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Abstract
Route restoration is considered to be a task of foremost priority in disaster relief. In 
this paper, we propose a robust optimization approach for post-disaster route res-
toration under uncertain restoration times. We present a novel decision rule based 
on restoration time ordering that yields optimal restoration sequencing and propose 
conditions for complexity reduction in the model and prove probability bounds on 
the satisfaction of these conditions. We implement our models in a realistic study of 
the 2015 Gorkha earthquake in Nepal.

Keywords  Route restoration · Robust optimization · Decision rules · Disaster relief

1  Introduction

In recent years, the increasing intensity and duration of natural disasters have made 
it primordial for decision-makers, stakeholders and communities to enhance the 
safety and security of critical infrastructure systems during and after disruptions. 
Typically disaster-prone critical infrastructure systems, road networks spatially con-
nect one location to another and are enablers of disaster relief by providing acces-
sibility to shelters, hospitals, emergency management centres and so on. These net-
works are complex and it is a challenge of utmost importance in disaster response 
for decision-makers to rebuild their functionalities to acceptable limits.
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Previous events have shown the consequences of natural disasters on road net-
works. In the aftermath of the 1994 Northridge earthquake four freeway routes were 
closed due to failures. It is estimated that one fifth of the $6.5 billion total loss in 
regional economic activity caused by the earthquake could be attributed to transpor-
tation disruptions alone (Gordon et al. 1998). In the 1995 Hyogoken-Nanbu earth-
quake, significant damages to the Hanshin Expressway reduced traffic volumes to 
30–55% of pre-earthquake levels, severely impacting disaster relief activities (Chang 
and Nojima 2001). Following the Haiti earthquake in 2010, relief distribution 
proved almost impossible, despite the abundance of supplies, due to road infrastruc-
ture damages (Çelik 2016). More recently, the 2015 earthquake in Gorkha, Nepal, 
where the earthquake and a major aftershock triggered landslides around the steep 
and mountainous regions of Nepal, blocked important road segments, preventing 
relief supplies from reaching communities (Collins and Jibson 2015).

Due to these potential far-reaching consequences, route restoration is considered 
to be a task of foremost priority in disaster relief. The route restoration problem 
(RRP) is the problem of choosing which roads to repair/restore/clear and make tra-
versable following a disaster so that responders can gain access to demand points. 
In its Public Assistance Debris Management Guide, FEMA pens down debris clear-
ance for emergency route restoration as the first step in disaster response and recov-
ery (Federal Emergency Management Agency 2007). Indeed, adequately planned 
route restoration can be the precursor of a successful disaster response effort. In the 
aftermath of the 2011 Tohoku earthquake in Japan, the Tohoku Regional Develop-
ment Bureau proceeded with urgency to restore roads with a strategy referred to as 
the “teeth of a comb strategy.” The strategy was to first open an inland route along 
the backbone of the Tohoku Region and then to restore routes to the disaster-stricken 
areas along the coast (Kazama and Noda 2012). The Tohoku Regional Develop-
ment Bureau reports the success of prioritizing route restoration in their Earthquake 
Memorial Museum (see Tohoku Regional Bureau 2014). With the “teeth of a comb 
strategy”, by the day following the earthquake, 11 routes were cleared, allowing the 
flow of emergency traffic, including ambulances, the police, and medical teams.

The optimization of post-disaster route restoration suffers from three main 
challenges. The first challenge is the modelling of uncertainties. It is well-estab-
lished that fitting underlying probabilities to post-disaster damage scenarios is 
one of the most challenging tasks in disaster management. Disasters interact and 
are often the result of dynamic historical processes involving multiple stress-
triggering events. For example, a main seismic shock can cause aftershocks and 
induce stresses on nearby fault lines, which leads to increasing earthquake prob-
abilities in nearby region, a phenomenon called earthquake clustering. Succes-
sive fissures along the North Anatolian Fault have resulted in a cluster of large 
earthquakes in the 1900s. The dynamic interactions that lead to complications 
in estimating earthquake probabilities is well-known (Parsons et  al. 2000) and 
such complications extend beyond seismic events, such as in the Tohoku disas-
ter, where a tsunami caused a nuclear meltdown. The second challenge in the 
optimization of post-disaster route restoration is model tractability. Optimization 
models for post-disaster route restorations often involve huge networks of dam-
aged road segments and these can lead to intractable models. In the aftermath of 
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the great Gorkha earthquake in Nepal, planning route restoration for a small rural 
district north of the Araniko highway required constructing a network of 457 
nodes and 555 edges, 66 of which were damaged (Aydin et al. 2018). The third 
challenge in post-disaster route restoration is in the interpretability of solutions. 
Disasters are chaotic events and no amount of modelling precision will ever cap-
ture the true extent of the damages and perfectly reflect on-site realities. Building 
overly complex models can lead to optimal decision generation from black boxes, 
which limits the ability of disaster responders to understand the decision process 
and react accordingly when unexpected events arise.

In this paper, we tackle these three challenges by proposing a robust optimiza-
tion approach to optimize the route restoration strategy under uncertain restora-
tion times. Restoration time uncertainty originates from uncertainty in damage 
or blockage estimation. Studies which consider road damage or blockage uncer-
tainty in disasters abound outside the optimal route restoration context (see Caun-
hye and Nie 2018; Aydin et  al. 2018, for example). Robust optimization is an 
approach that works by immunizing decision-making against all uncertain data 
realizations within a deterministic uncertainty set. It is attractive in that it only 
needs moderate information (specifically, the range of restoration times) about the 
underlying uncertainty and it is nonparameteric, meaning that it does not require 
any probability specification. Recent years have seen a tremendous growth in the 
application of robust optimization for decision-making under uncertainty (Zhen 
et  al. 2018) mainly due to its computational viability and its distribution-free 
characteristic. In robust optimization, probability distributions are replaced with 
uncertainty sets (typically conic representable), omitting any information about 
the distribution except for its support. The method is especially enticing to model 
extreme events and situations for which parametric probability estimates are hard 
to obtain. Several seminal papers are highly cited in the robust optimization liter-
ature, see (El Ghaoui and Lebret 1997; El Ghaoui et al. 1998; Ben-Tal and Nemi-
rovski 1998; Bertsimas and Sim 2004). Robust optimization models are generally 
semi-infinite problems that are solved with approximations known as decision 
rules. A multitude of decision rules, such as the linear (Goh and Sim 2010; Chen 
and Zhang 2009; Caunhye and Cardin 2018), binary (Bertsimas and Georghiou 
2015, 2018) and finite adaptability (Hanasusanto et al. 2015; Caunhye and Car-
din 2017; Bertsimas and Caramanis 2010) decision rules, have been proposed to 
approximate these models with solvable forms. Even though decision rules are 
known to be optimal for a few problems, such as some variants of vehicle rout-
ing problems (see Gounaris et  al. 2013), they potentially sacrifice a significant 
amount of optimality (Bertsimas and Goyal 2012). In addition, they often require 
large numbers of variable and constraint additions that can lead to intractability 
in big post-disaster route restoration models. In this paper, we propose a novel 
decision rule, based on restoration time ordering, that is optimal for the RRP. We 
also show that this decision rule can be implemented with little sacrifice to trac-
tability in several variants of the RRP. Furthermore, owing to its simplicity, this 
decision rule is easily interpretable and offers a practical rule of thumb for route 
restoration.



	 A. M. Caunhye et al.

1 3

2 � Literature review

In this section, we provide a broad review of the literature on route restoration, 
starting with general network science methodologies to assess restoration strat-
egies and ending with a specific review of optimization methodologies to plan 
restoration strategies. Network science methods to tackle the assessment of route 
restoration strategies typically focus on identifying critical road segments with 
connectivity measures. The work in Aydin et al. (2019) develops an origin-des-
tination betweenness metric to evaluate post-disaster road performance to assist 
in decision-making during the recovery process. A different evaluation strategy 
is proposed in Zhou et  al. (2019) with a percolation-based connectivity model 
used to assess post-earthquake recovery of road networks. In addition to the giant 
connected component to represent global connectivity, the authors also introduce 
a metric called local connectivity which is quantified using the number of neigh-
bouring nodes. GIS-based accessibility modelling is also used to assess post-dis-
aster route restoration planning, where the idea is to view route restoration as a 
means to restore access to services. In Kim et al. (2018a), a scenario-based sys-
tem dynamics approach is proposed to evaluate the performances of post-disaster 
debris clearance strategies. The work of Ertugay et al. (2016) and Toma-Danila 
(2018) also assess the performances of route restoration strategies using acces-
sibility modelling, with the novelty being in the consideration of road closure 
probabilities.

In optimization modelling for post-disaster route restoration, the focus is on 
choosing best restoration strategies. Numerous deterministic optimization mod-
els have been proposed to such effect. In Moreno et al. (2019), a mixed integer 
programming problem is proposed to integrate crew scheduling and routing 
decisions for route restoration. Crew scheduling is also the underlying problem 
tackled in Kim et al. (2018b), where dynamic damages are addressed and an ant 
colony heuristic is proposed to solve the resulting mixed integer programming 
model. In Shin et  al. (2019), a similar modelling and solution paradigm is fol-
lowed, but with the addition of goods delivery to the crew scheduling for road 
repairs problem. An adaptation of the ant colony heuristic is proposed in Yan and 
Shih (2012) for the time-space network formulation of the crew scheduling and 
route restoration problem. The work of Aksu and Ozdamar (2014) approaches 
route restoration from the perspective of a path-based network optimization prob-
lem with the aim to restore access in the network. A decomposition approach 
is used to improve the tractability of the model. The network-based approach is 
also used in Akbari and Salman (2017b) and Akbari and Salman (2017a) where 
mixed integer programming models are used to restore subsets of road segments 
and reconnect the network. In Akbari and Salman (2017b), the focus is on (1) 
restoring network connectivity in the shortest possible time and (2) tractability 
enhancement, via the proposition of a metaheuristic based on relaxation and local 
search. The focus of Akbari and Salman (2017a) is on an effective decomposi-
tion-based solution method for the RRP. In Perrier et al. (2008), the problem is 
approached as a vehicle routing problem for snow plowing equipment in urban 



1 3

Robust post‑disaster route restoration﻿	

areas to clear roads. A general routing problem is considered for debris removal 
in Sahin et  al. (2016) and a constructive heuristic based on Dijkstra’s shortest-
path algorithm is proposed to close optimality gaps. The work in Yan and Shih 
(2009) takes a multi-objective approach to optimize route restoration. Two objec-
tives are considered, namely, minimizing the time spent on restoration and on 
relief distribution and a heuristic is also proposed as a solution method. In Ajam 
et  al. (2019), latency, which is defined as the time elapsed until a node is vis-
ited, is minimized for a debris clearing problem. A meta-heuristic that includes a 
greedy randomized adaptive search procedure and variable neighbourhood search 
is proposed to solve the problem. Novel objectives are also proposed in Kasaei 
and Salman (2016), where two problems are used to plan debris cleaning opera-
tions. The first one minimizes the shutdown time of the road system, while the 
second one focuses on increasing the overall benefits of the reconnecting the net-
work components in a timely manner.

Given the widely recognized intractability of models involving route restoration, 
as evidenced by the number of reviewed work that propose heuristic solution meth-
ods, uncertainty has only rarely been factored into consideration. The work proposed 
in Çelik et al. (2015) adopts a stochastic approach via a partially observable Markov 
decision process model to sequence road clearance. The authors recognize the dif-
ficulty of incorporating uncertainty considerations and devise a heuristic solution 
approach as well.

3 � Methodology

This section develops a comprehensive framework, comprising of 6 mathematical 
programming models, to optimize post-disaster route restoration. The first model 
is a deterministic model which we use as a baseline for comparisons, especially 
regarding the impact of uncertainty on route restoration decisions. In the second 
model, we add restoration time uncertainties to the route restoration problem, via a 
two-stage robust optimization framework with polyhedral uncertainty set. The first 
stage, which makes decisions prior to uncertainty realizations, selects the routes 
to be restored and the second stage sequences route restoration after uncertainty 
realizations. The two-stage framework generates route selection decisions that are 
robust to uncertainty and restoration sequencing decisions that are dependent on, 
and therefore flexible to, uncertainty realizations. The polyhedral uncertainty set has 
the advantage of (1) being distribution-free and (2) permitting a level of control on 
the conservatism of our solutions, which is appropriate for disaster settings where 
probability distributions are hard to estimate and over- and under-conservatism can 
yield sub-optimal planning. Our third model is a single-stage solvable equivalent of 
the robust optimization model, which is produced using a novel decision rule based 
on restoration time ordering.

The first three models implicitly assume that routes can be restored concurrently. 
Concurrent route restorations require the availability of multiple restoration crews 
and equipment and in situations where resources are severely limited, this may be 
impractical. Our fourth model relaxes the concurrent restoration assumption by 
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considering sequential job starts. Whilst this would be traditionally achieved using 
constraint addition, doing so in our case would introduce further complexity in solv-
ing the robust counterpart. To make sure that our decision rule remains optimal for 
the model with sequential job starts and hence, that the tractability and solvability 
are not impeded, we propose a novel method of relaxing the concurrent restoration 
assumption using time period enlargement/contraction. Another assumption which 
may hamper the practical validity of our models is a fundamental one in two-stage 
robust optimization, which is that restoration time realizations are available prior 
to route sequencing. In practice, having such restoration time information involves 
precise post-disaster damage assessment, which is resource-intensive and may be 
unrealistic in some cases. Our fifth model relaxes this fundamental assumption by 
optimizing sequencing decisions without a priori restoration time knowledge. Our 
sixth model is a solvable form of the fifth model under our restoration time order-
ing decision rule. Altogether, our 6 models follow a methodological underpinning, 
which is the restoration time ordering decision rule, to propose tractable formula-
tions of the robust route restoration problem for a variety of disaster situations.

3.1 � Route restoration problem

In the RRP, a disaster has affected a network, resulting in blocked edges and a press-
ing need for supplies to be delivered to specific locations. Let G = (N,E) be an 
undirected graph that models the affected network. The set N of nodes consists of 
a supply node, denoted as 0, a set Nd of demand nodes, and a set N ⧵ {{0} ∪ Nd} of 
transshipment nodes. The set E of edges contains a set B of blocked edges, which 
are edges not traversable post-disaster, and a set U of edges that are still traversable 
after the disaster.

In our RRP, repair teams are dispatched to restore access from the supply node 
to the demand nodes. The RRP is the problem of sequencing route restorations over 
a finite time horizon of T time periods so as to minimize the makespan of access 
restoration from the supply node to all demand nodes. In this paper, the restoration 
of access from the supply node to all demand nodes is referred to as “network res-
toration.” Note that the single supply node is not restrictive in where supplies can 
originate. In the case where there are multiple supply points, they can be represented 
as nodes connected via dummy edges to a source node 0.

Let [T] be the set of running indices from 1 to T, |S| be the cardinality of set S , 
and Ai be the set of nodes connected to node i. Denoting the number of time peri-
ods (integer) needed to restore a blocked edge (i, j) as rij , we can define our RRP as 
follow:

Decision variables

xt
ij
:	� Is 1 if restoration for edge (i,  j) is started at the beginning of period t, 0 

otherwise
f t
ij
:	� Dummy integer flow variable from node i to j in period t

zt:	� Is 1 if graph is fully restored at time t. 
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 where 

 and Ai is the set of adjacent nodes to node i.
The objective of Model (P1) is to minimize the makespan of network restoration, 

reducing degeneracy with the small value � . Constraint (1) allows only one restora-
tion to be started in a time period, for simplification. Constraint (2) ensures that a 
blocked edge may only be unblocked once. Note that we use the terms unblock and 
restore interchangeably here. Constraint (3) allows flow along an edge if and only if 
the edge has been unblocked. In this model, flow variables are unrestricted in sign 
so as to reflect the undirectedness of the graph in a more efficient way. Edges are 
only defined once, with the sign of the flow variables indicating the direction of 
the flow. For example, edge (1,2) with a flow of +1 indicates a flow from node 1 to 
node 2. The same edge with a flow of -1 indicates a flow from node 2 to node 1. If 
non-negativity restrictions were imposed on flow variables, we would need to define 
both edge (1,2) and edge (2,1) in the model. Constraint (4) indicates that there is 
no flow on an edge before its restoration is complete. Constraint (5) is necessary 
for flow conservation. It also specifies the conditions for the completion of network 
restoration, which are (1) all demand points have unit net inflows, (2) there is a net 

(1)

(P1) min
∑
t∈[T]

tzt + �
∑
(i,j)∈B

∑
t∈[T]

xt
ij

s.t.
∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

(2)
∑
t∈[T]

xt
ij
≤ 1 ∀(i, j) ∈ B

(3)|f t
ij
| ≤ |Nd|

∑
�∈[t−rij]

x�
ij

∀(i, j) ∈ B, t ∈ [T] ⧵ [rij]

(4)f t
ij
= 0 ∀(i, j) ∈ B, t ∈ [rij]

(5)
∑
j∈Ai

f t
ji
−
∑
j∈Ai

f t
ij
= Fit ∀i ∈ N, t ∈ [T]

(6)

∑
t∈[T]

zt = 1

All xt
ij
, zt ∈ {0, 1}, f t

ij
∈ ℝ,

Fit =

⎧
⎪⎨⎪⎩

zt if i ∈ Nd

−�Nd�zt if i ∈ {0}

0 Otherwise
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outflow of |Nd| units from the supply node, and 3) all transshipment nodes have zero 
net inflows and outflows, meaning that there is a path from the supply node to every 
demand node. Constraint (6) stipulates that the network must be restored by the end 
of the planning horizon.

Note on Constraint (1) While the constraint allows for a single restoration job 
to start in any time period, it does not restrict the number of concurrent restoration 
jobs that can be carried out.

Proposition 1  Given a feasible set of restored edges, B∗ , sequencing of edge resto-
ration in descending order of the restoration time is optimal.

Proof  Let 
(
(in, jn)

)

n∈[|B∗|]
 be a sequence of edge restorations given set B∗ , where 

(in, jn) is the edge which is chosen for restoration at time n, implying that xn
injn

= 1 . It 
is clear that the makespan of full restoration, 

∑
t∈[T]

tzt , for this sequence can be cal-
culated as 

∑
t∈[T]

tzt = max
n∈[|B∗|]{n + rinjn} . If S is the set of all possible sequences 

given set B∗ , the optimal makespan is min
((in,jn))n∈[|B∗ |]∈S

max
n∈[|B∗|]{n + rinjn} . Suppose a 

sequence where ri1j1 ≥ ri2j2 ≥ ⋯ ≥ ri|B∗ |j|B∗ | and maxn∈[|B∗|]{n + rinjn} = n∗ + rin∗ jn∗ . It 
is clear that any other sequence where edge (in∗ , jn∗ ) is chosen for restoration at time 
n∗ will have a makespan greater than or equal to n∗ + rin∗ jn∗.

If edge (in∗ , jn∗ ) is not chosen for restoration at time n∗ , but is rather interchanged, 
in the sequence, with edge (im, jm) : 

1.	 for m > n∗ , the makespan increases since m + rin∗ jn∗ > n∗ + rin∗ jn∗.
2.	 for m < n∗ , the makespan either remains the same or increases since 

n∗ + rimjm ≥ n∗ + rin∗ jn∗ from the knowledge that rimjm ≥ rin∗ jn∗.

This shows that for any possible other sequence, the makespan will either remain the 
same or increase, meaning that a sequence in descending order of restoration time 
gives the minimum makespan. 	�  ◻

An interesting note about Proposition 1 is that it remains valid even if vector r 
contains real-valued, instead of integer, restoration times. Proposition 1 mainly indi-
cates that there is a simple rule governing the optimal sequencing of edge restora-
tions. It also tells us that if we know the optimal selection of edges to restore, we can 
sequence edge restorations optimally without running a model.

3.2 � Illustrative example: baseline case

To showcase the application of Model (P1), an illustrative network is used. Suppose 
a planner is given a planning horizon of 50 h to restore the network of 13 nodes and 
20 edges, of which 14 are blocked, pictured in Fig. 1. The demand nodes are shaded 
and the number on a traversable edge represents the edge serial number. On blocked 
edges, the notation a : bh expresses a as the serial number and b as the number of 
hours required to restore the edge. The value of � is chosen to be 1 × 10−5 . Model 
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(P1) is solved for the illustrative example using ILOG CPLEX. The solution time is 
0.09 seconds and the optimal results are shown in Table 1.

The table can be read as such: At the beginning of hour 1 (first column), the res-
toration of edge (0, 2) (second column) is started. Since the restoration time for this 
edge is 2 h (third column), restoration is completed at the beginning of hour 3 (fourth 
column). By restoring edges (0, 2), (9, 12), (1, 11), (0, 5), and (10, 11), access is 
made possible from the supply node to all demand nodes. Since the first restoration 
starts at the beginning of hour 1 and network restoration is completed at the begin-
ning of hour 6, the optimal makespan obtained from CPLEX is 6 − 1 = 5 h. To test 
Proposition 1, we sequence the edges in descending order of restoration times and 
observe from Table 1 that the same makespan is obtained, showing the optimality of 
the rule.

Fig. 1   Baseline network for 
illustrative example

0

1 2

3

4

5

6
7

8
9

10

11

12
4: 2h

1

2: 2h

3: 2h

5 6: 3h

7

8 9: 3h

10: 3h

11: 1h

12: 1h

13: 2h14

15: 3h 16

Blocked edge
Traversable edge

17: 5h

18: 4h

19: 4h

20: 3h

Table 1   Optimal results

Hour CPLEX results Sequencing in descending order of restora-
tion times

Edge restored Restoration 
time (h)

Completion time Edge restored Time 
taken 
(h)

Completion time

1 (0,2) 2 t = 1 + 2 = 3 (9,12) 3 t = 1 + 3=4
2 (9,12) 3 t = 2 + 3 = 5 (1,11) 2 t = 2 + 2 = 4
3 (1,11) 2 t = 3 + 2 = 5 (0,2) 2 t = 3 + 2 = 5
4 (0,5) 2 t = 4 + 2 = 6 (0,5) 2 t = 4 + 2 = 6
5 (10,11) 1 t = 5 + 1 = 6 (10,11) 1 t = 5 + 1 = 6
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4 � Robust counterpart

In practice, restoration times are uncertain. We model the uncertainty in edge restora-
tion times r ∈ ℝ

|B|
+  using the polyhedral uncertainty set

where �  , which varies in the range, [

∑
(i,j)∈B rij∑
(i,j)∈B r̄ij

, 1] , is a parameter, called the “budget 

of uncertainty”, used to control the size of the uncertainty set. When 𝛤 =

∑
(i,j)∈B rij∑
(i,j)∈B r̄ij

 , 
∑

(i,j)∈B rij ≤
∑

(i,j)∈B rij and since r ∈ [r, r̄] , R becomes a singleton wherein R = {r} . 
As �  increases, the size of the uncertainty set enlarges. As such, larger total varia-
tions in restoration times are allowed, resulting in higher degrees of uncertainty. 
Notice that we have relaxed the integrality requirement on r to allow more flexibility 
in defining uncertainty ranges. Our uncertainty set is general in that it allows the 
planner to define r

ij
= 0 when doubts exist over whether edge (i, j) has been affected 

at all.
The robust counterpart of Model (P1) under uncertain restoration times is formu-

lated using a two-stage robust optimization approach as follows:

Decision variables

aij:	� Is 1 if edge (i, j) is selected for restoration, 0 otherwise
gij:	� Dummy integer variable to model flow from node i to j
G:	� Completion time of network restoration
xt
ij
:	� Is 1 if restoration for (i, j) is started at the beginning of period t, 0 otherwise. 

R = {r ∈ ℝ
|B|
+ ∶ r

ij
≤ rij ≤ r̄ij,∀(i, j) ∈ B,

∑
(i,j)∈B

rij ≤ 𝛤
∑
(i,j)∈B

r̄ij},

(7)
(P2) min �

∑
(i,j)∈B

aij +max
r∈R

Q(a, r)

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B

(8)
∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

(9)

All aij ∈ {0, 1}, gij ∈ ℤ,

where Q(a, r) = minG

G ≥ t
∑
(i,j)∈B

xt
ij
+

∑
(i,j)∈B

rijx
t
ij

∀t ∈ [T]
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 where 

In the first stage, proactive edge selection is made. A fixed set of edges is selected 
for restoration after the disaster has struck. This selection is made before edge restora-
tion time realizations. It allows repair teams to start preparations such as gathering nec-
essary equipment, manpower, and other resources. In the second stage, Sequencing of 
edge restorations is done reactively, that is, subject to restoration time realizations. This 
means that the planner waits for information on restoration time realizations to decide 
the sequence in which edge restorations are to be conducted. The robust counterpart 
selects edges for restoration in such a way that they yield the best worst-case sequence. 
The term �

∑
(i,j)∈B aij is employed for degeneracy reduction.

Constraint (7) ensures that flow is possible on an edge only if it has been chosen 
for restoration. Constraint (8) ensures if all the edges in the first-stage selection are 
restored, the network is restored, meaning that the edge selection is a feasible one. Con-
straint (9) is necessary to calculate the makespan of an edge restoration sequence. Con-
straint (10) makes it possible to sequence an edge if and only if it has been selected for 
restoration in the first stage. Constraint (11) allows only one restoration to be started in 
a time period, consistent with the deterministic model. Notice that the model has com-
plete recourse, meaning that its second stage is always feasible.

In the robust optimization literature, two-stage models are typically solved with 
decision rules, which are constructs that approximate the solution space for solvabil-
ity. When second-stage decisions are real-valued, decision rules in affine or polynomial 
forms are generally employed. When these decisions are integer-valued, finite adapt-
ability or binary decision rules are usually used. Whilst decision rules enable solvabil-
ity, they are, nonetheless, approximations that generate sub-optimal solutions in most 
cases. Interestingly, for our case, the two-stage model can be solved exactly, as shown 
in the following proposition.

(10)
∑
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

(11)

∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

All xt
ij
∈ {0, 1},G ∈ ℝ+,

F̂i =

⎧
⎪⎨⎪⎩

1 if i ∈ Nd

−�Nd� if i ∈ {0}

0 Otherwise.
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Proposition 2  Model (P2) is equivalent to mixed integer programming model

Proof  From Proposition 1, we know that the minimum makespan, given a restora-
tion time realization and a feasible set of restored arcs, results when the restoration 
sequence is in decreasing order of restoration times. By adding constraints to satisfy 
that decreasing-order condition, we can therefore convert the optimization model 
Q(a, r) into a feasibility problem. The constraints that model the decreasing-order 
condition would be

Therefore max
r∈R

Q(a, r) becomes the model

(P3) min 𝜖
∑
(i,j)∈B

aij + G

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

∑
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

G ≥ t
∑
(i,j)∈B

xt
ij
+

∑
(i,j)∈B

(r̄ij𝜋
A
ijt
− r

ij
𝜋B
ijt
) + 𝛤

∑
(i,j)∈B

r̄ij𝜋
C
t

∀t ∈ [T]

𝜋A
ijt
− 𝜋B

ijt
+ 𝜋C

t
≥ xt

ij
∀t ∈ [T]∑

(i,j)∈B

(r̄ij(𝜋
A
ijt
− 𝜋A

ijt+1
) − r

ij
(𝜋B

ijt
− 𝜋B

ijt+1
))

+ 𝛤
∑
(i,j)∈B

r̄ij(𝜋
C
t
− 𝜋C

t+1
) ≥ 0 ∀t ∈ [T − 1]

All aij, x
t
ij
∈ {0, 1},𝜋A

ijt
,𝜋B

ijt
,𝜋C

t
∈ ℝ+, gij ∈ ℤ.

∑
(i,j)∈B

rijx
t
ij
≥

∑
(i,j)∈B

rijx
t+1
ij

∀t ∈ [T − 1].
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where dt ∈ {0, 1} is a binary variable indicating whether network restoration is com-
plete at the beginning of time t or not. The binary variable helps establish the defini-
tion of G, the completion time of network restoration. Indeed, 
G = t

∑
(i,j)∈B x

t
ij
+
∑

(i,j)∈B rijx
t
ij
 if and only if dt = 1 . It is clear that the above model 

can also be expressed as

The classical way in robust optimization to proceed from this point is by dualizing 
the inner maximization problem and inferring the final mixed integer model from 
strong duality. However, the dualization yields a non-linear model that requires line-
arization with additional variables. In our model, there is a way to dualize the model 
that requires fewer additional variables by noting that the decreasing-order condition 
is expressed as constraints on the objective function of the inner maximization prob-
lem. Thus, the model can be re-written as

max
r∈R

G

s.t.
∑
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

G ≥ t
∑
(i,j)∈B

xt
ij
+

∑
(i,j)∈B

rijx
t
ij

∀t ∈ [T]

G ≤ t
∑
(i,j)∈B

xt
ij
+

∑
(i,j)∈B

rijx
t
ij
+ T(1 − dt) ∀t ∈ [T]

∑
t∈[T]

dt = 1

∑
(i,j)∈B

rijx
t
ij
≥

∑
(i,j)∈B

rijx
t+1
ij

∀t ∈ [T − 1],

minG

s.t.
�
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

�
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

G ≥ t
�
(i,j)∈B

xt
ij
+ max

{r ∈ R ∶
∑

(i,j)∈B rijx
t
ij
≥∑

(i,j)∈B rijx
t+�
ij

,∀� ∈ [T − t],∑
(i,j)∈B rijx

t
ij
≤∑

(i,j)∈B rijx
t−�
ij

,∀� ∈ [t − 1]}

�
(i,j)∈B

rijx
t
ij

∀t ∈ [T].
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Dualizing the inner maximization problem, and because of strong duality, the above 
model becomes

Combining with the first-stage model, we obtain the model in the proposition. 	�  ◻

4.1 � Illustrative example with uncertain restoration times

Suppose that for the network shown in Fig. 1, the restoration times are uncertain, 
with the uncertainty expressed as ranges in hours. The ranges are chosen randomly 
in such a way that they contain the nominal values used for the deterministic net-
work. A value of � = 0.6 is used.

In the optimal robust solution, edges (5,11), (8,9), (9,12), (7,10), (1,11), (0,2) 
are chosen for restoration. Table 2 shows the worst-case makespan of optimal edge 
selections from the robust optimization model, as compared to that of the edge 
selection from the deterministic model (P1).

The worst-case makespan obtained from the robust optimization model 
is 14.1 − 1 = 13.1  h, whereas that obtained from the deterministic model is 
21.2 − 1 = 20.2 h. Even though the deterministic model yields a smaller number of 
routes to restore, its worst-case network completion time from optimal sequencing is 

minG

s.t.
∑
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

G ≥ t
∑
(i,j)∈B

xt
ij
+ �t ∀t ∈ [T]

�t ≥ max
r∈R

∑
(i,j)∈B

rijx
t
ij

∀t ∈ [T]

�t ≥ �t+1 ∀t ∈ [T − 1].

minG

s.t.
∑
t∈[T]

xt
ij
= aij ∀(i, j) ∈ B

∑
(i,j)∈B

xt
ij
≤ 1 ∀t ∈ [T]

G ≥ t
∑
(i,j)∈B

xt
ij
+ 𝜌t ∀t ∈ [T]

𝜌t ≥
∑
(i,j)∈B

(r̄ij𝜋
A
ijt
− r

ij
𝜋B
ijt
) + 𝛤

∑
(i,j)∈B

r̄ij𝜋
C
t

∀t ∈ [T]

𝜋A
ijt
− 𝜋B

ijt
+ 𝜋C

t
≥ xt

ij
∀t ∈ [T]

𝜌t ≥ 𝜌t+1 ∀t ∈ [T − 1].
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around 7 h longer than that of the robust optimization model. One can easily check 
that both edge selections make all demand points fully accessible.

4.2 � Discussions on concurrent restoration jobs

In the models described so far, restoration jobs can be conducted in parallel, mean-
ing that the restoration of the next edge can be started before the completion of the 
restoration of the previous edge. Table 3 shows the number of concurrent jobs in 
every time period in our worst-case makespan solutions.

As discussed before, the term �
∑

(i,j)∈B aij and in Model (P3) ensures that, among 
multiple optimal solutions, the one with the smallest number of routes restored is cho-
sen. Starting a restoration job involves equipment and crew setups and these can be 
avoided by choosing fewer routes. However, as Table 3 shows, fewer routes may also 
mean more concurrent jobs and the number of jobs is limited by the number of crews 
and equipment available. By varying � , the planner can vary the number of routes 
restored and as a result, the number of concurrent jobs implied by the solution. For 
instance, a small negative � would maximize the number of routes restored without 

Table 2   Comparison of worst-case results for edge selections from the deterministic model against the 
robust optimization model

Hour Robust optimization model (P3) Deterministic model (P1)

Edge restored Restora-
tion time 
(h)

Completion time Edge restored Restora-
tion time 
(h)

Completion time

1 (8,9) 12.1 13.1 (0,5) 20.2 21.2
2 (1,11) 12.1 14.1 (10,11) 18.8 20.8
3 (0,2) 1.5 4.5 (0,2) 3.6 6.6
4 (7,10) 1.5 5.5 (1,11) 3.3 7.3
5 (9,12) 1.1 6.1 (9,12) 3.3 8.3
6 (5,11) 0.9 6.9

Table 3   Comparison of the number of concurrent jobs, N
c
 , in the worst-case makespan solutions

Hour Robust optimization model (P3) Deterministic model (P1)

Edge restored Completion 
time (h)

N
c

Edge restored Completion 
time (h)

N
c

1 (8,9) 13.1 1 (0,5) 21.2 1
2 (1,11) 14.1 2 (10,11) 20.8 2
3 (0,2) 4.5 3 (0,2) 6.6 3
4 (7,10) 5.5 4 (1,11) 7.3 4
5 (9,12) 6.1 4 (9,12) 8.3 5
6 (5,11) 6.9 4
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sacrificing the makespan, if multiple optimal solutions exist. This method, however, is 
arbitrary in terms of how many concurrent jobs will be carried out. With this method, 
the planner cannot specify the number of concurrent jobs that his/her resources permit. 
Such a specification would require the addition of constraints, which will alter the opti-
mality of the restoration time ordering decision rule and thus impact the tractability and 
solvability of the robust counterpart. In addition, a pre-defined number of concurrent 
jobs is hard to calculate, given that it depends on the number of equipment available, 
the manpower at the planner’s disposal, the distance of crews and equipment from the 
disaster area, the contribution of resources from agencies and third parties, and so on.

4.3 � Sequential restoration jobs

In numerous cases though, simultaneous restorations are impossible to conduct, such as 
if one road can only be accessed if another has been restored, or if there is a single res-
toration team at work, or if only one set of equipment is available. Interestingly, in that 
particular case, it is possible to reformulate the model with the same level of tractability 
using time period enlargement/contraction. The underlying principle is to redefine time 
periods such that every job that is started in a time period is completed by the end of it.

Mathematically, this means that r̄ ≤ 1 . If this condition is not met in the original 
problem description, such as in the network used for our illustrative example, it can be 
enforced by altering the actual time window that a time period represents. Any RRP 
can be converted into one with sequential restoration jobs by defining time period t to 
be a window wherein any job that starts can be completed. In this section, it is helpful 
to understand rij as the number of time periods necessary to complete the restoration of 
edge (i, j). A conservative way to alter the time period definition would be to define it 
(taken to be in hours for clarity here) as a max(i,j)∈B{r̄ij}-hour time window. The num-
ber of time periods necessary to complete the restoration of edge (i, j) then becomes 

rij

max(i,j)∈B{r̄ij}
 , which is always less than or equal to 1, ∀(i, j) ∈ B.

From a model formulation viewpoint, the robust optimization model (P3) with 
sequential restoration jobs has an alternative formulation with fewer decision variables 
and constraints. This simplification is especially useful when networks with large num-
bers of nodes and edges (especially of blocked edges) are considered. The alternative 
formulation is derived in the following proposition.

Proposition 3  If r̄ij ≤ 1 , ∀(i, j) ∈ B in uncertainty set R , problem (P2) is equivalent 
to
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where M is a big number.

Proof  Let D = {
(
(it, jt)

)
t∈[|B∗|] ∈ S ∶ ri1j1 ≥ ri2j2 ≥ ⋯ ≥ ri|B∗ |j|B∗ |} be a sequence in 

descending order of restoration times for a feasible set of restored edges B∗ and a set 
S of all possible edge restoration sequences in B∗ . If ritjt ≤ 1 , ∀t ∈ [|B∗|] , 
ritjt − ri|B∗ |j|B∗ | ≤ 1 ≤ |B∗| − t , ∀t ∈ [|B∗| − 1] . Therefore |B∗| + ri|B∗ |j|B∗ | ≥ t + ritjt , 
∀t ∈ [|B∗| − 1] and max

t∈[|B∗|]{t + ritjt} = |B∗| + ri|B∗ |j|B∗ | . As such, Model (P2) can be 
expressed as

Dualizing the maximization problem max
r∈R

Q(a, r) , we obtain

(P4) min
∑
(i,j)∈B

(
aij + r̄ij𝜋

A
ij
− r

ij
𝜋B
ij
+ 𝛤 r̄ij𝜋

C + r̄ij𝜋
E
ij

)

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

∑
(i,j)∈B

𝜋D
ij
≥ 1

𝜋A
ij
− 𝜋B

ij
+ 𝜋C − 𝜋D

ij
≥ 0 ∀(i, j) ∈ B

𝜋E
ij
≤ 𝜋D

ij
∀(i, j) ∈ B

𝜋E
ij
≥ 𝜋D

ij
−Maij ∀(i, j) ∈ B

𝜋E
ij
≤ M(1 − aij) ∀(i, j) ∈ B

All aij ∈ {0, 1}, gij ∈ ℤ,𝜋A
ij
, 𝜋B

ij
,𝜋C,𝜋D

ij
,𝜋E

ij
∈ ℝ+,

min
∑
(i,j)∈B

aij +max
r∈R

Q(a, r)

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

All aij ∈ {0, 1}, gij ∈ ℤ,

where Q(a, r) = maxR

R ≤ rij + r̄ij(1 − aij) ∀(i, j) ∈ B

R ∈ ℝ+.
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Since r̄ij(1 − aij)𝜋
D
ij

 is nonlinear, we perform a substitution using �E
ij
∈ ℝ+ , where 

�E
ij
= (1 − aij)�

D
ij

 , and add the constraints

The third constraint, together with the non-negativity of �E
ij
 , ensure that when 

aij = 1 , �E
ij
= 0 and the first two constraints guarantee that when aij = 0 , �E

ij
= �D

ij
 . 

With the linearized dual, Model (P2) becomes a single-stage mixed integer pro-
gramming model. 	�  ◻

To apply Model (P4) to the network in Fig.  2, we define our time 
period as max(i,j)∈B{r̄ij} = 24.7 hours. The optimal edge selection gener-
ated is (9,12), (0,5), (3,6), (1,11), (0,2). The worst-case optimal sequencing is 

min
∑
(i,j)∈B

(
r̄ij𝜋

A
ij
− r

ij
𝜋B
ij
+ 𝛤 r̄ij𝜋

C + r̄ij(1 − aij)𝜋
D
ij

)

∑
(i,j)∈B

𝜋D
ij
≥ 1

𝜋A
ij
− 𝜋B

ij
+ 𝜋C − 𝜋D

ij
≥ 0 ∀(i, j) ∈ B

All 𝜋A
ij
,𝜋B

ij
,𝜋C,𝜋D

ij
∈ ℝ+.

�E
ij
≤ �D

ij
∀(i, j) ∈ B

�E
ij
≥ �D

ij
−Maij ∀(i, j) ∈ B

�E
ij
≤ M(1 − aij) ∀(i, j) ∈ B.
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Fig. 2   Network for illustrative example with uncertain restoration times
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(3, 6) → (0, 5) → (0, 2) → (1, 11) → (9, 12) , where → represents “followed by”. The 
worst-case makespan is (5.132 − 1) time periods, which is 4.132 × 24.7 = 102.1 h. 
This is significantly larger than worst-case makespan obtained when simultaneous 
job starts are allowed. While it is not a surprise that sequential restoration jobs lead 
to a larger makespan than concurrent jobs, the size of the difference is noticeably 
large. The main reason for this big jump is the amount of idle time in between jobs, 
a direct result of increasing the hours contained per time period from 1 to 24.7. 
This increase is conservative in that it forces rij to be less than or equal to 1, for all 
(i, j) ∈ B.

The conservatism can be reduced by decreasing the time window that a time 
period represents. Let � be the time window that a time period represents. In the 
above example, � = 24.7 h and the optimal objective value (representing the worst-
case completion time of network restoration) is 

∑
(i,j)∈B a

∗
ij
 + 

min{(i,j)∈B∶a∗
ij
=1}{r

∗
ij
} = 5 + 0.132 , where a∗ is the optimal solution of a and r∗ is the 

worst-case restoration time realization. Model (P4) is also an equivalent formulation 
of Model (P2) under the looser condition r̄ij ≤ 1 , ∀{(i, j) ∈ B ∶ a∗

ij
= 1} (this can be 

verified from the proof of Proposition 3). Under a less conservative time-window 
where (max{(i,j)∈B∶a∗

ij
=1}{r̄ij} × 24.7) ≤ 𝜌 < 24.7  h, if it exists, the new restoration 

time upper bound r̄′
ij
 for an edge (i, j) becomes r̄�

ij
=

r̄ij × 24.7

𝜌
 , where it is easy to see 

that r̄′
ij
≤ 1 , ∀{(i, j) ∈ B ∶ a∗

ij
= 1} . The worst-case completion time for the same 

edge selection is therefore 
∑

(i,j)∈B a
∗
ij
+min{(i,j)∈B∶a∗

ij
=1}{r

�∗
ij
} = 5 +

0.132 × 24.7

�
≤ 6.

We can show that a∗ is also optimal under the new time window definition 
(max{(i,j)∈B∶a∗

ij
=1}{r̄ij} × 24.7) ≤ 𝜌 < 24.7 . We first note that the number of edges 

selected for restoration under the 24.7-hour time window is the smallest that can be 
chosen. If a smaller number of selected edges existed, it would have been optimal. 
Since the worst-case completion time with a∗ is less than or equal to 

∑
(i,j)∈B a

∗
ij
+ 1 , 

a larger number of selected edges is also not possible. It is also clear that there is no 
possible replacement of selected edges that will improve min{(i,j)∈B∶a∗

ij
=1}{r

�∗
ij
} and 

thus, the optimal solution remains the same. For our illustrative example, 
max{(i,j)∈B∶a∗

ij
=1}{r̄ij} × 24.7 = 20.2 h is the smallest time window that gives the same 

optimal edge selection solution. The new optimal objective value is 
5 +

0.132 × 24.7

20.2
= 5.161 time periods, which gives a makespan of (5.161 − 1) time 

periods, which is 4.161 × 20.2 = 84.1 h, a significant improvement from the 102.1 h 
obtained with the 24.7-h time window. The time window definition is impactful in 
practice. The re-definition to 20.2 h means that the restoration team moves to the 
next job after 20.2 h instead of 24.7 h. It also means smaller idle time in between 
jobs.
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4.4 � Sequencing without a priori restoration time knowledge

In the previous sections, sequencing is done in response to restoration time realiza-
tions, with the objective of optimizing the worst-case, over all possible realizations, 
of sequencing strategy. This a priori knowledge of uncertainty realizations may not 
necessarily be available for some disaster situations. For instance, resources may 
not be available to conduct precise damage assessments and produce exact restora-
tion time realizations, or the disaster may be unprecedented. In the chaotic post-
disaster environment, unexpected events are bound to happen, such as traffic slowing 
access to routes, aftershocks from an earthquake derailing response strategies and 
complicating damage assessments, and interactions of disasters worsening damages, 
such as the nuclear meltdown that followed the tsunami during the Tohoku disaster. 
While the two-stage framework is very helpful in guiding decision-making, it may 
face some practical challenges in more complex situations because of its reliance 
on restoration time realizations. From a modelling perspective, the lack of a priori 
restoration time knowledge means that sequencing edge restorations in decreasing 
order of restoration times is not possible and therefore, that our decision rule is not 
implementable. The decision-maker has to envisage the possibility of the chosen 
restoration sequence being such that the edge with the highest restoration time reali-
zation is started last in the sequence, delaying the completion time as much as pos-
sible. The decision-making problem thus becomes

Model (P5) finds the best worst-case sequence, with the understanding that the worst 
makespan possible by any sequence happens when the edge with the highest restora-
tion time is started last. In traditional robust optimization methods, the inner maxi-
mization problem would have been dualized and the resulting single-stage model 
linearized to obtain the final mixed integer programming problem. However, this 
augments the complexity of the model with dual variables and additional lineariza-
tion variables, thus decreasing its scalability. In the following proposition, we prove 
that there is a more scalable solvable formulation of Model (P5).

Proposition 4  Model (P5) is equivalent to

(P5) min
∑
(i,j)∈B

aij +max
r∈R

{R̄ ∶ R̄ ≥ rij − r̄ij(1 − aij),∀(i, j) ∈ B}

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

All aij ∈ {0, 1}, gij ∈ ℤ, R̄ ∈ ℝ+.
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Proof  Let F  be a family of feasible sets of restored edges and SB∗ be the set of all 
possible edge restoration sequences for B∗ ∈ F  . Define ((it, jt))t∈[|B∗|] ∈ SB∗ as an 
edge restoration sequence, where (it, jt) is the edge whose restoration starts in the tth 
period. Model (P5) can be rewritten in a concise manner as

where equality (i) follows from the definition of our uncertainty set and for simplic-
ity, we denote as {(it, jt)}t>|B∗| , as the set of edges not in B∗ . It is clear that ritjt = r

itjt
 , 

∀t ∈ [|B|] ⧵ {|B∗|} . Therefore, Model (P5) becomes

(P6) min
∑
(i,j)∈B

aij + R̄

s.t. |gij| ≤ |Nd|aij ∀(i, j) ∈ B∑
j∈Ai

gji −
∑
j∈Ai

gij = F̂i ∀i ∈ N

R̄ ≥ Lij ∀(i, j) ∈ B

Lij ≥ r̄ijyij1 ∀(i, j) ∈ B

Lij ≥ (r
ij
+

∑
(k,l)∈B

(𝛤 r̄kl − r
kl
))yij2 ∀(i, j) ∈ B

yij1 + yij2 = aij ∀(i, j) ∈ B

All aij, yij1, yij2 ∈ {0, 1}, gij ∈ ℤ, R̄, Lij ∈ ℝ+.

min
B∗∈F

max
r ∈ R

((it, jt))t∈[|B∗|] ∈ SB∗

{|B∗| + ri|B∗ |j|B∗ |}

(i)
= min

B∗∈F
max

((it ,jt))t∈[|B∗ |]∈SB∗

{|B∗| + ri|B∗ |j|B∗ | ∶ r
itjt

≤ ritjt ≤ r̄it jt ,∀t ∈ [|B|],
∑

t∈[|B|]
ritjt ≤ 𝛤

∑
t∈[|B|]

r̄it jt},

min
B∗∈F

max
((it ,jt))t∈[|B∗ |]∈SB∗

{|B∗| + ri|B∗ |j|B∗ | ∶ r
i|B∗ |j|B∗ |

≤ ri|B∗ |j|B∗ | ≤ r̄i|B∗ |j|B∗ | ,

ri|B∗ |j|B∗ | ≤
∑

t∈[|B|]
(𝛤 r̄it jt − r

itjt
) + r

i|B∗ |j|B∗ |
}

(ii)
= min

B∗∈F
max

((it ,jt))t∈[|B∗ |]∈SB∗

{|B∗| + ri|B∗ |j|B∗ | ∶ r
i|B∗ |j|B∗ |

≤ ri|B∗ |j|B∗ | ≤ min{r̄i|B∗ |j|B∗ | ,

∑
t∈[|B|]

(𝛤 r̄it jt − r
itjt
) + r

i|B∗ |j|B∗ |
}}

(iii)
= min

B∗∈F
{|B∗| + max

((it ,jt))t∈[|B∗ |]∈SB∗

{min{r̄i|B∗ |j|B∗ | ,
∑

t∈[|B|]
(𝛤 r̄it jt − r

itjt
) + r

i|B∗ |j|B∗ |
}}}

(iv)
= min

B∗∈F
{|B∗| + max

(i,j)∈B∗
{min{r̄ij,

∑
(k,l)∈B

(𝛤 r̄kl − r
kl
) + r

ij
}}}.
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Equality (ii) follows from the fact that ri|B∗ |j|B∗ | ≤ r̄i|B∗ |j|B∗ | and 
ri�B∗ �j�B∗ � ≤

∑
t∈[�B�](𝛤 r̄it jt − r

itjt
) + r

i�B∗ �j�B∗ �
 . Equality (iii) is valid because the worst 

makespan possible by any sequence happens when the edge with the highest restora-
tion time is started last. Equality (iv) is a reformulation to our original model nota-
tion, instead of the sequence notation. The model obtained after equality (iv) is 
equivalent to the model in the proposition. 	�  ◻

When Model (P6) is implemented on the network in Fig.  2, the optimal edge 
selection is (5,11), (8,9), (9,12), (7,10), (1,11), (0,2), which gives a worst-case 
makespan without a priori restoration time knowledge (WMWA) of 18.3 h. This is 
the same as the optimal edge selection for Model (P3). The optimal edge selection 
for the deterministic model (P1) gives a WMWA of 25.2 h. The fact that Models 
(P6) and (P3) give the same optimal objective value in this illustrative case study 
hints at some equivalence between the two models under certain conditions. Iden-
tifying these conditions would be useful for reducing computational complexity in 
the robust optimization model. Indeed, the model without a priori restoration time 
knowledge (P6) has fewer variables and constraints than the original robust optimi-
zation model (P3). In the proposition below, we prove the conditions under which 
these two models are equivalent, which, interestingly, are those for a specific type 
of network restoration process. We start by defining the term “makespan position” 
before proceeding to prove the proposition.

Definition  A time � is called a makespan position when the optimal worst-case 
edge restoration makespan occurs at �.

Proposition 5  Let Bw = {(i, j) ∈ B ∶ a∗
ij
= 1} be the optimal edge selection set for 

Model (P5), where a∗ is the optimal value of a. If the conditions: 

1.	 the makespan position for Model (P2) is equal to |Bw|
2.	 the optimal edge selection set cardinality for Model (P2) is equal to |Bw|
3.	 max(i,j)∈Bw{min{r̄ij,

∑
(k,l)∈B(𝛤 r̄kl − r

kl
) + r

ij
}}

	   = max(i,j)∈B{min{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
}}

4.	 min(i,j)∈Bw{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
} = min(i,j)∈B{r̄ij,

∑
(k,l)∈B(𝛤 r̄kl − r

kl
) + r

ij
}

are satisfied, then Bw is also an optimal edge selection set for Model (P2).
Proof  Suppose Ba is the optimal edge selection set of Model (P2). Define the term 
W̄S = max(i,j)∈S{min{r̄ij,

∑
(k,l)∈B(𝛤 r̄kl − r

kl
) + r

ij
}} and the term 

WS = min(i,j)∈S{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
} . Since Model (P5) can be concisely 

represented as minB∗∈F{�B∗� +max(i,j)∈B∗{min{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
}}} (from 

the proof of Proposition 4), where F  is a family of feasible sets of restored edges, 
|Bw| + W̄Bw

≤ |Ba| + W̄Ba . From condition 2., |Bw| = |Ba| , implying that W̄Bw

≤ W̄Ba.
From condition 1., the makespan position for Model (P2) is |Ba| , and knowing 

from Proposition 1 that sequencing of edge restoration in descending order of the 
restoration time is optimal, it is clear that Model (P2) is equivalent to 
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minB∗∈F{�B∗� +min(i,j)∈B∗{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
}} (the proof the same logic 

as that of Proposition 4). This implies that |Bw| +WBw

≥ |Ba| +WBa and thus, 
WBw

≥ WBa.
From condition 3., W̄Bw

= max(i,j)∈B{min{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
}} , implying 

that W̄Bw

≥ W̄Ba . Since it was shown that W̄Bw

≤ W̄Ba , we can conclude that 
W̄Bw

= W̄Ba . From condition 4., WBw

= min(i,j)∈B{r̄ij,
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
} , 

implying that WBw

≤ WBa , meaning that WBw

= WBa . Therefore, Bw is also an opti-
mal edge selection set for Model (P2). 	�  ◻

Conditions 2., 3., and 4. in Proposition 5 are automatically satisfied in the case 
where the restoration of all network edges is required. While hitherto our models 
have focused on disaster response, where the priority is to restore access to demand 
points, the restoration of all edges is a case of longer-term disaster recovery, where 
the network is restored back to the state it was in before the occurrence of the disas-
ter. Condition 1. is always satisfied in the case of sequential restoration jobs ( ̄r ≤ 1 ). 
Therefore, optimizing the restoration of all edges of a network in sequential restora-
tion jobs is similar to optimizing the restoration of all edges of the network without 
a priori restoration time knowledge.

The purpose of Proposition 5 is to show the conditions under which the planner can 
solve the reduced Model (P6), which is the solvable form of (P5), instead of the less 
scalable problem (P3), which is the solvable form of (P2). Without concurrent jobs, 
Model (P3) reduces to a simpler model anyway, as shown in proposition 3. However, 
Condition 1. is met in other circumstances as well. It is useful then, to define a prob-
ability bound on the makespan position being at |B|, without the restriction r̄ ≤ 1.

Proposition 6  Suppose a value of �  is chosen such that 

𝛤 ≥ max∀(i,j)∈B

r̄ij − r
ij
+
∑

(k,l)∈B rkl∑
(k,l)∈B r̄kl

 . For independent graphs with |B|(≥ 2) blocked 

edges and independent restoration times where the theoretical range of restoration 
time upper bounds is given by �W , the probability of the optimal worst-case makes-
pan occurring at position |B| has a lower bound of

Proof  Defining �̄t be the tth smallest r̄ij over all (i, j) ∈ B . For independent graphs 
with |B|(≥ 2) blocked edges, �̄t is a random variable. Since we know that in Model 
(P3), the optimal edge restoration sequence is in decreasing order of restoration 
times and the objective is to optimize the worst-case makespan over all uncertainty 
realizations, |B| is the makespan position (restoration of all |B| edges required) when 
|B| + �̄|B| ≥ t + �̄t , ∀t ∈ [|B| − 1] . This can be clearly seen because when 

𝛤 ≥ max∀(i,j)∈B

r̄ij − r
ij
+
∑

(k,l)∈B rkl∑
(k,l)∈B r̄kl

 , r̄ij ≤
∑

(k,l)∈B(𝛤 r̄kl − r
kl
) + r

ij
 , ∀(i, j) ∈ B , 

meaning that r̄ij is achievable at the optimal makespan position. We therefore want to 
find ℙ(|B| + �̄|B| ≥ t + �̄t,∀t ∈ [|B| − 1]) . Due to graph independence, and assuming 

|B|∏
a=2

(
1 − e−(a∕�W)2

)
.
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the restoration times are independent, this is equivalent to ∏�B�−1
t=1

ℙ(�B� + �̄�B� ≥ t + �̄t) . We therefore have

where (i) is obtained from Hoeffding’s inequality. 	�  ◻

The variations of the lower bound on the probability of the optimal worst-case 
makespan occurring at position |B| with different |B| and �W are illustrated in Fig. 3.

We first observe that there is an asymptotic behaviour when |B| increases. The 

curves become closer to each other because the extra term in 
∏�B�

a=2

�
1 − e−(a∕�W)2

�
 

tends to 1. Figure 3 provides an interesting guide to choosing time windows. When a 
time window is chosen such that r̄ ≤ 1 , we know that Model (P3) reduces to the 
simpler Model (P4). Figure  3 shows that for the case where network recovery is 
required, even when a larger time window is chosen, there is still a minimum proba-
bility—which may be high—of a simpler model (notably Model (P6)) providing the 

|B|−1∏
t=1

ℙ(|B| + �̄|B| ≥ t + �̄t) =

|B|−1∏
t=1

ℙ(�̄t − �̄|B| ≤ |B| − t)

=

|B|−1∏
t=1

(
1 − ℙ(�̄t − �̄|B| ≥ |B| − t + 1)

)

(i)

≥

|B|−1∏
t=1

(
1 − e

−
2(|B| − t + 1)2

2(W̄ −W)2
)

=

|B|−1∏
t=1

(
1 − e

−

(|B| − t + 1

W̄ −W

)2

)

=

|B|∏
a=2

(
1 − e−(a∕𝛥W)2

)
,
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Fig. 3   Variations of the lower bound on the probability of the optimal worst-case makespan occurring at 
position |B|
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optimal solution. For instance, suppose a large network with 1000 blocked edges 
causes intractability in Model (P4), if the simpler Model (P6) is solved under a pre-
defined time window wherein restoration times are maximum 1.5 time periods, there 

is a minimum 
∏1000

a=2

�
1 − e−(a∕1.5)

2

�
= 0.815 probability that its solution will be 

optimal for Model (P3). This is irrespective of network topology.
Such probability bounds are helpful in guiding decision-makers towards the trac-

table solution of large models. When the restoration of large networks is required, 
such as following disasters over large areas, decision-makers are often faced with 
the prospect of solving intractable combinatorial problems to obtain optimal edge 
sequencing for robustness. By combining the use of both Proposition 5 and Prop-
osition 6, the tractability of the robust optimization model can be significantly 
improved. The decision-maker first verifies if Condition 2., 3., and 4. in Proposition 
5 are satisfied for the network. Thereafter, (s)he can use restoration time bounds to 
obtain a lower bound on the probability of satisfaction of Condition 1 from Proposi-
tion 6. Notice that by varying the time period size, (s)he can guarantee an adequately 
high lower bound on that probability. The bound represents a confidence level 
with which the decision-maker can assume that the model without a priori restora-
tion time knowledge has the same solution as the robust optimization model with 
descending-order decision rule. Since the model without a priori restoration time 
knowledge has better tractability and scalability than the robust optimization model 
with decision rule, it means that if the lower bound on the probability of satisfaction 
of Condition 1. is high, the decision-maker can be confident that the optimal solu-
tion of the two models will be equivalent.

5 � Computational experiment: impact of robustness 
on an Erdős‑Rényi random graph

We first investigate the impact robustifying a random network using our robust opti-
mization model with decision rule (P3) and our robust optimization model with-
out a priori restoration time knowledge (P6). We generate the random network 
using a G(N, p) Erdős-Rényi graph model, where N = 10 is the number of nodes 
and p = 0.5 is the probability that an edge is included in the graph. The network 
in Fig. 4 is our generated graph, with the pale-shaded nodes representing demand 
nodes. All edges are considered to be blocked and their randomly-generated nomi-
nal and ranges of restoration times are shown in Table 4. The random generation is 
carried out as follows: a random number in the range [0, 50] is used as the nominal 
restoration time. Then random numbers are generated from 0 to the nominal value 
and from the nominal value to 75, to be used as lower and upper bounds, respec-
tively. We take a time period of 1 hour, a planning horizon of 100 h, � = 0.8 , and 
� = 1 × 10−4 . Node 0 is the supply node.

The optimal edge selections from the deterministic model (P1), the robust opti-
mization model (P3), and the robust optimization model without a priori restoration 
time knowledge (P6) are shown in Fig. 5.
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Under nominal restoration times, the edge selections in (P1), (P3), and (P6) can 
be sequenced for restoration with minimum makespans of 25  h, 41  h, and 32  h, 
respectively. This shows that our robust optimization models sacrifice nominal per-
formances to hedge against worst-case uncertainty realizations. To compare worst-
case performances, we will compare two situations, which are: (1) when there 
is a priori knowledge of restoration time realizations, meaning that edges can be 
sequenced according to the descending-order decision rule, and (2) when there is no 
a priori knowledge of restoration time realizations and therefore, the decision rule is 
not implementable. For the case where the decision-maker has a priori knowledge 
of restoration time realizations, the worst-case makespans obtained from the edge 
selections in (P1), (P3), and (P6) are 62 h, 46 h, and 49 h, respectively. When the 
decision-maker does not have a priori knowledge of restoration time realizations, the 
worst-case makespans obtained from the edge selections in (P1), (P3), and (P6) are 
70 h, 53 h, and 53 h, respectively This shows the significant improvement in worst-
case performances brought about by robust optimization. It also shows that in this 
particular graph the optimal edge selection for Model (P3) is also optimal for Model 
(P6) (the converse is not true).

To test the performances of our models outside the nominal and worst-case reali-
zations, we randomly generate 1000 scenarios of restoration time realizations and 
find the optimal edge sequencing makespans given the edge selections in Fig.  5. 
The descriptive statistics of the makespans are shown in Table 5. The results show 
significant improvements in worst-case performances for our robust optimization 
models, achieved by sacrificing best-case performances. Moreover, our robust opti-
mization models produce lower average makespans and lower makespan variances 
compared to the deterministic model, showing that by robustifying the network, we 
have achieved better average performances together with better performance stabil-
ity, as compared to nominal planning.

Fig. 4   Our random graph



1 3

Robust post‑disaster route restoration﻿	

6 � Case study: great gorkha earthquake

The great Gorkha earthquake in 2015 with a magnitude of 7.8 (Mw) and its after-
shocks caused significant loss of human lives and properties in the entire Kath-
mandu Valley. Its impact on the transportation network was devastating as help and 
rescue operations were delayed because of impassable roads. Approximately 9,000 
people died, and 22,000 people were injured as a result of the earthquake. The earth-
quake triggered a large number of landslides, avalanches, and rockslides in the entire 
Kathmandu valley (Gnyawali and Adhikari 2017). In 2016, on-site surveys were 
conducted with locals who live in the affected region, as well as with the Depart-
ment of Road Authority in Nepal who are responsible for debris clearance activities 
to identify the times spent to clear closed road segments with respect to the intensity 

Table 4   Restoration time 
statistics

Edge Restoration time

Nominal Lower bound Upper bound

(0,1) 26 12 53
(0,4) 31 17 35
(0,5) 35 23 69
(0,6) 11 0 59
(0,9) 36 7 61
(1,2) 0 0 37
(1,4) 14 7 68
(1,6) 43 25 71
(1,7) 6 4 24
(1,9) 24 3 28
(2,5) 18 5 47
(2,6) 50 8 71
(2,9) 47 19 51
(3,4) 40 33 75
(3,5) 14 13 19
(3,6) 39 2 61
(3,7) 9 5 61
(3,8) 27 22 38
(3,9) 24 12 47
(4,5) 30 18 63
(4,6) 49 4 73
(4,7) 22 2 29
(4,8) 12 11 45
(4,9) 30 4 51
(5,6) 45 41 58
(6,7) 12 1 18
(7,8) 9 4 45
(7,9) 40 19 42
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level of landslides. These surveys, together with landslide magnitude and intensity 
maps were used to assign minimum and maximum restoration times to closed road 
segments and the full results are reported in Aydin et al. (2018).

This study focuses on the rural district of Sindhupalchok located on the north side 
of Kathmandu City. It comprises 457 nodes and 555 edges, 66 of which were ren-
dered impassable due to landslide debris. Access needs to be restored to 81 demand 
points, which represent settlements in Sindhupalchok. All resource/recovery teams 
to restore road segments must come from the largest highway in the district, called 
Araniko Highway. The affected region is show in Fig. 6.

In Aydin et al. (2018), restoration time ranges are taken to be ±2� and this yields 
non-overlapping ranges for five different classes of landslides in terms of the size 
of debris, namely, very small, small, medium, high, very high. In our study, we 

Fig. 5   Optimal edge selection for models (P1) (top left), (P3) (top right), and (P6) (bottom)

Table 5   Descriptive statistics 
on optimal makespans for 1000 
random scenarios

(P1) (P3) (P6)

Average 45.7 37.1 39.6
Standard deviation 9.56 4.14 5.19
Minimum 14.9 24.3 25.2
Maximum 61.9 46.0 48.0
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relax this assumption by taking restoration time ranges to be ±3� , thus allowing 
greater uncertainty, as well as restoration time overlaps for the different classes of 
landslides. We also relax the integrality restrictions imposed on the restoration time 
ranges. The restoration time ranges are shown in Table 6.

Taking a time period as 1 hour, a planning horizon of 100  h, � = 0.8 , and 
� = 1 × 10−4 , the robust counterpart (P3) restores access to all demand points by 
restoring 18 out of the 66 blocked roads. The optimal worst-case restoration comple-
tion makespan is 31.2 h. Note that the solution times for all models in this section 
are less than 10 seconds. Figure 7 maps the worst-case restoration sequence of the 
18 restorations.

With sequential restoration jobs with a time period representing 76.8 h, Model 
(P4) also prescribes the restoration of 18 out of the 66 blocked roads, but the optimal 

Fig. 6   Affected Sindhupalchok district

Table 6   Restoration time data 
(adapted from Aydin et al. 
(2018))

Impact class Restoration times in hours

Lower bound Upper bound Mean Standard 
devia-
tion

Very small 0.8 3.2 2 0.4
Small 2 8 5 1
Medium 3.4 13.6 8.5 1.7
High 6.8 27.2 17 3.4
Very high 19.2 76.8 48 9.6
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set of restored edges is different from that of Model (P3). The optimal worst-case 
makespan is 1386 h and a significant worst-case theoretical idle time of 1292 h.

Note: Throughout this work, equal time windows are used, meaning that every 
time period represents the same time interval. This is to conform to the conventions 
of optimization modelling. Having variable lengths of time negatively impact opti-
mization models. Because of the equal time windows, the makespan for sequential 
jobs is much higher than expected. In practice, the restoration crew can move to the 
next job immediately after finishing the first one and therefore, avoid idle time alto-
gether. In this situation, the makespan becomes 69.3 h (the sum of restoration times 
of restored edges).

6.1 � Performance on random scenarios

In this sub-section, we investigate the performances of the deterministic model (P1), 
the robust optimization (P3) and the model without a priori information (P6) under 
randomly generated restoration time scenarios. We generate 1000 scenarios of res-
toration time realizations that are within our uncertainty set and test each model by 
computing the optimal sequencing and makespan (using the descending order deci-
sion rule) for every scenario, given the optimal edge selection of the model as input. 
The deterministic model is run using the mean restoration times to obtain its optimal 
edge selection. The results of the experiment are shown in Table 7.

The robust optimization models (P3) and (P6) sacrifice average performances for 
greater performance stability. We can see that the standard deviations are smaller for 
these models as compared to the deterministic model. This is because the underlying 

Fig. 7   Worst-case restoration sequence with our robust optimization approach
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principle of robust optimization is the search for the best worst-case performance 
and indirectly, for a reduction in the variation of performances. The robust coun-
terpart (P3) plans for the best worst-case performance assuming that restoration 
time realizations are available. The model without a priori information (P6) does 
not use this assumption and therefore suffers from further drops in average perfor-
mances in the tests. However, because restoration time realizations are not available 
when model (P6) plans for the best worst-case performance, it generates more con-
servative plans and therefore offers greater performance stability than all the other 
models.

7 � Conclusions

In this paper, we propose a robust optimization approach to optimize post-disaster 
route restoration under uncertain restoration times. We present a novel decision rule 
based on restoration time ordering that yields optimal restoration sequencing. Under 
this decision rule, the two-stage robust optimization model becomes a single-stage 
mixed integer programming problem. We analyze the robust counterpart under two 
main conditions: 1) restoration can only be performed sequentially and 2) restoration 
must be performed without a priori restoration time knowledge. We show that under 
some conditions, the robust counterpart can be reduced to the more tractable and 
scalable model without a priori restoration time knowledge. These conditions are 
interestingly, conditions under which 1) restoration of all network edges is required 
(a network recovery case) and 2) network recovery is complete when the restoration 
of the edge which is sequenced last is complete. We also prove probability bounds 
on the satisfaction of the second condition. We implement our models in a realistic 
study of the 2015 Gorkha earthquake in Nepal and show that with less than a third 
of blocked roads restored, full access to demand points can be achieved.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Table 7   Descriptive statistics on 
optimal makespans for random 
scenarios

(P1) (P3) (P6)

Average 24.6 24.7 25.2
Standard deviation 2.72 2.59 2.39
Minimum 18.84 18.95 19.25
Maximum 29.1 29.1 29.1
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