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Abstract  
The use of wireline facies associations can alleviate core data shortage during facies prediction by providing 
a more extensive input dataset. Wintershall has assigned wireline facies associations directly on cored and 
un-cored wells in the Carboniferous of the Sothern North Sea. Conducting facies prediction using these 
wireline facies associations as an input can help with tapping into the remaining exploration and development 
potential of the area. However, the accuracy of this input must be evaluated using core data before machine 
learning algorithms are applied. This was quantified as 71% for 9 cored wells, where the background 
floodplain and braided channel facies had the highest accuracies of 88% and 81% respectively, and the 
mouth bars and marine shales facies could not be adequately validated due to their insufficient core sampling. 
Consequently, when using wireline facies associations for training facies prediction algorithms, this input’s 
intrinsic uncertainty should be accounted for while examining the outputs, especially for facies that are not 
sufficiently validated by cores. Applying facies prediction with Support Vector Machine (SVM), Multilayer 
Perceptron Neural Network (MLP) and Recurrent Neural Network (RNN), showed that RNN can achieve the 
highest overall accuracy of 80.9%, due to the highest F1 scores for braided channel (0.88), point bars (0.60) 
and coal (0.53). The class imbalance problem is apparent for this dataset where the majority classes of 
background floodplain, braided channel, point bar and coal, are more predicted than the minority classes of 
crevasse splay sands, mouth bars, and marine shale. Applying RNN on the Westphalian A, B and C 
separately served as a form of imbalance correcting technique that increased the F1 scores of 
underrepresented facies. Future work can further refine the results by exploring imbalance correcting 
techniques through under-sampling the background floodplain and over-sampling the crevasse splay, mouth 
bar and marine shale facies. 
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1 Introduction 
1.1 Literature Review 

More than twenty significant gas discoveries have been made in the Carboniferous of the southern 
North Sea since 1984 [1]. The British Geological Survey (BGS) has determined that there still 
remains a wealth of untapped potential in the exploration of undrilled prospects and the development 
of existing discoveries [1]. Building a high integrity geomodel indicating the distribution of facies in 
the subsurface is an essential part of exploration and development.  
 
It is typical for the availability of wireline logs to surpass that of rock cores for monetary reasons. 
Information derived from the limited lengths of cored intervals, such as lithofacies and facies 
associations, gives spatially restricted knowledge about the architecture of an entire field. As a result, 
efforts have been dedicated to developing methods for predicting lithofacies from wireline log 
measurements that extrapolate core observations to be supplemented into the geomodel. The 
limited availability of cores as input for facies prediction can hinder the effectiveness of the process 
or make it impossible. Wintershall has manually assigned wireline facies associations directly on 
wireline logs for a number of cored and un-cored wells in the Carboniferous of the Southern North 
Sea. This is accomplished by tying extensive knowledge of the Carboniferous basin with wireline 
log signatures. These wireline facies associations can potentially provide a more extensive input 
dataset for facies predictions compared to core data alone. 
 
The oldest facies prediction method relies on applying cutoffs to a well log histogram, which usually 
generates results that conflict with core data [2]. This is because a single log is insufficient for 
discriminating between facies where measured properties overlap due to the insufficient log 
sensitivity, noise, and measurement errors. Geological interpretation of well log data can be 
challenging because each log measures a different rock property and has a different depth of 
investigation and sensitivity. Prior to use, well logs should be corrected for environmental and hole 
conditions and normalized for the effect of different tool generations and vendors [2]. 
 
More advanced methods use multiple well logs to apply statistical and artificial intelligence 
approaches to reduce ambiguities. A plethora of unsupervised and supervised facies prediction 
methods using multivariate statistics are available. In unsupervised methods, such as k-mean and 
hierarchical clustering, no prior geological distribution model is supplied, and data-driven log trends 
are detected and assigned a geological meaning [3]. The number of facies to be interpreted can be 
decided upon using methods such as the Bayesian and Akaike criteria, in combination with 
geological knowledge [2]. The results from these methods are electrofacies that are characterized 
by log responses linked to geological attributes which distinguish one layer from another. These 
electrofacies are not always the same as facies, but they can be calibrated to facies identified in 
cores. Unsupervised methods can be advantageous because they can reveal associations with 
useful information to the geologic model. However, these methods are at the risk of creating 
unrealistic or geologically unmeaningful results, especially in complex lithologies [3]. For this reason, 
this project opted to focus on supervised methods. 
 
In supervised methods, such as support vector machine and neural networks, facies schemes are 
pre-defined using core data and existing geological knowledge. The goal of these types of methods 
is to find the best function to classify the data into the pre-defined facies in the scheme. This is done 
by conditioning the algorithm to link the pre-defined facies with the log data [3]. Some facies will 
have a clear log signature in one or more wireline log, while others are harder to discern. Some 
facies can be completely discrete while others gradually blend into one another. These non-discrete 
facies have a higher likelihood of being misclassified. Facies that are commonly difficult to 
differentiate in logs, due to similarities in properties and petrophysical signatures, are sometimes 
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grouped together [2]. Unknown observations are classified according to their likelihood of 
membership to one category or the other [3].  

1.2 Research Question 
Wireline facies associations are assigned directly on wireline data, which are a measured property 
of the rock, compared to core facies associations which are assigned directly on the rocks. 
Consequently, this thesis targets the questions: How accurate are the southern North Sea’s 
Carboniferous wireline facies associations compared to core facies associations? And, when these 
wireline facies association are used as a machine learning input, what supervised multivariate 
statistical method gives the best facies prediction results?  
 
Determining the accuracy of wireline facies associations compared to core data can help in 
understanding their effectiveness in alleviating core data shortage for facies prediction. Conducting 
facies prediction for the Carboniferous of the southern North Sea can contribute to tapping into the 
exploration and development potential of the area. Facies prediction provides an enhanced 
understanding of the distribution of facies beyond the location of cored wells and thus understanding 
the architecture, quality and behavior of reservoirs by providing inputs to geomodels. It also enables 
better predictions of volumes and fluid flow.  

1.3 Approach 
This thesis project aims to achieve the following: 

– Evaluate the accuracy of the wireline facies associations that have been picked on the 
wireline logs using core data. 

– Apply and compare three supervised machine learning facies prediction methods: Support 
Vector Machine, Multilayer Perceptron Neural Network (MLP) and Recurrent Neural 
Network (RNN). 

– Suggest a workflow and provide recommendations for facies prediction with the use of 
wireline facies associations as an input for the southern North Sea’s Carboniferous. 

1.4 Geologic Background  
The sediments of interest are of the Late Carboniferous (Westphalian) age in the southern North 
Sea, which  are preserved in the UK quadrants 43-53 and Netherlands quadrants D-S [4]. These 
deposits can be divided into the Westphalian A (Langsettian), Wesphalian B (Duckmantian) and 
Westphalian C/D (Bolsovian) and are topped by the base Permian unconformity [1] (Figure 1). In 
the southern part of the area lies the major northwest-southeast oriented Murdoch anticline. On 
either side of the anticline, Westphalian C/D can be found, while Westphalian A and B are found on 
the crest of the anticline and in the northern part of the area [5].  
 
The Westphalian is comprised of minor delta system crevasse splays, prograding into predominantly 
lacustrine interdistributary bay and floodplain areas, resulting in coarsening upwards and shallowing 
upwards fills. This is topped by meandering channels or coal seams, and by scattered braided 
channels. The sediment supply was primarily from the north and flowed on a south to southwestern 
historic slope resulting in a decrease in the amount of sand in the south. In the north, the difference 
in sand content found in wells suggests that syn-depositional faulting might have concentrated the 
major distributary channels. Overall, the thickness of the succession increases from north to south 
due to an increase in subsidence and proximity to the shoreline [5]. 
 
The Late Carboniferous in the southern North Sea has been extensively drilled and logged, and it 
contain gas discoveries. The most productive of these Carboniferous reservoirs are the Westphalian 
C/D, also known as the Ketch Member or the red beds, followed by the early Westphalian B Caister 
Sandstone unit, then the Namurain to early Westphalian A sandstones of the Millstone Grit 
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Formation. The Westphalian B to early Westphalian C’s Westoe Coal Formation have no significant 
gas yields [6].  
 

 
Figure 1. Stratigraphic column of the Upper Carboniferous, courtesy of PhD candidate Timothy Baars. 

 

2 Methods 
The project followed the workflow summarized in Figure 2, to first evaluate the validity of the wireline 
facies associations as a machine learning facies prediction input. Then, determine whether SVM, 
MLP or RNN yields the best facies prediction results for the Carboniferous in the southern North 
Sea. The workflow starts with selecting wells with good quality wireline logs, some of which are 
cored. After that, the dataset was explored with the use of cross-plots, histograms and violin plots 
to understand the distribution and signatures of the inputted wireline logs and their facies 
associations. Next, the accuracy of the wireline facies associations was evaluated with the use of 
cores.  
 
The wells are separated into a training set used to build classifiers and a smaller validation set to 
conduct blind tests. Machine learning estimators require that the dataset be standardized. A number 
of data scalers and transformers were tested to find the one that was the best fit for this project’s 
data. Once the data is standardized, SVM, MLP and RNN were applied on the dataset as a whole, 
and the results of the three methods are compared. The method that yields the best result is then 
applied to each Westphalian A, B, C unit separately to observe how the stratigraphic separation 
would affect the algorithm’s performance. The details for the steps in the workflow are described 
below. 
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2.1 Dataset Description 
The project is using a data set supplied by Wintershall from the UK Quadrants 44 and 49 and Dutch 
blocks D and E in the southern North Sea (Figure 3). A total of 17 wells targeting the Westphalian 
A, B and C of the Carboniferous were selected, 9 of which are cored (Table 1). Wells were selected 
based on log quality and core recovery. Since log coverage is always more extensive than core 
coverage, the total length of core being used represents 10% of the total length of logs being 
facilitated (Table 2).  
 

 
Figure 3. Map of the study area showing the wells being used in the project, courtesy of PhD candidate 

Timothy Baars. 

  

Selecting Wells Data Exploration
Validating wireline 
facies associations 

with Core

Separate wells into 
training set and 
validation set

Data Preparation

No stratigraphic 
separation

SVM

Blind tests

RNN

Blind tests

ANN

Blind tests

With Stratigraphic 
separation

SVM, MLP or 
RNN

Blind tests

Figure 2. Flow chart showing the project workflow. 
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Table 1. List of the selected 17 wells and indication of core description availability and logged intervals. 

Well Name Available Core Description Logged Intervals (Westphalian) 

44/12a-3 Yes A, B, C 
44/14-2 No C, B 
44/19a-8 Yes A, B, C 
44/21a-7 Yes A, B, C 

44/22b-8Z No A, B 
44/23-9 Yes A, B 
44/24-4 No A, B, C 
44/27-1 Yes A, B, C 
44/28-3 No A, B 
49/1-3 Yes B, C 
49/2-3 No A, B, C 
E16-3 No B, C 
E16-5 No A, B, C 
E18-3 No A, B, C 
E10-3 Yes A, B, C 

D15-A101 Yes B, C 
44/29-3 Yes B, C 

 

Table 2. Data description summary. 

Total Number of Wells 17 
Number of Cored Wells 9 
Total Log Length 9181 m 
Total Core Length 936 m 
% Core Coverage of Total Log Length 10% 
Total Number of Wireline Facies Associations 7 

 
A sedimentary facies scheme was developed based on published and unpublished sedimentological 
information on different parts of the Carboniferous basin in addition to extensive onshore field work 
by authors in the East Midland and Yorkshire [4]. The scheme is based on sediment grain size, body 
geometry, upper and lower boundaries and sedimentary structures. The wireline log characteristics 
of each facies has been identified [4]. All 17 wells being used in this project have gamma ray, density, 
neutron, sonic and resistivity logs, while some have spectral gamma ray logs. Wireline facies 
associations have been manually assigned to these wells by Wintershall following the same 
aforementioned facies scheme (Table 3). The well logs and the wireline facies associations logs are 
used as the input data for the supervised machine learning algorithms.  
 

Table 3. Geological description and log signature of the Wintershall wireline facies associations [5][4]. Log 

signature examples are taken from the wells used in this project. 

Wireline 
facies 

association 

Geological Description 

Log Signature Lithology Grain Size Sorting Thickness Sedimentary 
Structures 

Background 
Floodplain 

(FP) 

Mudstones, 
siltstones and 
fine-grained 
sandstones. 
May contain 
siderite or 
pyrite 
nodules. 

Clay and silt 
sized, with 
some fine-
grained sand. 
 - - 

Usually 
structureless 
due to rootlet 
disturbances 
and 
bioturbations. 

High gamma 
ray. The 
presence of 
ironstone 
nodules 
would cause 
relatively 
lower 
responses. 

 

Braided 
Channel 

(BC) 

Mainly clean 
sandstones 
with an 
erosive base 
and sharp 
top. 

Varies widely 
from fine to 
very coarse 
and 
conglomeritic 
within a body. 
Overall fining 
upwards. 

Range from 
well sorted to 
poorly sorted 
as grain sized 
increases. 

Typically 20-
30 meters 
and can 
locally be up 
to 50-60 m. 

Well-
developed 
cross-
beddings. 

Blocky and 
consistent 
gamma ray 
with 
pronounced 
top and 
bottom 
inflexions. 
Finer grains  
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can cause 
localized 
fluctuations. 

Point Bar 
(PB) 

Meandering 
or high 
sinuosity 
channel 
deposits. 
Argillaceous 
sandstone 
with local 
mudstone 
interclasts 
deposited by 
high sinuosity 
channels. 
Have an 
erosive base 
and a 
gradational 
top. 

Mostly fine 
and very fine. 

Well sorted. Maximum 
thickness of 
20-25 m. 

Commonly 
contain 
epsilon cross 
bedding and 
small-scale 
cross 
bedding, 
ripple cross 
lamination, 
and parallel 
laminations. 

Sharp 
gamma ray 
base 
inflexion, but 
the top can 
be either 
sharp or 
gradational 
depending 
on the 
body’s 
lithology. 

 

Crevasse 
Splay 
Sands 
(CSS) 

Argillaceous 
sandstone 
with 
interbedded 
siltstones. 

Very fine to 
fine. Typically 
have a 
gradational 
base and 
coarsening 
upwards. 
Occasionally 
have an 
erosional 
base and fine 
upwards. 

Well sorted.  Typically 2-5 
m. 

Convolute 
and ripple 
cross 
laminations, 
discontinuous 
parallel 
laminations 
and small-
scale trough 
cross 
bedding. 

Upward 
decreasing 
gamma with 
sharp upper 
contact 
inflexion. 
Can also be 
bell-shaped 
upward 
increasing 
Logs are 
internally 
erratic 
correspondin
g to the 
interbedding 
of lithologies.  

 
 

 

Coal 
(Co) 

Result of 
compacted 
peat swamps. 

- - 

On average 
2-3 m. 

- 

Very 
distinctive 
spikes of low 
gamma, low 
density, and 
high neutron 
and sonic. 

GR

 
RHOB 

 
NPHI 

 
DT 

 

Mouth Bar 
(MB) 

Fairly clean 
sandstone 
unit overlying 
a mudstone 
or siltstone. 

Usually 
coarsening 
upwards from 
very fine to 
fine, but can 
be locally 
coarse and 
fining 
upwards. 

Sand unit is 
well sorted. 

Mud/siltstone 
unit is 
typically 10-
15 m thick. 

Sandstones: 
ripple cross 
laminations at 
the base and 
trough cross 
bedding at the 
top. Mud/ 
siltstones: 
parallel 
laminations or 
homogenized 
by 
bioturbations.  

Gamma ray 
and sonic 
gradually 
decreases 
upwards with 
a sharp 
upper 
inflexion.  

Marine 
Shale 
(MS) 

Condensed 
dark 
mudstone . 

Clay sized 
grains. 

- - 

Presence of 
macrofauna 
such as 
goniatites and 
micro-
gastropods.  

Gamma ray 
as high as 
150 API. 
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When facies were being picked by Wintershall on the well logs, the braided channels, point bars, 
crevasse splays, coals, mouth bars and marine shales are recognized by their log signatures (Table 
3), then any depth interval that has not been identified as one of these 6 facies was assigned as a 
background floodplain. This makes the background floodplain inclusive of the lake, marine bay and 
interdistributary bay deposits. Marine shale bands have been characterized as being difficult to 
identify with certainty in offshore wells, especially when it comes to correlating them to key onshore 
bands [5][4].  

2.2 Dataset Exploration  
A combination of histograms, cross plots and violin plots can be used to explore the dataset. 
Histograms can be used to view the distribution of facies in the wells for all Westphalian as a whole 
and each of the A, B and C units separately. A cross plot matrix can be used to visualize the 
relationship between the variables in the data set and the overlap or separability of the data. To 
understand the statistical distribution of each facies with respect to each wireline log, violin plots can 
be used, where the probability density, modality, range, median and interquartile range of each 
facies can be viewed and compared for all eight wireline logs. 

2.3 Validation of Wireline Facies Associations with Core Data 
In order to determine the quality of the machine learning inputs it is important to evaluate how 
accurately the provided facies associations are. Since the wireline facies associations are assigned 
using log data only, core validation is needed. To validate this, 9 of the 17 selected wells were cored 
wells with good quality cores and core descriptions containing core facies associations. There are 
several challenges accompanying this validation process. Each core has been described by a 
different company or a different individual and descriptions date between 1992 and 2016. This can 
introduce discrepancies such as those related to conventions and use of nomenclature. Another 
shortcoming of this process is that core coverage is always shorter than log coverage and cores 
usually target reservoir sand sections. Consequently, only limited sections of each well can be 
validated and some facies can be validated more than others.  
 
For each of the nine cores, the facies associations and their core descriptions were linked to their 
wireline log response and in turn their comparable wireline facies association. The result is a facies 
classification that is unified for all the cores which follows the classification of the wireline facies 
associations (Table 3). The facies from the core descriptions were digitized, depth shifted and plotted 
using the unified code. Then, the accuracy from the match between the wireline and the core facies 
associations was calculated.  
 
The total depth shift applied to each core reflects that which has been applied by the core loggers 
in addition to adjustments made when the digitized core facies associations were plotted next to the 
logs and wireline facies associations (table 4). This additional depth shift was applied using clear 
markers such as the top and bottom of braided channel sand bodies where the gamma ray has clear 
sharp inflexions.  
 

2.4 Data Preparation and Preprocessing 

2.4.1 Data Preparation 
Many machine learning algorithms are design for input data with values close to zero and with 
comparable scales. Metric-based and gradient-based estimators require a dataset that is centered 
and with a unit variance, i.e. a standardized dataset. Using unscaled data as input can slow down 
or prevent the convergence of estimators [7]. A total of five scalers and transformers were explored 
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and their effectiveness is observed. Scalers are linear, while transformers differ in the way in which 
they estimate the parameters used for scaling.  
 
2.4.1.1 Standard Scaler  
In this scaling method, the mean is removed and the data is scaled to a unit variance. This method 
is sensitive to the presence of outliers when the empirical mean and standard deviation are 
calculated, and thus it does not guarantee the output of balanced feature scales [7].  
 
2.4.1.2 Min-Max Scaler 
Each feature is rescaled individually with this scaler such that all values fit in the range [0,1]. Similar 
to the standard scaler, the min max scaler is also sensitive to outliers [7].  
 
2.4.1.3 Robust Scaler 
With this method, the median is removed and the data is scaled according to the interquartile range, 
i.e. the range between the first (25th quantile) and the 3rd quartile (75th quantile). This is done 
independently on each feature. Since percentiles are used for centering and scaling, this method is 
not sensitive to vary large marginal outliers. This can lead to better results compared to outlier 
sensitive scalers, but can also create comparatively larger ranges for the scaled features [7].  
 
2.4.1.4 Power Transformer (Yeo-Johnson) 
This is a non-linear, parametric, monotonic transformation where data is mapped to a normal 
Gaussian-like distribution in order to minimize the skewness and stabilize the variance by applying 
a zero-mean unit variance normalization [7].  
 
2.4.1.5 Quantile Transformer (Uniform and Gaussian Output) 
This is a non-linear transformation that shrinks the distance between outliers and inliers by mapping 
the probability density function of each feature to either a uniform distribution or a Gaussian 
distribution within the range [0,1]. Similar to the Robust Scalar, this method is less sensitive to the 
addition or removal of outliers. However, outliers are collapsed into the predefine range, which can 
lead to saturation artifacts for extreme values [7]. 
 

2.4.2 Data Preprocessing 
The Westphalian formations have all been deposited as continuous successions, thus a unified 
facies scheme is applicable for all three units. However, there are differences in which facies are 
more occurrent in each of the Westphalians [4]. This difference is also apparent in the histogram 
distributions of the input data (Figure 7). As a result, each machine learning method detailed below 
has been applied twice, once on the data as a whole with Westphalian A, B and C grouped together, 
and once after stratigraphically separating the data into three Westphalian formations. The result of 
applying this stratigraphic separation is then observed and compared to those of the lumped data. 

2.5 Facies Prediction 
Three machine learning facies prediction methods are applied in this project: Support Vector 
Machine (SVM), Multilayer Perceptron Neural Networks (MLP), and Recurrent Neural Networks 
(RNN). All three methods start with separating the input data, which is in the form of well logs with 
facies associations, into a training set and a smaller validation set. The training set is used for the 
algorithm to discover features and trends and build a classifier accordingly.  
 
Often times, a subset is separated from the training set and used for cross-validation of the 
developed classifier. Cross-validation is used to tune the parameters of the model. This is done by 
creating a series of models with different combinations of parameters to find the optimal choice of 
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parameters. The model with the lowest cross-validation is the one used as a classifier to train the 
training set. Instead of the exhaustive process of model parameter selection, which can make 
classifiers more complex and take longer to train, this project opted for using recommended 
guidelines for the choice of parameters and focus on comparing the efficacy of different methods 
[4][1].  
 
The validation set has been separated from the initial data set so that it can be used to evaluate the 
accuracy of the classifier by comparing the predicted and the assigned wireline facies associations. 
This is known as a blind test. In the blind test, precision, recall and confusion matrices are used to 
evaluate the performance of the classifier. Precision is the probability that a sample actually belongs 
to the class it was assigned to, while recall is the probability that a sample will be classified into the 
correct class. These two criteria are combined into the F1 score for each facies association, and for 
the classifier overall [4]. During this process, it is important to differentiate between facies 
associations with high prediction success rate and those difficult to discern. Once a satisfactory 
validation is reached, the classification method can be applied to wells that have no facies 
associations [3]. 
 

2.5.1 Support Vector Machine (SVM) 
Support vector machine is commonly used for regression and classification objectives. The input for 
the algorithm is called a feature vector. In the case of facies prediction, the feature vector is the set 
of measurements at each depth interval that can be comprised of log measurements and indicator 
variables. Each feature vector is associated with a class which represents the facies type. For data 
that is not linearly separable, as shown in the cross-plot matrix (Figure 8), the goal of the algorithm 
is to project the data into the N-dimensional space, with N equal to the number of features, where it 
can find a hyperplane that can separate the data (Figure 4). This is done during the training step 
with the use of a kernel function. The position and orientation of the hyperplane is influenced by the 
data points closest to it. Different kernel functions can be used for this purpose [11]. 
 
The advantages of this method lie in its effectiveness in high dimensional spaces, its use of support 
vectors that represent subsets of the training points that make it memory efficient, and its versatility 
where a common or customized kernel function can be used. The disadvantages are that there is a 
risk of over-fitting the data if the number of features is much greater than the number of samples, 
and that this method does not directly provide probability. 
 
To apply SVM, the code developed by Enthought’s Brendon Hall was facilitated [4]. The code uses 
the SVM open-source Python implementation in scikit-learn. The SVM classifier is built and tuned 
by using cross-validation for model parameter selection. The Radial Basis Function (RBF) kernel is 
used, which takes two parameters: C and gamma [4]. The C parameter is common for all kernel 
functions. It determines the tradeoff between allowable misclassification and the simplicity of the 
decision surface. A low C value gives a smooth surface with higher room for misclassification, which 
might make the model unable to classify outlier and result in larger errors. A high C has a less 
smooth surface but aims at more correct classification, which might lead to overfitting, making a 
classifier unable to generalize when applied on new data. The gamma parameter is specific to the 
RBF kernel. It represents the inverse of the radius of influence of a sample in the feature space, with 
low values meaning higher distances and high values meaning closer distances. The trained and 
optimized model can then be applied on blind wells for further validation, after which the classifier is 
ready to be applied to wells with no facies assignment. After several experiments with the model 
parameter selection step with this project’s dataset, it was observed that the recommended default 
parameters [4] yielded the best results. Thus, the cross-validation step was not incorporated in the 
final results. 
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Figure 4. Example of hyperplanes in 2D and 3D [12]. 

2.5.2 Multilayer Perceptron Neural Networks (MLP) 
The theory for artificial neural networks (ANN) stems from neuroscience research on the structure 
and function of the brain. Limitations of ANNs include their inability to generate physical 
interpretations and the tendency to create facies clusters with similar proportions, which can be 
compensated for by integrating geologic knowledge [2]. There are three main classes of neural 
networks, two of which have been implemented in this project: Multilayer perceptron (MLP) and 
recurrent neural networks (RNN).  
 
MLP is the classical type of neural networks. A conventional MLP neural network is comprised of a 
hierarchy of layers in which nodes are connected by arcs (Figure 5). Every node is arithmetically 
equivalent to the sum of the proceeding nodes, where each is multiplied by the weight of the 
connecting arc. A basic network contains three layers: an input layer, a hidden layer and an output 
layer. As the name suggests, the input layer contains the input data or features. The hidden layer 
transforms values from the input neurons with a weighted linear summation followed by a non-linear 
activation function. The output transforms the values received from the hidden layer to output values. 
While training the network, a set of patterns are repeated, and arc weights are modified to obtain a 
better match between the output and the desired result. Training is conducted by backpropagating 
errors through the network. The difference between the output and desired results is used as 
incremental adjustments to the interconnection weights in an iterative manner. A trained network is 
achieved when the weights converge to an equilibrium setting [3]. 
 
Even though it is possible to make a neural network training set complex enough with many hidden 
layers and nodes per layer to produce nearly perfect results, doing so is undesirable and 
unnecessary. That is because doing so would increase the likelihood that the network would 
memorize associations in the training set and loose the ability to generalize leading it to perform 
worse when new observations are used to generate predictions. A generalizing network is capable 
of filtering out localized and random errors and absorbing systematic trends linking observations 
[3][1]. The advantages of MLPs include their ability to learn non-linear models in real time. The 
disadvantages include: First is that the hidden layers have a non-convex loss function where more 
than one minimum exist, which means that different initial random weights can result in different 
levels of accuracy; Second, that the network requires the tuning of the number of neurons, layers 
and iterations; Third, the network is sensitive to feature scaling [14]. 
 
To apply this method, the code provided by SEG was utilized. Similar to the SVM execution, this 
code also uses the scikit-learn Python package to apply MLP [15]. A parameter optimization step 
was not applied. Instead, the complexity of the network was kept at a minimum by following two 
rules for choosing the number of hidden layers and neurons. The first rule is that one hidden layer 
is used, since that is considered sufficient for the majority of problems. The second rule is that the 
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number of hidden neurons should be between the number of input and output neurons, or the mean 
of the sizes of the input and output layers [1]. 
 

 
Figure 5. Model of a simple neural network [16]. 

2.5.3 Recurrent Neural Networks (RNN) 
Recurrent Neural Networks, compared to Multilayer Perceptrons, have additional connections that 
add memory to the network allowing it to learn broader abstractions. These additional loops and 
architecture allow signals to not only be passed forward from one layer to another, but also laterally 
between neurons of a layer, and to feedback the output as input [17] (Figure 6).  
 
A successful RNN needs to address two issues, backpropagation training and the prevention of 
gradient vanishing or exploding. Backpropagation of error is used in typical networks to update its 
weights. However, this breaks down in RNN because of the loop connections. This issue is solved 
with unrolling an RNN network by creating copies of neurons that have recurrent connections. When 
backpropagation is used on unrolled networks, gradients that are calculated to update weights can 
become unstable. They can either explode by become very large or vanish by becoming very small. 
This problem is addressed in RNNs with the use of architecture known as Long Short-Term Memory 
Networks (LSTM) [17].  
 
LSTM networks use memory blocks with several components and a memory instead of neurons. 
Each block contains gates that manage its state and output with a sigmoid activation function. There 
are three types of gates: A forget gate that conditionally determines which information is discarded 
from a block; An Input gate that conditionally determines which input values to update; An output 
gate that conditionally determines what to output based on the input and the memory of the block. 
Each gate has a weight that is learned and updated during the training [17]. To apply this method, 
the keras Python package was used to apply a facies classification with RNN and the Gated 
Recurrent Units (GRU) gating mechanism [18]. GRUs are similar to LSTM but without an output 
gate [19]. 
 

 
Figure 6. Diagram of a basic recurrent neural network [20]. 
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3 Results 
3.1 Dataset Exploration 
Since the facies were predominantly picked based on the gamma ray log signatures, the gamma 
ray violin plot shows the most variation in the distribution of the facies (Figure 10.a), followed by the 
density and neutron (Figure 10.b, c). Appendix A shows tables summarizing the count, mean, 
standard deviation, minimum value, maximum value and 25th, 50th and 75th percentiles for the logs 
of each facies. 
 
The distribution of facies in the wells used in this project shows that there is a significant difference 
in the sampling of each facies, where the floodplain facies makes up for 66% of the dataset (Figure 
7.d). Westphalian A covers 14% of the dataset, and the Westphalian B and C cover 62% and 24%. 
All 7 facies have been identified in the Westphalian A sections of the wells. However, no marine 
shales were identified in the Westphalian B and C, and no coals occur in the Westphalian C (Figure 
7.a, b, c).  
 
A cross plot matrix can be used to visualize the relationship between the variables in the data set 
(Figure 8 and Figure 9). These cross plots demonstrate that the data of all facies overlap and cannot 
be linearly separable, making it necessary to apply advanced methods to achieve classifications for 
facies prediction.  
 
a. 

 

b. 

 
c.  

 

d. 

 
Figure 7. Distribution of the data by facies in (a) Westphalian A only, (b) Westphalian B only, (c) Westphalian C 

only, (d) Westphalian A, B and C Combined. Note that the background floodplain facies occurs significantly 

more than any other facies. 
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Figure 8. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies. 

Note that the data of all facies heavily overlap, and large outliers are present.  

 
Figure 9. 3D plot of the gamma ray, density and neutron logs sorted by facies. Note that the data of all facies 

still heavily overlap as observed in 2D cross plots. 
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a. 

 

b. 

 
c. 

 

d. 

 
e. 

 

f. 

 
g. 

 

h. 

 
Figure 10. Violin plots showing the statistical distribution of each facies with respect to each wireline log: (a) 

gamma ray, (b) density, (c) neutron, (d) sonic, (e) resistivity, (f) potassium (g) thorium and (h) uranium. The 

gamma ray shows the most difference between the facies, followed by the neutron and density. 
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3.2 Validation of Wireline Associated Facies with Core Data 
The calculated overall accuracy of all 9 wells is 71% (Table 4) (appendix B - D). Table 5 breaks 
down the core by facies and shows the percentage of presence of each facies in the cores, and the 
percentage of which that has been correctly identified by wireline facies associations. Coring 
operations target reservoir units, and thus braided channels are more sampled than other facies, 
making it an easier facies to validate. This also means that other facies are under sampled and less 
validated.  
 
The marine shale facies has not appeared in these offshore cores, and in some instances, what was 
identified as marine shale in the logs corresponded to background floodplain in the cores. 
Consequently, the validity of marine shale in the wireline facies association is unknown. As 
mentioned above in the data description and exploration section, this facies is difficult to recognized 
in the wireline data of the offshore realm. Extensive coring and sidewall coring is necessary to 
identify the marine macrofauna characteristic of this facies. For these reasons, marine shale and 
background floodplain can possibly be treated as non-discrete facies. 
 
In the examined core descriptions, mouth bar was only identified in one interval in well 49/1-3 (figure 
6D appendix D). The mouth bar facies association in the wireline logs often correspond to crevasse 
splay sands in the core. Since mouth bars are part of the crevasse splay system, these two facies 
can be considered as adjacent and non-discrete, similar to the marine shale and background 
floodplain facies. 
 
The three wells with accuracy lower than 70%: 44/27-1, D15-FA101 and 44/29-3, were excluded 
from the training set and used for the blind tests, along with the well 44/19a-8 which has the highest 
accuracy of 89%. This means that a total of five cored wells with a total accuracy of 76% are being 
used as part of the training set, and 4 cored wells are being used for the blind tests. For the 3 wells 
with the lowest accuracy, part of the blind test evaluation would be to determine whether the machine 
learning algorithm can predict facies with a higher match to the core facies associations than the 
match between the core and wireline facies associations. 
 

Table 4. Amount of depth shift applied to each core and the percent match between the wireline and the core 

facies associations. 

Well Name Total Depth Shift [m] 
Percent Match between Wireline and Core Facies 

Association 

44/12a-3 +4.0 81% 
44/19a-8 +0.0 89% 
44/23-9 +3.0 70% 
44/24-4 +6.2 79% 
44/27-1 +4.0 69% 
49/1-3 +9.0 85% 
E10-3 +2.0 72% 

D15-A101 +6.0 54% 
44/29-3 +0.0 47% 

Overall Accuracy  71% 

Accuracy of Training Wells Only  76% 

 

Table 5. Percent presence of each facies in the core and percent match with the wireline facies associations. 

Core Facies Associations % of Core Correctly Identified by Wireline Facies Associations 
Background Floodplain (FP) 39.4% 88% 
Braided Channel (BC) 39.1% 81% 
Point Bar (PB) 3.2% 47% 
Crevasse Splay Sands (CSS) 16.3% 16% 
Coal (Co) 1.8% 29% 
Mouth Bar (MB) 0.2% 100% 
Marine Shale (MS) 0% 0% 
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3.3 Data Preparation 
The input features of the dataset have very different scales and large outliers makes it difficult to 
visualize the data and can degrade the performance of machine learning algorithms. The five input 
wireline logs: Gamma ray, density, neutron, sonic and resistivity have scales thar are very dissimilar 
and large outlier are present (Figure 8), making the data preparation for machine learning more 
challenging. This is particularly more apparent with the resistivity log, which has a range of [0, 
10,000] with large outliers especially from the braided channel facies, and the sonic log, which has 
a range of [0, 400] with the largest outliers from the coal facies (Figure 11).  
 

 
Figure 11. Cross plot of resistivity versus sonic before scaling showing large outliers. 

Out of the five scalers and transformers applied, the Yeo-Johnson power transformation and the 
quantile transform appear to be the most effective because they were able to produce centered data 
with comparable scales despite outliers. The standard scaling method resulted in features with 
different spreads: [-2.5,5] for gamma ray, [-5, 2.5] for density, [-2.5,10] for neutron, and [0,15] for 
resistivity and sonic (Figure 12). With the min-max scaler, even though all features have been fit into 
the predefined range of [0,1], the inliers for the resistivity data are compressed in the range [0, 0.25], 
and the inlier for the sonic data are compressed between [0, 0.5] because of the outliers in these 
two features (Figure 13). For the robust sacler, since the input features have very different scales 
and this scaler is applied independently on each feature, the resulting ranges are not comparable 
(Figure 14). 
 
The Yeo-Johnson power transform performed comparatively better than the three scalers above. 
The results show a range of [-2.5, 2.5] for resistivity, neutron and the inliers of density, and [-2.5, 
7.5] for the inliers of gamma ray and sonic (Figure 15). This transformer achieves a normal 
distribution centered around zero for all features including the resistivity and sonic data (Figure 16). 
The quantile transforms, with both uniform (Figure 17 and Figure 18)  and gaussian (Figure 19 and 
Figure 20) distribution, has been the most effective in standardizing the data set by centering it and 
achieving perfectly comparable scales for all input features. The quantile transforms’ rescaling of 
outliers introduces the risk of artifacts. For this reason, the three machine learning methods have 
been tested using data that has been transformed by the Yeo-Johnson power transform, quantile 
transform with uniform distribution, and quantile transform with Gaussian distribution. 
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Figure 12. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after standard scaling. Comparable scales for all logs were not achieved. 

 
Figure 13. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after min-max scaling. Comparable scales for all logs were achieved, but the inlier of the resistivity and sonic 

are compressed into small ranges due to outliers. 
 



       

23 
 

 
Figure 14. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after robust scaling. Comparable scales were not achieved.  
 

 
Figure 15. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after power transformation (Yeo-Johnson). A normal distribution centered around zero was achieved for all 

logs with comparable scales for resistivity, neutron and the inliers of density, and comparable scales for the 

inliers of gamma ray and sonic. 
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Figure 16. Cross plot of resistivity versus sonic after power transformation (Yeo-Johnson). 

 
Figure 17. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after quantile transformation (uniform pdf). All scales are comparable for all logs. 

 
Figure 18. Cross plot of resistivity versus sonic after quantile transformation with normal distribution showing 

that outliers have been eliminated by rescaling. 
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Figure 19. Cross plot matrix with histograms showing the variation of wireline measurements sorted by facies 

after quantile transformation (gaussian pdf). The scales for all logs are comparable with a normal distribution 

centered around zero. 

 
Figure 20. Cross plot of resistivity versus sonic after quantile transformation with gaussian distribution 

showing that outliers have been rescaled. 
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3.4 Facies Prediction 
In all three machine learning methods, the quantile transform with Gaussian distribution achieves 
the highest blind test accuracy (Table 6). The confusion matrices show that the F1 score, which 
reflects the balance between precision and recall, for the background floodplain remained within the 
same range of 0.88-0.90 for all trials. However, the F1 score of the other facies was lowest for the 
power transformed data and highest for the quantile transformed data with a Gaussian distribution 
(Table 7 – Table 9 and appendix E). 
 
When SVM, MLP and RNN were applied to the training data as a whole without stratigraphic 
separation of the Westphalian units, none of the three methods made predictions for all seven 
predefined facies (Figure 21). The SVM classifier did not make any predictions for the crevasse 
splay sands nor marine shale facies. The MLP classifier did not make any predictions for the mouth 
bar facies. The RNN classifier made no predictions for the marine shale facies. For all three 
methods, facies with higher occurrence (Figure 7d), which are the background floodplain, braided 
channel, point bar and coal, were more likely to be predicted compared to facies with lower 
occurrence, which are crevasse splays, mouth bars and marine shale (Figure 22 - Figure 25).  
 
Three of the four blind wells, 44/27-1, D15-FA101 and 44/29-3, have a core validation accuracy less 
than 70% (Table 4). These wells were used to test whether using the wells with higher accuracy for 
training would result in predictions with a higher match to the core facies associations compared to 
the match between core and wireline facies associations. An example of an interval where that has 
occurred is in well 44/29-3 around 3675 meters, where all three machine learning algorithms 
correctly identifies an interval as a braided channel that has been erroneously identified as a point 
bar in the wireline facies associations (Figure 23). However, overall, the predicted facies match the 
wireline facies association logs more than the core.  
 
The recurrent neural network (RNN) has achieved the highest overall accuracy of 80.9% from the 
three methods (Table 6). Confusion matrices for blind well 44/19a-8 (Table 7 -  
Table 9) show that all three methods achieve a comparable F1 score of 0.88 or 0.89 for the 
background floodplain facies (FP), but that the higher overall accuracy of the RNN is attributed to 
the higher F1 scores for the braided channel (BC), point bars (PB) and coal (Co) facies, which 
increased by 5-6%, 25%, 26-36% respectively from the SVM and MLP to the RNN (Table 7 - Table 
9). These improvements can be visually observed in the prediction logs where the RNN more 
accurately predicted solid intervals of point bars or braided channels, and it made less erroneous 
coal predictions (Figure 22).  
 
The data set was stratigraphically separated into Westphalian A, B, and C, and RNN was applied 
on each Westphalian unit independently. The results were then concatenated (Figure 22 - Figure 
25). This approach has achieved a lower overall accuracy of 75.6%. This decrease in overall 
accuracy is because the F1 score of the background floodplain, braided channel and point bar facies 
decreased, which can be due to the decrease in the number of samples in each of these facies once 
they have been separated into different Westphalian units (Table 10). However, compared to the 
classifiers that have been applied to the data as a whole without stratigraphic separation, this 
approach made predictions for all seven facies (figure 22 k-o), and the F1 score of the mouth bar 
facies increased from zero to 0.10 and that of the marine shale increased from zero to 0.17 (Table 
10). 
 
The overall accuracy of the blind test for the stratigraphically separated data increases to 78.6% 
when adjacent facies are considered. Adjacent facies groups crevasse splays and mouth bars as 
non-discrete facies, and background floodplain with marine shale. With this arrangement of facies, 
the F1 score of crevasse splays increases to 0.03, and that of marine shale to 0.84 (Table 11). 
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For both RNN methods with and without stratigraphic separation, the statistical distribution of the 
predicted background floodplain and braided channels have the highest match to that of the input 
(Figure 26). Without the stratigraphic separation RNN was unable to make marine shale predictions. 
However, with the stratigraphic separation, the statistical distribution of the marine shale highly 
matches that of the input. 
 

Table 6. Accuracy of blind test on 44/19a-8 with SVM, MLP and RNN using different transformers. Quantile 

transform with a Gaussian performs best in all three, and RNN has the highest accuracy. 

 Power Transform Quantile Transform 
Uniform PDF 

Quantile Transform 
Gaussian PDF 

Support Vector Machine (SVM) 76.3% 78.7% 78.9% 
Multilayer Perceptron (MLP)  77.5% 78.1% 78.4% 
Recurrent Neural Network (RNN) 78.7% 80.3% 80.9% 
RNN with Stratigraphic 
Separation - - 75.6% 

RNN with Stratigraphic 
Separation for Adjacent Facies - - 78.6% 

 
a. 

 

b. 

 

c. 

 
Figure 21. Violin plots showing the statistical distribution of each facies with respect to each wireline log as 

predicted by the blind tests with (a) SVM, (b) MLP, (c) RNN all of which after quantile transform with a 

Gaussian distribution. None of the three methods made predictions for all seven facies. 

Table 7. Confusion matrix of SVM blind test on well 44/19a-8 after quantile transformation (Gaussian PDF). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1752 3 36   11     1802 
Braided Channel (BC) 30 453 38   18     539 
Point Bar (PB) 72 84 124         280 
Crevasse Splay Sands (CSS) 94   16         110 
Coal (Co) 50   2   26     78 
Mouth Bar (MB) 83   25   2     110 
Marine Shale (MS) 64             64 
Precision 0.82 0.84 0.51 0.00 0.46 0.00 0.00 0.71 
Recall 0.97 0.84 0.44 0.00 0.33 0.00 0.00 0.79 
F1 0.89 0.84 0.48 0.00 0.39 0.00 0.00 0.74 

 

Table 8. Confusion matrix of MLP blind test on well 44/19a-8 after quantile transformation (Gaussian PDF). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1752 2 34  14   1802 
Braided Channel (BC) 37 432 49  21   539 
Point Bar (PB) 87 67 125  1   280 
Crevasse Splay Sands (CSS) 99  11     110 
Coal (Co) 43  4  31   78 
Mouth Bar (MB) 86  21  3   110 
Marine Shale (MS) 64       64 
Precision 0.81 0.86 0.51 0.00 0.44 0.00 0.00 0.70 
Recall 0.97 0.80 0.45 0.00 0.40 0.00 0.00 0.78 
F1 0.88 0.83 0.48 0.00 0.42 0.00 0.00 0.74 
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Table 9. Confusion matrix of RNN blind test on well 44/19a-8 after quantile transformation (Gaussian PDF). 

Higher F1 scores are achieved for braided channels (BC), point bars (PB) and coal (Co). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1740 5 42   14 1   1802 
Braided Channel (BC) 22 462 37   18     539 
Point Bar (PB) 64 45 170   1     280 
Crevasse Splay Sands (CSS) 95   15         110 
Coal (Co) 37   1   40     78 
Mouth Bar (MB) 88 1 20   1     110 
Marine Shale (MS) 64             64 
Precision 0.83 0.90 0.60 0.00 0.54 0.00 0.00 0.73 
Recall 0.97 0.86 0.61 0.00 0.51 0.00 0.00 0.81 
F1 0.89 0.88 0.60 0.00 0.53 0.00 0.00 0.77 

 
Table 10. Confusion matrix of RNN blind test on 44/19a-8 after quantile transformation (Gaussian PDF) using 

stratigraphic separation. The F1 score increases for mouth bars (MB) and marine shale (MS), but decreases 

for background floodplain (FP), braided channels (BC) and point bars (PB). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1631 36 47 4 28 7 49 1802 
Braided Channel (BC) 28 433 59  11 6 2 539 
Point Bar (PB) 81 59 130  3 7  280 
Crevasse Splay Sands (CSS) 106  2   2  110 
Coal (Co) 30  3  43 2  78 
Mouth Bar (MB) 77 8 13  3 7 2 110 
Marine Shale (MS) 38  14   1 11 64 
Precision 0.82 0.81 0.49 0.00 0.49 0.22 0.17 0.71 
Recall 0.91 0.80 0.46 0.00 0.55 0.06 0.17 0.76 
F1 0.86¯ 0.81¯ 0.47¯ 0.00 0.52 0.10 0.17 0.73 

 
Table 11. Confusion matrix of RNN blind test on 44/19a-8 after quantile transformation (Gaussian PDF) using 

stratigraphic separation while considering crevasse splas sands (CSS) and mouth bars (MB) as adjacent 

facies, and floodplain (FP) and marines shale (MS) as adjacent facies. The overall accuracy is 0.785. Note the 

increase in F1 score of crevasse splays marine shales. 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1680 36 47 4 28 7  1802 
Braided Channel (BC) 28 433 59  11 6 2 539 
Point Bar (PB) 81 59 130  3 7  280 
Crevasse Splay Sands (CSS) 106  2 2    110 
Coal (Co) 30  3  43 2  78 
Mouth Bar (MB) 77 8 13  3 7 2 110 
Marine Shale (MS)   14   1 49 64 
Precision 0.84 0.81 0.49 0.33 0.49 0.23 0.93 0.75 
Recall 0.93 0.80 0.46 0.02 0.55 0.06 0.77 0.79 
F1 0.88 0.81 0.47 0.03 0.52 0.10 0.84 0.76 
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Figure 22. Blind test results for well 44/19a-8 using SVM and MLP without stratigraphic separation and using 

RNN without and with stratigraphic separation. The RNN shows better overall accuracy. 

MLP RNN Core SVM Strat. Sep. 
RNN 
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Figure 23. Blind test results for well 44/29-3 using SVM and MLP without stratigraphic separation and using 

RNN without and with stratigraphic separation. At 3675 m machine learning correctly identified a braided 

channel unit that has been inaccurately interpreted as a point bar in the wireline facies associations 

MLP RNN Core Strat. Sep. 
RNN 
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Figure 24. Blind test results for well D15-A101 using SVM and MLP without stratigraphic separation and using 

RNN without and with stratigraphic separation.  
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Figure 25. Blind test results for well 44/27-1 using SVM and MLP without stratigraphic separation and using 

RNN without and with stratigraphic separation.   
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Figure 26. Violin plots showing the statistical distribution of each facies with respect to each wireline log for 

the input data (a-e), the blind tests’ prediction results using RNN without stratigraphic separation (f-j), and the 

blind tests’ prediction results using RNN with stratigraphic separation (k-o).  
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4 Discussion 
The wireline facies associations were reproducing the core lithofacies interpretations with an overall 
accuracy of 71%. This validation was limited to only 10% of the total downhole log length since core 
coverage was much shorter than wireline log coverage. Background floodplain and braided channels 
were more sampled in the core than other facies and thus could be more thoroughly validated. Both 
of these facies were the most accurately identified by wireline facies associations, where the 
accuracy of the background floodplain is 88%, and that of the braided channel is 81% (Table 5).  On 
the other hand, the accuracy of mouth bar and marine shale wireline facies associations were less 
apparent since the cores only sampled mouth bars once and has not sampled marine shales at all. 
Mouth bar wireline facies associations within cored intervals often corresponded to crevasse splays 
in the core, while marine shales corresponded to background floodplains. The overlap of mouth bars 
and crevasse splays can be attributed to the geomorphological termination of crevasse splays into 
these minor mouth bars. The marine shales and background floodplain overlap is due to the 
difficulties in identifying marine bands in the offshore data. Thus, it is useful to also view the outputs 
of facies prediction with the seven facies regrouped into five. 
 
What is referred to in literature as the class imbalance problem appears to play a role in this data 
set and in all classification trials [16][12][23]. Background floodplain facies are grossly 
overrepresented by comprising 66% of the total data, while other facies are underrepresented, 
crevasse splay sands 2%, mouth bars 4% and marine shale 2%. As observed, machine learning 
algorithms tend to focus on the abundant classes to maximize the total accuracy of the classifier 
[16], which in this case is the background floodplain.  
 
For all three applied machine learning methods, SVM, MLP and RNN, the most occurring facies in 
the input data, which are the background floodplain, braided channel, point bars, and coal, were 
more likely to be predicted than the less occurring facies. None of the three methods made 
predictions for all seven facies. However, the F1 score of the background floodplain facies for all 
test runs was fixed between 0.88-0.89, but the recurrent neural network method has achieved the 
highest blind test overall accuracy of 80.9%, due to the higher F1 score values of the braided channel 
(0.88), point bar (0.60) and coal (0.53). These higher F1 scores for the sands mean that the RNN is 
better at predicting that an interval is a continuous braided channel or point bar interval instead of 
an interbedded reservoir units, which has implications on development plans.  
 
To deal with imbalanced class distributions, precision and recall are useful for giving insight into the 
contribution of each class to the overall accuracy [12]. Numerous methods exist to improve the 
algorithms predictions abilities for minority classes [12][23]. There is work suggesting that the most 
favorable approach is to increase the size of the training data [12]. Since this is not always possible, 
imbalance correcting techniques can also be implemented such as under-sampling, over-sampling, 
a combination of the two, or ensemble learning [23].  
 
Stratigraphically separating the data into Westphalian A, B and C and applying RNN on each unit 
independently has led to a lower overall accuracy of 75.6%. The results of this approach show lower 
F1 scores for the background floodplain (0.86), braided channel (0.81) and point bar (0.47) facies, 
because of the decrease in number of samples per class after unit separation, but higher F1 scores 
for mouth bar and marine shale facies. This approach was also able to make predictions for all seven 
facies. When adjacent facies were considered by grouping mouth bars with crevasse splays, and 
marine shale with background floodplain, the overall accuracy increased to 78.6%.   
 
Applying RNN to the Westphalian A, B and C separately, appears to have served as a form of an 
imbalance correction method. This is especially visible in the Westphalian A where the background 
floodplain comprises 44% of the data and the marine shale comprises 15% resulting in an increase 
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in the F1 score of marine shale from zero to 0.17. Further refinement of these results in future work 
can apply under-sampling for the background floodplain and over-sampling of the crevasse splay, 
mouth bar and marine shale facies. The chosen imbalance correcting algorithm must be one that 
accounts for the dataset’s overlapping classes and high dimensionality [24]. The appropriate 
imbalance correction method has the potential to help eliminate the overshadowing effect of the 
background floodplain and improve the classifier’s predictions of other facies.  
 
Using wireline facies associations can provide the advantage of alleviating data shortage in facies 
prediction by providing a more extensive input dataset compared to only using core data. However, 
wireline facies associations are inherently less accurate than core facies associations since they are 
assigned using measured rock properties, compared core facies associations which are assigned 
by direct rock examination. When using these wireline facies associations as an input for facies 
prediction with machine learning, it is essential to bear in mind the added layer of uncertainty this 
introduces to the results, especially for facies that are less extensively validated or not validated by 
core data. In the case of the Carboniferous of the Southern North Sea, machine learning with wireline 
facies associations was shown to be effective in picking the non-reservoir background floodplain 
units, the coals, and the two best reservoir facies of braided channels and point bars [25]. Applying 
the approach described in this project to other datasets has the potential of automating a portion of 
the process of facies picking on well logs. This can be followed by secondary steps of manually 
refining the results, which can be customized according to each dataset’s unique characteristics. 
 

5 Conclusion 
Using wireline facies associations as an input for machine learning can provide a more extensive 
facies prediction training dataset since log coverage is always more plentiful than core data. 
However, since wireline facies associations are assigned using measured rock properties instead 
of directly on rocks, the accuracy of this data needs to be quantified with cores before using it as an 
input for machine learning. Wintershall has manually assigned wireline facies associations to well 
logs in the Carboniferous of the southern North Sea following a facies scheme comprised of seven 
facies. The scheme links wireline log characteristics of facies to sediment grain size, body geometry, 
upper and lower boundaries and sedimentary structures.  
 
The Carboniferous of the southern North Sea has been determined to have untapped exploration 
and development potential. Facies prediction can be an aid by providing an understanding of the 
distribution of facies away from cored wells and thus developing a refined understanding of the 
architecture of the subsurface, fluid volumes and flow. This project was focused on evaluating the 
accuracy of these wireline facies associations compared to core data, and determining which of the 
three machine learning algorithms, support vector machine (SVM), multilayer perceptron (MLP) and 
recurrent neural networks (RNN), would yield the best results for facies prediction.  
 
The wireline facies associations were validated with core facies associations for nine wells resulting 
in an overall accuracy of 71%. The background floodplain and braided channel were the most 
accurately validated facies, while the mouth bars and the marine shales were harder to validated 
because of insufficient core coverage. During the application of facies predictions algorithms, it’s 
important to account for the uncertainty this type of input adds to the results, especially for facies 
that are less validated or not validated at all by core data. 
 
When these wireline facies associations were used as an input to build SVM, MLP and RNN 
classifiers, RNN was the most effective in predicting continuous reservoir units and it achieved the 
highest overall accuracy of 80.9% with the highest F1 scores for braided channels (0.88), point bars 
(0.60) and coal (0.53). The effect of the class imbalance problem is evident for this data set where 
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the machine learning algorithms are making more predictions for the abundant classes of 
background floodplain, braided channels, point bars and coals, and little to no predictions for the 
underrepresented classes of crevasse splays, mouth bars and marine shales. Applying the best 
performing machine learning algorithm, RNN, to the Westphalian A, B and C separately appears to 
have performed as a form of imbalance correcting technique that increased the F1 score of the 
underrepresented facies. Further imbalance correction can be applied in future studies by under-
sampling the background floodplain facies and over-sampling the crevasse splay. Doing so has the 
potential of enhancing the prediction accuracy for the under-represented facies and reducing the 
dominance of the over-represented floodplain facies. The approach described in this project can be 
tested on other datasets, which can help in automating part of the process of facies picking on well 
logs. Depending on the characteristics of each dataset, this process can be followed by post-
processing steps to enhance the results. 
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Appendices 
Appendix A: Wireline Facies Associations Statistics 

Figure A1. Statistics of the floodplain facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 33221 33221 33221 33221 33221 30077 30077 30077 
mean 110.41 49.40 2.64 0.22 72.07 3.03 9.96 2.39 

std 23.85 211.05 0.19 0.08 17.28 4.80 8.18 2.86 
min 8.25 0.00 1.16 0.01 0.00 -0.38 -1.38 -137.59 
25% 96.96 8.09 2.64 0.16 64.08 0.02 5.75 0.04 
50% 111.25 13.93 2.70 0.22 67.12 1.45 10.97 2.67 
75% 125.47 23.43 2.74 0.26 71.76 2.61 13.66 3.74 
max 267.00 2341.85 3.18 0.77 288.74 34.03 574.00 13.49 

 

Figure A2. Statistics of the braided channel facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 5710 5710 5710 5710 5710 5329 5329 5329 
mean 37.31 290.15 2.50 0.11 68.57 0.77 3.85 0.88 

std 20.24 1625.36 0.10 0.06 11.36 1.82 3.30 1.07 
min 9.80 0.00 1.77 -0.01 0.00 -0.15 0.00 -1.91 
25% 23.01 1.34 2.45 0.07 63.79 0.01 1.74 0.11 
50% 31.93 2.94 2.50 0.11 66.40 0.13 2.95 0.74 
75% 45.08 9.07 2.56 0.14 69.87 0.58 4.68 1.31 
max 154.40 9993.02 2.98 0.51 140.96 15.67 22.27 16.63 

 

Figure A3. Statistics of the point bar facies in the training data. 
 GR RES DEN NPHI DT POTA THOR URAN 

count 4333 4333 4333 4333 4333 4006 4006 4006 
mean 63.19 18.64 2.59 0.12 67.74 1.49 5.93 1.48 

std 26.65 86.51 0.13 0.07 15.22 2.79 4.18 1.41 
min 11.87 0.00 1.17 0.00 0.00 -0.24 0.00 -2.47 
25% 44.15 4.29 2.54 0.08 62.55 0.01 2.67 0.21 
50% 59.62 8.31 2.60 0.11 64.59 0.59 5.24 1.30 
75% 78.07 16.84 2.65 0.16 67.33 1.27 8.40 2.32 
max 184.60 2007.18 3.08 0.63 288.29 16.45 26.48 8.19 

 
Figure A4. Statistics of the crevasse splay sands facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 874 874 874 874 874 853 853 853 
mean 79.84 11.40 2.68 0.17 68.20 2.80 7.77 1.82 

std 26.88 7.12 0.08 0.06 15.75 3.99 4.65 1.53 
min 19.20 1.27 2.20 0.04 42.28 0.00 0.75 -1.20 
25% 61.33 6.75 2.63 0.13 61.93 0.03 3.20 0.03 
50% 81.85 9.50 2.69 0.16 64.36 1.19 8.02 1.89 
75% 97.83 14.19 2.73 0.21 66.93 2.30 11.34 2.90 
max 170.75 40.69 2.96 0.41 158.99 19.21 21.30 8.00 

 

Figure A5. Statistics of the coal facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 2648 2648 2648 2648 2648 2491 2491 2491 
mean 96.97 46.36 2.12 0.34 94.82 3.13 8.31 2.25 

std 34.21 187.98 0.47 0.14 28.20 4.64 5.66 2.04 
min 7.73 0.00 1.16 0.01 0.00 -0.05 0.00 -2.58 
25% 72.50 11.01 1.69 0.24 74.86 0.04 2.74 0.03 
50% 101.30 19.10 2.20 0.32 89.58 1.37 8.68 2.27 
75% 120.31 29.85 2.54 0.44 110.37 2.69 12.76 3.76 
max 222.25 2018.61 2.90 1.10 399.12 19.86 27.34 9.89 
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Figure A6. Statistics of the mouth bars facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 2113 2113 2113 2113 2113 1822 1822 1822 
mean 74.26 107.77 2.58 0.14 66.88 1.93 6.91 1.81 

std 23.53 771.44 0.18 0.08 13.87 3.67 4.48 1.54 
min 18.24 0.00 1.55 0.01 0.00 0.00 0.00 -1.58 
25% 57.52 6.38 2.54 0.08 62.39 0.02 2.80 0.18 
50% 74.19 14.32 2.62 0.12 64.50 0.62 7.14 1.77 
75% 90.38 27.48 2.68 0.17 67.20 1.35 9.69 2.85 
max 189.40 9993.02 2.87 0.61 191.55 18.21 22.64 7.45 

 

Figure A7. Statistics of the marine shale facies in the training data. 

 GR RES DEN NPHI DT POTA THOR URAN 
count 1080 1080 1080 1080 1080 945 945 945 
mean 112.80 62.58 2.62 0.21 78.07 1.13 8.33 3.05 

std 25.24 246.76 0.20 0.07 20.25 1.18 5.68 2.53 
min 48.52 0.00 1.66 0.03 55.36 0.00 0.00 -1.44 
25% 96.20 9.41 2.61 0.17 65.94 0.02 3.02 0.00 
50% 111.30 14.89 2.69 0.21 71.22 1.11 9.47 3.57 
75% 126.47 26.14 2.73 0.24 77.37 2.05 12.46 4.86 
max 192.80 2014.41 2.88 0.51 150.07 4.55 20.07 10.22 



      

 

Appendix B: Tables Linking Core and Log Facies Associations 
 

Table B1. Core description of facies in 44/12a-3. Core was described by Pilling Consultants Limited. Core description legend is in appendix C figure C1. 

Core Facies 
Association Description Core Description 

Wireline 
GR Comparable Wireline 

Facies Association & 
Justification 

Lacustrine 
Floodbasin 

 
 
 

Red colored claystone and 
siltstones interbedded with fine to 
very fine sandstones with 
occasional rootlets. Has parallel 
laminations,  
 
 

 

 

 

Background Floodplain 

Floodbasin/ 
Interfluve 
Paleosols 

 

Red colored claystone and 
siltstones interbedded with fine to 
very fine sandstones. Either parallel 
laminated or massive due to 
pedogenic modification by rootlets. 

 

 

Background Floodplain 

0 200 
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Floodbasin 
Lake 

Red colored siltstones with rare 
interbedding of very fine sandstone.  

 

 

Background Floodplain 

Minor Fluvial 
Channel 

Purple to grey colored argillaceous 
sandstones with thin siltstone 
interbeds towards the top. Fine, 
medium and coarse grained, 
occasionally pebbly. Fining 
upwards. Moderate to well sorted. 
Has planar cross stratification and 
ripple cross-lamination. 

 

 

Point Bar: The term minor 
fluvial channel is used for 
meandering channels, 
which, similar to point bars, 
is composed of argillaceous 
sandstones as opposed to 
the clean sands of a braided 
channel. 

Abandoned 
Channel Fill 

Buff/purple colored sandstones or 
buff/red argillaceous sandstones  
and green/khaki siltstones. Fine with 
medium grained pebbles. 
Coarsening upwards. Sands are 
moderately to well sorted and have 
parallel laminations, ripple cross-
laminations and trough cross-
bedding. Silts are massive or 
parallel laminated. Contains 
hematite mottling. 

 . 

Braided Channel: In this 
core abandoned channel fills 
are always picked above 
fluvial channels where the 
top sharp gamma ray 
inflection occurs. 
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Fluvial 
Channel 

Sandstone of medium to coarse 
pebbles and conglomerates. Fining 
upwards. Moderately sorted, with 
occasionally low angle planar cross-
stratification. 

 
 

Braided Channel: These 
fluvial channels have clean, 
medium to conglomeratic 
sands with blocky gamma 
ray signatures, which is 
matches the definition of a 
braided channel in the log 
wireline facies association. 

Channel 
Incision 

Grey/buff colored sandstones. 
Medium grained and pebbly. Flat 
bedded to massive with hematite 
mottling. 

 
 

Braided Channel: This unit 
corresponds to the bottom of 
a braided channel where the 
bottom sharp gamma ray 
inflection occurs. 

 
Table B2. Core description and log signatures of facies in 44/19a-8. Core was described by PanTerra. Core description legend is in appendix C figure C2. 

Core Facies 
Association Description Core Description & Core GR 

Wireline 
GR Comparable Wireline 

Facies Association 

Well-drained 
Floodplain 

Claystones with rare to no rootlets. 
Varying from pale to dusky red due 
to hematite. Structureless or 
horizontally laminated. Have 
consistently high gamma ray with no 
clear pulses. 
 

 

 
Background Floodplain 

0 250 
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Well-drained 
Floodplain 

Soil  
(Rootlet 

dominated) 

Differentiated from well-drained 
floodplain only by the presence of 
rootlets, where these intervals are 
rootlet dominate. Rootlet traces are 
filled with silt to very fine sand. If 
structures are present they are 
disrupted by rootletting. Reddened 
claystone cause mottling. Some 
areas are brecciated. 

 

 
Background Floodplain 

Well-Drained 
Floodplain 

Soil  
(some 

rootlets)  

Differentiated from well-drained 
floodplain only by the presence of 
rootlets, where these intervals 
contain some rootlets. 

 

 
Background Floodplain 
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Crevasse 
Channel 

Sandstone and claystone red in 
color due to hematite concretions. 
Fine grained with fining upwards 
sequence. Contain hematite cement 
and relatively high clay content, 
even in sandier deposits, making it 
a very poor reservoir. Mostly 
irregular or mottled but can contain 
horizontal laminations and cross-
beddings. Has bell-shaped gamma 
ray, but smaller and less distinct 
than that of meandering channels. 
 

 

 
Crevasse Splay Sands 
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Braided 
Channel 

Predominantly quartzite sandstone 
with less commonly claystone 
interclasts. Fine grains to 
conglomeratic pebbles exceeding 
10 cm in diameter. Lacks 
continuous grading due to sand 
maturity. Cross-bedded, laminated 
or structureless. Has a blocky 
gamma ray. 

 

 

Braided Channel 
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Meandering 
Channel 

Sandstones and clays. Erosional 
basal contact and increased clay 
content upwards. Conglomeritic to 
clay-dominated. Pebbles are rare 
and relatively small compared to 
braided channels. Typically fining 
upwards but grading is not always 
well-developed. Horizontal 
laminations, cross-bedding and 
structureless. Gamma ray is bell 
shaped. 

 

 

Point Bar 

 
  



       

48 
 

Table B3. Core description of facies in 44/23-9. Core was described by Poroperm Geochem Limited. Core description legend is in appendix C figure C3. 
Core Facies 
Association Description Core Description 

Wireline 
GR 

 
Comparable Wireline 
Facies Association 

Seat Earth 

Dark grey silty claystone with 
siderite and pyrite. Can contain thin 
coal streaks and rootlets. Has 
parallel laminations.  

 

 

Background Floodplain 

Crevasse 
Splay 

Pale grey, mica-rich, argillaceous  
sandstones. Very fine to fine grains. 
Fining upwards. Moderate to well 
sorted. Contains ripples, cross 
laminations, parallel laminations, 
tabular and trough cross 
laminations. 

  

Crevasse Splay Sands 

Lacustrine/ 
Inter-

distributary 
Bay 

Dark grey silt to very find sand and 
argillaceous siltstone with siderite. 
Parallel laminations and current 
ripple cross laminations.    

Background Floodplain 

Swamp 
(Coal) 

Alternating black bands of clarain 
and fusain and some layers rich in 
pyrite.  

GR 

 
RHOB 

 
NPHI 

 

Coal 

0 150 

4280 

4284 
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DT 

 

Distributary 
Channel 
(low to 

moderate 
sinuosity) 

 
Multistory 

Fluvial 
Channel  

(low 
sinuosity)  

Sandstone ranging from fine and 
medium grains to very coarse 
pebbles. Rip-up clasts at the base. 
Overall fining upwards. Moderate to 
well sorted. Horizontal and planar 
cross laminations, ripple cross 
laminations and parallel laminations. 

 
 

Braided Channel 

Channel 
Abandon-

ment 

Buff/grey sandstone of fine to 
medium grains with pebbles at the 
base. Fining upwards. Well sorted. 
Cross lamination, trough cross 
lamination, sub-horizontal parallel 
laminations. 

 
 

Braided Channel: In this core 
channel abandonments are 
always picked as the top of a 
braided channel where the 
sharp gamma ray inflection 
occurs. 

Avulsion Unit 

Sandstone ranging from fine and 
medium grains to very coarse. 
Upward fining profile. Poorly sorted. 
Tabular cross laminations and 
parallel laminations. 

  

Braided Channel: Avulsion 
units are picked at the 
bottom of fluvial channels 
where the sharp gamma ray 
inflection occurs. 
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Table B4. Core description of facies in 44/24-4. Core was described by The Geochem Group. Core description legend is in appendix C figure C4. 
Core Facies 
Association Description Core Description Wireline 

GR 
Comparable Wireline 
Facies Association 

Fluvial 
Channel 

Sandstone of fine, medium, coarse  
grains and pebble conglomerates.  
Poorly to moderately sorted. 
Horizontal and sub-horizontal 
laminations, cross stratification 

 

 

Braided Channel 

0 250 
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Vegetated 
Floodplain 

Fines 
 
 

Red-brown, grey-brown sandy 
siltstone. Moderately to poorly 
sorted. Can be mottled. 

 

 

Background Floodplain 

Well-drained 
Paleosols 

Brown-red-purple sandy siltstone 
with rootlets. Can be mottled. 

 
 

Background Floodplain 

Crevasse 
Splay 

Sandstones 

Purple/red/ brown sandstones with 
siltstone. Very fine, fine and medium 
grains. Moderately to poorly sorted. 
Horizontal laminations. 

  
Crevasse Splay Sands 

 
Table B5. Core description of facies in 44/27-1. Core was described by Poroperm Geochem Limited. Core description legend is in appendix C figure C5. 

Core Facies 
Association Description Core Description 

Wireline 
GR 

 
Comparable Wireline 
Facies Association 

Abandon-
ment  

Dark red hematite stained 
mudstones, sandy siltstones or 
purple-grey sandstone. Can be 
mottled, brecciated or bioturbated. 

 

 

 

Braided Channel: Channel 
abandonments have been 
picked in the core as the top 
or bottom of a channel where 
gamma ray inflections occur. 

0 200 
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Fluvial 
Channel  

(low 
sinuosity) 

Sandstone of fine, medium, coarse 
and pebbly grains. Overall fining 
upwards. Poorly sorted. Planar 
cross-stratification 

 
 

Braided Channel 

Minor Fluvial 
Channel 

Pink-grey fine sandstones. 
Deformed and diagenetically 
banded or with low-angle cross-
stratification.  

 

Point Bar: Corresponds to a 
bell shaped gamma ray 
characteristic of a point bar 
in a meandering channel. 

Floodbasin 

Sandstones, siltstones and 
claystone with rootlets. Clay-size 
and very fine grains. Can be 
leached and mottled. 

  

Background Floodplain 

Low Energy 
Sheetfloods 

Micaceous sandstones and 
siltstone. Very fine to fine. Generally 
flat bedded with some ripple 
lamination. 

 

 

Crevasse Splay Sands: The 
core description shows low 
energy sheet floods as a 
series of fining upwards 
packages of silty sandstone 
where each has a bell-
shaped gamma ray 
resembling those of 
crevasse splays. 
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Major Axis 
Sheetfloods 

(high 
energy) 

Grey sandstones with siltstones. 
Fine to medium grains. Well sorted. 
Horizontal stratification. 

 

 

Crevasse Splay Sands: This 
sheet flood is composed of a 
series of stacked crevasse 
splays with a bell shaped 
gamma ray profile. 

Lake 
Black and dark grey siltstones and 
sandstones with plant debris. Very 
fine grains. 

  

Background Floodplain 
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Crevasse 
Splay 

Grey sandstone. Very fine and fine. 
Ripple-laminated. 

 
 

Crevasse Splay Sands 

Seat Earth 
Mid grey sandstone with probable 
roots and burros. Very fine grains. 
Churned texture.   

Background Floodplain 

 
Table B6. Core description of facies in 49/1-3. Core was described John Collinson Consulting. Core description legend is in appendix C figure C6. 

Core Facies 
Association Core Description Core Description 

Wireline 
GR 

 
Comparable Wireline Facies 

Association 

Channel 
Sandstone of fine to very coarse 
pebbles. Poor to well sorted with 
cross bedding.  

 

 

 

Braided Channel 

Lake 
(Dysoxic) 

Mudstone and siltstone with 
rootlets. Horizontal laminations and 
bioturbations. 

  

 
Background Floodplain 

Paleosols 
/Floodplains 

Dark red mudstone and siltstones 
with rootlets. Can have an evolved 
pedogenic texture and grey mottles. 

 
 

Background Floodplain 

Crevasse 
Splay 

Sandstone and mudstone. Very fine 
to fine. Moderate to well sorted. 
Ripple cross laminations. 

 

 
Crevasse Splay Sands. 

0 250 

(ft) 
13026 

13029 
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Mouth Bar 

Sandstone and mudstone. Very fine 
grains. Moderate to well sorted. 
Sandstones have ripple cross 
lamination. Mudstones have and 
wavy lamination and ripple cross 
laminations. Both contain 
bioturbations.  

 
Mouth Bar 

 
Table B7. Core description of facies in E10-3 as described by PanTerra. The core in well D15-FA101 was also described by PanTerra with the same 

classification. Core description legend is in appendix C figure C7. 
Core Facies 
Association  Description Core Description 

Wireline 
GR 

 
Comparable Wireline Facies 

Association 

Well Drained 
Floodplain 

Overall reddish sandy claystone 
thoroughly rouletted. Mottled. May 
have a brecciated appearance.  

 

 

 

Background Floodplain 

Poorly 
Drained 

Floodplain 

Dark grey to black claystone with 
rootlets and siderite nodule and 
organic matter. 

  

Background Floodplain 

0 200 

3717 
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Crevasse 
Splay 

Sandstone with clay. Very fine to 
fine grains. Poorly to moderately 
sorted. Ripple laminations. 

 
 

Crevasse Splay Sands 

Inter-
distributary 

Bay 

Dark grey claystone with few silt 
and sand. May contain yellowish 
siderite cement. Parallel 
laminations. 

 
 

Background Floodplain 

Braided 
Channel 
Complex 

Sandstone of fine, medium and 
pebble size. Generally fining 
upwards. Very poor to moderate. 
Alternations of massive, cross 
beddings, horizontal laminations 
and ripple laminations. 

 

 

Braided Channel 

Coal 
Abundant in organic material. 
Associated with the poorly drained 
floodplain facies. 

 

GR 

 
RHOB 

 
NPHI 

 
DT 

 

Coal 
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Table B8. Core description of facies in 44/29-3. 
Core Facies 
Association Description Core Description 

Wireline 
GR 

 
Comparable Wireline 
Facies Association 

Lacustrine Claystone and siltstones. 
Structureless.  

 

 

 

Background Floodplain 

Crevasse 
Splay 

Silt to very fine sand. Silt size to very 
fine. Ripple laminations and 
bioturbations.   

Crevasse Splay Sands 

Fluvial 
Channel 

Sandstone of fine to granular particle 
size. Trough cross bedding, horizontal 
laminations. 

 
 

Braided Channel 

Swamp Claystone. Structureless or graded 
bedding. 

 

high GR. Background Floodplain 

Coal - 

GR 

 
RHOB 

 
NPHI 

 
DT 

 

Coal 

0 150 

(ft) 
12020 

12030 



      

 

Appendix C: Core Description Legends 
Figure C1. Core description legend for 44/12a-3. 

 
 

Figure C2. Core description legend for 44/19a-8. 
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Figure C3. Core description legend for 44/23-9. 

 
 

Figure C4. Core description legend for 44/24-4. 
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Figure C5. Core description legend for 44/27-1. 
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Figure C6. Core description legend for 49/1-3. 
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Figure C7. Core description legend for E10-3 and D15-FA101. 
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Appendix D: Core Validation Plots 
 

 
Figure 1D. Wireline logs, wireline facies associations and core for well 44/12a-3. 



       

64 
 

 
Figure 2D. Wireline logs, wireline facies associations and core for well 44/19a-8. 
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Figure 3D. Wireline logs, wireline facies associations and core for well 44/23-9. 
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Figure 4D. Wireline logs, wireline facies associations and core for well 44/24-4.  
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Figure 5D. Wireline logs, wireline facies associations and core for well 44/27-1. 
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Figure 6D. Wireline logs, wireline facies associations and core for well 49/1-3. 



       

69 
 

 
Figure 7D. Wireline logs, wireline facies associations and core for well E10-3. 
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Figure 8D. Wireline logs, wireline facies associations and core for well D15-A101.  
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Figure 9D. Wireline logs, wireline facies associations and core for well 44/29-3. 
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Appendix E: Confusion Matrices 
 

Table E1. Confusion matrix of SVM blind test on well 44/19a-8 after Yeo-Johnson power transformation. 
Prediction 

True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1748 27 13  14   1802 
Braided Channel (BC) 44 471 17  7   539 
Point Bar (PB) 68 175 37     280 
Crevasse Splay Sands (CSS) 96 1 13     110 
Coal (Co) 57  2  19   78 
Mouth Bar (MB) 83 2 22  3   110 
Marine Shale (MS) 64       64 
Precision 0.81 0.70 0.36 0.00 0.44 0.00 0.00 0.66 
Recall 0.97 0.87 0.13 0.00 0.24 0.00 0.00 0.76 
F1 0.88 0.78 0.19 0.00 0.31 0.00 0.00 0.70 

 
Table E2. Confusion matrix of SVM blind test on well 44/19a-8 after quantile transformation (uniform PDF). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1747 3 37  15   1802 
Braided Channel (BC) 28 467 25  19   539 
Point Bar (PB) 65 106 108  1   280 
Crevasse Splay Sands (CSS) 91  19     110 
Coal (Co) 49  2  27   78 
Mouth Bar (MB) 84  24  2   110 
Marine Shale (MS) 64       64 
Precision 0.82 0.81 0.50 0.00 0.42 0.00 0.00 0.7 
Recall 0.97 0.87 0.39 0.00 0.35 0.00 0.00 0.79 
F1 0.89 0.84 0.44 0.00 0.38 0.00 0.00 0.74 

 
Table E3. Confusion matrix of MLP blind test on well 44/19a-8 after Yeo-Johnson power transformation. 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1741 22 18  21   1802 
Braided Channel (BC) 18 506 13  2   539 
Point Bar (PB) 69 178 32  1   280 
Crevasse Splay Sands (CSS) 99  11     110 
Coal (Co) 40  4  34   78 
Mouth Bar (MB) 86 4 18  2   110 
Marine Shale (MS) 64       64 
Precision 0.82 0.71 0.33 0.00 0.57 0.00 0.00 0.67 
Recall 0.97 0.94 0.11 0.00 0.44 0.00 0.00 0.78 
F1 0.89 0.81 0.17 0.00 0.49 0.00 0.00 0.71 

 
Table E4. Confusion matrix of MLP blind test on well 44/19a-8 after quantile transformation (uniform PDF). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1752 18 21  11   1802 
Braided Channel (BC) 31 478 20  10   539 
Point Bar (PB) 89 114 75  2   280 
Crevasse Splay Sands (CSS) 97  13     110 
Coal (Co) 50  4  24   78 
Mouth Bar (MB) 90 4 16     110 
Marine Shale (MS) 64       64 
Precision 0.81 0.78 0.50 0.00 0.51 0.00 0.00 0.69 
Recall 0.97 0.89 0.27 0.00 0.31 0.00 0.00 0.78 
F1 0.88 0.83 0.35 0.00 0.38 0.00 0.00 0.73 



       

73 
 

Table E5. Confusion matrix of RNN blind test on well 44/19a-8 after Yeo-Johnson power transformation. 
Prediction 

True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1737 24 24  15  2 1802 
Braided Channel (BC) 16 501 9  13   539 
Point Bar (PB) 49 149 79  2 1  280 
Crevasse Splay Sands (CSS) 89 1 19    1 110 
Coal (Co) 45 1 2  30   78 
Mouth Bar (MB) 80 6 23  1   110 
Marine Shale (MS) 64       64 
Precision 0.84 0.74 0.51 0.00 0.49 0.00 0.00 0.70 
Recall 0.96 0.93 0.28 0.00 0.39 0.00 0.00 0.79 
F1 0.90 0.82 0.36 0.00 0.43 0.00 0.00 0.73 

 
Table E6. Confusion matrix of RNN blind test on well 44/19a-8 after quantile transformation (uniform PDF). 

Prediction 
True                   FP BC PB CSS Co MB MS Total 

Background Floodplain (FP) 1743 2 41  16   1802 
Braided Channel (BC) 21 460 46  12   539 
Point Bar (PB) 54 63 161  2   280 
Crevasse Splay Sands (CSS) 94  16     110 
Coal (Co) 44  3  31   78 
Mouth Bar (MB) 84  26     110 
Marine Shale (MS) 64       64 
Precision 0.83 0.88 0.55 0.00 0.51 0.00 0.00 0.72 
Recall 0.97 0.85 0.58 0.00 0.4 0.00 0.00 0.8 
F1 0.89 0.87 0.56 0.00 0.45 0.00 0.00 0.76 

 


