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Abstract
The service life of concrete structures depend largely on the durability of concrete. The durability
of concrete is influenced by mass transport mechanisms that can have severe deteriorating effects.
Transport of water in concrete is of paramount importance as water can act as a carrier of ions such
as chlorides which can corrode the reinforcement and reduce the service life of concrete structures.
The main objective of this thesis is to study moisture transport through capillary absorption in concrete.
Numerical simulation of moisture transport is performed through lattice elements with an irregular mesh
configuration.

New computational tools are developed and compared with the existing tools in terms of effec-
tiveness to simulate moisture transport in homogeneous uncracked concrete. The existing numerical
model uses approximate volume of transport elements to determine the volumetric capacity of ele-
ments. During discretization of the governing equation, the variation of diffusivity of the elements is
approximated as a uniform mean distribution and an explicit time stepping scheme is implemented
which has consequences on the flow equilibrium at each time step. In the proposed numerical model,
exact volume of transport elements is considered and during the discretization of governing equations,
exponential variation of diffusivity is considered along with an implicit time stepping scheme. Moisture
transport is accurately simulated in uncracked homogeneous concrete even by using the existing model
as validated through experimental results. Both the models are compared through error analysis by
varying mesh size and time step. Moisture flow through different diffusivity coefficients is simulated us-
ing both the models and it is observed that the existing model suffers from oscillations in the saturation
level during initial stages of flow due to inability of the existing model to maintain flow equilibrium at
each time step. The proposed model on the other hand shows no such oscillations due to the flow equi-
librium being maintained at each time step. Mesh size, magnitude of time step and diffusivity coefficient
are shown to be the parameters limiting the effectiveness of either of the models.

A single discrete crack is considered within the domain and its influence on moisture transport is
observed. The nature of the crack is considered through two approaches. In the first approach, crack
is considered as an additional porous phase in cement matrix and the entire volume occupied by the
crack is considered to be a void. In the second approach, in addition to considering the porous nature
of crack, moisture surface interaction between the water surface and crack walls is also considered.
Horizontal moisture distribution around a planar crack is simulated using both the approaches which
show similar results as in the experiment. The vertical moisture distribution is simulated within a wedge
shaped crack and the results are compared with experimental observations. The first approach shows
a slower rate of saturation of the crack as compared to the experiment. The second approach shows
the vertical saturation of the crack similar to the experiment. A comparison between the Delaunay and
Voronoi modelling techniques of moisture simulation in cracked domain is discussed. It is shown that
the presence of a crack accelerates the moisture transport in concrete as it exposes additional surface
of concrete from where water can penetrate in the material and also increases the diffusivity of the
concrete material lying in the vicinity of the crack.

Moisture transport is simulated in concrete considering its multi-phase nature. Concrete is con-
sidered to be composed of three phases i.e. cement paste, aggregates and ITZ around aggregates.
Aggregates are considered to be impervious which do not allow the flow of moisture through themwhich
slows down the flow in concrete. The ITZ around the aggregates have higher transport properties and
accelerate the flow. A numerical framework is formulated in which spherical aggregates are projected
on lattice elements which are assigned transport properties pertaining to the phase of concrete they
represent. Moisture transport is simulated and compared with experimental results where an increase
of volume fraction of aggregates leads to a decrease of cumulative saturation level. The influence of
ITZ is observed on a local and global scale by varying the ITZ diffusivity coefficient. The moisture simu-
lation is also modelled on a finer mesh to see the effect of mesh refinement. Finally, moisture transport
is simulated in a numerical model that combines a planar crack along with heterogeneities and flow is
observed at different time stages.
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1
Introduction

1.1. General Overview
Concrete is the most widely used construction material in the world. A huge portion of the total infras-
tructure budget is spent on repair and maintenance of existing structures which are largely related to
the lack of durability of concrete structures. Mass transport in concrete is a significant factor in deter-
mining the durability and service life of concrete structures. The transport of fluids containing agents
of deterioration can cause degradation of cementitious material and corrode the steel reinforcement.
Mass transport mechanisms may influence durability of concrete structures indirectly by controlling
penetration rate of aggressive agents [48]. Corrosion of steel bars due to presence of chloride ions is
considered to be one of the main deterioration mechanisms of concrete [48] which decreases it’s ser-
vice life. Water acts as the major fluid that is transported within concrete and it can act as a carrier of
chloride ions, sulphates, carbonates, etc. that have severe deteriorating effects on concrete. Hence, it
is important to know the mass transport phenomena in concrete and the various factors affecting these
phenomena.

Concrete is found in nature in an unsaturated and cracked state. Mechanical loading can induce
cracks having macroscopic crack widths. Other type of loading such as drying shrinkage leads to micro-
cracks distributed in concrete and cannot be related to a macroscopic crack width [13, 51]. Cracking
accelerates the penetration of fluids and aggressive agents within the concrete which subsequently
leads to faster corrosion of steel and reduces the service life of the structure. Hence, to study the
coupling of cracking and transport phenomena is important to predict the durability and the service
life of structures. If concrete is treated as uncracked and saturated material, its service life cannot be
realistically evaluated and hence, mass transport mechanisms should be considered in cracked and
unsaturated concrete.

Modelling of flow in cracked concrete within the finite element framework can be done through lattice
models which are shown to be capable of describing complex fracture patterns on the mesoscale of
concrete [18, 42]. Mass transport can be described by a lattice of conduit elements, which can be
linked to the structural lattice to couple fracture and transport processes [6].

The inherent heterogeneity of concrete complicates the transport processes. The inclusion of ag-
gregates reduces concrete permeability by decreasing the volume fraction of porous matrix (dilution
effect) and further lengthening the flow path (tortuosity effect) [1, 19, 58]. Also, the presence of ag-
gregates leads to formation of interfacial transition zones (ITZ) which are highly porous and accelerate
transport [43]. Numerical analysis of mass transport considering concrete as a three-phase compos-
ite consisting of coarse aggregates, hardened cement mortar and ITZ enhances the understanding of
non-homogeneous concrete and can be used to represent the influence of material composition on
transport properties [48] which further affects the durability and service life of structures.

This thesis focuses on investigating moisture transport through capillary absorption in uncracked
and cracked concrete under unsaturated conditions. Computational tools are developed to understand
the nature of flow of moisture in concrete based on moisture penetration and moisture distribution
profiles.
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1.2. Research Objectives
The aim of this research is to study moisture transport through capillary absorption in both homoge-
neous and heterogeneous unsaturated concrete under uncracked and cracked conditions. This thesis
seeks to build a numerical model that is properly able to simulate moisture transport in concrete. The
following research questions are formulated to achieve the objective of this research:

Research Questions

1. What are the effective modelling techniques to simulate moisture transport in concrete?

2. How does a discrete crack affect moisture transport in concrete?

3. How is moisture transport affected due to the multi-phase nature of concrete?

1.3. Research Methodology
Firstly, an extensive literature review is undertaken to lay the theoretical foundation of the mass trans-
port mechanisms in concrete. The literature study highlighted the physics behind the transport mech-
anisms, the derivation of governing equations and their discretization in one-dimensional lattice net-
works. A numerical model in MATLAB, using finite elements, is already provided that could simulate
moisture transport in homogeneous, unsaturated and uncracked concrete in a 3-D domain discretized
through Delaunay elements. This research seeks to modify the existing numerical model to incorporate
heterogeneities and discrete cracks in the 3-D concrete domain discretized through Voronoi elements.
The properties of the numerical solver of the given numerical model are also varied to determine its
influence on the numerical analysis. The numerical models are validated by comparing numerical re-
sults with experimental results and parametric studies on the validated numerical models are carried
out to understand the nature of flow.

1.4. Thesis Overview
The thesis is structured in a systematic order in which each chapter pertains to a specific research
topic while displaying a coherent transition between topics. Chapter 2 presents a critical review of liter-
ature related to the underlying transport mechanisms of concrete. In this chapter, the physics behind
the transport mechanisms is studied along with the mathematical formulation of the phenomena fol-
lowed by the basic discretization procedure of the domain. Chapter 3 focusses on moisture transport
in uncracked concrete. In this chapter, numerical tools are developed to simulate moisture transport
in uncracked concrete and the results are validated with experimental results. The numerical model
formulated in this chapter serves as a basis to simulate moisture transport when a discrete crack and
heterogeneities are included in concrete as presented in the subsequent chapters. In Chapter 4, mois-
ture transport in cracked concrete with a discrete crack is simulated considering two approaches of
treating the cracked domain. Results from both the approaches are compared with experimental re-
sults and to each other in order to evaluate the feasibility of the approaches. In Chapter 5, moisture
transport in concrete is simulated considering it as a multi-phase material. In this chapter, the effect of
aggregates on the penetration depth of moisture in concrete is observed. This is followed by the effect
of ITZ diffusivity on the transport mechanism and a mesh refinement study ending with a simulation
of moisture transport in a domain combining a discrete crack and heterogeneous nature of concrete.
Finally, Chapter 6 concludes the thesis by presenting the main conclusions of the results followed by
recommendations for further research.



2
Theory and Literature Review

2.1. Mass Transport in Concrete
Depending on various physical and material parameters, there are different mass transport mecha-
nisms in concrete. Cracks provide additional routes for water along with chlorides to ingress within the
material [8, 47]. The concrete pore structure, extent of saturation, presence of heterogeneities and
environmental conditions are some of the factors that also govern the transport mechanism within con-
crete [27]. In this section, first the transport behaviour in sound concrete is elucidated followed by the
effect of having cracks and heterogeneities in the concrete on the transport mechanism.

2.1.1. Transport Mechanisms in Sound Concrete
Permeable nature of concrete allow fluids and ions to travel within it. The underlying kinetics of mass
transport in the body of concrete depends on the mechanism it follows to travel within the material.
Considering concrete to be isotropic, homogeneous and having uniform porosity, transport mechanisms
in concrete can be categorized as:

Capillary absorption
Concrete is a porous material and in the unsaturated state, fluids such as moisture or gases ingress the
pores of concrete. Due to surface interaction between the entering fluid and the walls of the pores, there
is a development of capillary pressure. The interaction between the fluid and the pore walls depends
on the surface tension, viscosity, contact angle of the fluid with the pore wall, size of the pore etc [39].
The capillary pressure in the pores is given by Young-Laplace equation:

𝑃 = −2𝛾𝑐𝑜𝑠𝜃𝑟 (2.1)

where 𝑃 is the capillary pressure developed in the pore, 𝛾 is the surface tension between the liquid
and the vapour phase, 𝜃 is the contact angle and the 𝑟 is the pore radius [39]. Capillary pores are
assumed to be spherical cavities that are connected to each other through cylindrical capillary tubes.
The gradient of the capillary pressure across the material body becomes the driving force for the fluids
to travel within the material. For unsaturated concrete, this is the dominant mechanism through which
mass transfer occurs.

Diffusion
Diffusion is caused by a gradient in the concentration of the ionic species in concrete which causes
the ions to travel from a region of higher concentration to a region of lower concentration. Diffusion
is considered the principal mechanism through which ionic species such as chlorides travel within the
concrete.

Degree of saturation plays an important role in the diffusion process. For ionic diffusion, greater
saturation of the concrete will escalate the diffusion process and it is most effective in fully-saturated
concrete. If the concrete is saturated, it’s pores are filled with water which acts a medium for chloride
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ions to diffuse within the concrete. Usually, the diffusion of chloride ions in concrete is described by
Fick’s second law [39]:

𝜕𝐶
𝜕𝑡 =

𝜕
𝜕𝑥(𝐷

𝜕𝐶
𝜕𝑥 ) (2.2)

where 𝐶 is the chloride ion concentration (𝑚𝑜𝑙/𝑚 ), 𝐷 is the diffusivity (𝑚 /𝑠), 𝑥 is the spatial dimension
(𝑚) and 𝑡 is the time (𝑠).

To solve the above mentioned differential equation, diffusivity and chloride surface concentration
(𝐶 ) is considered unvarying in space and time. The following initial and boundary conditions are
considered [39]:

𝐶 = 0 � 𝑥 > 0 𝑡 = 0 (2.3)

𝐶 = 𝐶 � 𝑥 = 0 𝑡 > 0 (2.4)

Conforming with the initial and the boundary conditions and assuming concrete to be a semi-infinite
medium, the chloride ion concentration can be evaluated using the mathematical error function 𝑒𝑟𝑓
[48]:

𝐶(𝑥, 𝑡) = 𝐶 + (𝐶 − 𝐶 )[1 − 𝑒𝑟𝑓( 𝑥
2√𝐷𝑡

)] (2.5)

where 𝐶 is the initial chloride concentration. The diffusion coefficient 𝐷 in the above expression is
usually replaced by 𝐷 which implicitly considers the physical characteristics and connectivity of the
pore structure along with the effect of binding of the ionic species [39].

Electromigration
A presence of an electric field across the body of the concrete causes the ionic species present in con-
crete to travel along the electric field. The negative ions (such as 𝐶𝑙 ) migrate towards the anode and
the positive ions migrate towards the cathode. Saturated concrete promotes the transport of the ions
under an electric field. The porosity and the connectivity of the pore network also affect the magnitude
of the electromigration. The diffusion coefficient for electromigration is given as [39]:

𝐷 = 𝑅𝑇𝑢
𝑧 𝐹 (2.6)

where 𝐷 is the diffusion coefficient, 𝑅 is the gas constant, 𝑇 is the temperature, 𝑢 is the mobility of
the ion, 𝑧 is the valency of the ion 𝑖 and 𝐹 is the Faraday constant.

Permeation
A hydraulic pressure gradient present across the concrete causes the permeates to travel under the
pressure head. Permeability of concrete is an important factor that determine the rate of permeation.
Darcy’s law can be applied to express the process of permeation:

𝜕𝑞
𝜕𝑡
1
𝐴 = 𝑘

𝜕ℎ
𝜕𝑥 (2.7)

where 𝜕𝑞/𝜕𝑡 is the rate of flow per unit area, 𝐴 is the area, 𝑘 is the permeability coefficient and 𝜕ℎ/𝜕𝑥
is the gradient of pressure. The permeability coefficient of concrete depends upon the connectivity of
the pore network, porosity and viscosity [39].

In the domain of the work presented in this thesis, the transport of water through capillary absorption
is the only transport phenomenon that is considered while neglecting the rest of the mechanisms. But it
is important to note that the transport of mass within concrete takes place with one ormore combinations
of the above mentioned phenomena.

2.1.2. Effect of Cracks on Moisture Transport
Studying the transport phenomena in uncracked concrete is important but not enough. Almost all of
the concrete structures that are practically used are subjected to mechanical loading and shrinkage
deformations because of which cracks and microcracks form in the body of the concrete. Cracks
formed because of mechanical loading expose additional concrete surfaces to the atmosphere and
also increases the diffusivity of the matrix in the vicinity of the crack. Microcracks are formed due to
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shrinkage deformations and they are not visible to the naked eye but all concrete structures have them.
They are really fine cracks present in the concrete matrix and if these cracks connect, they can form
a continuous network of high permeability within the matrix [39]. This will provide additional passages
for water to travel within concrete.

Crack as an additional porous phase in mortar
Cracks can be considered as an additional phase of concrete as the transport properties in and near the
crack changes. The porosity of the space that comprises the crack within the domain of the material can
be considered as 1 because the cracked volume does not contain any cementitious material and the
entire cracked volume can be considered as a void. This results in high permeability within the crack and
because of this, the transport of water in and around the crack escalates considerably. Subsequently,
the transport of ions within the cracked concrete also increases and this can accelerate the deterioration
of concrete by corroding the reinforcement and exfoliating the concrete cover [12, 50]. Usually cracking
and mass transport phenomena constitute a two-way coupling mechanism. Cracking escalates the
transport in the concrete which subsequently accelerates the deterioration of the concrete which causes
the present crack to propagate further [37]. The scope of the work presented in this thesis is limited to
a one-way coupling mechanism in which the effect of cracking is considered on the water transport in
concrete and not vice-versa. This is a reasonable simplification because the effect of water transport on
cracking is a comparatively slower process and does not significantly affects the durability of concrete.

Capillary suction in cracks
Capillary suction is a process in which a liquid rises up in a thin capillary tube because of the interfacial
interactions between the surfaces of the fluids and the solid. If the crack is narrow and the crack surface
is exposed to moisture, then the crack can act as a capillary tube (or a combination of such tubes) and
the water can rise up in the crack and spread to the adjacent domain through the new exposed surfaces.
Capillary suction in the crack occurs when moisture surface interactions between the crack walls and
moisture present at the boundary is also accounted for, in addition to the porous nature of the crack.

θ

r

Capillary tube

Water

reservoir

Figure 2.1: Capillary rise in a tube

In a capillary tube submerged in water, a capillary pressure is developed resulting from the surface
tension of the fluids with the wall of the capillary tube. This capillary pressure makes the liquid rise up
in the tube. The capillary pressure in the tube can be obtained through the well known Young-Laplace
equation as:

𝑝 = 2𝜎𝑐𝑜𝑠(𝜃)
𝑟 (2.8)
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where 𝜎 is the surface tension, 𝜃 is the contact angle and 𝑟 is the radius of capillary as shown in
Figure2.1.

2.1.3. Effect of Aggregates on Moisture Transport
The assumption that concrete is homogeneous does not entail a numerical model that represents the
actual physical transport behaviour of concrete. Concrete can be considered as a three-phase compos-
ite at the meso-scale as shown in Figure2.2. The first phase is the cement matrix, the second phase is
the aggregates within the matrix and the third phase is the interfacial transition zone (ITZ) between the
aggregates and the matrix. All three phases have different structural and transport properties. Thus,
the mass transport mechanism is affected by the presence of aggregates in the matrix.

Figure 2.2: Mesoscale structure of concrete [48]

When large aggregates are surrounded by small cement particles in concrete, there is awall effect at
the boundary of aggregates. The cement particles pack efficiently together when present in the bulk of
the material but this packing is comparatively loose near a wall-like aggregate boundary. As a result of
this, the cement particle density near the aggregate boundary is less than that in the bulk material [44].
Also, during the hydration process, cement particles expand in all directions but the ones present near
the boundary of the aggregate cannot expand in the direction of the aggregate [10]. These two factors
cause the formation of a coarsemicro-structure around the aggregate surface leading to a region of high
porosity and diffusivity around the aggregate. This region comprised of increased transport properties
forms the interfacial transition zone (ITZ) for the transport mechanism. The thickness of the ITZ region
depends upon the ratio of the size of the aggregate to the cement particles but usually it has been seen
to lie between 15-50𝜇𝑚 [44].

Considering the aggregates themselves, the permeability of the aggregates compared to that of
the cement matrix is negligible and it is assumed that there is no net flow through the aggregates.
Only when high-porosity artificial produced aggregates are included in the matrix, the flow through the
aggregate has to be considered.

2.2. Governing Equations of Mass Transport
Mathematical formulation of the transport phenomena is important as these equations describe the
physics of flow and will be discretized in the numerical model to simulate moisture transport. In this sec-
tion, governing equations for moisture transport through capillary absorption in uncracked and cracked
concrete will be presented.

2.2.1. Capillary absorption in sound concrete
The flow theory used to describe water uptake in soil can also be used to explain capillary absorption
in unsaturated concrete [22]. Linear Darcy’s law is used to describe water flow in perfectly saturated
concrete. But as shown in Figure 2.3, there are various zones of saturation in concrete. The outermost
saturated zone has pores fully filled with water, the innermost dry zone has pores that are completely
dry and the unsaturated zone in between has pores that are partially filled with water. This represents
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the actual state of concrete and therefore it is desirable to have a unified description of saturated and
unsaturated flow.

Figure 2.3: Unsaturated flow of water through concrete under a hydraulic potential [20]

Under the assumption that concrete is considered as a semi-infinite porousmedium, flow in concrete
only involves a liquid phase, the system of concrete is isothermal and vapour adsorption and evapo-
ration processes on the surface are neglected, the extended Darcy’s law can be used to describe the
unsaturated flow in concrete [16] which is given as:

𝑢 = 𝐾(𝜃)∇𝑝 (2.9)

where 𝑢 is the flow rate of water, 𝑝 is capillary pressure, 𝐾(𝜃) is hydraulic conductivity function and 𝜃
is defined as relative water content which is given by:

𝜃 = Θ − Θ
Θ − Θ (2.10)

where Θ and Θ is the initial and saturated volumetric water content. Hence, 𝜃 is an indicator of relative
saturation level in the concrete pores. Considering the concrete skeleton to be rigid and water present
in the concrete to be incompressible, the mass conservation equation can be written as [57]:

𝜕𝜃
𝜕𝑡 + 𝑑𝑖𝑣 𝑢 = 0 (2.11)

Combining the mass balance equation and extended Darcy’s law due to capillary pressure gradient,
and assuming unsaturated and homogeneous state, leads to Richards equation used to describe un-
saturated flow of water in porous media which is given as [16, 22, 48]:

𝜕𝜃
𝜕𝑡 = ∇(𝐷(𝜃) ⋅ ∇𝜃) (2.12)

where, 𝐷(𝜃) is the hydraulic diffusivity (𝐿 𝑇 ) of the material. Eq.(2.12) is the saturation-form of the
Richard’s equation. The hydraulic diffusivity (𝐷(𝜃)) is closely related to unsaturated permeability (𝐾(𝜃))
as [48]:

𝐷(𝜃) = −𝐾(𝜃)(𝜕𝑝𝜕𝜃 ) (2.13)

Hydraulic diffusivity is considered as the fundamental indicator to describe moisture transport in unsat-
urated concrete. It is known to be dependent on the material type, saturation level and temperature
[20]. Under isothermal conditions, for the case of unsaturated concrete, hydraulic diffusivity can be
approximated as [33]:

𝐷(𝜃) = 𝐷 𝑒 (2.14)

where 𝑛 is an empirical constant and has been proved to lay between 6-8 [16] and 𝐷 is the diffusivity
of dry cement. 𝐷 can be estimated with good results through sorptivity experiments as proposed in
[22]:

𝐷 = 𝑛 𝑆
(Θ − Θ ) [𝑒 (2𝑛 − 1) − 𝑛 + 1] (2.15)
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where 𝑆 is the sorptivity of the material which is used for characterizing tendency of porous material
to absorb and transmit water through capillary absorption [20]. Figure 2.4 shows a concrete specimen
where one face of the sample is submerged in water and sorptivity test is conducted.

Figure 2.4: A concrete specimen under sorptivity test [15]

In the sorptivity test, the variation of cumulative volume of absorbed water per unit area (𝑖) with the
square root of time (𝑡 / ) is observed which follows:

𝑖 = 𝑆 𝑡 / (2.16)

where sorptivity (𝑆 ) is obtained from the slope of the best-fit line of the curve 𝑖 − 𝑡 / obtained through
the experiment [20].

2.2.2. Transport Equations for Cracking and Heterogeneities
The basic transport mechanism in homogeneous and heterogeneous concrete is the same. In both
cases, moisture transport is considered through capillary absorption and the governing equations re-
main the same. The only difference in heterogeneous concrete is that the aggregates present in the
matrix can slow down the moisture transport and the ITZ formed around the aggregates accelerates
transport. Aggregates are considered impervious so no flow is considered through them. Flow in ITZ
also occurs through the process of capillary absorption but with enhanced diffusivity and hence, the
governing equations remain the same.

Crack as an additional phase in mortar
As mentioned earlier, cracking causes an increase in the transport properties of the matrix in the vicinity
of the crack. The diffusivity of the elements in the crack is given as a function of permeability and the
pressure head [48]:

𝐷 (𝜃) = −𝐾 𝑑𝑝
𝑑𝜃 (2.17)

where 𝑝 is the capillary pressure, 𝜃 is the saturation level and 𝐾 is the unsaturated permeability of
cracked concrete. In case of uncracked concrete, the function of unsaturated permeability is given as
[46]:

𝐾(𝜃) = 𝑘 𝑘 (𝜃)
𝜇 (2.18)

where 𝜇 is the viscous coefficient of water, 𝑘 is the permeability of uncracked concrete under saturated
condition with dimensions 𝐿 and 𝑘 (𝜃) is the normalized permeability given as [46]:

𝑘 (𝜃) = √𝜃[1 − (1 − 𝜃 / ) ] (2.19)

where 𝑚 = 0.4396 is the Van-Genuchten coefficient successfully used to describe soil-water retention
curve [45]. Eq(2.18) is used to describe permeability in uncracked concrete under unsaturated condi-
tions. To get the function for permeability in cracked concrete, 𝑘 in eq(2.18) is replaced by 𝑘 which
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is the permeability of cracked concrete under saturated conditions. In this research, the expression for
𝑘 is obtained as:

𝑘 = (∑𝑤 𝑙 ) 1
12𝐴 (2.20)

where 𝑤 and 𝑙 are the equivalent crack widths and crack lengths respectively of a Voronoi element (a-
b) passing through a Delaunay triangle (1-2-3) as shown in Figure 2.5 and 𝐴 is the area of the Delaunay
triangle (1-2-3). This can be better explained once the domain is discretized and hence, this term is
explained during the construction of numerical model for moisture transport in cracked concrete given
in Chapter 4.
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Figure 2.5: Equivalent crack properties of a transport element (a-b)

Water retention curve is assumed to follow Mualem [30] distribution and based on that, a relation
between saturation level 𝜃 and capillary pressure 𝑝 is proposed in [28] which is given as:

𝜃(𝑝 ) = [1 + (𝑝 /𝑝 ) /( )] (2.21)

where 𝑝 is the reference pressure and experimentally determined to be 18.6237 𝑁/𝑚𝑚 . Combining
eq(2.18)-eq(2.21), the cubic law for the diffusivity of the cracked domain is given as:

𝐷 (𝜃) = (∑𝑤 𝑙 )𝜉𝑝 (1 − 𝑚)12𝜇𝐴𝑚 √𝜃[1 − (1 − 𝜃 / ) ] 𝜃 / (𝜃 / − 1) (2.22)

where 𝜉 is the tortuosity of the crack. All the elements in the domain representing cracked concrete as
assigned diffusivity based on eq(2.22).

Capillary suction
Capillary absorption can be described by Lucas-Washburn equation derived by equating capillary pres-
sure difference across the interface between two immiscible fluids to the pressure loss due to internal
friction [11]. The Lucas-Washburn equation takes into account the surface interactions between a cap-
illary tube and the liquid surface and describes the dynamic flow of liquid in a capillary tube by balancing
driving capillary force and retarding viscous force [36]. Initially, Lucas [24] and Washburn [49] consid-
ered a flow regime where the effect of inertia and gravity was neglected and the capillary force was
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balanced with viscous force giving the equation:

2𝜎𝑐𝑜𝑠(𝜃)
𝑟 = 8𝜇𝑧�̇�

𝑟 (2.23)

where 𝜎 is the surface tension, 𝑟 is the radius of capillary, 𝜇 is dynamic viscosity, 𝜃 is the solid/liquid
contact angle and 𝑧 is the capillary rise height. But equation2.23 had some limitations. For the small
time stages just at the beginning of the flow, the fluid velocity tends to go to infinity which is not realistic.
To account for that, an inertial term [5, 23, 36] can be added into the equation which gives:

2𝜎𝑐𝑜𝑠(𝜃)
𝑟 = 8𝜇𝑧�̇�

𝑟 + 𝜌𝑑(𝑧�̇�)𝑑𝑡 (2.24)

where 𝜌 is the density of the fluid. Equation2.24 still has a limitation as when the flow is considered
to occur in a vertical capillary, there is no limit to themaximum height that can be attained in the capillary.
This can be accounted for by considering the effect of gravity as:

2𝜎𝑐𝑜𝑠(𝜃)
𝑟 = 𝜌𝑔𝑧𝑠𝑖𝑛(𝜙) + 8𝜇𝑧�̇�𝑟 + 𝜌𝑑(𝑧�̇�)𝑑𝑡 (2.25)

where 𝜙 is tube inclination angle, 𝜌 is the density of liquid, 𝑔 is the gravitational acceleration and 𝑡 is
the capillary rise time. The parameters used in the equation can be seen in Figure2.6. Equation2.25
considers the effect of gravity and inertia completing the momentum balance of the original Lucas-
Washburn equation and is known as amended Lucas-Washburn equation.

Figure 2.6: Parameters used to model water flow in a uniform capillary [11]

As it was mentioned earlier that the inertial term is relevant only for the initial time stages of flow
and it is shown in [9] that the difference of capillary rise height is insignificant when the inertial term
is neglected and when it is considered. Hence, the inertial term is disregarded for the time scales
considered in this research which reduces the equation to:

2𝜎𝑐𝑜𝑠(𝜃)
𝑟 = 𝜌𝑔𝑧𝑠𝑖𝑛(𝜙) + 8𝜇𝑧�̇�𝑟 (2.26)

The experiments conducted in [11] found that the above equation was not able to reproduce the capillary
rise behaviour in an actual crack and some corrections have to be applied to eq(2.26):

1. Stick-slip behavior at meniscus: Raindrops stuck on a window can trickle down or stop at random
times as the air-water contact line is pinned by the random potential on glass surface [41]. When
the weight of the drop is more than the pinning force, the drop moves down and when the pinning
force is greater than the weight of the drop, the drop stops falling. Similar effect may be observed
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in a glass capillary. For a vertical capillary of radius 𝑟, the equilibrium rise height of the water
column is given by:

ℎ = 2𝜎𝑐𝑜𝑠(𝜃)
𝑟𝜌𝑔 (2.27)

If the pinning effects are considered in the capillary, capillary rise would stop at a height less than
the equilibrium rise height (ℎ ). As a result, there will be a reduction in capillary pressure in the
capillary tube which is given as [41]:

𝑝 = 𝜌𝑔(ℎ − ℎ ) (2.28)

The final capillary pressure is given as:

𝑝 = 𝑝 − 𝑝 = 𝑝 (1 − 𝛽 ) (2.29)

where
𝑝 = 2𝜎𝑐𝑜𝑠(𝜃)

𝑟 (2.30)

𝛽 = 1 − ℎ
ℎ (2.31)

2. Dynamic contact angle: As presented in [17], there are frictional effects associated with a rising
liquid front in a capillary that are responsible for a dynamic contact angle. The effect of the
dynamic contact angle is proposed in the form of a retardation constant allowing for frictional
dissipation at a moving front given as [3]:

𝛽 = 𝑘 𝑇𝑣
2𝜋𝜆 𝜅 ℏ𝜂 (2.32)

where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝑣 is the molecular volume of the liquid,
𝑙𝑎𝑚𝑏𝑑𝑎 is the distance between adsorption sites on the solid surface, 𝑘 is the surface rate
constant for molecular displacement, 2𝜋ℏ is the Planck constant and 𝜂 is the viscosity of the
liquid. The correction is included in the Lucas-Washburn equation by replacing the term of static
contact angle with the term of dynamic contact angle as [17]:

𝜎𝑐𝑜𝑠(𝜃(𝑡)) = 𝜎𝑐𝑜𝑠(𝜃 ) − 𝛽 �̇� (2.33)

3. Wall slip: The correction for wall-slip affects the Hagen-Poiseuille (H-P) equation. The correction
is incorporated as [29]:

�̇� = (𝑟𝛽2 + 𝑟
8𝜇)(

𝑑𝑝
𝑑𝑥) (2.34)

where, 𝑝 is the mean position 𝑥 along the tube. 𝛽 is Mooney’s constant with units 𝑚 /𝑁𝑠.

Including all the three corrections in the Lucas-Washburn equation and neglecting the inertial term
leads to the equation:

(2𝛽𝑟 + 𝑧
𝑟𝛽
2 + 𝑟

8𝜇

)�̇� = 𝑝 (1 − 𝛽 ) − 𝜌𝑔𝑧𝑠𝑖𝑛(𝜙) (2.35)

2.3. Numerical Modelling of Mass Transport
In order to simulate flow through the governing transport equations, the domain has to be discretized
using finite elements and the discretized form of the transport equations have to be formulated. In this
section, the properties of the numerical model will be described including the type of elements used to
generate the mesh along with the procedure to generate the dual mesh. In the last subsection, different
approaches to model aggregates in concrete are presented.
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2.3.1. Lattice Models
Lattice models are an assembly of discrete one dimensional lattice elements representing a structural
solid. Such models allow simplicity in the modelling of complex structures with lighter computational
cost. Phenomena such as localized failure and cracking is not easy to model in solid elements but
can be efficiently and easily modelled through lattice elements [32]. Solutions of complex governing
equations can be simply solved on 1-D lattice elements which is easier to solve than on 2-D or 3-D
elements. Due to these reasons, lattice elements are chosen to represent the structural and transport
properties of the domain and the governing equations are discretized on the lattice elements composing
the lattice model.

To represent the structural behaviour of concrete, lattice beam elements are chosen. Lattice beam
elements having 2 nodes and 6 degrees of freedom (three displacement and three rotational) at each
node are used in the numerical model (Figure2.7) as the structural behaviour like localized damage
and cracking can be simulated easily on them.
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z1

x2
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 φ1
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ξ2

1

2

Beam element

Figure 2.7: Structural lattice element showing corresponding nodal degrees of freedom

To represent the transport behaviour of concrete, two noded lattice elements are chosen with satu-
ration level as the degree of freedom at each node varying linearly with the element length (Figure2.8).
The governing equations for the moisture transport through capillary suction has to be discretized on
1-D lattice elements to simulate moisture transport in the domain.

Transport element

1

2

θ1

θ2

Figure 2.8: Transport lattice element showing corresponding nodal degrees of freedom

2.3.2. Mesh Generation
A semi-random mesh is used to discretize the domain using lattice elements. Delaunay and Voronoi
meshes are used which are the geometric dual of each other. The Delaunay mesh is used to repre-
sent the structural properties of the domain and the Voronoi mesh is used to represent the transport
properties of the domain. The approach introduced in [54], is adopted for mesh generation.

Generation of Delaunay mesh
The entire domain is divided into cubic voxels, as shown in Figure2.9, with the length of each side equal
to 𝐿. Each cubic voxel houses a Delaunay node within a definite region present inside the body of the
voxel that depends on the randomness of the mesh.
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Voxel

L

Figure 2.9: Division of domain into voxels

The procedure to determine the position of a node within a voxel is shown in Figure2.10a. A uniform
randomness value that varies between 0-0.5 is assigned to each voxel in the mesh. The position of the
Delaunay node depends on the randomness value. Within each voxel, there is a smaller cube (sharing
the same centre as the voxel), with the length of each side equal to:

𝑙 = 2𝑟𝐿 (2.36)

where 𝑟 is the randomness, 𝐿 is the length of each side of the voxel and 𝑙 is the length of each side
of the inner cube within the voxel. This inner cube comprises the boundary of the region where the
Delaunay node can occur. The position of the node within the inner cube is totally random and can
occur anywhere within it.

L

0.25L

Node

occurence

region

Voxel

(a) Region of occurrence within a voxel with a randomness of 0.25

(b) Randomness=0 (c) Randomness=0.25 (d) Randomness=0.4 (e) Randomness=0.5

Figure 2.10: Region of occurrence in a voxel for different randomness



24 2. Theory and Literature Review

The volume of the inner cube changes with the change in randomness as can be seen in Fig-
ure2.10b-Figure2.10e. When randomness is zero, the inner cube reduces down to a point and the
Delaunay node can only occur at the centre of the voxel. As randomness increases, the volume of
the inner cube also increases, thus increasing the boundary of the region where the node can occur.
When the randomness is increased to 0.5, the inner cube coincides with the voxel itself and the De-
launay node can lie anywhere within the voxel in that case. This scenario is not preferred because
the Delaunay node can lie at the boundary of the voxel and that can cause problems in constructing
the Delaunay tetrahedra from the Delaunay nodes. In the numerical model adopted in the research, a
randomness of 0.2 is considered for all discretized meshes. Once the Delaunay nodes are generated
within the voxels, they are connected to form the Delaunay elements as shown in Figure2.11.

Figure 2.11: Delaunay mesh

In constructing the Delaunay mesh, in order to have a well defined boundary of the domain, the
Delaunay nodes lying on the corner and edge voxels have to be generated in a different manner. The
Delaunay nodes that form the eight corners of the domain have a predetermined position and there is
no randomness in their position. The nodes lying on either of the 12 edges are generated in such a
way that they can occur on the edge but their position on the edge is not known and that it generated
randomly. All the nodes lying either of the 6 faces are generated in such a manner that they are
restricted to lie only at the corresponding face but their position within the face is generated randomly.
In such way, a Delaunay mesh with well defined boundaries is generated as shown in Figure2.11.

Generation of Voronoi mesh
The Voronoi mesh is the geometric dual of the Delaunay mesh. Each Voronoi node is generated in
such a way that it is the centre of the circumsphere of a tetrahedron composed of four Delaunay nodes
[34]. In this way, another semi random mesh is generated through the Delaunay mesh. But there is a
problem in generating the Voronoi nodes corresponding to the Delaunay nodes lying at the boundary
of the cube. At the boundary face of the cube, the four Delaunay nodes lie on a plane which implies
that the radius of the circumsphere will extend till infinity and the Voronoi node will lie at infinity. Due to
this, there won’t be any definite boundary of the Voronoi elements. To counter this problem, a solution
is proposed in [54], in which auxiliary Delaunay nodes are introduced in the domain. At each boundary
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face, auxiliary nodes are generated which are themirror images of the nodes in the domain (considering
the boundary plane to be the plane of the mirror). Voronoi nodes are generated corresponding to both
Delaunay nodes and auxiliary nodes and the Voronoi cells crossing the domain boundary are truncated
at the position of the boundary plane.

(a) (b)

Figure 2.12: Discretization of domain boundaries: (a) Voronoi facet of Delaunay edge i–j located on
the surface of the domain after initial tessellation; and (b) modified arrangement used for definition of

transport nodes and elements [31].

Figure2.12a shows a Voronoi face 1-2-3-4-5 that serves as the cross section of a Delaunay ele-
ment i-j. The Voronoi face is extending beyond the domain boundary and it is truncated as shown in
Figure2.12b. The Voronoi face 1-2’-4’-5 is retained in the mesh and lie completely within the domain
boundary. In this way, a Voronoi mesh is constructed which is the geometric dual of the Delaunay
mesh and lies completely within the domain as shown in Figure2.13.

Figure 2.13: Voronoi mesh
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2.3.3. Modelling Heterogeneities in Concrete
To model the transport behaviour of heterogeneous concrete, aggregates have to be incorporated in
the numerical model. The aggregates are included in the discretized mesh such that a part of the
elements represent the aggregate body. There are different methods to project the aggregates on the
discretized domain.

Projecting the aggregates with their original shape
In this case, the aggregates are included in the discretized mesh according to their original shape as
shown in Figure2.14. The boundary of the aggregates is retained in this case.

Aggregate

Delaunay element

Voronoi element

Figure 2.14: Spherical aggregate

In order to model the structural and transport properties of aggregates in this case, it will be com-
paratively complex. The Delaunay elements represent the structural elements and Voronoi elements
represent the transport elements. As it can be seen from the figure that both Delaunay and Voronoi el-
ements pass through the boundary of the aggregates which implies that when the respective structural
and transport properties will be modelled on these elements, there will be discontinuity in the proper-
ties at the location of the boundary. Embedded discontinuities will have to be included in the shape
functions for both Delaunay and Voronoi boundary elements.

Projecting the aggregates on Delaunay elements
In this case, the shape of the aggregates is projected on Delaunay elements as shown in Figure2.15.
It can be seen that once the aggregate is projected on the Delaunay element, the original shape of the
aggregate is modified.
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Voronoi element

Delaunay element

Aggregate projected on

Delaunay elements

Figure 2.15: Aggregate projected on Delaunay elements

Modelling the structural properties of the aggregates will be comparatively easier in this case as
Delaunay elements lie at the boundary of the aggregate. There won’t be discontinuities in structural
properties within an element. But in this model, as the boundary of the aggregate is projected on Delau-
nay elements, the Voronoi elements pass perpendicularly through the boundary Delaunay elements.
ITZ around the aggregates accelerates the transport along the direction of the aggregate boundary
[26] but Voronoi elements pass perpendicularly through the boundary which can undermine the ITZ
effect around the aggregates. Also, there will be an abrupt change in the transport properties of the
boundary Voronoi elements at the location where the boundary Delaunay element passes through it.
the transport behaviour of the aggregates is not effectively modelled in this approach. This approach
also requires a fine mesh so that when the aggregates are projected on the Delaunay elements, there
is not a significant change in the shape and volume of the original aggregate.

Projecting the aggregates on Voronoi elements
In this case, the shape of the aggregates is projected on Voronoi elements as shown in Figure2.16. In
this case also, the shape of the aggregates is modified once they are projected on Voronoi elements.

Voronoi element

Delaunay element

Aggregate projected on

Voronoi elements

Figure 2.16: Aggregate projected on Voronoi elements
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Voronoi elements are present in such a way that either a Voronoi element represent the body of
the aggregate, boundary of the aggregate or the cement paste. It is not the case that a single Voronoi
element passes through more than one phase of concrete and hence there won’t be any discontinuity in
the transport properties within any single Voronoi element. There are Voronoi elements present along
the boundary of the aggregate which will effectively be able to simulate the ITZ effect of accelerating
the moisture transport around the aggregates. It can also be seen that, now Delaunay elements pass
perpendicularly through the boundary Voronoi elements which implies that there will be discontinuity
in structural properties of the boundary Delaunay element at the location where the boundary Voronoi
elements pass through. In this case also, the mesh has to be refined enough so that once the aggregate
is projected on Voronoi elements, there is not a significant change in the shape and volume of the
original aggregate.

The approaches described above can be used to project the aggregates in the discretized mesh.
As in this research, the main focus is on the transport behaviour of concrete, projecting the aggre-
gates on Voronoi elements will be the most effective way. In the numerical modelling of moisture in
heterogeneous concrete, spherical aggregates will be randomly generated and projected on Voronoi
elements.



3
Moisture Transport in Uncracked

Concrete
Modellingmoisture transport in uncracked homogeneous concrete under unsaturated conditions serves
as a basis to study the transport behaviour of concrete. This chapter mainly focuses on developing
the numerical model that is able to simulate moisture transport in uncracked homogeneous concrete
under unsaturated conditions. The numerical model serves as the foundation to implement complex
features in concrete such as cracks and heterogeneities and simulate moisture transport in them which
is presented in further chapters. In this section, the procedure implemented to discretize the domain in
the numerical model along with details of the numerical solver used to solve the discretized equation are
presented. In order to validate the numerical model, the results of the numerical model are compared
with analytical and experimental results. An error analysis between the approximate and the exact form
of the numerical solver is presented followed by the conclusions based on the results of the analyses.

3.1. Model Discretization
The first step in simulating moisture transport in concrete is to discretize the model using finite elements
and using them as transport elements. In order to implement the governing equation for capillary
absorption in the numerical model, it has to be discretized in space and time. This section presents
the discretized form of the transport equation and the approximations adopted in the numerical model
to solve the discrete equation.

3.1.1. Discretized Equation
As already derived in Chapter 2, the strong form of the equation describing the phenomenon of capillary
absorption is described through Richard’s equation as given in eq.(2.12) as:

𝜕𝜃
𝜕𝑡 = ∇(𝐷(𝜃) ⋅ ∇𝜃) (3.1)

𝐷 is the diffusivity of the material (units 𝐿 𝑇 ) and 𝜃 is the saturation level. Considering the boundary
and initial conditions as given in eqs.(3.2a)-(3.2c), the strong form of the equation can be transformed
into it’s weak form using the Galerkin weighted formulation.

𝜃 = 1 𝑜𝑛 Γ (3.2a)

𝜕𝜃
𝜕𝑛 = 0 𝑜𝑛 Γ (3.2b)

𝜃(𝑡 = 0) = 𝜃 𝑖𝑛 Ω (3.2c)

Weak Form
The strong form of the equation is multiplied with virtual saturation 𝛿𝜃 and integrated over the entire
domain. Applying the initial and the boundary conditions and solving the integral using integration by

29
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Figure 3.1: Spatial discretization using shape functions

parts, the weak form of the governing equation is obtained:

∫ 𝛿𝜃 𝜕𝜃𝜕𝑡 𝑑Ω = 𝛿𝜃 ⋅ 𝐷 ⋅ ∇(𝑎)| − ∫ ∇(𝛿𝜃 ) ⋅ 𝐷 ⋅ ∇(𝜃 )𝑑Ω (3.3)

Spatial discretization
The continuous saturation field is discretized in space using two noded lattice elements in which the
saturation is considered to vary linearly along the length of the element as shown in Figure3.1. Applying
the shape functions, the saturation field is discretized as:

𝜃 = 𝐍𝜽 (3.4a)

where:

𝐍 = [𝑁 𝑁 .. .. 𝑁 ] 𝑎𝑛𝑑 𝜽 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜃
𝜃
..
..
𝜃

⎤
⎥
⎥
⎥
⎥
⎦

(3.4b)

Substituting the discretized form of the saturation field into the weak form and readjusting the terms
leads to the semi-discrete equation:

∫ 𝐍𝐓𝐍�̇�𝑑Ω + ∫ 𝐁𝐓𝐷𝐁𝜽𝑑Ω = 𝐍𝐓𝐷𝐁𝜽| (𝑤ℎ𝑒𝑟𝑒 𝐁 = ∇(𝐍)) (3.5)

Eq.(3.5) can also be written in a compact form of eq.(3.6a) where 𝐌 is the mass matrix, 𝐊 is the
diffusivity matrix and 𝐟 is the external flux vector. 𝐴 is the cross-sectional area of the Voronoi elements
and 𝑙 is the length of the Voronoi elements. This equation is discretized in space but it still needs to
be discretized in time to get the fully discrete form of the governing equation.

𝐌�̇� + 𝐊𝜽 = 𝑓 (3.6a)

where:
𝐌 = ∫ 𝐍𝐓𝐍𝑑Ω = ∫ 𝐴 𝐍𝐓𝐍𝑑𝑥 = 𝐴 𝑙

6 [2 1
1 2] (3.6b)

𝐊 = ∫ 𝐁𝐓𝐷𝐁𝑑Ω = ∫ 𝐷𝐴 𝐁𝐓𝐁𝑑𝑥 = 𝐴
𝑙 [ 1 −1

−1 1 ]∫ 𝐷𝑑𝑥 (3.6c)

𝑓 = 𝐍𝐓𝐷𝐁𝜽| (3.6d)
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Time discretization
Time is treated as a degree of freedom and is incremented in finite steps. Time discretization is done
using the Crank-Nicolson procedure which is a semi-implicit scheme and considered to be uncondi-
tionally stable. At time 𝑡 , eq.(3.7) holds for the semi-discrete form of the transport equation.

𝐌�̇�𝐧 𝟏 + 𝐊𝐧 𝟏𝜽𝐧 𝟏 = 𝑓 (3.7)

As per the Crank-Nicolson procedure, the moisture content at time 𝑡 is given by:

𝜽𝐧 𝟏 = 𝜽𝐧 + Δ𝑡(
1
2�̇�𝐧 +

1
2�̇�𝐧 𝟏) (3.8)

Applying eq.(3.8) to discretize time and substituting the time derivatives in eq.(3.7) leads to the fully
discretized form of the governing equation:

(𝐌+ 12Δ𝑡𝐊𝐧 𝟏)𝜽𝐧 𝟏 = (𝐌−
1
2Δ𝑡𝐊𝐧)𝜽𝐧 + Δ𝑡𝑓 (3.9)

Eq.(3.9) is the fully discretized form of the governing equation which is solved numerically in the
model to simulate the moisture transport in concrete.

3.1.2. Approximations
After obtaining the discretized form of the governing equation, a numerical solver has to be constructed
that can solve the discretized equation and simulate moisture transport in the discretized domain. In
order to solve the discretized equation as given by eq.(3.9), some approximations are made in the
numerical model which help to increase the computation efficiency of the solver, given that the error
induced is within reasonable limits. This section only gives an introduction of the approximations used
in the numerical model and the flow in uncracked concrete is simulated with the approximate model so
that it can be verified through the experimental results. After doing that, the approximate model will be
compared with the exact model with a detailed error analysis in a later section of this chapter.

Volume approximation
The domain is discretized using the dual mesh where each Voronoi element passes through a common
Delaunay triangle and the corresponding Voronoi nodes lie within two adjacent delaunay tetrahedra as
shown in Figure3.1a. Each Voronoi element is representative of a part of the volume of the Delaunay
tetrahedra which is given by smaller tetrahedra inside the Delaunay tetrahedra as shown in Figure 3.2a.
These smaller tetrahedra are formed by joining the Voronoi nodes with the three Delaunay nodes that
form the common triangle.
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Figure 3.2: Volume of the Voronoi elements

Instead of taking the exact volume of the Voronoi element as shown in Figure 3.2a, the volume is
approximated by considering that the area of the common delaunay triangle extends throughout the
length of the Voronoi element [31] as shown in Figure 3.2b. It can be seen from the figure that there is
an overlap of volume of two corresponding Voronoi elements. To account for this, a correction factor 𝜔
is included in the mass matrix:

𝐌 = 𝐴 𝑙
6𝜔 [2 1

1 2] (3.10a)

where:
𝜔 = Σ𝐴 𝑙

𝑉 (3.10b)

Using the exact volume is comparatively complex to include in the numerical model as the volume
of each sub-tetrahedra will be required to be calculated. Instead, the approximated volume is used for
the analysis in the numerical model.

Linearization of the time stepping procedure
From eq.(3.9), it can be observed that in the numerical model, to compute the saturation 𝜽𝐧 𝟏 at the
end of a single time increment Δ𝑡 (within time interval 𝑡 −𝑡 ), the diffusivity matrix 𝐊𝐧 𝟏 at the end of
that time interval is also required i.e. the time stepping scheme is implicit. So, for each time increment,
there are two unknowns that have to solved for i.e. 𝜽𝐧 𝟏 and 𝐊𝐧 𝟏. An iterative procedure can be set
up till the left hand side of eq.(3.9) converges to the right hand side within a specified tolerance.

As is evident from the procedure described above, iterations will have to be carried out within each
time step till the solution converges, which increases the computation time of the solver. Instead, a
linear approximation can be used to solve eq.(3.9) which circumvents the need of the iterative procedure
as done in [25]. Instead of using the diffusivity matrix 𝐊𝐧 𝟏 at the end of the time interval, the diffusivity
matrix 𝐊𝐧 at the beginning of the time interval can be used that leads to the discretized equation given
by:

(𝐌+ 12Δ𝑡𝐊𝐧)𝜽𝐧 𝟏 = (𝐌−
1
2Δ𝑡𝐊𝐧)𝜽𝐧 + Δ𝑡𝑓 (3.11)

Eq.(3.11) presents an explicit form of the time stepping scheme which does not depend on the infor-
mation at time 𝑡 . The saturation 𝜽𝐧 𝟏 is dependent on the diffusivity 𝐊𝐧 because of which, it can be
solved linearly.

Using an explicit time stepping scheme has consequences on the stability and the accuracy of the
results which are analyzed later in the chapter. Crank-Nicolson procedure, used for time discretization
of the semi-discrete form of the governing equation, is considered to be unconditionally stable. When
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the linear approximation is done, to convert the implicit scheme to explicit, there is a loss of uncondi-
tional stability of the scheme. In each time step, an error is induced in the solution, the magnitude of
which depends on the magnitude of the time step. This error can accumulate with the accession of
the time steps and the solution can diverge rapidly from any realistic results causing instability. Hence,
the magnitude of the time step should be sufficiently small so that the error induced does not cause
instability.

Uniform mean diffusivity
The diffusivity matrix 𝐊 requires the computation of the integral of diffusivity along the length of the
element as given by:

𝐊 = 𝐴
𝑙 [ 1 −1

−1 1 ]∫ 𝐷𝑑𝑥 (3.12)

The diffusivity varies exponentially with the saturation level [48]. Using the spatial discretization,
the saturation level in the domain is discretized and varies linearly along the element length. Extending
the discretization to diffusivity, it varies exponentially over the element length as:

𝐷 = 𝐷 𝑒 (3.13a)
where:

𝐷 = 𝐷 𝑒 (3.13b)

𝑛 = 𝑛
𝐿 (𝜃 − 𝜃 ) (3.13c)

The integral of diffusivity over the length of the element is evaluated precisely if the total area un-
der the curve is considered as in Figure 3.3a. To numerically calculate this area, four point Gauss-
integration can be applied. Considering the exponential variation of diffusivity over the element length,
the analytical expression for the diffusivity matrix is given by:

𝐊 = 𝐴 𝐷 𝑒 (𝑒 ( ) − 1)
𝑛𝑙 (𝜃 − 𝜃 ) [ 1 −1

−1 1 ] (3.14)
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Figure 3.3: Variation of diffusivity over the element

But, instead of using the exact distribution of the diffusivity to compute the integral, the diffusivity
is considered to be uniform throughout the length of the element and equal to the diffusivity at 0.5𝐿 as
shown in Figure3.3b. The integral is computed using the uniformmean diffusivity along the length of the
element and the corresponding analytical expression for the diffusivity matrix is given by eq.(3.15). For
the analysis carried out for uncracked concrete, the uniform distribution of the diffusivity is considered
instead of the exact distribution to solve the discretized transport equation.

𝐊 = 𝐴 𝐷 𝑒 . ( )

𝑙 [ 1 −1
−1 1 ] (3.15)
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3.2. Constant Diffusivity
Once the transport equations are discretized, they can be numerically solved to obtain the moisture
distribution in concrete. In the following section, the moisture transport in uncracked concrete for the
two cases of steady-state and non-stationary flow will be modelled considering constant diffusivity. In
reality, the diffusivity of the material for the process of capillary absorption is not constant but varies
with the saturation level of the pores which changes with time [48]. Making the diffusivity constant
is not representative of the actual physical phenomenon which is more accurately modelled through
time-dependent diffusivity. Regardless, making the diffusivity constant serves to validate the numerical
model by comparing it with the analytical results so that the model is further used to simulate non-
stationary flow with variable diffusivity.

3.2.1. Steady-State flow
The steady-state is reached when the flow in the material is independent of change in time. Steady-
state flow is simulated on a cubic domain of 10 × 10 × 10 𝑚𝑚 . As shown in Figure 3.4a, all the
nodes on the left hand side boundary are subjected to constant saturation of 𝜃 = 1 while all the nodes
on the right hand side boundary are subjected to constant saturation of 𝜃 = 0 which directs the flow
from left to right. The other four boundary faces are considered sealed without any interaction with the
surrounding by considering their boundary flux to be zero. All the nodes lying within the domain have an
initial saturation of 0 and the diffusivity remains constant with time and is assumed to be 𝐷 = 1 𝑚𝑚 /𝑠.

θ=1

 θ=0

163.9209

111.3500

10mm

10mm

flow direction

163.9209

10mm

(a) Schematic of the flow conditions in the domain (b) Domain discretization using Voronoi elements

Figure 3.4: Cubic domain under steady-state flow

The cubic domain as shown in Figure 3.4a, is discretized using the Voronoi mesh in which the
transport elements are modelled on the Voronoi lattice elements. Table 3.1 shows the Voronoi mesh
properties used to discretize the domain.

Table 3.1: Mesh properties

Discretization Number of nodes Number of elements Average element length (mm)
Voronoi 5857 10256 0.4534

As the steady-state flow is being analyzed, the time dependent terms in eq.(3.9) do not contribute
to the transport of moisture and the discretized equation reduces down to:

𝐌𝜽𝐧 𝟏 = 𝐌𝜽𝐧 (3.16)
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Simulating the transport of moisture using eq.(3.16), the variation of saturation with the x-coordinate
for Voronoi discretization can be seen in Figure 3.5. The plot shows that the discretization provides
accurate steady-state results. The accuracy of the modelling approach is assessed by comparing the
error norms to the exact solution.
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Figure 3.5: Steady-state analysis in Voronoi discretization

Two error norms are considered here:

||𝑟|| = 𝑚𝑎𝑥|𝑟 |, 𝑛 = 1..𝑁 (3.17a)

||𝑟|| = √( 1𝑁 ∑ |𝑟 | ) (3.17b)

where 𝑟 is the difference between theoretical and numerical moisture content. The error between
the analytical and the numerical solution for the two error norms is presented in Table 3.2. The error
computed for both the norms is within reasonable limit and it can be concluded that the numerical model
simulates the steady-state flow successfully.

Table 3.2: Error

Discretization ||𝑟|| ||𝑟||
Voronoi 0.0153 0.0043

3.2.2. Non-Stationary Flow
Now that the model is able to simulate moisture transport under steady-state conditions, the moisture
transport under non-stationary conditions will be simulated in this subsection. In non-stationary flow
analysis, the flow of moisture in concrete varies with time. A model, as presented in [31], is used to
simulate non-stationary flow with constant diffusion. The discretized form of the governing equation
as presented in eq.(3.11) is used to simulate the flow. The flow is simulated on a cubic domain of
10 × 10 × 10 𝑚𝑚 . As shown in Figure 3.6a, the right and left faces of the domain are maintained at
zero saturation and the rest of the faces of the cube are considered sealed with no interaction with the
surroundings.
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Figure 3.6: Cubic domain under non-stationary flow

The initial saturation of the nodes within the domain is given as:

𝜃 = 𝜃 𝑠𝑖𝑛(𝜋𝑥𝐿 ) (3.18)

The distribution of the initial saturation level in the domain is such that the saturation of the nodes
lying in the centre of the domain is maximum and the saturation of the nodes lying at the faces of
𝑥 = 0 𝑚𝑚 and 𝑥 = 10 𝑚𝑚 is zero. Because of this, the flow of moisture is from the centre towards
the boundary surfaces (Figure 3.6a). The results of the numerical model to simulate the non-stationary
transport can be verified with the analytical solution given in [4] as:

𝜃(𝑥, 𝑡) = 𝜃 𝑠𝑖𝑛(𝜋𝑥𝐿 )𝑒
( 𝜋
𝐿 )

(3.19)

The cubic domain, as shown in Figure 3.6a, is discretized using the Voronoi mesh and Voronoi
elements are used to simulate the moisture transport. Table 3.3 shows the mesh properties used to
discretize the domain. The diffusivity of the material is kept constant at 𝐷 = 1 𝑚𝑚 /𝑠 and the non-
stationary flow is simulated on the discretized mesh.

Table 3.3: Mesh properties

Discretization Number of nodes Number of elements Average element size (mm)
Voronoi 5881 10298 0.4534
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Figure 3.7: Non-stationary transport analysis in medium mesh

The total volume of the domain is divided into smaller representative volumes along the x-axis with
dimensions 0.25 × 10× 10 𝑚𝑚 . One such representative volume is shown in Figure 3.6b. Each such
volume is representative of the average saturation of all the nodes lying within that particular volume.
Figure 3.7 presents the results of the non-stationary flow as simulated by the numerical model where
the average saturation is plotted against the mean x-coordinate (for each representative volume).

It can be seen that the results from the numerical simulation conform well with the analytical solution.
As the time progresses the saturation of the domain decreases as the flow is directed from the centre
to the boundary faces which are kept at a constant zero saturation.
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3.3. Time Dependent Diffusivity
In the previous section, the model has been verified for the case of constant diffusivity. In reality,
the diffusivity of the material varies non-linearly with time as the diffusion coefficient depends on the
saturation level. In this section, the numerical model is presented where the diffusivity is varying with
time and the numerical results are compared with the experimental observations. The approximations,
considered before, in constructing the numerical model will be validated by comparing their numerical
results with those of the exact models.

3.3.1. Experiment
The experiment performed in [56] is used as a reference to numerically model moisture transport in
sound concrete. In the experiment, moisture transport in an uncracked concrete block of dimensions
100 × 50 × 20 𝑚𝑚 was observed as shown in Figure3.8. A water-cement ratio of 0.6 and a concrete
mix proportion of 1:3.3:0.6 (cement:sand:water) by volume was used [48].

θ=1

50mm

1
0
0
m

m

2

0

m

m

A

D

C

B

F

G

E

H

Figure 3.8: Schematic diagram of the uncracked concrete block

After curing the specimens for 14 days, they were dried by keeping inside an oven for 4 days at a
temperature of 50∘𝐶 until the specimens attained a constant weight. In order to get unidirectional flow
of water, except for faces ABCD and EFGH in Figure3.8, all other faces were sealed by covering them
with self-adhesive aluminium foils. Face ABCD was submerged in water and the moisture distribution
in the sample over a period of 4 hours was observed using neutron radiography technology.
The diffusivity of the sound mortar is required to numerically model the moisture transport. According
to [21], based on the model of the relationship between the capillary coefficient 𝑘 and sorptivity 𝑆, the
diffusivity of dry concrete 𝐷 can be approximated as:

𝐷 = (𝑘/1.294)
123.131 (3.20)

For the first 4 hours, the capillary coefficient of the sound mortar mix as measured experimentally [56]
is 𝑘 = 10.714 𝑚𝑚/ℎ / which leads to the diffusivity of dry concrete as 𝐷 = 1.54676 × 10 𝑚𝑚 /𝑠.
The moisture distribution is analyzed in the concrete block over the height of 50 𝑚𝑚 at different time
intervals.The numerical model uses the input parameters from the experiment.

3.3.2. Numerical Analysis
A numerical model is used to simulate the moisture transport in the uncracked concrete. In the exper-
iment, the moisture transport is observed along the length of 50𝑚𝑚 and the flow from the rest of the
faces is restricted. In the numerical model, a domain of 40×4×4 𝑚𝑚 is used to simulate the moisture
transport as shown in Figure3.9 and the flow is observed along the length of 40𝑚𝑚. Firstly, for the time
intervals at which the flow is observed, it doesn’t reach the length of 40𝑚𝑚 and secondly, as the rest of
the faces are considered sealed, the same flow in the experiment can be modelled numerically using a
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much smaller cross-section. Because of these reasons, the domain used in the numerical model can
be used to represent the flow as performed in the experiment. Doing this, a finer mesh can be used to
get accurate results and also the computation time is saved considerably.
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Figure 3.9: Domain used in the Numerical Model

As shown in Figure3.9a, the face ABCD represents the surface that is submerged in water and
forms the boundary at which all the nodes have a constant saturation of 1. Flow is directed from face
ABCD to EFGH along the Voronoi elements as shown in Figure3.9b. The initial saturation of all the
nodes in the domain is considered as zero and concrete is assumed to be completely dry. This is not
representative of the actual state of concrete in the experiment but as the results in the experiment
are presented in the form of increment of the moisture content from the initial state, using this as the
initial condition is justified. Applying this boundary condition and using the flow parameters as shown
in Table3.4, the numerical analysis is carried out. The numerical model used approximate volume,
explicit time stepping technique and uniform mean diffusivity of the the elements to simulate moisture
transport in concrete.

Table 3.4: Flow parameters for moisture transport in sound concrete

Parameter Symbol Value
Diffusivity of dry concrete 𝐷 1.5467 × 10 𝑚𝑚 /𝑠
Empirical constant 𝑛 6
Initial saturation 𝜃 0
Porosity 𝑝 0.0462
Time step Δ t 6𝑠
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Mesh sensitivity analysis
Using the flow parameters, boundary and initial conditions as mentioned above, the analyses is carried
out using four different meshes, the details of which are given in Table3.5.

Table 3.5: Mesh properties

Mesh Number of nodes Number of elements Average element length (mm)
Mesh1 62028 112878 0.1757
Mesh2 30859 54786 0.2231
Mesh3 3333 5208 0.4792
Mesh4 280 329 1.1306

Flow is simulated using the above 4meshes and the results at 60minutes is observed and compared
with the experimental results as shown in Figure3.10. As it can be seen that the results are quite similar
for meshes 1 to 3 but for mesh 4, the results deviate from the experiment results. That is simply due to
the fact that mesh 4 is the most coarse mesh and the element size in mesh 4 is comparatively larger
to accurately model the flow results. But for the rest of the meshes, the results agree well with the
experimental results. Similar trend is observed if the flow is observed at different time intervals. Mesh
3 is used for further analysis because the number of nodes and elements are fewer than that of mesh 1
and mesh 2 which decreases the computation time of the analysis without compromising the accuracy
of the results.
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Figure 3.10: Flow results at 60 mins

The results of the numerical model for mesh 3 are shown in Figure3.11. The entire domain is divided
into small representative volumes along the x-axis as shown in Figure3.9c and for each volume, the
saturation and the x-coordinate are averaged.
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Figure 3.11: Moisture transport in uncracked concrete

It can be seen in Figure3.11 that, at 15 minutes, the numerical results are under-predicting the
flow compared to the experiment. The numerical results for 30, 60 and 120 minutes conform well with
the experimental results. The results for 480 minutes are significantly over-predicted by the numerical
model. This is because of the way the diffusivity of dry concrete is computed in the numerical model [48].
As explained in the previous subsection, the diffusivity of the dry concrete is based on the relationship
between the capillary coefficient and sorptivity of concrete which is given as [53]:

𝑆 = 𝑘𝜙 (3.21)

where 𝑆 is sorptivity, 𝑘 is capillary coefficient and 𝜙 is the porosity of concrete. The porosity of concrete
is considered uniform throughout the domain in the numerical model even after considering the effect of
aggregates. But in reality, concrete is heterogeneous in nature and the porosity of concrete is different
in different parts of the domain. With the advancement of flow, more part of the domain is involved in the
flow which changes the overall porosity of concrete with time. This change of porosity is not accounted
for in the numerical model and instead, a constant uniform porosity throughout the domain is considered
which causes a deviation of results between the experimental and the numerical model. Also, in the
experiment, the shape of the curve at 480 minutes is different than the shape at the preceding time
steps which is due to the aggregates included in the concrete mix [14]. In the numerical model, the
concrete is assumed to be homogeneous and because of this, the shape of the curve for the numerical
model at 480 minutes is similar to the shape at the preceding time intervals.
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(a) Saturation of the domain at 15 minutes

(b) Saturation of the domain at 30 minutes

(c) Saturation of the domain at 60 minutes

(d) Saturation of the domain at 120 minutes

(e) Saturation of the domain at 480 minutes

Figure 3.12: Transition of flow in the discretized domain

Figure 3.12 shows the saturation distribution for mesh 3 in the uncracked domain at different time
stages. The flow originates from the right boundary at 𝑥 = 0 and as the flow progresses in the x-
direction, more and more number of Voronoi nodes become saturated.
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3.3.3. Validity of Approximations
Now that the numerical model using approximate volume, explicit time stepping technique and uniform
mean diffusivity of the elements is able to reproduce the experimental results, the underlying approxi-
mations, under which the numerical model was constructed, will be verified. The three approximations
where the approximated volume instead of the exact volume of the Voronoi elements is used, explicit
instead of implicit time stepping technique is used and the uniform mean diffusivity instead of the actual
exponential variation of diffusivity over the element length is used will be validated by computing the
error between the approximated and the exact models.

The reference numerical model is the one that uses all the above mentioned approximations. In
the first part of this subsection, a numerical model with exact volume, explicit time stepping technique
and uniform mean diffusivity is compared with a numerical model with approximate volume, explicit
time stepping technique and uniform mean diffusivity. In the second part, a numerical model with ap-
proximate volume, implicit time stepping technique and exponential variation of diffusivity is compared
with a numerical model with approximate volume, explicit time stepping technique and uniform mean
variation of diffusivity.

Volume analysis
The volume approximation in which the mean correction factor is used to compute the volumetric ca-
pacity of the Voronoi elements as mentioned in section 3.1.2 is analyzed. Two numerical models with
explicit time stepping technique and uniform mean variation of diffusivity are constructed, one con-
sidering exact volume of the Voronoi elements and the other with the approximated volumes of the
Voronoi elements. Analyses are carried out using the exact volume (Figure 3.2a) and compared with
the results obtained by using the approximated volume (Figure 3.2b) by calculating the error between
the saturation levels for the two analyses at each time step using the L-2 error norm which is given as:

||𝑟|| = √( 1𝑁 ∑ |𝑟 | ) (3.22)

where, ||𝑟|| is the error at a particular time step, 𝑁 is the total number of Voronoi nodes and 𝑟 is the
difference of saturation level of a particular node obtained from the exact and the approximate volume
models. The analyses are carried out on 4 meshes given in Table 3.5 and the error vs time plot is
shown in Figure3.13.
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Figure 3.13: Error vs Time graph for Volume approximation
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It can be seen in Figure3.13 that for all the meshes, the global behaviour is such that the error is
decreasing with time showing stability of the volume approximation considered. Generally, at a given
time stage, the magnitude of error is smaller for a finer mesh. But this trend does not hold for meshes 1
and 2. It is due to the fact that the number of elements in mesh 1 are more than the number of elements
in mesh 2. When the volumetric capacity of the domain (𝐌 matrix) is computed for all the elements
using the approximate (mean correction factor) and the exact approach, the error per element is less
for mesh 1 as it is the finer mesh. But in the error-norm, the summation of error for all the nodes is
done and on account of greater number of nodes present in mesh 1, the error in mesh 1 exceeds that
of mesh 2 in spite of being the finer mesh. Hence, mesh refinement might not lead to more accuracy of
results when the approximated model is used. Regardless, the error for the meshes 1,2 and 3 remain
below 2 percent showing reasonable accuracy of the results.

The local and global behaviour of the error vs time graph (Figure3.13) can be explained by the
transitional behaviour of the flow in the discretized domain. The global behaviour of the graph is such
that the error is reducing with time. The approximate volume model uses the average correction factor
(𝜔) on all the individual volumes of the elements, because of which, the volumetric capacity of the
individual elements is not accurate but the total volumetric capacity of all the elements combined is the
same as the exact volume of the domain. During the initial time stages, the predominant flow in the
domain is limited to a comparatively small fraction of elements. When the correction factor is applied to
compute the volumetric capacity of this small fraction of elements, it gives a higher error because the
volume of a comparatively small fraction of elements is being computed using a correction factor which
is computed based on a much bigger data set comprising of all the elements in the domain. As the flow
continues, the water front travels in the direction of flow increasing the fraction of elements involved
in the predominant flow. As this happens, the error in saturation level decreases as the volumetric
capacity of the elements predicted by the approximate and the exact model come closer. Eventually,
when the domain becomes completely saturated, all the elements in the domain will be involved and
the volumetric capacity calculated from both the exact and approximate model will be the same.

It can be observed in Figure3.13 that the error does not decrease gradually but there are local peaks
where the error first increases, attains a local maximum and then decreases. The frequency of these
peaks becomes higher and the magnitude of the local maximum becomes lower as the mesh becomes
finer. The behaviour of these local peaks is highly mesh-dependent.
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Local Behaviour of the Error vs Time graph
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Figure 3.14: Error vs Time graph for Volume
approximation of mesh 4

Figure 3.15: Saturation at point A

Figure 3.16: Saturation at point B

Figure 3.17: Saturation at point C

• The local behaviour of the error vs
time graph is explained for mesh 4. In
Figure3.14, points 𝐀 (37 minutes), 𝐁
(45 minutes) and 𝐂 (54.5 minutes) are
marked that represent the start of the
peak, the local maximum of the peak
and the end of the peak respectively.

• The flow at point 𝐀 as shown in Figure
3.15 is at a stage when it is just about
to involve the Voronoi element (4-6)
(composed of node at 4 and node at 6) in
the water front. Node 4 is at a saturation
level closer to fully saturated condition
and node 6 is at a saturation level nearer
to the initial condition. After this point,
the error between the saturation level of
the exact and the approximate volume
models increases due to an initial differ-
ence of the volumetric capacity causing
subsequent difference in the diffusivity
of the element.

• Figure3.16, which represents the flow
at the time stage where point 𝐁 occurs,
the saturation level at the node 6 has
increased since before but the Voronoi
element (4-6) has not yet fully become
a part of the saturated domain. At this
stage, the error between the exact and
the approximate volume method starts
decreasing because of the decrease in
the difference of the diffusivity calculated
from both the models.

• After the decrease in the error, eventually
flow reaches point 𝐂, where as shown in
Figure3.17, both the nodes of the Voronoi
element (4-6) are close to complete sat-
uration and the entire element forms a
part of the saturated domain. The flow
now moves on to the next Voronoi ele-
ment (6-8) and all the above mechanism
is repeated for it as well.
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The nature of flow in the domain is such that the moisture is not spread uniformly over the entire do-
main but it gets accumulated in the nodes that form the water front. After the accumulation of moisture,
it then spreads over to the adjacent nodes in the direction of the flow. As the water front moves forward
in the direction of the flow, it is continually involving more elements and leaving saturated elements
behind. The elements that constitute the water front have one node whose saturation will be close to
the fully-saturation condition and the second node will have saturation that will be closer to the initial
saturation. Local peaks in the error vs time graph occur when new elements are being involved in the
flow. The point at which the peak starts (when the error starts increasing) is the point at which one of
the nodes of the water front elements is close to complete saturation and the second node is close to
the initial saturation. As these elements undergo flow, the saturation of the second node will gradually
increase. But due to a difference of the volumetric capacity of the elements computed from both the
models, the saturation level of the second node will be different in both the models. According to the
global behaviour, this error in the saturation of the nodes should have decreased. But what happens is
that due to a difference of saturation of the second node in both the models, the variation of diffusivity
over the element for both the models is different. During the initial stages when these elements start
to be involved in the flow, the diffusivity of the element is quite high as one node is close to complete
saturation and the other is close to initial saturation. Because of this, even if there is a small difference
of the saturation of node 2, the diffusivity of the element for both the models is quite different. Due to
this, on further flow, the difference of saturation levels of the second node increases further and the
error increases. This is the reason for the local increase of error. At a certain point, as the second node
becomes more and more saturated, the difference in the diffusivity decreases. Eventually, there comes
a stage when the increase in error because of a difference in diffusivity is negated by the decrease in
error that should have been caused by the volume approximation. This is the point of local maximum
of the peak. After this point,the decrease in error because of volume approximation becomes the pre-
dominant factor. This accounts for the region of the peak when the error is decreasing. At the bottom
point of the peak, the element has been completely involved in the flow and the water front goes on to
the next element and this whole mechanism is repeated. The frequency of the peaks is higher in a fine
mesh because there are more number of elements and smaller elements in the domain. Because of
this, the water front involves more elements at a faster rate and there are more peaks. Also, the mag-
nitude of the peaks is small because as the element size is smaller in the finer mesh, the magnitude
of the difference of the volumetric capacity and the diffusivity variation will be less and the error in the
saturation level will be lower.

Linearization of the time stepping technique and exact diffusivity
As it was mentioned before, the fully-discretized equation representing the flow in uncracked concrete
is solved using approximations in which the iterative scheme was circumvented by a linear solver and
also instead of the exact diffusivity, the uniform mean diffusivity was used. An implicit time stepping
scheme is used to accurately solve the discretized equation. The details of the iterative mechanism
involved in the implicit scheme is given in the box below. The tolerance of the scheme is set to 10
and the L-2 error norm is used to compute the error in the saturation levels of two corresponding time
steps. The exact diffusivity is considered by taking the exponential variation of the diffusivity along the
element length and the 4-point Gauss integration is used in the numerical integration of diffusivity over
the length of the element as shown in Figure3.3a.
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Iterative Mechanism used in the Implicit Time Stepping Model

The fully discretized form of the transport equation is given as:

(𝐌+ 12Δ𝑡𝐊𝐧 𝟏)𝜽𝐧 𝟏 = (𝐌−
1
2Δ𝑡𝐊𝐧)𝜽𝐧 + Δ𝑡𝑓 (3.23)

The external flux is considered to be zero so the last term disappears in the equation. For
simplicity, the above equation is rewritten as:

𝐋𝐇𝐒𝐧 𝟏𝜽𝐧 𝟏 = 𝐑𝐇𝐒𝐧𝜽𝐧 (3.24)

The subscript (n+1) refers to the quantities in the current time step and subscript (n) refers to
the quantities in the previous time step. The moisture content at the previous time step (𝜽𝐧)
is known and this is considered as the starting point of the iterative mechanism as presented
below.
For each time step:

1. Compute 𝐑𝐇𝐒𝐧 from 𝜽𝐧.

2. Assume 𝜽𝐧 𝟏=𝜽𝐧.

3. Compute 𝐋𝐇𝐒𝐧 𝟏 from 𝜽𝐧 𝟏.

4. Compute error using the L-2 error norm: 𝐑𝐇𝐒𝐧𝜽𝐧 − 𝐋𝐇𝐒𝐧 𝟏𝜽𝐧 𝟏.

5. If error > tolerance (10 ), go to the next step, Else go to the next time step starting from
step 1.

6. Compute 𝚫𝜽 = 𝐑𝐇𝐒𝐧𝜽𝐧 − 𝐋𝐇𝐒𝐧 𝟏𝜽𝐧 𝟏
𝐋𝐇𝐒𝐧 𝟏

.

7. Compute 𝜽𝐧 𝟏 = 𝜽𝐧 𝟏 + 𝚫𝜽 and go to step 3.

The above exact model is used to simulate the moisture transport in uncracked concrete and the
results are compared with the approximate model. Time step analysis is done for both the models for
6 different time steps of 1 sec, 6 secs, 10 secs, 20 secs, 30 secs and 60 secs. The error in saturation
levels is computed using the L-2 error norm. Figure 3.18a shows the error vs time graph for all the 6
time steps. It is clear form the graph that the error is reducing as the magnitude of the time step is
reducing. The analyses for all the time steps are carried out on mesh 3, the details of which are given
Table 3.5. It can be seen that the behaviour of error vs time graph for all the time steps is quite similar
and the major difference lies in the magnitude of error at different time stages.

The decrease of the error with the decrease in the magnitude of the time steps can be explained in
the numerical model if the flow at each time interval is observed. During each time interval, a certain
amount of flow occurs in the domain because of which the saturation of the nodes and the diffusivity
of the element changes by the end of that time interval. The difference between the explicit and the
implicit model is that the former uses the diffusivity of the elements at the beginning of the time interval
and the latter uses the diffusivity of the elements at the end of the time interval. If the time interval is
quite small i.e. a smaller time step is used, the flow that occurs in the domain in one time interval is quite
small and there is no significant change in the nodal saturation level and the corresponding element
diffusivity by the end of that time step. In this case, the error between the implicit and the explicit model
is small as the diffusivity is not varying significantly within one time step. As the magnitude of the time
step is increased, the difference in the diffusivity at the beginning and at the end of the time interval
increases and due to this, the error increases.
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Figure 3.18: Time step analysis

As it can be seen in Figure3.18a that for the time observed, the error (for all time steps) is decreasing
with time showing that the explicit model is stable. But as it can be seen in Figure3.18b that a larger time
step gives more error which lowers the accuracy of the explicit model. The time step of 6 seconds is
used in the numerical model used to simulate the transport in uncracked concrete. For the time stages
at which the flow is observed and compared with experimental results, the error is below 4 percent. It
can be concluded that the explicit model is stable even for larger time steps but also accuracy of the
model decreases with it.

The model using the exact diffusivity is also run on 4 different meshes as presented in Table 3.5.
The results for the mesh sensitivity analysis are shown in Figure 3.19.
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Figure 3.19: Moisture transport in uncracked concrete

It can be seen from Figure 3.19 that the finest mesh produces the most accurate and stable results.
As, the behaviour of the error vs time graph is similar to the one obtained in volume analysis, it can

be explained in a similar fashion. Firstly, the global behaviour of the graph is that error is decreasing
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with time. This is due to the fact that as time progresses and the water front moves forward in the
direction of the flow, more and more number of nodes become completely saturated. In an element
where both of its nodes are completely saturated, the diffusivity remains constant over the length of the
element and the numerical integration of the diffusivity along the length gives the same value for both
the uniform mean diffusivity and the 4-point Gauss integration. Because of this, as the flow progresses,
more and more number of nodes become completely saturated and the results from the exact and the
uniform mean method tend to become equal. At the final stages of the flow, when all the nodes in the
domain will be completely saturated, the diffusivity of the entire domain for both the methods will be
equal.

Similar to the volume analysis, there are local peaks in the error vs time graph. At the point when
the error starts increasing, that is the point when new elements are included in the flow and one of
the nodes is close to fully-saturated condition and the other is close to the initial saturated condition.
Due to a significant difference in the diffusivity computed from both the models, the saturation level of
the nodes in the next time step is also different and the error increases. This process carries on and
the second node gets more and more saturated. Eventually a point occurs when the difference in the
diffusivity calculated from both the models starts decreasing because as the second node gets more
saturated, the diffusivity computed from the uniform mean and the 4 point Gauss integration comes
closer. After that point, the error starts decreasing. This whole process repeats itself when new set of
elements are involved in the flow.

As the mesh is refined, new elements are involved in the flow at a faster rate than in a coarser mesh.
Because of this, the frequency of the peaks is more for the finer mesh and low for the coarser mesh. In
the finer mesh, as the average element length is smaller, the difference of areas (computed from exact
and approximate models) is also smaller and the magnitude of the local peaks in error is also smaller.

The analyses presented above lead to some limitations of the approximate model. As it can be
seen that the mesh should be sufficiently fine so that the error induced because of the approximations
is not high. The time step should be chosen in such a way that it gives accurate results but also does
not significantly increase the computation time.
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3.4. Results and Conclusions
In this section, first a parametric study of varying the diffusivity coefficient is presented followed by the
discussion of the results obtained from the numerical analyses and conclusions are drawn based on
the numerical results.

3.4.1. Variation of Initial Diffusivity
The diffusivity of dry concrete used in the experiment is 𝐷 = 1.5467×10 𝑚𝑚 /𝑠. In this subsection,
the initial diffusivity is varied and the flow is analyzed at 15 minutes for different initial diffusivities. The
diffusivity values correspond to 0.1𝐷 , 𝐷 , 10𝐷 and 50𝐷 and the rest of the flow parameters are the
same used to model the flow in sound concrete as given in Table3.4. Also, the analysis is carried out on
mesh 2 (finer) and mesh 3 (reference) (Table3.5) for all the variations in the initial diffusivity. The anal-
yses are carried out on the approximate model which uses approximate volume of Voronoi elements,
explicit time stepping technique and uniform mean diffusivity of Voronoi elements. These results are
compared with the exact numerical model which uses approximate volume of Voronoi elements, implicit
time stepping technique and exponential variation of diffusivity of Voronoi elements.
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Figure 3.20: The results at 15 minutes for mesh 3
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The results presented in Figure 3.20 for mesh 3 are not averaged by taking small representative
volumes but the x-coordinate of the Voronoi nodes is plotted against the saturation level of that node.
The results show that as the diffusivity is increased, the domain gets saturated at a faster rate which is
also expected. The same analysis is done for a finer mesh corresponding to the mesh 2. The results
are shown in Figure 3.21.
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Figure 3.21: The results at 15 minutes for mesh 2

There are some important remarks that are to be highlighted by observing the results. As it can
be seen in Figure 3.20 that as the initial diffusivity is increased, there are oscillations in the saturation
levels of the nodes that lie in the vicinity of the boundary surface from where the flow originates. As the
diffusivity is increased, nodes at a greater distance from the flow boundary show oscillations. The affect
of diffusivity can be considered to be the same as the affect of time step in the discretized equation
because both of these terms occur in the same form in the fully discretized equation. The oscillations
are only observed in the approximate model (approximate volume, explicit time stepping, uniform mean
diffusivity) but not in the exact model (approximate volume, implicit time stepping, exponential diffusiv-
ity) model. This is an important limitation of the approximate model. In the approximate model, the
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linearization of the time-stepping technique is done. In the exact model, there are iterations that are
carried out to solve the discretized equation. The main purpose of the iterations is to maintain the mass
and momentum balance of the model. It ensures that the total amount of moisture that leaves at time
𝑡 is equal to the total amount of moisture that is entering at time 𝑡 maintaining the flow equilibrium.
When the diffusivity of the elements is low, the amount of moisture leaving the previous time step is
very small even if the flow equilibrium is not maintained, there is insignificant difference between the
saturation levels obtained from both the models. But when the diffusivity is high, using the approximate
model causes oscillations. At the nodes in the vicinity of the boundary, there is a huge gradient of
diffusivity in a single element. Because of this, the moisture travels to the adjacent nodes at a very
high rate without maintaining the equilibrium between the time steps. Because of this, the moisture in
one node from where the flow starts can decrease considerably and the moisture in the adjoining node
which receives the flow can accumulate there in one time step. Because of this, there are oscillations in
the flow. But as the flow progresses further in the domain, the gradient of diffusivity along the elements
decreases and the oscillations decrease when the flow reaches further from the boundary of the origin
of flow.

In Figure 3.21, the same analyses with the variation of diffusivity is considered but for a finer mesh.
It can be seen that the global behaviour is still the same. But using the finer mesh has caused an
increase of oscillations. In mesh 3, the oscillations for the diffusivity 𝐷 as shown in Figure 3.20b are
almost negligible but in case of mesh 2 which is the finer mesh the oscillations at the same diffusivity 𝐷
(Figure3.21b) are observed. Also, when the magnitude of the initial diffusivity increases, the magnitude
of the oscillations also increases with mesh refinement. This can also be explained with a similar line of
reasoning that when themesh is refined, the element size is small. Because of the small element length,
the gradient of the exponential distribution of diffusivity over the length of the element is very high.
Because of this, when the approximatedmodel is used, the flow in these elements is not able tomaintain
the equilibrium as it could have been done in the exact model. Because of this, the flow in the elements
near the boundary progresses in such a way that in one of the node, there is excessive withdrawal of
moisture and in the adjacent node, there is accumulation of moisture. Hence, the oscillations are
observed.

3.4.2. Discussion
In the case of constant diffusion in the domain, the numerical model is able to simulate the flow with
high accuracy with respect to the analytical results for both steady-state and non-stationary flow as
shown in Figure 3.5 and Figure3.7.

For the case of non-stationary transport with time-dependent diffusion, the results of the numerical
model are compared to the experimental values. The numerical model is calibrated using the material
parameters, initial and the boundary conditions as given in the experiment. Mesh sensitivity analysis
on 4 different meshes concluded that mesh 3 gives results of reasonable accuracy with the minimum
computation time. Using mesh 3, the flow is simulated using the numerical model and the results are
compared to the experimental results in Figure3.11. The numerical model is under predicting the flow
at 15 minutes by a small amount which is just the inherent property of the numerical model. At 30,
60 and 120 minutes, the results of the numerical model conform well with the experimental results. At
the time stage of 480 minutes, the results from the numerical model are significantly different from the
experimental values both in terms of the shape of the curve and the values of the saturation level. This
is because of the heterogeneities present in the concrete used in the experiment which has an affect
on the later stages of the flow [14] whereas the concrete is modelled as a homogeneous material in
the numerical model.

The three approximations made in the numerical model help for easy implementation and reduces
the computation time. The approximations are developed looking at the flow in the domain when it
attains complete saturation. Under complete saturation, the flow in the approximated model and the
exact model is exactly the same. Error within the approximate and the exact models is high in the
beginning but as the domain gets more and more saturated, the error decreases. The results show
that the approximated numerical model is stable for the observed time of 480 minutes.

Based on the results of the approximations, there are some limitations on the numerical model:
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Mesh size
A too coarsemesh will give high errors in the saturation level if the volume and diffusivity approximations
are used. If the mesh is too fine, first of all it will increase the computation time. Also in the volume
approximation, it is found that a finer mesh can give higher error on account of having more number
of elements (Figure3.13). Also, in a finer mesh there can be oscillations in the saturation levels in the
nodes closer to the flow boundary (as observed in Figure3.21) when the approximate model is used.
These oscillations increase in magnitude if the diffusivity is high. Hence, the mesh size should be
chosen such that it is not too coarse and not too fine and does not gives oscillating results for that
particular diffusivity of the domain.

Time Step
The time step should not be too small that the computation time increases significantly without signifi-
cant increase of accuracy. The error in the saturation level, computed from the implicit and the explicit
model, increases with the increase of the magnitude of the time step (Figure3.18). If the time step has
to be chosen large, then the implicit time stepping scheme should be used. But doing that will increase
the computation time on account of the iterations that have to be done in each time step to attain the
flow equilibrium.

Diffusivity
As shown in Figure3.20 and Figure3.21 that for higher values of diffusivity, the approximated model
shows oscillations in saturation level of the nodes lying closer to the flow boundary. Also, the error at a
particular instance between the exact and the approximated model increases for higher diffusivity. If a
material with a higher diffusivity has to be modelled, the approximate model won’t give reliable results.
Instead the implicit exact diffusivity model should be used. But there is a shortcoming with that too.
The initial diffusivity (𝐷 ) has the same affect on the discretized equation as the magnitude time step
(Δ𝑡) as they occur in the same form in the diffusivity matrix. For a higher value of diffusivity, the implicit
scheme will require a lot of iterations for convergence to occur and that can significantly increase the
computation time. The magnitude of the time step can also be decreased to reduce the number of
iterations but that can significantly limit the number of time steps that can be used (limiting the total
time for which the flow is observed) on behalf of the computation time.





4
Moisture Transport in Cracked Concrete

In the previous section, the numerical model was shown to be able to simulate moisture transport in
uncracked concrete and results were in conformation with the experimental results. In this section,
moisture transport in cracked concrete will be simulated. A single discrete crack is modelled in the
mesh and its affect on transport behaviour of the domain is analyzed. The first section presents the
methodology to include the crack in the discretized domain along two approaches to simulate moisture
transport in the crack. In the second and third section, horizontal and vertical moisture distribution in
the crack using both approaches is modelled and compared with each other. Last section highlights
the difference in the modelling technique when the transport elements are modelled on the Delaunay
and on the Voronoi elements respectively followed by simulation of moisture transport when both the
approaches to model moisture transport in a crack are combined into a single model. This is followed
by the discussion of results of the analyses.

4.1. Model Discretization
Firstly, the crack has to bemodelled in the discretized domain and the transport properties of the Voronoi
elements lying in the crack and the cement matrix have to be assigned accordingly. Effect of a single
discrete crack on moisture transport is observed in the numerical model. To account for the effect of
crack on moisture transport, two approaches are considered.

Approach 1: Crack as a Porous Phase in Mortar
In this approach, concrete is considered to be a two-phase composite consisting of the cement matrix
and the crack. When moisture transport in uncracked concrete is simulated, concrete is considered
as a network of porous pipes through which capillary absorption takes place [7]. In this approach, the
crack is also considered to be a network of porous pipes and the underlying mechanism of transport
through capillary absorption remains the same as in uncracked concrete but the difference lies in the
magnitude of transport that takes place in the crack which is much higher than in the uncracked part of
the domain. The porosity of the crack is considered to be 1 and the Voronoi elements used to simulate
transport in the cracked domain are assigned diffusivity according to the cubic law.

Approach 2: Surface Interactions between Moisture and Crack Walls
In Approach 1, the surface interaction between the crack walls and the moisture surface is not taken into
account and the physical material behaviour of the crack is incomplete. In this approach, the surface
interactions between the crack walls and moisture is taken into account through capillary suction. The
net effect of interfacial tension and inertial forces causes the water in the crack to rise up to a certain
height known as the equilibrium rise height. The height till which the liquid rises in the crack remains
completely submerged with moisture and acts as additional submerged boundaries. In the numerical
model, the part of the crack walls that lie within the equilibrium rise height is modelled as just another
boundary with constant saturation, while the part of the crack walls lying outside the equilibrium rise
height are considered as a porous phase in mortar as done in Approach 1. Approach 2 takes into
account the surface interactions of moisture and crack walls which is a better representation of the
actual physical behaviour of the cracks.

55
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4.1.1. Crack Generation
The structural properties of concrete are modelled on Delaunay elements in the dual mesh. Due to
this, the discrete crack in the concrete is modelled using the Delaunay elements and the correspond-
ing transport properties are modelled on the Voronoi elements. Figure 4.1 shows a segment of the
dual mesh before and after cracking. The Delaunay elements are loaded under an external force (in
finite loading steps) because of which the stress in the Delaunay elements starts increasing. When a
Delaunay element reaches its tensile limit, it is removed from the mesh. The new mesh, after removing
the Delaunay element, is further loaded till another Delaunay element reaches it’s tensile limit and is
subsequently removed. This process continues till the entire external load has been applied or till the
structure cannot resist any more load or the desired deformation of the structure is attained. At the
end of the loading procedure, the entire space that was previously occupied by the removed Delaunay
elements, form the crack in the discretized domain as shown in Figure4.1b. Once the crack is gener-
ated, the Voronoi elements can be assigned the respective transport properties to simulate moisture
transport in the domain.

Voronoi element

Delaunay element

(a) Uncracked dual mesh

Voronoi element

Delaunay element

Crack

(b) Cracked dual mesh

Figure 4.1: A segment of the dual mesh

4.1.2. Approach 1: Crack as a porous phase in mortar
The discretized equation, as given in eq(4.1), used to simulate the moisture transport remains the same
for both the cracked and uncracked concrete as the underlying phenomenon of transport is via capillary
absorption. The difference is that the diffusivity matrix 𝐊 is formulated with different diffusivities for the
elements lying in the crack than the elements lying in the uncracked concrete.

(𝐌+ 12Δ𝑡𝐊𝐧 𝟏)𝜽𝐧 𝟏 = (𝐌−
1
2Δ𝑡𝐊𝐧)𝜽𝐧 + Δ𝑡𝑓 (4.1)

The Voronoi elements that are the geometric dual of the removed Delaunay elements lie in the
cracked part of the domain. Their transport properties differ from the Voronoi elements lying in the
uncracked part of the domain where the diffusivity is given as:

𝐷 = 𝐷 𝑒 (4.2)

The diffusivity of the Voronoi elements lying in the crack (𝐷 ) is given by eq(2.22) where the crack
is considered to absorb moisture as a porous phase and the diffusivity is proposed to be:

𝐷 (𝜃) = (∑𝑤 𝑙 )𝜉𝑝 (1 − 𝑚)12𝜇𝐴𝑚 √𝜃[1 − (1 − 𝜃 / ) ] 𝜃 / (𝜃 / − 1) (4.3)
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where,
𝑤 is the equivalent crack width,
𝑙 is the equivalent crack length,
𝑛 is the number of cracked Delaunay elements
𝐴 is the cross-sectional area of the Voronoi element,
𝜉 is the tortuosity factor,
𝑝 is the reference pressure, experimentally determined as 18.6237 𝑁/𝑚𝑚 ,
𝑚 is the Van-Genuchten parameter equal to 0.4396,
𝜇 is the viscous coefficient of water.

In eq(4.3), it can be seen that in the first term, the affect of the crack geometry comes into account.
The equivalent crack widths and the equivalent crack lengths can be computed for a Voronoi element
as shown in Figure4.2a. The Voronoi element a-b is surrounded by three Delaunay elements 1-2, 2-3
and 3-1 that form the common triangle. When the Delaunay elements are cracked, the crack widths
𝑤1, 𝑤2 and 𝑤3 are assumed to be present in the middle of the corresponding elements. The crack
lengths 𝑙1, 𝑙2 and 𝑙3 are obtained by measuring the distance from the centre of the corresponding
Delaunay elements to the centroid of the common triangle 1-2-3. The cross-sectional area 𝐴 of the
Voronoi element is the area of the triangle 1-2-3. When cracking is simulated in three dimensions, the
Delaunay elements lying in the cracked plane are considered to be cracked. Due to these elements
lying in a plane, it is never the case that a Voronoi element passes through three cracked Delaunay
elements as shown in Figure4.2a. Instead, the most number of cracked Delaunay elements that pass
through a Voronoi element is two as shown in Figure4.2b. In such a case, the Voronoi element lies
partly in the crack and partly in the uncracked region and it’s diffusivity should be considered as the
weighted average of the diffusivity of the cracked and the uncracked region. But the contribution of
the uncracked region towards the diffusivity is considerably smaller as compared to that of the cracked
region and only the cracked Delaunay elements (1-2 and 2-3 as shown in Figure4.2b) are used to
assign the diffusivity of the Voronoi element.
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Figure 4.2: Equivalent crack properties of the Voronoi element
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Numerical Solver
It can be seen in eq(4.3) that the diffusivity of the Voronoi elements lying in the crack is varying with
the saturation level. Figure4.3a shows the variation of the diffusivity over the length of the element. It
should be noted that the variation is not exponential as in the case of uncracked concrete. As it was
seen in the case of uncracked concrete, if the mesh is refined enough, the approximate volume of the
Voronoi elements give stable results with reasonable accuracy. In the numerical model used here, the
approximate volume of the Voronoi elements will be used. The diffusivity in the crack is of a much
higher order of magnitude than of the uncracked cement matrix. As it was observed in the previous
chapter that as the magnitude of the diffusivity increases, the explicit time stepping scheme coupled
with mean uniform variation of diffusivity (Figure4.3b) gives oscillating results. But using the implicit
time stepping scheme along with the actual variation of diffusivity (Figure4.3a) will drastically increase
the computation time because of the high diffusivity of the crack. The number of iterations to attain
convergence at each time step will be really high which will increase the computation cost. Hence, to
simulate moisture transport in cracked concrete a numerical model using approximate volume of the
Voronoi elements, explicit time stepping technique and the uniform mean diffusivity of the elements is
adopted.
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Figure 4.3: Variation of diffusivity for cracked element

4.1.3. Approach 2: Surface interactions between moisture and crack walls
In Approach 1, the real water absorption potential of the crack is not modelled as it does not take into
account the surface interactions of the moisture and the crack walls. In this approach, the surface
interactions of the moisture with the crack surface is described by the Lucas-Washburn equation[35].
The correction for stick-slip behaviour, dynamic contact angle and wall slip are applied which results in
the modified Lucas-Washburn equation[11]. The equation is already described in Chapter 2 eq(2.35),
which is given as:

(2𝛽𝑟 + 𝑧
𝑟𝛽
2 + 𝑟

8𝜇

)�̇� = 𝑝 (1 − 𝛽 ) − 𝜌𝑔𝑧𝑠𝑖𝑛(𝜙) (4.4)

where
𝛽 is the correction factor for dynamic contact angle,
𝑟 is the radius of the capillary,
𝑧 is the capillary rise,
𝛽 is the correction factor for the wall slip,
𝜇 is the dynamic viscosity,
𝛽 is the correction factor for stick-slip behaviour,
𝜌 is the density of the liquid,
𝜙 is the tube inclination angle,
𝑔 is the acceleration due to gravity,
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𝑝 is the capillary pressure and 𝑝 = 2𝛾𝑐𝑜𝑠(𝜃 )
𝑟 where 𝛾 is the surface tension.

For simplicity, eq(4.9) is written in the from of:

𝑘 𝑘 �̇� + 𝑧�̇� = 𝑘 𝑘 − 𝑘 𝑘 𝑧 (4.5)

where
𝑘 = 2𝛽

𝑟

𝑘 = 𝑟𝛽
2 + 𝑟

8𝜇
𝑘 = 𝑝 (1 − 𝛽 )
𝑘 = 𝜌𝑔𝑠𝑖𝑛(𝜙)

Eq(4.9) gives the expression for the rate of capillary rise in a capillary. This equation is discretized
in time using the Crank-Nicolson procedure so that it can be implemented in the numerical model.
According to the Crank-Nicolson procedure, the capillary rise at time 𝑡 is given as:

𝑧 = 𝑧 + Δ𝑡2 (�̇� + �̇� ) (4.6)

Substituting the expression given in eq(4.6) into the modified Lucas-Washburn equation and elim-
inating the time derivatives, the following discrete from of the modified Lucas-Washburn equation is
obtained:

2
Δ𝑡𝑧 +( 2Δ𝑡𝑘 𝑘 −

2
Δ𝑡𝑧 −

𝑘 𝑘 − 𝑘 𝑘 𝑧
𝑘 𝑘 + 𝑧 +𝑘 𝑘 )𝑧 −( 2Δ𝑡𝑘 𝑘 𝑧 +

𝑘 𝑘 (𝑘 𝑘 − 𝑘 𝑘 𝑧 )
𝑘 𝑘 + 𝑧 +𝑘 𝑘 ) = 0

(4.7)

Coupling of transport in the crack and uncracked concrete
When the surface of concrete is in contact with water, the crack acts as a capillary tube. Due to surface
interactions with the moisture present at the submerged boundary, the water rises up in the capillary
under the capillary suction. The rise of the water comes to a rest once the capillary attains equilibrium
height. The height up till which the crack gets filled up acts a boundary with constant saturation and
the moisture starts spreading into the adjoining matrix through the crack walls as shown in Figure4.4.
The capillary suction in the crack happens in mere seconds in which the equilibrium height is obtained,
while the process of moisture transport in the adjoining matrix is comparatively a much slower process.
Because of this, the coupling of both the phenomenon in one numerical model is quite complex. Due to
this reason, first the capillary suction in the crack is modelled and then considering the crack walls as
additional submerged boundaries, the transfer of moisture in the adjoining cement matrix is simulated
using a separate numerical model.
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Figure 4.4: Capillary suction in the crack

For the case of a planar crack (Figure4.4a), the capillary suction can be simulated directly using the
modified Lucas-Washburn equation (eq(4.9) as the crack width is uniform throughout the depth of the
crack. Once the equilibrium height is attained, the moisture starts spreading into the adjoining matrix.
In case the crack width is not uniform, but varies with the crack depth as shown in Figure4.4b, the
crack is divided into a number of discrete elements. The crack width is assumed to be constant for
each discrete element and the capillary suction is modelled using the discretized form of the Lucas-
Washburn equation (eq(4.1)). Due to capillary suction, the water in the crack reaches an equilibrium
height but if the crack depth is greater than the equilibrium height, a part of the crack is left which is
not filled with water. This part is considered to act as a porous material in which the transport of water
takes place according to the diffusivity obtained through the cubic law.

Numerical Solver
In the case when the crack depth is smaller than the equilibrium rise height of the capillary, the crack
gets completely filled up. In such a case both the crack walls are just additional submerged boundaries
in the numerical model. Simulating moisture transport in such a domain is no different than simulating
moisture transport in uncracked concrete. The numerical model using approximate volume, explicit
time stepping scheme and uniform mean variation of diffusivity is able to give results with reasonable
accuracy. In case the crack is not completely filled up but a part of the crack is not submerged in water,
then that part of the crack is considered as a porous phase in mortar and the numerical model adopted
to simulate the moisture remains the same as is mentioned in Approach 1. Hence, in this case too, a
numerical model with approximate volume of the Voronoi elements, explicit time stepping scheme and
uniform mean diffusivity of the elements is used to simulate moisture transport.
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4.2. Horizontal Moisture Distribution in Cracked Concrete
In this section, the horizontal moisture distribution in a planar crack is observed. A planar crack is
modelled in the discretized domain with constant crack width and parallel surfaces. The moisture
transport in the cracked domain is simulated using the two approaches of considering crack as a porous
phase in mortar and moisture-surface interactions as mentioned before and the results of each are
compared with experimental results.

4.2.1. Experiment
The experiment used in [38] is used as a reference to simulate horizontal moisture distribution in
cracked concrete. A cylindrical specimen of 16 𝑚𝑚 diameter and 32 𝑚𝑚 height was used. There
were two grooves of 2 𝑚𝑚 width and 2 𝑚𝑚 height placed diametrically opposite to each other as
shown in Figure4.5. The water-cement ratio was kept at 0.45 and the cement to sand ratio was kept
at 3.27. Aggregates of size ranging from 0.25 − 2 𝑚𝑚 were included in the mix and there particle
distribution was measured using laser diffraction.

16mm

2mm

2mm

Crack

Figure 4.5: Schematic of the sample and the crack [38]

The sample was covered with a plastic foil and left to harden for 24 hours under laboratory condi-
tions. After 24 hours, the sample was demoulded and stored in a fog room at about 20∘𝐶 for 28 days.
At 21 days, the sample was sawn into a smaller cylinder of 10 𝑚𝑚 height and returned to the fog room.
At 28 days, the sample was put in an oven at 40∘𝐶 until constant weight was achieved. All the surfaces
were covered with a duct tape until the testing. A planar crack with a crack-width of about 0.37 𝑚𝑚
was formed going from one groove end to the other. X-Ray Micro Tomography was used to observe
the moisture content at different time stages [38]. As it can seen in Figure4.5 that the crack is actually
a natural crack, but since a 3D imaging technique is used, the data has been arranged to have the
center of the crack for each depth and height in the same position. This results in a planar crack data
and the crack width can be considered constant.

4.2.2. Numerical Analysis
For the numerical analysis, a cracked domain is generated that can simulate the moisture distribution
as given in the experiment. A dual mesh for a domain size of 10×0.4×10 𝑚𝑚 is generated and a crack
starting from 𝑥 = 0 to 𝑥 = 10 𝑚𝑚 is modelled on the Delaunay elements as shown in Figure4.6a. The
mesh properties are given in the Table 4.1. The average Delaunay element size is taken as close to the
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crack width as possible so that when the crack is generated in the Delaunay mesh and the Delaunay
elements are eliminated, the width of the crack generated in the mesh is representative of the actual
crack width as used in the experiment.

Voronoi

elements
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Cracked
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elements
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Figure 4.6: Discrete crack in the domain

Table 4.1: Mesh Properties

Parameter Value
Number of nodes 26225
Number of elements 37456
Average element size 0.1 𝑚𝑚
Crack width 0.3719 𝑚𝑚
Crack depth 10 𝑚𝑚

Table 4.2: Flow Parameters

Parameter Symbol Value
Diffusivity of dry concrete 𝐷 3.5 × 10 𝑚𝑚 /𝑠
Empirical constant 𝑛 6
Initial saturation 𝜃 0.2119
Porosity 𝑝 0.1471
Time step Δ t 6𝑠

The flow parameters used to simulate moisture transport in uncracked concrete are given in Ta-
ble4.2. The flow is simulated in the numerical model and the results are compared with the experimen-
tal results. Figure4.6b shows the details of the cracked domain. The plane 𝑥 = 0 𝑚𝑚 is submerged
and kept at a constant saturation level. The crack planes are considered parallel and smooth with a
constant crack-width of 0.37 𝑚𝑚 and running from 𝑥 = 0 to 𝑥 = 10 𝑚𝑚. In order to compare the hori-
zontal distribution of moisture, only the volume of the domain lying between 𝑥 = 8 𝑚𝑚 and 𝑥 = 10 𝑚𝑚
is considered. This volume is further divided into small representative volumes (running along the z-
axis) of dimensions 2 × 0.4 × 0.175 𝑚𝑚 (one such representative volume is shown in Figure4.6b).
The saturation level and the z-coordinate of all the Voronoi nodes lying in a particular representative
volume are averaged and plotted in order to compare the results with the experimental results.

Approach 1
The entire domain is divided into uncracked and cracked concrete and the flow parameters of both
regions are defined separately. The moisture transport in uncracked concrete is based on the flow pa-
rameters as given in Table4.2. The moisture transport in the cracked domain is modelled by specifying
different diffusivity of the Voronoi elements lying in the crack as given by:

𝐷 (𝜃) = (∑𝑤 𝑙 )𝜉𝑝 (1 − 𝑚)12𝜇𝐴𝑚 √𝜃[1 − (1 − 𝜃 / ) ] 𝜃 / (𝜃 / − 1) (4.8)
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Figure 4.7: Horizontal moisture distribution considering crack as a porous phase in mortar

The results of the numerical analysis for a total time period of 60 minutes is given in Figure4.7. The
left hand side figure shows the horizontal moisture distribution and the right hand side figure magnifies
a part of the left hand side figure to better observe the moisture distribution in the vicinity of the crack.
It can be seen that the effect of crack is successfully simulated in the numerical model. Voronoi nodes
lying in the crack are at a completely saturated state and the saturation level of the nodes keep on
decreasing with increasing distance from the crack. The penetration depth of the water around the
crack for the different time stages obtained in the experiment and numerical model are closer for the
later time stages than for the initial time stages. Also, the horizontal moisture distribution curves for
the different time stages are not of the same shape in the numerical and the experimental model.
These differences in the results is because, in the numerical model, the concrete is considered as a
homogeneous material and the crack is considered to be planar with uniform crack width over the crack
depth. In the experiment, aggregates are present in the material and the crack that is generated is not
completely planar. Because of these approximations, the results in the numerical model show some
deviations from the experimental results.

Approach 2
There is no need to discretize the crack in the numerical model as the crack is planar and the crack
width is not changing with the crack depth. The modified Lucas-Washburn equation can be directly
used in this case to get the equilibrium height:

(2𝛽𝑟 + 𝑧
𝑟𝛽
2 + 𝑟

8𝜇

)�̇� = 𝑝 (1 − 𝛽 ) − 𝜌𝑔𝑧𝑠𝑖𝑛(𝜙) (4.9)

Taking the crack width as 0.3719mm, the Lucas-Washburn equation gives the capillary equilibrium
height of 51mm. As the equilibrium height is more than the crack depth, the crack is completely filled
with water and the entire crack surfaces act as additional boundaries which are completely saturated
as shown in Figure4.8. The moisture starts spreading into the adjoining matrix from these submerged
boundaries.
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Figure 4.8: Capillary rise in the crack

The results of the analysis, for a total time period of 60 minutes, considering the capillary suction in
the crack are presented in Figure4.9. It can be seen that the results are similar to the ones obtained
when the crack is considered as a porous phase. The crack is completely saturated and the saturation
level of the nodes decreases with increase of distance from the crack. The penetration of the water
into the surrounding cement matrix around the crack is more for the case when capillary suction is
considered compared to when the crack was considered as a porous phase of mortar. The reason
behind this is that the process of capillary suction in the crack is very fast and the crack gets imme-
diately filled up with moisture. The moisture starts penetrating the surrounding cement immediately
after the crack gets filled up. When the crack is considered as a porous phase of mortar, the crack
takes comparatively more time to completely saturate and as a result, the water penetration into the
surrounding matrix starts at a later time stage. As a result of this, the penetration depth considering
crack as another porous phase is less for the same time stage as the one when capillary suction is
considered in the crack.
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Figure 4.9: Analysis results considering capillary suction in the crack

4.3. Vertical Moisture Distribution in a Crack
In this section, vertical moisture distribution in a wedge crack is observed. The experiment is described
entailing the procedure followed to get the cracked specimen and the results of moisture transport in
the cracked domain. A numerical model is presented which will be used to simulate moisture in the
cracked domain as given in the experiment. Instead of using a natural crack in the numerical model, a
triangle shaped crack is used with decreasing crack width with increasing crack depth. The results of
the numerical model obtained through the two approaches to simulate moisture transport in crack are
compared with the experimental results.

4.3.1. Experiment
The experiment conducted in [55] is used as a reference to model vertical moisture distribution in the
crack. Prismatic specimens of dimensions 100 × 100 × 300 𝑚𝑚 were cast with 6 steel bars of 8 𝑚𝑚
diameter acting as reinforcements as shown in Figure4.10. A water-cement ratio of 0.6 and concrete
mix-proportion of 1:3.3:0.6 (cement:sand:water) by volume was used. After curing for 14 days, the
prisms were sliced along the long axis and smaller samples of size 25×100×300 𝑚𝑚 were obtained
as shown in Figure4.11. These smaller samples were subjected to three-point bending under controlled
conditions to induce a single crack in themiddle with maximum crack width of 0.35 𝑚𝑚. From the centre
part of all the cracked specimens, slices of width 100 𝑚𝑚 were cut as shown in Figure4.11 to obtain
the samples of dimension 25 × 100 × 100 𝑚𝑚 where the induced crack is situated at the centre of
these slices. At the age of 28 days, these slices were dried for 4 days in a ventilated oven at 50∘𝐶 till
constant weight was achieved.

Figure 4.10: Positions of the steel reinforcements in the prismatic specimens and cutting lines [55]
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Figure 4.11: Formation of a centre crack under three point bending (left) and detached centre part in
contact with water for observation of water penetration (right) [55]

All the surfaces of the sample except for the one where the crack occurs, were sealed with self-
adhesive aluminium foils to impose unidirectional movement of moisture in the specimen. This speci-
men was then placed in a container and positioned according to the neutron beams. After taking the
first image of the dry sample using the neutron beam, the container is filled with water so that it just
touches the bottom surface of the block as shown in Figure4.11. Water starts penetrating into the crack
and the surrounding porous material and the water distribution is monitored through the neutron images
taken at different time intervals. As already mentioned in the case of uncracked concrete, the diffusivity
of the sound mortar is taken as 𝐷 = 1.54676 × 10 𝑚𝑚 /𝑠 which is obtained using the relationship
between the capillary coefficient and sorptivity [56].
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Figure 4.12: Neutron images of water penetration into cracked (crack width of 0.35mm) steel
reinforced mortar (centre column) during contact with water for upto 60min, and the corresponding
quantitative water profiles along a vertical axis of the sample (left) and along a horizontal axis within

the rectangular area marked in the image (right) [55]

Moisture distribution in the cracked sample for time intervals of 1 , 5 , 30 , 60 minutes are shown in
Figure4.12. The left hand side figures shows the vertical moisture distribution in the crack and the right
hand side figures show the horizontal moisture distribution in the crack. The effect of reinforcement on
the moisture distribution can also be seen clearly. At the place where the concrete is bonded to the
reinforcement, the density of the cement particles is less as compared to that in the cement matrix. As
a result, the permeability of the region around the aggregates is increased as the porosity is higher and
consequently, there is higher moisture content in these regions as compared to the rest of the concrete.
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Although, the experiment included reinforcements in the concrete sample, the moisture distribution in
the numerical model is simulated in a domain without the steel reinforcements and the moisture profiles
are only qualitatively compared to the ones as presented in Figure4.12.

4.3.2. Numerical Analysis
The cracked specimen used in the experiment was formed through three point bending and because
of that the crack width is maximum at the bottom and decreases towards the top. In the numerical
model, a triangular crack is implemented in the discretized domain so as to reproduce the nature of the
crack used in the experiment as shown in Figure4.13b. The bottom surface is submerged in water and
the rest of the faces are considered sealed through which no flow occurs. The domain of dimensions
90 × 1.6 × 30 𝑚𝑚 is generated with the maximum crack width of 0.35 𝑚𝑚 at the bottom and linearly
decreasing till the crack depth of 75 𝑚𝑚. The crack is generated using the Delaunay elements and
the moisture transport in the crack and the surrounding elements is simulated through the Voronoi
elements. The mesh properties of the discretized domain are given in Table4.3 and the flow parameters
used in the numerical model to simulate moisture transport are given in Table4.4.
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Figure 4.13: Cracked domain used in the numerical model

Table 4.3: Mesh Properties

Parameter Value
Number of nodes 43536
Number of elements 62214
Average element size 0.4039 𝑚𝑚
Max. crack width 0.35 𝑚𝑚
Crack depth 75 𝑚𝑚

Table 4.4: Flow Parameters

Parameter Symbol Value
Diffusivity of dry concrete 𝐷 1.547 × 10 𝑚𝑚 /𝑠
Empirical constant 𝑛 6
Initial saturation 𝜃 0
Porosity 𝑝 0.0462
Time step Δ t 6𝑠

Numerical analysis considering crack as a porous phase in mortar
In the case when the crack is considered as a porous phase in mortar, the diffusivity of the Voronoi
elements lying in the crack is defined in the same way as was done for the case of planar crack using
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the equation:

𝐷 (𝜃) = (∑𝑤 𝑙 )𝜉𝑝 (1 − 𝑚)12𝜇𝐴𝑚 √𝜃[1 − (1 − 𝜃 / ) ] 𝜃 / (𝜃 / − 1) (4.10)

The difference with the planar crack is that in this case, the crack width is not uniform for the given
crack depth but varying linearly with it. As the diffusivity of the cracked elements depend on the cube of
the crack width, the diffusivity of the elements will decrease with increase of crack-depth (as the crack-
width decreases with the crack-depth). The moisture transport in the uncracked concrete is based on
the flow parameters as given in Table4.4.
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Figure 4.14: Vertical moisture distribution in the crack considering crack as a porous phase in mortar

The results of the numerical analysis for the time stages of 1 , 5 , 30 and 60 minutes are shown in
Figure4.14. It can be seen that the shape of the water front around the crack for later time stages of
30 and 60 minutes is similar to that obtained in the experiment but the shape of the water front around
the crack for initial time stages of 1 and 5 minutes is different as the crack seems to be completely
filled up in the experiment as contrary to the numerical results. The diffusivity of the cracked elements
play a role in this. The diffusivity of the cracked elements is defined through the cubic law as given in
eq(4.10). For the initial time stages, when the crack is not completely saturated, the diffusivity of the
cracked elements depend on the crack width. As seen in Figure4.14a and Figure4.14b, the shape of
moisture profiles for 1 and 5minutes is such that the water front is wider at the bottom of the crack and it
becomes narrower with increase of crack depth. This is due to higher diffusivity of the cracked elements
(which depend on the cube of crack width) at the bottom than at the top. For the later time stages, the
crack becomes completely saturated. At this point, the Voronoi elements lying in the crack have both
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nodes which are completely saturated and because of this, there is no change in the saturation level
within a cracked element. According to the cubic law, the diffusivity of the cracked elements depend
on the gradient of the capillary pressure with respect to the saturation level given as:

𝐷 (𝜃) = −𝐾 (𝜃)𝑑𝑝𝑑𝜃 (4.11)

where, 𝐾 is the permeability of the crack and 𝑝 is the capillary pressure. As the moisture content
remains constant in an element when it is completely saturated, the gradient of the capillary pressure
with respect to the saturation level becomes zero and due to this, the diffusivity of the cracked element
also becomes zero and the element remains in a completely saturated state for the rest of the flow.
That is why the effect of the crack width on the diffusivity of the cracked elements is not observed for
the later time stages as the crack is already completely saturated.

Also, it can be seen in Figure4.14, that for all time stages, there are nodes within the crack that
seem to be in a completely unsaturated state (Voronoi nodes in red representing unsaturated state can
be seen to lie in the crack). The saturation level of the nodes alternated between being completely
saturated and being unsaturated. Ideally, all the nodes in the crack should always be in completely
saturated state once the crack is filled up completely with moisture. But that does not appear to hap-
pen in the numerical model. The reason behind this is the approximation considered in defining the
diffusivity of the cracked elements. As the uniform mean diffusivity is considered instead of the actual
diffusivity and the transport equation is solved using an explicit time stepping technique, the mass and
momentum balance of the transport equation does not hold for each time step and as a result the flow
equilibrium is disrupted and moisture can accumulate in certain nodes and make other nodes com-
pletely unsaturated. This can be solved if an implicit time stepping technique is used with the actual
variation of the diffusivity of the cracked elements instead of the uniform mean diffusivity. But the diffu-
sivity in the cracked elements reach a considerably high magnitude and if the actual diffusivity is used
coupled with an implicit time stepping procedure, the number of iterations required to attain equilibrium
even for one time step is really high which considerably increases the computation time of the solver.

Numerical analysis considering crack and moisture surface interactions
The crack considered in this case does not has a uniform crack-width along it’s depth but it is varying
linearly. For this case, the capillary suction in the crack is modelled using the discretized form of the
modified Lucas-Washburn equation:

2
Δ𝑡𝑧 +( 2Δ𝑡𝑘 𝑘 −

2
Δ𝑡𝑧 −

𝑘 𝑘 − 𝑘 𝑘 𝑧
𝑘 𝑘 + 𝑧 +𝑘 𝑘 )𝑧 −( 2Δ𝑡𝑘 𝑘 𝑧 +

𝑘 𝑘 (𝑘 𝑘 − 𝑘 𝑘 𝑧 )
𝑘 𝑘 + 𝑧 +𝑘 𝑘 ) = 0

(4.12)
where

𝑘 = 2𝛽
𝑟

𝑘 = 𝑟𝛽
2 + 𝑟

8𝜇
𝑘 = 𝑝 (1 − 𝛽 )
𝑘 = 𝜌𝑔𝑠𝑖𝑛(𝜙)

The crack is divided into a number of discrete elements and the crack width for each discrete element
is considered to be constant. In this case, a triangular crack is considered and due to capillary suction
in the crack, it becomes completely saturated and this whole process takes less than 10 seconds. As
a result, by the time the moisture starts spreading into the surrounding concrete, the crack is already
completely saturated and the crack faces act as additional submerged boundaries.
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Figure 4.15: Capillary rise in the crack

Figure4.15 shows the rise of the capillary in the crack with respect to time. In case of the triangular
crack, an equilibrium height is not attained where the capillary rise stops, but instead the capillary keeps
on rising. The reason is that, the capillary rise attains an equilibrium when the interfacial forces are
balanced by the inertial forces of the liquid but as the width of the capillary reduces, the interfacial
forces also increases which further causes the rise in the capillary. When the capillary rise reaches the
tip of the crack, the crack width is zero and when this is modelled through the discretized equation, the
capillary keeps on rising to infinity. But as the crack has a depth of 75 𝑚𝑚, the crack gets completely
filled up and the crack faces act as additional submerged boundaries.
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Figure 4.16: Vertical moisture distribution in the crack considering crack and moisture surface
interactions

The results of the numerical analysis for the time stages of 1 , 5 , 30 and 60 minutes are shown
in Figure4.16. It can be seen that the moisture profile around the crack even for initial time stages
of 1 and 5 minutes is similar to the one obtained in the experiment. For the later time stages of 30
and 60 minutes, the moisture profile is similar to the one obtained in the numerical model when the
crack was considered as a porous phase and also in the experiment. Although the penetration of the
moisture in the surrounding concrete is more for the case when capillary suction is considered as the
crack is already completely saturated when the flow in the adjoining matrix starts. This method gives a
better qualitative conformation with the experimental results. Also, as the flow in the crack is modelled
separately using the discrete capillary elements, all the nodes in the crack are saturated as opposed
to what was obtained when the crack was considered as a porous phase. In this particular approach,
the explicit time stepping technique does not make any difference in the moisture transport occurring
in the crack.
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4.4. Results and Conclusions
In this section, firstly a comparison of the Delaunay and the Voronoi discretization is done. The differ-
ence in the modelling approach when the transport elements are modelled on the Delaunay and on the
Voronoi elements is discussed. This is followed by a moisture transport simulation in a crack when the
crack depth is greater than the equilibrium rise height of the capillary. A combined model, implementing
the capillary suction in the crack and also treating it as a porous phase in mortar, is used to simulate
the moisture transport. In the end, a discussion of the results is presented and the two approaches to
model the moisture distribution in the crack are compared.

4.4.1. Comparison of Voronoi and Delaunay discretization
The structural properties of the concrete domain were modelled on the Delaunay elements and the
transport properties of the domain were modelled on the Voronoi elements. When the moisture trans-
port has to be modelled in uncracked concrete, the Delaunay elements can also serve to model the
transport behaviour of the domain. The purpose of using the dual mesh is not highlighted in the un-
cracked concrete. But when the concrete cracks, the role of the dual mesh comes into play.
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Figure 4.17: Delaunay elements used to model the transport behaviour of the cracked domain

Firstly, the case is considered when both the structural and the transport properties are modelled
on the Delaunay elements as shown in Figure4.17. The cross-section of the Delaunay elements crack
once the elements reach their tensile limit under the applied load. In the figure, the cracked Delaunay
elements are numbered from 1-9. It can be seen that the direction of propagation of crack is perpen-
dicular to the orientation of the Delaunay elements and crack width is along the direction of Delaunay
elements. There is a change in transport properties of the cracked Delaunay elements at the location
of the crack. The saturation level in an element will suddenly rise at the location of the crack. The
transport properties of the cracked Delaunay elements do not remain uniform throughout the length of
the element but changes at the crack location.

The change in the transport properties of the Delaunay elements can be included in the numerical
model by incorporating discontinuities in the shape functions of the saturation level of the cracked ele-
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ments. Discontinuities can be included at the position of the crack and the sudden rise of the saturation
level within an element, at the position of the crack, can be modelled through that. Such a numerical
model is presented in [2] where embedded discontinuities are incorporated in the lattice elements to
model the diffusion of chloride ions. Incorporating the discontinuities for the cracked elements can
increase the complexity to construct a numerical model to simulate moisture transport in cracked con-
crete. This can be circumvented by using the dual mesh in which the transport behaviour is modelled
on the Voronoi elements rather than on the Delaunay elements.
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Voronoi element

Cracked Delaunay

element

Figure 4.18: Voronoi elements used to model the transport behaviour of the cracked domain

It can be seen in Figure4.18 that when the Delaunay elements are cracked, the direction of prop-
agation of the crack is along the direction of orientation of the Voronoi elements and the crack width
is aligned perpendicular to the Voronoi elements. The transport properties of a Voronoi element is
determined by the Delaunay element it passes through. For the Voronoi elements passing through un-
cracked Delaunay elements, the transport properties represent the transport of the uncracked part of
the domain. The transport in the cracked part of the domain is simulated through the Voronoi elements
passing through the cracked Delaunay elements, marked from a-h in the figure. These Voronoi ele-
ments lie completely in the cracked part of the domain and there is no sudden change in the saturation
level within the element. Unlike the Delaunay elements, each Voronoi element either represents the
cracked or the uncracked part but never both. As a result, the discontinuities need not be modelled in
this case. There can be an accumulation of moisture at the nodes which form a part of both the cracked
and the uncracked Voronoi elements (nodes a-h in Figure4.18), but due to the mass and momentum
balance of the transport equations, these nodes never exceed the fully saturated condition and rest of
the moisture is transferred to the adjoining Voronoi nodes lying in the uncracked part of the domain.

An important thing to note is that to discretize a particular domain, the number of Delaunay elements
required are less as compared to the number of Voronoi elements required to discretize the same
domain. This reduces the computation time of the simulations in case the transport is simulated on the
Delaunay elements in case the concrete is uncracked. In the uncracked state, there is no difference
in the way transport is modelled using the Delaunay or the Voronoi elements and as a result Delaunay
elements are preferred to model moisture transport in uncracked concrete. But in the cracked state, as
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mentioned above, using the dual mesh and modelling the Delaunay elements as structural elements
and Voronoi elements as transport elements account for a better modelling approach.

4.4.2. Crack-width Analysis
In the previous section, moisture transport in a triangle shaped crack was simulated but the crack
width was small enough for the entire crack to get saturated when moisture-surface interactions were
considered. But there can be a case when the crack width is large enough so that the entire crack do
not get saturated and the crack depth is more than the equilibrium height of the capillary suction. In
such a case capillary rise will be only limited to a fraction of the crack depth and rest of the crack surface
cannot be considered as an additional submerged boundary. The moisture transport in the remaining
part of the crack is simulated by considering it a porous phase in mortar and the diffusivity is obtained
through the cubic law.
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Figure 4.19: Schematic of the sample and the crack

The crack geometry as shown in Figure4.19a is used to simulate moisture transport. The crack
width is decreasing from 1 𝑚𝑚 till 0.2 𝑚𝑚 over the crack depth giving it a trapezoidal shape. The rest
of the mesh properties and the flow parameters are the same as given in Table4.3 and Table4.4 used
for the case of vertical moisture distribution in Section4.3. The crack is divided into discrete elements
and discretized form of the Lucas-Washburn equation gives the equilibrium height of the capillary rise
as 26 𝑚𝑚 as shown in Figure4.19b. The crack surfaces only till a depth of 26 𝑚𝑚 will be completely
submerged under capillary suction and act as additional submerged boundaries. The transport of
moisture in the crack from 26 − 75 𝑚𝑚 depth will be considering the crack as a porous phase and the
diffusivity will be defined through the cubic law.
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Figure 4.20: Horizontal moisture distribution in the crack
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Figure 4.21: Vertical moisture distribution in the crack when the crack depth is more than equilibrium
rise height of the capillary
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The horizontal and the vertical moisture distribution of the crack is shown in Figure4.20 and Fig-
ure4.21 respectively. The crack is only partially saturated due to capillary suction and its effect is shown
in the vertical moisture distribution for the initial time stages of 1 and 5minutes (Figure4.21a,Figure4.21b).
Till the crack depth of 26 𝑚𝑚, the water penetration into the surrounding matrix is uniform but for the
depth between 26− 75 𝑚𝑚, the water penetration is more where the crack width is more and reduces
as the crack width decreases, showing the dependence of the diffusivity of the crack on the crack width.
Once the crack becomes saturated, the penetration of water from the crack to the adjoining matrix is
uniform. The horizontal moisture distribution and the vertical moisture distribution for the later time
stages is similar to the ones obtained in the numerical models used to simulate the experiments.

4.4.3. Conclusions
When the crack is considered as a porous phase in mortar in the numerical model, the horizontal
moisture distribution around the crack conforms well with the experimental results. The penetration
depth of the moisture and the shape of the moisture distribution curves are close to the experimental
observations although not exactly similar which is due to the homogeneous material and uniform crack
depth assumed in the numerical model. Nevertheless, when the crack is considered as a porous phase,
the vertical moisture distribution around the crack is similar to the experimental results for later time
stages but different for the initial time stages. This is due to the diffusivity of the cracked elements which
is dependent on the crack width. Also, in this case, it takes comparatively more time for the crack to
get completely saturated than in the case of capillary suction.

When themoisture-surface interactions are considered, the horizontal moisture distribution is similar
to the case when crack is considered as a porous phase. The penetration depth of water is more at
any particular time stage because the crack immediately fills up and subsequently starts dispersing
water to the adjacent cement matrix. The vertical moisture distribution shows good agreement with the
experimental results for both the initial and the later time stages as the crack is completely saturated
as observed in the experiment.

Including the capillary suction in the crack gives better results for the vertical moisture distribution
during the initial stages of the flow. There is no significant difference in the horizontal moisture distri-
bution especially in the later stages. Also, the approximation of the uniform mean diffusivity coupled
with explicit time stepping technique, in case the crack is a porous phase in mortar, causes some of
the nodes lying in the crack to be in an unsaturated state which is not representative of the physical
condition of the crack. But when the capillary suction is considered in the crack and in the case when
the crack depth is less than the equilibrium rise height, all the nodes in the crack are at a constant state
of complete saturation.





5
Moisture Transport in Heterogeneous

Concrete
Until now, the moisture transport in homogeneous concrete was observed but in reality, the concrete
microstructure is highly heterogeneous and it needs to be analyzed as a multi-scale composite material
where the transport in the microstructure is realistically simulated. The presence of aggregates in
concrete affects the moisture distribution in the material. Concrete acts as a three-phase material
composed of cement matrix, aggregates and the interfacial transition zone (ITZ) with different transport
properties of each phase as shown in Figure5.1. In most cases, the coarse aggregates are considered
to be virtually impermeable and no transport of moisture occurs through them. The transport of moisture
through the cement matrix under capillary absorption is already studied in the previous chapters. The
packing of the cement particles is not as dense at the aggregate boundaries as in the cement matrix
and as a result, the permeability of the region around the aggregates is higher than in the cement matrix
[26]. This increases the porosity of the region surrounding the aggregates higher than in the cement
matrix. This causes the acceleration of flow in the ITZ and to simulate this in the numerical model, ITZ
is assigned higher diffusivity than the cement matrix.

Figure 5.1: Mesoscale structure of concrete [48]

5.1. Model Discretization
In order to simulate the effect of aggregates on the transport of moisture, the aggregates have to be
included in the discretized mesh. In the present numerical model, for a given volumetric fraction of the
domain, the aggregates are generated according to Fuller’s distribution [19]. All Voronoi elements in the
domain are categorized to either represent the cement matrix, aggregates or the ITZ. The aggregate
boundaries along with their interface zone are defined in the discretized domain and the transport
properties of Voronoi elements lying in a particular phase are assigned accordingly.

79
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5.1.1. Generation of Aggregates
To evaluate the transport behaviour of heterogeneous concrete at meso-scale, random aggregates
have to be generated in which the size and distribution of aggregates resemble real concrete. For the
sake of simplicity, the aggregates that are generated are spherical in shape with different diameters.
Aggregate generation code as developed by [40], is used to generate spherical aggregates in this re-
search. The generation of the random aggregates and their placement must satisfy the basic statistical
characteristics of the real material. The main principle behind the generation and placement process
is that samples of aggregate particles are chosen from a source which contains aggregates of differ-
ent sizes following a certain grading curve and the chosen aggregates are placed one by one in the
domain such that there is no overlap with the already placed particles [52]. This process is commonly
known as take and place method and the Fuller’s curve is used for grading the particles according
to their size. Coarse aggregates are considered particles greater than 4.75 mm in diameter and they
represent around 40-50 percent of the concrete volume [52]. Considering spherical shape, the coarse
aggregates are generated using take and place method and their size distribution follows the Fuller’s
curve. Figure5.2 shows the generation of aggregates for a total aggregate volume fraction of 5 percent
and 20 percent respectively using the take and place method.

(a) 5 percent volume of aggregates (b) 20 percent volume of aggregates

Figure 5.2: Randomly generated aggregates

5.1.2. Projecting Aggregates on Voronoi Elements
Once the size and position of the aggregates is determined, they have to be included in the discretized
domain. The boundary of the aggregates is projected on Voronoi elements in such a way that the
Voronoi elements lie along the direction of the boundary of the aggregates. The procedure adopted
to project a single spherical aggregate is shown in Figure5.3. For any given spherical aggregate, two
concentric spheres are constructed, one with a smaller radius (inner sphere) and the other with a larger
radius (outer sphere) than that of the spherical aggregate as shown in Figure5.3a. The outer sphere
is constructed with a radius obtained by adding the radius of the spherical aggregate and half of the
mean length of all the Voronoi elements lying in the domain. Similarly, the inner sphere is constructed
with a radius obtained by subtracting half of the mean length of all the Voronoi elements from the radius
of the spherical aggregate.
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Figure 5.3: Projection of spherical aggregates on Voronoi elements

After generating the two spheres, Voronoi elements are projected on the spherical aggregate. All
Voronoi elements having both of their nodes inside the inner sphere or one node inside the inner
sphere and the other node outside the inner sphere, constitute the body of the aggregate (shown
with blue colour in Figure5.3b). All Voronoi elements having both of their nodes outside the inner
sphere and inside the outer sphere constitute the boundary elements of the aggregate (shown with
red colour in Figure5.3b). Thickness between the inner and outer spheres is equal to the mean length
of the Voronoi elements so that, as far as possible, the boundary layer does not contain more than
one Voronoi element in the radial direction. This process is carried out for all the aggregates and in
this way the spherical aggregates are projected on the Voronoi elements and become a part of the
discretized domain. Figure5.4 shows spherical aggregates as projected on the Voronoi elements for
a volume fraction of 5 and 20 percent respectively. It can be seen in the figure that, as the domain
is not continuous but discretized through one dimension lattice elements, the spherical shape of the
aggregates is not retained when they are projected on the Voronoi elements. Nevertheless, mapping
aggregates on Voronoi elements in such a way causes the Voronoi elements lying at the boundary to
realistically simulate the physical phenomenon of increased transport along the aggregate boundary.

(a) 5 percent volume of aggregates (b) 20 percent volume of aggregates

Figure 5.4: Randomly generated aggregates
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5.1.3. Assigning Transport Properties to Voronoi Elements
Once the spherical aggregates are generated in the domain and projected on the Voronoi elements,
the transport properties of Voronoi elements have to be assigned according to the phase of concrete
they represent. The Voronoi elements that lie completely within the aggregate boundary are assigned
zero diffusivity as the aggregates are considered impermeable. The Voronoi elements lying within the
cement paste are assigned the initial diffusivity of dry cement (𝐷 ). The Voronoi elements that form the
boundary of the aggregates and represent the ITZ are assigned 10 times the diffusivity of the cement
paste i.e. 10𝐷 . This is because the density of cement paste is lower at the boundary surface than in
the matrix due to wall effect [26] and the permeability of the region around the aggregates increases.

The thickness of the ITZ is considered to be 20𝜇𝑚 in the numerical model [19] which means that
the ITZ forms a region of 20𝜇𝑚 around the aggregate boundary where the diffusivity is enhanced as
shown in Figure5.5a. The Voronoi elements that form the boundary of the aggregates and represent
the ITZ are so large that their cross sectional area extend beyond the thickness of the ITZ as shown in
Figure5.5b. When such Voronoi elements are assigned higher diffusivity of the ITZ, the effect of higher
diffusivity extend well beyond the thickness of the ITZ in the numerical model whereas in reality, the
enhanced diffusivity should only be limited to the ITZ. This can cause a net acceleration of the transport
around the aggregates which can be more than what is observed experimentally. The mesh has to be
extremely refined so that the Voronoi elements that lie on the boundary of the aggregates are small
enough to have cross sectional area that does not extend beyond the thickness of the ITZ. Having a
refined mesh to such an extent will increase the computational cost drastically.
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Figure 5.5: Transport properties of boundary Voronoi elements

Instead, the Voronoi elements lying on the boundary of the aggregates are manually assigned the
cross sectional area. The thickness of ITZ is known but the width of the Voronoi element over which
the ITZ effect acts is still unknown. This is given by the triangular cross section of the Voronoi ele-
ments. By knowing the orientation of the boundary Voronoi element, the part of the cross section lying
outside the aggregate can be used to give the width over which ITZ effect will act. But all the boundary
Voronoi elements are oriented differently with different cross sections and to find the affected width
of the boundary elements can become complex. Instead, the approach adopted in this research is
that, for every Voronoi element lying on the boundary, an equivalent circular cross section is formed
which has the same area as the original cross section of the Voronoi element as shown in Figure5.5c.
The diameter of this circular cross section is considered to be the width over which ITZ effect acts.
Using the thickness of ITZ and the diameter of the equivalent circular cross section, the modified rect-
angular cross section of the boundary Voronoi element can be formed as shown in Figure5.5d. This
reduced rectangular cross section acts over the entire length of the boundary Voronoi element which
gives the reduced volume of the element as shown in Figure5.5e. In this way, the mesh only has to be
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refined enough so that the shape of the aggregates is projected without significant error and the affect
of higher diffusivity of the Voronoi elements lying on the boundary of the aggregates is limited to the
physical thickness of the ITZ.

5.1.4. Properties of Numerical Solver
Now that the aggregates are included in the discretized domain and the corresponding transport prop-
erties are assigned to the Voronoi elements, the numerical solver used to solve the discretized equation
has to be set up. In case of uncracked concrete, the model using approximate volume, explicit time
stepping scheme and uniform mean diffusivity was able to accurately simulate the moisture transport in
concrete. When aggregates are included in concrete, the transport properties of the domain are not ho-
mogeneous and a numerical model using exact volume, implicit time stepping scheme and exponential
variation of diffusivity is used as shown in Figure5.6.

voronoi element

delaunay element

volume

contribution

(a) Exact volume

D2

D1

0 L

(b) Exponential variation of diffusivity

Figure 5.6: Properties of the numerical solver

The Voronoi elements lying on the boundary of the aggregates, representing the ITZ, have higher
diffusivity as compared to the elements lying in the cement matrix. The Voronoi elements lying within
the aggregates have zero diffusivity as the aggregates are considered impermeable. A numerical
solver using uniform mean diffusivity and explicit time stepping scheme won’t be able to maintain the
equilibrium of flow as the properties are varying and the flow is irregular in the domain. Using implicit
time stepping scheme and exponential variation of diffusivity (Figure5.6b) will ensure that the mass
and momentum balance of the flow is maintained at each time step regardless of the highly variable
transport properties of the Voronoi elements.

The Voronoi elements lying on the boundary of the aggregates are assigned a much smaller cross-
sectional area than their actual geometric cross sectional area. This drastically changes the volumetric
capacity of these Voronoi elements which affects the volumetric capacity matrix 𝐌 in the discretized
equation. Using the approximate volume of the Voronoi elements can cause an inaccurate prediction
of the volumetric capacity of the Voronoi elements lying on the boundary and the adjacent Voronoi
elements lying in the cement matrix. To avoid this, the exact volume of the Voronoi elements is consid-
ered as shown in Figure5.6a. Hence, a numerical solver using the exact volume, implicit time stepping
scheme and exponential variation of diffusivity is set up to simulate moisture transport in heterogeneous
concrete.
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5.2. Numerical Analysis of Moisture Transport in Heterogeneous
Concrete

Till now, the aggregates are included in the discretized domain and Voronoi elements are assigned
transport properties according to the phase of concrete they represent. A numerical model based on
the exact volume of the Voronoi elements, implicit time stepping technique and exponential variation of
diffusivity will be used to simulate moisture transport in the three phase composite. In this section, firstly
the experiment in [19] is described which will be used to set up the numerical model followed by the
results obtained by the numerical model and subsequent comparison of the numerical and experimental
results.

5.2.1. Experiment
The experiment used in [19] is used as a reference to simulate moisture transport in heterogeneous
concrete in the numerical model. The mortar mixture is made with Ordinary Portland cement (OPC,
Grade P.O 42.5) with water-cement ratio of 0.45 and sand-cement ratio of 2. The density of the mortar
is 2200 𝑘𝑔/𝑚 and that of the coarse aggregates is 2630 𝑘𝑔/𝑚 . The coarse aggregates are of
spheroidal shape with diameter ranging from 𝐷 = 5𝑚𝑚 to 𝐷 = 40𝑚𝑚. The aggregates are
graded based on their size according to Fuller’s curve. The concrete specimens used are of frustum-
shaped, with base diameter of 185 𝑚𝑚, top diameter of 175 𝑚𝑚 and height of 150 𝑚𝑚 as shown in
Figure5.7.

Figure 5.7: Specimen used in the experiment[19]

Sorptivity test is conducted on the specimens with different aggregate volume fraction of 0, 0.3, 0.4
and 0.5. In the experiment, concrete samples are also subjected to different hydrostatic pressures but
only the results without considering the hydrostatic pressure and only the capillary absorption are used
as a reference to simulate moisture transport in the numerical model. The experiment is conducted on a
permeability test set-up using pure water. Uniform initial moisture content in the specimens is obtained
by drying in an air oven at 105∘𝐶 until they reach constant weight. The sides of the specimen are
sealed and the bottom surface is submerged in water as shown in Figure5.7. To reflect the dynamic
movement of water in concrete, cumulative volume of water penetration per unit area of the inflow
surface is calculated at different time stages.

5.2.2. Numerical Analysis
Four discretized cubic domains of 150 × 150 × 150 𝑚𝑚 are generated with volume fraction of ag-
gregates as 0, 0.3, 0.4 and 0.5 respectively. As there is a considerable difference of the transport
properties across the different phases of concrete, to maintain flow equilibrium, numerical analysis is
performed on the discretized domain using exact volumetric capacity, implicit time stepping scheme
and exponential variation of diffusivity over the element length. The mesh properties and the flow pa-
rameters as given in Table(5.1) and Table(5.2) respectively are used to simulate moisture transport in
the four discretized domains.
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Figure 5.8: Schematic of the flow conditions in the heterogeneous domain

Table 5.1: Mesh Properties

Parameter Value

Number of nodes 50229
Number of elements 93960
Average element
length 3.299 𝑚𝑚
Maximum aggregate
diameter 40 𝑚𝑚
Minimum aggregate
diameter 5 𝑚𝑚

Table 5.2: Flow Parameters

Parameter Symbol Value

Diffusivity of dry
concrete [19] 𝐷 3.85 × 10 𝑚𝑚 /𝑠
Empirical constant 𝑛 6
Initial saturation 𝜃 0
Time step Δ𝑡 60𝑠
Diffusivity of ITZ 𝐷 3.85 × 10 𝑚𝑚 /𝑠
Diffusivity of
aggregate 𝐷 0

Table 5.3: Volume Specification of Aggregates

Volume
fraction of
aggregates

Number of
aggregates

Spherical aggregates Voronoi aggregates
Aggregate
volume

(10 𝑚𝑚 )

ITZ volume
(10 𝑚𝑚 )

Aggregate
volume

(10 𝑚𝑚 )

ITZ volume
(10 𝑚𝑚 )

0 0 0 0 0 0
0.3 143 1.018 4.584 1.025 3.852
0.4 454 1.354 7.196 1.342 5.854
0.5 1252 1.686 11.465 1.611 8.809
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(a) Experimental Results
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(b) Numerical Results
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Figure 5.9: Variation of cumulative saturation with square root of time in concrete samples for a duration of 420
minutes

The results show the variation of cumulative saturation level with square root of time. At each time
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stage, the saturation level of all the nodes is multiplied by the respective volume of the corresponding
nodes which gives the saturated volume of each node. The saturated volumes of all the nodes is
added to get the total saturated volume of the domain. The saturated volume of the domain is divided
by the porosity of the material to get absolute volume under saturation of the domain. The absolute
volume is divided by the cross-sectional area of the domain (150 × 150 𝑚𝑚 ) to get the cumulative
saturation level which is presented in the figures. This quantity is also representative of the penetration
depth of moisture in the domain. It can be seen in Figure5.9, that the numerical model is successfully
able to simulate the behaviour of aggregates in concrete. In the numerical model, when the volume
fraction of the aggregates is increased, the cumulative saturation level decreases (Figure5.9b) which
is also observed in the experiment (Figure5.9a). Due to the presence of aggregates, there are two
competing phenomena that affect the transport of moisture in concrete. The aggregates themselves
are considered impervious and there is no diffusion of moisture through them. This slows down the
transport of moisture in the matrix. Due to the presence of aggregates, there are ITZ formed around
the aggregates which accelerates the transport of moisture. It can be seen from the results, that the
effect of impermeability of the aggregates dominates over the ITZ acceleration effect and causes a
net decrease of flow with increase of the volume fraction of the aggregates. In the numerical models
considered here, there is no overlap of the aggregates in the matrix. If the volume fraction of the
aggregates is increased to the extent that there is an overlap of the aggregates, ITZ can connect and
increase the transport of moisture to a greater extent which can cause the ITZ effect to dominate and
reverse the trend.

Although, the numerical model is able to reproduce the influence of aggregates in concrete, still
there are some differences with the experimental results as seen in Figures5.9c-5.9f. The experiment
is performed on a frustum shaped specimen in which the cross sectional area is changing with depth.
In the numerical model, due to numerical constraints, a cubic domain of 150 × 150 × 150 𝑚𝑚 is
considered with a slightly different volume than that of the experimental specimen.

The volume specifications for different aggregate fractions are shown in Table(5.3). It can be seen
that for each volume fraction of aggregates, the total aggregate volume of the spherical aggregates
(column 3) is quite close to the total aggregate volume of the Voronoi aggregates (column 5). This
implies that the number of Voronoi elements that represent the body of the aggregates in the discretized
domain will accurately be able to simulate the nature of the aggregate body in the domain. For each
volume fraction of aggregates, the ITZ volume of the spherical aggregates (column 4) and ITZ volume of
Voronoi aggregates (column 6) are a little different. This difference arises due to themodelling approach
adopted to simulate the flow in the boundary elements. As explained before, the cross section of the
boundary elements is reduced as per ITZ thickness and the width of the cross section is considered as
the diameter of the equivalent circular cross section (Figure5.5). By considering this approximation, the
total volume of ITZ in Voronoi aggregates is different than that of the spherical aggregates. To account
for this difference in the ITZ volume, a correction to the volume of the boundary elements is applied
which is given as:

Δ𝑉 =
𝑉 − 𝑉

𝑁 (5.1)

where,𝑉 is the total ITZ volume of spherical aggregates, 𝑉 is the total ITZ volume of Voronoi
aggregates, 𝑁 is the total number of boundary elements and Δ𝑉 is the ITZ volume correction to be
added to the volume of each boundary element. Subsequently, the cross sectional area of the boundary
elements is also corrected to account for the difference of ITZ volume which is given as:

Δ𝐴 = Δ𝑉
𝐿 (5.2)

where, 𝐴 is the correction in the cross sectional area of a boundary element 𝑖, Δ𝑉 is the ITZ volume
correction and 𝐿 is the length of the boundary element 𝑖. The correction for the cross sectional area is
added to the cross section of the boundary elements. In this way, the corrections for the volume and
cross sectional area accounts for the difference of ITZ volume in the spherical and Voronoi aggregates.
Another way to account for the difference is to calculate the correction factors for each individual ag-
gregate separately and apply the corrections to the Voronoi elements of only that particular aggregate.
Doing this will give an even more accurate behaviour of the boundary elements in simulating the flow.
But the increase in accuracy of this approach is not that significant as the increase in computation time
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and increase of the modelling complexity of the compared to the first approach, because of which, the
corrections using the first approach are considered.

Finally, the experiment only specifies the volume fraction of the aggregates in the different speci-
mens but not the size distribution of the aggregates. The size distribution in the numerical model is
randomly done according to Fuller’s curve and it is not necessary that it might be the same as used in
the experiment. This can change the transport behaviour because if the size distribution is such that
there are more number of aggregates with smaller diameters, the ITZ effect of acceleration of transport
will become more pronounced and cause an increased acceleration of the flow whereas on the other
hand, if the size distribution is such that more number of aggregates with larger diameters are used, the
effect of impermeability of aggregates will become more pronounced and cause the moisture transport
to slow down even further.
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Figure 5.10: The moisture distribution in concrete at 420 minutes.
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Figure5.10 shows the moisture distribution in the discretized domain at 420 minutes. Figure5.10a
shows the moisture distribution in homogeneous concrete. The moisture is evenly distributed in the
submerged part of the domain and the water front forms a plane and progress towards the unsatu-
rated part of the domain. Figures5.10b-Figure5.10d show the moisture distribution in heterogeneous
concrete. The moisture distribution is not uniform and the effect of aggregates is clearly visible as the
Voronoi nodes lying inside the aggregates are in an unsaturated state even if the water front has al-
ready passed over them. The water front is not completely planar and the water penetration is different
in different parts of the domain due to variable magnitude of ITZ acceleration and aggregate imperme-
ability effect in different parts of the domain. The net penetration depth at 420 minutes decreases with
increase of the volume fraction of the aggregates as shown in the figures.
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5.3. Results and Conclusions
Now that the numerical model is able to simulate the experimental results, it can be used to understand
the nature of the flow occurring in heterogeneous concrete. There are two competing phenomena
affecting the transport when aggregates are present in concrete. The ITZ tends to accelerate the mois-
ture transport around the boundary of the aggregates and the aggregates themselves are considered
impervious which slows down the moisture transport. But to what extent these phenomena play a role
in moisture distribution is yet to be addressed which is done in the first subsection by varying the ITZ dif-
fusion coefficient. In the second subsection, the effect of mesh refinement on the moisture penetration
will be observed. In the third subsection, moisture transport is simulated in a combined model which
incorporates a discrete planar crack in heterogeneous concrete. In the last subsection, the conclusions
based on the results of the numerical model will be presented.

5.3.1. Effect of ITZ on Water Penetration Depth
To observe the effect of ITZ onmoisture distribution in heterogeneous concrete, the diffusivity coefficient
of the ITZ is varied and it’s affect on the moisture penetration is observed. The numerical model of
𝑓 = 0.4 (Table(5.3)) is taken as the reference numerical model and all the results are compared
with the reference model. In the reference mesh, the ITZ diffusivity is taken as 10𝐷 . Three other
numerical models are constructed with the same aggregate distribution as in the reference model with
the ITZ diffusivity of 20𝐷 , 5𝐷 and 𝐷 . All the mesh properties and flow parameters are the same
as given in Table(5.1) and Table(5.2) respectively. The numerical model is based on exact volume of
the aggregates, implicit time stepping scheme and exponential variation of diffusivity and the moisture
transport is simulated for a time period of 420 minutes and the results are shown in Figure5.11.
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Figure 5.11: Variation of cumulative saturation with square root of time in concrete samples
(𝑓 = 0.4) for a duration of 420 minutes for different ITZ diffusivity coefficients

The effect of varying the ITZ diffusivity coefficient can be clearly seen in the figure. When the
diffusivity coefficient is increased from 10𝐷 (reference model) to 20𝐷 , the penetration depth increases
at any given time. The ITZ volume around the aggregates accelerate the moisture transport and thus
moisture is able to penetrate more in the concrete body. When the diffusivity coefficient is decreased
to 5𝐷 and 𝐷 , the acceleration of moisture transport around the aggregates is less than that in the
reference model and the penetration depth decreases.

When considering the cumulative saturation of the entire domain, ITZ effect is observed on a global
scale. In order to observe ITZ effect on a local scale, single node in the domain is observed. A node
corresponding to the coordinates of (12.5997, 74.0331, 70.1872) is observed which represents the
cement phase in the domain. For the time period observed, the nodes goes from an unsaturated state
to a saturated state and the nature of this transition for different ITZ diffusivity coefficients is shown in
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Figure5.12.
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Figure 5.12: Variation of cumulative saturation with time in the observed volume

The variation of saturation volume of the nodes with square root of time can be seen in Figure5.12.
The flow observed at the node can be divided into 4 different time intervals. In the initial stage, for a
time interval from 0 to 16 minutes in Figure5.12, the water front has not yet reached the node. The
saturated volume of the node is close to initial saturation for all ITZ diffusivity coefficients although it
is higher for a higher diffusivity (although the difference is small). The next is the transition stage for
a time interval from 16 minutes to 36 minutes as shown in Figure5.12. During this stage, the water
front is just about to reach the node but has not yet reached it. The saturated volume of the node
decreases beyond the initial saturation during this stage. It can be seen from the figure that during
this time interval, the trend for diffusivity reverses and the saturation level increases with the decrease
of ITZ diffusivity coefficient. Following this stage is the saturation stage for a time interval from 36
minutes to 121 minutes as shown in Figure5.12. During this stage, the water front reaches the node
and the saturation of the node increases. By the end of this time interval, the node becomes completely
saturated. It can be observed that again the effect of diffusivity reverses from the previous stage as
the saturation level at any given time is higher for a higher ITZ diffusivity coefficient. The final stage is
the post-saturation stage for a time interval of 121 minutes to 420 minutes. In this stage, the node is
already completely saturated. The saturation level of the nodes decreases to a small extent because
as the water front moves forward, new nodes are saturated which takes the moisture of the already
saturated nodes. In this stage, again a reversal of trend is observed as the saturation level increases
with the decrease of diffusivity. While observing the flow at a local level at a particular node, it is found
that a higher diffusivity coefficient accelerates the process of saturation when the water front reaches a
node but also increases the rate at which saturation level decreases just before the water front reaches
the node and also after the node is completely saturated. Regardless of whether a particular node
receives or transmits moisture, a higher ITZ diffusivity coefficient accelerates the flow in both ways.

5.3.2. Effect of Mesh Refinement
The effect of mesh refinement on moisture penetration is observed in this subsection. To save compu-
tation time, instead of observing the effect of mesh refinement on the domain of 150 × 150 × 150 𝑚𝑚
as presented in the previous section, two new meshes are constructed that represent a domain of
90 × 90 × 90 𝑚𝑚 . The mesh properties are given in Table(5.4). Mesh 1 can be considered to repre-
sent the reference mesh used in the previous section as the average element length of both the meshes
is quite close. Mesh 2 is the finer mesh with more number of elements and less average element length.
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Spherical aggregates are generated which corresponds to a volume fraction of 20 percent of the total
volume of the domain. The total volume of the spherical aggregates and ITZ is shown in Table5.4.
These spherical aggregates are projected on both the meshes and flow is simulated with the same
flow parameters as given in Table5.2. The results of the moisture simulation for homogeneous domain
and heterogeneous domain with 𝑓 = 0.2, for total time of 420 minutes, are presented in Figure5.13.

Table 5.4: Mesh properties

Mesh Number
of
nodes

Number
of ele-
ments

Average
element
length
(mm)

Spherical aggregates Voronoi aggregates
Aggregate
volume

(10 𝑚𝑚 )

ITZ volume
(𝑚𝑚 )

Aggregate
volume

(10 𝑚𝑚 )

ITZ volume
(𝑚𝑚 )

Mesh 1 10330 18482 3.375 1.476 611.376 1.479 400.311
Mesh 2 50021 93544 1.984 1.476 611.376 1.470 497.001
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Figure 5.13: Effect of mesh refinement on moisture transport

It can be seen from the results that for both the homogeneous and heterogeneous case, variation of
cumulative moisture distribution with square root of time is almost the same for both the meshes. The
slight difference of results in case of heterogeneous domain is due to the small difference in aggregate
and ITZ volume as projected on Voronoi elements for both the meshes (Table(5.4), columns 7 and 8).
It should be noted here that although the results seem to be mesh independent but the numerical mod-
elling of aggregates is dependent on the mesh. The procedure adopted to project spherical aggregates
on the discretized domain was explained in Section 5.1. The procedure involved making two virtual
spheres (inner and outer spheres) concentric to the spherical aggregate to determine the boundary of
the aggregates in the discretized domain as shown in Figure5.14.
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Figure 5.14: Virtual spheres around a spherical aggregate

As shown in Figure5.14, 𝑏1 and 𝑏2 dictate the radius of the outer and inner spheres respectively
which consequently has an affect on the number of Voronoi elements that will be involved in defining
the body and boundary of the aggregate. A global correction for the total ITZ volume is already being
considered (as explained in Section 5.2), but no such correction for the volume of the body of the ag-
gregates is being considered. As a result, it is essential that the volume of the body of the aggregates
as projected on Voronoi elements is close to the actual volume of the spherical aggregates. The vari-
ables 𝑏1 and 𝑏2 are varied and iterations are carried out till the projected volume of the aggregate body
comes closer to the actual volume of the spherical aggregates. For Mesh 1, 𝑏1 is 0.6 times the mean
element length and 𝑏2 is 0.22 times the mean element length. For Mesh 2, 𝑏1 is 0.7 times the mean
element length and 𝑏2 is 0.235 times the mean element length. Using these parameters, the volume
of the aggregates as projected on Voronoi elements is obtained as presented in Table(5.4). For each
different mesh, a different set of values of 𝑏1 and 𝑏2 will give Voronoi aggregates with the same volume
as that of the spherical aggregates. Hence, modelling of the aggregates is dependent on the mesh but
the numerical results seem to be mesh independent for the cases considered here.

5.3.3. Moisture Transport in Heterogeneous Concrete with a Planar Crack
In Chapter-3, tools were developed to construct a numerical model to simulate moisture transport in
uncracked concrete. An approximatemodel using approximate volume of the Voronoi elements, explicit
time stepping scheme and uniform mean diffusivity of the elements and an exact model using exact
volume of the Voronoi elements, implicit time stepping scheme and exponential variation of diffusivity of
the elements were compared and limitations on the approximate model were presented. In Chapter-4,
horizontal moisture distribution in concrete around a planar crack and vertical moisture distribution in
a wedge crack were successfully simulated. These simulations were based on two approaches, one
where the crack is only considered a porous phase in mortar and the other where moisture-surface
interactions are also considered. The latter approach seemed to give better results for vertical moisture
distribution in the crack. In this chapter, moisture transport in concrete considering heterogeneities is
successfully simulated based on the variation of cumulative saturation level with square root of time.

In this subsection, moisture transport in heterogeneous concrete having a planar crack will be sim-
ulated. Due to the highly variable nature of flow around the aggregates and in the vicinity of the crack,
a numerical solver using exact volume of the Voronoi elements, implicit time stepping scheme and
exponential variation of diffusivity over the element will be used to maintain mass and momentum equi-
librium of the flow. In order to realistically simulate moisture transport in the planar crack, the approach
considering moisture surface interactions will be implemented in the numerical model.
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Table 5.5: Mesh Properties

Parameter Value

Number of nodes 50229
Number of elements 93960
Average element size 3.299 𝑚𝑚
Crack width 0.2 𝑚𝑚
Crack depth 75 𝑚𝑚
Maximum aggregate
radius 20 𝑚𝑚
Minimum aggregate
radius 2.5 𝑚𝑚

Table 5.6: Flow Parameters

Parameter Symbol Value

Diffusivity of dry
concrete 𝐷 3.85 × 10 𝑚𝑚 /𝑠
Empirical constant 𝑛 6
Initial saturation 𝜃 0
Porosity 𝑝 0.185
Time step Δ t 1𝑠
Diffusivity of ITZ 𝐷 3.85 × 10 𝑚𝑚 /𝑠
Diffusivity of
aggregate 𝐷 0
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Figure 5.15: Schematic of the cracked heterogeneous domain

The mesh properties and flow parameters of the numerical model are given in Table(5.5) and Ta-
ble(5.6) respectively. The details of heterogeneous cracked domain used in numerical model are shown
in Figure5.15. A planar crack of uniform crack width of 2 𝑚𝑚 is generated in the domain and capillary
suction in the crack, due to moisture-surface interactions of the moisture at the boundary and the crack
walls, is simulated. For a uniform crack width of 2 𝑚𝑚, the equilibrium capillary rise height is of 90 𝑚𝑚.
As the crack depth is shorter than the equilibrium rise height, both the crack faces will be completely
submerged in water and act as additional submerged boundaries. The aggregates are generated in the
cracked domain (using the take and place process) in such a way that the aggregates do not overlap
with the crack. The total of 143 aggregates are generated which comprise 40 percent of the total vol-
ume of the domain (as projected on the Voronoi elements) with a mean aggregate diameter 10.7 𝑚𝑚.
It can be seen in Table(5.6), that the time step used is 1s as opposed to 60s that was used to simulate
moisture transport in uncracked heterogeneous concrete. By considering the crack in the domain, the
variation of the transport properties across the Voronoi elements increases even more and the sim-
ulation using a time step of 60s took too many iterations in a single time step to attain convergence.
The time step is reduced which reduces the number of iterations is each time step making the overall
numerical simulation faster.
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Figure 5.16: Moisture distribution in the domain with a planar crack for volume fraction of aggregates as
.
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The moisture distribution in the domain at time 0, 1 hour, 5 hours, 10 hours, 15 hours and 21 hours
is shown in Figure5.16. The initial condition, as shown in Figure5.16a is the state of the domain at time
t=0. Due to capillary suction, the crack is completely saturated before the flow in the domain starts
which can be clearly seen in the figure. As time progresses, the moisture travels in the domain through
the submerged boundary and the crack walls and more and more nodes become saturated. The effect
of aggregates is clearly visible in Figure5.16c-Figure5.16f where the Voronoi nodes lying within the
aggregates are in a permanent unsaturated condition.

5.3.4. Conclusions
The numerical model used to simulatemoisture transport in heterogeneous concrete was able to closely
simulate the experimental results based on variation of cumulative saturation with the square root of
time. It was shown in Section(5.2), that as the volume fraction of the aggregates increases, flow in the
domain slows down and penetration depth decreases. This is due to impervious nature of aggregates
in the concrete which does not allow moisture to pass through. The effect of ITZ on penetration of
moisture in heterogeneous concrete was analyzed in Section(5.3). It was found that as the diffusivity
coefficient of ITZ is changed, the penetration depth is affected by it. For a higher diffusivity coefficient,
the acceleration of moisture transport is more which increases the penetration depth. A lower diffusivity
coefficient has a smaller impact on the acceleration of the transport due to which the penetration depth
is comparatively less. When observing flow on a local level at a single node in the domain representing
the cement phase of concrete, it was observed that a higher ITZ diffusivity coefficient accelerates both
the processes of reception and transmission of moisture through the node.

While simulating moisture transport in heterogeneous concrete, due to a high variability of transport
properties of the Voronoi elements across the domain, a numerical solver, using exact volume of the
Voronoi elements, implicit time stepping scheme and exponential variation of diffusivity over the ele-
ments, is used. This is crucial in maintaining the mass and momentum balance of the flow in each time
step. As shown in Section(5.3), such a model is also able to simulate moisture transport in heteroge-
neous concrete with a planar crack in the domain. The numerical model using approximate volume of
the Voronoi elements, explicit time stepping scheme and uniform mean diffusivity of the elements won’t
be suitable to simulate moisture transport in heterogeneous concrete.

Mesh size plays a significant role while projecting the spherical aggregates on Voronoi elements. If
a finer mesh is used, the volume of the aggregates as projected on the Voronoi elements will be closer
to the actual volume of the spherical aggregates. Also, with a finer mesh the difference in the shape of
the projected aggregates and the spherical aggregates will reduce, leading to more accuracy of results.
The mesh refinement study showed that there is no significant changes of results even when a finer
mesh is used because the modelling approach adopted to project the spherical aggregates over the
Voronoi elements was able to generate discretized aggregates with volume almost equal to the volume
of the spherical aggregates.





6
Conclusions and Recommendations

6.1. Conclusions
The main objective of this thesis was to understand the nature of flow through capillary absorption in
concrete. Physical and material properties of concrete were varied to account for cracking and hetero-
geneities and moisture transport was analyzed in each model. Computational tools were developed
and compared, to see their effectiveness in simulating moisture transport in concrete under different
conditions. The results obtained from numerical analyses were compared with experimental results
to validate the numerical models. The main conclusions of this thesis, pertaining to specific research
questions, are described below.

1. What are the effective modelling techniques to simulate moisture transport in concrete?
Moisture transport through capillary absorption in uncracked concrete was simulated by solving
the discretized form of Richard’s equation using different numerical models using lattice elements.
An existing numerical model used the approximate volume of Voronoi elements, explicit time
stepping scheme and uniform mean diffusivity of elements. These approximations are related to
volumetric capacity of Voronoi elements, diffusivity matrix at a particular time step and variation
of diffusion over the element length. In addition, a new numerical model was proposed that
featured a more accurate behaviour of the numerical and physical phenomenon by using the
exact volume of Voronoi elements, implicit time stepping technique and exponential variation of
diffusivity of the elements. Both of these numerical models were compared with each other for
each approximation using mesh size and time step analysis. The approximations in the existing
model were motivated by considering flow in a fully saturated domain when all the approximations
actually simulated the exact flow on a global level as the proposed model. This also explained
the observation that the error between the existing and the proposed numerical model reduced
with the progression of flow as the existing model came closer to the proposed behaviour as more
and more part of the domain got involved in the flow. Although both the existing and proposed
numerical models were able to successfully simulate moisture transport in uncracked concrete,
the results of which were validated through experimental findings, there were some limitations
proposed on the use of the existing model. For higher diffusivity, the existing model suffered from
oscillations in the saturation level of the nodes (in the part of the domain closer to the origin of
flow) due to inadequacy of the existing model to maintain the flow equilibrium at each time step.
These oscillations became more frequent for a finer mesh. The proposed model on the other
hand was able to maintain the flow equilibrium and there were no oscillations for higher diffusivity
or a finer mesh. Mesh size, time step and diffusivity coefficient were shown to be the limiting
factors for using either of the models.
Comparing the two modelling frameworks for uncracked concrete served as a basis to see the
validity of the respective numerical models to simulate moisture transport in cracked and hetero-
geneous concrete. When considering a discrete crack in concrete and treating the crack as an
additional porous phase in concrete, the diffusivity of the elements lying in the crack was found to
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be extremely high where the proposed model was not found to be suitable owing to a large num-
ber of iterations to attain flow equilibrium. The existing model was used instead, which displayed
oscillations of saturation level of the nodes lying in the crack but was successfully able to simulate
moisture transport in the adjoining uncracked concrete as validated through experiments.
When heterogeneities were considered in concrete, there was a significant variation of transport
properties across Voronoi elements. The existing model was not considered favourable in this
case as the flow equilibrium at each time step would not have been maintained and instead the
proposed model was found suitable to simulate moisture transport as the iterations required to
attain flow equilibrium in the proposed model were within an acceptable limit.

2. How does a discrete crack affect moisture transport in concrete?
The nature of a discrete crack within concrete was envisaged through two approaches. In the
first approach, the crack was considered as another porous phase in concrete and in the second
approach, in addition to considering the porous nature of the crack, moisture-surface interactions
between water present at the boundary and the crack walls was also considered. In both ap-
proaches, water transport in uncracked concrete was simulated by solving Richard’s equation.
In the first approach, water transport in the cracked domain was also simulated using Richard’s
equation only with a higher diffusivity of the cracked elements. In the second approach, the
Lucas-Washburn equation was used to consider moisture-surface interactions between the wa-
ter present at the boundary and the crack walls. The water transport in part of the cracked domain
that was unaffected by the moisture-surface interactions was simulated through Richard’s equa-
tion with a higher diffusivity than the cement paste. A numerical framework was constructed
to incorporate a discrete planar and wedge crack in the discretized domain and Voronoi ele-
ments were distinguished to represent the cracked and uncracked domain and were assigned
the respective transport properties. Both approaches were able to accurately simulate horizontal
moisture distribution around the crack which was validated through experimental observations.
In case of simulating vertical moisture distribution in the crack, the second approach showed
better performance than the first approach for initial time stages. The rate of saturation of the
crack during initial time stages was observed to be comparatively slower in the first approach
than observed in the experiment. The second approach showed more realistic vertical moisture
distribution in the crack for the initial time stages that were observed.

3. How is moisture transport affected due to the multi-phase nature of concrete?
A numerical framework was formulated to include spherical aggregates to account for the multi-
phase nature of concrete. For a given volume fraction, spherical aggregates were randomly
generated such that there was no overlap of ITZ of any two adjacent aggregates. A numerical
procedure was developed to incorporate the spherical aggregates in the discretized domain which
included projection of spherical aggregates on Voronoi elements and assigning transport prop-
erties to the elements. Voronoi elements were distinguished to either represent cement paste,
aggregate body or ITZ and transport properties of the Voronoi elements were assigned according
to the phase they represented. When the flow was simulated in heterogeneous concrete, there
were two competing phenomena influencing the rate of moisture transport in concrete. Due to
the impervious nature of aggregates, the flow was being slowed down and due to high diffusivity
of ITZ, the flow was being accelerated. Simulations for different volume fraction of aggregates
were carried out and it was found that the moisture penetration depth was being decreased with
increase of volume fraction of aggregates. This behaviour was validated through experimental
observations which established the efficiency of the numerical model. The extent to which ITZ
affects the transport was analyzed by running numerical simulations with different ITZ diffusiv-
ity which showed the expected behaviour of increased transport for higher ITZ diffusivity and
vice-versa at both global and local level. Mesh refinement did not seem to affect the results for
the cases that were analyzed although the modelling of aggregates in the numerical model was
shown to be mesh dependent. It can be concluded that based on the validation of the numerical
model through experimental results, the effect of multi-phase nature of concrete on the transport
of moisture on the global scale was accurately simulated.
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6.2. Recommendations
This section presents recommendations for future research and development related to the work in this
thesis.

Exact Porosity
Every Voronoi node present in the discretized domain represents a part of the physical volume of the
domain. Figure 6.1a shows a Voronoi element (1-2-3) that passes through a Delaunay triangle (a-b-c).
If Delaunay element a-b cracks, then in the numerical model presented in this thesis, the porosity of
the entire volume represented by Voronoi node 1 and Voronoi node 3 is considered as 1. But in reality,
only a part of the entire volume represented by the Voronoi node lies in the cracked domain and the
rest of the volume represents the uncracked part of the domain.
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Voronoi element
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(a) Voronoi and Delaunay element structure
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(b) Volume contribution of a Delaunay element

Figure 6.1: Volume contribution for exact porosity

To account for this dual behaviour of the Voronoi node, volume contribution of each Delaunay ele-
ment should be calculated. Figure 6.1b shows that for the cracked Delaunay element a-b, the volume
of the sub-tetrahedra 1-2-a-b should be calculated which represents the volume contribution of Delau-
nay element a-b and only this part of the volume should be considered to lie in the cracked domain (for
Voronoi node 1). Each Voronoi node lying inside the domain is surrounded by 6 Delaunay elements
and thus the volume occupied by a Voronoi node can be divided into the volume of 6 sub-tetrahedra.
If one or more Delaunay elements crack that surround a Voronoi node, the porosity of that Voronoi
node should be calculated using the weighted average (according to volume) of porosity of each sub-
tetrahedra. Not just in cracks but also in case of heterogeneities, it can be the case that the volume of a
Voronoi element lies in multiple phases of concrete and the porosity of those Voronoi nodes should be
calculated accordingly to get a more realistic moisture content of the nodes. Hence, it is recommended
that the exact porosity of the Voronoi nodes should be used in the numerical models where there is a
transition of material composition in the domain.

Local flow at a node
The variation of saturation level of a single node in a homogeneous and uncracked concrete domain is
shown in Figure6.2. The node lies somewhere within the middle of the domain and can be used as a
representative of any node in general present in the domain. The flow is simulated using exact volume
of Voronoi elements, implicit time stepping scheme and exponential variation of diffusivity.
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Figure 6.2: Variation of saturation level of a node with square root of time

It can be seen from the figure that initially when the water front is away from the node, the saturation
level of the node is close to the initial saturation. At 36 minutes, the water front reaches the node and
starts to increase the saturation level of the node. Just before the saturation level starts increasing at
36 minutes, there is a drop in the saturation level of the node below the initial saturation. Physically,
there should be no drop in the saturation level. Even after using a comparatively exact behaviour of
the numerical model, there is still a drop in the saturation level of the node. It is recommended that to
get a realistic behaviour of the flow at a local level, numerical model should be refined to incorporate
this local drop in the saturation level just before the water front reaches the node.

Moisture transport in heterogeneous concrete
In the numerical model used to simulate moisture transport in heterogeneous concrete, when assigning
the ITZ transport properties to the Voronoi elements, a correction factor was used that takes into account
the difference of the total ITZ volume of the spherical and discretized aggregates. It would be more
accurate to correct the ITZ volume for each aggregate separately than to do it for all the aggregates
combined. In the present numerical model, due to global correction, the local behaviour around the
aggregates due to ITZ might not be correctly simulated as the numerical model is only validated for
global behaviour. It is recommended that the present numerical model be validated for local behaviour
as well and if the results are significantly different then local correction for ITZ volume pertaining to each
individual aggregate should be applied. Finally, the presented numerical model can only simulate the
behaviour of spherical aggregates. It is recommended that themodel should be extended to incorporate
non-spherical shapes of aggregates for a more realistic analysis.

Coupling of additional transport mechanisms
In this research, the basic numerical framework is developed to model moisture transport in concrete
through capillary absorption. This numerical model can be extended to couple different transport mech-
anisms such as moisture transport through permeation, diffusion of chlorides etc. that can be used to
predict the durability of concrete structures. As water is considered as a carrier of free ions in concrete,
this model can be extended to simulate the transport of various ions such as sulphates, carbonates etc.
The numerical framework is developed to simulate moisture transport through capillary absorption. It
is not necessary that this numerical model pertains to only cementitious materials. The numerical
framework can be adjusted to model a material which undergoes unsaturated capillary absorption with
known diffusion parameters. The numerical model for moisture transport presented in this thesis can
be coupled with mechanical model and even 2-way coupling where the effect of moisture transport on
cracking can be simulated.
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A
Computational Time Analysis

In Chapter 3, during the discretization of the governing equations, two alternatemethods were proposed
for time stepping technique. The explicit time stepping technique makes use of diffusivity matrix at the
previous time step and the implicit time stepping technique uses the diffusivity matrix at the current
time step to follow flow equilibrium. Moisture flow is simulated in a homogeneous and uncracked
domain with mesh properties corresponding to mesh 3 in Table(3.5) and flow parameters as given in
Table(3.4). The first numerical model is formulated using approximate volume of Voronoi elements,
explicit time stepping scheme and uniform mean variation of diffusivity. Second numerical model uses
approximate volume of Voronoi elements, implicit time stepping scheme and exponential variation of
diffusivity. The moisture flow is simulated for 480 minutes and the time required to simulate the flow for
different magnitudes of time step is shown in Figure A.1.
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Figure A.1: Computational time comparison for implicit and explicit time stepping schemes

It can be seen that for the magnitudes of time steps observed, computational time for the second
model is more than that of the first model. This is due to the iterations required to attain convergence
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for the second model that increases the computational time. As the magnitude of time step increases,
the computational time decreases for both the models.

In case of the first model using explicit time stepping scheme, the computation time is expected to
decrease with the increase of the magnitude of time step. But the accuracy of the results for higher time
steps will be less and the results from this model won’t be reliable. For the second model which uses
the implicit time stepping scheme, it is expected that after a critical time step, the computational time
should start to increase. If the magnitude of time step is made larger, then there can come a point when
the time required to attain convergence at each time step becomes more which increases the overall
computation time. Going further, the computational time will increase with the increase of magnitude
of time step.



B
MATLAB Scripts

Node Generation
This section presents the MATLAB script to generate Delaunay nodes in the domain in a semi-random
way.

1 c l ea r ;
2 % Define the l a t t i c e s ize
3 % The domain i s d i v ided i n t o number o f c e l l s i n each of which a s i ng l e

node w i l l
4 % be placed .
5 l s i zeX =20; %number o f c e l l s i n x−d i r e c t i o n
6 l s i zeY =2;
7 l s i zeZ =2;
8 L=2; % Ce l l s i ze
9

10 A=zeros ( l s i zeX * l s i zeY * l s i zeZ , 3 ) ;%A i s a zero mat r i x w i th s ize ( no . o f c e l l s
x 3)

11 p=0;
12 randomness =0 .2 ; % here the l a t t i c e randomness i s def ined . 0.5− f u l l

randomness
13 f o r i =L : L : l s i zeX *L%going through each c e l l i n z−d i r e c t i o n
14 f o r j =L : L : l s i zeY *L
15 f o r k=L : L : l s i zeZ *L
16 p=p+1;
17 pom1=rand (1 ) ;%matlab f unc t i on to g ive a random number from 0

to 1
18 i f pom1>=0.5
19 m1=2;% m w i l l decide the d i r e c t i o n o f the node from the

cent re o f the c e l l
20 else
21 m1=1;
22 end
23 pom2=rand ( ) ;
24 i f pom2>=0.5
25 m2=2;
26 else
27 m2=1;
28 end
29 pom3=rand (1 ) ;
30 i f pom3>=0.5
31 m3=2;
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32 else
33 m3=1;
34 end
35 dx=rand (1 ) * randomness*L ; %dis tance of the node from the cent re

o f the c e l l i n x−d i r e c t i o n
36 dy=rand (1 ) * randomness*L ;% t h i s d is tance cannot exceed 0.2L on

each s ide o f the cent re
37 dz=rand (1 ) * randomness*L ;
38

39 %Assigning the corner c e l l s a f i x ed coord ina te o f the nodes
f o r

40 %de f i n i ng the domain boundary . 8 corner nodes are assigned 8
41 %f i xed cord ina tes .
42 i f ( i ==L ) && ( j ==L ) && ( k==L )
43 A(p , 1 : 3 ) =[0 0 0 ] ;
44 end
45 i f ( i ==L ) && ( j ==L ) && ( k== l s i zeZ *L )
46 A(p , 1 : 3 ) =[0 0 l s i zeZ *L ] ;
47 end
48 i f ( i ==L ) && ( j == l s i zeY *L ) && ( k==L )
49 A(p , 1 : 3 ) =[0 l s i zeY *L 0 ] ;
50 end
51 i f ( i ==L && j == l s i zeY *L && k== l s i zeZ *L )
52 A(p , 1 : 3 ) =[0 l s i zeY *L l s i zeZ *L ] ;
53 end
54 i f ( i == l s i zeX *L && j ==L && k==L )
55 A(p , 1 : 3 ) =[ l s i zeX *L 0 0 ] ;
56 end
57 i f ( i == l s i zeX *L && j ==L && k== l s i zeZ *L )
58 A(p , 1 : 3 ) =[ l s i zeX *L 0 l s i zeZ *L ] ;
59 end
60 i f ( i == l s i zeX *L && j == l s i zeY *L && k==L )
61 A(p , 1 : 3 ) =[ l s i zeX *L ls i zeY *L 0 ] ;
62 end
63 i f ( i == l s i zeX *L && j == l s i zeY *L && k== l s i zeZ *L )
64 A(p , 1 : 3 ) =[ l s i zeX *L ls i zeY *L l s i zeZ *L ] ;
65 end
66

67 %now the nodes w i l l be placed at the edges i n a semi random
way .

68 %There are 12 edges and a l l the c e l l s having these edges w i l l
69 %have the node on the edge i t s e l f .
70

71 i f ( i ==L && j ==L && k~=L && k~= l s i zeZ *L )
72 A(p , 1 : 3 ) =[0 0 k−L/2+(−1) ^m3*dz ] ;
73 end
74 i f ( i ==L && j == l s i zeY *L && k~=L && k~= l s i zeZ *L )
75 A(p , 1 : 3 ) =[0 l s i zeY *L k−L/2+(−1) ^m3*dz ] ;
76 end
77 i f ( i == l s i zeX *L && j ==L && k~=L && k~= l s i zeZ *L )
78 A(p , 1 : 3 ) =[ l s i zeX *L 0 k−L/2+(−1) ^m3*dz ] ;
79 end
80 i f ( i == l s i zeX *L && j == l s i zeY *L && k~=L && k~= l s i zeZ *L )
81 A(p , 1 : 3 ) =[ l s i zeX *L ls i zeY *L k−L/2+(−1) ^m3*dz ] ;
82 end
83 i f ( i ==L && k==L && j ~=L && j ~= l s i zeY *L )
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84 A(p , 1 : 3 ) =[0 j−L/2+(−1) ^m2*dy 0 ] ;
85 end
86 i f ( i ==L && k== l s i zeZ *L && j ~=L && j ~= l s i zeY *L )
87 A(p , 1 : 3 ) =[0 j−L/2+(−1) ^m2*dy l s i zeZ *L ] ;
88 end
89 i f ( i == l s i zeX *L && k==L && j ~=L && j ~= l s i zeY *L )
90 A(p , 1 : 3 ) =[ l s i zeX *L j−L/2+(−1) ^m2*dy 0 ] ;
91 end
92 i f ( i == l s i zeX *L && k== l s i zeZ *L && j ~=L && j ~= l s i zeY *L )
93 A(p , 1 : 3 ) =[ l s i zeX *L j−L/2+(−1) ^m2*dy l s i zeZ *L ] ;
94 end
95 i f ( j ==L && k==L && i ~=L && i ~= l s i zeX *L )
96 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx 0 0 ] ;
97 end
98 i f ( j ==L && k== l s i zeZ *L && i ~=L && i ~= l s i zeX *L )
99 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx 0 l s i zeZ *L ] ;
100 end
101 i f ( j == l s i zeY *L && k==L && i ~=L && i ~= l s i zeX *L )
102 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx l s i zeY *L 0 ] ;
103 end
104 i f ( j == l s i zeY *L && k== l s i zeZ *L && i ~=L && i ~= l s i zeX *L )
105 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx l s i zeY *L l s i zeZ *L ] ;
106 end
107

108

109 %Now the faces are determined . The nodes are placed on the
110 %faces of the c e l l . There are 6 faces
111

112 i f ( i ==L && j ~=L && j ~= l s i zeY *L && k~=L && k~= l s i zeZ *L )
113 A(p , 1 : 3 ) =[0 j−L/2+(−1) ^m2*dy k−L/2+(−1) ^m3*dz ] ;
114 end
115 i f ( i == l s i zeX *L && j ~=L && j ~= l s i zeY *L && k~=L && k~= l s i zeZ *L )
116 A(p , 1 : 3 ) =[ l s i zeX *L j−L/2+(−1) ^m2*dy k−L/2+(−1) ^m3*dz ] ;
117 end
118 i f ( j ==L && i ~=L && i ~= l s i zeX *L && k~=L && k~= l s i zeZ *L )
119 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx 0 k−L/2+(−1) ^m3*dz ] ;
120 end
121 i f ( j == l s i zeY *L && i ~=L && i ~= l s i zeX *L && k~=L && k~= l s i zeZ *L )
122 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx l s i zeY *L k−L/2+(−1) ^m3*dz ] ;
123 end
124 i f ( k==L && i ~=L && i ~= l s i zeX *L && j ~=L && j ~= l s i zeY *L )
125 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx j−L/2+(−1) ^m2*dy 0 ] ;
126 end
127 i f ( k== l s i zeZ *L && i ~=L && i ~= l s i zeX *L && j ~=L && j ~= l s i zeY *L )
128 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx j−L/2+(−1) ^m2*dy l s i zeZ *L ] ;
129 end
130

131

132

133 %Now the nodes w i l l be assigned to a l l i n t e r i o r c e l l s t ha t are
not on

134 %any face , edge or corner
135

136 i f ( i ~=L && i ~= l s i zeX *L && j ~=L && j ~= l s i zeY *L && k~=L && k~=
l s i zeZ *L )

137 A(p , 1 : 3 ) =[ i−L/2+(−1) ^m1*dx j−L/2+(−1) ^m2*dy k−L/2+(−1) ^m3*dz ] ;
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%i−L/2+(−1) ^m3*dz ] ;
138 %here the second term in each expression gives the d i r e c t i o n

o f the node from the cent re o f the c e l l
139 end
140 end
141 end
142 disp ( i / l s i zeX *100) ;
143 end
144 %sca t t e r3 (A ( : , 1 ) ,A ( : , 2 ) ,A ( : , 3 ) )
145

146 %
147 % fo r i 1 =(1+L / 2 ) : L : ( l s i zeZ−L / 2 )
148 % fo r j 1 =(1+L / 2 ) : L : ( ls izeY−L / 2 )
149 % fo r k1=(1+L / 2 ) : L : ( ls izeX−L / 2 )
150 % p=p+1;
151 % A(p , 1 : 3 ) =[ k1 j 1 i 1 ] ;
152 % end
153 % end
154 % end
155 %
156

157 %
158 % pom=1:200;
159 % A(pom, 3 ) =0;
160 % % pom1=(50*50*50−50*50+1) : (50*50*50) ;
161 % pom1=19601:2000;
162 % A(pom1, 3 ) =50;
163 %
164 % fo r i =1 : ( l s i zeX * l s i zeY * l s i zeZ )
165 % i f A( i , 1 ) <1
166 % A( i , 1 ) =0.001;
167 % e l s e i f A( i , 1 ) >29
168 % A( i , 1 ) =29.999;
169 % end
170 % i f A( i , 2 ) <1
171 % A( i , 2 ) =0.001;
172 % e l s e i f A( i , 2 ) >29
173 % A( i , 2 ) =29.999;
174 % end
175 % i f A( i , 3 ) <1
176 % A( i , 3 ) =0.001;
177 % e l s e i f A( i , 3 ) >29
178 % A( i , 3 ) =29.999;
179 % end
180 % disp ( i / ( l s i zeX * l s i zeY * l s i zeZ ) ) ;
181 % end
182 % fo r i =1:100
183 % A( i , 3 ) =0 .5 ;
184 % end
185 %
186 % fo r i =901:1000
187 % A( i , 3 ) =9 .5 ;
188 % end
189

190 f i d =fopen ( ’ nodes3D . dat ’ , ’w ’ ) ;%here we are saving the nodes i n t h i s f i l e
nodes3D . dat



113

191 % A=0.5*A;
192 f o r i 1 =1:p
193 f p r i n t f ( f i d , ’%d %f %f %f ’ , i1 ,A( i1 , 1 ) ,A( i1 , 2 ) ,A( i1 , 3 ) ) ;% t h i s g ives the

output as node number , x , y , z co rd ina te o f t ha t node
194 f p r i n t f ( f i d , ’ \ n ’ ) ;
195 end
196

197 f c l o se ( f i d ) ;

Generation of Delaunay and Voronoi Elements
This section presents the MATLAB scripts and functions used to generate lattice elements once the
nodes have been generated. Themain script generated Delaunay and Voronoi elements and calculates
their cross-sectional area and volume.

The main script is given below:

1

2 % Updated on 29−6−2017
3 t i c
4 f i l e i d =fopen ( ’mesh . opt ’ , ’ r ’ ) ;
5 OPT= fscan f ( f i l e i d , ’%g ’ ,5 ) ;
6 NoN=OPT(1 ) ; % Tota l number o f nodes
7 a=OPT(2 ) ; % domain s ize i n X d i r e c t i o n
8 b=OPT(3 ) ; % domain s ize i n Y d i r e c t i o n
9 c=OPT(4 ) ; % domain s ize i n Z d i r e c t i o n
10 de l t a=OPT(5 ) ; % l a t t i c e c e l l s i ze ( cubic c e l l s are assumed )
11 f c l o se ( f i l e i d ) ;
12 c l ea r ( ’OPT ’ ) ;
13 f i d =fopen ( ’ nodes3D . dat ’ , ’ r ’ ) ;
14 A= fscan f ( f i d , ’%f ’ , [ 4 NoN ] ) ; % t h i s needs to be ajdusted i f the o ve r a l l

number o f nodes i s changed , i . e . [4 NNODES]
15 A=A ’ ;
16 A=A( : , 2 : 4 ) ;
17 % Create elements between connected nodes ( po in t s )
18 Tes=DelaunayTr i (A ( : , 1 ) ,A ( : , 2 ) ,A ( : , 3 ) ) ;
19

20

21

22 conNodes1 = [ ] ; %i n i t i a l i z e the mat r i x con ta in ing connected nodes , w i th
repeated elements

23 conNodes1=u in t32 ( conNodes1 ) ;
24 pomoc1=max( s ize ( Tes ) ) ;
25 Al lE lements=zeros (6*pomoc1 , 2 ) ;%i n i t i a l i z e the mat r i x con ta in ing connected

nodes , w i th repeated elements
26

27 f o r i =1:pomoc1
28 disp ( ’ Delaunay Tesse la t ion i n %: ’ ) ;
29 disp ( i /max( s ize ( Tes ) ) *100) ;
30 Al lE lements ( i *6−5 ,1)=Tes ( i , 1 ) ;
31 Al lE lements ( i *6−5 ,2)=Tes ( i , 2 ) ;
32 Al lE lements ( i *6−4 ,1)=Tes ( i , 1 ) ;
33 Al lE lements ( i *6−4 ,2)=Tes ( i , 3 ) ;
34 Al lE lements ( i *6−3 ,1)=Tes ( i , 1 ) ;
35 Al lE lements ( i *6−3 ,2)=Tes ( i , 4 ) ;
36 Al lE lements ( i *6−2 ,1)=Tes ( i , 2 ) ;
37 Al lE lements ( i *6−2 ,2)=Tes ( i , 3 ) ;
38 Al lE lements ( i *6−1 ,1)=Tes ( i , 2 ) ;
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39 Al lE lements ( i *6−1 ,2)=Tes ( i , 4 ) ;
40 Al lE lements ( i *6 ,1)=Tes ( i , 3 ) ;
41 Al lE lements ( i *6 ,2)=Tes ( i , 4 ) ;
42 end
43

44 Al lE lements=Al lElements ’ ;
45 tepm=so r t ( A l lE lements ) ;
46 Al lElementsF=tepm ’ ; % Elements are sor ted i n such a way t ha t node1<node2
47

48 c l ea r ( ’ Tes ’ , ’ A l lE lements ’ ) ;
49

50

51 f i n a l =unique ( Al lElementsF , ’ rows ’ ) ;
52 c l ea r ( ’ Al lElementsF ’ ) ;
53

54

55 % Creat ing a u x i l i a r y po in t s %
56

57 % Aux i l i a r y po in t s i n X d i r e c t i o n %
58

59

60 n=3; % Number o f rows of a u x i l i a r y c e l l s
61 n1=0;
62 n2=0;
63 n3=0;
64 n4=0;
65 n5=0;
66 n6=0;
67

68 % I n i t i a l i z e matr ices o f a u x i l i a r y c e l l s %
69 X1=zeros ( n , 3 ) ;
70 X2=zeros ( n , 3 ) ;
71 Y1=zeros ( n , 3 ) ;
72 Y2=zeros ( n , 3 ) ;
73 Z1=zeros ( n , 3 ) ;
74 Z2=zeros ( n , 3 ) ;
75

76 f o r i =1:NoN
77

78 % Aux i l i a r y po in t s ” under ” the X boundary ( n rows ) %
79 i f A( i , 1 ) <=n* de l t a
80 n1=n1+1;
81 X1( n1 , 1 )=−A( i , 1 ) ;
82 X1( n1 , 2 ) =A( i , 2 ) ;
83 X1( n1 , 3 ) =A( i , 3 ) ;
84 end
85

86 % Aux i l i a r y po in t s ” over ” the X boundary ( n rows ) %
87 i f A( i , 1 ) >=(a−n* de l t a )
88 n2=n2+1;
89 X2( n2 , 1 ) =2*a−A( i , 1 ) ;
90 X2( n2 , 2 ) =A( i , 2 ) ;
91 X2( n2 , 3 ) =A( i , 3 ) ;
92 end
93

94 % Aux i l i a r y po in t s ” under ” the Y boundary ( n rows ) %
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95 i f A( i , 2 ) <=n* de l t a
96 n3=n3+1;
97 Y1( n3 , 1 ) =A( i , 1 ) ;
98 Y1( n3 , 2 )=−A( i , 2 ) ;
99 Y1( n3 , 3 ) =A( i , 3 ) ;
100 end
101 % Aux i l i a r y po in t s ” over ” the Y boundary ( n rows ) %
102 i f A( i , 2 ) >=(b−n* de l t a )
103 n4=n4+1;
104 Y2( n4 , 1 ) =A( i , 1 ) ;
105 Y2( n4 , 2 ) =2*b−A( i , 2 ) ;
106 Y2( n4 , 3 ) =A( i , 3 ) ;
107 end
108

109 % Aux i l i a r y po in t s ” under ” the Z boundary ( n rows ) %
110 i f A( i , 3 ) <=n* de l t a
111 n5=n5+1;
112 Z1 ( n5 , 1 ) =A( i , 1 ) ;
113 Z1 ( n5 , 2 ) =A( i , 2 ) ;
114 Z1 ( n5 , 3 )=−A( i , 3 ) ;
115 end
116 % Aux i l i a r y po in t s ” over ” the Y boundary ( n rows ) %
117 i f A( i , 3 ) >=(c−n* de l t a )
118 n6=n6+1;
119 Z2 ( n6 , 1 ) =A( i , 1 ) ;
120 Z2 ( n6 , 2 ) =A( i , 2 ) ;
121 Z2 ( n6 , 3 ) =2*c−A( i , 3 ) ;
122 end
123 end
124

125 % Form the rea l + a u x i l i a r y c e l l mat r i x %
126

127 TOT=[A ;X1 ;X2 ;Y1 ;Y2 ; Z1 ; Z2 ] ;
128

129

130 Tes1=DelaunayTr i (TOT) ;
131

132 [ v , r ]= voronoiDiagram ( Tes1 ) ;
133

134 c l ea r ( ’ Tes1 ’ ) ;
135 c l ea r ( ’ Tes ’ ) ;
136 r1= r ( 1 :NoN) ;%Voronoi c e l l s o f ” r ea l ” nodes only
137 c l ea r ( ’ r ’ ) ;
138 qq=0;
139 pp=0;
140

141

142 %the code below br ing the po in t s t ha t are l y i n g outs ide the domain
boundary

143 %to l i e on the boundary ( not requ i red )
144 %fo r i =1 :1 :max( s ize ( v ) )
145 % i f ( v ( i , 1 ) <0)
146 % v ( i , 1 ) =0;
147 % end
148 % i f ( v ( i , 2 ) <0)
149 % v ( i , 2 ) =0;
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150 % end
151 % i f ( v ( i , 3 ) <0)
152 % v ( i , 3 ) =0;
153 % end
154 % i f ( v ( i , 1 ) >a )
155 % v ( i , 1 ) =a ;
156 % end
157 % i f ( v ( i , 2 ) >b ) .
158 % v ( i , 2 ) =b ;
159 % end
160 % i f ( v ( i , 3 ) >c )
161 % v ( i , 3 ) =c ;
162 % end
163 %end
164

165

166 %the code below makes an idmat ( i d mat r i x ) which s to res the vorono i i ds i n
the f i r s t co l vs

167 %delaunay ids i n the second column
168 ind1 =1;
169 ind2 =1;
170 f o r i =1 :1 :max( s ize ( r1 ) )
171 f o r j =1 :1 :max( s ize ( r1 { i } ) )
172 idmat ( ind1 , 1 ) =r1 { i } ( 1 , ind2 ) ;
173 idmat ( ind1 , 2 ) = i ;
174 ind1=ind1 +1;
175 ind2=ind2 +1;
176 end
177 ind2 =1;
178 end
179 idmat=sor t rows ( idmat , 1 ) ;
180 %here the ids are not s t a r t i n g w i th 1 coz some ids belonged to a u x i l l i a r y
181 %voronoi nodes which got removed
182

183 %the code below makes a mut id imensional a r ray i n which the index of the
184 %array represents the vorono i node ids and the set o f po in t s on t ha t index
185 %represents the delaunay node ids t ha t surround i t
186 ind1 =1;
187 f o r i =1 :1 :max( s ize ( idmat ) )
188 indexmat { idmat ( i , 1 ) } ( 1 , ind1 )=idmat ( i , 2 ) ;
189 ind1=ind1 +1;
190 i f ( i ~=max( s ize ( idmat ) ) && idmat ( i , 1 ) ~=idmat ( i +1 ,1) )
191 ind1 =1;
192 end
193 end
194

195

196

197 % Create vec to r c e l l a r ray o f Voronoi v e r t i c e coord ina tes f o r each c e l l %
198 %
199 f o r i 1 =1:NoN
200 pomoc=r1 { i 1 } ;
201 pomoc=pomoc ’ ;
202 s1=v (pomoc , : ) ;
203

204 f o r i =1:max( s ize ( s1 ) )
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205 f o r j =1:max( s ize ( s1 ) )
206 i f ( i ~= j && abs ( s1 ( i , 1 )−s1 ( j , 1 ) ) <0.000001 && abs ( s1 ( i , 2 )−s1 ( j

, 2 ) ) <0.000001 && abs ( s1 ( i , 3 )−s1 ( j , 3 ) ) <0.000001)
207 s1 ( j , : ) =[− rand (1 ) * i * rand (1 ) −rand (1 ) * j * rand (1 ) −rand (1 ) * j

* ( i * rand (1 ) ) ] ;
208

209 end
210 end
211 end
212 E{ i 1 }=s1 ;
213 end
214

215 count_out_1 =0;
216 count_out_2 =0;
217 count_out_3 =0;
218 count_out_4 =0;
219 count_out_5 =0;
220 count_out_6 =0;
221 voronoiz = [ ] ;
222 b ro j an je =0;
223 f o r i 4 =1:max( s ize ( f i n a l ) )
224 disp ( ’ L i s t co r r e c t i on and Voronoi t r i a n g u l a t i o n i n %:\n ’ ) ;
225 disp ( i 4 /max( s ize ( f i n a l ) ) *100) ;
226 E1=E{1 , f i n a l ( i4 , 1 ) } ;
227 E2=E{1 , f i n a l ( i4 , 2 ) } ;
228 r r =r1 { f i n a l ( i4 , 1 ) } ;
229 ve r t i c e = [ ] ;
230 i ndex ing = [ ] ;
231 %ve r t i c e =sparse ( v e r t i c e ) ;
232 n=0;
233

234 f o r p=1: leng th (E1)
235 f o r q=1: leng th (E2)
236 i f ( abs (E1(p , 1 )−E2(q , 1 ) ) <0.000001 && abs (E1(p , 2 )−E2(q , 2 ) )

<0.000001 && abs (E1(p , 3 )−E2(q , 3 ) ) <0.000001) % take i n t o
account numer ica l e r r o r

237 n=n+1;
238 ve r t i c e ( n , : ) =E1(p , : ) ;% ve r t i c e conta ins the nodal

coord ina tes o f the common vorono i po in t s between two
delaunay nodes forming a connect ion

239 i ndex ing ( n )= r r ( p ) ;% index ing conta ins the node ids o f the
common vorono i po in t s between two delaunay nodes forming
a connect ion

240 end
241 end
242 end
243

244 pom( i4 , 1 ) =n ;
245 %[ ve r t i c e ]= arrange ( ve r t i c e1 ) ; % arrange ve r t i c e so t ha t they are

cons i s t en t
246

247 %code to see i f there are common po in t s l y i n g outs ide the domain (
o f

248 %course they w i l l )
249

250 % fo r i =1 :1 :max( s ize ( v e r t i c e ) )
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251 % i f ( v e r t i c e ( i , 1 ) <0)
252 % count_out_1=count_out_1 +1;
253 %end
254 %i f ( v e r t i c e ( i , 2 ) <0)
255 % count_out_2=count_out_2 +1;
256 %end
257 %i f ( v e r t i c e ( i , 3 ) <0)
258 % count_out_3=count_out_3 +1;
259 %end
260 %i f ( v e r t i c e ( i , 1 ) >a )
261 % count_out_4=count_out_4 +1;
262 %end
263 %i f ( v e r t i c e ( i , 2 ) >b )
264 % count_out_5=count_out_5 +1;
265 %end
266 %i f ( v e r t i c e ( i , 3 ) >c )
267 % count_out_6=count_out_6 +1;
268 %end
269 %end
270

271 i f (pom( i4 , 1 ) >2) % exclude Delaunay elements whose Voronoi c e l l s do
not touch ( share a face t )

272 %i f (pom( i4 , 1 ) >2)
273 qq=qq+1;
274 % kon_elementi ( qq , 1 ) = f i n a l ( i4 , 1 ) ;
275 % kon_elementi ( qq , 2 ) = f i n a l ( i4 , 2 ) ;
276 % o r i g i n a l { qq}= ve r t i c e ;
277

278

279 arranged=area_facet_new ( ve r t i ce , a , b , c ) ;
280 % arranged { qq}= area_facet_new ( ve r t i c e ) ;
281 f o r kk =1: leng th ( arranged )−1
282 b ro j an je=b ro j an je +1;
283 voronoiz ( b ro jan je , 1 ) = index ing ( arranged ( kk ) ) ; %voronoiz s to res

the connect ion o f vorono i elements . Each row has two node ids
t ha t form a vorono i element ( j u s t as i n f i n a l )

284 voronoiz ( b ro jan je , 2 ) = index ing ( arranged ( kk+1) ) ;
285 end
286

287 end
288

289 %code below w i l l g ive the area of the delaunay elements
290

291 i f (pom( i4 , 1 ) >2) % exclude Delaunay elements whose Voronoi c e l l s do
not touch ( share a face t )

292 %i f (pom( i4 , 1 ) >2)
293 pp=pp+1;
294 kon_elementi ( pp , 1 ) = f i n a l ( i4 , 1 ) ;%node 1 which i s a pa r t o f delaunay

element
295 kon_elementi ( pp , 2 ) = f i n a l ( i4 , 2 ) ;%node 2 which i s a pa r t o f delaunay

element
296 area_delaunay ( pp , 1 ) =area_facet ( ve r t i ce , a , b , c ) ;% the area of the

delaunay element
297

298 end
299 end
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300

301 %code to check the number o f nodes t ha t are pa r t o f a connect ion which l i e
302 %in the negat ive d i r e c t i o n o f the domain
303

304

305 neg=0;
306 f o r i =1 :1 :max( s ize ( voronoiz ) )
307 f o r j =1:1 :2
308 i f ( v ( voronoiz ( i , j ) , 1 ) <0 | | v ( voronoiz ( i , j ) , 2 ) <0 | | v ( voronoiz ( i , j )

,3 ) <0)
309 neg=neg+1;
310 end
311 end
312 end
313

314

315

316 %u p t i l l now voronoiz has the pa i r o f node ids forming vorono i elements and
v has the coord ina tes o f the vorono i nodes corresponding to t h e i r i ds .

317

318

319 %code to b r ing the coord ina tes outs ide the domain to l i e on the domain
320 %boundary
321 f o r i =1 :1 :max( s ize ( voronoiz ) )
322 f o r j =1:1 :2
323 i f ( v ( voronoiz ( i , j ) , 1 ) <0)
324 v ( voronoiz ( i , j ) , 1 ) =0;
325 end
326 i f ( v ( voronoiz ( i , j ) , 2 ) <0)
327 v ( voronoiz ( i , j ) , 2 ) =0;
328 end
329 i f ( v ( voronoiz ( i , j ) , 3 ) <0)
330 v ( voronoiz ( i , j ) , 3 ) =0;
331 end
332 i f ( v ( voronoiz ( i , j ) , 1 )>a )
333 v ( voronoiz ( i , j ) , 1 )=a ;
334 end
335 i f ( v ( voronoiz ( i , j ) , 2 )>b )
336 v ( voronoiz ( i , j ) , 2 )=b ;
337 end
338 i f ( v ( voronoiz ( i , j ) , 3 )>c )
339 v ( voronoiz ( i , j ) , 3 )=c ;
340 end
341 end
342 end
343 voronoiz=unique ( voronoiz , ’ rows ’ ) ;
344

345

346 %the code below i s f o r c a l c u l a t i n g the area of the vorono i elements using
the delaunay nodes .An

347 %impor tan t assumption i s t ha t here , on ly the connect ions having a t l e a s t 3
348 %common delaunay nodes are assigned the area and the res t o f them are not .
349 qq=0; count =0;
350 f o r i =1 :1 :max( s ize ( voronoiz ) )
351 indexmat1=indexmat { voronoiz ( i , 1 ) } ; %indexmat has the node ids o f the

delaunay nodes surrounding a vorono i node
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352 indexmat2=indexmat { voronoiz ( i , 2 ) } ;
353

354 comn=0;
355 f o r p=1 :1 :max( s ize ( indexmat1 ) )
356 f o r q=1 :1 :max( s ize ( indexmat2 ) )
357 i f ( indexmat1 ( p )==indexmat2 ( q ) )
358 comn=comn+1;
359 commonid (comn , 1 ) =indexmat1 ( p ) ;
360 commoncord (comn , : ) =A( indexmat1 ( p ) , : ) ;
361 end
362 end
363 end
364

365 rep ( i , 1 ) =comn ;
366

367 i f ( rep ( i , 1 ) >3)
368 count=count +1;
369 end
370

371

372

373 i f ( rep ( i , 1 ) >2)
374 qq=qq+1;
375 kon_elementj ( qq , 1 ) =voronoiz ( i , 1 ) ;%kon_elementj i s s t o r i n g the

connect ions t ha t have a t l e a s t 3 common po in t s
376 kon_elementj ( qq , 2 ) =voronoiz ( i , 2 ) ;
377 area_voronoi ( qq , 1 ) =area_facet ( commoncord , a , b , c ) ;
378 length_cracks ( qq , : ) =crack_ length ( commoncord ) ;
379 end
380

381 commonid ( : , 1 ) = [ ] ;
382 commoncord ( : , : ) = [ ] ;
383 end
384

385 kon_elementi=unique ( kon_elementi , ’ rows ’ ) ;
386 kon_elementj=unique ( kon_elementj , ’ rows ’ ) ;
387

388 %the problem i s t ha t we need to e l im ina te the coord ina tes t ha t l i e
389 %outs ide the domain i n v mat r i x and assign new nodal i ds to the
390 %voronoi connect ions .
391

392 index_new11=unique ( kon_elementj ( : , 1 ) ) ;
393 index_new12=unique ( kon_elementj ( : , 2 ) ) ;
394 index_new13=unique ( ve r t c a t ( index_new11 , index_new12 ) ) ;
395 f o r i =1:max( s ize ( index_new13 ) )
396 v_new ( i , 1 ) =index_new13 ( i , 1 ) ;
397 v_new ( i , 2 : 4 ) =v ( index_new13 ( i , 1 ) , : ) ;
398 end
399 %v_new conta ins the vorono i nodal i ds i n the f i r s t column and t h e i r
400 %coord ina tes i n the subsequent columns
401 f o r i =1:max( s ize ( v_new ) )
402 v_t rans ( v_new ( i , 1 ) ,1 )= i ;
403 v_t rans ( v_new ( i , 1 ) , 2 : 4 ) =v_new ( i , 2 : 4 ) ;
404 end
405 %in v_t rans the index represents the o ld node id and the f i r s t
406 %column represents the new node id
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407 f o r i =1:max( s ize ( kon_elementj ) )
408 kon_elementj_new ( i , 1 ) =v_t rans ( kon_elementj ( i , 1 ) ,1 ) ;
409 kon_elementj_new ( i , 2 ) =v_t rans ( kon_elementj ( i , 2 ) ,1 ) ;
410 end
411 v=v_new ( : , 2 : 4 ) ;
412 kon_elementj=kon_elementj_new ;
413

414 %the code below i s to ca l cu l a t e the volume
415

416

417 %the code below s to res the nodal i ds o f the delaunay nodes t ha t
418 %surround a vorono i node
419 f o r i =1:max( s ize ( v ) )
420 indexmat_new { i }= indexmat { v_new ( i , 1 ) } ;
421 end
422 %the code below the delaunay node coord ina tes surrounding a vorono i
423 %node
424 f o r i =1:max( s ize ( indexmat_new ) )
425 f o r j =1: leng th ( indexmat_new { i } )
426 coordmat { i } ( j , 1 ) =A( indexmat_new { i } ( 1 , j ) ,1 ) ;
427 coordmat { i } ( j , 2 ) =A( indexmat_new { i } ( 1 , j ) ,2 ) ;
428 coordmat { i } ( j , 3 ) =A( indexmat_new { i } ( 1 , j ) ,3 ) ;
429 end
430 end
431 %coordmat has only 4x3 or 3x3 en t r i e s
432

433 %the f o l l ow i ng code saves the delaunay node ids surrounding a
vorono i

434 %node
435 f o r i =1: leng th ( indexmat_new )
436 f o r j =1: leng th ( indexmat_new { i } )
437 indexmat_open ( i , j ) =indexmat_new { i } ( 1 , j ) ;
438 end
439 end
440 %the f o l l ow i ng code checks whether i f two vorono i nodes are

surrounded
441 %by the same 4 delaunay nodes which tu rns out t ha t i t i s not the case

.
442 count_rep_nodes =0;
443 f o r i =1: leng th ( indexmat_open )−1
444 f o r j = i +1: leng th ( indexmat_open )
445 i f ( indexmat_open ( i , : ) ==indexmat_open ( j , : ) )
446 count_rep_nodes=count_rep_nodes +1;
447 end
448 end
449 end
450

451

452 %th i s code ca l cu l a t es the volume of the te t rahedra t ha t
surrounds

453 %a vorono i node
454 f o r i =1:max( s ize ( coordmat ) )
455 i f ( l eng th ( coordmat { i } ) <4)
456 volume ( i , 1 ) =0;
457 else
458 P1=coordmat { i } ( 1 , : ) ;
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459 P2=coordmat { i } ( 2 , : ) ;
460 P3=coordmat { i } ( 3 , : ) ;
461 P4=coordmat { i } ( 4 , : ) ;
462 volume ( i , 1 ) =volume_tetrahedra (P1 ,P2 ,P3 ,P4) ;
463 end
464 end
465

466

467 %{
468 %the f o l l ow i ng code t e l l s us t ha t there i s more than one vorono i
469 %element shar ing the same common delaunay face which i n the end

tu rns
470 %out t ha t i t i s the same element but w i th nodal pos i t i o ns s tored i n
471 %the reverse order .
472 count_del =0;
473 count =1;
474 f o r i =1 : ( leng th ( common_del_nodes )−1)
475 f o r j =( i +1) : leng th ( common_del_nodes )
476 i f ( common_del_nodes ( i , 1 ) ==common_del_nodes ( j , 1 ) )
477 i f ( common_del_nodes ( i , 2 ) ==common_del_nodes ( j , 2 ) )
478 i f ( common_del_nodes ( i , 3 ) ==common_del_nodes ( j , 3 ) )
479 count_del=count_del +1;
480 count_del_score ( count , 1 ) = i ;
481 count_del_score ( count , 2 ) = j ;
482 count=count +1;
483 end
484 end
485 end
486 end
487 end
488 %th i s code proves t ha t a l l the elements shar ing the common delaunay
489 %face are the same j u s t the nodes w r i t t e n i n the reverse order
490 f o r i =1: leng th ( count_del_score )
491 repeat_elements ( i , 1 : 2 ) =kon_elementj ( count_del_score ( i , 1 ) , : ) ;
492 repeat_elements ( i , 3 : 4 ) =kon_elementj ( count_del_score ( i , 2 ) , : ) ;
493 end
494 %}
495

496 %hence there i s no other element shar ing the common delaunay face .
497 %Hence there i s on ly one element passing through a delaunay face . ( So
498 %why does i t looks l i k e i n paraview tha t there i s more than one
499 %voronoi element on the same delaunay face on the edges?????)
500

501 %the code below gives the element ids t ha t have been repeated
502 count_rep_ele =1;
503 f o r i =1: leng th ( kon_elementj )
504 f o r j = i +1: leng th ( kon_elementj )
505 i f ( kon_elementj ( i , 1 ) ==kon_elementj ( j , 2 ) )
506 i f ( kon_elementj ( i , 2 ) ==kon_elementj ( j , 1 ) )
507 index_rep_ele ( count_rep_ele , 1 ) = j ;
508 count_rep_ele=count_rep_ele +1;
509 end
510 end
511 end
512 end
513 index_rep_ele=unique ( index_rep_ele ) ;
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514

515 %the code below rep laces the value of the en t r i e s i n the repeated
516 %voronoi element rows wi th zeros and then de le te the rows con ta in ing

zeros
517 count_rep_ele =1;
518 f o r i =1: leng th ( kon_elementj )
519 i f ( i == index_rep_ele ( count_rep_ele , 1 ) )
520 kon_element j_rep_ele ( i , : ) =0;
521 count_rep_ele=count_rep_ele +1;
522 else
523 kon_element j_rep_ele ( i , : ) =kon_elementj ( i , : ) ;
524 end
525 end
526 kon_elementj = [ ] ;
527 kon_elementj= kon_element j_rep_ele ( any ( kon_element j_rep_ele , 2 ) , : ) ;
528

529

530 %the code below i s de l e t i ng the repeated vorono i elements i n the
area mat r i x

531 count_rep_ele =1;
532 f o r i =1: leng th ( area_voronoi )
533 i f ( i == index_rep_ele ( count_rep_ele , 1 ) )
534 area_voronoi_rep_ele ( i , : ) =0;
535 count_rep_ele=count_rep_ele +1;
536 else
537 area_voronoi_rep_ele ( i , : ) =area_voronoi ( i , : ) ;
538 end
539 end
540 area_voronoi = [ ] ;
541 area_voronoi= area_voronoi_rep_ele ( any ( area_voronoi_rep_ele , 2 ) , : ) ;
542

543

544

545 %the code below conat ins the common delaunay node ids f o r two
vorono i

546 %element forming nodes .
547 f o r i =1:max( s ize ( kon_elementj ) )
548 comn=1;
549 f o r j =1:max( s ize ( indexmat_new { kon_elementj ( i , 1 ) } ) )
550 f o r k=1:max( s ize ( indexmat_new { kon_elementj ( i , 2 ) } ) )
551 i f ( indexmat_new { kon_elementj ( i , 2 ) } ( 1 , k )==indexmat_new {

kon_elementj ( i , 1 ) } ( 1 , j ) )
552 common_del_nodes ( i , comn)=indexmat_new { kon_elementj ( i

, 2 ) } ( 1 , k ) ;
553 comn=comn+1;
554 end
555 end
556 end
557 end
558

559

560 %code to get the volume con t r i b u t i o n o f each node in a vorono i
561 %element
562 f o r i =1: leng th ( kon_elementj )
563 f o r j =1:2
564 P1=v ( kon_elementj ( i , j ) , : ) ;
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565 P2=A( common_del_nodes ( i , 1 ) , : ) ;
566 P3=A( common_del_nodes ( i , 2 ) , : ) ;
567 P4=A( common_del_nodes ( i , 3 ) , : ) ;
568 volume_node ( i , j ) =volume_tetrahedra (P1 ,P2 ,P3 ,P4) ;
569 end
570

571 end
572 count_vol_rep ( 1 : leng th ( v ) ,1 ) =1;
573 f o r i =1: leng th ( kon_elementj )
574 vo l_rep ( kon_elementj ( i , 1 ) , count_vol_rep ( kon_elementj ( i , 1 ) ,1 ) )=

volume_node ( i , 1 ) ;
575 vo l_rep ( kon_elementj ( i , 2 ) , count_vol_rep ( kon_elementj ( i , 2 ) ,1 ) )=

volume_node ( i , 2 ) ;
576 count_vol_rep ( kon_elementj ( i , 1 ) ,1 )=count_vol_rep ( kon_elementj ( i

, 1 ) ,1 ) +1;
577 count_vol_rep ( kon_elementj ( i , 2 ) ,1 )=count_vol_rep ( kon_elementj ( i

, 2 ) ,1 ) +1;
578 end
579 vo l_rep ( : , 5 ) =vo l_rep ( : , 1 ) +vo l_rep ( : , 2 ) +vo l_rep ( : , 3 ) +vo l_rep ( : , 4 ) ;
580 vo l_rep ( : , 6 ) =volume ( : , 1 ) ;
581 vo l_rep ( : , 7 : 9 ) =v ( : , 1 : 3 ) ;
582 count_rep_ind_vol_rep =1;
583 f o r i =1: leng th ( volume_node )
584 f o r j =1:2
585 i f ( volume_node ( i , j ) ==0)
586 vol_node ( i , j ) =0;
587 else
588 vol_node ( i , j ) =volume_node ( i , j ) / vo l_rep ( kon_elementj ( i , j )

,5 ) * vo l_rep ( kon_elementj ( i , j ) , 6 ) ;
589 end
590 end
591 end
592 %{
593 %the code below t e l l s i f two vorono i elements share the same set

o f
594 %common delaunay nodes or not which tu rns out to be not
595 count_rep_common_del_nodes=1;
596 f o r i =1: leng th ( common_del_nodes )
597 f o r j = i +1: leng th ( common_del_nodes )
598 i f ( common_del_nodes ( i , 1 ) ==common_del_nodes ( j , 1 ) | |

common_del_nodes ( i , 1 ) ==common_del_nodes ( j , 2 ) | |
common_del_nodes ( i , 1 ) ==common_del_nodes ( j , 3 ) )

599 i f ( common_del_nodes ( i , 2 ) ==common_del_nodes ( j , 1 ) | |
common_del_nodes ( i , 2 ) ==common_del_nodes ( j , 2 ) | |
common_del_nodes ( i , 2 ) ==common_del_nodes ( j , 3 ) )

600 i f ( common_del_nodes ( i , 3 ) ==common_del_nodes ( j , 1 ) | |
common_del_nodes ( i , 3 ) ==common_del_nodes ( j , 2 ) | |
common_del_nodes ( i , 3 ) ==common_del_nodes ( j , 3 ) )

601 index_rep_common_del_nodes (
count_rep_common_del_nodes , 1 ) = j ;

602 count_rep_common_del_nodes=
count_rep_common_del_nodes+1;

603 end
604 end
605 end
606 end
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607 end
608 index_rep_common_del_nodes=unique ( index_rep_common_del_nodes ) ;
609 %}
610

611 %code to check i f there are nodes wi th a negat ive coord ina te i n a
612 %connect ion ( which tu rns out t ha t there arent ! )
613 %count1 =0;
614 %count2 =0;
615 %fo r i =1 :1 :max( s ize ( voronoiz ) )
616 % i f ( v ( voronoiz ( i , 1 ) ) <−0.00000000000001)
617 % count1=count1 +1;
618 % id= i ;
619 % break ;
620 % end
621 % i f ( v ( voronoiz ( i , 2 ) ) <−0.00000000000001)
622 % count2=count2 +1;
623 % id= i ;
624 % break ;
625 %end
626 %end
627 %%%%%%% VORONOIZ−VORONOI FACETS; V−THEIR COORDINATES ! ! ! %%%%%%%%%
628 %v ( 1 , : ) = [ rand (1 ) , rand (1 ) / 2 , rand (1 ) / 3 ] ;
629 % fo r i i =1:qq
630 % abc= o r i g i n a l { i i } ;
631 % fo r j =1:max( s ize ( o r i q i n a l { i i } ) )
632 % fo r k=1: leng th ( v )
633 % i f abc ( j , : ) ==v ( k , : )
634 % numeraci ja
635

636 % fo r i =1:qq
637 % fo r j =1:
638 save ( ’ v . mat ’ , ’ v ’ ) ; %nodal coord ina tes o f end po in t s o f f ace t ve r t i c e s
639 save ( ’ e lements_voronoi . mat ’ , ’ kon_elementj ’ ) ;% connec t i v i t y o f those end

po in t s / vorono i elements
640 save ( ’ area_voronoi . mat ’ , ’ area_voronoi ’ ) ; %area of the vorono i elements
641 save ( ’ elements_delaunay . mat ’ , ’ kon_elementi ’ ) ;%connec t i v i t y o f the delaunay

elements
642 save ( ’ area_delaunay . mat ’ , ’ area_delaunay ’ ) ;%area of the delaunay elements
643 save ( ’ length_cracks . mat ’ , ’ length_cracks ’ ) ;%lengths o f cracks around a

vorono i element
644 save ( ’ vol_node . mat ’ , ’ vol_node ’ ) ;%nodal c on t r i b u t i o n o f volume in an

element
645 f d i 1 =fopen ( ’ Number_of_delaunay_elements_generated . t x t ’ , ’w ’ ) ;
646 f p r i n t f ( f d i1 , ’%g ’ ,max( s ize ( kon_elementi ) ) ) ;
647 f p r i n t f ( f d i1 , ’ \ n ’ ) ;
648 t ime=toc /3600;
649

650 f p r i n t f ( f d i1 , ’ t ime=%f ’ , t ime ) ;
651 f c l o se ( f d i 1 ) ;
652

653 f d i 2 =fopen ( ’ To ta l execut ion t ime . t x t ’ , ’w ’ ) ;
654 % f p r i n t f ( f d i , ’%g ’ ,max( s ize ( kon_elementi ) ) ) ;
655 f p r i n t f ( f d i2 , ’ \ n ’ ) ;
656 t ime=toc /3600;
657 %
658 f p r i n t f ( f d i2 , ’ t ime=%f ’ , t ime ) ;
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659 f c l o se ( f d i 2 ) ;

The functions used in this script are given below:

1 f unc t i on [ area3 ]= area_facet ( ve r t i ce , a , b , c )
2 % Calcu la te the area of a 3D convex h u l l using %
3 % a p ro j e c t i o n o f a polygon onto a plane %
4 % Snyder & Barr 1987 %
5 % In t e r n e t page :
6 % ht t p : / / s o f t s u r f e r . com/ Archive / algor i thm_0101 / algor i thm_0101 . htm#3D%20

Polygons
7 % Inpu t data :
8 % Ver t i ce coord ina tes i n 3D
9 % Output data :
10 % area3− Area of the convex face t i n 3D
11 a ;
12 b ;
13 c ;
14 ve r t i c e ; % f u l l vec to r o f coord ina tes
15 % F i r s t 3 po in t s are used to ca l cu l a t e the un i t normal %
16 A=ve r t i c e ( 1 , : ) ;
17 B=ve r t i c e ( 2 , : ) ;
18 C=ve r t i c e ( 3 , : ) ;
19

20 v1=B−A; % vec to r 1
21 v2=C−A; % vec to r 2
22

23 normal=cross ( v1 , v2 ) ; % ca l cu l a t e the normal vec to r using the cross product
24

25 l = sq r t ( normal ( 1 ) ^2+normal ( 2 ) ^2+normal ( 3 ) ^2) ; % normal vec to r leng th ;
26

27 uni t_normal=normal / l ; % un i t normal
28

29 [ a1 b1 ]=max( abs ( un i t_normal ) ) ; % f i n d max abs value i n the un i t normal and
i t s pos i t i o n

30

31 % a− abs max value i n the un i t vec to r %
32 % b− i t s pos i t i o n %
33 f o r i =1 :1 :max( s ize ( v e r t i c e ) )
34 i f ( v e r t i c e ( i , 1 ) <0)
35 ve r t i c e ( i , 1 ) =0;
36 end
37 i f ( v e r t i c e ( i , 2 ) <0)
38 ve r t i c e ( i , 2 ) =0;
39 end
40 i f ( v e r t i c e ( i , 3 ) <0)
41 ve r t i c e ( i , 3 ) =0;
42 end
43 i f ( v e r t i c e ( i , 1 ) >a )
44 ve r t i c e ( i , 1 ) =a ;
45 end
46 i f ( v e r t i c e ( i , 2 ) >b )
47 ve r t i c e ( i , 2 ) =b ;
48 end
49 i f ( v e r t i c e ( i , 3 ) >c )
50 ve r t i c e ( i , 3 ) =c ;
51 end
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52 end
53

54 i f b1==1
55 [K , area ]= convhu l l ( v e r t i c e ( : , 2 ) , v e r t i c e ( : , 3 ) ) ;
56 e l s e i f b1==2
57 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 3 ) ) ;
58 else
59 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 2 ) ) ;
60 end
61

62 c l ea r ( ’K ’ ) ;
63 area3=area / a1 ;
64

65 % Get the area i n 3D %

1 f unc t i on [K]= area_facet_new ( ve r t i ce , a , b , c )
2 % Calcu la te the area of a 3D convex h u l l using %
3 % a p ro j e c t i o n o f a polygon onto a plane %
4 % Snyder & Barr 1987 %
5 % In t e r n e t page :
6 % ht t p : / / s o f t s u r f e r . com/ Archive / algor i thm_0101 / algor i thm_0101 . htm#3D%20

Polygons
7 % Inpu t data :
8 % Ver t i ce coord ina tes i n 3D
9 % Output data :
10 % area3− Area of the convex face t i n 3D
11 a ;
12 b ;
13 c ;
14 ve r t i c e ; % f u l l vec to r o f coord ina tes
15 % F i r s t 3 po in t s are used to ca l cu l a t e the un i t normal %
16 A=ve r t i c e ( 1 , : ) ;
17 B=ve r t i c e ( 2 , : ) ;
18 C=ve r t i c e ( 3 , : ) ;
19

20 v1=B−A; % vec to r 1
21 v2=C−A; % vec to r 2
22

23 normal=cross ( v1 , v2 ) ; % ca l cu l a t e the normal vec to r using the cross product
24

25 l = sq r t ( normal ( 1 ) ^2+normal ( 2 ) ^2+normal ( 3 ) ^2) ; % normal vec to r leng th ;
26

27 uni t_normal=normal / l ; % un i t normal
28

29 [ a1 b1 ]=max( abs ( un i t_normal ) ) ; % f i n d max abs value i n the un i t normal and
i t s pos i t i o n

30

31 % a− abs max value i n the un i t vec to r %
32 % b− i t s pos i t i o n %
33

34

35 f o r i =1 :1 :max( s ize ( v e r t i c e ) )
36 i f ( v e r t i c e ( i , 1 ) <0)
37 ve r t i c e ( i , 1 ) =0;
38 end
39 i f ( v e r t i c e ( i , 2 ) <0)
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40 ve r t i c e ( i , 2 ) =0;
41 end
42 i f ( v e r t i c e ( i , 3 ) <0)
43 ve r t i c e ( i , 3 ) =0;
44 end
45 i f ( v e r t i c e ( i , 1 ) >a )
46 ve r t i c e ( i , 1 ) =a ;
47 end
48 i f ( v e r t i c e ( i , 2 ) >b )
49 ve r t i c e ( i , 2 ) =b ;
50 end
51 i f ( v e r t i c e ( i , 3 ) >c )
52 ve r t i c e ( i , 3 ) =c ;
53 end
54 end
55

56

57

58 i f b1==1
59 [K , area ]= convhu l l ( v e r t i c e ( : , 2 ) , v e r t i c e ( : , 3 ) ) ;
60 e l s e i f b1==2
61 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 3 ) ) ;
62 else
63 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 2 ) ) ;
64 end
65

66 c l ea r ( ’ area ’ ) ;
67

68

69 % Get the area i n 3D %

1 f unc t i on [ area3 ]= area_facet ( v e r t i c e )
2 % Calcu la te the area of a 3D convex h u l l using %
3 % a p ro j e c t i o n o f a polygon onto a plane %
4 % Snyder & Barr 1987 %
5 % In t e r n e t page :
6 % ht t p : / / s o f t s u r f e r . com/ Archive / algor i thm_0101 / algor i thm_0101 . htm#3D%20

Polygons
7 % Inpu t data :
8 % Ver t i ce coord ina tes i n 3D
9 % Output data :
10 % area3− Area of the convex face t i n 3D
11

12 ve r t i c e ; % f u l l vec to r o f coord ina tes
13 % F i r s t 3 po in t s are used to ca l cu l a t e the un i t normal %
14 A=ve r t i c e ( 1 , : ) ;
15 B=ve r t i c e ( 2 , : ) ;
16 C=ve r t i c e ( 3 , : ) ;
17

18 v1=B−A; % vec to r 1
19 v2=C−A; % vec to r 2
20

21 normal=cross ( v1 , v2 ) ; % ca l cu l a t e the normal vec to r using the cross product
22

23 l = sq r t ( normal ( 1 ) ^2+normal ( 2 ) ^2+normal ( 3 ) ^2) ; % normal vec to r leng th ;
24
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25 uni t_normal=normal / l ; % un i t normal
26

27 [ a b ]=max( abs ( un i t_normal ) ) ; % f i n d max abs value i n the un i t normal and
i t s pos i t i o n

28

29 % a− abs max value i n the un i t vec to r %
30 % b− i t s pos i t i o n %
31

32 i f b==1
33 [K , area ]= convhu l l ( v e r t i c e ( : , 2 ) , v e r t i c e ( : , 3 ) ) ;
34 e l s e i f b==2
35 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 3 ) ) ;
36 else
37 [K , area ]= convhu l l ( v e r t i c e ( : , 1 ) , v e r t i c e ( : , 2 ) ) ;
38 end
39

40 c l ea r ( ’K ’ ) ;
41

42 area3=area / a ;
43

44 % Get the area i n 3D %

1 f unc t i on [ volume ] = volume_tetrahedra ( P1 ,P2 ,P3 ,P4 )
2 %VOLUME_TETRAHEDRA Summary o f t h i s f unc t i on goes here
3 % Deta i led exp lana t ion goes here
4

5 volume=1/6*abs ( dot ( cross (P2−P1 ,P3−P1) ,P4−P1) ) ;
6 end

Generation of an Artificial Discrete Crack
This section contains the script used generate an artificial crack in the discretized domain.

1 %in t h i s code an a r t i f i c i a l wedge type crack i s generated so t ha t i t can
be

2 %viewed in paraview . In the second pa r t o f the code , the crack width i s
3 %assigned to the delaunay element and f u r t h e r to the vorono i elements
4

5 c l ea r ;
6

7 load elements_delaunay . mat % load the r e s u l t from Delaunay ’ s t r i a n g u l a t i o n
8 load area_delaunay . mat ; % the same
9 load v . mat ;
10 load elements_voronoi . mat ;
11 load area_voronoi . mat ;
12 load length_cracks . mat ;
13 load common_del_nodes . mat ;
14 load common_del_ele . mat ;
15 f i l e i d =fopen ( ’mesh . opt ’ , ’ r ’ ) ;
16 OPT= fscan f ( f i l e i d , ’%g ’ ,5 ) ;
17 NoN=OPT(1 ) ; % Tota l number o f nodes
18 f c l o se ( f i l e i d ) ;
19 c l ea r ( ’OPT ’ ) ;
20 f d i 1 =fopen ( ’ Number_of_delaunay_elements_generated . t x t ’ , ’ r ’ ) ;
21 NoE= fscan f ( fd i1 , ’%g ’ ,1 ) ; % t o t a l number o f elements i n the t r i a n g u l a t i o n
22 f c l o se ( f d i 1 ) ;
23
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24 f i d 1 =fopen ( ’ nodes3D . dat ’ , ’ r ’ ) ; % load the i n i t i a l node coord ina tes
25

26 A= fscan f ( f i d1 , ’%f ’ , [ 4 NoN ] ) ; % t h i s needs to be ajdusted i f the o ve r a l l
number o f nodes i s changed , i . e . [4 NNODES]

27 A=A ’ ;
28 A=A( : , 2 : 4 ) ; % the i n i t i a l node coord ina tes
29 f c l o se ( f i d 1 ) ;
30 %%
31 %th i s pa r t o f the code i s f o r making the paraview f i l e so t ha t the cracked
32 %elements can be v i sua l i z ed
33 analys_step =1;
34 crack_depth =75;
35 crack_z_lower =70;
36 crack_z_mid =75;
37 crack_z_upper =80;
38 count_crack =1;
39 f o r i =1: leng th ( kon_elementi )
40 i f (A( kon_elementi ( i , 1 ) ,3 )>=crack_z_mid && A( kon_elementi ( i , 1 ) ,3 )<=

crack_z_upper && A( kon_elementi ( i , 1 ) ,1 )<=crack_depth )
41 i f (A( kon_elementi ( i , 2 ) ,3 )>=crack_z_lower && A( kon_elementi ( i , 2 ) ,3 )

<=crack_z_mid && A( kon_elementi ( i , 2 ) ,1 )<=crack_depth )
42 elements_cracked ( count_crack , 1 ) =kon_elementi ( i , 1 ) ;
43 elements_cracked ( count_crack , 2 ) =kon_elementi ( i , 2 ) ;
44 element_crack_id ( count_crack , 1 ) = i ;
45 count_crack=count_crack +1;
46 end
47 end
48 i f (A( kon_elementi ( i , 2 ) ,3 )>=crack_z_mid && A( kon_elementi ( i , 2 ) ,3 )<=

crack_z_upper && A( kon_elementi ( i , 2 ) ,1 )<=crack_depth )
49 i f (A( kon_elementi ( i , 1 ) ,3 )>=crack_z_lower && A( kon_elementi ( i , 1 ) ,3 )

<=crack_z_mid && A( kon_elementi ( i , 1 ) ,1 )<=crack_depth )
50 elements_cracked ( count_crack , 1 ) =kon_elementi ( i , 1 ) ;
51 elements_cracked ( count_crack , 2 ) =kon_elementi ( i , 2 ) ;
52 element_crack_id ( count_crack , 1 ) = i ;
53 count_crack=count_crack +1;
54 end
55 end
56 end
57

58 %element_crack_id conta ins the i d o f the delaunay elements t ha t i s cracked
59 count_nodes =1;
60 f o r i =1 :1 : leng th ( elements_cracked )
61 nodes_cracked_temp ( count_nodes , 2 : 4 ) =A( elements_cracked ( i , 1 ) , 1 : 3 ) ;
62 nodes_cracked_temp ( count_nodes , 1 ) =elements_cracked ( i , 1 ) ;
63 count_nodes=count_nodes +1;
64 nodes_cracked_temp ( count_nodes , 2 : 4 ) =A( elements_cracked ( i , 2 ) , 1 : 3 ) ;
65 nodes_cracked_temp ( count_nodes , 1 ) =elements_cracked ( i , 2 ) ;
66 count_nodes=count_nodes +1;
67

68 end
69

70 nodes_cracked_temp=unique ( nodes_cracked_temp , ’ rows ’ ) ;
71 nodes_cracked=nodes_cracked_temp ( : , 2 : 4 ) ;
72 f o r i =1: leng th ( nodes_cracked_temp )
73 node_change_temp ( nodes_cracked_temp ( i , 1 ) ,1 )= i ;
74 end
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75 f o r i =1: leng th ( elements_cracked )
76 elements_cracked_temp ( i , 1 ) =node_change_temp ( elements_cracked ( i , 1 ) ,1 ) ;
77 elements_cracked_temp ( i , 2 ) =node_change_temp ( elements_cracked ( i , 2 ) ,1 ) ;
78 end
79 elements_cracked = [ ] ;
80 elements_cracked=elements_cracked_temp ;
81 c l ea r ( ’ elements_cracked_temp ’ ) ;
82 c l ea r ( ’ node_change_temp ’ ) ;
83

84

85

86

87 %t i l l here now we have two matr ices , elements_cracked and nodes_cracked .
88 %elements_cracked conta ins the set o f nodal i ds t ha t from the cracked
89 %element and nodes_cracked has the nodal coord ina tes o f the cracked
90 %element .
91

92

93 fname1= s p r i n t f ( ’ cracked_%d . e le ’ , analys_step ) ;
94 f i l e =fopen ( fname1 , ’w ’ ) ;
95

96 p=0;
97

98 % L1=zeros (NoE, 1 ) ;
99 % fo r i =1:NoE
100 % disp ( i /NoE*100) ;
101 % L1 ( i ) = sq r t ( (A( kon_elementi ( i , 1 ) ,1 )−A( kon_elementi ( i , 2 ) ,1 ) ) ^2+(A(

kon_elementi ( i , 1 ) ,2 )−A( kon_elementi ( i , 2 ) ,2 ) ) ^2+(A( kon_elementi ( i , 1 ) ,3 )−
A( kon_elementi ( i , 2 ) ,3 ) ) ^2) ;

102 % end
103

104 f o r i =1: leng th ( elements_cracked )
105 n1=elements_cracked ( i , 1 ) ;
106 n2=elements_cracked ( i , 2 ) ;
107 r ( i ) =1;
108 % i f (AA( n1 )==0 && AA( n2 ) ==0)
109 % f p r i n t f ( f i l e , ’%g %g %g %f %g %f %g %g %f %f %f %f %g %g %g %g

%f %g %g ’ , i , n1 , n2 , r ( i ) ,0 ,1 .1 ,1 ,1 , c h a r a c t e r i s t i c s (1 ,2 ) , c h a r a c t e r i s t i c s
(1 ,3 ) , c h a r a c t e r i s t i c s (1 ,4 ) , c h a r a c t e r i s t i c s (1 ,5 ) ,0 ,2 ,1 ,1 ,0 .05 ,1 ,
c h a r a c t e r i s t i c s (1 ,1 ) ) ; %1

110 f p r i n t f ( f i l e , ’%g %g %g %f %g %f %g %g %f %f %f %f %g %g %g %f
%f %g %g ’ , i , n1 , n2 , r ( i )
,0 ,1 .1 ,3 ,1 ,46 ,19.1667 ,0.0035 , −0.035 ,0 ,2 ,1 ,0 .75 ,0 .75 ,1 ,1) ;
%1

111 f p r i n t f ( f i l e , ’ \ n ’ ) ;
112 % e l s e i f (AA( n1 )==0 && AA( n2 ) ==1) | | (AA( n2 ) ==1 && AA( n1 ) ==0)
113 % f p r i n t f ( f i l e , ’%g %g %g %f %g %f %g %g %f %f %f %f %g %g %g %g

%f %g %g ’ , i , n1 , n2 ,0 .25 ,0 ,1 .1 ,1 ,1 ,15 ,6 ,0 .001 , −5 ,0 ,2 ,1 ,1 ,0 .05 ,1 ,2 ) ;
114 % f p r i n t f ( f i l e , ’ \ n ’ ) ;
115 % else
116 % f p r i n t f ( f i l e , ’%g %g %g %f %g %f %g %g %f %f %f %f %g %g %g %g

%f %g %g ’ , i , n1 , n2 ,0 .25 ,0 ,1 .1 ,1 ,1 ,70 ,28 ,0 .008 , −5 ,0 ,2 ,1 ,1 ,0 .05 ,1 ,3) ;
117 % f p r i n t f ( f i l e , ’ \ n ’ ) ;
118 % end
119 end
120
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121 f c l o se ( f i l e ) ;
122

123 fname2= s p r i n t f ( ’ cracked_%d . nod ’ , analys_step ) ;
124 f i d 7 =fopen ( fname2 , ’w ’ ) ;
125 f o r i =1: leng th ( nodes_cracked )
126 f p r i n t f ( f i d7 , ’%g %f %f %f %g ’ , i , nodes_cracked ( i , 1 ) , nodes_cracked ( i , 2 ) ,

nodes_cracked ( i , 3 ) ,1 ) ;
127 f p r i n t f ( f i d7 , ’ \ n ’ ) ;
128 end
129

130 f c l o se ( f i d 7 ) ;
131

132 %%
133 %th i s pa r t o f the code inpu ts element_crack_id from the prev ious sec t ion

o f
134 %the code which has the ids o f the de le ted elements . That i s requ i red to

assign crack widths to the elements .
135

136 %the elements are assigned the crack width according to t h e i r x−coord ina te
.

137 %As the x−coorda in te increases , the crack width decreases . The process
used

138 %here i s t ha t a delaunay element i s taken and the average of the
139 %x−coord ina te o f both o f i t ’ s nodes i s ca l cu la ted . Then the crack width i s
140 %assigned according to l i n e a r i n t e r p o l a t i o n o f the crack width .
141

142

143 max_crack_width =0 .2 ;
144 min_crack_width =0 .2 ;%using these values , the crack i s a p lanar crack wi th

constant width
145

146 f o r i =1: leng th ( element_crack_id )
147 element_crack_width ( i , 1 ) =element_crack_id ( i , 1 ) ;
148 avg_element_depth =0.5* (A( kon_elementi ( e lement_crack_id ( i , 1 ) ,1 ) ,1 )+A(

kon_elementi ( e lement_crack_id ( i , 1 ) ,2 ) ,1 ) ) ;
149 element_crack_width ( i , 2 ) =max_crack_width−abs ( max_crack_width−

min_crack_width ) *avg_element_depth / crack_depth ;
150 end
151 %element_crack_width conta ins i n the 1 s t column the delaunay element i d

and
152 %in the 2nd column the crack width
153

154

155 %here the crack leng ths are ca l cu la ted f o r a l l the vorono i elements
156 s ize_vorono i=max( s ize ( kon_elementj ) ) ;
157 voronoi_crack=zeros ( s ize_voronoi , 6 ) ;
158 f o r i =1: leng th ( kon_elementj )
159 ve r t i c e ( 1 , : ) =A( common_del_nodes ( i , 1 ) , : ) ;
160 ve r t i c e ( 2 , : ) =A( common_del_nodes ( i , 2 ) , : ) ;
161 ve r t i c e ( 3 , : ) =A( common_del_nodes ( i , 3 ) , : ) ;
162

163 voronoi_crack ( i , 1 : 3 ) =crack_ length ( v e r t i c e ) ;
164 ve r t i c e = [ ] ;
165 end
166

167
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168

169 %here the crack widths are assigned to the vorono i elements according to
170 %the cracked delaunay elements .
171 f o r i =1: leng th ( element_crack_width )
172 f o r j =1: leng th ( kon_elementj )
173 i f ( e lement_crack_width ( i , 1 ) ==common_del_ele ( j , 1 ) )
174 voronoi_crack ( j , 4 ) =element_crack_width ( i , 2 ) ;
175 end
176 i f ( e lement_crack_width ( i , 1 ) ==common_del_ele ( j , 2 ) )
177 voronoi_crack ( j , 5 ) =element_crack_width ( i , 2 ) ;
178 end
179 i f ( e lement_crack_width ( i , 1 ) ==common_del_ele ( j , 3 ) )
180 voronoi_crack ( j , 6 ) =element_crack_width ( i , 2 ) ;
181 end
182 end
183 end
184

185 f i l e 2 =fopen ( ’ Inpu t_vorono i_c racks_ar t . c r ’ , ’w ’ ) ;
186 f o r i =1: leng th ( voronoi_crack )
187 f p r i n t f ( f i l e 2 , ’%f %f %f %f %f %f ’ , voronoi_crack ( i , 1 ) , voronoi_crack ( i

, 2 ) , voronoi_crack ( i , 3 ) , voronoi_crack ( i , 4 ) , voronoi_crack ( i , 5 ) ,
voronoi_crack ( i , 6 ) ) ;

188 f p r i n t f ( f i l e 2 , ’ \ n ’ ) ;
189 end
190 f c l o se ( f i l e 2 ) ;
191

192 %the vorono i elements t ha t are passing through a cracked delaunay element
193 %should have the moisture content o f both i t ’ s nodes as 1 at a l l t imes . So
194 %a l i s t o f a l l the vorono i nodes i s requ i red t ha t have to be maintained at

the same moisture content throughout .
195 %th i s l i s t o f nodes w i l l be i n Bo_crack
196 count_bo_node=1;
197 count_crack_ele =0;
198 f o r i =1: leng th ( voronoi_crack )
199 i f ( voronoi_crack ( i , 4 ) ==0 && voronoi_crack ( i , 5 ) ==0 && voronoi_crack ( i

, 6 ) ==0)
200 f i l l e r =1;
201 else
202 Bo_crack ( count_bo_node , 1 ) =kon_elementj ( i , 1 ) ;
203 count_bo_node=count_bo_node+1;
204 Bo_crack ( count_bo_node , 1 ) =kon_elementj ( i , 2 ) ;
205 count_bo_node=count_bo_node+1;
206 count_crack_ele=count_crack_ele +1;
207 end
208 end
209 Bo_crack=unique ( Bo_crack ) ;
210

211 f i l e 3 =fopen ( ’ Bo_crack_art . c r ’ , ’w ’ ) ;
212 f o r i =1: leng th ( Bo_crack )
213 f p r i n t f ( f i l e 3 , ’%g ’ , Bo_crack ( i , 1 ) ) ;
214 f p r i n t f ( f i l e 3 , ’ \ n ’ ) ;
215 end
216 f c l o se ( f i l e 3 ) ;
217

218 count_vor_crack_ele =1;
219 f o r i =1: leng th ( voronoi_crack )
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220 i f ( voronoi_crack ( i , 4 ) ==0 && voronoi_crack ( i , 5 ) ==0 && voronoi_crack ( i
, 6 ) ==0)

221 f i l l e r =1;
222 else
223 vor_crack_ele ( count_vor_crack_ele , 1 ) = i ;
224 count_vor_crack_ele=count_vor_crack_ele +1;
225 end
226 end
227

228 save ( ’ e lement_crack_id . mat ’ , ’ e lement_crack_id ’ ) ;
229 save ( ’ vor_crack_ele . mat ’ , ’ vor_crack_ele ’ ) ;

Projection of Aggregates on Voronoi Elements
This section contains the script used for the projection of spherical aggregates on Voronoi elements.

The main script is given below:

1 c l ea r a l l
2 c l c
3 t i c
4

5 load elements_delaunay . mat % load the r e s u l t from Delaunay ’ s t r i a n g u l a t i o n
6 load area_delaunay . mat ; % the same
7 load v . mat ;
8 load elements_voronoi . mat ;
9 load area_voronoi . mat ;
10 load length_cracks . mat ;
11 load common_del_nodes . mat ;
12 load common_del_ele . mat ;
13 load element_crack_id . mat
14 %load vol_node . mat
15 load Radius . mat ;
16 load center . mat ;
17 f i l e i d =fopen ( ’mesh . opt ’ , ’ r ’ ) ;
18 OPT= fscan f ( f i l e i d , ’%g ’ ,5 ) ;
19 NoN=OPT(1 ) ; % To ta l number o f nodes
20 voxe l_s ize=OPT(5 ) ;
21 f c l o se ( f i l e i d ) ;
22 c l ea r ( ’OPT ’ ) ;
23 f d i 1 =fopen ( ’ Number_of_delaunay_elements_generated . t x t ’ , ’ r ’ ) ;
24 NoE= fscan f ( fd i1 , ’%g ’ ,1 ) ; % t o t a l number o f elements i n the t r i a n g u l a t i o n
25 f c l o se ( f d i 1 ) ;
26

27 f i d 1 =fopen ( ’ nodes3D . dat ’ , ’ r ’ ) ; % load the i n i t i a l node coord ina tes
28

29 A= fscan f ( f i d1 , ’%f ’ , [ 4 NoN ] ) ; % t h i s needs to be ajdusted i f the o ve r a l l
number o f nodes i s changed , i . e . [4 NNODES]

30 A=A ’ ;
31 A=A( : , 2 : 4 ) ; % the i n i t i a l node coord ina tes
32 f c l o se ( f i d 1 ) ;
33

34 l eng th_vorono i= length_element ( v , kon_elementj ) ;
35 boundary_thickness =0.5*mean( leng th_vorono i ) ;
36

37 %x_cuboid =1:77;
38 %y_cuboid =0:150;
39 %z_cuboid =72:78;
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40

41 %[ x_cub , y_cub , z_cub ]=meshgrid ( x_cuboid , y_cuboid , z_cuboid ) ;
42 %Pcub=[ x_cub ( : ) , y_cub ( : ) , z_cub ( : ) ] ;
43 %shp_cub = alphaShape (Pcub ( : , 1 ) ,Pcub ( : , 2 ) ,Pcub ( : , 3 ) ) ;
44 %f i g u r e
45 %l o t ( shp_cub )
46 %%
47 %the vorono i elements t ha t complete ly l i e i n s i de the aggregate
48 %fo r i =1: leng th ( center )
49 % voronoi_aggregate { i , 1 } = [ ] ;
50 % vorono i_ i n t e r f ace { i , 1 } = [ ] ;
51 % voronoi_boundary { i , 1 } = [ ] ;
52 %end
53

54 f o r i =1: leng th ( center )
55 [ x , y , z ] = sphere (40) ;
56 x=x ( : ) ;
57 y=y ( : ) ;
58 z=z ( : ) ;
59

60 x1=x * ( Radius ( i , 1 )−boundary_thickness )+center ( i , 1 ) ;
61 y1=y * ( Radius ( i , 1 )−boundary_thickness )+center ( i , 2 ) ;
62 z1=z * ( Radius ( i , 1 )−boundary_thickness )+center ( i , 3 ) ;
63

64 x2=x * ( Radius ( i , 1 ) +boundary_thickness )+center ( i , 1 ) ;
65 y2=y * ( Radius ( i , 1 ) +boundary_thickness )+center ( i , 2 ) ;
66 z2=z * ( Radius ( i , 1 ) +boundary_thickness )+center ( i , 3 ) ;
67

68

69 P = [ x1 y1 z1 ] ;
70 P = unique (P, ’ rows ’ ) ;
71

72

73 P2 = [ x2 y2 z2 ] ;
74 P2 = unique (P2 , ’ rows ’ ) ;
75

76 shp = alphaShape (P ( : , 1 ) ,P ( : , 2 ) ,P ( : , 3 ) , ( Radius ( i , 1 )−boundary_thickness )
) ;

77 shp2= alphaShape (P2 ( : , 1 ) ,P2 ( : , 2 ) ,P2 ( : , 3 ) , ( Radius ( i , 1 ) +
boundary_thickness ) ) ;

78

79 % f i g u r e
80 %p l o t ( shp )
81

82 %f i g u r e
83 %p l o t ( shp2 )
84

85 count_aggregate =1;
86 coun t_ in te r f ace =1;
87 count_boundary =1;
88 f o r j =1: leng th ( kon_elementj )
89 %th i s i f statement i s f o r the elements w i t h i n the aggregates
90 i f ( inShape ( shp , v ( kon_elementj ( j , 1 ) , : ) ) ==1 && inShape ( shp , v (

kon_elementj ( j , 2 ) , : ) ) ==1)
91 voronoi_aggregate { i , 1 } ( count_aggregate , 1 ) = j ;
92 count_aggregate=count_aggregate +1;
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93 end
94 %the f o l l ow i ng two i f statements are f o r elements on the i n t e r f a c e
95 i f ( inShape ( shp , v ( kon_elementj ( j , 1 ) , : ) ) ==1 && inShape ( shp , v (

kon_elementj ( j , 2 ) , : ) ) ~=1)
96 vo rono i _ i n t e r f ace { i , 1 } ( coun t_ in te r face , 1 ) = j ;
97 coun t_ in te r f ace=coun t_ in te r f ace +1;
98 end
99 i f ( inShape ( shp , v ( kon_elementj ( j , 1 ) , : ) ) ~=1 && inShape ( shp , v (

kon_elementj ( j , 2 ) , : ) ) ==1)
100 vo rono i _ i n t e r f ace { i , 1 } ( coun t_ in te r face , 1 ) = j ;
101 coun t_ in te r f ace=coun t_ in te r f ace +1;
102 end
103 %the f o l l ow i ng i f statements are f o r the ones t ha t l i e w i t h i n the
104 %boundary th ickness
105 i f ( inShape ( shp , v ( kon_elementj ( j , 1 ) , : ) ) ~=1 && inShape ( shp2 , v (

kon_elementj ( j , 1 ) , : ) ) ==1)
106 i f ( inShape ( shp , v ( kon_elementj ( j , 2 ) , : ) ) ~=1 && inShape ( shp2 , v (

kon_elementj ( j , 2 ) , : ) ) ==1)
107 voronoi_boundary { i , 1 } ( count_boundary , 1 ) = j ;
108 count_boundary=count_boundary +1;
109 end
110 end
111 end
112

113

114 %agg_bound_temp=ve r t c a t ( voronoi_aggregate { i , 1 } , vo rono i _ i n t e r f ace { i , 1 } ,
voronoi_boundary { i , 1 } ) ;

115 %agg_bound_temp=unique ( agg_bound_temp ) ;
116 %fo r k=1: leng th ( agg_bound_temp )
117 % i f ( inShape ( shp_cub , v ( kon_elementj ( agg_bound_temp ( k , 1 ) ,1 ) , : ) ) ==1

| | inShape ( shp_cub , v ( kon_elementj ( agg_bound_temp ( k , 1 ) ,2 ) , : ) ) ==1)
118 % voronoi_aggregate { i , 1 } = [ ] ;
119 % vorono i_ i n t e r f ace { i , 1 } = [ ] ;
120 % voronoi_boundary { i , 1 } = [ ] ;
121 % end
122 %end
123

124

125 c l ea r ( ’ agg_bound_temp ’ ) ;
126 c l ea r ( ’ x ’ ) ;
127 c l ea r ( ’ y ’ ) ;
128 c l ea r ( ’ z ’ ) ;
129 c l ea r ( ’ shp ’ ) ;
130 c l ea r ( ’P ’ ) ;
131

132 c l ea r ( ’ x2 ’ ) ;
133 c l ea r ( ’ y2 ’ ) ;
134 c l ea r ( ’ z2 ’ ) ;
135 c l ea r ( ’ shp2 ’ ) ;
136 c l ea r ( ’P2 ’ ) ;
137 i / l eng th ( center ) *100
138 end
139 %%
140 %making the paraview f i l e f o r elements w i t h i n the aggregates
141

142 elements_aggregate = [ ] ;
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143 f o r i =1: leng th ( voronoi_aggregate )
144 i f ( l eng th ( voronoi_aggregate { i } ) ~=0)
145 elements_boundary_temp=voronoi_aggregate { i , 1 } ( : , 1 ) ;
146 elements_aggregate= ve r t c a t ( elements_aggregate ,

elements_boundary_temp ) ;
147 c l ea r ( ’ elements_boundary_temp ’ ) ;
148 end
149 end
150 elements_aggregate=unique ( elements_aggregate ) ;
151 elements_aggregate=kon_elementj ( elements_aggregate , : ) ;
152

153 pa rav i ew_ f i l e ( elements_aggregate , v , ’ aggregate . e le ’ , ’ aggregate . nod ’ ) ;%the
element and the node data

154

155

156 %%
157 %paraview f i l e f o r the i n t e r f a c e elements
158 e lements_ in te r face = [ ] ;
159 f o r i =1: leng th ( vo rono i _ i n t e r f ace )
160 i f ( l eng th ( vo rono i _ i n t e r f ace { i } ) ~=0)
161 elements_boundary_temp=vo rono i _ i n t e r f ace { i , 1 } ( : , 1 ) ;
162 e lements_ in te r face= ve r t c a t ( e lements_ in ter face ,

elements_boundary_temp ) ;
163 c l ea r ( ’ elements_boundary_temp ’ ) ;
164 end
165 end
166 e lements_ in te r face=unique ( e lements_ in te r face ) ;
167 e lements_ in te r face=kon_elementj ( e lements_ in ter face , : ) ;
168

169 pa rav i ew_ f i l e ( e lements_ in ter face , v , ’ i n t e r f a c e . e le ’ , ’ i n t e r f a c e . nod ’ ) ;%the
eleme nt and the node data

170 %%
171

172 %paraview f i l e f o r boundary elements
173 elements_boundary = [ ] ;
174 f o r i =1: leng th ( voronoi_boundary )
175 i f ( l eng th ( voronoi_boundary { i } ) ~=0)
176 elements_boundary_temp=voronoi_boundary { i , 1 } ( : , 1 ) ;
177 elements_boundary= ve r t c a t ( elements_boundary , elements_boundary_temp

) ;
178 c l ea r ( ’ elements_boundary_temp ’ ) ;
179 end
180 end
181 elements_boundary=unique ( elements_boundary ) ;
182 elements_boundary=kon_elementj ( elements_boundary , : ) ;
183

184 pa rav i ew_ f i l e ( elements_boundary , v , ’ boundary . e le ’ , ’ boundary . nod ’ ) ;%the
element and the node data

185

186 t ime=toc ;
187 %%
188 count_agg_bod=1;
189 f o r i =1: leng th ( voronoi_aggregate )
190 f o r j =1: leng th ( voronoi_aggregate { i , 1 } )
191 aggregate_body ( count_agg_bod , 1 ) =voronoi_aggregate { i , 1 } ( j , 1 ) ;
192 count_agg_bod=count_agg_bod+1;
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193 end
194 end
195 f o r i =1: leng th ( vo rono i _ i n t e r f ace )
196 f o r j =1: leng th ( vo rono i _ i n t e r f ace { i , 1 } )
197 aggregate_body ( count_agg_bod , 1 ) =vo rono i _ i n t e r f ace { i , 1 } ( j , 1 ) ;
198 count_agg_bod=count_agg_bod+1;
199 end
200 end
201 aggregate_body=unique ( aggregate_body ) ;
202

203 count_agg_bound=1;
204 f o r i =1: leng th ( voronoi_boundary )
205 f o r j =1: leng th ( voronoi_boundary { i } )
206 aggregate_bound ( count_agg_bound , 1 ) =voronoi_boundary { i } ( j , 1 ) ;
207 count_agg_bound=count_agg_bound+1;
208 end
209 end
210 aggregate_bound=unique ( aggregate_bound ) ;
211 save ( ’ aggregate_body . mat ’ , ’ aggregate_body ’ ) ;
212 save ( ’ aggregate_bound . mat ’ , ’ aggregate_bound ’ ) ;
213 save ( ’ voronoi_aggregate . mat ’ , ’ voronoi_aggregate ’ ) ;
214 save ( ’ voronoi_boundary . mat ’ , ’ voronoi_boundary ’ ) ;
215 save ( ’ vo rono i _ i n t e r f ace . mat ’ , ’ vo rono i _ i n t e r f ace ’ ) ;
216

217 load volume_node . mat
218 f o r i =1: leng th ( aggregate_body )
219 volume_agg_bod ( i , 1 ) =volume_node ( aggregate_body ( i , 1 ) ,1 )+volume_node (

aggregate_body ( i , 1 ) ,2 ) ;
220 end
221 f o r i =1: leng th ( aggregate_bound )
222 volume_agg_bound ( i , 1 ) =volume_node ( aggregate_bound ( i , 1 ) ,1 )+volume_node (

aggregate_bound ( i , 1 ) ,2 ) ;
223 end
224 tot_vol_agg_bod=sum( volume_agg_bod ) ;
225 tot_vol_agg_bound=sum( volume_agg_bound ) ;
226 to t_vo l_agg=tot_vol_agg_bod+tot_vol_agg_bound ;
227

228 count_repeat =1;
229

230 a = aggregate_bound ;
231 b = aggregate_body ;
232 repeat=ismember ( a , b ) ;
233 repeat_sum=sum( repeat ) ;
234 %repeat=unique ( repeat ) ;

The functions used in this script are given below:

1 f unc t i on [ elements_cracked , nodes_cracked ] = pa rav i ew_ f i l e (
elements_aggregate , v , nota t ion1 , no ta t i on2 )

2 %PARAVIEW_FILE Summary o f t h i s f unc t i on goes here
3 % Deta i led exp lana t ion goes here
4

5 count_nodes =1;
6 f o r i =1: leng th ( elements_aggregate )
7

8 nodes_cracked_temp ( count_nodes , 2 : 4 ) =v ( elements_aggregate ( i , 1 ) , 1 : 3 ) ;
9 nodes_cracked_temp ( count_nodes , 1 ) =elements_aggregate ( i , 1 ) ;
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10 count_nodes=count_nodes +1;
11 nodes_cracked_temp ( count_nodes , 2 : 4 ) =v ( elements_aggregate ( i , 2 ) , 1 : 3 ) ;
12 nodes_cracked_temp ( count_nodes , 1 ) =elements_aggregate ( i , 2 ) ;
13 count_nodes=count_nodes +1;
14

15 end
16

17 nodes_cracked_temp=unique ( nodes_cracked_temp , ’ rows ’ ) ;
18 nodes_cracked=nodes_cracked_temp ( : , 2 : 4 ) ;
19 f o r i =1: leng th ( nodes_cracked_temp )
20 node_change_temp ( nodes_cracked_temp ( i , 1 ) ,1 )= i ;
21 end
22 f o r i =1: leng th ( elements_aggregate )
23 elements_cracked_temp ( i , 1 ) =node_change_temp ( elements_aggregate ( i , 1 ) ,1 ) ;
24 elements_cracked_temp ( i , 2 ) =node_change_temp ( elements_aggregate ( i , 2 ) ,1 ) ;
25 end
26 elements_cracked = [ ] ;
27 elements_cracked=elements_cracked_temp ;
28 c l ea r ( ’ elements_cracked_temp ’ ) ;
29 c l ea r ( ’ node_change_temp ’ ) ;
30 c l ea r ( ’ nodes_cracked_temp ’ ) ;
31

32

33

34 fname1= s p r i n t f ( no ta t i on1 ) ;
35 f i l e =fopen ( fname1 , ’w ’ ) ;
36

37 p=0;
38

39

40

41 f o r i =1: leng th ( elements_cracked )
42 n1=elements_cracked ( i , 1 ) ;
43 n2=elements_cracked ( i , 2 ) ;
44 r ( i ) =1;
45

46 f p r i n t f ( f i l e , ’%g %g %g %f %g %f %g %g %f %f %f %f %g %g %g %f
%f %g %g ’ , i , n1 , n2 , r ( i )
,0 ,1 .1 ,3 ,1 ,46 ,19.1667 ,0.0035 , −0.035 ,0 ,2 ,1 ,0 .75 ,0 .75 ,1 ,1) ;

47 f p r i n t f ( f i l e , ’ \ n ’ ) ;
48

49 end
50

51 f c l o se ( f i l e ) ;
52

53 fname2= s p r i n t f ( no ta t i on2 ) ;
54 f i d 7 =fopen ( fname2 , ’w ’ ) ;
55 f o r i =1: leng th ( nodes_cracked )
56 f p r i n t f ( f i d7 , ’%g %f %f %f %g ’ , i , nodes_cracked ( i , 1 ) , nodes_cracked ( i , 2 ) ,

nodes_cracked ( i , 3 ) ,1 ) ;
57 f p r i n t f ( f i d7 , ’ \ n ’ ) ;
58 end
59

60 f c l o se ( f i d 7 ) ;
61

62 end
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Flow Simulation in the Discretized Domain
This section presents the script used to simulate flow in discretized domain. The script presented
here is the one that uses implicit time stepping scheme and exponential variation of diffusivity over the
element.

The main script is given below:

1 %% About ( l a s t vers ion 29/09/2017)
2 %sa tu r a t i on form of Richards equat ion w/ o f o r c i ng vec to r
3 %fo r every new cement i t ious mat r i x and f o r each mesh size , the r a t i o
4 %between t r anspo r t p rope r t i e s o f i t z and mat r i x should be va l i da ted
5 %fo r X inx in L i e t a l (2017) t h i s r a t i o seems to be between 1.3 and 2
6

7 %% Inpu t data
8

9 c l ea r ;
10 t i c
11 Read_input_PSM ; % data from the inpu t f i l e
12 L = [ ] ; %i n i t i a l i z e the element leng th vec to r
13 L=s i ng l e ( L ) ; % s ing l e p rec i s i on
14

15 % ca l cu l a t e and s to re element leng ths %
16 f o r i =1:NoE
17 L ( i ) = sq r t ( ( coord ( elements ( i , 1 ) ,1 )−coord ( elements ( i , 2 ) ,1 ) ) ^2+( coord (

elements ( i , 1 ) ,2 )−coord ( elements ( i , 2 ) ,2 ) ) ^2+( coord ( elements ( i , 1 ) ,3 )−
coord ( elements ( i , 2 ) ,3 ) ) ^2) ;

18 end
19 L=L ’ ;
20

21 f o r i =1: leng th ( elements )
22 omega( i , 1 ) =elements ( i , 3 ) *L ( i ) / ( volume_agg ( i , 1 ) +volume_agg ( i , 2 ) ) ;
23 end
24 L_uni=unique ( L ) ;
25 f o r i =1:NoE
26 D_c=e l emen t s_ i n i _d i f f ( i , 1 ) *exp (nDe(NeT1 , 2 ) *coord ( elements ( i , 1 ) ,5 ) ) ;
27 n_c=nDe(NeT1 , 2 ) / L ( i ) * ( coord ( elements ( i , 2 ) ,5 )−coord ( elements ( i , 1 )

,5 ) ) ;
28

29 d i f f =0.34785*(L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.861136) )+L (
i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.861136) ) ) +0.652145*(L ( i )
/2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.339981) )+L ( i ) /2*D_c*exp (
n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.339981) ) ) ;

30 elements ( i , 4 ) = d i f f ;
31 end
32 %omega=omega_cal ( elements ( : , 3 ) ,L , sum( volume ) ) ;
33 %{
34 f o r i =1: leng th ( elements )
35 omega( i ) =omega_cal ( elements ( i , 3 ) ,L ( i ) , volume ( i , 1 ) , volume ( i , 2 ) ) ;
36 end
37

38 f o r i =1:NoE
39 % 4 po in t gauss i n t e g r a t i o n
40 D_c=D0e(NeT1 , 2 ) *exp (nDe(NeT1 , 2 ) *coord ( elements ( i , 1 ) ,5 ) ) ;
41 n_c=nDe(NeT1 , 2 ) / L ( i ) *abs ( coord ( elements ( i , 2 ) ,5 )−coord ( elements ( i , 1 ) ,5 )

) ;
42

43 d i f f =0.34785*(L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.861136) )+L ( i )
/2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.861136) ) ) +0.652145*(L ( i ) /2*D_c*
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exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.339981) )+L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i )
+0.5*L ( i ) *0.339981) ) ) ;

44 elements ( i , 4 ) = d i f f ;
45 end
46 %}
47 %% Calcu la te elemental [m] , i n i t i a l [ k ] and assemble them in Sparse g loba l

matr ices [M] , i n i t i a l [K ]
48

49

50 I =zeros (1 ,4*NoE) ; % i n i t i a l i z e index ing f o r sparse inpu t rows
51 J=zeros (1 ,4*NoE) ; % i n i t i a l i z e index ing f o r sparse inpu t columns
52 S t i f f =zeros (1 ,4*NoE) ; % i n i t i a l i z e sparse values of K
53 Mass=zeros (1 ,4*NoE) ; % i n i t i a l i z e sparse values o f M (4 due to the

d i f f e r e n t elements i n the l o c a l e lemental mat r i x )
54

55 count =0;
56

57 f o r i =1:NoE
58 n1=coord ( elements ( i , 1 ) ,4 ) ;
59 n2=coord ( elements ( i , 2 ) ,4 ) ;
60 [m]=m_matrix (omega( i ) , elements ( i , 3 ) ,L ( i ) ) ; % element m mat r i x
61 [ k ]= k_matrix_quad ( elements ( i , 4 ) , elements ( i , 3 ) ,L ( i ) ) ; % element k

mat r i x i s d i f f e r e n t from zero f o r unsaturated elements
62 len= leng th ( I ) ;
63 f o r i row =1:2
64 f o r i c o l =1:2
65 count=count +1;
66 I ( count )=elements ( i , i row ) ; %subsc r i p t i f o r g loba l index ing

co inc iden t w i th the node of the element i n f l u enc i ng
67 J ( count )=elements ( i , i c o l ) ; %subsc r i p t j f o r g loba l index ing

co inc iden t w i th the node of the element being in f l uenced
68 Mass ( count )=m( irow , i c o l ) ;
69 S t i f f ( count )=k ( irow , i c o l ) ;
70 end
71 end
72 end
73

74 K_orig=sparse ( I , J , S t i f f ,NoN,NoN) ;
75 M_orig=sparse ( I , J ,Mass ,NoN,NoN) ;
76

77

78 %% Boundary and I n i t i a l cond i t i ons
79 f o r t ime_step =1: leng th ( de l taT )
80 LHS=M_orig +0.5* de l taT ( t ime_step ) *K_orig ; % l e f t hand s ide
81 RHS=M_orig−0.5* de l taT ( t ime_step ) *K_orig ; %+del taT *F ; % r i g h t hand s ide
82

83 % I n i t i a l Cond i t ion ( t =0)
84 t e t a=sparse (NoN, 1 ) ; % i n i t a l i z e the po t e n t i a l ph i vec to r
85 t e t a ( 1 :NoN, 1 ) =coord ( : , 5 ) ; % def ine po t e n t i a l ph i a t the s t a r t o f the

ana lys i s ( eq2 )
86

87

88 % Apply the boundary cond i t i ons on the LHS
89

90 % Boundary cond i t i ons top boundary
91
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92 LHS(Bo , : ) =0; % toge ther w i th the loop below cons t i t u t e s a t r i c k to make
t ha t a l l the elements depar t ing from BN con t r i bu t e to mantain the same
phi i n the BN from s t a r t to end

93 f o r i =1: s ize (Bo)
94 LHS(Bo( i ) , : ) =0;
95 LHS(Bo( i ) ,Bo( i ) ) =1; % in order t ha t ph i i s the same at every t ime step

f o r Boundary nodes
96 end
97

98

99 % Boundary cond i t i ons l a t e r a l sur faces ( i f needed )
100

101 %% Pr i n t i n t i a l
102 fname= s p r i n t f ( ’ D i f f u s i v i t y _%d . dat ’ ,0 ) ;
103 fname1= s p r i n t f ( ’ Sa tu ra t ion_%d . dat ’ ,0 ) ;
104 f i d =fopen ( fname , ’w ’ ) ;
105 f i d 1 =fopen ( fname1 , ’w ’ ) ;
106 t e t a= f u l l ( t e t a ) ;
107

108 f o r i =1:NoN
109 f p r i n t f ( f i d1 , ’%g \ n ’ , round ( t e t a ( i ) ,4 ) ) ;
110 end
111 f o r j =1:NoE
112 f p r i n t f ( f i d , ’%g \ n ’ , round ( elements ( j , 4 ) ,4 ) ) ;
113 end
114 f c l o se ( f i d ) ;
115 f c l o se ( f i d 1 ) ;
116

117 t e t a=sparse ( t e t a ) ;
118

119 %% Sta r t the t ime dependent ana lys i s
120 %t o l =zeros (NoN, 1 ) ;
121 t o l =0.000001;
122 loop =1;
123 i t e r a t i o n s =zeros ( t o ta lT , 1 ) ;
124 f o r t =1: t o t a l T
125

126

127 % 1−Solves the main equat ion and outputs ph i % OK
128 Right=RHS* t e t a ;
129 Right (Bo)=Boundary ; % ca l cu l a t e phi_b as ph i f o r t e t a =1 in the g ls

i npu t
130

131 whi le ( loop >0)
132 Le f t =LHS* t e t a ;
133

134 de l t a_ the ta=error_norm3 ( Le f t , Right ) ;
135

136 i f ( de l ta_ the ta > t o l )
137 i t e r a t i o n s ( t , 1 ) = i t e r a t i o n s ( t , 1 ) +1;
138 r e s i =Right−Le f t ;
139 de l t a_ t e t a=LHS\ r e s i ;
140 t e t a= t e t a+de l t a_ t e t a ;
141

142

143 coord ( : , 5 ) = t e t a ;



143

144 %fo r i =1: leng th ( elements )
145 %quad_moist_cont ( i , 1 ) = t e t a ( elements ( i , 1 ) ,1 ) ;
146 %quad_moist_cont ( i , 2 ) = t e t a ( elements ( i , 2 ) ,1 ) ;
147 %end
148 %quad_d i f f { t } { i t e r a t i o n s ( t , 1 ) } ( : , 1 ) =coord ( : , 5 ) ;
149 f o r i =1:NoE %% fo r loop ( f o r each element f i n ds the average −AS PER

NOW− of the nodal t e t as and
150 % ca l cu l a t es the new value of the d i f f u s i v i t y c o e f f i c i e n t

f o r the
151 % elements and s to res them in elements ( i , 4 )
152 %{
153 t e t a_e le =( coord ( elements ( i , 1 ) ,5 )+coord ( elements ( i , 2 ) ,5 ) ) / 2 ;
154 NeT1=1;
155 whi le NeT1<=NeT
156 i f elements ( i , 5 ) ==NeT1
157 elements ( i , 4 ) =D0e(NeT1 , 2 ) *exp (nDe(NeT1 , 2 ) * t e t a_e le ) ;
158 elements ( i , 6 ) = te ta_e le ;
159 break
160 else
161 NeT1=NeT1+1;
162 end
163 end
164 %}
165 D_c=e l emen t s_ i n i _d i f f ( i , 1 ) *exp (nDe(NeT1 , 2 ) *coord ( elements ( i , 1 ) ,5 ) )

;
166 n_c=nDe(NeT1 , 2 ) / L ( i ) * ( coord ( elements ( i , 2 ) ,5 )−coord ( elements ( i , 1 )

,5 ) ) ;
167

168 d i f f =0.34785*(L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.861136) )+L (
i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.861136) ) ) +0.652145*(L ( i )
/2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.339981) )+L ( i ) /2*D_c*exp (
n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.339981) ) ) ;

169 elements ( i , 4 ) = d i f f ;
170 %quad_d i f f { t } { i t e r a t i o n s ( t , 1 ) } ( i , 1 ) = d i f f ;
171

172 %{
173 D_c=D0e(NeT1 , 2 ) *exp (nDe(NeT1 , 2 ) *coord ( elements ( i , 1 ) ,5 ) ) ;
174 n_c=nDe(NeT1 , 2 ) / L ( i ) * ( coord ( elements ( i , 2 ) ,5 )−coord ( elements ( i

, 1 ) ,5 ) ) ;
175

176 d i f f =0.34785*(L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.861136)
)+L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.861136) ) )
+0.652145*(L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *−0.339981)
)+L ( i ) /2*D_c*exp ( n_c * ( 0 .5*L ( i ) +0.5*L ( i ) *0.339981) ) ) ;

177 elements ( i , 4 ) = d i f f ;
178 %}
179 end
180 % quad_d i f f { t } { i t e r a t i o n s ( t , 1 ) } ( : , 2 : 3 ) =quad_moist_cont ;
181 %quad_moist_cont = [ ] ;
182

183 % 3−Updates the S t i f f n e s s matr ix , LHS and RHS % OK
184 count =0;
185

186 f o r i =1:NoE
187 [ k ]= k_matrix_quad ( elements ( i , 4 ) , elements ( i , 3 ) ,L ( i ) ) ; %element k

mat r i x i s d i f f e r e n t from zero f o r unsaturated elements



144 B. MATLAB Scripts

188 len= leng th ( I ) ;
189 f o r i row =1:2
190 f o r i c o l =1:2
191 count=count +1;
192 I ( count )=elements ( i , i row ) ; %subsc r i p t i f o r g loba l

index ing co inc iden t w i th the node of the element
193 J ( count )=elements ( i , i c o l ) ; %subsc r i p t j f o r g loba l

index ing co inc iden t w i th the node of the element
194 S t i f f ( count )=k ( irow , i c o l ) ;
195 end
196 end
197 end
198 K=sparse ( I , J , S t i f f ,NoN,NoN) ;
199 LHS=M_orig +0.5* de l taT ( t ime_step ) *K; % l e f t hand s ide
200 RHS=M_orig−0.5* de l taT ( t ime_step ) *K; % r i g h t hand s ide
201 SaN= f i n d ( t e t a ( : , 1 ) ==1) ;
202 LHS(Bo , : ) =0;
203 f o r i =1: s ize (Bo)
204 LHS(Bo( i ) ,Bo( i ) ) =1; % in order t ha t ph i i s the same at every t ime

step f o r Boundary nodes
205 end
206 else
207 break ;
208 end
209 end
210

211

212

213 % 4−PLots t , phi , t e t a per each node every ( p lo t_ f requency ) t ime steps
% OK

214

215 pomoc1=rem ( t , p lo t_ f requency ) ;
216 num=10^(numel ( num2str ( t o t a l T ) ) ) ;%bas i c a l l y t h i s i s done so t ha t

r e s u l t s are s tored i n the ascending order o f the t ime steps
217 xRound = c e i l ( t o t a l T /num) *num;
218 num_id=xRound+ t ;
219 i f pomoc1==0
220 fname= s p r i n t f ( ’ D i f f u s i v i t y _%d . dat ’ , num_id ) ;
221 fname1= s p r i n t f ( ’ Sa tu ra t ion_%d . dat ’ , num_id ) ;
222 f i d =fopen ( fname , ’w ’ ) ;
223 f i d 1 =fopen ( fname1 , ’w ’ ) ;
224 t e t a= f u l l ( t e t a ) ;
225 f o r i =1:NoN
226 f p r i n t f ( f i d1 , ’%g \ n ’ , round ( t e t a ( i ) ,4 ) ) ;
227 end
228 f o r j =1:NoE
229 f p r i n t f ( f i d , ’%g \ n ’ , round ( elements ( j , 4 ) ,4 ) ) ;
230 end
231 f c l o se ( f i d ) ;
232 f c l o se ( f i d 1 ) ;
233 t e t a=sparse ( t e t a ) ;
234 end
235

236 % 5−Shows the performed percentage of the ana lys i s % OK
237 i f SLVR==1
238 disp ( t / t o t a l T *100) ;
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239 end
240 end
241 end
242 %%
243 %{
244 save ( ’ mean_error ’ , ’ mean_error ’ ) ;
245 f o r i =1:max( s ize ( mean_error ) )
246 x_p lo t ( i , 1 ) = i ;
247 end
248 f i g u r e
249 p l o t ( x_p lo t , mean_error ( 7 , : ) )
250 %}
251 %%
252 t ime=toc ;
253 beep ;

The functions used in the main script are given below:

1 f unc t i on [ k ] = k_matr ix ( D,A, l )
2 %k_MATRIX elemental S t i f f n e s s mat r i x : Ca lcu la tes the element s t i f f n e s s

mat r i x
3 % inpu t parameters :
4 % A−cross sec t i ona l area
5 % l−l eng th o f the element
6 % D−d i f f u s i o n c o e f f i c i e n t
7 % output :
8 % k−elemental s t i f f n e s s mat r i x
9

10 k = [ ] ;
11 %k=s ing l e ( k ) ;
12

13

14 % Ca lcu la t i on o f the element d i f f u s i o n mat r i x
15 k (1 ,1 )=D*A/ l ;
16 k (1 ,2 )=−D*A/ l ;
17 k (2 ,1 )=k (1 ,2 ) ;
18 k (2 ,2 )=k (1 ,1 ) ;
19

20

21 end

1 f unc t i on [ k ] = k_matrix_quad ( D,A, l )
2 %k_MATRIX elemental S t i f f n e s s mat r i x : Ca lcu la tes the element s t i f f n e s s

mat r i x
3 % inpu t parameters :
4 % A−cross sec t i ona l area
5 % l−l eng th o f the element
6 % D−d i f f u s i o n c o e f f i c i e n t
7 % output :
8 % k−elemental s t i f f n e s s mat r i x
9

10 k = [ ] ;
11 %k=s ing l e ( k ) ;
12

13

14 % Ca lcu la t i on o f the element d i f f u s i o n mat r i x
15 k (1 ,1 )=D*A / ( l * l ) ;
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16 k (1 ,2 )=−D*A / ( l * l ) ;
17 k (2 ,1 )=k (1 ,2 ) ;
18 k (2 ,2 )=k (1 ,1 ) ;
19

20

21 end

1 f unc t i on [m] = m_matrix ( omega , A, l )
2 %m_PSM elemental Mass mat r i x : Ca lcu la tes the element mass mat r i x
3 % inpu t parameters :
4 % omega−co r r e c t i on f a c t o r ( see inpu t )
5 % A−cross sec t i ona l area
6 % l−l eng th o f the element
7 % output :
8 % m−elemental mass mat r i x
9

10 m= [ ] ; % m=s ing l e (m) ;
11

12 % Ca lcu la t i on o f the element mass mat r i x
13 m(1 ,1 )=A* l *2 / (6*omega) ;
14 m(1 ,2 )=A* l / ( 6 *omega) ;
15 m(2 ,1 )=m(1 ,2 ) ;
16 m(2 ,2 )=m(1 ,1 ) ;
17

18 end

1 f unc t i on [ e r r o r ] = error_norm3 ( sa t u r a t i o n_ l i nea r , s a t u r a t i o n _ i t e r a t i v e )
2

3 %In t h i s e r r o r norm , the sum of the square o f the abso l te d i f f e r ence of
the

4 %values i s taken f o r a l l the nodes and then d iv ided by the number o f nodes
5 %and the the square roo t o f t ha t value i s taken .
6

7

8 c l ea r ( ’ e r r o r ’ ) ;
9 e r r o r =(abs ( sa t u r a t i o n_ l i n ea r−s a t u r a t i o n _ i t e r a t i v e ) ) . ^ 2 ;
10 e r r o r =(sum( e r r o r ) ) . / l eng th ( e r r o r ) ;
11 e r r o r =e r r o r . ^ ( 0 . 5 ) ;
12 %er r o r =er ro r ’ ;
13 c l ea r ( ’ s a t u r a t i o n_ l i n ea r ’ ) ;
14 c l ea r ( ’ s a t u r a t i o n _ i t e r a t i v e ’ ) ;
15 end

1 f unc t i on [ D_cr ] = c r a c k _ d i f f u s i v i t y ( elements_crack , area , the ta )
2

3

4 rho=997*10^−9; %dens i t y ( kg /mm3)
5 mu=8.9*10^−7;%dynamic v i s c o s i t y ( kg /mm/ s )
6 x i =1;%crack t o r t u o s i t y f a c t o r
7 m=0.4396; %Van_Genuchten parameter ( pre determined and un i t l e s s )
8 pr =18.6237*10^−3; %reference pressure (N/mm2 but converted i n t o kg / (mm. s2 )
9 cube_law=0;
10 f o r i =1:3
11 cube_law1=elements_crack (1 , i ) *elements_crack (1 , i +3) ^3 ;
12 cube_law=cube_law+cube_law1 ;
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13 end
14

15 exp1= x i *cube_law* pr *(1−m) / (12*mu*area *m) ;
16 exp2=( the ta ^0 .5 ) *(1−(1− t he ta ^ ( 1 /m) ) ^m) ^2* t he ta ^(−1/(m−1) ) * ( the ta ^(−1/m)

−1)^(−m) ;
17 D_cr=abs ( exp1*exp2 ) ;
18 end
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