensors; (⇤⇤) directly measured by the Lopes II sensors, or computed online
by the HLC/LLC.
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where the ~̇
✓ (t) and ~T (t) vectors contain an element per each degree of freedom listed in table 3.1.

To remove sensor noise before proceeding with the data analysis, we filtered the angular shoulder
position signals and the interaction force signals through a low-pass filter (Butterworth, forward and
backward in time, third-order, cutoff frequency of 10 Hz). Filtering of the other data was unnecessary
since already performed online by the HLC/LLC of the Lopes II.

Per each participant, control mode and task, we separated each raw sequence of data into accom-
plished trials. For any trial belonging to task 1, we discarded the first minute of the two-minute walking
duration, considering this initial period as adaptation to the walking speed. For both tasks, we further
segmented the data into stride and arm cycles, with a left/right stride cycle defined as the interval
between two left/right heel-strikes, and a left/right arm cycle as the interval between two consecutive
peaks of the left/right shoulder flexion. We detected the shoulder flexion peaks through the Matlab
function “findpeak.m”, applied to the filtered ✓IN (t) signals. We visually inspected the correctness
of this selection process. The algorithm which we used for the heel-strike detection is described in
Appendix D. Per each left/right stride cycle, we computed the following metrics:

1. !S = stride cadence, computed as the inverse of the stride duration and assumed constant
throughout the stride cycle;

2. AE!S = mean absolute error between !S and the ! (t) parameter of the adaptive frequency
oscillator. This metric was expressed as a percentage of !S , which is a percentage of the actual
stride cadence. AE!S is representative of the performance of the adaptive oscillator in estimating
the stride cadence, with higher performance reached for values of this metric closer to 0%;

3. �HS = value of the phase � (t) of the left/right adaptive frequency oscillator at the instance of
right/left heel-strike. This metric was expressed as (1) a percentage of the oscillator cycle,
wrapped within [-50%, 50%], and as (2) a time offset, which is the actual number of seconds
between a left/right heel-strike and the closest instance of 0% phase of the right/left adaptive
oscillator. For both these two versions, the sign convention considers a positive/negative value
as indicative of an early/late detection. �HS indicates the performance of our arm-based control
algorithm in predicting heel-strikes controlateral to the input shoulder, with higher performance
associated with values of this metric closer to 0%.

Per each right/left arm cycle, we computed the following variables:

1. ✓Amp = amplitude of the angular shoulder position, ✓IN (t);

2. !A = arm swing frequency, computed as the inverse of the arm cycle duration and assumed
constant throughout this interval;

3. AE!A = mean absolute error between !A and the ! (t) parameter of the adaptive frequency
oscillator. This metric was expressed as a percentage of !A, which is a percentage of the actual
arm swing frequency. AE!A is representative of the performance of the adaptive oscillator in
estimating the arm swing frequency, with higher performance reached for values of this metric
closer to 0%.

4. �PF = value of the phase � (t) of the left/right adaptive frequency oscillator at the instance of
maximum flexion of the left/right shoulder. This metric was expressed as (1) a percentage of
the oscillator cycle, wrapped within [-50%, 50%], and as (2) a time offset, which is the number of
seconds between a left/right peak of shoulder flexion and the closest instance of 0% phase of the
left/right oscillator. For both these two versions, the sign convention considers a positive/negative
value as indicative of an early/late detection. �PF represents the performance of our arm-based
control algorithm in locking its zero phase to the maximum flexion of its input shoulder, with higher
performance associated with values of this metric closer to 0%.

In addition, we also computed the offset between a peak of shoulder flexion and the associated con-
tralateral heel-strike, expressed as a percentage of the stride cycle ipsilateral to the shoulder peak.
This metric measures the actual shift between these two gait events, permitting to validate whether
assuming their coincidence was appropriate when we designed our arm-based controller.

When belonging to trials of task 1, we computed the average and standard deviations of all the
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above metrics, and also of the filtered shoulder trajectory ✓IN (t) over a stride cycle - to compute the
statistics of this latter quantity, we interpolated the data assigned to each stride segment over 1000
samples. To use the same number of elements, we selected only the first 19 elements of each metric
when computing its statistics (for ✓IN (t), the first 19 interpolated stride segments). Across all par-
ticipants and trials, this number was the minimum amount of data available when considering all the
previous metrics. During natural walking at constant 1.25 m/s, participant 2 exhibited an instance of
cross stride walking within the first 30 seconds. To exclude such abnormality from the analysis, we
computed the statistics of the metrics associated with this condition over their last 19 elements in-
stead.

Per each sequence of data characterising a complete trial, we computed the following variables:

1. AESH = mean absolute error between ✓IN (t) and the ✓ (t) parameter of the associated adaptive
frequency oscillator. This metric was expressed as a percentage of the average arm swing
amplitude adopted during the trial. AESH indicates how well the Arm Observer tracked its input
signal, and thus characterises the overall synchronisation error. Higher tracking performance
corresponds to values of this metric closer to 0%;

2. |W | = absolute work exchanged between the Lopes II and its user. This measure characterises
the level of synergy in the human-machine interaction, with smaller values meaning a higher
agreement between the gait desired by the user and the one promoted by the robot.

For the trials associated to task 2, AESH was computed within each arm cycle and expressed as a
percetange of the arm swing amplitude associated to the same arm cycle. Similarly, |W | was computed
within each stride cycle for task 2 data. During natural walking at 0.75 m/s, participant 2 stumbled at
about 50 sec. We removed the left and right data associated with this discontinuity, as well as the
remaining 10 seconds of the trial. Since more than 19 left and right arm/stride cycles were present in
the remaining segment of data, this decision affected only the computation of AESH .



�
Case Studies

This chapter describes the results of our experimental study. The analysis is divided per participant,
in a case-study fashion. Within each case study, the results are presented arranged by the walking
condition: natural walking, exoskeleton walking during task 1 and task 2. A preliminary analysis of the
results showed us that the Arm Observer always failed to synchronise to the shoulder signal during
natural walking at 0.25 m/s. Only for participant 2, this failure also occurred for the left adaptive
frequency oscillator during natural walking at 0.5 m/s. Therefore, we do not report the performance
metrics associated with these conditions in the following analysis. For the seek of objectivity, we still
report the corresponding full-time traces of actual and estimated shoulder trajectories (see Appendix
F).

19
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4.1. Participant 1

Figure 4.1: Participant 1, natural walking - Tracking performance of our algorithm with left and right shoulder inputs. (A)
Normalised Mean Absolute Error between actual and estimated shoulder trajectories. (B) Time offset (mean ± standard devi-
ation) between actual and detected peaks of shoulder flexion, with a positive sign indicating early detection. (C) Normalised
Mean Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency. (D) Offset when
detecting peaks of shoulder flexion, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive
sign indicates early detection.

4.1.1. Natural walking

Tracking performance

The performance of each adaptive frequency oscillator in tracking the assigned shoulder rotation
improved almost proportionally to the walking speed, as pointed out by the nearly inverse relationship
between AESH and the treadmill velocity (figure 4.1, plot A). Inspection of the time traces of actual and
estimated shoulder trajectories further confirms that the oscillator synchronisation to the input signal
was excellent within the range of 0.75-1.25 m/s, for both body sides (figure F.1, Appendix F). These
plots also show that the similarity of the real shoulder trajectories to sinusoidal shapes reduced when
walking at 0.5 m/s, mostly because of occasional instances of minor peaks in-between two consecutive
maxima of shoulder flexion (especially visible in the left side data). This increased irregularity is a major
contributor to the just observed drop in tracking performance.

The ! (t) parameter of each adaptive oscillator estimated the frequency of the assigned shoulder
rotation very well, and especially within the range of 0.75-1.25 m/s, the average mean absolute error
did not exceed ⇠3% of the real frequency value (figure 4.1, plot C). Both precision and accuracy
of the frequency estimation dropped at 0.5 m/s, as shown by larger means and standard deviations
respectively. This finding is consistent with the reduced oscillator synchronisation occurring at this
speed condition.

Peaks of shoulder flexion were predicted with very small time offsets (figure 4.1, Table B), that once
converted in the percentage of the oscillator cycle, did not exceed on average ± 5% (figure 4.1, figure
D).

Concerning side asymmetries, none of the plots in figure 4.1 suggest that one of the adaptive
frequency oscillators outperformed the other consistently.



4.1. Participant 1 21

Figure 4.2: Participant 1, natural walking - Gait estimation performance of our algorithm with left and right shoulder inputs.
(A) Normalised Mean Absolute Error (mean ± standard deviation) between the actual and estimated stride cadence. (B)
Time offset (mean ± standard deviation) between actual and predicted heel-strike events, with a positive sign indicating early
detection. (C) Offset when detecting heel-strike events, expressed in percentage of the oscillator cycle (mean ± standard devi-
ation). A positive sign indicates early detection. (D) Offset between a peak of shoulder flexion and corresponding contralateral
heel-strike (mean ± standard deviation), expressed in percentage of the ipsilateral stride cycle. A positive sign indicates the
heel-strike occurring later than the shoulder flexion peak.

Gait Estimation

The ! (t) parameters of the left and right adaptive frequency oscillators were excellent estimators
of the stride cadence, especially within 0.75-1.25 m/s (figure 4.2, plot A). However, for the majority of
the speed conditions, the heel-strike events were predicted with a positive time offset, which means
earlier than their actual onsets (figure 4.2, plot B). Once expressed in the percentage of the oscillator
cycle, this detection error ranges from a max of about 15% to almost null offset as the walking speed
increases (figure 4.2, plot C). Considering that each oscillator properly synchronised to the input an-
gular shoulder position while having a frequency very similar to the stride cadence, the primary reason
for the observer error in heel-strike detection is given by the algorithm wrongly assuming such foot
contact to occur concomitantly to the peak of flexion of the contralateral shoulder. This conclusion is
further supported by plot D of figure 4.2, which shows the existence of a natural speed-dependent
offset between these two types of gait events during normal walking of participant 1.

Arm-leg coordination

Participant 1 adopted single swinging within 0.5-1.25 m/s (figure F.2, Appendix F). At 0.25 m/s the
average angular profiles resembled double swinging, especially for the left shoulder. The transition be-
tween these two coordination modes was likely initiated around 0.5 m/s, as suggested by a small sec-
ondary peak in the late part of the stride cycle. Therefore, the above mentioned sporadic occurrence
of minor peaks of shoulder flexion was likely associated with the transition in interlimb coordination
mode.
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Figure 4.3: Participant 1, walking task 1 - Tracking performance of our arm-based controller (AC), compared to its perfor-
mance when receiving the right shoulder signal during natural walking (NW). (A) Normalised Mean Absolute Error between
actual and estimated shoulder trajectories. (B) Offset when detecting peaks of shoulder flexion, expressed in percentage of
the oscillator cycle (mean ± standard deviation). A positive sign indicates early detection. (C) Actual (Real) and estimated
(AFO) arm swing frequencies (mean ± standard deviation) during arm-based control - AC data only. (D) Normalised Mean
Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency.

4.1.2. Arm-based control: Task 1

Controllable range

Participant 1 could not complete walking at 0.25 and 1.25 m/s. However, the 1.25 m/s speed con-
dition failed because of hardware malfunctioning in the Lopes II which was unrelated to using our
arm-based controller. Participant 1 found too challenging to transit between following steady-speed
conditions continuously. Therefore, each trial of task 1 was initiated in position control, and only after
a few seconds of adaptation, the control mode was switched to arm-based control.

Tracking performance

During arm-based control in task 1, the adaptive frequency oscillator correctly synchronised to the
right shoulder rotation for all the completed trials (figure F.3, Appendix F), with AESH always lower
than 15% of the average arm swing amplitude (figure 4.3, plot A). The adaptive frequency oscillator
estimated very well the timing of shoulder flexion peaks, as shown by quite small time offsets: �0.012 ±
0.057, �0.028 ± 0.052 and �0.037 ± 0.048 seconds for 0.5, 0.75 and 1 m/s, respectively. Expressed
in percentage of the oscillator cycle, the detection error never exceeded ±5% (figure 4.3, plot B).
Correctly, participant 1 increased the arm swing frequency as the walking speed rose (figure 4.3, plot
C), and the Arm Observer could track the different cadences closely at all speed conditions (figure 4.3,
plot D).

Compared to the results of natural walking, the overall matching between the adaptive frequency
oscillator and the input shoulder signal improved during arm-based control (figure 4.3, plot A). A similar
result was expected, since when using our algorithm the user actively contributes to the generation
of periodic arm oscillations, thus facilitating the synchronisation of the Arm Observer. However, the
tracking performance in terms of detection of flexion peaks and estimation of the arm swing frequency
did not change noticeably compared to the results of natural walking (figure 4.3, plot B and D). Actually,
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Figure 4.4: Participant 1, walking task 1 - Gait generation performance of our arm-based controller. (A) Actual (Real) and
target (AFO) stride cadence (mean ± standard deviation) during arm-based control. (B) Normalised Mean Absolute Error
(mean ± standard deviation) between the actual and target stride cadence. (C) Offset between actual and target heel-strike
events, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive sign indicates that the actual
heel-strike occurred later than targetted by our controller.

Figure 4.5: Participant 1, walking task 1 - (A) Absolute work exchanged between the user and the exoskeleton over a full
trial - arm-based control (AC) vs. position control (PC). (B) Right shoulder swing amplitude (mean ± standard deviation) -
arm-based control (AC) vs. natural walking (NW).

AE!A was slightly more precise and accurate for the natural walking condition when the speed was
within 0.75-1 m/s.

Gait generation

Participant 1 correctly increased the stride cadence during faster walking speeds (figure 4.4, plot A).
The closeness, on average, of the parameter ! (t) of the adaptive frequency oscillator to the measured
stride cadence (figure 4.4, plot A), as well as the very small values of AE!S (figure 4.4, plot B) confirms
that our controller actually dictated the stride cadence of the human-machine complex.

There was a consistent offset between the target and actual occurrences of the heel-strike events,
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Figure 4.6: Participant 1, walking task 2 - Tracking performance of our arm-based controller - part 1. (A) Treadmill speed pro-
file across the trial. (B) Filtered shoulder trajectory (Real) compared against the output state (✓ (t)) of the adaptive frequency
oscillator (AFO). (C) Normalised Mean Absolute Error between the actual and estimated shoulder trajectories.

both in terms of time offset (0.14 ± 0.021, 0.14 ± 0.0085 and 0.12 ± 0.026 seconds for 0.5, 0.75
and 1 m/s, respectively) and percentage of the oscillator cycle offset (figure 4.4, plot C). Contrary to
what observed during natural walking, the smallest offset occurred at 0.5 m/s, i.e. the slowest speed
condition achieved in task 1 by participant 1.

Absolute work & arm swing amplitude

Compared to position control, walking with the arm-based controller comported a lower absolute
work, exchanged between participant 1 and the Lopes II, only at the 1 m/s speed condition and with
a minimal difference (figure 4.5, plot A). For the remaining two conditions, position control was always
less energetically demanding, and thus likely more comfortable for participant 1.

Within 0.75-1 m/s, the user’s arm swing amplitude did not change consistently, either within and
between natural walking and arm-based control (figure 4.5, plot B). However, walking at 0.5 m/s was
characterised by slightly larger shoulder rotations, especially if compared to the corresponding value
measured during natural walking. The average shoulder trajectory of participant 1 when walking in
position control presented an amplitude generally smaller than what observed during natural walking,
especially for the trials at 0.5 and 1 m/s (figure F.4, Appendix F). On the contrary, the average shoulder
trajectory adopted during arm-based control was very similar to natural walking data, except for a delay
in the occurrance of maximum shoulder extension (the valley in plot) when walking at 0.75 m/s.

4.1.3. Arm-based control: Task 2

Tracking performance

Throughout task 2, the adaptive frequency oscillator could track the shoulder angular profile of par-
ticipant 1 well (figure 4.6, plot B). Furthermore, the tracking performance did not change significantly
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Figure 4.7: Participant 1, walking task 2 - Tracking performance of our arm-based controller - part 2. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and estimated (AFO) arm swing frequencies. (C) Normalised Mean Absolute Error
between the actual and estimated arm swing frequency. (D) Time offset between actual and detected shoulder flexion peaks. A
positive sign indicates early detection. (E) Offset between actual and detected shoulder flexion peaks, expressed in percentage
of the oscillator cycle. A positive sign indicates early detection. Each dot in plots C, D and E belongs to an arm cycle.

between intervals at constant and variable speeds (figure 4.6, plot C). At about 75 seconds there was
a noticeable increment in AESH , joined by similar reduced performance concerning the estimation of
the arm swing frequency (figure 4.7, plots B and C) and the detection of peaks of shoulder flexion
(figure 4.7, plots D and E). Nevertheless, this reduced tracking performance lasted over only a few arm
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Figure 4.8: Participant 1, walking task 2 - Gait generation performance of our arm-based controller. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and target (AFO) stride cadence. (C) Normalised Mean Absolute Error between
the actual and target stride cadence. (D) Time offset between actual and target heel-strike events. A positive sign indicates
that the actual heel-strike occurred later than expected. (E) Offset between actual and target heel-strike events, expressed
in percentage of the oscillator cycle. A positive sign indicates that the actual heel-strike occurred later than expected. Note:
each dot in plots C, D and E corresponds to a stride cycle.

cycles, which were all antecedent to the second interval with variable speed.
During the two intervals at variable treadmill velocity, participant 1 changed the arm swing fre-

quency proportionally to the walking speed (figure 4.7, plots B), but around the two instances at min-
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Figure 4.9: Participant 1, walking task 2 - (A) Treadmill speed profile across the trial. (B) Absolute work exchanged between
the user and the exoskeleton over a full trial - arm-based control (AC) vs. position control (PC). Each dot corresponds to a
stride cycle. (C) Right shoulder swing amplitude over a trial - arm-based control (AC). Each dot corresponds to an arm cycle.

imum treadmill speed, the swing cadence became more variable (especially for the second interval
with variable velocity). This variability in the shoulder rotation is likely responsible for the concomitant
more erroneous estimation of the arm swing frequency (figure 4.7, plots C), and less precise detection
of the peaks of shoulder flexion (figure 4.7, plots D and E).

Gait generation

The oscillator parameter ! (t) was similar to the stride cadence throughout task 2 (figure 4.8, plot
B), with AE!S below 4% of the real stride cadence most of the time (figure 4.8, plot C). Therefore, also
under a variable treadmill speed, our algorithm could generate a gait whose stride frequency changed
proportionally to the belt velocity, correctly depending on the cadence of the arm swing. However,
AE!S was more variable during the two intervals with changing treadmill velocity, which might be an
indicator of reduced synergy between the user and the Lopes II: participant 1 might have perceived
the gait promoted by the robot as inappropriate, and thus intentionally countered it.

For the majority of the task, the actual left heel-strike occurred with about 0.12-0.14 seconds delay
(about 8-10% of the oscillator cycle) with respect to the timing targeted by the arm-based controller
(figure 4.8, plot D and E), a finding consistent with the results of task 1. However, the second interval
at variable treadmill speed was characterised by a much more variable heel-strike detection error than
during the rest of the trial. Therefore, it is possible that participant 1 had more difficulties in controlling
the Lopes II during the second part of task 2.

Absolute work & arm swing amplitude

When using the arm-based controller, reducing the treadmill speed comported an incremental ex-
change of absolute work between the user and the machine (figure 4.9, plot B). This increment reached
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its maximum anytime the treadmill speed was close to its minimum value. Considering that participant
1 was unable to use the arm-based controller at 0.25 m/s during task 1, such a finding is reasonable.
Furthermore, except when in the neighbourhood of the minimum treadmill velocity, the absolute work
during arm-based control was quite similar to that observed during position control.

During task 2, the user’s arm swing amplitude changed very little, ranging from 6 to 10 degrees and
with fluctuations not clearly related to the treadmill speed (figure 4.9, plot C).
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4.2. Participant 2

Figure 4.10: Participant 2, natural walking - Tracking performance of our algorithm with left and right shoulder inputs. (A)
Normalised Mean Absolute Error between actual and estimated shoulder trajectories. (B) Time offset (mean ± standard devi-
ation) between actual and detected peaks of shoulder flexion, with a positive sign indicating early detection. (C) Normalised
Mean Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency. (D) Offset when
detecting peaks of shoulder flexion, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive
sign indicates early detection.

4.2.1. Natural walking

Tracking performance

Increasing the walking speed reduced the error of each adaptive frequency oscillator in tracking its
input shoulder trajectory, with an almost inversely proportional trend for the right side (figure 4.10, plot
A). Inspection of the time traces (figure F.5, Appendix F) further confirms that within the range of 0.75-
1.25 m/s the synchronisation of each Arm Observer to its shoulder signal was excellent. Left and right
swing patterns, however, presented a mix of major and minor peaks of shoulder flexion when walk-
ing at 0.5 m/s. This feature comported an increased irregularity in the shoulder signal, thus playing
a consistent role in reducing the tracking performance of the Arm Observer at this speed condition
and similarly to what observed for participant 1. For the right side, it was possible to discriminate an
arm cycle as the segment of data between two consecutive major peaks, considering the remaining
local maxima as noise due to their much smaller magnitudes. For the left side, on the contrary, the
angular shoulder trajectory was more irregular, with major and minor peaks often having comparable
heights. This property made a reliable segmentation of the data into arm cycles impossible, and thus
an analysis of the behaviour of the left Arm Observer was not carried for the 0.5 m/s trial associated
with natural walking.

Each adaptive frequency oscillator produced both excellent estimations of the arm swing frequency
and correct detections of the shoulder flexion maxima (4.10, plot C, plot D and table B). At 0.5 m/s
performance dropped for both AE!A and �PF , consistent with the trend of AESH .

Side differences were minimal and mostly limited to the overall tracking behaviour, i.e. AESH , thus
not affecting the outputs of the Arm Observer needed by the Gait Generator.
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Figure 4.11: Participant 2, natural walking - Gait estimation performance of our algorithm with left and right shoulder in-
puts. (A) Normalised Mean Absolute Error (mean ± standard deviation) between the actual and estimated stride cadence.
(B) Time offset (mean ± standard deviation) between actual and predicted heel-strike events, with a positive sign indicating
early detection. (C) Offset when detecting heel-strike events, expressed in percentage of the oscillator cycle (mean ± stan-
dard deviation). A positive sign indicates early detection. (D) Offset between a peak of shoulder flexion and corresponding
contralateral heel-strike (mean ± standard deviation), expressed in percentage of the ipsilateral stride cycle. A positive sign
indicates the heel-strike occurring later than the shoulder flexion peak.

Gait Estimation

The ! (t) parameter of the adaptive frequency oscillator estimated the contralateral stride cadence
very well for walking speeds within the range of 0.75-1.25 m/s, with similar performance between left
and right sides (figure 4.11, plot A). AE!S reduced with increasing walking speed, suggesting better
approximations of the stride cadence during faster gaits.

Heel-strike events were consistently predicted with positive time shifts, i.e. in advance respect to
their actual occurrences (figure 4.11, table B). Above 0.5 m/s, this time offset reduced with increasing
walking speeds. Once expressed in the percentage of the oscillator cycle, the heel-strike detection
error was less than 15% for most of the tested conditions (figure 4.11, plot C). Similarly to participant
1, this phase error is primarily associated with a natural offset between a peak of shoulder flexion and
the corresponding contralateral heel-strike (figure 4.11, plot D). On average, these two events were
more coincident for the right arm-left foot complex, leading the right Arm Observer to more precise
heel-strike detections.

Arm-leg coordination

The arm swing of participant 2 resembled single swinging mostly at 1.25 m/s (figure F.6, Appendix
F). Already at 1 m/s, the shoulder trajectories show the occurrence of a secondary peak (valley) for the
left (right) angular profile. At 0.5 m/s, double swinging is prominent for both shoulders, and at 0.25 m/s
it is not possible anymore to distinguish between major and minor peaks of shoulder flexion.
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Figure 4.12: Participant 2, walking task 1 - Tracking performance of our arm-based controller (AC), compared to its perfor-
mance when receiving the right shoulder signal during natural walking (NW). (A) Normalised Mean Absolute Error between
actual and estimated shoulder trajectories. (B) Offset when detecting peaks of shoulder flexion, expressed in percentage of
the oscillator cycle (mean ± standard deviation). A positive sign indicates early detection. (C) Actual (Real) and estimated
(AFO) arm swing frequencies (mean ± standard deviation) during arm-based control - AC data only. (D) Normalised Mean
Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency.

4.2.2. Arm-based control: Task 1

Controllable range

Participant 2 could complete all speed conditions and transit from one treadmill velocity to the fol-
lowing one while maintaining the arm-based controller active, i.e. without starting each trial in position
control. Accordingly, during arm-based control, participant 2 could conform to treadmill accelerations
equals to 0.1 m/s/s, and decelerations of 0.5 m/s/s (transition rate limits in-built into the Lopes II). De-
spite completing the trial of task 1 at 0.25 m/s, participant 2 mentioned finding challenging using the
arm-based controller at such a speed condition. Precisely, he stated to find unintuitive swinging the
arm slow enough to match the treadmill velocity.

Tracking performance

The adaptive frequency oscillator synchronised well to the shoulder rotation during all the trials of
task 1 (figure F.7, Appendix F). The detection of peaks of shoulder flexion was excellent, whether
the offset error was expressed in time (0.023 ± 0.13, 0.038 ± 0.078, 0.031 ± 0.048, 0.018 ± 0.014
and 0.022 ± 0.015 seconds for 0.25, 0.5, 0.75, 1 and 1.25 m/s, respectively) or percentage of the
oscillator cycle (figure 4.12, plot B). As for participant 1, participant 2 correctly conformed to increasing
walking speeds by increasing the arm swing frequency (figure 4.12, plot C), and this latter parameter
was tracked with high precision by the Arm Observer across all conditions involving arm-based control
(figure 4.12, plot D). Furthermore, AE!A (on average) reduced with faster gaits.

Comparison with the results from natural walking shows that the tracking performance improved
during arm-based control, despite AESH increased proportionally to the walking speed within the
range of 0.25-0.75 m/s (figure 4.12, plot A). On the contrary, the performance in estimating the arm
swing frequency and detecting the peaks of shoulder flexion did not change conspicuously between
natural walking and arm-based control (figure 4.12, plot B and D).
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Figure 4.13: Participant 2, walking task 1 - Gait generation performance of our arm-based controller. (A) Actual (Real) and
target (AFO) stride cadence (mean ± standard deviation) during arm-based control. (B) Normalised Mean Absolute Error
(mean ± standard deviation) between the actual and target stride cadence. (C) Offset between actual and target heel-strike
events, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive sign indicates that the actual
heel-strike occurred later than targetted by our controller.

Gait generation

The stride cadence of participant 2 correctly increased with the walking speed during task 1, and, on
average, the ! (t) parameter of the adaptive frequency oscillator was similar to the real stride cadence
(figure 4.13, plot A). Small AE!S values further confirm this finding (figure 4.13, plot B), suggesting
a correct transmission of the oscillator frequency, and thus of the arm swing cadence, to the stride
frequency.

The actual heel-strikes occurred later than when targeted by the arm-based controller, with a time
offset equal to: 0.098 ± 0.016, 0.13 ± 0.015, 0.12 ± 0.0084, 0.12 ± 0.0058 and 0.12 ± 0.0071 seconds
for 0.25, 0.5, 0.75, 1 and 1.25 m/s. In the percentage of the stride cycle, the offset ranged within 4-
11%, and contrary to what observed during natural walking, it increased (almost proportionally) with
faster treadmill velocities (figure 4.13, plot C).

Absolute work & arm swing amplitude

Compared to position control, participant 2 always exchanged more work with the Lopes II when
walking with the arm-based controller (figure 4.14, plot A). However, the difference in |W | between
the two control modes was large when walking at 0.5 m/s, but it was noticeably more contained for
the other conditions. Therefore, it seems that participant 2 did not find using the arm-based controller
much more challenging than walking in position control, especially when walking at 0.75 and 1 m/s.

During arm-based control, participant 2 changed the amplitude of the arm swing according to the
walking velocity, but with an ambiguous trend: a proportional relationship within 0.75-1.25 m/s (as
one would expect in a healthy gait), and an almost inversely proportional relation within 0.25-0.75
m/s. During natural walking, such a V-shaped trend was also faintly present, and thus this unusual
behaviour might be a peculiar gait characteristic of participant 2 rather than an adaptation to the arm-
based controller. During arm-based control, the amplitude of the arm swing was always larger than
what observed during natural walking, with about 20 degrees of max discrepancy occurring at 1.25 m/s.
The average shoulder trajectory measured during normal walking was better replicated by the position
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Figure 4.14: Participant 2, walking task 1 - (A) Absolute work exchanged between the user and the exoskeleton over a full
trial - arm-based control (AC) vs. position control (PC). (B) Right shoulder swing amplitude (mean ± standard deviation) -
arm-based control (AC) vs. natural walking (NW).

controller rather than our arm-based algorithm (figure F.8, Appendix F). This was mostly because
during natural walking single swinging was the dominant coordination mode of participant 2 only at
1.25 m/s. Reducing the velocity to 1 m/s already comported hints of double swinging, which became
the dominant interlimb synchronisation pattern already at 0.5 m/s.
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Figure 4.15: Participant 2, walking task 2 - Tracking performance of our arm-based controller - part 1. (A) Treadmill speed
profile across the trial. (B) Filtered shoulder trajectory (Real) compared against the output state (✓ (t)) of the adaptive fre-
quency oscillator (AFO). (C) Normalised Mean Absolute Error between the actual and estimated shoulder trajectories.

4.2.3. Arm-based control: Task 2

Tracking performance

During task 2, the matching between actual and estimated shoulder trajectories was high (figure
4.15, plot B), with AESH under 20% of the average arm swing amplitude most of the time. At about
25 seconds user’s stumbling perturbed the shoulder rotation, causing a large drop in the tracking
performance. However, participant 2 could withstand this gait discontinuity by quickly regaining a
controlled swing of the right arm. Because of time constraints, it was not possible to repeat the task.
Nevertheless, reporting this trial is interesting since it shows that the arm-based controller can face
a sudden perturbation of the arm swing without necessarily impairing the gait. Also, the intermediate
phase at a constant walking speed acted as a wash-over period for the second part of task 2, making
the data associated with the second interval at variable walking velocity likely independent of the
stumbling. The plots in figure 4.16 tend to confirm this by showing that during this second interval:
participant 2 changed the arm swing frequency proportionally to the belt velocity (plot B); the adaptive
oscillator correctly estimated the arm swing cadence (plot C); the detection of the peaks of shoulder
flexion was good, in terms of both time (plot D) and percentage of the oscillator cycle (plot E).

Gait generation

Except when the stumbling occurred, the ! (t) parameter of the adaptive oscillator closely matched
the stride cadence, with AE!S almost always below 5% of the actual stride frequency (figure 4.17,
plot C). Therefore, the oscillator frequency, and thus the cadence of the arm swing, was correctly
transmitted to the Lopes II also throughout task 2.

Consistently with task 1 results, during task 2 the heel-strikes occurred later than when targetted
by the arm-based controller, with a time offset within the range of 0.1-0.15 seconds (figure 4.17, plot
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Figure 4.16: Participant 2, walking task 2 - Tracking performance of our arm-based controller - part 2. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and estimated (AFO) arm swing frequencies. (C) Normalised Mean Absolute Error
between the actual and estimated arm swing frequency. (D) Time offset between actual and detected shoulder flexion peaks. A
positive sign indicates early detection. (E) Offset between actual and detected shoulder flexion peaks, expressed in percentage
of the oscillator cycle. A positive sign indicates early detection. Each dot in plots C, D and E belongs to an arm cycle.

D), corresponding to about 9% of the oscillator cycle (figure 4.17, plot E).

Absolute work & arm swing amplitude

Compared to position control, arm-based control required a greater exchange of absolute work be-
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Figure 4.17: Participant 2, walking task 2 - Gait generation performance of our arm-based controller. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and target (AFO) stride cadence. (C) Normalised Mean Absolute Error between
the actual and target stride cadence. (D) Time offset between actual and target heel-strike events. A positive sign indicates
that the actual heel-strike occurred later than expected. (E) Offset between actual and target heel-strike events, expressed
in percentage of the oscillator cycle. A positive sign indicates that the actual heel-strike occurred later than expected. Note:
each dot in plots C, D and E corresponds to a stride cycle.

tween participant 2 and the robot (figure 4.18, plot B), suggesting that the user countered the Lopes
II trajectories more when using the arm-based controller. In particular, this divergence seems to en-
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Figure 4.18: Participant 2, walking task 2 - (A) Treadmill speed profile across the trial. (B) Absolute work exchanged between
the user and the exoskeleton over a full trial - arm-based control (AC) vs. position control (PC). Each dot corresponds to a
stride cycle. (C) Right shoulder swing amplitude over a trial - arm-based control (AC). Each dot corresponds to an arm cycle.

large during treadmill decelerations, suggesting the arm-based controller to cause more discomfort
especially when breaking the walking speed. This consideration, however, is partly contradicted by a
similar trend in the dissimilarity of |W | values during the second half of the interval at constant 0.75
m/s.

Participant 2 changed the amplitude of the arm swing during task 2, within a range of 15-25 degrees
(figure 4.18, plot C). However, the variation was not clearly related to the ongoing treadmill velocity.
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4.3. Participant 3

Figure 4.19: Participant 3, natural walking - Tracking performance of our algorithm with left and right shoulder inputs. (A)
Normalised Mean Absolute Error between actual and estimated shoulder trajectories. (B) Time offset (mean ± standard devi-
ation) between actual and detected peaks of shoulder flexion, with a positive sign indicating early detection. (C) Normalised
Mean Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency. (D) Offset when
detecting peaks of shoulder flexion, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive
sign indicates early detection.

4.3.1. Natural walking

Tracking performance

The overall synchronisation between each adaptive frequency oscillator and the associated shoulder
signal increased with faster gaits, as indicated by the inversely proportional relation between AESH

and the walking speed (figure 4.19, plot A). The time traces further confirms that the matching between
actual and estimated shoulder trajectories was very high for the walking speeds above 0.25 m/s (figure
F.9, Appendix F). In general, the right adaptive frequency oscillator performed slightly better concerning
the overall tracking performance.

Estimation of the arm swing frequency was excellent for all trials, with AE!A (on average) reducing
with faster gaits and almost no side differences (figure 4.19, plot C).

Detections of shoulder flexion peaks were characterised by small time offsets (figure 4.19, table B),
which converted in the percentage of the oscillator cycle, stayed within the range of about ±5% (figure
4.19, plot D). However, the variability in the data does not permit to discriminate clear changes of �PF

with either the body side or the treadmill speed.

Gait Estimation

The parameter ! (t) of the adaptive frequency oscillator could approximate the stride cadence well,
with similar performance between the left and right sides (figure 4.20, plot A). Increasing the speed
produced slightly better approximations, although the improvements were too small compared to the
data variability to assess with certainty a dependence on the walking velocity.

On the contrary, across all speed conditions there was a consistent, positive offset in the heel-strike
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Figure 4.20: Participant 3, natural walking - Gait estimation performance of our algorithm with left and right shoulder in-
puts. (A) Normalised Mean Absolute Error (mean ± standard deviation) between the actual and estimated stride cadence.
(B) Time offset (mean ± standard deviation) between actual and predicted heel-strike events, with a positive sign indicating
early detection. (C) Offset when detecting heel-strike events, expressed in percentage of the oscillator cycle (mean ± stan-
dard deviation). A positive sign indicates early detection. (D) Offset between a peak of shoulder flexion and corresponding
contralateral heel-strike (mean ± standard deviation), expressed in percentage of the ipsilateral stride cycle. A positive sign
indicates the heel-strike occurring later than the shoulder flexion peak.

detection, meaning too early detection of this gait event (figure 4.20, Table B and plot D). Such an offset
was inversely proportional to the walking speed and converged to almost exact predictions when mov-
ing towards the 1.25 m/s condition. Like the other participants, this feature was predominantly caused
by the natural arm-leg coordination of participant 3 rather than by an inappropriate synchronisation
of the adaptive frequency oscillator, as shown by a very similar speed dependent timing between the
actual onset of a peak of shoulder flexion and the corresponding contralateral heel-strike (figure 4.20,
plot D).

Arm-leg coordination

Participant 3 adopted single swinging within 0.5-1.25 m/s (figure F.10, Appendix F). Only at 0.25
m/s, double swinging occurred, but more visibly for the left shoulder. Notice that compared to other
participants, there are no hints of mode transition for participant 3: none of the speed-conditions
above 0.25 m/s present signs for the development of a secondary peak. Therefore, the interlimb mode
transition for participant 3 occurred much more abruptly than for the other participants.

4.3.2. Arm-based control: Task 1

Controllable range

When using the arm-based controller, participant 3 could complete all trials except walking at 1.25
m/s. Failing to fulfil this condition, however, was caused by hardware malfunctioning in the Lopes II, and
thus it was unrelated to the controlling mode. Also, participant 3 could successfully transit between
two consecutive speed-conditions with the arm-based controller turned on, i.e. without the need of
starting each trial in position control. Participant 3 stated to prefer arm-based control over position
control when walking at 0.25 m/s during task 1.
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Figure 4.21: Participant 3, walking task 1 - Tracking performance of our arm-based controller (AC), compared to its perfor-
mance when receiving the right shoulder signal during natural walking (NW). (A) Normalised Mean Absolute Error between
actual and estimated shoulder trajectories. (B) Offset when detecting peaks of shoulder flexion, expressed in percentage of
the oscillator cycle (mean ± standard deviation). A positive sign indicates early detection. (C) Actual (Real) and estimated
(AFO) arm swing frequencies (mean ± standard deviation) during arm-based control - AC data only. (D) Normalised Mean
Absolute Error (mean ± standard deviation) between the actual and estimated arm swing frequency.

Tracking performance

The adaptive frequency oscillator could track the actual right shoulder profile well (figure F.11, Ap-
pendix F), with AESH always smaller than 8% of the average arm swing amplitude (figure 4.21, plot
A). Participant 3 correctly changed the arm swing frequency proportionally to the walking speed (figure
4.21, plot C). The cadence of the shoulder rotation was estimated very precisely by the Arm Observer,
as indicated by AE!A values always contained, on average, within 2-4% of the actual arm swing fre-
quency value (figure 4.21, plot D). Detection of the peaks of shoulder flexion was also excellent, both
in terms of time offset (�0.055 ± 0.03, �0.034 ± 0.028, 0.0079 ± 0.02, and 0.005 ± 0.022 seconds
for 0.25, 0.5, 0.75, and 1 m/s, respectively) and percentage of the oscillator cycle (figure 4.21, plot B).

Compared to natural walking, during arm-based control the overall tracking performance was supe-
rior (figure 4.21, plot A), which is expected due to the user’s active contribution in generating repetitive
shoulder rotations. Even the estimation of the arm swing frequency and the detection of shoulder flex-
ion maxima had greater accuracy and precision when using the arm-based controller (figure 4.21, plot
D and B).

Gait generation

The stride cadence of participant 3 was proportional to the walking speed, as expected in a healthy
gait (figure 4.22, plot A). The ! (t) parameter of the adaptive oscillator was very close to the measured
stride cadence at all speed conditions, with minimal values of AE!S (figure 4.22, plot B). Therefore,
the arm-based controller correctly converted its estimate of the arm swing frequency into the stride
frequency during task 1.

The actual heel-strike events occurred consistently later than when targetted by the arm-based
controller, with time offset equal to: 0.1 ± 0.021, 0.12 ± 0.01, 0.13 ± 0.0075, and 0.12 ± 0.0095
seconds for 0.25, 0.5, 0.75, and 1 m/s, respectively. This delay was proportional to the walking speed,
and once expressed in the percentage of the oscillator cycle, it went from about 4% at 0.25 m/s up to
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Figure 4.22: Participant 3, walking task 1 - Gait generation performance of our arm-based controller. (A) Actual (Real) and
target (AFO) stride cadence (mean ± standard deviation) during arm-based control. (B) Normalised Mean Absolute Error
(mean ± standard deviation) between the actual and target stride cadence. (C) Offset between actual and target heel-strike
events, expressed in percentage of the oscillator cycle (mean ± standard deviation). A positive sign indicates that the actual
heel-strike occurred later than targetted by our controller.

Figure 4.23: Participant 3, walking task 1 - (A) Absolute work exchanged between the user and the exoskeleton over a full
trial - arm-based control (AC) vs. position control (PC). (B) Right shoulder swing amplitude (mean ± standard deviation) -
arm-based control (AC) vs. natural walking (NW).

about 10% at 1 m/s (figure 4.22, plot C).

Absolute work & arm swing amplitude

The absolute work exchanged between participant 3 and the Lopes II was higher during arm-based
control than during position control, even though the two trends were quite similar (figure 4.23, plot A).
In fact, for both control conditions, |W | was proportional to the walking speed, with about the same
value at 0.25 m/s and a slightly steeper slope for the arm-based controller data. Therefore, increasing
the speed during arm-based control made the user opposing to the robot trajectories incrementally
more than during position control.
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Figure 4.24: Participant 3, walking task 2 - Tracking performance of our arm-based controller - part 1. (A) Treadmill speed
profile across the trial. (B) Filtered shoulder trajectory (Real) compared against the output state (✓ (t)) of the adaptive fre-
quency oscillator (AFO). (C) Normalised Mean Absolute Error between the actual and estimated shoulder trajectories.

Participant 3 adopted arm swing amplitudes which were proportional to the walking speed during
task 1, but change of only a few degrees between consecutive trials (figure 4.23, plot B). The magnitude
of the arm amplitude was always about 15 degrees larger than the corresponding value observed
during natural walking. Except at 0.25 m/s, the shape of the average shoulder trajectory measured
during normal walking was better replicated by our arm-based controller rather than the position (figure
F.12, Appendix F). Instead, position control comported an almost absent arm swing during all the trials.

4.3.3. Arm-based control: Task 2

Tracking performance

The similarity between the actual shoulder profiles and the trajectories estimated by the adaptive
frequency oscillator was high throughout task 2 (figure 4.24, plot B and C). However, during the first
interval of variable velocity, a distinct peak of AESH occurred just after the treadmill reached its max-
imum speed. Post-hoc inspection of the raw signal associated with the angular position of the right
shoulder revealed that, at the time in which this peak occurred, the Xsens suit failed to transmit data
to the Lopes II xPC correctly: for few seconds the signal froze to a constant value. Therefore, the
reduction in tracking performance is an artefact linked to the sensor malfunctioning. Similarly to the
stumbling event of participant 2, such a finding shows that, thanks to the filtering action of the adaptive
frequency oscillator, the arm-based controller could face sudden (but temporary) discontinuities in the
input signal without destabilising the gait.

Participant 3 correctly adapted the arm swing frequency to the ongoing treadmill velocity, and the
Arm Observer consistently tracked these changes (figure 4.25, plot B and C). AE!A was more vari-
able during the two intervals at changing treadmill velocity, and these variations did not have a definite
relation to the ongoing speed. Still, AE!A was limited to small values (below 5% of the real arm swing
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Figure 4.25: Participant 3, walking task 2 - Tracking performance of our arm-based controller - part 2. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and estimated (AFO) arm swing frequencies. (C) Normalised Mean Absolute Error
between the actual and estimated arm swing frequency. (D) Time offset between actual and detected shoulder flexion peaks. A
positive sign indicates early detection. (E) Offset between actual and detected shoulder flexion peaks, expressed in percentage
of the oscillator cycle. A positive sign indicates early detection. Each dot in plots C, D and E belongs to an arm cycle.

frequency) for most of task 2.
The detection of shoulder flexion peaks was good, with time offsets confined within the range of

±0.05 seconds (±5% in the percentage of the oscillator cycle) most of the time and without distinct
differences between intervals at variable and constant treadmill speed (figure 4.25, plots D and E).
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Figure 4.26: Participant 3, walking task 2 - Gait generation performance of our arm-based controller. (A) Treadmill speed
profile across the trial. (B) Actual (Real) and target (AFO) stride cadence. (C) Normalised Mean Absolute Error between
the actual and target stride cadence. (D) Time offset between actual and target heel-strike events. A positive sign indicates
that the actual heel-strike occurred later than expected. (E) Offset between actual and target heel-strike events, expressed
in percentage of the oscillator cycle. A positive sign indicates that the actual heel-strike occurred later than expected. Note:
each dot in plots C, D and E corresponds to a stride cycle.
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Figure 4.27: Participant 3, walking task 2 - (A) Treadmill speed profile across the trial. (B) Absolute work exchanged between
the user and the exoskeleton over a full trial - arm-based control (AC) vs. position control (PC). Each dot corresponds to a
stride cycle. (C) Right shoulder swing amplitude over a trial - arm-based control (AC). Each dot corresponds to an arm cycle.

Gait generation

The stride cadence changed proportionally to the ongoing walking speed and accordingly to the
! (t) parameter of the adaptive frequency oscillator (figure 4.26, plot B), as also indicated by AE!S

being lower than 4% of the real stride cadence value for most of task 2 (figure 4.26, plot C). Therefore,
even during task 2, the algorithm correctly transmitted the arm swing frequency to the gait dynamics.
However, the two intervals at variable speed were characterised by larger and more intense variations
of AE!S than the part at constant treadmill velocity. Such fluctuations might indicate a reduced synergy
between the user and the Lopes II, with participant 3 opposing more to the gait that was promoted by
the robot.

The trend of the heel-strike detection error was similar to that observed during task 1, i.e. foot drops
occurred with a time delay that ranged between 0.1-0.15 seconds (figure 4.26, plot D). In percentage of
the oscillator cycle, this offset was confined within about 6-11%, highlighting a trend faintly proportional
to the treadmill speed (figure 4.26, plot E).

Absolute work & arm swing amplitude

The absolute error exchanged between participant 3 and the Lopes II had a similar trend when
walking with the two control modes (figure 4.27, plot B). During position control, |W | reached its major
peaks close to the two instances of maximum treadmill speed. During arm-based control, the local
maxima of |W | were higher in magnitude than those of position control and occurred within the decel-
erating tracks of the speed profile. This finding indicates that during arm-based control participant 3
had more difficulties in breaking the gait of the Lopes II rather than accelerating it, while during position
control the opposite was true.

Participant 3 changed the arm swing amplitude almost proportionally to the walking speed during
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the two intervals at variable treadmill velocity (figure 4.27, plot C). During the intermediate interval at
constant 0.75 m/s, the arm swing amplitude increased steadily over time, but still the overall gain was
small (about 5 degrees).



�
Discussion

5.1. Analysis of natural walking

We chose natural walking as the experimental framework for validating the reliability of our control
architecture in extrapolating relevant features of the arm-leg coordination. We based such validation
on proving two points:

1. Tracking performance: how well the adaptive oscillator could synchronise to its target shoulder
signal;

2. Gait estimation: the suitability of the adaptive oscillator parameters for estimating pace proper-
ties, assuming successful synchronisation with the shoulder signal has occurred.

Natural walking offered the perfect condition to test these aspects. This task not only allows us to
validate our controller with healthy interlimb data, but also to assess lateral asymmetries, i.e. whether
the data of one of the two shoulders results in superior performance our algorithm. Addressing this
last issue was important because our algorithm requires only the signal from one upper limb to work,
and the literature suggests side asymmetries in the arm swing.

5.1.1. Tracking performance

For all the participants, the results confirm that at walking speeds within 0.75-1.25 m/s the synchro-
nisation between each adaptive frequency oscillator and its input shoulder signal was excellent, with
the oscillator parameters ! (t) and � (t) precisely estimating the arm swing frequency and timing of
shoulder flexion peaks, respectively. Reducing the walking speed below such a range compromised
the matching between actual and estimated shoulder trajectories, and as a consequence, the relia-
bility of ! (t) and � (t) as estimators of the arm swing properties reduced as well. At 0.5 m/s, this
diminished tracking performance seems caused by the gradual transition from single to double swing-
ing. This change in coordination mode made minor peaks of shoulder flexion to emerge sporadically
within an arm cycle, resulting in a more ambiguous duration of the arm oscillation. The transition was
strongly subject-specific and side-dependent, and so its effect on the tracking performance. However,
the analysis attests that our algorithm failed to work at 0.25 m/s. At this walking speed, the amplitude
of the arm swing decreases consistently, a fact that combined with the height variability in the peaks of
shoulder flexion, made the signal too irregular to be tracked by our Arm Observer.

5.1.2. Gait estimation

The ! (t) parameter of the adaptive frequency oscillator was an excellent estimator of the stride ca-
dence when the walking speed was over 0.5 m/s, thanks to the dominance of single swinging as
interlimb coordination mode. However, heel-strike detection was less precise. The results indicate that
this gait event was estimated consistently in advance to its actual occurrence, with a magnitude of the
offset that was inversely proportional to the walking speed. The error, however, does not seem caused
by a malfunctioning of our control algorithm, but rather by the design approximation that we made
by assuming the coincidence between the peaks of shoulder flexions and contralateral heel-strikes.

47
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Accordingly, � (t) = 0 was very representative of peaks of shoulder flexion, but less of controlateral
heel-strikes. Increasing the speed comported the participants spontaneously adopting more coinci-
dent occurrences of shoulder flexion peaks with heel-strike events, a fact that improved the heel-strike
detection carried by our algorithm. Our finding of a speed-dependent timing in the arm-leg relative
motion is coherent with the work of Carpinella et al. [3] (see figure 4, pag. 78), which even points out
the dependence of such an offset on the experimental set-up (treadmill vs. overground walking).

5.1.3. Side-differences

A part of our result analysis investigates whether the performance of our arm-based controller is af-
fected by lateral differences in the arm swing, a topic which is not well addressed by the literature (see
Chapter 1). Our experimental analysis does not provide solid reasons to prefer one side of the body
as a source of inputs to our controller, which displayed similar performance when feed by either left or
right shoulder trajectories.

5.2. Analysis of task 1 and 2

The second half of the experiments consisted of testing our arm-based controller on a real-time imple-
mentation. For this objective, we asked three participants to control, through our algorithm, the Lopes
II, a treadmill-based lower limb exoskeleton (see Chapter 4). In particular, we studied the functionality
of the algorithm while performing two tasks: walking with constant (task 1) and variable (task 2) tread-
mill speeds. In this way, our experimental protocol was similar to that used by La Scaleia et al. [21],
permitting a partial comparison of our algorithm with their proposed arm-based controller. However,
the range of walking speed that we tested was different from this previous study: our speed interval was
more appropriate for gait rehabilitation and assistance (0.25-1.25 m/s). In our experimental analysis,
we also investigated the shoulder trajectory promoted by our arm-based controller, with a particular
focus on the arm swing amplitude and its adaptation to the walking speed. We centred this part of
the investigation on evaluating whether our algorithm could overcome one of the limitations in [21]:
exaggerated arm swing amplitude - potentially forced to be fixed across walking speeds. Eventually,
we also compared our controller against position control, a default control mode for the Lopes II. This
was a minor part of our analysis, which we predominantly centred on comparing the differences in the
user’s control effort.

5.2.1. Task 1: constant treadmill speed

The results from task 1 suggest that our arm-based controller allows to drive a lower limb exoskeleton
with walking speeds in the range of 0.5-1 m/s. People could even control the Lopes II at 1.25 m/s, but
hardware malfunctioning impeded two of the participants to complete this testing condition. Walking
at 0.25 m/s was not possible for participant 1, and participant 2 mentioned to find unintuitive swinging
the arm slowly enough to meet this treadmill velocity. On the contrary, participant 3 stated to prefer
arm-based control over position control when testing such a slow gait speed. The functionality of the
arm-based controller did not change consistently to justify the difficulties associated with participants
1 and 2. The fact that our algorithm does not support a transition to double swinging does not provide
a full explanation either: all the participants walked with double swinging at 0.25 m/s, including partic-
ipant 3. Therefore, these contradicting results might be associated with subject-specific preferences,
or with aspects of the human-machine interaction that we did not include in the analysis.

Heel-strike events occurred consistently later than when targeted by the arm-based controller. Con-
sidering the results from natural walking, we were expecting innaccuracies in the interlimb timing pro-
moted by our controller. However, while during natural walking increasing the gait speed made shoul-
der flexion peaks and heel-strike events more coincident, the opposite happened with our controller.
It is likely that wearing an exoskeleton comported a reorganisation of the spontaneous interlimb tim-
ing, and that this aspect was not adequately represented in our algorithm. A change in the natural
interlimb coordination due to wearing the Lopes II is also suggested by data recorded during position
control. When using this latter controller, people were reluctant in swinging their arms, as shown by
the average shoulder trajectories in figures F.4, F.8 and F.12 of Appendix F. This finding is surprising
since part of the literature suggests the arm swing to improve the gait balance [24]. As such, one
would expect people to emphasise their arm rotations to counter the gait perturbation introduced by
the Lopes II. Our finding advocates for a more in-depth investigation on the effects of wearable robotics
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on the user’s arm-leg coupling, an experimental framework which might be useful also for validating
models of human interlimb coordination.

Our arm-based controller allowed the participants to change the stride cadence by varying the arm
swing frequency, and, as desired, people changed the cadence of the arm oscillation proportionally to
the walking speed. Also, our algorithm did not force the user to maintain a fixed arm swing amplitude
across the tested conditions. Still, speed-dependent variations of the arm swing amplitude were very
small in magnitude, and for only one user (participant 3) they were proportional to the walking speed.
In particular, when walking below 0.75 m/s, the remaining two participants had unnatural inversely
proportional relations of their arm swing amplitude to the treadmill velocity. This abnormal trend might
be another sign of the perceived control difficulty by participants 1 and 2 during the slowest conditions.
For instance, it is possible that these users found unintuitive to reduce their shoulder angular velocity
below a certain threshold. As a compensatory strategy, they might have increased the arm rotation to
reduce the arm swing frequency further.

Compared to the data recorded during natural walking, people adopted emphasised shoulder ro-
tation when using our arm-based controller. However, these larger amplitudes were not necessary for
the correct functionality of our algorithm: the overall tracking performance improved during arm-based
control, but AE!A and �PF preserved similar characteristics to those observed during natural walking.
The emphasised arm swing amplitude during arm-based control does not seem caused by wearing
the exoskeleton, considering that during position control the participants’ arm swing amplitude was al-
most null. It is possible that asking people to consciously swing their arms comported the emphasised
rotations, considering the pieces of evidence suggesting a dependence of the arm swing amplitude on
the cognitive task [14]. Still, our analysis did not include any metrics to validate such a consideration,
which we leave as a hypothesis for future studies

Compared to position control, our controller can promote shoulder trajectories that are closer to
the natural ones, especially for walking speeds within 0.75-1.25 m/s. Still, the fitness of our algorithm
was subject-specific since position control produced more natural arm swing patterns if a person had
a more dominant double swinging coordination.

Given a specific speed condition, |W | was usually higher during arm-based control than during
position control, suggesting more demanding control effort with our controller. The speed-dependent
trend of this energetic difference changed remarkably across the participants. This fact, together with
the limited number of participants involved in our study, did not allow us to distinguish a certain aspect
of our algorithm associated with this surplus of control effort.

5.2.2. Task 2: variable treadmill speed

All the participants could complete task 2, proving that our arm-based controller allows online adap-
tation of the walking speed - at least within the tested range (0.5-1 m/s). Throughout the task, each
user correctly changed the arm swing frequency proportionally to the treadmill velocity. However, the
amplitude of the shoulder rotation changed of only a few degrees, with data variability that does not
allow to detect a clear dependence on the walking speed. Part of the data fluctuations, however, might
have been provoked by our experimental protocol since the participants might have perceived changes
in the treadmill dynamics with some delay.

Regarding tracking performance and gait generation, the functionality of our arm-based controller
was similar among the intervals at variable and constant treadmill speeds. However, analysis of the
differences in |W | suggests that the user had more difficulties in decelerating the exoskeleton when
using our controller. Considering that two participants out of three found walking at the slowest speed
condition more problematic during task 1, a similar conclusion seems reasonable.

The results of task 2 also show that our arm-based controller can withstand perturbations to the
input shoulder signal. This robustness is due to the filtering properties of the adaptive frequency oscil-
lator, which permitted to minimise discontinuities in the input data that were caused by two accidental
scenarios: user’s stumbling and sensor malfunctioning. A systematic quantification of the robustness
of our algorithm was not part of our analysis, and we leave this objective for later studies. However,
our results raise the question of whether it is worth considering sensory fusion as an improvement for
subsequent design versions of our controller. Due to the in-built filtering properties of the adaptive os-
cillator, the overall gain in signal-to-noise ratio when combining the signals from both shoulders might
be unworthy compared to the increased algorithm complexity. Moreover, minimising the set of input
signals to one limb data might have significant practical advantages: for instance, a new exoskeleton
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user, or a person with severe lower leg impairments, can use the free arm for extra support, such as
grabbing a hand bar or using a crutch.

5.3. Comparison to other techniques

Our control algorithm could address some of the limitations associated with the arm-based controller
described in [21]. By making their algorithm dependent on the deltoid EMGs, La Scaleia et al. [21]
had to implement extensive signal processing techniques to deal with the weak activity of the arm
swing muscles. By relying on shoulder kinematic data, our implementation requires just a small set of
equations (see Chapter 2) to extrapolate characterising details of the interlimb coordination. Moreover,
our algorithm already embeds filtering properties, resulting in robustness against (temporary) input
discontinuities. Our algorithm was also successfully tested within a range of walking speeds more
representative of robotic gait rehabilitation and assistance - despite its diminished functionality at 0.25
m/s.

In Chapter 1, we observed that the controller proposed by La Scaleia et al. [21] requires shoulder
rotations larger than normal and potentially impedes a proportional relation of the arm swing amplitude
with the walking speed. Our experimental analysis, however, shows that speed-dependent adaptations
of the arm swing amplitude are small in magnitude when walking normally. For this reason, limiting the
adaptability of the shoulder rotation amplitude might not be as detrimental as we argued in Chapter 1.
Nevertheless, our control algorithm still transcends the work of La Scaleia et al. [21] by grating to the
user the ability of self-regulating his/her arm swing amplitude, i.e. it does not impose any restriction a
priori.

Because of people also adopting emphasised arm swing amplitudes when using our arm-based
controller, we can not argue that our method was better than the previous implementation in this
regard. Still, La Scaleia et al. [21] do not report a quantification of the extra amplitude needed by their
algorithm. As such, it is still possible that our proposed approach requires less surplus of shoulder
rotation.

In general, we expect that other arm-based controllers would have similar issues to the method
of La Scaleia et al. [21] when using shoulder muscle EMGs as inputs. As such, it is likely that our
algorithm can outperform even online extensions of the regression approach proposed by Chéron et al.
[5]: they trained a dynamic recurrent neuronal network over shoulder EMG data to produce (offline) gait
trajectories. Nevertheless, a question that remains open is whether an arm-based controller that uses
regression techniques on interlimb kinematic data would outperform the achievements of this thesis
project. A reasonable candidate to make such a comparison would be extending Complementary Limb
Motion Estimation (CLME) to upper limb data. By exploiting the synergetic properties of human gait,
CLME uses Principal Component Analysis (PCA) to infer the motion of an impaired extremity from data
recorded at a sound limb [39–41].

We expect our controller to still have some advantages over similar approaches. For instance,
CLME was tested using a sound leg data. Because arm-leg coupling is much weaker than the leg-leg
one [48], it is possible that PCA, or any other regression approach dependent on the strength of the
limb coupling, would fail in extracting the interlimb synergy. Moreover, human arm-leg coordination has
subject-specific and task-dependent properties (see Chapter 1) which might be difficult to represent
in a training dataset. Another interesting feature of our controller, which is likely absent in a strict
regression-based mapping of the arm-leg trajectories, is its modularity: the Arm Observer can be
coupled with gait generator algorithms that are different from the one we used, potentially adapting
our control structure to exoskeletons requiring other types of command inputs [37]. This flexibility is a
significant asset when considering the current absence of a mobile exoskeleton suitable for arm-based
control, and thus the need for compatibility with potential new generations of low-level controllers.

5.4. Limitations

Despite the mentioned benefits of our controller over other approaches, our work has limitations as
well. To begin with, our arm-based controller can not start the gait. In our exoskeleton implementa-
tion, gait initiation was carried by position control. This was a technical solution, which works well for
a treadmill-based exoskeleton, such as the Lopes II. In fact, the user is given time to reach a stable
arm-leg coordination and feel comfortable with the device on, while the adaptive frequency oscillator
can converge to the shoulder signal in the meantime. A similar gait initiation strategy, however, is prob-
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lematic for mobile applications. In particular, when walking overground, the available straight walking
distance is limited by the walking environment. Therefore, the extension of our proposed algorithm
to a mobile exoskeleton requires to design a strategy for initialising the system and the gait within a
minimum number of steps. Furthermore, our arm-controller would also require additional additional
navigation functions, such as steering left and right.

Another limiting factor for extending our controller to mobile applications is that the implementation
of the just described functions requires knowledge about the exoskeleton specifics. However, a mobile
exoskeleton suitable for arm-based control is not available yet: the current technologies force motor
impaired users to carry assisting walking aids. The literature also shows that the requirements for a
control architecture can change consistently among different devices [37]. Therefore, despite we advo-
cated for the benefit of our modular design, we can not ensure that our controller would be transferable
to new exoskeleton generations without major modifications.

An important problem in our study concerns the transferability of our results. To the best of our
knowledge, the influence of an exoskeleton on human interlimb coordination has never been studied.
This fact and the current lack of a proper understanding of the arm swing make challenging the gener-
alisation of our study. In other words, the performance reached by our controller might be specific of our
experimental set-up, i.e. the Lopes II. Different exoskeletons, and more in general testing conditions,
might comport a different user’s response to our control strategy. For instance, we expect a different,
but hopefully improved, control performance whether the treadmill speed could promptly adapt to the
user’s gait velocity, that is an antithetical scenario to task 2.

The generalisability of our results is also diminished by the exiguous number of participants that
we could test. Unfortunately, experience with the Lopes II was an essential requirement to take part
in our experimentation (see Chapter 3), and only few of trained users were available at the time of our
study. Due to this restricted sample, we could not apply inferential statistics to our results. Such a
more sophisticated analysis would have been beneficial, for instance, to unveil whether implementing
a transition to double swinging can enhance our algorithm controllability. Repeating our experiments
with a larger sample of participants might also extend the analysis to topics that we could not cover,
such as the influence of hand-dominance on our controller performance.

Another limitation of our experimental protocol is the lack of training sessions with our controller.
As such, the comparison of our controller performance with that achieved during position control was
partly biased, since participants were expert users only of this latter condition. Despite we gave peo-
ple a few minute of practice with our algorithm, this does not ensure that participants reached the
same dexterity and level of confidence in using our controller. This fact might have caused the ob-
served discrepancies in controllability at 0.25 m/s. A long term study can unveil the full potential of our
method. For instance, it can confirm whether becoming more comfortable with our algorithm results in
arm swing amplitudes closer to those observer during natural walking (or whether participants can be
trained to adopt more natural shoulder trajectories).

Comparison to position control was also limited by our use of |W | as metric for evaluating the per-
ceived control effort. In the literature, there are no studies validating such an approach, and despite
|W | trend was consistent with other metrics, such as the delayed heel-strikes, other measurements
would have been more rigorous: for instance, the measurements of the user’s metabolic cost by oxy-
gen intake. However, recording metabolic data would have also overcomplicated the experiment, ex-
tending excessively its duration due to the many associated challenges (such as lengthy and complex
calibration processes and management of cumbersome equipment).





6
Conclusions

In this thesis, we designed a control algorithm to drive online a lower limb exoskeleton through the
user’s arm swing. A control strategy that exploits human interlimb coordination may be beneficial to
robotic gait rehabilitation and assistance. In particular, it offers a valid alternative when the user’s
motor impairment makes data from the lower limbs unpractical to measure. A previous attempt of
a similar design is found in [21]. In their study, La Scaleia et al. [21] proposed an algorithm that
extracts the duration of a forthcoming step from the gait-related rhythmic activity of deltoid muscles
and then stretches some predefined gait trajectories accordingly. In chapter 2, however, we observed
that relying on such a weak muscular activity is limiting, and potentially impedes the applicability of the
controller to real gait rehabilitation and assistance.

The most significant contribution of this thesis is to propose an arm-based controller that depends
only on shoulder kinematic data, virtually not imposing explicit constraints on the amplitude of the
arm swing. We based our novel approach on mimicking single swinging, an interlimb coordination
pattern that occurs during normal walking and that consists of each arm moving in-phase with the
contralateral leg. In order to reproduce single swinging, we implemented a control structure combining
the adaptive frequency oscillator discussed in [34] with the regression model for the generation of
lower limb trajectories described in [16]. In particular, we proposed the use of the adaptive oscillator
to extract the arm swing frequency and phase of the arm rotation from online measurements of the
angular shoulder rotation in the sagittal plane. From these estimations, our algorithm determines
the desired walking speed and the current phase of the stride cycle, and consequently the target
trajectories for the exoskeleton joints.

Another contribution of this thesis is the validation of our proposed control algorithm by a human-
subject study. The first objective of our experimental investigation was to verify the suitability of an
adaptive frequency oscillator for extrapolating information about natural arm-leg coordination. Exper-
imental data recorded during treadmill walking at different speed conditions show that our approach
was legit when walking faster than 0.5 m/s. Precisely, our algorithm produces excellent estimations
of the arm swing frequency, stride cadence and timing of shoulder flexion peaks, but more inaccurate
heel-strike detections. When walking slower than 0.5 m/s, the participants’ shoulder rotation was too
irregular for the system to track.

The second objective of our human-subject study was to validate our arm-based controller once
implemented on a physical device. Especially, we aimed to demonstrate that our algorithm permits
to walk over a range of walking speeds more representative of gait rehabilitation and assistance than
that chosen in [21]. We carried this experimental study by implementing our code on the Lopes II, a
treadmill-based lower limb exoskeleton developed at the University of Twente.

Our experiments show that our expectations were met for the most. Participants could drive the
robot within 0.5-1 m/s, whether the treadmill speed stayed constant at a specific value or varied ac-
cording to predefined patterns. Walking at 1.25 m/s was possible as well, but hardware malfunctioning
limited the data available for the analysis. On the contrary, walking at 0.25 m/s was problematic for
two of the participants. According to the results, it also seems that people had more troubles in decel-
erating with our arm-based controller than accelerating. However, this asymmetric controllability does
not seem associated with the lack, in our proposed algorithm, of a mechanism to change interlimb
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coordination under a certain threshold speed.
We also investigated whether our arm-based controller allows people to change their arm swing am-

plitude according to the walking speed, a feature that was not possible with the algorithm of La Scaleia
et al. [21]. The results show that our controller allows to regulate the arm swing amplitude, but partic-
ipants changed their shoulder rotations of only a few degrees across the tested conditions. Further-
more, people self-selected arm rotations generally larger than those observed during normal walking
at the same treadmill conditions. Such emphasised shoulder amplitudes were not necessary for the
correct functionality of our algorithm and might be associated with the conscious control of the arm
swing imposed by arm-based control.



A
Mapping Function: Theoretical

derivation

In Chapter 2, we introduced equation 2.4, which correlates the walking speed v (t), expressed in m/s,
to the stride cadence !S (t), expressed in Hz. We derived this formulation as follows - for readability,
we drop the indication of time dependence. First, we considered the definition of step ratio given in
[16]:

step ratio =
1

4

lS

!S
(A.1)

where lS is the stride length. Considering that v = lS · !S , equation A.1 can be rewritten as:

step ratio =
1

4

v

!2
S

(A.2)

In [16], the step ratio was also related to the walking speed v through the following regression model:

step ratio = �0 + �1 · v + �2 · h (A.3)

where: h is the patient height, while �0, �1 and �2 are regression coefficients empirically derived in [16]
and equals to �0.532, 0.020 and 0.47, respectively.

By replacing equation A.3 into equation A.2 and expressing everything in terms of the walking
speed v, we eventually computed the relation described in Chapter 2:

v = 4 !
2
S · �0 + �2 · h

1� 4�1 · !2
S

(A.4)
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B
Simulink Implementation

This Appendix describes the Simulink implementation of our arm-based controller that we use for test-
ing with the Lopes II. In addition to the components already presented in Chapter 2, three additional
modules were necessary for conducting our experiments: the Position Controller, the Controller Switch
and the Gait Termination. Some of the control blocks presented below are part of the Lopes II develop-
mental library. Their description is here omitted since already available in the manual associated with
this library, a documentation that can be retrieved by contacting: g.vanoort@utwente.nl

Figure B.1: Simulink model of the Arm Observer.
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Table B.1: Input-output to the Simulink model of the Arm Observer. Given a specific variable, the left column indicates the
nomenclature used within the Simulink blocks, while the right column indicates that adopted when describing the algorithm in
Chapter 2.

INPUTS

Simulink Model Description Symbol Chapter 3

theta_IN Shoulder angular position ✓IN (t)
mu Learning coefficient for ! (t) dynamics ⌫

eta Learning coefficient for ↵0 (t) dynamics ⌘

ro Learning coefficient for ↵1 (t) dynamics ⇢

n_AFO Number of adaptive oscillators to include N/A

OUTPUTS

Simulink Model Description Symbol Chapter 3

phi Phase of the adaptive oscillator � (t)
omega Dynamic frequency parameter of the adaptive oscillator ! (t)
theta Output state of the adaptive oscillator ✓ (t)

alpha_0 Offset of the adaptive oscillator ↵0 (t)
alpha_1 Amplitude of the adaptive oscillator ↵1 (t)

B.1. Arm Observer

The Simulink system which models the Arm Observer (figure B.1) includes the following components:

• the white block named “Adaptive_Oscillator” contains the set of equations characterising the
adaptive frequency oscillator, as described in Chapter 2;

• the blue block named “Wrapping Function” wraps the phase of the oscillator, that is � (t) 2 [0, 2⇡];

• the blocks inside the light blue area are part of a loop mechanism to reset ! (t) if it drops be-
low 10% of 2⇡. This control loop and threshold value were also implemented in [34], and they
guarantee that the frequency of the adaptive oscillator does not become zero, a problem which
can occur if the input signal is not null on average [30]. Because of this loop mechanism, our
arm-based controller can not work with arm swing frequencies smaller than 0.1 Hz. The results in
chapter 4 show that this threshold was appropriate since each participant’s arm swing frequency
was always above 0.3 Hz across the tested speed conditions.

• the green block enables the experimenter to reset the Arm Observer to its initial conditions.
To avoid dangerous discontinuities in the gait trajectories, this function was only available during
position control. As such, it mostly served to facilitate the initialisation of our arm-based controller
by speeding up the synchronisation of the adaptive frequency oscillator to the shoulder signal.

Table B.1 illustrates the outputs and inputs to the Simulink model of the Arm Observer, and when
appropriate, the symbol that we used in Chapter 2 to describe the same quantity. The “n_AFO” param-
eter indicates how many adaptive frequency oscillators to include in the Arm Observer, based on the
technique described in [5, 27]. When using a pool, each adaptive oscillator synchronises to one of the
frequency components of the driving input, extending the Arm Observer functionality to signals less
similar to sinusoids. When testing our algorithm by some pilot experiments, we did not find consistent
benefits in choosing a pool of oscillators over a single unit. In fact, using multiple oscillators comported
undesired complications of the algorithm: for instance, the need of unambiguously detecting which
oscillator converged to the dominant frequency of the input signal. Therefore, we set nAFO = 1 in this
thesis project.

B.2. Gait Generator

Fig.B.2 shows the Simulink implementations of the Gait Generator. The Mapping Function submodule
consists of the blocks within the two coloured areas. The section in the green one converts the ! (t)
of the adaptive frequency parameter into the target walking speed, v (t), for the Trajectory Generator,
with the orange block containing the equation 2.4 from Chapter 2. The input “SpeedEstimatorOnOff”
is a binary switch button:
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Figure B.2: Simulink implementation of the Gait Generator. The Mapping Function consists of the blocks in the coloured ares,
while the yellow blocks form the Trajectory Generator.

• “SpeedEstimatorOnOff” = 1: v (t) is computed from ! (t);

• “SpeedEstimatorOnOff” = 0: v (t) is arbitrarily assigned by the experimenter, through the hard-
coded input variable “walking speed”;

During our experiments, “SpeedEstimatorOnOff” was always set to 1. The blocks in the light blue area
convert the phase of the oscillator, � (t), into the estimation of the percentage of the stride cycle, �S (t),
according to equation 2.5 described in Chapter 2.

The Trajectory Generator consists of the yellow blocks in fig.B.2. This system of blocks was already
part of the LOPES II developmental library. The Simulink implementation of the Trajectory Generator
diverges from our description in Chapter 2 for three main aspects:

• the key-events that are used by these blocks to produce joint trajectories are slightly different
from those selected in [16], and were chosen specifically for usage with the Lopes II;

• it allows a larger selection of user’s anatomical parameters to customise the gait: mass and
height, leg upper and lower lengths, foot length and height, pelvis width and height;

• it produces a vector including stiffness coefficients for the exoskeleton joints. It also compute a
target velocity for the treadmill, but we never used this signal in our control structure.

These discrepancies, however, are minor adjustments of what we outlined in Chapter 2 and their
description is extensively addressed in the technical documentation of the Lopes II developmental
library. This manual also carefully describes each of the yellow blocks in figure B.2. We do not repeat
such a description here. This is because the only modification that we brought to the original block
organisation was to replace the parts concerning the computation of the stride phase and target speed
by the blocks composing the Mapping Function.

B.3. Safety Mechanism & Gait Termination modules

The Safety Mechanism, as we implemented it in Simulink (figure B.3), receives as input the phase
of the adaptive frequency oscillator (“RShPhaseComp” and “LShPhaseComp” for the right and left
shoulder signals, respectively), subtracts it to the phase value at the previous algorithm iteration and
sets a binary variable (“BreakAFO”) to 1 if the result is within the range (0,⇡]. If BreakAFO becomes
1, the Gait Termination is activated. To avoid gait termination during the Arm Observer initialisation,
the Safety Mechanism works only when the arm-based controller is in use: under this condition, the
variable “ArmOn” becomes equal to 1.
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Figure B.3: Simulink model of the Safety Mechanism.

Figure B.4: Simulink model of the Gait Terminator.

The Simulink implementation of the Gait Terminator is illustrated in figure B.4. Once activated, this
module crossfades a variable named “GainStop” from 1 to 0 within one second. GainStop premultiplies
the vectors of stiffness coefficients sent by the Gait Generator to the Lopes II LLC and also the signal
associated with the target velocity for the treadmill. Therefore, fading GainStop to zero makes the
robot fading into Zero Impedance mode (see Chapter 3) and the treadmill decelerating to zero velocity.
However, the Lopes II low-level architecture always limits the treadmill deceleration to max 0.5 m/s/s,
regardless of the crossfade timing of GainStop. The Gait Termination can also be triggered at any
moment by the experimenter by a GUI switch-button that we connected to the green block in figure
B.4. In case of gait stop, the Safety Mechanism and Gait Terminator modules reset by setting the
Lopes II state to “off”. The experimenter could perform this action by a GUI button, which allowed to
set the variable “DesiredState” equal to zero.

B.4. Position Controller

Position Control was a default control mode of the Lopes II, during which the joint trajectories only
depends on the treadmill velocity. This is achieved in Simulink by using the Trajectory Generator
available in the Lopes II developmental library, the module named “Position_Control_Gait_Generator”
in figure B.5. Basically, it consists of the same blocks shown in figure B.2, except for those belonging
to the Mapping Function. These latter components are replaced as follows:

• the stride phase is estimated from a phase oscillator whose frequency is proportional to the
treadmill velocity;

• the target walking speed is fixed by the experimenter through the variable “TreadmillVelocity" (we
connected this parameter to a GUI).

A more in-depth description of the original Trajectory Generator module is given in the documentation
associated with the Lopes II developmental library.



B.5. Controller Switch 61

Figure B.5: Simulink model of the Position Controller.

In our implementation of the position controller, we added an external control loop that helps the
user to assume the initial leg configuration at gait start. The algorithm works as follows:

1. the experimenter presses a GUI button linked to the blue block, and this value switches to 1 for
just one Simulink iteration;

2. This one-iteration switch activates the Position_Control_GaitGeneration module, freezing this
system outputs to the values associated with the 0% of the stride cycle;

3. Meantime, the loop in the coloured area is also activeted by the one-iteration switch. This system
of block crossfades a constant from 0 to 10 within 3 seconds.

4. this crossfading variable multiplies the vector of joint stiffness coefficient sent to the Lopes II. As
such, the robot joints gradually stiffen around their initial configuration, “gently” pushing the user
legs with them.

The green block in figure B.5 is a binary variable, linked to a switch button in the experimenter’s GUI
and used to activate position control. Restarting position control, and the associated leg-initialisation
loop, was possible by setting the Lopes II state to “off”. The experimenter could perform this action by
a GUI button, which allowed to set the variable “DesiredState” equal to zero.

B.5. Controller Switch

The Controller Switch permits to change the Lopes II control mode from position to arm-based control.
It performs this function by crossfading the outputs of the Gait Generator and Position Control modules,
as in:

O = ⌧ · OAC + (1� ⌧) ·OPC
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Figure B.6: Simulink model of the Controller Switch.

where: Oi is any of the signal sent by the i-th controller to the Lopes II LLC, with i = AC for arm-based
control and i = PC for position control; ⌧ is a binary coefficient that linearly changes from 0 to 1 in 2
seconds. In the Simulink implementation of the Controller Switch, the crossfading action is carried by
the block named “Pos2Arm1” (see figure B.6). Resetting the Controller Switch was possible by setting
the Lopes II state to “off”. The experimenter could perform this action by a GUI button, which allowed
to set the variable “DesiredState” equal to zero.



C
Consent Form

It is displayed below the Consent form given to the participant during the experiment. Notice that, visual
feedback was not given during the actual experimentation, since it was found distracting for the partic-
ipant. Instead, it was verbally asked to keep a central position, and auditory feedback (experimenter
correction) were given if the participant was moving away from such a position.
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asked to wear this suit during the whole experimentation. Additionally, your gait behaviour will be 
measured by position and force sensors in the LOPES III, but also video and audio recorded. 
Overall, the estimated duration of the test is about 1.5 - 2 hours, at the end of which you are free 
to ask as many questions as you like about our research. The measurements with the walking 
robot will take place in the LOPES III room of the Department of Biomedical Mechanical 
Engineering at the University of Twente (de Horst room Z131).


Possible side effects / risks 
Walking in the walking robot is safe, thanks to multiple safety systems in-built in the device. 
Besides, the researcher carrying out the research will check the participant’s perceived comfort 
and level of challenge continuously. Two emergency buttons are at a reachable distance of the 
user: pressing any of these two buttons slows down immediately both the robot and treadmill. 

Walking with the LOPES III requires some extra effort than normal walking: it may feel like using a 
training machine of a gym and thus it may cause some muscle fatigue, for example. This will be 
prevented as much as possible by adjusting any task intensity to your condition and the severity 
you experience. You can also indicate at any time that you want to terminate a certain task.

There may be some skin irritation due to the straps with which the LOPES III is attached to your 
legs. This will also be prevented as much as possible. 


Possible benefits 
You will not directly benefit from participating in this study, except for experiencing first-hand what 
means to train your gait with an high-tech rehabilitation robot. You will contribute to the 
development of a new controller for walking robots, an algorithm that we expect it will be used in 
the short term to improve gait training, and in the long term to drive mobile exoskeleton.


Confidentiality 
The information collected about you during the investigation will be treated confidentially 
according to (inter)national rules and laws, including the Personal Data Protection Act. The data 
will be coded in such a way that they can not be traced back to you. The coding is therefore not 
based on, for example, birth date, initials and gender. Audio recordings will be destroyed after 
signal processing, and any video will be recorded in a way that conceals your face.


If you decide to participate in this study, you consent to the following:

• Employees in this study and supervisors can view your data. They are obliged to keep these 

details secret.

• If you decide to discontinue your participation in the study, your data collected before this 

decision may still be processed together with other data collected as part of the medical 
research.


• Data collected during this research may be published in a scientific journal, conference and 
similar.


Voluntary participation 
You are free to allow or deny participation in this study. Even if you give permission, you can 
withdraw it at any time without giving any reason. Whatever you decide, it will not bring about any 
consequences. This study does not include any form of monetary compensation.


For further information 
If you have any questions, you can submit them to the responsible researcher. 


Sincerely,

Fabio Izzi, M.Sc. student in Biomechanical Design at TUDelft, currently visiting researcher in the 
Biomechanics Department at UTwente, +31629219311.
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PERMISSION STATEMENT 

Title of the research:

“Robot assisted walking with arm-based controller”


Study characteristic:

I confirm that I have read the information letter for the test subject and I understand the 
information. I have had enough time to think about my participation and have had the opportunity 
to ask questions. These questions have been answered satisfactorily.

I give permission for participation in the aforementioned medical-scientific research.

I know that my participation is entirely voluntary and that I can withdraw my consent at any time 
without having to give a reason for it.

I give permission for authorized persons from the University of Twente and competent authorities 
to have access to my research data.

I authorize the processing of the data for the purposes and in the manner described in this 
information letter and attached Appendix.


Name of the person: 

Signature: 

Date:


Researcher's name:

Signature: 

Date:
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Topic
Appendix I, Specific information study: “ Robot-assisted walking with an arm-based controller.”

What does the research mean for you?
In this study, two different ways of controlling the walking robot will be tested. With the arm-based controller, 
you will be asked to control the motion of the robotic legs by varying the oscillations of your arms. The code 
is designed to synchronize a back-n-forward rotation of your arm to a full stride of the robot (a stride is a 
complete gait cycle). You will be further instructed on the arm-leg coordination to use before the experiment.
With the position control, the robotic legs will move according to predefined trajectories. You will be not in 
control of the walking speed and your arm motion will not influence the behaviour of the robot. Still, you will 
be asked to walk with the robot without using the handrails, trying to adopt an arm-leg coordination that you 
perceive comfortable. As optional sessions, we might consider to test a condition when you will be asked to 
walk as natural as possible on the treadmill without wearing the LOPES III.

Preparation
Before the study, you will be asked to wear the Xsens suit, a motion capture system that will track your gait 
(https://www.xsens.com/products/xsens-mvn-animate/). You will be allowed to change in complete privacy, 
thanks to an area of the LOPES lab adhibited to changing cabinet. After, we will measure some of your 
biometrics, such as height, leg length, shoulder distance and so on. These measurements are necessary to 
calibrate the suit software. Also, you will be asked to walk back and forwards with the suit (about 5 steps in 
each direction) to finalize the calibration procedure. Later, you will be helped to wear the LOPES III, which 
will be adjusted to your body anatomy.

Protocol
Per each controller, you will perform two sessions. During Session 1 you will be asked to walk for 2 minutes 
at 5 different walking speeds. Within these 2 minutes, you will be asked to maintain your position on the 
treadmill (a visual feedback of your pelvis will be provided).  Before transitioning to the next speed, we will 
always ask you whether you feel comfortable in doing so: we don’t want to push you walking at speed levels 
that you might perceive as excessively challenging. Before Session 1, we will also give you some minutes of 
practice to get used to the selected controller modality. During Session 2, you will have to control your pelvis 
position according to a provided visual reference while the treadmill speed will be continuously variated 
according to two predefined patterns. Between the two patterns, you will walk for 30 seconds at a constant 
speed. Notice that the speed of the treadmill will not be increased(reduced) above(below) your max(min) 
speed as reached during Session 1. Also, you will have feedback on both your pelvis position and current 
speed of the treadmill. Session 2 will be performed twice, with two different rates of speed variations. Notice 
that between Session 1 and 2 you will be asked whether you need a few minutes of break. If so, the LOPES 
and treadmill will be stopped for a couple of minutes.
You will always start with Session 1, and then you will perform Sessions 2. After you have completed all the 
two sessions with a controller, you will have some minutes of rest. After, the procedure will be repeated for 
the remaining controller. Each session 1 should take about 15 minutes, while each session 2 should take 
about 5 minutes. Also, notice that you are free to express your intention of terminating the experiment, or a 
part of it, any time during the two sessions.

Name of the person: 

Signature: 

Date:


Researcher's name:

Signature: 

Date:

 





D
Heel-strike detection: algorithm

Figure D.1: Representation of foot-off (FO) and heel-strike (FC) events (squares and circles, respectively) as displacements
of the centre of pressure. The black arrows indicate the progression of the centre of pressure during treadmill walking. Figure
adapted from [31].

During data analysis, the algorithm for heel-strike detection differed according to whether or not the
trial concerned natural walking. By using the information from the exoskeleton position sensors, an
in-built block of the Lopes II developmental library estimated the current phase of the stride, producing
a signal which could have four possible values:

• 1, during double stance with the left leg in front;

• 2, during right leg swing;

• 3, during double stance with right leg in front;

• 4, during left leg swing.

Therefore, we defined a left heel-strike every time this signal changed from 4 to 1, and a right heel-
strike every time it changed from 2 to 3.

During natural walking the participant was not wearing the exoskeleton, and thus it was not pos-
sible to use the just mentioned approach. For this experimental condition, we used an algorithm for
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Table D.1: Heel-strike detection with natural walking data: Filtering parameters (n = filter order; fc = cutting frequency in Hz)
and threshold values used per participant dataset. We converged to these sets of values after some trial-and-error iterations,
validated by visual comparison of the resulting heel-strike selection with the associated profile of recorded ground reaction
forces.

Participant 1

Speed [m/s]: 0.25 0.50 0.75 1.00 1.25

n 6 6 5 5 5

fc 1.3 2 3 3 3

εx 0.0001 0.00045 0.00095 0.0011 0.0016

εz 0.000175 0.00033 0.00032 0.0003 0.00032

Participant 2

Speed [m/s]: 0.25 0.50 0.75 1.00 1.25

n 6 6 5 5 5

fc 1.3 2 3 3 3

εx 0.00012 0.00038 0.00096 0.00137 0.00164

εz 0.00011 0.00016 0.00003 0.00011 0.000025 

Participant 3

Speed [m/s]: 0.25 0.50 0.75 1.00 1.25

n 6 6 5 5 5

fc 1.3 2 3 3 3

εx 0.00016 0.0004 0.00095 0.00133 0.0018

εz 0.00014 0.00033 0.00035 0.00045 0.0005 

�1

heel-strike detection which exploits the signals recorded by the treadmill force plates. Precisely, our
approach was based on the method proposed in [31]: assuming ẋCoP and żCoP to be the sagittal and
transversal speed components of the centre of pressure (CoP) respectively, and assuming ẋCoP to be
positive along the anterior direction, an heel-strike occurs when ẋCoP suddenly increases, with the sign
of żCoP defining which foot had the impact with the ground (see fig. D.1). Therefore, we implemented
the following algorithm per each sequence of data associated to natural walking:

1. we filtered the time traces of the xCoP and zCoP (Butterwort filter, forward and backwards in time)
with filtering order and cut-off frequencies as shown in table D.1.

2. from these filtered signals, we numerically derived ẋCoP and żCoP by the “gradient.m” Matlab
function;

3. we set two thresholds, ✏x and ✏z, one per each velocity component, as listed in table D.1;

4. we defined a right heel-strike as the time instance in which ẋCoP > ✏x ^ żCoP > ✏z, while a left
heel-strike when ẋCoP > ✏x ^ żCoP < �✏z, according to the Lopes II sign convention for the
frontal plane data.

We further validated the selected heel-strike events by (visually) comparing their timing to the occur-
rences of peaks in the ground reaction forces (GRF). This comparison allows us to tune the different
parameters (filter properties, ✏x and ✏z) until the selection was found appropriate. Notice that we could
have selected the heel-strike events based on the GRF data only, with each of this latter signal peak
indicating an instance of foot-contact. However, we preferred our approach for two main reasons:
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• For some trials, the GRF signal was too noisy to distinguish peaks associated to foot-contact
clearly;

• Analysis of the vertical ground reaction forces does not provide information on the side at which
the heel-strike occurs, for which the inspection of the CoP displacements is still necessary;

Our heel-strike detection approach is also more comprehensive in the analysis of the force plates data,
i.e. it considers both CoP displacements and GRF information. This aspect, combined with the possi-
bility of tuning multiple parameters (filter properties, ✏x and ✏z), makes our method quite robust against
noisy measurements (especially compared to an algorithm that only relies on detecting GRF peaks).





E
Data analysis: metrics formulation

This section contains the mathematical formulation of the metrics that we use for the data analysis.
If not explicitly presented, name and definition per each of the quantities listed here was given in
Chapter 3. According to the same categorisation which we used for the description in Chapter 3, the
formulations are sorted into three classes of variables:

• Stride-cycle metrics: quantities computed using the segment of data that defines an stride-
cycle, i.e. the interval between two consecutive ipsilateral heel-strikes;

• Arm-cycle metrics: quantities computed using the segment of data that defines an arm-cycle,
i.e. the interval between two consecutive ipsilateral peaks of shoulder flexion;

• Full-trial metrics: quantities computed using the segment of data that defines a complete trial.

Since the definitions of �PF and �HS given in Chapter 3 unambiguously characterise these two vari-
ables, we omit their mathematical formulations, which would be just tedious to read and will not provide
any further understanding.

E.1. Stride-cycle metrics

!S = (tnS � t1)
�1

AE!S =

0

BBBBB@

tnSX

t=t1

|!S � ! (t)|

nS

1

CCCCCA
· 100
!S

where: t 2 [t1, t2, . . . , tnS ] is the discretised time variable, with t1 and tnS being the instances of the
two consecutive heel-strike defining the stride and nS the number of samples recorded within such an
interval.
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E.1.1. Arm-cycle metrics

✓max =
✓IN (t1) + ✓IN (tnA)

2
✓min = min

t
✓IN (t)

✓Amp =
✓max � ✓min

2

!A = (tnA � t1)
�1

AE!A =

0

BBBBB@

tnAX

t=t1

|!A � ! (t)|

nA

1

CCCCCA
· 100
!A

where: t 2 [t1, t2, . . . , tnA ] is the discretised time variable, with t1 and tnA being the instances of the
two consecutive ipsilater shoulder flexion peaks and nA the number of samples recorded within such
an interval; ✓max estimates the maximum of the angular shoulder position within a shoulder rotation,
while ✓min its minimum, based on the convention used (positive ✓IN for shoulder flexion and negative
for shoulder extension).

E.1.2. Full-trial metrics

AESH =

0

BBBBB@

tnTX

t=t1

|✓IN (t)� ✓ (t)|

nT

1

CCCCCA
· 100

19X

k=1

(✓Amp)k

|W | =
X

j

f

⇣���~Tj (t) · ~̇✓j (t)
���
⌘

where:

• t 2 [t1, t2, . . . , tnT ] is the discretised time variable, with t1 and tnT being, respectively, the first
and last samples of the data segment associated to the trial (n.b: only last 60 seconds for trials
of task 1) and nT the number of samples recorded within such an interval;

• the subscript j indicates the j-th measured joint degrees of freedom and
X

j

the summation over

all these elements;

• f(X (t)) is the numerical integration of the variable X (t) over the discretised time interval
[t1, t2, . . . , tnT ] and based on the trapezoid rule.
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Results: Additional figures
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Figure F.1: Participant 1, natural walking - The filtered trajectories of each shoulder (Real) are compared against the output
states, ✓ (t), of the associated adaptive frequency oscillator (AFO).
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Figure F.2: Participant 1, natural walking - Filtered left/right shoulder trajectories averaged over 19 left stride cycles. Shades
indicate standard deviations.
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Figure F.3: Participant 1, walking task 1 - The filtered, right shoulder trajectories (Real) are compared against the output
states, ✓ (t), of the adaptive frequency oscillator (AFO).

Figure F.4: Participant 1 - The figure shows the comparison of filtered, right shoulder trajectories across control modes, with
“NW” meaning natural walking, “AC” arm-control and “PC” position control. Profiles are averaged over 19 left stride cycles.
Shades indicate standard deviations.
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Figure F.5: Participant 2, natural walking - The filtered trajectories of each shoulder (Real) are compared against the output
states, ✓ (t), of the associated adaptive frequency oscillator (AFO).
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Figure F.6: Participant 2, natural walking - Filtered left/right shoulder trajectories averaged over 19 left stride cycles. Shades
indicate standard deviations.
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Figure F.7: Participant 2, walking task 1 - The filtered, right shoulder trajectories (Real) are compared against the output
states, ✓ (t), of the adaptive frequency oscillator (AFO).
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Figure F.8: Participant 2 - The figure shows the comparison of filtered, right shoulder trajectories across control modes, with
“NW” meaning natural walking, “AC” arm-control and “PC” position control. Profiles are averaged over 19 left stride cycles.
Shades indicate standard deviations.
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Figure F.9: Participant 3, natural walking - The filtered trajectories of each shoulder (Real) are compared against the output
states, ✓ (t), of the associated adaptive frequency oscillator (AFO).
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Figure F.10: Participant 3, natural walking - Filtered left/right shoulder trajectories averaged over 19 left stride cycles. Shades
indicate standard deviations.
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Figure F.11: Participant 3, walking task 3 - The filtered, right shoulder trajectories (Real) are compared against the out-
put states, ✓ (t), of the adaptive frequency oscillator (AFO). The 1.25 m/s data before Lopes II hardware malfunctioning is
displayed, but this trial was not included in our analysis.
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Figure F.12: Participant 3 - The figure shows the comparison of filtered, right shoulder trajectories across control modes, with
“NW” meaning natural walking, “AC” arm-control and “PC” position control. Profiles are averaged over 19 left stride cycles.
Shades indicate standard deviations.
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