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Abstract: Model-based optimization of the water-flooding process in oil reservoirs suffers
from high levels of uncertainty arising from strongly varying economic conditions and limited
knowledge of the reservoir model parameters. To handle uncertainty, diverse robust optimization
approaches that use an ensemble of uncertain parameter realizations (i.e., scenarios), have been
adopted. However, in scenario-based approaches, the effect of considering a finite set of scenarios
on the constraint violation and/or the performance degradation with respect to the unseen
scenarios have not been studied. In this paper, we provide probabilistic guarantees on the worst-
case performance degradation of a scenario-based solution. By using statistical learning, we
analyze the impact of the number of scenarios on the probabilistic guarantees for the worst-case
solution subject to both economic and geological uncertainties. For the economic uncertainty,
we derive an explicit a-priori relationship between the probabilistic guarantee and the number
of considered scenarios, while for the geological uncertainty, a-posteriori probabilistic upper
bounds on the worst-case solution are given.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Water-flooding involves the injection of water in an oil
reservoir to increase oil production. Various studies have
shown that model-based dynamic optimization of the
water-flooding process improves the economic life-cycle
performance of oil fields, see e.g., Brouwer and Jansen
[2004], Foss [2012]. In these studies, Net present value
(NPV) is optimized as an economic objective. Besides com-
putational complexity, induced due to complex dynamics
and hence non-convexity, one of the key challenges in this
model-based dynamic optimization is the high levels of
uncertainty arising from the modeling process of water
flooding and from strongly varying economic conditions.
As a result, the potential advantages of optimization are
usually not fully realized.

Typically, one of the first steps in optimization under un-
certainty is the quantification of the uncertainty space. In a
probabilistic setting, inexact knowledge of a parameter can
be modeled via a probability distribution function, leading
to stochastic objective function/constraints, Kali and Wal-
lace [1994]. Alternatively, uncertainty can also be modeled
as a variable within a deterministic bounded set, and the
optimization seeks for a solution which is feasible for all
possible realizations in the given set, see e.g., Ben-Tal et al.
[2009]. In water-flooding optimization, motivated by the
computational complexity, uncertainty is represented by
an ensemble, consisting of a finite number of realizations

of the uncertain parameters. In the petroleum engineer-
ing literature, these scenario (ensemble)-based robust ap-
proaches have been studied from various perspectives. In
Van Essen et al. [2009], a so-called robust optimization ap-
proach has been introduced, which maximizes an average
NPV over an ensemble of geological model realizations.
A mean-variance optimization (MVO) approach honoring
geological uncertainty, which maximizes the average NPV
and minimizes the variance of the NPV distribution, has
been implemented in Capolei et al. [2015b] and extended to
consider economic uncertainty in Siraj et al. [2017]. Differ-
ent risk-averse robust strategies, e.g., worst-case robust op-
timization, CVaR optimization, have been presented, e.g.,
in Xin and Albert [2015], Capolei et al. [2015a], Hanssen
et al. [2015], Siraj [2017]. In all these approaches, the
number of scenarios are chosen in an ad-hoc way and the
effect of considering a finite set of scenarios, have not been
studied in terms of violation of constraints, performance
and robustness of the solution with respect to the unseen
scenarios.

The scenario-based optimization is a randomized method-
ology for chance-constrained programs (Schwarm and
Nikolaou [1999]) which has been generally characterized
in Calafiore and Campi [2005] under the assumption that
the sampled counterpart of the original optimization is
convex. Based on convex optimization theory and statis-
tical learning, the authors have shown an explicit lower
bound on the number of scenarios to be sampled such that
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the robustly optimal solution to the sampled optimization
problem is feasible (with high confidence) for the original
chance-constrained program. Informally speaking, given
an optimization problem with probabilistic constraints and
a number of random samples of the uncertain variable,
the theory of the scenario approach establishes how many
samples shall be considered to ensure (with high confi-
dence) a certain probability of constraint violation. In
Campi and Garatti [2008], Calafiore [2010], the scenario
approach theory has been refined in terms of minimum
sample size in general; in Schildbach et al. [2013], Zhang
et al. [2014, 2015], the scenario approach theory has been
refined for sampled convex programs that exhibit specific
structure in the constraint functions, and in Grammatico
et al. [2014, 2016] the scenario approach has been extended
to non-convex programs. All the sample size bounds in
these papers are a-priori bounds, i.e., the number of sce-
narios that are necessary to achieve a desired probability
of constraint violation is known independently on the
outcome of the sampled optimization problem. Instead, an
a-posteriori scenario approach theory, named “wait-and-
judge” scenario optimization, has been recently developed
in Campi and Garatti [2016], where the authors have for-
mulated a probabilistic statement on the robustly optimal
solution to the sampled program after the optimal solution
has been computed and based on the number of scenarios
used. Complementary to the scenario approach, statistical
learning theory has also been applied to support proba-
bilistic guarantees for optimization problems with noncon-
vex sampled counterpart Tempo et al. [2013]. While the
domain of application is larger, the derived probabilistic
statements are weaker than those of the scenario approach.
The motivation is that the latter provides probabilistic
guarantees for the optimal solution only, not for an entire
subset of feasible solutions.

The main focus on this paper is to bridge the gap be-
tween scenario-based optimization and water-flooding op-
timization. We aim to address the question: for the worst-
case robust water-flooding optimization with economic
and geological uncertainty, can we provide probabilistic
guarantees on the performance robustness, in terms of
achieved optimal value, when an optimal or feasible so-
lution is validated against the unseen scenarios? With this
aim, we will define the notion of performance robustness
probability and analyze the effect of the number of sce-
narios to achieve an upper bound on this probability. For
economic uncertainty, we derive a-priori characterization
on the relationship between the number of scenarios and
performance robustness probability (§3), while for geolog-
ical uncertainty, we provide an a-posteriori probabilistic
upper bounds of the worst-case optimal solution (§4).

2. SCENARIO-BASED ROBUST OPTIMIZATION
2.1 Water-flooding optimization

In the model-based optimization of water-flooding process,
the NPV to be maximized is typically represented as

J(u,@)zz

= ()T

water water inj inj

Tk 4k Tk qk)

(1)

At 1 o
k (rzﬂqzll _

where roil ppater W for all k € {1,...,K}, and b are
economic parameters, i.e., oil price rg‘l, water production

cost 7" water injection cost 7 in [$/m?], and dis-

count factor b > 0 for a certain reference time 7. In
the definition of NPV, these economic parameters are
typically considered as fixed over time, while in reality,
these variables fluctuate with time and cannot be precisely
predicted, hence become a source of uncertainty. Thus, we
intend the parameters rgi!, ri¥atr ™ and b as part of
the uncertainty vector 0. K represents the production life-
cycle, i.e., the total number of time steps k, and Aty is
the time interval in days associated with one time step.
The terms q,‘c’il and ¢}'®t°" represent the total flow rate of

produced oil and water at time instant k in %, respec-

tively, and are the output variables. The input vector, u,

involves the total water injection rate ¢, " and/or bottom-
hole pressure defined at injection/production wells. The
parameter vector 6 also contains the porosities (the per-
centage of pore volume within rock that can contain fluids)
and permeabilities (rock’s ability to transmit fluids) in
each grid cell, and other (uncertain) reservoir parameters,
hence it affects the output variables q,‘gil and g%, ie.,

qlcc)il — qzil(u79) and qkwater — q’\;vater(u7 0)

Various robust measures to handle uncertainty have been
proposed in the petroleum engineering literature. In this
work, we consider the scenario-based worst-case optimiza-
tion (WCO) approach to handle both economic and geo-
logical uncertainty and to derive probabilistic guarantees
with a finite number of scenarios in an ensemble.

2.2 Worst-case optimization

Worst-case robust optimization (WCO) is a deterministic
paradigm, where the uncertainty is modeled as a variable
6 that takes values in a deterministic set (©). It optimizes
the worst possible case of the considered problem and
solves a max-min problem. A typical unconstrained worst-
case robust optimization problem can be stated as:

max min J(u,0). (2)
An equivalent formulation is the epigraph form with an
auxiliary variable Ben-Tal et al. [2009]:

max = 2

. ucl,ze

WCO:: s.t. 2z <minJ(u,6) (3)
9€o

Assumption 1. The optimization problem WCO in (3) is
feasible. 0

2.8 Scenario-based optimization

As the water-flooding optimization is a computationally
expensive problem, a traditional approach in robust opti-
mization of the water-flooding process is to sample the
uncertainty space, i.e., to consider a finite number of
realizations of the uncertain parameters, {61,6s,--- ,0xn},
where 6; € O for all 4, and to define the following scenario-
based worst-case optimization problem:

Hl,l{aX]R z

. ucl,ze

WCOy : st. z< min_ J(u6) 4
ie{l,...,N}
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Assumption 2. Forall {6y,...,0x}, the optimization prob-
lem in (4) is feasible and u}, denotes an optimal solution,
with optimal NPV value being J5% = J(u}). O

Assumption 3. The vectors 6y,...,0n in (4) are ii.d.
samples from the probability measure Pg on O. (]

Since WCOy is a sampled version of WCO, with a finite
number of (not necessarily the worst-case) samples, the
optimal solution uj, is super-optimal for WCO in (3).
Due to this relaxation, a possible quantification of the
robustness level achieved by the solution uj, of WCOy
is highly relevant. There are two main questions indeed:

(1) What can we claim about the achieved NPV value,
when u}y is applied in the presence of the unseen
scenarios for 67

Given a number of samples N, can we quantify,
e.g. in probabilistic terms, the robustness of the
performance, i.e, the measure of the subset of © such
that J(u},) > maxgeo J(uly, 6)?

(2)

Intuitively, the effect of increasing the number of samples
N is to improve the worst-case performance, since more
samples implies more knowledge of the uncertainty set ©.
In order to address these questions, let us formally define
a “probability of performance robustness”.

Definition 1. (Performance robustness probability). Let u}
be an optimal solution to WCOy in (4). The performance
robustness probability of uj, in terms of NPV is defined

()
O

V) = PolJ(uly) > J(uk,0 € O)].

We note that the definition above is equivalent to the
“violation probability” for a chance constrained problem
of the form min, ¢’z s.t. Po[f(z,0 € ©) < 0] > 1 —¢
[Calafiore and Campi 2005, Def. 1].

The probability V(uj,) indicates the chance that the
ensemble of scenarios used for WCO y does not contain a
worst-case realization. In order to quantify the robustness
level of the solution uj;, we define an e—level solution as
in [Calafiore and Campi 2005, Def. 2].

Definition 2. (e—level solution). Let € € (0,1). ul, € U is
an e—level robust solution to WCO in (3) if V(u}y) <e. O

Let us emphasize, however, that given an optimal solution
uly, V(uy) cannot be directly computed since Pg is un-
known. Therefore, we shall rely on the following technical
statement to upper bound the performance robustness
probability V (u}).

Lemma 1. ([Campi and Garatti 2008, Th. 1]). Forall @ =
(01,...,0n), let WCOp in (4) be convex, with unique
optimal solution ujy, = u} (@) € Y. Then, the performance
robustness probability V' (u%) is upper bounded by a beta
distribution, i.e.,

n—1

x NY —i

PYV(uy) > <3 () 1-a¥ =5, (6
i=0

where n = dim(¥/) is the number of decision variables. O

Explicit lower bounds on the number of scenarios N for
given robustness level parameter € € (0,1) and confidence
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parameter 8 € (0,1) have been established in Campi and
Garatti [2008], Calafiore [2010]. These bounds are given
a-priori, so that N can be chosen for a desired level of
robustness before the optimization is performed. Instead,
in Campi and Garatti [2016], the wait-and-judge approach
has been introduced which addresses probabilistic state-
ments also for nonconvex problems. Within the latter ap-
proach, the robustness level € of a solution u}, is evaluated
a-posteriori, given the number of scenarios N used and the
confidence parameter 3.

Both a-priori and a-posteriori probabilistic statements are
based on the notion of support constraint (SC) [Calafiore
and Campi 2006, Def. 4], which we provide in the next
definition.

Definition 3. (Support constraint (SC)). For each
j € {1,...,N}, consider the sampled optimization prob-
lem

max 2
7. ucl,ze
WCOy st. z2< min J(u, ;) (7)

Tie{l,.. . NI\{5}
A sample 6; generates a support constraint, z < J(u, ;)

in (7), if the optimal value of WCO?V is strictly greater
then that of WCOy. O

In plain words, a sampled constraint is a support con-
straint for WCOy if its removal would alter the optimal
solution of the problem.

In the wait-and-judge approach, the robustness level is a
function of the number of support constraints that are
observed for the solution of scenario-based optimization
problem WCOy. Given this a-posteriori observation, an
upper bound on the robustness level € is provided in the
next statement.

Lemma 2. ([Campi and Garatti 2016, Th. 2]). Let

B € (0,1), s be the number of support constraints
observed for ujy, and, for all k € {1,...,N}, let t(k) be
the unique solution to the polynomial equation

B+ mok (N,
N+1’;@<7§>t ’C—<k)tN’“:0. (8)
Then, for €(-) := 1 —¢(-), it holds that
PV (uk) > e(s3)] < 8.

9)
O

2.4 Statistical learning theory

Note that the key assumption for the classic theory of
the scenario approach is that the sampled version of the
optimization problem has to be convex. Unfortunately,
this feature cannot be verified in water-flooding optimiza-
tion. Because of the inherent nonlinearity of the output
functions ¢°'(u) and ¢V***(u), the optimization problem
WCOp in (4) is nonconvex indeed. In this case, the
globally optimal solution may be hard to compute. Thus,
we shall rely on a notion of probability of performance
robustness that is valid for an entire set, not just for the
globally optimal solution.

Definition 4. (Set performance robustness probability).
Let F be the feasible subset of WCOpy in (4). The
performance robustness probability of F in terms of NPV
is defined as
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V(F) :=Po | inf J(v) — J(v,0 € ©) > 0] .

veF (10)

O

Relative to an entire feasible set, statistical learning theory
[Erdogan and Iyengar 2006, Sec. 3.2], [Alamo et al. 2009,
Sec. IV, V] provides probabilistic statements based on the
so-called Vapnik—Chervonenkis (VC) dimension [Tempo
et al. 2013, Def. 10.2], which characterizes the structure
of the sampled optimization problem.

Lemma 3. ([Anthony and Biggs 1992, Th. 8.4.1]). Let F
be a feasible subset for WCOp in (4). Then, the perfor-
mance robustness probability V(F) is upper bounded as
follows:

Py [V(F) > ] <2(2)" exp (—eN/2),
where v is the VC dimension. O

The VC dimension is in general hard to compute, or
even infinite Grammatico et al. [2016]. However, we will
show that for the water-flooding optimization problem
with economic uncertainty, the cost function has a special
structure for which we can explicitly characterize it.

In the next sections, we show that the probabilistic state-
ments mentioned above are applicable to the considered
water-flooding optimization. We address two cases: the
WCO subject to economic uncertainty as presented in
Siraj [2017], and the WCO with geological uncertainty as
in Xin and Albert [2015], Siraj [2017]. Our main message is
that ensemble-based optimization approaches as conceived
in the literature do enjoy probabilistic guarantees on the
performance robustness. This observation allows us to the-
oretically (that is, not just empirically) analyze the effect
of the number of scenarios used in the optimization.

3. ECONOMIC UNCERTAINTY

Oil reservoirs typically have a long life cycle that ranges
from 10 to 100 years. The economic variables that govern
the NPV, especially the oil price, 7‘2”, which in the classic
definition of NPV it is considered fixed over time, can vary
drastically over time. Moreover, accurate predictions of the
oil price cannot be available in practice. The unknown
fluctuations of oil prices are in fact the key source of
economic uncertainty. Therefore, in this section, let us
consider oil prices only as economic uncertainty.

Furthermore, we assume that some (inaccurate) pre-
dictions are available. In reality, different models, e.g.
the Prospective Outlook on Long-term Energy Systems
(POLES) in the European Union, the National Energy
Modeling System (NEMS) for energy markets developed
by the U.S. Department of Energy and the Energy Infor-
mation Administration (EIA) in the United States, can be
used to generate predictions for energy prices, see Bhat-
tacharyya and Timilsina [2010], Birol [2010] for details. In
Siraj [2017], a simplified Auto-Regressive-Moving-Average
model (ARMA) model is used to generate oil price scenar-
ios. Thus, in this section, we assume that the uncertain

variable represents the oil price, ie., 9.: [P ST
and that some potential oil price scenarios, 61,...,0y, are

available.

In Siraj [2017], the WCO for the oil price ensemble has
been presented and the results compared in terms of

NPV distribution with the mean-optimization approach in
Van Essen et al. [2009]. Our contribution here is show that
the scenario-based WCO enjoys probabilistic guarantees
on the performance robustness probability (Definition 1).
With this aim, first, we note that for the WCO with
economic uncertainty only, the NPV function .J in (1) takes
the form

J(U., 9) _ eTquil(u)_ (,rwater)—r

quater(u) _ (rwater) TBH

(11)

where B := diag ((HAb)t}l/T .

AtK
M (ler)tK VESN
We can now apply the recent scenario approach theory
to derive an upper bound on the number of support con-
straints and consequently, an a-priori probabilistic guar-
antee.

Lemma 4. Suppose that, for all § = r°!! € ©, the function
u — J(u,0) in (11) is concave. Then, the number of
support constraints in the optimization problem WCO y
in (4) is no more than K + 1. O

Proof. It follows from [Zhang et al. 2015, Lemma 1].

Proposition 1. Suppose that, for all § = r°! € O, the
function u — J(u,0) in (11) is concave. Let u} be the
optimal solution to WCOy in (4), with

N>2(K+m(})).
Then, it holds that PY [V (u}) > €] < B. O

Proof. It follows from Lemma 1 and [Grammatico et al.
2016, Equ. (5)].

We conclude the section on the economic uncertainty by
dropping the assumption of convexity of r°! in objective
function. Next, we provide probabilistic guarantees that
are more generally applicable, at the price of increased
sample size.

Lemma 5. The VC dimension for the optimization prob-
lem WCOp in (4) with function J as in (11) is K + 1.
O

Proof. It follows from [Anthony and Biggs 1992, Example
8.4.4].

Proposition 2. Let F be a feasible set for the optimization
problem WCOy in (4) with function J as in (11) and

Nz 2 ((K+ )i (2) +1n (2)).
Then, it holds that PY [V (F) > ¢ < S. O

Proof. See [Anthony and Biggs 1992, Th. 8.4.1] and
[Grammatico et al. 2016, Equ. (6)].

4. GEOLOGICAL UNCERTAINTY

Reservoir dynamics are nonlinear in nature and typically
represented by large-scale partial differential equations,
with a number of state variables in the order of 10* — 108
and a similar number of the model parameters. Model
uncertainty, in terms of the model structure and param-
eters, is one of the key sources of uncertainty in model-
based optimization of the water-flooding process. It arises
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mainly due to the lack of knowledge of subsurface geology
that defines the reservoir. For dealing with uncertainty,
scenario-based optimization is typically used on a set of
sampled models, M(61), ..., M(0y). The resulting ensem-
ble of models has been used in various robust approaches,
e.g. mean-optimization and worst-case optimization, see
Van Essen et al. [2009], Xin and Albert [2015], Capolei
et al. [2015b], Siraj [2017].

We emphasize that the probabilistic bounds derived in
the presence of economic uncertainty cannot be directly
extended to the case with geological uncertainty, as the un-
certain model parameters do not affect the NPV objective
function linearly. Instead, the NPV is a function of total
output flow ¢°!' over time, which in turn is a highly non-
linear function of the decision variables. Therefore, in the
presence of geological uncertainty, the resulting scenario
optimization problem WCOy in (4) is inherently noncon-
vex, and in turn an a-priori probabilistic guarantee cannot
be stated in general. In this case, a-posterior bounds on
the performance robustness probability shall be instead
applied by observing the number of support constraints
for the WCOp problem. Alternatively, we can observe
the number of actives constraints, which is in general an
upper bound on the number of support constraints. In this
section, we take the a-posteriori approach on a simulation
example with an ensemble of oil reservoir models, and de-
rive probabilistic bounds based on the number of observed
active constraints.

In the following, we consider a simulation example subject
to geological uncertainty, where the only source of uncer-
tainty is from the unknown model parameters, while the
economic parameters are considered as fixed. We perform
that numerical experiment using the MATLAB Reservoir
Simulation Toolbox (MRST) Lie et al. [2012].

We use an ensemble of finite number of geological re-
alizations of the standard egg model, see Jansen et al.
[2014], with 100 realizations, i.e., N = Ngeo = 100. Each
model is a three-dimensional realization of a channelized
reservoir produced under water-flooding conditions, with
eight water injectors and four producers, based on the
original egg model proposed in Van Essen et al. [2009].
The true permeability field is considered to be the un-
known parameter. The life cycle of each reservoir model is
assumed to be 3600 days. The absolute-permeability field
of the first realization in the set is shown in Fig. 1. For
illustration purposes, Fig. 2 shows the permeability fields
of six randomly chosen realizations of the standard egg
model in the assumed ensemble. Each realization in the
set is considered as equi-probable.

We consider the numerical setup described next. The
WCO problem is considered with non-discounted NPV,
i.e., with discount factor b = 0. The economic parameters,
oil price rzil, water injection Tk J and production cost 17
are chosen as 126-; T 6% and 19m3, respectively. The

control input, that is, the decision variable of the optimiza-
tion problem, u, involves injection flow rate trajectories for
the eight injection wells. The minimum and the rnaximurn

rate for each injection well are set to 0.2 and 79. 5;’;},,
respectively. The production wells operate at a constant
bottom-hole pressure of 395 bar. For each of the eight

injection wells, the control input is parametrized into ten

water

ﬂTO % 10%
|

RS

35 % 10*

i
1.8 100
' injector b

' producer
31 mbarcy

Fig. 1. Illustration of the permeability field of one model
realization Van Essen et al. [2009)].

Fig. 2. Illustration of the permeability fields of six ran-
domly chosen geological realizations (Van Essen et al.
[2009], Jansen et al. [2014].

time periods of 360 days each, during which the injection
rate is intended to be constant. Thus, the decision variable
has dimension n = 80. For numerical results in terms of
optimal NPV values and a comparison with Van Essen
et al. [2009], we refer the interested reader to Siraj [2017].

To derive the upper bound € in (9), we select a confidence
level 3 of 0.01. Then, in order to evaluate the robustness
level of the obtained scenario-based optimal solution uj,
we a-posteriori evaluate the number of active constraints,
which is always an upper bound for the numbers of
support constraints. The motivation for this choice is that
assessing which constraints are active at the optimum is
computationally lighter than removing one constraint j
at the time and solving WCOY; in (7). In our numerical
simulation, for the obtained solution uj, we observe 7
active constraints only. In view of Equation (8), we plot
e(sy) for the chosen confidence level 8 in Fig. 3. In
particular, we observe that ¢(7) = 0.09. It shows that,
for this particular example, 100 realizations are sufficient
to obtain low upper-bound on performance robustness.
Increasing the number of realizations will further improve
the worst-case performance.

09r

08

0.7

06

05

04r

03

0.2r

Upper bound ¢ (SCN) on difference probability

0.1

Number meuppor\ Constraint (SC) = 7

0 20 40 60 BO 100 120 140 160 180
Number of decision variables n

Fig. 3. For the case of geological uncertainty, upper-bound
€ as a function of SC and the confidence level 1 —
B) = 0.99 on performance robustness probability.
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5. CONCLUSION AND OUTLOOK

Scenario-based approaches to robust optimization rep-
resent an attractive computational approach that, sur-
prisingly, come with theoretical, probabilistic guarantees.
Since scenario-based robust optimization approaches are
very common in water-flooding optimization for oil reser-
voirs, we have shown that scenario-based optimal control
solutions do enjoy probabilistic guarantees. Specifically, in
case of economic uncertainty, probabilistic statements hold
depending on the number of scenarios used. For geologi-
cal uncertainty, probabilistic statements shall be derived
based on the computed optimal solution. We believe that
these observations can be extended to constrained prob-
lems in the water-flooding optimization.
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