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Abstract

This thesis investigates signal propagation and stability in spider web-like networks, focusing on how ve-
locity differences, structural geometry, and complexity influence network behavior. Spider webs, known
for their resilience, flexibility, and efficient vibration transmission, offer valuable insights into designing
robust artificial networks. By employing mathematical and physical modeling, this study explores force
distribution, signal propagation dynamics, and collision phenomena within these networks.

The study introduces distinct propagation approaches, ranging from simple discrete collision analysis
to advanced continuous simulations incorporating energy dissipation, adaptive weighting, and refined
collision detection algorithms. Key methodologies include simulations of force distribution using re-
currence relations, random walk models, and wavefront propagation models to examine how signals
traverse complex network topologies. These simulations reveal that network topology significantly im-
pacts signal efficiency, propagation speed, collision frequency, and signal loss, with central nodes
emerging as critical hubs of activity and congestion. Additionally, structural defects such as inactive
nodes, altered masses, and weakened edges are systematically introduced to evaluate their influence
on the overall stability and signal propagation efficiency. These imperfections profoundly affect net-
work performance, demonstrating the necessity for structural adaptability and redundancy to maintain
integrity under stress.
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Introduction

In recent years, network structures have gained significant attention due to their applications in com-
munication, biology, architecture, and neural networks. To enhance network efficiency, robustness,
and adaptability, understanding signal propagation is crucial. Among various network types, spider
webs stand out for their strength, flexibility, and adaptability—features refined through millions of years
of evolution. Their radial and spiral thread structure provides an effective model for studying signal
stability and transmission, directly informing research on signal distribution, collision dynamics, and
propagation efficiency.

Natural spider webs are both lightweight and highly efficient in handling stress and adapting to environ-
mental changes(Han et al., 2021[1]. They consist of two primary thread types: radial threads, which
provide structural stability, and spiral threads, which capture prey and absorb vibrations(Oxford Univer-
sity, 2020 [2]). This combination allows the web to function reliably even when damaged, making it an
excellent model for resilient network structures.

N —1]]
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Figure 1.1: A sketch of a simplified spider web with defenitions.

Previous studies (e.g., Cranford et al., 2012 [3]) on spider web mechanics have focused on their physi-
cal properties, such as force distribution, stress tolerance, and damage resilience. Research has shown
that spider webs can localize and redistribute stress, an uncommon feature in artificial materials. The
hierarchical web structure enables it to withstand localized damage without compromising overall in-
tegrity. These insights are valuable for designing artificial networks with high resilience, applicable in
sensor arrays, communication systems, and biomimetic designs.



Building on this foundation, this thesis explores spider web mechanics as a model for signal propa-
gation and stability in network structures. By analyzing parameters such as node geometry, thread
propagation velocities, and network complexity, this study contributes to network theory and its practi-
cal applications. Biological systems like spider webs exemplify evolved designs that combine strength,
flexibility, and efficient signal transmission, providing insights for developing robust network structures.

A key aspect of spider web functionality is the distinction between its radial and spiral threads. Radial
threads form the structural framework, while spiral threads assist in force dissipation. This dynamic
arrangement enables efficient distribution of forces and vibrations, minimizing damage and maintaining
functionality under stress. Similarly, optimized networks should aim to preserve signal stability and limit
interference despite structural disruptions.

The potential applications of spider web-like network models extend to engineering and technology.
Understanding how geometry and structural complexity affect signal propagation can enhance sensor
networks, where reliable communication across nodes is essential. Additionally, insights from this
research could improve communication networks by reducing signal collisions and interference.

This thesis addresses the overarching question: How do the structural properties and complexity of
lattice frameworks—both general lattice structures and spider web-like lattices—influence signal trans-
mission characteristics, including efficiency, propagation speed, collision frequency, and signal loss?
Additionally, it explores how these effects change when structural defects are introduced.

To refine this inquiry, three key sub-questions are considered: How do signal transmission properties—
efficiency, propagation speed, collision frequency, and signal loss—differ between general lattice struc-
tures and spider web-like lattices? How does increasing structural complexity within both lattice types
affect signal propagation efficiency and signal loss? How do structural defects, such as broken links,
missing nodes, or weakened segments, influence signal propagation in both lattice frameworks, and
how do these effects differ between them?

The structure of this thesis is organized as follows: Chapter 1 introduces the research context, de-
tailing the motivations and the primary and sub-research questions that guide this study. Chapter 2
provides a comprehensive Literature Review, synthesizing prior research on lattice structures, spider
web mechanics, and signal propagation, which form the theoretical foundation for this work. Chapter 3
focuses on the Mathematical Model, presenting the formulation of both general lattice and spider we-
blike networks and outlining the parameters and equations governing signal propagation within these
structures. Chapter 4 covers Simulation and Analysis, describing the experimental setup, variations
in complexity and defect scenarios, and the results obtained from numerical and analytical methods.
Chapter 5 offers a Discussion, interpreting the results in relation to the research questions, comparing
the findings across lattice types, and exploring their broader implications. Finally, Chapter 6 concludes
the thesis by summarizing the key contributions, identifying overarching trends, and suggesting direc-
tions for future research, including potential applications and further exploration of time-dependent or
environmental factors affecting signal propagation.



[Literature Review

As mentioned spider webs are remarkable natural structures that have evolved over millions of years
to fulfill the dual purposes of capturing prey and withstanding environmental stresses(in the context of
a spider web, stress refers to the internal forces per unit area generated within the web threads when
subjected to external loads, such as the impact of prey, wind, or environmental disturbances). In this
chapter, we review two complementary lines of research. Section 2.2 focuses on the static mechanical
properties, force distribution, and design principles as presented by Aoyanagi and Okumura [4]. Section
2.3 then explores the dynamic vibrational behavior and prey localization mechanisms as investigated
by Lott et al. [5]. Finally, Section 2.4 summarizes these insights and connects them to the broader
context of signal propagation in spider web-like networks.

2.1. Mechanics of Spider Webs: Static Analysis - Structural Design

Introduction to Spider Web Structures and Mechanics

As mentioned spider webs are remarkable natural structures that have evolved over millions of years
to fulfill the dual purposes of capturing prey and withstanding environmental stresses. The structural
design of spider webs, particularly orb webs, combines resilience and flexibility, making them ideal
for studying principles of stability and adaptability. Unlike many man-made materials, spider webs
can maintain functionality even when parts of the structure are damaged . This unique resilience is
attributed to the intricate arrangement of radial and spiral threads, each contributing differently to the
web’s overall strength and flexibility (Aoyanagi and Okumura, 2010)[4].

Overview of the Mechanical Properties of Orb Webs

Aoyanagi and Okumura’s study, “Simple Model for the Mechanics of Spider Webs”, provides a founda-
tional model for analyzing the mechanical properties of orb webs. The model simplifies the complex
structure of orb webs into a two-dimensional framework, allowing for a formal analytical approach. By
focusing on the interaction between radial and spiral (Figure 2.1) threads, the model sheds light on how
spider webs distribute forces, resist damage, and maintain stability even under stress.

Orb webs are characterized by a central hub connected to radial threads, which are linked by spiral
threads. Radial threads, stronger and stiffer, provide structural support, while spiral threads, more
flexible, absorb and dissipate forces. This dual-thread structure enables the web to balance rigidity
with flexibility .

A key concept in Aoyanagi and Okumura’s model is the spring constant ratio, denoted as K/k, which
represents the relative stiffness of radial and spiral threads. This ratio significantly influences force dis-
tribution throughout the web, affecting its resilience. When K/k is high (indicating stiffer radial threads),
the web handles force without stress concentrations a common weakness in conventional materials. n
nature, the typical ratio K/k is around 10. If this ratio is lower, the web’s ability to effectively capture
and distribute stress deteriorates. Thus, maintaining the correct K/k ratio is crucial for both structural
stability and functionality of spider webs.
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(2, 4) - radial thread

Figure 2.1: Model of orb web of spider consisting of 10 radial threads and 4 spiral threads (N = 10, M = 4), which are labeled
as above(Aoyanagi and Okumura, 2010) [4].

The natural length of each spiral thread, I,,,, is given by:

Vi
I, = amL = 2mLsi (7)
am mil, S1n N

where L is the natural length of the radial threads, m indexes the spiral threads, N is the total number
of radial threads, and « is a constant related to the web’s geometry. The coordinates of the nodes,
without any tension, are defined as:

2
Xy = (;_”,mL>

where n represents the radial position, and m represents the spiral position.

Damage Tolerance and Force Distribution in Spider Webs

One of the model’'s notable aspects is its analysis of damage tolerance. In typical materials, damage
leads to stress concentrations near the damaged area, potentially compromising the entire structure.
However, spider webs, particularly orb webs, show a different response. When specific spiral threads
are removed or damaged, the load-bearing radial threads maintain the web’s structural integrity, pre-
venting stress concentrations from forming. This quality allows the web to remain functional despite
partial damage.

The model calculates the forces acting on each thread, showing that force accumulates toward the
radial threads at the web’s periphery. The force on each radial thread F},, and each spiral thread f,, is
calculated using the following recurrence relation:

F,, 1 1 2 E,_
~+1:(~ +~+G>Fm_~1
km+1 ki1 Ky K km

where k,, = li represents the spring constant per unit length for the m-th spiral thread, and K is the
spring constant of the radial threads. The initial conditions for force calculations are defined as:

Fy = KAL, f1 =ak AL

where AL is the elongation of the first radial thread.

To simulate damage, the model removes specific spiral threads and recalculates the force distribution.
The absence of a spiral thread alters local force distribution, but the overall structure remains free from
stress concentrations due to the strength and configuration of radial threads.
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Design Principles and Broader Implications

The damage tolerance and stress distribution characteristics of spider webs offer valuable design prin-
ciples for modern engineering applications. The insights from spider web mechanics can inform the
design of structures that are both resilient and adaptable. Some potential applications include:

+ Buildings: Using spider web principles to enhance structural integrity and damage tolerance in
architectural designs.

» Bridges: Applying the web’s force distribution characteristics to improve bridge resilience under
load.

» Space Structures: Leveraging damage tolerance and stress distribution in designing space struc-
tures that withstand environmental stresses.

» Material Science: Developing new materials that mimic spider web resilience for enhanced dam-
age tolerance.

» Biomimicry: Exploring how spider web-inspired structures can drive innovation in engineering
solutions, such as in sensor networks or load-bearing structures.

The model developed by Aoyanagi and Okumura provides a strong foundation for understanding these
design principles. The web’s hierarchical structure—where strong radial threads are supported by flex-
ible spiral threads—serves as a model for creating resilient networks and materials that can withstand
variable stresses without failure. An appropriately large K/k ratio, as observed in real spider webs,
significantly enhances damage tolerance by minimizing stress concentrations. The findings highlight
general physical principles that could be beneficial for designing resilient artificial structures and mate-
rials.

Figure 2.2: Force distribution in undamaged spider web models for different stiffness ratios between radial and spiral threads.
The left image shows a web with a stiffness ratio of K/k = 1, representing an evenly distributed force network, where the force
concentration is spread more uniformly, resulting in moderate force values across the web. In contrast, the right image depicts
a web with a stiffness ratio of K/k = 10, which more closely corresponds to natural spider webs where radial threads are
significantly stiffer than spiral threads (Aoyanagi and Okumura, 2010)[4].
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Figure 2.3: Plots showing the maximum force Fy (in K'A) in the spider web model under different parameters. The left plot
illustrates F as a function of the stiffness ratio K/k for a web with NV = 10 radial threads and M = 9 spiral threads. As K/k
increases, F; decreases, indicating that a higher stiffness ratio leads to more effective force distribution. The middle plot shows
Fy as a function of the number of radial threads NV for two stiffness ratios, K/k = 1 and K/k = 10, with M = 9 spiral threads.
The right plot presents Fy as a function of the number of spiral threads M for N = 10 radial threads, comparing K/k = 1 and
K/k = 10. Here, Fy increases with M, especially for higher K/ ratios, indicating that adding spiral threads increases the load
on individual radial threads when radial threads are much stiffer than spiral thread (Aoyanagi and Okumura, 2010)[4].
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2.2. Vibrational Analysis and Prey Localization in Spider Webs

A complementary study by Lott et al., titled “Prey Localization in Spider Orb Webs Using Modal Vibration
Analysis” (Lott et al., 2022)[6], explores how spiders use their webs to detect and locate prey based on
vibrational signals. This research provides essential insights into the mechanics of signal propagation
and detection in spider webs, emphasizing how vibration patterns can encode information about the
location of impacts. The study uses modal analysis to reveal how different frequencies and modes
contribute to prey detection, making it relevant for understanding signal propagation in spider web-like
networks.

2.2.1. Spider Web Geometry and Modal Vibration Analysis

The model used in this study considers an asymmetric orb web with an octagonal structural frame.
Radial threads connect to this frame, while spiral threads are arranged in a spiral pattern starting from
an off-center hub. This geometry closely reflects the realistic structure of natural orb webs. Prior
to analyzing vibrations, the web is prestressed by applying forces from the center outward, ensuring
equilibrium and preventing rigid-body motion. The prestressed configuration introduces high levels of
tension, particularly in the radial threads, which influences the web’s vibrational behavior and sensitivity
to impacts (Lott et al., 2022)[6].

To understand how spiders detect vibrations, the study (Lott et al., 2022)[6] performs eigenfrequency
analysis on the prestressed web to identify its resonant frequencies and corresponding modal shapes.
Modal decomposition breaks down complex vibration patterns into simpler components, or eigenmodes,
revealing the characteristic ways in which the web oscillates in response to disturbances. These modal
shapes help identify how the web vibrates and responds to impacts at specific frequencies, allowing
spiders to detect and localize prey .

The spider’s ability to detect prey is modeled by treating its legs as independent sensors that pick up
vibrations. These vibrations can be used to determine the location of the source. In the research,
the Green’s function is applied for vibration analysis. The analysis shows that higher modes provide
sufficient resolution for accurate prey detection, while lower modes, such as the fundamental mode,
are less effective for precise localization.

2.2.2. Mathematical Model: Resonant Frequency and Green's Function
The resonant frequency f, of a web thread under tension is given by:

1 /T
fo—ﬁ ﬁ

where:

* L is the length of the thread,
» T is the tension in the thread, and
* pl is the mass per unit length of the thread.

This formula indicates that the resonant frequency increases with greater tension or shorter length.

The study further examines the Variation of Resonant Frequency when the web is subjected to addi-
tional pulling forces. The resonant frequency f, changes according to:

ofo 0L 14T

Jo L 2T
where:
» 0L and 4T represent small changes in the length and tension, respectively.

This equation reflects two opposing effects: increasing tension raises the resonant frequency, while
increasing length decreases it.
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To model how vibrations propagate across the web, the study uses Green’s Function, which describes
how a disturbance (such as an impact) at one point on the web propagates to another point:

General formula defined by
LG(z,8) = 6(x — s)

s) = Z ¢"(m))\fn (s)

explaining web nodes:

Gij(@,5) = hin(2)dnj(s)!
where:
* ¢;, represents the mode shape at point i for mode n, and
. ¢>Lj is the complex conjugate transpose of the mode shape at point j.

Each vibration mode of the web corresponds to a specific eigenshape, defining how the web deforms
at different frequencies. When prey impacts the web, it excites a combination of these modes, gen-
erating a unique vibration pattern based on the disturbance location. The spider detects these mode
contributions at its contact points, using phase and amplitude differences to precisely locate the prey
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Figure 2.4: Vibration eigenmodes of the spider web, modeled by pre-stressed trusses with geometrical nonlinearity (Lott et al.,
2022)[6].

2.2.3. Application of Findings for Signal Propagation in Artificial Networks

The findings of Lott et al. demonstrate that spider webs function as highly tuned vibrational networks
capable of distinguishing between various types of impacts. The concept of using modal decompo-
sition and Green'’s function for source localization has implications for artificial networks that require
impact detection and localization. The principles of prestressed structure and vibration analysis could
be adapted to enhance the design of networks that need precise impact detection, such as sensor
networks or structural health monitoring systems.
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The insights from this study provide valuable background for understanding how signal propagation in
spider web-like networks can be modeled. By applying concepts from modal analysis and Green’s func-
tions, this thesis can investigate how artificial networks might use structural geometry and vibrational
sensitivity to enhance stability and signal accuracy. Additionally, the use of Green'’s function and modal
imaging offers a framework for exploring collision frequency and propagation delay in spider web-like
networks, extending the principles of natural systems to engineered applications.

2.3. Summary and Connection to the Rest of the Work

The studies by Aoyanagi and Okumura and by Lott et al. collectively offer a comprehensive framework
for examining the static mechanics with vibrational behavior of spider webs. The static mechanical
models reveal how spider webs distribute forces and tolerate damage through a hierarchical structure of
strong radial and flexible spiral threads. Meanwhile, the vibrational analysis demonstrates how modal
decomposition, resonant frequency variation, and Green’s function enable precise prey localization
and offer insights into signal propagation. These combined insights form the basis for extending the
natural principles observed in spider webs to the design of artificial networks. In the following chapters,
this thesis will build on these principles to investigate novel methods for enhancing stability, reducing
collision frequency, and minimizing propagation delays in communication and sensor networks inspired
by spider web architectures.



Methodology of the Structure Models

In this chapter, we introduce and develop a comprehensive framework for studying force distribution,
signal propagation, and structural dynamics in spider web-like networks. We begin by outlining the
mathematical and physical models drawn from literature, proceed with detailed simulation setups in
Python, and then extend the approach to more advanced models that incorporate collision dynamics,
defects, and force propagation. This integrated narrative connects theoretical derivations to computa-
tional experiments, culminating in advanced analyses that aim to bridge biology-inspired models and
engineering applications.

The development of the model was carried out in three stages, each progressively expanding on the
complexity of the network and the simulation of signal propagation

3.1. Setup of Mathematical and Physics Model From The Literature

The mathematical model used in this study is based on a network of radial and spiral threads, inspired
by the structural organization of natural spider webs. This model provides a framework for examining
force distribution, signal propagation, and stability within a spider web-like network. By analyzing the
forces in the network, we can understand how signal collisions, propagation delays, and stability are
influenced by the web’s structural characteristics.

3.1.1. Basic Recurrence Relation for Force Distribution

The primary recurrence relation in this model describes the force F,,, 1, in the radial threads at succes-
sive nodes m. This recurrence relation takes into account the spring constants of the spiral threads
connecting nodes m and m + 1 and is expressed as follows:

F, 1 1 2 F_
~17’L+1 _ <~ +— + a) Fm _ 7~n 1
km+1 karl km K km

where:

* k,, and l%mﬂ are the spring constants of the spiral threads between nodes m and m + 1,

* K is the spring constant of the radial threads, assumed to be significantly larger than the spring
constants of the spiral threads, and

* «is a parameter that modulates the effect of spring constants on the force distribution.
This recurrence relation shows how forces propagate from one node to the next, with the force in a

radial thread at node m + 1 depending on the forces at nodes m and m — 1. A higher value of «
increases the impact of the spring constants, potentially altering the force distribution across the web.
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3.1.2. Initial Force Conditions
The initial forces in the radial and spiral threads, F; and f;, respectively, are determined by the tension
applied during web construction. These initial conditions are defined as:

F1 = kAL, fl = Oé];}lAL

where AL represents the initial elongation of the threads due to tension, and K is the effective spring
constant of the radial threads.

3.1.3. Reformulating the Main Equations
From the basic recurrence relation, we can rewrite the main equations as:

Foi1 = Fp +a(.fm—1 + .fm)
Fm+1 - Fm +afm

i

— |
MAN— HIY

|
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Figure 3.1: two interconnected spring systems with forces applied at various nodes. On the left side, there is a single central
node connected to four springs. A blue force labeled F’ points to the left on the horizontal spring, while three red forces, also
labeled F', point outward from the node along the other springs in different directions. On the right side, the system extends into
a repeating triangular pattern, with multiple nodes and springs forming a network. The forces are labeled F,, F},—1 , and
Fy, 41, indicating sequential force distribution throughout the network. A blue force F3,, 1 points leftward on the leftmost spring,
while red forces F, and F,,_1 act outward from the nodes. The dashed box outlines a repeating unit, suggesting a modular
structure within the network.

These equations highlight the additive nature of the forces, where each successive radial thread force
depends on the sum of the forces at previous nodes. The parameter a modulates the influence of the
spiral forces on the radial forces, contributing to the overall force distribution pattern in the web.

3.1.4. Force Distribution in the Undamaged Web

In the undamaged state, the force in the radial threads accumulates toward the periphery of the web.
This pattern is a result of the additive force propagation described by the recurrence relation. Increasing
the ratio K/k (the stiffness ratio of radial to spiral threads) reduces the maximum force in the web,
distributing the load more evenly and enhancing the web’s damage tolerance. Since radial threads are
stiffer (with larger K), they can carry more force without significant deformation, allowing the web to
resist external stress effectively.

3.1.5. Wave Speed and its Dependence on the Medium

The speed of a wave, or signal, within the web depends on the properties of the medium, specifically
the tension in the threads and their linear density. This concept is similar to the way sound is produced
in musical instruments, such as a guitar, where the vibration frequency depends on the string tension
and density. In the web, magnitude of the speed of signal propagation |v| is given by:

ol =/ —
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where:

» [} is the tension mentioned in the Literature ,
+ 1 is the mass per unit length of the thread.

This equation indicates that the speed of the wave increases with higher tension or lower mass per unit
length. It's important to note that the velocity of the signal is not influenced by the mass of an external
object, such as a fly, that may impact the web; instead, it is governed by the intrinsic properties of the
web itself, particularly the tension.

3.1.6. Biological Context: Characteristics of Flies as Prey

For context, flies belong to the order Diptera, derived from the Greek words ’di’ meaning 'two’ and
‘pteron’ meaning ‘wing’ (“Dipteran,” in Merriam-Webster.com)[7]. These insects use only a single pair
of wings for flight, while the hindwings have evolved into advanced mechanosensory organs known as
halteres, which help them with balance and movement (“Order Diptera,” in General Entomology)[8] .
The average weight of a common house fly (Musca domestica) is approximately 12 milligrams (“Musca
domestica,” in Animal Diversity Web)[9]. Understanding the characteristics of prey, such as flies, helps
contextualize the types of vibrations and frequencies that a spider web would typically experience,
influencing the design and parameters of our model.

Figure 3.2: Parts of a fly structure that are labeled. ( Ellsworth D. Foster ed. The American Educator (vol. 4) (Chicago, IL:
Ralph Durham Company, 1921)



3.2. Three Stages of the Model 12

3.2. Three Stages of the Model

Stage 1: Structural Simulation

To begin the exploration of signal propagation in spider web-like networks, it is essential to recreate the
algorithm derived from the force distribution equations mentioned earlier. This provides a foundation
for calculating forces in a symmetric web, which will serve as a reference model for future studies. It
is important to note that the force distribution calculated here applies strictly to symmetric webs; in
asymmetric or irregular webs, the force distribution would vary significantly.

The model focuses on the fundamental requirements to simulate the spider web structure itself. It fully
implements the theoretical equations described earlier into code and calculates the force distribution
for a symmetric web. Using the recurrence relations, the model computes the forces in the radial and
spiral threads to verify the theoretical predictions.

To calculate the forces in a symmetric spider web, we use the recurrence relation for radial thread
forces, as described earlier where:

« k= lﬁ is the spring constant per unit length of the spiral thread,

» K is the spring constant of the radial threads,

* « is a scaling factor accounting for the relative influence of spiral threads.

« K = 1.0 X: stiffness of the radial threads.

* L = 1.0mm: Natural length of the radial threads.

* A = 0.1 mm: Elongation of the threads under tension.

« K =31.5 x 1073 N: Stiffness of radial threads (converted from millinewtons).
s k =2.26 x 1073 N: Stiffness of spiral threads (converted from millinewtons).
* N = 10: Number of radial threads in the web.

Force Distribution Across Nodes in the Spider Web (Excluding Last Node)
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Figure 3.3: Force distribution across nodes in a spider web structure, showing radial forces (F) as a function of node index.
The x-axis represents the node index, where nodes are sequentially numbered along a radial thread from the center outward,
excluding the last node. The y-axis represents the force magnitude (N) applied at each node. The increasing trend indicates a

rise in radial forces as the distance from the web center increases. This distribution is consistent with theoretical models and

aligns with reference literature on mechanical properties of spider web structures.



3.2. Three Stages of the Model 13

Following the force distribution computation, the spider orb-web structure is modeled as a network of
connected nodes, with the starting node indicated in green. Although this initial simulation reproduces
the reference study’s force distribution patterns, questions arise regarding the choice of the starting.
These questions are addressed in later models.

Figure 3.4: Spanned network structure in python environmet that mimic natural spider web.Indicating start node which can be
chosen randomly.

Stage 2: Propagation

In the second stage, the model introduces signal propagation. The signal is treated as a traveling wave
with a defined velocity that depends on the properties of the threads, such as tension and density. The
simulation progresses iteratively, with each step representing a discrete time interval during which the
signal moves to neighboring nodes. The algorithm ensures that the signal cannot revisit previously
reached nodes in the same iteration, effectively preventing loops. At each step, the model updates the
arrival time at each node and keeps track of the signal’s path. This setup mimics the process of a wave
propagating through the web and allows for initial studies of signal behavior under idealized conditions.
To comprehensively assess the effectiveness of signal propagation models baseline performance met-
rics must be evaluated. These metrics include:

» Propagation Speed The rate at which signals traverse the network, measured as the time taken
for a signal to travel from the source to various nodes.

» Amplitude Retention: The ability of the network to maintain signal strength over distance. This
is quantified by comparing the amplitude of the signal at different points relative to its original
strength.

* Collision Frequency (Interference Points): The number of points within the network where sig-
nals intersect, leading to potential interference. This metric helps identify areas of high signal
congestion.

These metrics will be measured and compared across different lattice types, including traditional lattice
networks and spider web-like structures.

Figure 3.5: At time frames it can be seen that signal reaches nodes that are closer to initial node faster than nodes positioned
father away.
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Stage 3: Advanced Signal Propagation Model

In the third stage, the model is expanded to include a more complex network and refined signal propa-
gation mechanisms. The signal is now capable of reaching a greater number of nodes, and additional
parameters such as thread length and material properties are incorporated.

signal Position Over Time
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(a) Numerical model: Signal propagation is represented by X-coordinate
nodes visited at discrete intervals. This model highlights
general signal pathways but lacks precision in capturing (b) Refined model: Continuous signal tracking reveals detailed propagation
continuous dynamics or collisions. dynamics and identifies collision points where signals converge and interact.

Figure 3.6: Comparison of signal propagation models: (a) shows the discrete numerical model, while (b) illustrates the
continuous refined model.

The two models presented for analyzing signal propagation in spider web-like structures demonstrate
distinct levels of precision and insights. The first model, visualized in Figure 3.5a, calculates the nodes
visited by the signal at discrete intervals. This approach captures the overall pathway and structure
of the signal propagation but lacks the resolution to measure the signal’s continuous behavior or its
interactions between nodes. It provides a simpler representation of the propagation process, useful for
identifying general patterns and connectivity in the network.

In contrast, the refined model, shown in Figure 3.5b, continuously tracks the signal’s movement through
the web over time. This model provides a more accurate and dynamic representation of signal prop-
agation by incorporating details such as the timing and velocity of the signal’s progression along the
threads. Furthermore, it highlights instances where signals collide—points where multiple signal paths
converge, potentially resulting in interference. The continuous tracking not only improves the spatial
and temporal resolution of the propagation analysis but also allows for more precise identification of
collision points and their effects on the overall signal behavior. Moreover, the model accounts for vari-
ations in the width and stiffness of connecting threads. Radial threads are typically stiffer and transmit
signals faster than spiral threads, introducing a preferential radial movement of the signal. The magni-
tude of the signal is calculated using the formula:

F
ol = ¢/

where F; is the tension in the thread and p is the mass per unit length. These parameters allow
the model to simulate realistic signal dynamics, closely mirroring the physical properties observed in
natural spider webs. By incorporating this level of detail, the model provides insights into how material
properties and web geometry affect signal propagation and stability.

The comparison between the two models underscores the advantages of the refined approach. While
the first model offers simplicity and ease of computation, the second model delivers enhanced accu-
racy and a deeper understanding of propagation dynamics, including critical phenomena like signal



3.3. Notes on Physics and Challenges of the Structure Model 15

collisions. These insights are invaluable for applications requiring detailed assessments of signal sta-
bility, efficiency, and potential interference in network structures.

3.3. Notes on Physics and Challenges of the Structure Model

Thickness, Materials, and Propagation Velocity

In spider orb webs, the structural differentiation between radial and spiral threads plays a crucial role
in their mechanical properties and signal transmission capabilities. Radial threads, which serve as the
primary framework of the web, are generally thicker and composed of stiffer silk compared to the more
flexible spiral threads. Scanning electron microscopy (SEM) studies have measured the diameters
of radial threads to range from approximately 2.67 to 5 micrometers, while spiral threads are thinner,
with diameters between 0.72 and 1.04 micrometers. (Cranford et al., 2012)[10](ResearchGate: SEM
Micrographs of Spider Web Components)[11] .

The velocity of signal propagation depends on the thread’s stiffness and density. Radial threads, due
to their rigidity and greater mass per unit length, facilitate faster transmission of mechanical vibrations.
Research suggests that radial threads can transmit signals at speeds ranging from 50 to 70 m/s, while
the more flexible spiral threads transmit signals at lower velocities, often in the range of 10 to 30 m/s
(Sensenig et al., 2010)[12].

These velocity distinctions are critical for understanding how the spider web’s dual-thread system bal-
ances rapid detection and energy dissipation. In research, this structural and functional differentiation
is simplified to just fixed values and used as a model to study how varying material properties influence
signal dynamics in complex networks.

In spider orb webs, the structural differentiation between radial and spiral threads plays a crucial role
in their mechanical properties and signal transmission capabilities. Radial threads, which serve as the
primary framework of the web, are generally thicker and composed of stiffer silk compared to the more
flexible spiral threads (Mortimer et al., 2014)[13].

These velocity distinctions are critical for understanding how the spider web’s dual-thread system bal-
ances rapid detection and energy dissipation. In research, this structural and functional differentiation
is simplified to fixed values and used as a model to study how varying material properties influence
signal dynamics in complex networks.

Specifically key metrics are,

+ Signal Stability: Understanding how differences in propagation velocity affect the web’s ability to
maintain signal integrity across its structure.

+ Collision Dynamics: Investigating how signals traveling at different velocities interact when they
converge at nodes, potentially leading to interference.

» Network Optimization: Exploring how a combination of “fast” and “slow” threads in engineered
networks can enhance robustness, reduce signal loss, and increase efficiency.

By incorporating the material and velocity distinctions of radial and spiral threads into numerical models,
this contributes to the broader understanding of signal transmission dynamics in natural and artificial
networks and research question.

Challenges in Collision Computation

The most recent model aimed to trace the exact paths of signals through the web structure. While
theoretically robust, the computational complexity grew exponentially with the number of nodes and po-
tential collision points. This model’s fine-grained resolution, although detailed, resulted in prohibitively
long simulation times, limiting its practicality for extensive studies. To address these computational
challenges, three alternative methods were developed to balance accuracy and efficiency in collision
detection: The first method involves a simplified model that follows the signal path with reduced resolu-
tion. This model tracks signal trajectories using a coarse grid, identifying collision points where paths
intersect. While less precise, this approach significantly reduces computation time, making it suitable
for preliminary analyses or scenarios where high accuracy is not critical. The second method employs
a stochastic approach, simulating 1,000 signals that follow random paths through the web. Collisions
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Signal Position Over Time
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Figure 3.7: The graph illustrates the temporal propagation of a signal within a spider web-like network. Beginning at the central
node (0,0), the signal traverses the edges, spreading outward along both radial (spoke) and spiral (ring) connections to analyze
its transmission speed. The denser clusters of points near the center indicate slower radial propagation, while the outer arcs
highlight the faster spiral spread.

are recorded when paths intersect. This model introduces randomness to account for variability in sig-
nal propagation but raises questions about the statistical robustness of the results. Future research
should investigate whether increasing the number of signals to 100,000 would provide more reliable
data and better symmetry in the collision patterns. The third and most computationally efficient method
models signal propagation as a diffusion process. Signals are treated as wavefronts or packages that
spread through the web structure. When wavefronts intersect, new packages are generated to simulate
the resulting collisions. This approach leverages principles from diffusion theory to approximate signal
behavior, offering a balance between computational speed and model accuracy. It shows promising
potential for large-scale simulations due to its scalability and efficiency.

Each method presents unique advantages and limitations. The simple model offers speed at the ex-
pense of detail, the random walk model introduces variability but requires further validation, and the
diffusion model provides an efficient yet reasonably accurate framework for studying signal collisions.
Future work will focus on refining third models. Increasing the number of simulated signals and explor-
ing alternative diffusion algorithms could enhance model accuracy. .



Methodology of the Propogation
Models

This chapter explores different methods for modeling signal propagation and collisions in a spider
web-like network. The simple collision approach analyzes how signals move through radial and spi-
ral threads with different velocities, revealing that central nodes experience the highest activity and
collision rates. Visualizations, including heatmaps and bar charts, demonstrate how network geometry
influences signal dynamics.

To improve computational efficiency, a random walk method was introduced, simulating signals taking
random paths. This method efficiently identifies collision-prone regions but lacks the accuracy of real-
world wave propagation models. By applying this technique to different web structures, such as spiral
and radial networks, distinct collision patterns emerge.

A more detailed wavefronts simulation refines signal propagation by introducing energy loss, adaptive
transmission, and statistical analyses of signal paths and collisions. Compared to the random walk ap-
proach, this structured model provides deeper insights into network congestion and signal interference,
though it requires greater computational resources. The results indicate that network topology strongly
affects signal dispersion, with central nodes acting as key congestion points.

4.1. Simple Collision Approach

The model incorporates radial and spiral threads with distinct velocities, allowing study of node activity
and collision frequencies. It uses the approach given in Chapter 3. The primary goal is to understand
how signal distribution and interactions are influenced by the network’s geometric configuration. Radial
and spiral threads were assigned different lengths and propagation velocities to simulate real-world
variances in signal transmission:

» Radial Threads: Constant length of 1 unit, with a velocity of 0.8 units/time.
+ Spiral Threads: Are longer as 27  sin(a), (where a in angle) with a velocity of 1.0 units/time.

Signals were propagated from the start node through the network using a priority queue to manage time-
based events. Each signal’'s phase was calculated based on its path length and wavelength. Collisions
were detected when signals arrived at the same node within a small error marge (1e-3 units). Three
primary datasets were generated: the total number of times each node was visited by any signal,the
number of collisions detected at each node, detailed paths and arrival times of individual signals.

The node activity heatmap (Figure 4.1ab) reveals that the central node (0, 0) experienced the highest
activity, with 241 visits. Nodes closer to the center generally had higher visit counts due to the conver-
gence of multiple signal paths. Collisions were most frequent at the network’s center, aligning with the
high node activity. The heatmap shows a gradual decrease in collision frequency as the distance from
the center increases.

17
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(a) The heatmap displays node visit frequencies. The initial node (b) Using a heatmap, the collision heatmap illustrates the
is shown green. The central node and nearby nodes are frequency of signal collisions at each node. The central node
highlighted with brighter colors, indicating higher activity. shows the highest collision rate.

The simplified collision model demonstrates the dynamics of signal propagation and collision in a spider
web-like network. The center node experiences the highest activity and collision rates due to signal
convergence. Radial threads, with slower velocities, contribute to higher collision probabilities near
the center. Outer nodes exhibit fewer visits and collisions, highlighting the impact of network geometry
on signal dynamics. Centered aligned node in a network experience more visits and collisions due
to their structural and functional roles. They tend to have higher connectivity, serving as hubs that
link multiple nodes together. This makes them part of the shortest or most efficient paths, causing
signals to frequently pass through them. As multiple signals converge at these nodes, the likelihood of
collisions increases, especially in systems where simultaneous data transmission occurs. Additionally,
central nodes often act as bottlenecks or critical points in the network, concentrating traffic flow and
further raising the chances of revisits and collisions. In spider web-like structures, these nodes might
correspond to intersections of radial and spiral threads, becoming focal points for signal propagation
and interference.
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Figure 4.2: Two bar charts illustrate the distribution of revisit and collision counts per node. Lower indices correspond to nodes
near the center of the web, higher indicesrepresent nodes closer to the outer edges of the web. The left chart shows that most
nodes have low revisit counts, except for a sharp spike at the highest node index, exceeding 30 revisits. Similarly, the right
chart reveals a generally low collision count, with a significant peak near the highest node index, reaching nearly 30 collisions.
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4.2. Random Walk Study

To avoid heavy computations method of random walk was implemented. The simulation approach
involves randomly assigning an initial direction to a predefined number of signals, all starting from
the same point. These signals propagate along the structure’s predefined pathways, following the
geometric constraints of the web. Ideally it should simulate one signal path moving along the web. If
two or more signals reach the same location at the same time, a collision is recorded. The final step
is to visualize these collisions to analyze the network’s efficiency and propagation characteristics. To
illustrate the method, a graph (Figure 4.3) was created to represent the propagation of three distinct
signals. This basic representation serves as a proof of concept to demonstrate how signals travel within
the web and how collisions occur. Final structure shows likely accurate signal reach.

Signal 1 - Step 10 Signal 1 - Step 25 Signal 1 - Step 50 Signal 1 - Step 75 Signal 1 - Step 100

Signal 2 - Step 10 Signal 2 - Step 25 Signal 2 - Step 50 Signal 2 - Step 75 Signal 2 - Step 100

Signal 3 - Step 10 Signal 3 - Step 25 Signal 3 - Step 50 Signal 3 - Step 75 Signal 3 - Step 100

summed Signals - Step 10 summed Signals - Step 25 summed Signals - Step 50 summed Signals - Step 75 Summed Signals - Step 100

Figure 4.3: The following image presents a series of snapshots showing signal propagation and collisions over time in a spider
web lattice. The top three rows illustrate individual signals moving through the structure, while the bottom row shows the
cumulative effect of multiple signals interacting. The intensity of the red lines in the final frames highlights regions with higher
collision frequencies and coverege of the web.
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Mathematical Model Description
Edges are added in three categories:

1. Vertical (Radial) Edges: Connect nodes along the same arm:

{(a,0),(a, 6+ 1)} forf=0,1,...,L—2.

2. Circular (Neighbor) Edges: Connect nodes at the same level in adjacent arms:

{(a,¢),((a+1 mod A),¢)} foreachaand V.

3. Diagonal Edges: Connect nodes from one arm and level to the adjacent arm and the next level:

{(a,),((a+1 mod A),{+1)} for¢=0,1,...,L—2.

Random Walk and Collision Simulation
A signal starts at a chosen start node iy and performs a random walk over the graph. Let the signal’s
position at step ¢ be i;. The dynamics are as follows:

1. Transition Rule: At each step ¢, the signal moves from node i, to a neighbor chosen uniformly
at random:
i1 ~ Uniform{j € N'(i;) },

where N (i) is the set of neighbors of node i;.

2. Collision Event: When traversing an edge e = (4., it+1), a collision can occur with another signal
reaching same time t. Another signal should reach same node or same edge at the same time,
multiple collisions possible. Records are noted in a list. Simulation follows time Tevalutaions for
all randomwalks. If a collision occurs, record the midpoint of the edge or node:

m, = %(p(it) + p(it+1)>a

where p(i) = (x(i),y(¢)) is the position of node i.
3. Simulation Parameters: Let:

Nsignais : total number of signals, T : number of steps per signal.

The total number of steps simulated is Nsignais % 7'

The second and third images (Figures 4.4a, 4.4b) provide insight into how this method can be applied
beyond traditional web structures. Instead of a standard lattice, the simulation was performed on more
complex web-like geometries. In the Spiral Web, signals propagate along a spiraling network of nodes.
Due to its configuration, collisions appear concentrated in the central regions, where paths are denser.
In the Traditional Spider Web, signals move along radial and circumferential paths, producing a dif-
ferent collision pattern. The intersections occur mostly near the central hub and along key connecting
points where multiple pathways converge. By analyzing these visual outputs, we can infer how different
structures impact signal dispersion and collision distribution.

While this method provides an interesting way to analyze signal behavior, it is unclear whether it ac-
curately models real-world propagation. Several factors must be investigated to determine its validity.
The assumptions made in the simulation (such as random signal direction and discrete time steps) may
not fully align with how waves propagate. In reality, signals may experience attenuation, diffraction, or
interference that is not accounted for in the current model. The results may change significantly with
a larger number of signals or different web configurations, requiring further simulations to determine
patterns at larger scales.

One significant difficulty in this approach is the computational power to proof if its indeed good simula-
tion of real signal propagation. To calculate real signal in this structure is difficult. Simulating signals
over complex structure with time steps demands substantial processing resources. As the complexity
of the web structure increases, the computational load grows exponentially, making it challenging to
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Signal Collision Simulation on a Spiral Web Signal Collision Simulation on a Spider Web
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(a) The spiral web (a) follows a continuous, curved pattern where nodes (b) In the radial spider web (b), the structure consists of straight spokes
are connected more fluidly.Number signals = 500, number steps = 100.  connected by concentric circular threads. Number signals = 500,
The highest collision density occurs near the center, but the distribution number steps = 100. The highest collision density is observed at the

is diffused, gradually decreasing outward. This structure disperses center, where multiple signal paths converge. While this design
signal traffic more evenly, reducing abrupt congestion points and efficiently directs signals, it also creates abrupt congestion points due to
creating a smoother but broader collision spread. sharp directional changes at nodes.

scale simulations for highly detailed models. Despite these uncertainties, if a sufficient number of sig-
nals are simulated with realistic propagation parameters, this approach could offer meaningful insights
into wave dynamics in network-like structures. By refining the model potentially incorporating signal
loss, varying propagation speeds, or environmental effects this method might become a more accurate
representation of real world signal behavior. However, limitations remain in terms of computational
feasibility, accuracy, and the ability to generalize results to different systems. Future studies should
focus on improving the physical basis of the simulation and validating it against empirical data.
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4.3. Wavefronts Simulation

To simulate propagation, a discrete time-step model is used, where each node forwards the signal to its
neighbors. If multiple signal packets reach a node simultaneously, they merge, their combined intensity
reduces based on an energy loss factor, and travel histories are recorded. Energy loss is introduced
to mimic real-world attenuation effects. The model captures different aspects of propagation, including
collision detection, intensity decay, path tracking, and network saturation. Various parameter tuning
techniques were implemented to test how different network configurations influence signal behavior.
An adaptive weighting mechanism dynamically adjusts transmission strength based on past collision
data, allowing for a more realistic simulation of real-world adaptive networks.

Mathematical Model of Signal Propagation Wavefront
A packet p is characterized by:

* Its current edge: (i, ) € E,

* A normalized position = € [0, 1], where = 0 corresponds to node ¢ and « = 1 corresponds to
node j,

* An intensity I,

* A collision count C,

» A path P = [ig,41,...,1;] recording the nodes visited,

» A current time t.

Packet Propagation
The propagation occurs in discrete time steps of size A¢. A packet on edge (i, j) updates its position

according to:

v At

where v is the constant signal velocity. When the packet reaches the end of the edge (i.e. when = > 1),
it is considered to have arrived at node ;.

x(t+ At) = z(t) +

Spawning New Packets
Upon arrival at node j at time t4ival, New packets are spawned along each outgoing edge from j,
except for the edge leading back to the previous node in the packet’s path. Each spawned packet p’ is
initialized with:

Lp! (tarrival) = 0, Iy=1,, Cy=0Cp Py=PU {7}

Collision Detection and Merging
Consider packets p and g traveling along the same edge (¢, j) with positions z,, and z,, respectively. A
collision is detected if

|zp — 24| <,
where e is the collision threshold. When packets collide, they merge to form a new packet pmerged With
the following properties:

Tp +Tq
5
Intensity:  Imerged = 17 (Ip + Iy),
Collision count:  Crerged = max(Cyp, Cy) + 1,
Time:  tmerged = max(tp,tgq),

Position:  merged =

with 7 being the fade factor (e.g., n = 1 means no fading).

If a packet’s collision count reaches a prescribed maximum Cpax, the packet is removed from the
simulation.
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Summary of the Simulation Steps
1. Initialization:

+ Build the spider-web graph with nodes arranged in concentric layers.
+ Place the initial signal packet(s) at the start node (or along its adjacent edges).
2. Propagation: For each packet on edge (i, j):

v At

€T 4T+ .
Lij

3. Arrival: If z > 1, record the arrival at node j and spawn new packets along outgoing edges from
j (excluding backtracking).

4. Collision Detection:

* Group packets by the edge on which they travel.
* For each group, if any pair satisfies |z, — 24| < ¢, merge them as described above.
5. Termination:

* The simulation stops at a maximum time Tr,ax or when no packets remain.
+ Additional statistics (arrival times, path lengths, collision counts, etc.) are recorded.

Results

While the model provides valuable insights, it has several limitations. Although adaptive weighting is
included, full dynamic rerouting of signals is not implemented, which could further enhance accuracy.
The decay function is a simple factor rather than a complex, environment-dependent function, and
the study does not account for noise or other interfering signals that could impact real-world network
efficiency. The results are summarized in the following statistics.

Compared to a random walk, the structured propagation in this model ensures controlled signal move-
ment and provides clearer patterns of collision formation. While the alternative method offers a more
computationally efficient way to analyze collisions by simplifying signal initiation, it lacks the ability to
represent attenuation, diffraction, and interference effects accurately. The random assignment of initial
signal paths in the alternative model may lead to inconsistencies in propagation results. Additionally,
the alternative model only captures a snapshot of possible propagation paths rather than a fully evolv-
ing network state, limiting its predictive capabilities. While the structured model in this project requires
greater computational power, it offers a more detailed view of how collisions evolve over time, allowing
for better insights into optimizing network designs. The structured model also incorporates energy dis-
sipation and collision intensity analysis, which are absent in the alternative approach. This makes the
structured model a better choice for applications requiring precise modeling of signal behavior, such as
biological signal transmission, wireless communication networks, and material stress analysis. How-
ever, the alternative method may still be useful in rapid preliminary assessments where computational
efficiency is a priority.

The resolution of the heatmap (Figure 4.6) can be improved with greater computational resources.
Higher grid precision and finer resolution will allow a more detailed representation of collision intensity
and better identification of congestion points. With enhanced computational capacity, more nodes
can be analyzed simultaneously, leading to a more refined understanding of interference zones and
potential weak points in the structure.

The heatmap also reflects how signal dispersion is influenced by the interplay of radial and spiral con-
nections, with some areas experiencing more frequent interactions than others. These insights could
be beneficial in optimizing network design to minimize signal loss and improve overall transmission
efficiency. To enhance the model, several improvements can be made in future work. Incorporating
machine learning would allow predictive modeling so the network can adapt its transmission paths
based on previous collision data. Adding stochastic elements by introducing randomness in propaga-
tion speed and energy decay could better simulate real-world uncertainties.
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(a) This plot represents the number of signal collisions occurring at each  (b) This histogram captures the distribution of path lengths taken by

time step. Initially, few collisions take place as the signal is still individual signal packets. The peak in the middle indicates that most
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(d) This scatter plot shows the size of each collision event over time,
(c) This plot shows the cumulative number of nodes that have been measured by the number of extra packets merging per event. Early on,
reached by the signal over time. Initially, growth is slow as the signal  small collisions dominate since only a few signal paths overlap. As the
starts its journey. Once more paths open, the number of influenced  signal spreads, large collision events become more common, peaking in
nodes increases rapidly, eventually plateauing as the signal has reached intensity before tapering off as paths become fully merged or signal
all accessible points in the network. energy fades.
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Figure 4.6: This heatmap visualizes the density of signal collisions throughout the network. Start node (3,6) left. The central
nodes experience the highest number of collisions due to the convergence of multiple signal paths, while the intensity
decreases outward as signals dissipate.



Advanced Model and Defected Model

5.1. Introducing Advanced Forces Model

Let the web be modeled as a mass—spring network with N nodes. Each node has a position

with equilibrium positions x?. In our construction, the central node is
X8 = (0,0),

and the remaining nodes are placed on concentric rings. The nodes on each ring are evenly spaced

with angles

-
0 J

= ’ .:Oala"wN d'|_1a
Neaciats” e

and with radial distances proportional to the ring index.

The network’s connectivity is given by a set of edges. Each edge connecting nodes i and j is assigned
a rest length
Lij = [x{ = x|l.

For nodes connected by a spring, the force is computed by Hooke’s law:

X; — X
Py = k(e —xll - L) p
? J

The total force on node i is then the sum over all its neighbors:
mxl = Z Fij — C).(i - kr (Xi —X?) 5
JEN(9)
where

* m is the mass per node,

* cis the viscous damping coefficient,

* k, is a weak ground (restoring) spring constant that forces free nodes back toward equilibrium,
« For fixed nodes (e.g. on the outermost ring) we impose x;(t) = x! for all ¢.

25
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The system is cast in first order form by defining the state vector

Thus, the equations of motion become
x(t)
—y(t) =11 X; — X : 0

JEN (%)
For fixed nodes the derivatives are forced to zero.

The numerical integration is performed using a Runge-Kutta method (via solve_ivp) with tight toler-
ances (e.g., rtol = 102 and atol = 10~12) over a time interval ¢t € [0,20] seconds with 401 time
steps.

The total energy of the system is computed at each time step as
1 Nl 1 9
B(t) = 5m Y- %O + 5k 3 (It = x5 (0)l - Ly ) -
i=0 (4,5)

A specific node (e.g. node with index 10) is given an initial velocity pulse
. 0
%10(0) = pulse_strength x (1> ,
and its displacement relative to equilibrium,
Aqo(t) = [x10(t) — X(1)0||7

is monitored.

The Fast Fourier Transform (FFT) is applied to the time series of the pulsed node’s displacement in
order to reveal its frequency content. Denote by

d(t) = HXpulsed(t) - XgulsedH

the displacement magnitude of the pulsed node, where Xgmsed is its equilibrium position. In the simula-
tion, a discrete set of measurements d(¢,,) is obtained over the time interval ¢ € [0, T7.

Before applying the FFT, the mean value is subtracted :

where

The FFT is then computed using
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where f; are the discrete frequency bins. In Python code, this is implemented with the function fft
from the numpy . fft module, and the corresponding frequency bins are generated using fftfreq.

Plotting the amplitude spectrum |cZ(f)| versus frequency f provides insight into the dominant oscillation
modes of the network. Peaks in this spectrum correspond to the natural frequencies of the system.
This analysis is particularly useful for understanding the effects of damping and the nonlinear behavior
of the spring—mass system, as the spectral content may shift or broaden compared to the predictions
of a purely linear model.

The model implements these ideas as follows:

1. The nodes are generated and stored in an array. Edges are constructed between nodes according
to the geometry.

2. The equations of motion are derived by summing the forces from each spring (using the nonlinear
expression for the distance), adding viscous damping, and including the extra restoring force (only
for free nodes).

The state vector y(t) is formed by concatenating positions and velocities.
The ODE system is solved numerically using solve_ivp.
Energy, displacement magnitude, and component displacements are computed for analysis.

o g AW

Several graphs are produced:

» 2D snapshots of the web at regular time intervals, colored by the z-displacement.
» Time series plots of total energy and the displacement of the pulsed node.
» FFT and spectrogram analyses of the pulsed node’s displacement.

» 3D deformation snapshots in which the horizontal coordinates remain fixed at their equilib-
rium values and the vertical coordinate shows z;(t) — 2?

5.1.1. Resluts
A pulse is applied to a selected node, imparting an initial velocity in the upward direction. The system
is solved numerically using the Runge-Kutta method implemented. Key simulation parameters include:

* Number of rings: 5

» Number of radial spokes: 8

* Mass per node: m = 1.0

» Spring constant: £ = 100.0

» Damping coefficient: ¢ = 0.1

» Ground restoring force: k, = 1.0
* Pulse magnitude: 0.05 m/s

The simulation runs for 20 seconds with 401 time steps.

Figure 5.1 presents a series of 3D snapshots illustrating the temporal evolution of the web’s deformation
under an initial perturbation. The results indicate that the pulse propagates through the structure in a
wave-like manner, with reflections occurring at the fixed boundary. As the wave traverses the web, the
interactions between the periodic arrangement of masses and springs give rise to complex interference
patterns, influencing the amplitude, phase, and duration of oscillations. The interplay between tensile
forces in the radial threads and the elasticity of the spiral threads leads to local variations in wave speed,
further contributing to the observed distortions in wavefronts.
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Extra 3D Snapshots of Web Deformation (Later Times)

3D Snapshotatt = 0.0 s 3D Snapshotatt=0.15s 3D Snapshotatt=1.0s
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Figure 5.1: 3D snapshots of the web deformation at different time steps. The initial perturbation propagates outward and
reflects from the fixed boundary, generating complex interference patterns.

The total energy of the system, calculated as the sum of kinetic and potential energies, decreases over
time due to damping effects, as shown in Figure 5.2. The decay in energy follows an approximately
exponential trend, suggesting that the damping mechanism effectively absorbs vibrational energy, pre-
venting indefinite oscillations. This behavior aligns with the expected outcome of a dissipative system,
where energy is continuously removed through internal friction and air resistance. The rate of decay
is influenced by the damping coefficient, which determines how quickly the system reaches equilib-
rium. Notably, energy dissipation is more pronounced in regions where wave reflections are strongest,
indicating that boundary interactions contribute significantly to energy loss.

Time-Series Analysis

Total Energy vs. Time Pulsed Node Displacement vs. Time Real Displacement Components
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Figure 5.2: Total energy vs. time showing exponential decay due to damping. Average fluctuations nodes on graph. The
energy dissipation rate depends on the damping coefficient and boundary interactions.

5.1.2. Displacement Analysis

The displacement of the initially perturbed node decreases progressively over time, as depicted in
Figure 5.3. The oscillatory motion is gradually dampened, resulting in reduced displacement magnitude.
This attenuation is a direct consequence of energy dissipation through damping and wave dispersion
within the structure. The displacement response exhibits a characteristic decay pattern, consistent with
a damped harmonic oscillator. Additionally, secondary oscillations induced by wave reflections modify
the displacement trajectory, creating transient fluctuations before the system stabilizes.
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Additional Extra 3D Snapshots of Web Deformation (Earlier Times)

3D Snapshotatt =10.0s 3D Snapshotatt = 20.0s 3D Snapshotatt=30.0s

Figure 5.3: Time evolution of displacement magnitude of the pulsed node. The oscillations gradually decay due to energy loss,
with transient fluctuations caused by wave reflections.

To further analyze the oscillatory behavior, a frequency-domain representation of the node displace-
ment is obtained using a Fast Fourier Transform (FFT), as shown in Figure 5.4. The dominant fre-
quency corresponds to the fundamental vibrational mode of the structure, while additional peaks indi-
cate higher-order harmonics and interference-induced frequency components. The observed spectrum
is consistent with that of a damped harmonic system, where the primary oscillation frequency remains
prominent while higher-frequency components diminish over time. The reflections from the fixed bound-
ary introduce spectral broadening effects, modifying the displacement characteristics in both the time
and frequency domains.

Separate FFT Analysis of Displacement

Amplitude

0.0 05 10 15 20 25 30 35 40
Freguency [Hz)

Figure 5.4: FFT analysis of the pulsed node displacement, highlighting dominant frequencies and spectral broadening effects.

The simulation results provide valuable insights into the wave propagation dynamics within a spider
web-like structure. The interaction between mass-spring elements, boundary reflections, and damping
effects governs the signal transmission efficiency in such networks. These findings have potential im-
plications for understanding biological signal processing in natural spider webs, as well as for designing
bio-inspired communication and sensing networks.
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5.2. Defects Definition

5.2.1. Introducing Adjustment to Structure, Physical Consequences of Defects

In modeling a physical network, certain nodes may become inactive, meaning they are effectively re-
moved from the system and do not contribute to the dynamics. To account for this phenomenon, we
introduce a Boolean function Iaive (i) which determines whether node i is active. The probability that
a node is inactive is given by pmissing-

where U; ~ Uniform(0, 1) is a uniformly distributed random variable. The presence of inactive nodes
must be managed to ensure the structural integrity of the system. Special boundary conditions ensure
that the central node (denoted as ¢ = 0) and nodes in a predefined fixed set remain active:

Tactive(0) = 1, Tactive(j) = 1 for j € Stixed-

In many real-world networks, mass irregularities can arise due to physical imperfections or environ-
mental influences. To simulate such irregularities, each node is assigned a mass m;, which under ideal
conditions is set to a uniform default value mgefauit. However, to incorporate variability, the mass of an
active node may be perturbed by a random multiplicative factor. With probability pmass, the new mass
of node i is given by:

m; = Mdefault * X4, Qi ~ Uniform(aminv amax)~

Only active nodes are subject to this transformation. The effect of these irregularities propagates
through the system by influencing the forces acting on the nodes and their subsequent accelerations.

Each structural connection between two nodes (i, j) is associated with an equilibrium length L. How-
ever, defects in the network can compromise these connections in two primary ways. First, an edge
may be entirely removed due to structural failure. The probability of an edge between two active nodes
being removed is denoted pproken, and the presence of an edge follows:

0, if Uz’j < Dbroken
1, otherwise,

]Iedge(ia ]) = {

where U;; ~ Uniform(0, 1) is independently sampled for each edge. The removal of an edge alters the
connectivity of the system and may lead to fragmentation in extreme cases.

For edges that are not entirely removed, there remains the possibility of weakening. A weakened edge
experiences a reduction in its stiffness coefficient, modifying its ability to transmit forces. This occurs
with probability pyeakened, and the new stiffness is given by:

kgefautt, if the edge is not weakened,
kedge = .
Edefault = fweakened, Otherwise.

where fweakened iS @ predefined reduction factor. The consequence of such modifications extends to the
forces experienced by the nodes, fundamentally altering the system’s response to external stimuli.

Nodes that become inactive do not undergo motion, and their velocity and acceleration satisfy:
V; = O7 a; = 0.

For active nodes, the dynamics are governed by Newton’s Second Law, where the acceleration is given
by:
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The force exerted between two connected nodes is governed by Hooke’s Law, which describes the
restoring force due to an elastic connection. If an edge remains in the system, the force acting between
two connected nodes i and j is given by:

ri—1rT;
Fij = —kedge ([Iri — ;| — Lo) M
i J

Here, the stiffness coefficient keqge May take different values depending on whether the edge has been
weakened, leading to significant alterations in the behavior of the network under applied forces. These
variations in connectivity, mass distribution, and force transmission collectively define the mechanical
properties of the system and contribute to emergent behaviors observed in complex networks.

5.2.2. Results

Following the equations compared two configurations of a spider web model: an Ideal Web with uniform
stiffness and connectivity, and a Defective Web in which certain nodes are missing and some edges
are weakened. The following figures (5.5 5.6)illustrate the dynamic responses and provide insight into
the underlying causes of the observed differences.

Time-Series Analysis: Ideal vs. Defective

Total Energy vs. Time Pulsed Node Displacement vs. Time Pulsed Node Real Displacement Components
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Figure 5.5: Grap represent time series of defected vs ideal web. Total Energy vs. Time (Left), Pulsed Node Displacement vs.
Time (Center), Real Displacement Components (X, Y) (Right).

Both configurations show an overall decay in energy due to damping. However, the Defective Web
exhibits a modified decay profile. The defects (missing nodes and weakened edges) disrupt the uniform
stiffness and connectivity, leading to non-uniform energy transfer and dissipation. As a result, the
pathway for energy to be stored and dissipated is altered, manifesting as deviations in the energy
decay curve.

The displacement of the node receiving the initial pulse is similar in both cases at early times, but differ-
ences become more pronounced as time progresses. Initially, the local impact of the pulse dominates
the response. Over time, however, the altered local stiffness and connectivity in the Defective Web
modify its natural vibration modes and damping characteristics, leading to differences in oscillation
amplitude and decay rates.

The decomposition into X- and Y-components reveals subtle phase shifts and amplitude variations in
the Defective Web compared to the Ideal Web. The asymmetry introduced by defects causes imbal-
ances in force transmission along different directions. This results in altered modal shapes and phase
differences, evidencing the sensitivity of the dynamic response to local structural changes.
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Defect Distribution on Web (Defective)
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Figure 5.6: The diagram highlights several key modifications in the Defective Web: Normal edges (blue): These remain intact
and maintain their full stiffness. Weakened edges (red dashed): These edges have reduced stiffness, compromising the overall
structural integrity. Missing nodes (red X): Nodes are entirely removed, disrupting the continuity of the w .

The comparative analysis between the Ideal and Defective web models reveals that structural defects
significantly influence the dynamic behavior:

» Energy Decay: The presence of defects alters the pathways for energy transfer and dissipation.
In the Defective Web, the irregular stiffness and connectivity cause variations in how energy is
stored and gradually dissipated over time.

+ Displacement Response: Although the initial response to the pulse is similar, the lack of uniformity
in the defective structure leads to divergent displacement behaviors. The natural frequencies and
damping properties are locally modified, resulting in amplitude differences and phase shifts in the
oscillatory response.

» Wave Propagation: The disrupted connectivity in the Defective Web affects how vibrational waves
travel through the structure. This is evident in the spatial distribution of deformations and the
altered modal shapes, which are critical in understanding the overall dynamic response.
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5.3. Signal Propogation and Defect Categorization

In this section, main goal is to investigate how different structural defects in a spider-web model affect
the propagation of an initial pulse (or “signal” as mentioned earlier in chapter 4) through the web. We
developed two separate Python Model codes:

» Code 1 (Initial Approach): Implemented mild or local defects (e.g., a single missing node, a single
missing edge, or one weakened edge) as in previous section with relatively higher damping and
a weak restoring force to the equilibrium position.

» Code 2 (Revised Approach): Introduced more dramatic defects (e.g., removing an entire radial,
removing the outer ring, weakening an entire inner ring), reduced damping, and eliminated the
ground restoring force to emphasize the differences in dynamic response caused by the defects.

In both codes, the web is represented as a collection of nodes (with masses) and edges (with spring-like
connections). The equations of motion are solved numerically using solve_ivp fromthe scipy.integrate
package in Python. We track the displacement of a pulsed node over time and compare the time series
and frequency domain (FFT) responses under different defect scenarios.

5.3.1. Initial Approach

» Defects: Single missing node, single missing edge, or a weakened edge.

+ Damping: Moderately high (¢ = 0.1) so the system dissipates energy relatively quickly.
» Ground restoring force: A small k,. that pulls each node to its initial position.

* Pulse: A moderate impulse applied to one interior node.

In Fig 5.7, we plot the displacement magnitude at the pulsed node for the Ideal Web, the Missing Node
case, the Missing Edge case, and the Weakened Edge case. Although some minor variations are
visible, all four curves largely overlap and decay to near zero by t =~ 15 s. As shown in Figure 5.7, the
frequency domain responses are also very similar.

That little difference is due the defects are small and localized (removing or weakening only a single
node/edge), and because the damping is high enough to overshadow subtle structural differences.
Additionally, restoring force (k,.) helps pull all nodes back to their equilibrium, further homogenizing the
response. This indicate that spider webs are very efficient structures that capture energy losses due to
their structure. This perfectly allings with conclusions made by different researchers that spider webs
are very sustainible structures due their structure.

Comparison of Signal Propagation in Different Defective Webs
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Figure 5.7: FFT comparison (Code 1): The amplitude spectra exhibit only slight differences among the four scenarios,
indicating that mild defects and higher damping produce nearly indistinguishable responses.
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5.3.2. Revised Approach

Since the initial approach did not reveal clear differences among defect categories, we introduced:

* More dramatic defects:
1. Removing an entire radial (all nodes/edges along one spoke).
2. Removing the outermost ring (affecting boundary conditions).
3. Weakening all edges in a middle ring to only 10% of their original stiffness.
» Lower damping (e.g., ¢ = 0.02) so oscillations last longer and differences in the structure have
time to manifest.
+ Stronger springs (k = 200) to increase the vibration amplitude, further amplifying structural differ-
ences.

FFT Analysis of Signal Propagation
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Figure 5.8: FFT comparison (Code 2): The new defect cases (large missing section, missing outer ring, weakened middle
ring) now produce distinct frequency peaks and amplitudes compared to the ideal case. Lower damping reveals each web’s
unique vibration modes.

Figure 5.8 illustrates the FFT analysis for:

1. No Defect (Ideal): Shows multiple harmonic peaks but a relatively smooth decay in amplitude at
higher frequencies.

2. Large Missing Section: Removing one entire radial (spoke) creates a significant asymmetry. A
new strong peak emerges around 3-5 Hz, indicating a shift in the natural frequencies.

3. Missing Outer Ring: The boundary is no longer intact, causing more pronounced lower(Ifrequency
modes and a strong peak near 2 Hz.

4. Weakened Middle Ring: Reducing stiffness in the middle ring alters intermediate modes, creat-
ing additional peaks in the 6—8 Hz range.

By combining larger defect areas (entire radial or ring removed/weakened), Lower damping, and no
ground restoring force, we effectively magnify the impact of local stiffness/connectivity changes on the
global vibration modes. Consequently, the signal propagation and energy decay exhibit clear differ-
ences for each defect scenario.



Discussion

This chapter critically revisits the main findings of the thesis, which explores signal propagation in spider
web-like networks. While the report offers intriguing models and simulation results, an in-depth analysis
of the underlying assumptions and methodologies reveals several areas of concern. This discussion
expands on earlier critiques by incorporating detailed aspects from the document, aiming to interrogate
every major component of the study.

6.1. Critical Review of Structural Models

The force distribution model is founded on a recurrence relation as in literature review, while mathe-
matically elegant, relies on several idealizations:

» Homogeneity Assumption: The model assumes that the radial threads (with stiffness K') and spiral
threads (with stiffness k) behave uniformly. In natural spider webs, however, thread diameters
vary (e.g., radial threads are typically 2.67 to 5 um versus 0.72 to 1.04 um for spiral threads),
leading to non-uniform stiffness and force propagation.

» Symmetry and Linearity: The recurrence relation implies a linear, additive force transmission
along idealized, symmetric nodes. Real webs are irregular, and stress concentrations or nonlinear
effects especially near damaged or defective areas may lead to deviations from these predictions.

6.2. Limitations of Signal Propagation Simulations
The thesis describes three distinct simulation methods for signal propagation:

Simple Collision Model

This model: Assigns fixed propagation velocities (e.g., 0.8 units/time for radial threads, 1.0 units/time for
spiral threads) and employs a discrete time-step approach. While useful for highlighting general trends
such as the high collision density near central nodes—the model’s discretization may oversimplify the
continuous dynamics of wave propagation, and the sensitivity to the chosen threshold undermines the
robustness of its predictions.

Random Walk Study
In this approach: A large number of signals perform random walks on a network modeled after the
web’s geometry. Collisions are recorded when signals meet at nodes or along edges.

The stochastic nature of the model introduces variability that might mimic real-world signal dispersion,
yet its physical basis is questionable. The absence of a rigorous derivation of transition probabilities or
energy considerations limits the validity of the inferred collision statistics. Moreover, the scalability of the
model is problematic, as increasing the number of signals or steps dramatically raises computational
demands.
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Wavefront Simulation

The most refined simulation method tracks signal packets continuously: Signal intensity is modeled with
energy loss factors and adaptive transmission, while collision detection is based on proximity criterial.
The simulation integrates physical properties such as tension and mass per unit length using the formula

vl =V Ei/p.
Despite offering a more detailed view of signal behavior, the method suffers from high computational

overhead. Simplified assumptions in the merging criteria and energy decay model might lead to over-
sights in complex interference patterns and the role of environmental noise.

6.3. Appraisal of the Advanced Mass-Spring and Defect Models

The thesis extends the analysis by introducing an advanced mass—spring network model with defects.
Key features include:

» Mass—Spring Network: Nodes are arranged on concentric rings, with forces computed via Hooke’s
law:
Ti — Xj
Fl] - k(llxl 337” Ll]) ||=Tz 7$j||.
The numerical integration, conducted using a Runge—Kutta method with very tight tolerances, is
designed to capture detailed dynamic behavior.

» Energy Dissipation and FFT Analysis: The simulation tracks total energy, demonstrating an ex-
ponential decay due to damping. FFT analysis is used to identify dominant vibrational modes, yet
the sensitivity of FFT to numerical noise calls the reliability of the spectral peaks into question.

» Defect Modeling: Defects are introduced by randomly deactivating nodes and weakening edges.
Although this stochastic approach mimics some aspects of natural imperfections, it lacks empirical
grounding. The parameters (e.g., missing node probability, weakened edge factor) are chosen
arbitrarily, making it difficult to assess their impact on network resilience without experimental
validation.

6.4. Implications for Bio-Inspired Artificial Network Design

One of the central ambitions of the thesis is to draw parallels between spider web mechanics and the
design of robust artificial networks. However, significant challenges remain:

» Scale and Material Discrepancies: Natural spider webs operate under biological constraints that
differ markedly from engineered communication systems. The scale, material properties, and
environmental interactions in engineered networks are not adequately addressed by the models.

+ Extrapolation of Simplified Models: The insights from idealized force distribution and vibrational
analyses may not translate directly into practical design guidelines. Without rigorous experimental
data or more complex models accounting for nonlinearity and heterogeneity, the potential benefits
of applying these principles to artificial networks remain speculative.

6.5. Conclusions and Recommendations for Future Work

While the thesis provides a framework for exploring signal propagation in spider web—like networks,
every key finding warrants further research. The reliance on idealized geometries and linear, additive
force laws simplifies the complex, heterogeneous nature of natural systems, and future models should
incorporate experimental data on silk properties and web geometry. In addition, the three simulation ap-
proaches each have limitations, refining these models to include continuous dynamics, realistic energy
dissipation, and non-randomized physical parameters would enhance their predictive capability. Exper-
imental validation is crucial; comparing simulation outcomes with empirical observations from actual
spider webs could help calibrate model parameters and validate the theoretical framework. Moreover,
before the principles of spider web mechanics can inform artificial network design, a more comprehen-
sive investigation into the scaling effects and material differences is required.

In summary, while the study makes a valuable contribution by attempting to bridge biological inspiration
and network theory, its conclusions remain provisional. A more rigorous, validated approach is needed
to confirm whether these bio-inspired models can indeed lead to robust, efficient artificial networks.



Conclusion

The thesis has explored the mechanics and signal propagation in spider web-like networks, combining
theoretical analysis with numerical simulations to uncover key principles underlying their resilient design.
By examining both static force distribution and dynamic signal behavior, we have gained a deeper
understanding of how natural systems efficiently manage stress and interference, and how these ideas
can inspire robust engineered networks.

The objective of the thesis was to explore how variations in velocity, geometry, and structural com-
plexity influence both force distribution and dynamic behavior, and the results have provided several
important insights into the design of resilient networks. The theoretical framework, established through
recurrence relations and derived from the mechanical principles observed in natural spider webs, un-
derpins the entire study. Through the thesis, only the network as a system where forces propagate
from node to node, it was shown that the hierarchical arrangement characterized by stiff radial threads
and flexible spiral threads ensures that stresses are effectively redistributed. This mechanism mini-
mizes localized stress concentrations and preserves the structural integrity even under damage. The
simulations confirmed that, as the stiffness ratio between radial and spiral elements increases, forces
are distributed more evenly toward the periphery, thereby enhancing the system’s overall robustness.

Dynamic simulations of signal propagation provided further insights. Three distinct approaches were
employed: a discrete collision model, random walk, and a continuous wavefront simulation. In the
discrete approach, the evolution of signals through the network revealed that central nodes, due to
their high connectivity, consistently experience intense activity and a higher frequency of collisions.
These collisions, which occur when multiple signal paths converge, serve as a natural mechanism for
energy dissipation and interference management.

Building on this, the random walk study introduced a random walk method to simulate signal trajectories.
By allowing signals to move in random directions across the network’s predefined paths, this approach
offered a complementary perspective on collision dynamics. Although less precise in tracking continu-
ous signal behavior, the random walk model underscored the stochastic nature of signal propagation
and provided evidence that even in seemingly chaotic movement, the central regions of the network
consistently experienced higher collision densities. This reinforced the conclusion that network hubs
are critical for understanding and optimizing signal transmission.

The most refined propagation model, the wavefront simulation, incorporated continuous tracking of
signal packets with energy loss, merging of colliding packets, and detailed time evolution of the system.
This method allowed for a precise quantification of how signals attenuate and interact over time, offering
a deeper insight into the dynamics of interference and energy dissipation. The wavefront simulation
not only confirmed the collision patterns observed in the simpler models but also revealed additional
subtleties such as the effects of energy decay and the temporal evolution of collision events. The
trade-offs between model resolution and computational cost were evident, with the wavefront approach
providing high-fidelity results at the expense of increased simulation complexity.
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In parallel to these studies, the advanced mass—spring network model provided a deeper understand-
ing of the vibrational dynamics inherent to these structures. By applying an initial velocity pulse to a
selected node and monitoring its displacement over time, the model captured the complex dynamics of
wave propagation in a damped, nonlinear medium. The resulting time series exhibited an exponential
decay in energy, consistent with the expected behavior of a dissipative system. Analysis through Fast
Fourier Transform (FFT) further revealed distinct vibrational modes—peaks in the frequency domain
corresponding to the fundamental and higher-order harmonics. These spectral features validate the
model’s ability to replicate the complex vibrational behavior of a spider web-like structure and provide
insights into how damping and structural parameters influence the overall dynamic response.

The simulation of defects introduced an additional layer of complexity to the study. By modeling missing
nodes, broken links, and irregular mass distributions, the research explored how imperfections affect
the network’s signal propagation. The results indicate that defects can lead to localized disruptions
and alter the force distribution, yet the overall structure remains surprisingly resilient. This observation
is in line with the biological inspiration from spider webs, where natural imperfections do not compro-
mise functionality. Instead, these networks adapt dynamically to maintain efficient signal transmission
despite damage or variability in material properties.

Overall, the findings of this thesis demonstrate that spider web-like networks embody a set of design
principles that are both efficient and resilient. The combination of strong radial elements and flexible spi-
ral connections provides an elegant solution for managing forces and minimizing the impact of damage.
Although the models presented here involve certain simplifications and face computational challenges,
they lay a solid foundation for future research.

Looking forward, several views for further investigation emerge. Enhancing computational methods—
such as through parallel processing or improved numerical algorithms—could allow for more detailed
and larger-scale simulations. Experimental validation, whether in the laboratory or in field studies of
natural spider webs, would help confirm the theoretical predictions and simulation outcomes. Moreover,
incorporating adaptive and stochastic elements into the models could yield a more realistic represen-
tation of natural variability, thereby refining our understanding of signal propagation under different
conditions.

In conclusion, this research not only deepens our understanding of the mechanics behind spider web
like networks but also highlights their potential as a source of inspiration for designing resilient commu-
nication, sensor systems and architecture.
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