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Abstract: Water pumping systems driven by renewable energies are more environmentally sound
and, at times, less expensive alternatives to electric- or diesel-based ones. From these, hydro-powered
pumps have further advantages. Nevertheless, these seem to be largely ignored nowadays. More than
800 scientific and nonscientific documents contributed to assemble their fragmented storylines. A total
of 30 pressure-based hydro-powered pumping technologies worldwide have been classified and
plotted in space and time. Although these do not present identifiable patterns, some noticeable clusters
appear in regions such as Europe, South–Southeast Asia, and Eastern Africa, and in timeframes around
1960–1990, respectively. Some technologies have had a global impact and interest from their beginnings
until contemporary times, others have been crucial for the development of specific countries, and other
ones barely had almost imperceptible lives. All of them, nonetheless, have demonstrated to be a
sound alternative to conventional pumping technologies, which can be unaffordable or inaccessible,
particularly in remote and off-the-grid areas. Currently, hydro-powered pumping technologies face a
regained momentum, hence a potentially promising future. However, researchers, manufacturers,
and users need to be aware of the importance that management systems, as well as business models,
pose for these technologies beyond their mere performance.

Keywords: hydro-powered; water-powered; water-driven; hydro-mechanical; self-reliant; water
lifting; water raising; water pump

1. Introduction

Given the considerable number of smallholders farms worldwide [1], intensification of their crop
farming is key for local and global food security [2]. However, smallholders face many uncertainties
linked to weather events, crops diseases, and market fluctuations. In addition, on-farm conditions
are often suboptimal because of low availability of inputs and lack of control/information to decide
on their use. Although access to water is not the only factor influencing farming, improving water
control for small-scale farming is a major option to secure smallholder production [3]. Pressure-based
irrigation technologies, either introduced as a new choice or as the result of former gravity-based
systems converted into (water-saving) drip and sprinkler irrigation, are one option. Another option is
to use pumping technologies to allow water delivery to fields that used to be otherwise unirrigated.
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Pumped irrigation is ruled worldwide by electricity- and diesel-based systems. They bear
high operation and maintenance costs because of continuous use of electricity from the grid
and expensive fuels, respectively. As a consequence, these technologies might be eventually (too)
cost-intensive for most smallholders—which makes them less accessible and/or suitable for small
farmers. Furthermore, they are strongly linked to air pollution due to their gaseous emissions and
noise [4,5]. More environmentally sound and, at times, less expensive alternatives would be pumping
systems based on renewable energy (RE) sources, i.e., solar power, wind power, biomass/biogas,
and hydropower [6].

Hydro-powered pumping (HPP) technologies, namely those driven by the energy contained
in the water they lift, correspond to a concept as ancient as effective [7,8]. Non-direct lifting (i.e.,
pressure-based) HPP devices started being envisaged by Al-Jazari in the early 13th century [9], and later
on by Taqi Al-Din [7,10], Agricola [11], Ramelli [12], and other authors [13] during the 16th century.
These pumping systems pose further advantages over their other RE-based counterparts: (i) Their
energy source is generally available 24 hours a day, seven days a week, relatively concentrated and
more predictable; (ii) they have a higher power-to-size ratio, thus are more cost-effective; (iii) they are
mechanically simpler and more robust, hence less maintenance-demanding and long-lasting; and (iv)
they are typically more efficient (up to 85%) [14].

Nevertheless, and despite their advantages and long history in water lifting, HPP systems seem
to be largely disregarded nowadays. On one hand, there are some contemporary studies [15–21] and
literature reviews [4–6,22,23] on RE-based water pumping systems. However, none of them address
hydropower as a sound source of energy. On the other hand, there are several old publications [14,24–31]
that considered it to a bigger or lesser extent, though completely overlooking many other
then-contemporary HPP technologies that were relevant—and, in some cases, even predominant—for
other (non-Western) contexts. Therefore, and considering such knowledge fragmentation and
consequent gap, this review constitutes the first worldwide-scale depiction of the past and present
trends on the documented research, development, application, and commercialization of the HPP
technologies. In turn, such information provides a general yet solid basis for scholars, (industry)
researchers, managers, manufacturers, and users, with respect to the future uses these technologies (as
well as new ones derived from them) might have under different sets of physical and social conditions.

It is so that two universities, namely Delft University of Technology and Comillas Pontifical
University, from The Netherlands and Spain, respectively, are currently carrying out the DARE-TU
(Developing Agriculture and Renewable Energy with the TUrbine pump) project. It aims to research
the cocreation and implementation of affordable clean irrigation systems, based upon novel HPP
technologies [32] developed in collaboration with the Dutch start-up company aQysta. Within this
context, the objectives of the present article are:

1. To summarize and classify the HPP technologies researched, applied, and eventually
commercialized globally over time;

2. To define their state-of-the-art by synthesizing their respective storylines and highlighting the
highest level of their developments;

3. To identify global spatial and temporal patterns on the (re)invention, application, and spread of
HPP technologies.

2. Methods

2.1. Selection Criteria for HPP Technologies

Relevant HPP technologies, within the context of the present review, fulfilled the following criteria:

1. Exclusively driven by the kinetic and/or potential energy of water;
2. Rely exclusively on hydro-mechanical energy, hence not relying whatsoever on electro/

electrochemical conversion processes;
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3. Work by building up pressure (i.e., must not be a direct lift technology);
4. Pose any form of actual or potential use for supplying water, preferably to agricultural activities and

human consumption, thus must ensure a relatively constant and reliable flow. As a consequence,
devices such as the superhydrophobic pump [33] were neglected;

5. Operate with the same (fresh) water to be supplied, therefore technologies such as ocean-driven
turbines, firefighter ejector turbo-pumps [34,35], water-driven foam pumps, or the hydraulic
turbocharger™ [36] were not taken into account.

2.2. Sources of Information

To look for relevant data, the following literature and sources of information were considered:

1. Peer-reviewed literature, from online academic databases through Google Scholar search engine
(https://scholar.google.com/) and Google Books digital library service (https://books.google.com/);

2. Peer-reviewed and grey literature (i.e., non-peer-reviewed), retrieved from online databases,
accessed through Google search engine (https://www.google.com/);

3. Documents bibliographically referenced in the two previous sources (particularly old ones)—yet
not indexed in the previous search engines—from different academic databases and libraries
worldwide (through TU Delft library services);

4. Personal communication from other authors.

Initial search iterations made evident that, unlike other RE-based pumping technologies, there
is a considerable lack of scientific literature regarding HPP. This was the main driver to expand
the screening process toward grey literature, thereby filling information gaps that could not have
been considered otherwise, hence increasing information bias [37]. Furthermore, a triangulation
of sources/databases was performed (i.e., not using a single source), in order to overcome implicit
accuracy limitations that the Google search engines pose regarding systematic reviews [38].

2.3. Literature Screening

2.3.1. Keywords and Terms

The complete set of keywords used in the search engines was gradually enlarged as the iterative
search process took place. To produce more accurate results based on generic and broad terms,
these were combined with the words “water”, “irrigation”, and “pump”. In some iterations, terms were
expressed as exact phrases by making use of quotation marks.

The final set of terms was: “hydro-powered”, “water-powered”, “water wheel”, “water-driven”,
“turbine-driven”, “hydro-mechanical”, “hydraulic ram”, “hydram”, “impulse”, “spiral”, “coil”,
“manometric”, “Wirtz”, “Plata”, “Chinese turbine-pump”, “water-turbine”, “sling”, “HyPump”,
“Barsha”, “no power”, “self-powered”, “self-propelled”, “river-current turbine”, “hydrokinetic turbine”,
“fuel-less”, “powerless”, “Glockemann”, “High lifter”, “pump as turbine”, “Hydrobine”, “PowerSpout
PHP”, “Filardo”, “Markovic self-propelled”, “zero-energy”, “PAPA”, “Garman turbine”, “river turbine”,
“water-current turbine”, “Tyson turbine”, “Mangal turbine”, “Bunyip”, “Linear turbine”, “Tuapeka
turbine”, “tidal turbine”, “Cherepnov water lifter”, “hydropulsor”, “hydrautomat”, and “pulser”.

To ensure higher accuracy of results from the search engines, some words were intentionally and
explicitly ruled out during the search. These terms were gradually set depending on the initial results
of each iteration. For instance, searching only with the term “water-turbine pump” returned too many
inaccurate results linked to a technology out of the scope of this paper. However, when excluding the
terms “-vertical” and “-deep well”, the accuracy eventually became higher. The ruled out terms were:
“desalination”, “solar”, “vertical”, “deep well”, “wind”, “sump”, “ocean”, “generator”, and “coronary”
(linked to the Filardo surname within the cardiology field).

Although the main screening of literature was conducted in English, it was necessary to perform
iterations with terms in other languages to look for other HPP technologies otherwise absolutely

https://scholar.google.com/
https://books.google.com/
https://www.google.com/
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overlooked. In Spanish: “bomba de río”, “río-bomba”, “turbo bomba”, “turbo bombeo”, “bomba funcionando
como turbina”, and “ariete multipulsor”; in Italian: “elevatore idraulico” and “elevatore di Cigliano”;
in Portuguese: “roda d’água”; in Romanian: “transformatorul hidraulic”, “turbotransformatorul hidraulic”;
in Russian: “Черепнов водоподъемник”, “водоподъемник токaря Черепновa”, “Aвтономных
водоподъемников”, and “Aэрогидрaвлического водоподъемникa”; in German “Brunnhäuser” and
“Lambachpumpe”; in Mandarin: “水轮泵”, “水锤泵”; in Vietnamese: “bơm thủy luân”; in Indonesian:

“pompa air tenaga hidro”; in Thai
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screened and analyzed here might not be limited to the aforementioned languages. Nevertheless,
true to the authors’ knowledge, these were the ones whose keywords provided consistent results
within the scope of the present review.

2.3.2. Selection of Results

The first search iterations depicted several temporal gaps in the literature, i.e., not all the relevant
technologies, in accordance with the selection criteria, could be found around the same period but
in heterogeneous time frames (decades, centuries) throughout the history. Therefore, to increase the
likelihood of gathering valuable data, the process of search and subsequent selection of information
was not restricted to any specific time range (e.g., only 20th and 21st centuries), but from the present
until the origin of the first-ever recorded HPP technologies.

Results of search engines, for both peer-reviewed and grey literature, were taken into consideration
as long as they provided any of these aspects: (i) Technical information and applicability of the
technologies; (ii) the description of a particular case study and/or its uniqueness worldwide; (iii) the
development of an innovative design; and/or (iv) unique facts that contribute in understanding the
storyline of evolution, success or failure of the technologies.

Literature from search engines was selected by consecutive sampling, i.e., all the relevant subjects
were considered. In consequence, each search iteration was explored thoroughly until its outcomes
became out of scope of the selection criteria, usually beyond the first 40 results. Notwithstanding
the previous technique, snowball-sampling (through bibliographic references and hyperlinks) was
also used in the case of technologies whose documents were not indexed in any database or did not
respond to the set of keywords.

2.3.3. Data Classification and Processing

Results of iterative searches showed a wide diversity of HPP devices in terms of shapes, sizes,
prime movers, pumping principles, prime mover—pumping device integration, working conditions,
benefits, and applicability. Due to this heterogeneity, HPP technologies were grouped and classified
not based on a single criterion, but on the combination of a series of properties related to their
morphological/mechanical characteristics.

In line with the proposed classification, two datasets were built from the selected documents,
namely bibliography and application cases, respectively (see Appendix A in Supplementary
Materials) [39]. The bibliography dataset grouped and quantified documents according to their
nature (scientific or grey literature), type of document, year of publication, and language, among other
bibliographic information. Furthermore, scientific literature consisted of: Articles published in high-
and low-impact factor journals, books and books sections, conference proceedings, and encyclopedias.
Grey literature involved: Working papers, research newsletters, theses, magazine articles, reports,
research bulletins, brochures, websites, information in social networks, presentations, patents,
newspaper articles, videos, and others. The application cases dataset, on the other hand, was built
from all the instances found in the bibliography where HPP devices have been reported under any
kind of actual use (e.g., agricultural irrigation, water supply, research, others) within the selection
criteria. It encompassed year of implementation, country, and type of end-use. It must be noticed,
nevertheless, that there is not any quantitative relation between the number of documents and number



Water 2019, 11, 1677 5 of 33

of reported cases, i.e., a single article might report thousands of HPP devices in use, whereas some
documents could triangulate few application cases in a specific context.

Some assumptions were made while building the datasets. Regarding the literature, certain
documents were recorded as many times as different technologies they addressed. On the application
cases, whenever it was not possible to determine the number of devices (i.e., literature refers to “some”
or “few”) either/or their year of application, a number of two and/or the year of the corresponding
document were allocated, respectively. Manufacturers of technologies have been assigned only as one
case, whereas neither retailers nor distributors were considered. Repowered and renovated cases were
accounted for again, as long as they posed an upgrade or change in the technology.

Statistical analyses of the datasets were performed with Microsoft® Excel® 2016. Due to
considerable differences between reported cases of HPP technologies (order of magnitude of six),
these were plotted in space and time on the basis of a customized logarithmic scale.

3. Main Findings

3.1. HPP Technologies

In total, 30 technologies were identified and grouped into eight classes: (i) Manometric pumps,
(ii) hydro-pneumatic water lifters; (iii) hybrid turbine-pumps; (iv) water turbine pumps; (v) tubular
multi-propeller turbines; (vi) water current turbines; (vii) generic integrations; and (viii) other devices.
Figure 1 shows the classification of HPP technologies. Their timeframe and presence worldwide,
as well as some of their technical properties, are summarized in Table 1. The narrative on the origins,
evolution, and fate of each technology is contained in Appendix B (see Supplementary Materials).
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Table 1. Summary of HPP technologies.

Class Technology First
Record

Last
Record

Reported
Devices

Nr. of
Countries Prime Mover Pumping

Device
Pumping
Principle Integration Required

Head
Location
in Water

Manometric
pumps

Spiral pump 1746 2018 192 19 Waterwheel Spiral pipe PD DA, CS ZH SS
Coil pump 1778 1997 14 8 Waterwheel Coil pipe PD DA ZH SS

Helix pump 1987 2017 27 12 Axial-flow propeller Helix pipe PD DA ZH SS

Hydro-pneumatic
water lifters

Hydraulic ram
pump 1796 2017 ~6840 42 Compressed air HT, SARP PD VS,

Diaphragm LH OS, SS, SU

Lambach pump 1880s 1961 35 3 Compressed air SARP, DARP PD PS LH OS
Hydrautomat 1920s 2013 13 6 Compressed air HT PD VS LH SU

Cherepnov
water lifter 1960 1996 6 5 Compressed air HT PD VS LH OS

High lifter 1984 2016 4 1 Compressed air SARP PD PS LH OS
Aerohydraulic

water lifter 1998 1998 4 1 Compressed air HT PD VS LH SS

Hybrid
turbine-pumps

Hydropulsor 1909 1912 5 2 Turbine-pump
impeller

Turbine-pump
impeller VH Integrated

impeller LH OS

Hydraulic
transformer 1940 1999 12 1 Turbine-pump

impeller
Turbine-pump

impeller VH Integrated
impeller LH OS

Water
turbine-pumps

Hydraulic
converter 1921 1921 1 1 Axial turbine CP VH CS LH SU

Chinese water
turbine-pump 1954 2007 ~81500 15 Kaplan turbine CP VH CS, TS LH, MH SU

Globe case
coaxial water
turbine pump

1999 2014 4 1 Kaplan turbine CP VH CS LH OS

Vietnamese
hydraulic pump 2009 2014 9 1 Kaplan turbine CP VH CS LH SU

Tubular
multi-propeller

turbines

Plata pump 1972 1990 17 8 Multi-propeller
turbine SARP PD TS ULH SS

Turbopump 1983 1992 ~300 1 Multi-propeller
turbine SARP PD TS ULH SS

Hydrobine 1998 2014 7 4 Multi-propeller
turbine SARP PD TS ULH SS
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Table 1. Cont.

Class Technology First
Record

Last
Record

Reported
Devices

Nr. of
Countries Prime Mover Pumping

Device
Pumping
Principle Integration Required

Head
Location
in Water

Water current
turbines

Garman turbine 1976 2018 69 6 3-bladed propeller
turbine CP VH TS ZH SS

Tyson turbine 1982 2009 28 9 7-bladed turbine DARP PD TS ZH SS
Hydrokinetic
linear turbine 1984 2017 13 4 Linear turbine SARP PD Slider-crank ZH SS

Markovic
self-propelled

pump
1993 2009 3 1 Mixed flow propeller

turbine SARP PD Slider-crank ZH SU

Generic
integrations

Waterwheel-driven
pump 1528 2018 139 19 Waterwheel SARP, DARP,

DP, CP PD, VH TS ZH, LH OS, SS

Axial-flow
turbine-driven

pump
1851 2011 88 9

Axial-flow turbines
(Kaplan, Tubular, Bulb,

S-shape, Jonval,
Girard)

DARP, CP, DP PD, VH CS, TS LH SS, SU

Mixed-flow
turbine-driven

pump
1897 2005 18 4

Mixed-flow turbines
(Francis, Samson, S.

Morgan Smith, Leffel)
CP, DARP PD, VH CS, TS LH SS

Tangential-flow
turbine-driven

pump
1900 2018 17 7

Tengential-flow
turbines (Pelton,
Turgo, Ghatta)

CP, Plunger
pump,

Progressive
cavity pump,

DP, SARP,
DARP

PD, VH CS, TS HH OS

Pump-as-Turbine
- Pump 1952 2018 47 10 Pump working in

reverse CP, DP PD, VH CS, TS LH OS

Cross-flow
turbine-driven

pump
1979 2018 26 10

Cross-flow turbine
(Michell – Banki,
Ossberger, BYS)

CP, DP PD, VH CS, TS LH OS

Other devices
Bunyip pump 2006 2018 6 1 Rubber tire SARP PD DA LH OS

Filardo pump 2012 2013 5 1 Ribbon frond
mechanism

Peristaltic
pumping pipes PD DA ZH SU

On pumping devices: HT, SARP, DARP, CP, and DP stand for hydraulic tank, single-acting reciprocating pump, double-acting reciprocating pump, centrifugal pump, and diaphragm
pump, respectively. On pumping principles: PD and VH stand for positive displacement and velocity head, respectively. On integration: DA, CS, VS, PS, and TS stand for direct
attachment, coaxial shaft, valve system, piston system, and transmission system, respectively. On required head: ZH, LH, MH, ULH, and HH stand for zero-head, low-head, medium-head,
ultra-low-head, and high-head, respectively. On location regarding water: SS, OS, and SU stand for semi-submerged, on-surface, and submerged, respectively.
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3.1.1. Manometric Pumps

These devices consist of any kind of semi-submerged curved pipes winding around a fixed
central point or axis, which rotates continuously, thereby alternatively taking in both water and air
packets through an open end in each revolution. The other extreme (i.e., the outlet), which matches
the center/axis, is connected to a water-tight rotary fitting joined to a fixed pipe [40]. They are named
after their resemblance to a wounded cascading manometer, thus operating on its principle, where
the series of loops of the pipe act as manometers separated from one another by the trapped air
columns [41–44]. The total lifting head at the outlet results from the addition of the manometric head
difference in each loop. Several authors have thoroughly studied the hydraulics of this water lifting
principle [40,41,45–49].

The shape of the curved pipe can be either planar [50], convolved in a three-dimensional
cylindrical surface [51], or in a conical one [49]. Besides, regarding the water stream, the axis of
the pipe can be cross-flow or axial-flow. These different shapes give rise to manometric pumps that
acquire several names throughout the literature, sometimes being used interchangeably or even as
synonyms. For convention of the present work however, cross-flow planar, cross-flow non-planar,
and axial-flow non-planar pipes will be referred as hydro-powered spiral pump (HSP), hydro-powered
coil pump (HCP), and hydro-powered helix pump (HHP), respectively. Figure 2 depicts different types
of manometric pumps.
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Figure 2. Different types of manometric pumps: (a) First ever known hydro-powered spiral pump
(HSP) from 1746 in Zurich [52]. CC BY-NC 3.0; (b) Modern HSP—aQysta’s Barsha pump [53]. ©
USAID (https://securingwaterforfood.org/innovator-news/hydro-powered-pump-offers-eco-friendly-
irrigation-solution). Cropped from the original; (c) Hydro-powered helix pump (HHP) [54]. Reproduced
with permission from Rife Hydraulic. © Rife Hydraulic Engine Manufacturing Company (https://www.
riferam.com/pumps.html); (d) Hydro-powered coil pump (HCP) [51]. Reproduced with permission
from Practical Action Publishing Ltd. © Otto Clemensen (https://doi.org/10.3362/0262-8104.1985.030).

The HSP, HCP, and HHP generally harness the required energy by means of waterwheels
(frequently stream shot ones), radial paddles, or axial-flow propellers, respectively. Therefore, these
devices do not usually rely on the water potential head but on the velocity of the water stream
(i.e., kinetic head). Both the curved pipe and prime mover can be joined either by attaching them
together [55,56] or either by transmitting the rotational movement from one to another through a shaft
or transmission system. More than one curved pipe can be assembled to the whole device [57,58].
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3.1.2. Hydro-Pneumatic Water Lifters

These HPP devices lift water at the expense of potential energy from falling water and
pneumatic compression [59,60]. They are usually self-oscillatory, thus relying on automatic draining
components (e.g., valves, floating devices, magnetic switches, counterweights) that allow the lifting
cycles to recommence [61–65]. However, other less common variants operate without any moving
component [66–68]. Hydro-pneumatic water lifters can be built in the form of compact machines [69–74]
or very large and complex systems [61,67,75,76]. Technologies within this class are the hydraulic ram
pump (HRP) and its many variants (e.g., multipulser, Platypus, Dingo™, Glockemann, PAPA, Venturo),
Lambach pump (LP), hydrautomat, Cherepnov water lifter (CWL), High Lifter, and aerohydraulic water
lifter. From these, the most common and widely applied is the HRP. Several types of hydro-pneumatic
water lifters are shown in Figure 3.
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3.1.3. Hybrid Turbine-Pumps

Hybrid turbine-pumps, unlike many other HPP technologies, do not join two different machines
(i.e., prime mover and pump), but they physically integrate both of them in a single, different hydraulic
device. Therefore, they must be understood as the hybridization of a type of water turbine and a
centrifugal pump, hence fulfilling both functions at the same time [81]. Hybrid turbine-pumps are
usually compact devices [82,83], though they have been also implemented in large-scale versions,
able to reach lifting heads of even hundreds of meters, for waterworks and irrigation systems [84,85].
These machines are very versatile [85–88], though require complementary civil works to operate
properly [83]. The Hydropulsor and the hydraulic transformer (HT) are in this group. Figure 4
illustrates the different types of hybrid turbine-pumps.
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3.1.4. Water Turbine-Pumps

The water turbine-pump (WTP), largely referred to the literature as a machine unique to China,
results from embodying in a single case, and coaxially joining–through a single shaft [90–95] or
transmission system [96,97]-an axial-flow turbine (usually a Kaplan type) and a centrifugal pump.
Both components are usually fully submerged, hence operating with the same water body, though
some models [98,99] operate on surface, by means of water-tight pipes. The head difference in the
water drives the turbine, whose vanes and blades can be either fixed or adjustable, and which in turn
transmits its rotational mechanical energy directly to the pump [26,100]. Due to this characteristic,
some authors consider WTPs highly efficient machines [25,93,94,96]. The WTP group encompasses the
hydraulic converter, Chinese water turbine-pump (CWTP), Globe case coaxial water turbine pump,
and Vietnamese hydraulic pump.

http://dingler.culture.hu-berlin.de/article/pj327/ar327220
http://dingler.culture.hu-berlin.de/article/pj327/ar327220
http://www.afst.valahia.ro/images/documente/2010/issue2/2010-2-4-3-Man-Eugen-Teodor.pdf
http://www.afst.valahia.ro/images/documente/2010/issue2/2010-2-4-3-Man-Eugen-Teodor.pdf
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WTPs are quite modular, thus prone to be installed in a wide variety of setups [91,93,101,102],
fulfilling different requirements: Stand-alone or in batteries (pump stations); with single-stage or
multistage pumping configurations [97,103,104]; placed either horizontally, vertically, or mixed;
in parallel and/or in series; as single-purpose devices, only for lifting water, or multi-purpose
ones [94,97,105–107], combined with electricity generation and other machinery [14,90,91,93,96,97,108];
installed in dams, canal drops, and excavated diversion canals [107,109]; and in both low-land tidal
rivers and mountainous areas [93,97,108,110]. Although they are generally better suited for low-head
conditions [14,90,111–114], there are few reported cases that make use of medium- and high-working
heads [99,113]. Furthermore, WTPs cover a broad range of models able to lift water from a few up to
hundreds of meters [14,28,90,94,99]. Commercially, WTPs are classified in regard to the diameter of
the turbine runner (given in cm) and the head ratio (pumping head: Working head) [90,93]. A 40-6
model, for instance, will have a 40 cm-diameter runner and a 6:1 head ratio. Devices of 10-160 cm
diameter, from 4:1 to 20:1 head ratio, and maximum efficiencies of 70%, exemplify the wide variety of
solutions [93,96,115].

Unlike other ready-to-use HPP devices, WTPs are highly demanding in complementary
civil works [93,107]. They frequently require dams, weirs and/or gates to create artificial drops,
thus augmenting the working head, as well as pits to hold the machine. Additionally, a draft tube
is also built to amplify the effect of the hydrostatic head [95]. As stated by some authors [14,26,50],
albeit the WTP by itself bears relatively low production costs, investments of complementary
constructions [96,107,110] largely outpace them. Several WTPs and their installations can be seen in
Figure 5.
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Figure 5. Different types of water turbine-pumps (WTPs): (a) Hydraulic converters installed in in
the Muffatwehr at the Isar River in Munich [81]. Reproduced with permission from Springer Nature.
© Springer Nature (https://doi.org/10.1007/978-3-642-50802-8_18); (b) Schematic view of the typical
installation of a WTP [14]. Reproduced with permission from Food and Agriculture Organization of
the United Nations© FAO (http://www.fao.org/3/ah810e/AH810E12.htm#12.1). A from the original;
(c) Mass production of Chinese water turbine-pump (CWTP). Reproduced with permission from Gejing
Jiang. ©有金华天阳电子有限公司 (http://www.jiaxiangwang.com/cn/guizhou.htm); (d) Multi-stage
Vietnamese hydraulic pump [116]. © Viện Khoa học Thủy lợi Việt Nam (http://www.vawr.org.vn/index.
aspx?aac=CLICK&aid=ARTICLE_DETAIL&ari=2314&lang=1&menu=&mid=-138&pid=1&title=

cong-nghe-bom-thuy-luan-bom-nuoc-tu-dong-phuc-vu-nong-nghiep-mien-nui-va-trung-du); (e)
Globe case coaxial water turbine pumps commissioned in the Mae Phum Reservoir, Phayao province,
Thailand [117]. © Royal Irrigation Department. CC BY-NC-SA 3.0. Cropped from the original.

3.1.5. Tubular Multi-Propeller Turbines

The tubular multi-propeller turbines (TMPT), which include the Plata pump, Turbopump,
and Hydrobine, as shown in Figure 6, are semi-submerged, axial-flow, ultra-low head (0.25–1.0 m)
pumping devices [14,24,118] encased in a cylindrical body made out of metal [118] or fiberglass [29,119].
They consist of a series of coaxial propeller turbine rotors joined through a single shaft, coupled to
one/two single-action reciprocating water pumps by means of a slider-crank mechanism [14,27,119].
TMPTs are meant to be installed laying on a slight slope angle to make water flow through the cylinder,
thereby usually requiring basic site preparation [14,24,27]. Furthermore, TMPTs are able to be installed
either in parallel or in series [27]. Their maximum power is developed when the turbine works about
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half full of water, but it can operate well in a range of three-quarters full to almost empty [14,27].
Additionally, modern versions [120,121] of these devices are designed for both water pumping and
electricity generation.
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The operation of TMPTs can raise some issues due to particles and floating debris. A grid before
the turbine intake will prevent them, though it might require daily clearance. Frequent silting can
contribute to undesired changes in the working head of the structures, thereby requiring periodic
removal of deposits [27,118,122].

The performance and benefits of TMPTs are a point of disagreement. Whereas some literature
mentions excellent lifts [29,119] of even hundreds of meters [118], others authors [14,27,42,111,122]
point them out as relatively expensive, less robust, and less efficient machines compared to other
HPP technologies.
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3.1.6. Water Current Turbines

Water current turbines (WCTs) lift water by harnessing kinetic energy from free-flowing
streams [124–127]. WCTs, comprising the Garman turbine (GT), Tyson turbine (TT), Hydrokinetic
linear turbine, and Markovic self-propelled pump, consist of a fully submerged turbine, coupled to a
centrifugal or reciprocating water pump by a transmission system. These devices are frequently moored
in nontidal (unidirectional flow) rivers, though tidal ones are considered as well [128,129], particularly
in locations where damming water is impractical due to economic or engineering reasons [124,127].
Less common WCTs incorporate piston pumps by employing crankshaft-and-connecting rod systems,
as well as vertical Darrieus-type water turbines [24]. Figure 7 shows several types of WCTs.Water 2019, 11, x FOR PEER REVIEW  16 of 35 
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Figure 7. Different types of water current turbines (WCTs): (a) Construction of a Garman turbine (GT).
© Thropton Energy Services. Courtesy of Dr. Barbara Sexon; (b) Two GTs in operation. © Thropton
Energy Services. Courtesy of Dr. Barbara Sexon. Cropped from the original; (c) Tyson turbine (TT)
in operation. Reproduced with permission from Museum of the Riverina. © Wagga Wagga City
Council. Courtesy of Mr. Luke Grealy; (d) Hydrokinetic linear turbine operating [129]. Reproduced
with permission from John Service. © Tuapeka Turbines (http://tuapeka-turbines.com/blog/mini-linear-
turbine-test-whakatane-river-new-zealand-14-march-2014/). Cropped from the original; (e) Markovic
self-propelled pump [130]. Reproduced with permission from Nataša Markovič. © Vladimir Markovič
(http://izumi.si/doc/ENERGY_AS_ENEMY.pdf).

WCTs are relatively simple to build with readily available materials, yet are sturdy and long
lasting. Besides, they do not require additional civil works, thereby reducing costs and favoring their
versatility [124,126,127,131–133]. However, WCTs present problems and interferences with weed (e.g.,
water hyacinth) and floating debris [134–139], which in turn determine their maintenance frequency,
though this largely depends on the type of river [140]. There are cases of turbines cleaned several times
a day [124], and other ones only every few days or weeks [140,141]. In this respect, some efforts have
been done in improving the design to counteract this issue [134–136].

WCTs are used for water pumping and/or electro-generation. Nonetheless, current research on
these devices focuses mainly on the latter [135,136,142–146], whereas the pumping purpose is barely
addressed by few authors [147].

3.1.7. Generic Integrations

Besides the specific HPP technologies previously addressed, there are cases in which generically
coupling a prime mover and a pumping device works effectively. Moreover, these arrangements are

http://tuapeka-turbines.com/blog/mini-linear-turbine-test-whakatane-river-new-zealand-14-march-2014/
http://tuapeka-turbines.com/blog/mini-linear-turbine-test-whakatane-river-new-zealand-14-march-2014/
http://izumi.si/doc/ENERGY_AS_ENEMY.pdf
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usually more flexible for a number of conditions compared to specific devices. Due to their generic
nature, however, it is not possible to trace back the origin or evolution of each of these inventions.

Among the prime movers used for these purposes are: Waterwheels, the most primitive form
of water turbine, hence more used in the remote past; axial-flow turbines; mixed-flow turbines;
tangential-flow turbines; pumps working in reverse, often known as pump-as-turbines; and cross-flow
turbines. On the other hand, a wide variety of pumping devices can be coupled: Single and
multistage centrifugal pumps, plunger pumps, progressive cavity pumps, and single and double
action piston pump, among others. Both off-the-shelf [148–152] as well as tailor-made [153–156] setups
are used for these purposes, and usually their implementation requires extra infrastructure to work
properly [150,155,157–160].

In regard to the type of prime mover, these generic integrations are waterwheel-driven
pump (WDP), axial-flow turbine-driven pump (ADP), mixed-flow turbine-driven pump (MDP),
tangential-flow turbine-driven pump (TDP), pump-as-turbine-pump (PAT-P), and cross-flow
turbine-driven pump (CDP). Figure 8 depicts different types of these generic integrations.
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Figure 8. Different types of generic integrations of HPPs: (a) Waterwheel-driven pump (WDP)
system in Brazil [161]. Reproduced with permission from Agropress. © AGROTEC (https://dl.uc.pt/
bitstream/10316.2/29970/1/Agrotec7_artigo35.pdf). Cropped from the original; (b) WDP type “Mangal
Turbine” [162]. Reproduced with permission from Bharat Dogra. © Bharat Dogra, as authorized by the
author Mangal Singh (https://thewire.in/agriculture/mangal-singh-bundelkhand-turbine). Cropped
from the original; (c) Cross-flow turbine-driven pump (CDP) system in Indonesia [163]. Reproduced with
permission of the author. © Isnugroho (https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/4447).
Cropped from the original; (d) Mixed-flow turbine-driven pump (MDP) in the Price-Stub pumping
plant, Grand Valley Project, Colorado [155]. Document under public domain (https://archive.org/

details/reclamationrecor11unit/page/308); (e) Off-the-shelf tangential-flow turbine-driven pump (TDP)
unit. © ZM Bombas (http://zmbombas.com.br/turbobomba). Reproduced with permission of the
author. (f) PAT-P system in an underground karst cave system in Gua Bribin, Indonesia [164]. © Franz
Nestmann et al. (https://doi.org/10.1016/j.proeng.2013.03.006). CC BY-NC-ND 3.0.

3.1.8. Other Devices

This group comprises two HPP devices that, due to their mechanical characteristics and energy
harnessing method, do not fit in any of the other groups. These, which are the Bunyip pump and
the Filardo pump, are characterized for being relatively novel inventions, though their commercial
and research status are mutually opposite to each other. The former results from the integration of a
conventional rubber tire (which provides elastic potential energy) and a piston pump, while the latter
harnesses kinetic energy from running water by means of a so-called ribbon frond mechanism, which
acts as a linear peristaltic pump. Both devices can be seen in Figure 9.
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author. © Brett Porta (https://www.facebook.com/portasaffordablepumps/photos/a.835289806627751/

1033397573483639/?type=3&theater). Cropped from the original; (b) Concept of Filardo pump [166].
Reproduced with permission of Elsevier. © Elsevier (https://doi.org/10.1016/j.renene.2016.01.089).
Cropped from the original.
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3.2. Literature Analysis

A total of 854 documents of different nature, in 17 languages, either as a whole or sections of
them, were selected and classified. From these, 418 and 436 correspond to scientific and grey literature,
of which 156 and 125 are non-English documents, respectively. As represented in Figure 10, the number
and distribution of these documents per HPP technology are neither homogeneous nor follow any
identifiable pattern.
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Although roughly half of the total selected documents belongs to scientific literature, this is
mostly concentrated in only three technologies, namely the CWTP, HRP, and WDP (18%, 17%, and 11%,
respectively). In relative terms, however, the Hydraulic converter, CWTP, CWL, and Hydropulsor are
the largest holders of these sources (100%, 76%, 72%, and 71%, respectively). On the opposite side,
the HRP and WDP are the main bearers of grey literature (14% and 11%, respectively), though its
biggest relative concentration relies on the HHP, High lifter, Vietnamese hydraulic pump, Hydrobine,
Markovic self-propelled pump, and Bunyip pump. In point of fact, the five latter only exist in that
domain of information, i.e., they are not reported at all in scientific documentation.

Notably, documents from sources usually neglected in scientific research (e.g., low-impact
factor journals, commercial literature, nonscientific websites, social media) offered large fragments of
information not found otherwise. Such is the case of the HHP, LP, High lifter, Vietnamese hydraulic
pump, Hydrobine, Markovic self-propelled pump, and Bunyip pump. Furthermore, the mapping of
certain case studies and/or research worldwide (3.3) was only possible due to those sources.

One-third of the total documents corresponds to non-English literature, thus cannot be considered
negligible. Out of that quantity, 26% belongs only to CWTP, whereas roughly 23% is evenly distributed
between the HRP, WDP, and CDP. Albeit five technologies (i.e., LP, Aerohydraulic water lifter, Hydraulic
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converter, Globe case coaxial water pump, and Vietnamese hydraulic pump) contribute to barely
13% of the total, those pose the particularity of being exclusively reported in non-English documents.
Other technologies with a high relative non-English representation are the CDP, HT, CWTP, CWL,
and Hydropulsor (81%, 80%, 74%, 72%, and 64%, respectively).

All these documents, which belong to the 30 HPP technologies and their respective categories,
have been published in different years throughout history. However, as seen in Figures 11 and 12,
there are certain periods in which noticeable boosts of literature took place. The hydro-pneumatic
water lifters, though showing a steady increase over time, have two particular moments: The former
around the early 1920s and the latter since the early 1980s, due to the punctual and momentary interest
of the Hydrautomat and the sustained production on the HRP, respectively. Documents addressing
technologies such as the HSP, WDP, and PAT-P gained a particular rebound during the 21st century
(though the two former existed since few centuries ago), thus providing an evident increase to their
respective categories, i.e., manometric pumps and generic integrations. The WTPs, thanks to the
CWTP, present a remarkable peak in their literary production during the late 1970s and 1980s which,
during the present century, has flattened drastically. The documentation on WCTs, mainly linked to
the records on the GT, presents the particularity of increasing during the last decade, despite those
technologies having been actively researched/applied during the 1980s and 1990s.

Water 2019, 11, x FOR PEER REVIEW 20 of 35 

 

evenly distributed between the HRP, WDP, and CDP. Albeit five technologies (i.e., LP, Aerohydraulic 
water lifter, Hydraulic converter, Globe case coaxial water pump, and Vietnamese hydraulic pump) 
contribute to barely 13% of the total, those pose the particularity of being exclusively reported in non-
English documents. Other technologies with a high relative non-English representation are the CDP, 
HT, CWTP, CWL, and Hydropulsor (81%, 80%, 74%, 72%, and 64%, respectively). 

All these documents, which belong to the 30 HPP technologies and their respective categories, 
have been published in different years throughout history. However, as seen in Figure 11 and Figure 
12, there are certain periods in which noticeable boosts of literature took place. The hydro-pneumatic 
water lifters, though showing a steady increase over time, have two particular moments: The former 
around the early 1920s and the latter since the early 1980s, due to the punctual and momentary 
interest of the Hydrautomat and the sustained production on the HRP, respectively. Documents 
addressing technologies such as the HSP, WDP, and PAT-P gained a particular rebound during the 
21st century (though the two former existed since few centuries ago), thus providing an evident 
increase to their respective categories, i.e., manometric pumps and generic integrations. The WTPs, 
thanks to the CWTP, present a remarkable peak in their literary production during the late 1970s and 
1980s which, during the present century, has flattened drastically. The documentation on WCTs, 
mainly linked to the records on the GT, presents the particularity of increasing during the last decade, 
despite those technologies having been actively researched/applied during the 1980s and 1990s. 

These numbers, as well as their distributions amongst the different HPP technologies, offer solid 
evidence in understanding: (i) How scientific production has (historically) focused in certain–to the 
detriment and neglect of other ones–regardless their development stage and benefits; (ii) how some 
HPP technologies (e.g., High Lifter, Hydrobine, Bunyip pump) exist, scale out, and thrive 
commercially, unnoticed by the written scientific sphere; and (iii) how, despite the long history of 
HPP systems, room still exists for further scientific studies focusing on old, as well as relatively new, 
HPP technologies. 

 
Figure 11. Cumulative number of selected documents published over time. The different colored 
areas depict the running total of documents produced per category of technology per year. 
Figure 11. Cumulative number of selected documents published over time. The different colored areas
depict the running total of documents produced per category of technology per year.



Water 2019, 11, 1677 19 of 33

Water 2019, 11, x FOR PEER REVIEW 21 of 35 

 

 
Figure 12. Noncumulative number of selected documents published over time. The different colored 
lines depict the running total of documents produced per technology per year. Only the most 
noticeable ones are represented. 

3.3. Spatial Analysis 

The worldwide spread of HPP technologies, as can be seen in Figure 13, has not been followed 
any recognizable spatial pattern. On the contrary, literature shows their places of origin, density of 
application, end-use, and propagation, are as heterogeneous (and, at times, even contradicting one 
another) as diverse are the technologies themselves. Moreover, they have faced different fates in both 
very high and high-human development index (H-HDI) and medium and low-human development 
index (L-HDI) countries, under a number of contrasting conditions. 

At a continental and subcontinental level, there are noticeable agglomerations of HPP 
technologies. The three main global clusters take place in Europe, South–Southeast Asia, and Eastern 
Africa. None of them are in coincidence with areas in which other RE-based pumping systems (e.g., 
solar-powered) have been installed [4]. The first one depicts an even distribution, mainly in western 
European countries such as the United Kingdom, Germany, The Netherlands, France, and Spain, 
which group a number of developers, manufacturers, and research centers linked to HPP 
technologies. On the other hand, the Asian and African clusters seem to be associated to areas of 
intensive traditional agriculture (i.e., southeast China, Indo-Gangetic plain, Indochinese peninsula), 
and to main transboundary river basins (e.g., Nile, Jubba, Zambezi), respectively. From these three 
groups, as presented in Figure 14, the Asian group is the only one with a consistent predominance of 
the agricultural irrigation as main end-use, whereas the European and African groups present a mix 
of water supply–agricultural irrigation uses. 

With respect to a country scale, both quantitative and qualitative concentrations of technologies 
can be distinguished, i.e., number of reported cases and distinct technologies, respectively. The 
number of installed units per country is amply dominated by the CWTP in China and the HRP in the 
United States, both H-HDI countries, as shown in Figure 13 and Table 2. Nevertheless, as seen in 
Figure 14, these technologies predominantly fulfilled two different end-uses, i.e., agricultural 
irrigation and water supply, respectively. The former resulted from an immense undertaking of the 
Chinese government, whereas the latter was a product of the proliferation of American 
manufacturers and the consequent popularization of the HRP. Other technologies that show a high 
nationwide density are the Turbopump and HSP in Kenya and Nepal, respectively, both serving 
agricultural irrigation, and the HRP in Philippines, mainly used to supply water in rural villages. 

Figure 12. Noncumulative number of selected documents published over time. The different colored
lines depict the running total of documents produced per technology per year. Only the most noticeable
ones are represented.

These numbers, as well as their distributions amongst the different HPP technologies, offer solid
evidence in understanding: (i) How scientific production has (historically) focused in certain–to the
detriment and neglect of other ones–regardless their development stage and benefits; (ii) how some
HPP technologies (e.g., High Lifter, Hydrobine, Bunyip pump) exist, scale out, and thrive commercially,
unnoticed by the written scientific sphere; and (iii) how, despite the long history of HPP systems,
room still exists for further scientific studies focusing on old, as well as relatively new, HPP technologies.

3.3. Spatial Analysis

The worldwide spread of HPP technologies, as can be seen in Figure 13, has not been followed
any recognizable spatial pattern. On the contrary, literature shows their places of origin, density of
application, end-use, and propagation, are as heterogeneous (and, at times, even contradicting one
another) as diverse are the technologies themselves. Moreover, they have faced different fates in both
very high and high-human development index (H-HDI) and medium and low-human development
index (L-HDI) countries, under a number of contrasting conditions.

At a continental and subcontinental level, there are noticeable agglomerations of HPP technologies.
The three main global clusters take place in Europe, South–Southeast Asia, and Eastern Africa. None of
them are in coincidence with areas in which other RE-based pumping systems (e.g., solar-powered)
have been installed [4]. The first one depicts an even distribution, mainly in western European countries
such as the United Kingdom, Germany, The Netherlands, France, and Spain, which group a number
of developers, manufacturers, and research centers linked to HPP technologies. On the other hand,
the Asian and African clusters seem to be associated to areas of intensive traditional agriculture (i.e.,
southeast China, Indo-Gangetic plain, Indochinese peninsula), and to main transboundary river basins
(e.g., Nile, Jubba, Zambezi), respectively. From these three groups, as presented in Figure 14, the Asian
group is the only one with a consistent predominance of the agricultural irrigation as main end-use,
whereas the European and African groups present a mix of water supply–agricultural irrigation uses.
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With respect to a country scale, both quantitative and qualitative concentrations of technologies
can be distinguished, i.e., number of reported cases and distinct technologies, respectively. The number
of installed units per country is amply dominated by the CWTP in China and the HRP in the United
States, both H-HDI countries, as shown in Figure 13 and Table 2. Nevertheless, as seen in Figure 14,
these technologies predominantly fulfilled two different end-uses, i.e., agricultural irrigation and water
supply, respectively. The former resulted from an immense undertaking of the Chinese government,
whereas the latter was a product of the proliferation of American manufacturers and the consequent
popularization of the HRP. Other technologies that show a high nationwide density are the Turbopump
and HSP in Kenya and Nepal, respectively, both serving agricultural irrigation, and the HRP in
Philippines, mainly used to supply water in rural villages. These three cases, all within L-HDI
countries, are the sole result of the efforts of their respective manufacturers.

Table 2. Top-five ranking of countries in regard to different categories.

Ranking Density of Technologies Concentration of Diverse
Technologies Nr. of Manufacturers

1 China (CWTP) USA (11) UK (8)
2 USA (HRP) Australia (9) China, USA (7)
3 Kenya (Turbopump) New Zealand (8) Brazil, New Zealand (6)
4 Nepal (HSP) Indonesia, Nepal, Thailand (7) Australia (5)
5 Philippines (HRP) Germany, Kenya, UK (6) Colombia, Nepal (4)

The top-five ranking of countries are ordered from highest (1) to lowest (5). The density of technologies, concentration
of diverse technologies, and number of manufacturers, are expressed regarding the predominant technology, number
of distinct technologies, and number of distinct manufacturers, respectively.

On the other hand, both H-HDI and L-HDI countries have been fertile land for the application and
coexistence of many diverse HPP technologies, as depicted in Figure 13 and Table 2. With 11 different
technologies the USA is the country bearing the highest diversity. However, the Australasian and
South-Southeast Asian regions hold other important contenders: Australia, New Zealand, Indonesia,
Nepal, and Thailand. In contrast, the concentration of manufacturers of HPP technologies is led by
UK, USA, China, New Zealand, and Brazil, i.e., mainly H-HDI countries. Nevertheless, technologies
such as the GT, Vietnamese hydraulic pump, Turbopump, and HRP are flagships of effective local
production in L-HDI countries (e.g., Nepal, Philippines, Afghanistan, Kenya, Vietnam).

A number of technologies have been able to move across political boundaries, though with
different destinies: The HRP, whose presence is reported in 42 countries, became the most cosmopolitan,
ubiquitous a nd diversified HPP technology. The expansion of the CWTP, nonetheless, is unique
amongst HPP devices: Although it bears the biggest number of reported applied cases ever, vastly
outpacing any other technology, it just moved discreetly to other 14 countries (besides China), where it
did not flourish at all. Other technologies that show certain degree of global presence are the HSP,
WDP, HHP, CDP, and PAT-P. In contrast, the Plata pump (turning into the Kenyan Turbopump) and
the GT quickly moved from their original H-HDI countries to L-HDI ones, modestly thriving within
their new limits, possibly thanks to effective transfer of knowledge.

Technologies such as the HHP, the TT, and the Hydrobine, for example, arose completely within
H-HDI countries (Sweden, Australia, and New Zealand, respectively), whereas other devices like many
HSPs, HCPs and CDPs found their way in L-HDI ones. Interestingly, the HT, Bunyip Pump, Globe case
coaxial water turbine pump, and the High Lifter on one hand, and the MT and Vietnamese hydraulic
pump on the other hand, are technologies that have virtually remained within their original boundaries
in H-HDI and L-HDI countries, respectively, without having experienced any further expansion.

3.4. Temporal Analysis

Unlike what occurs with their worldwide spread, evolution of HPP technologies over time
follows noticeable patterns of peaks and depressions, as depicted in Figure 15. During the 16th and
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17th centuries, the earliest HPP technologies (e.g., WDP, HSP, HCP) consisted mainly of large-scale
waterworks for urban settings (e.g., Paris, London, Philadelphia, Munich) or for nobility buildings (e.g.,
Toledo, Versailles, Modave, Arkhangelskoye). Their number was very limited, mainly due to their
complexity in construction and the high investment costs involved. During the 18th and 19th centuries,
however, the invention of the HRP provided a considerable boost to HPP systems by fulfilling the
function of a small-scale, affordable pumping technology that contributed in changing the lifestyle of
many European and American households [167].
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This first peak was gradually overshadowed during the first half of the 20th century by the rise
of forms of readily available energy (e.g., steam, electric) different from hydraulic. Nevertheless,
its second half was the most prolific period for HPP technologies, when many of them arose as a direct
response to either scarce, unaffordable, or inaccessible fossil-based energy [168–170], in which high
global oil prices due to critical events (e.g., oil embargos, Iran/Iraq War, Gulf War) seemed to be a
main game-changer [171]. The main contributor to this unequalled peak in history was the aggressive
spread of the CWTP over China during two continuous decades [114], though the rebound of the
HRP [167] and the quick, yet focalized rising of the Turbopump [118] became non-negligible additions
as well. This period is also characterized by the emergence of many other technologies such as the GT,
PAT-P, TT, CDP, HT, and HCP, among others.

During the 2000s, however, HPP technologies faced a slump apparently linked to the drop of
international oil prices [171], hence to more affordable fossil-origin energy, which in turn partially
dragged down the interest for RE-based technologies [172]. Nowadays, there has been a regained HPP
momentum, which could be the indirect result not only of fossil-fuel trends, but also of an increasing
environmental awareness and more affordable RE-based technologies [172,173]. Although no other
technology has ever reached the numbers of the CWTP, many of them altogether provide this current
impulse: HSP, HRP, ADP, CDP, PAT-P. Nonetheless, the fluctuation of international oil prices can
jeopardize the progress of RE [172], thus HPP along with it.

At an individual level, HPP technologies present very dissimilar storylines in regard to their
survival, growth, application, and fate. The LP, Hydrautomat, Hydropulsor and Plata pump declined
despite their benefits, good reception, and commercial status. Moreover, devices such as the Platypus
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HRP and the Plata pump left the stage almost without any traceable information. Some technologies
became marketable only after long research and prototyping processes (e.g., HSP, HRP, CWTP, GT),
whereas other ones went commercial almost without research and development phase (e.g., HHP,
Plata pump, Turbopump, High Lifter, Bunyip pump, Hydrobine). On the other hand, another
group of technologies has not aroused any apparent commercial interest, thus being relegated to
the research realm: CWL, HT, hydrokinetic linear turbine, hydraulic converter. Furthermore, a last
group corresponds to potentially promising technologies incipiently researched in contemporary times:
Filardo pump, aerohydraulic water lifter.

Some technologies thrived despite adversities, while other ones sunk even while counting on
favorable conditions. Inherent properties, like simplicity of manufacturing, robustness, and sound
functioning, have been key for the worldwide spread and persistence of the HRP over time, whose
principle has remained virtually unchanged for more than two centuries. In the same line, a globally
ubiquitous, well-developed market and affordable off-the-shelf units have been a solid ground for the
more recent expansion of PAT-P throughout the second half of the 20th century. By contrast, complexity,
uniqueness, and highly concentrated expertise of the LP resulted in crucial weaknesses when facing
threats like world wars and market collapses.

Factors belonging to the management systems of HPP technologies have been also gravitating.
Seemingly proper business models for the HHP seem a sound reason for its discreet, yet sustained use,
especially in H-HDI countries (e.g., USA, Canada, Sweden). Contrariwise, mismanagement issues such
as stakeholders’ misalignments, weak supply chains, lack of spare parts, and stagnation in development
were deadly for the Plata pump and for the once-acclaimed and officially supported CWTP. Moreover,
the firm will of the people involved has led to push forward some causes against odds. Peter Garman,
for instance, practically devoted his life to develop and spread the GT in L-HDI countries in Africa,
despite civil wars, discontinuation of the research program, and local-manufacturing issues. Mangal
Singh and Auke Idzenga are other examples of standing against many sociopolitical constraints,
though the expansion of their Mangal Turbine WDP and HRP have found opposite destinies in India
and Philippines, respectively. On the other hand, the constancy and endeavoring of Warren Tyson
was eventually not enough for the TT to cope with world market crashes that led to an eventual
commercial crumbling.

The appropriate technology movement and many of its related research centers and agencies
(e.g., ITDG–Practical Action, VITA, SKAT, CICAT, GIZ) largely contributed to the expansion and
implementation of some HPP technologies during the 1970s, 1980s, and 1990s. Several cases of HCPs,
HRPs, GTs, and CDTs are direct products of their undertakings. In most of these instances, there was a
strong component on expertise transfer, local manufacturing, and technology empowerment, aiming
to create more resilient technologies rather than profit from patented ones [51,74,124,173–178].

4. Conclusions

HPP technologies have a long history, though having experienced different levels of prominence.
More than 800 documents, different in nature and content, have been thoroughly reviewed to shape
their role in space and time. Some of these technologies, such as the HRP and the WDP, have had global
impact and interest since their origins until contemporary times, whereas other ones, like the Hydraulic
converter, Hydropulsor, and HT, have had short and almost imperceptible lives. On the other hand,
the CWTP, albeit with a relatively short lifespan, was one of the backbones of rural development in
China, and a unique case worldwide. To a bigger or lesser extent, all of them have demonstrated to
be a sound alternative to conventional water pumping systems, which can be unaffordable or even
inaccessible, particularly in remote and off-the-grid areas.

In this sense, and in accordance with the objectives previously raised in the present document,
three main following concluding remarks can be drawn:

1. The concept of pumping water by only relying in hydro-mechanical power–at least due to
the amount of readily available “westernized” literature–is something seemingly reserved for
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few well-known technologies like the HRP, WDP, CWTP, GT, and HSP. Nevertheless, after an
exhaustive and systematic search process, up to 30 HPP technologies were screened and analyzed.
However, due to the wide range of features and applicability, their classification became eventually
a main challenge for the present study. It is so that eight classes were defined, not based on one
single property on the technologies, but on the combination of several of them (i.e., working
principle, pumping principle, prime mover, pumping device, integration of the parts).

2. HPP technologies are not currently the main protagonists globally in water lifting. Some of
them, however, mainly off-the-shelf devices within the class of generic integrations (i.e., CDP,
PAT-P, TDP, WDP) applied in low-income countries, keep being the standard-bearers of their
development, commercialization, and application. Moreover, and despite their more than two
century-long existence, both HRP and HSP pose a sustained interest from manufacturers and
researchers, who persistently find in them low-cost, robust, and environmentally sound means of
delivering water to new heights.

3. Individual HPP technologies do not present any apparent global spatial and temporal patterns.
However, their aggregated analysis does say much more, not only on what has been done
before, but on the current, as well as possible future, directions of research, application,
and commercialization. For instance, nowadays, many South American countries show an
incipient, yet growing interest in working with these technologies in both academia and industry.
On the other hand, Sub-Saharan Africa remains a region where HPPs have the potential to create
a higher social impact by improving livelihoods through sustained water supply. Last, yet not
least, the baggage of expertise on design and manufacturing, as well as a higher capacity of
adoption and use of HPPs in other regions (i.e., Europe, South and Southeast Asia), will be
always a valuable capital for academics and manufacturers while exploring new insights in their
respective domains.

HPP technologies still have a potentially promising future to keep supplying water in different
contexts, particularly due to their current regained momentum. However, researchers, manufacturers,
and users need to be aware of the importance that management systems, as well as business models,
pose for these technologies beyond their mere performance. Their adequate implementation can
represent higher resilience and adaptability capacities, while their lack or an open mismanagement
could turn into their weakest point. The synthesis presented in this document serves as a reference
starting point for other researchers in fields such as hydraulics engineering, water and irrigation
management, and industrial archaeology, as well as others interested in the world of HPP systems.

Supplementary Materials: Datasets related to this article can be found at https://hdl.handle.net/10411/5RSELQ,
an open-source online data repository hosted at DataverseNL [39].
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Acronyms

RE Renewable energy
HPP Hydro-powered pumping
HSP Hydro-powered spiral pump
HCP Hydro-powered coil pump
HHP Hydro-powered helix pump
HRP Hydraulic ram pump
LP Lambach pump
CWL Cherepnov water lifter
HT Hydraulic transformer
WTP Water turbine pump
CWTP Chinese water turbine pump
TMPT Tubular multi-propeller turbine
WCT Water current turbine
GT Garman turbine
TT Tyson turbine
WDP Waterwheel-driven pump
ADP Axial-flow turbine-driven pump
MDP Mixed-flow turbine-driven pump
TDP Tangential-flow turbine-driven pump
PAT-P Pump-as-Turbine – Pump
CDP Cross-flow turbine-driven pump
H-HDI Very High and High-human development index
L-LDI Medium and Low-human development index
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