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Abstract—This paper presents a framework for deriving the
storage capacity that an electricity system requires in order to
satisfy a chosen risk appetite. The framework takes as inputs
user-defined event categories, parameterised by peak power-not-
served, acceptable number of events per year and permitted
probability of exceeding these constraints, and returns as an
output the total capacity of storage that is needed. For increased
model accuracy, our methodology incorporates multiple nodes
with limited transfer capacities, and we provide a foresight-
free dispatch policy for application to this setting. Finally, we
demonstrate the chance-constrained capacity determination via
application to a model of the British network.

Index Terms—Energy storage systems, chance-constrained op-
timisation, optimal control, ancillary service, system adequacy

I. INTRODUCTION

As electricity networks are decarbonised, an increasing
proportion of the supply mix is provided by intermittent
renewable sources. This leads to difficulty in balancing supply
and demand. Energy storage offers a promising means of
addressing this challenge, whereby fluctuations are smoothed
by charging at times of oversupply and discharging at times
of shortfall. This naturally leads to the question of how much
storage a national electricity system requires. Due to economic
constraints, it is not satisfactory to simply over-procure storage
capacity by a large margin, but any level that has practical
limits is necessarily accompanied by a risk of failure to balance
the system. This is exemplified in the British (GB) network
by the outage of 2019, during which there was simply not
sufficient backup capacity available to meet the requirement
of a rare event [1].

In this work, we provide a framework for mapping risk
appetites to storage capacity requirements. The user is able
to define categories of shortfall event, and then specify how
often they are willing to accept each type of event occurring.
Chance-constrained specification of the form presented in
[2] is used to determine the minimum capacity of energy
storage required. For the purposes of description, we focus
on the GB system, but our approach remains general. Rather
than use a static grid supply mix, we consider the evolution
over time as predicted by National Grid, the GB TSO, in a
scenario intended to meet the UK’s obligations under the Paris
Agreement [3].

Multiple authors have previously considered the question of
the storage required by a system undergoing decarbonisation.
Indeed, a summary of the results from multiple studies,
including a fitted trend-line of storage capacity as a function
of percentage renewable energy supply, was presented in [4],
and then extended in [5] to include National Grid outputs.
The underlying methodology (see, for example, [4], [6]–[9])
involved minimising total system cost subject to specific de-
carbonisation conditions. However, this included the constraint
that supply must meet demand in all locations and at all times.
We extend this approach to include chance constraints, so that
system planners willing to accept some risk of failure are able
to perform a comparable optimisation task.

We design our event criteria based on prevalent genera-
tion adequacy metrics. Perhaps the two most common are
expected energy-not-served (EENS) and loss-of-load expec-
tation (LOLE). While the GB network has historically been
designed based on LOLE, the inclusion of storage has led
to the additional use of EENS for storage calculations, as
a more representative encoding of event severity [10]. It is
for this reason that we focus our attention on the severity of
shortfalls, in place of simply whether or not they occur. For the
purposes of this work, we choose to consider peak power-not-
served (PPNS) (i.e. maximum instantaneous shortfall across
an event) under a specified dispatch strategy, but it would be
straightforward to substitute this for an energy-related metric.

Our approach uses Monte Carlo simulation to sample com-
binations of supply and demand, each resulting in a shortfall
trace. Integral to our analysis is then the simulated application
of storage units to such a time-series. In [11], [12], a foresight-
free dispatch policy was presented, in continuous and discrete
time respectively, and shown to minimise the energy-not-
served under pure discharging operation. An extension for
recharging was also given in [12]. However, these policies
apply to the case in which all storage units contribute towards
meeting an aggregate shortfall at a single node; or equivalently
a multi-node network with no limits on flows. Here, we
are interested in the case in which transfer capacities are
constrained. We present a quadratic programming equivalent
to the round-trip policy of [12], under the restriction that
each device has unity efficiency and symmetric ratings for
charging and discharging, that also allows for cross-charging
among units. In addition to the current application, this could
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also be utilised in Model Predictive Control (MPC) dispatch
frameworks.

II. PROBLEM DESCRIPTION

A. Mathematical description

We denote by n the number of nodes on the considered
network, and utilise subscripts to denote node identifiers. At
each node, our analysis is conducted based on annual supply
and demand traces of sample period ∆t h, so that each
trace has length K

.
= 8760/∆t. We consider a single nodal

demand trace Di : {1, ...,K} 7→ [0,+∞), but m supply traces
corresponding to different generator classes, each denoted
Gi,j : {1, ...,K} 7→ [0,+∞). All of these traces will later
be generated via stochastic processes. The nodal net shortfall
Si[·] can then be calculated according to

Si[k] = Di[k]−
m∑
j=1

Gi,j [k], k = 1, ...,K. (1)

In this work, we assume that the system planner is only
able to apply storage to counteract shortfalls, and for the
purposes of description restrict ourselves to a single storage
unit per node. Note that this is without loss of generality, as
co-located units can simply be connected by limitless lines. We
denote the extractable energy stored at each node and sample
instant as ei[k], which is subject to the assumed physical
constraint 0 ≤ ei[k] ≤ ei. We choose as our control input
pi[k], the power extracted from the storage device, measured
externally so as to take into account any inefficiencies present
during discharging operation. This then leads to the following
integrator dynamics:

ei[k + 1] =

{
ei[k]− pi[k]∆t, if pi[k] ≥ 0
ei[k]− ηpi[k]∆t, otherwise, (2)

in which ηi ∈ [0, 1] denotes the round-trip efficiency of the
unit. We denote the power limits as pi[k] ∈ [−p

i
, pi]. Once

storage has been dispatched, we refer to the adjusted shortfall
trace as a resultant trace, and each continuous period of
remaining positive shortfall as a shortfall event.

B. Encoding of risk appetites

In this paper, we provide a means through which user-
defined risk appetites can be mapped to storage requirements.
We characterise the severity of an event based on PPNS, and
rather than a binary check on whether a single threshold is
exceeded, we allow the user to define q event categories that
are assessed independently.

An example of q = 4 category definitions can be found
in Table I. For the jth event class, the user sets not only the
PPNS threshold above which an event is registered, but also
an allowed number of occurrences per year (total across all
nodes), a(j), and an acceptable probability of failing to meet
this tally, c(j). We define the counting operator Λ(j)(·), which
maps an annual resultant trace to an integer tally of the number
of qualifying shortfall events. We then form the following

chance-constrained optimisation problem, to determine the
total storage power capacity required:

minP
(j)

s.t. pi = ρiP
(j) ∀i

Pr
[ n∑
i=1

Λ(j)(Si[·]− pi[·, pi]) ≤ a(j)
]
≥ 1− c(j),

(?)

in which Pr[·] is the probability operator. The parameter
ρi denotes the (assumed fixed) proportion of total capacity
allocated to the ith node, and the energy capacity is assumed
to scale with the output power (i.e. the storage duration is as-
sumed fixed), so that the battery capabilities are parameterised
by the single parameter P

(j)
. In words, this optimisation

problem aims to minimise the total storage capacity, subject
to a chance constraint on the event tally across all nodes
exceeding its allowed limit. Note that it is assumed that a
given dispatch strategy is used (see next section). We repeat
this full process for all q event categories, and can additionally
collapse the output into a single scalar value by computing
max{P (j)

, j = 1, ..., q}.

III. DISPATCH OF STORAGE UNDER NETWORK
CONSTRAINTS

As mentioned in the Introduction, we extend the dispatch
policy of [12] to incorporate transfer capacity constraints.
In order to allocate dispatch of the storage fleet at each
time instant, a quadratic program is composed, in which the
constraints correspond to the power and energy limits of each
storage unit, as well as transfer ratings. This is then solved
for each time step and an update to the energy performed
according to the dynamics (2). For clarity of notation we omit
the explicit time dependence in the following. The objective
function of the quadratic program consists of two sets of terms
that describe a load shedding cost and a reduction in value of
stored energy per node, each of which is described below.

1) Avoidance of load shedding: Our objective is to min-
imise the unserved demand after storage, which we denote as
si for the ith node and forms a decision variable. We assign
a marginal cost that is linear in the proportion of demand that
is not served, i.e.

α+ β
si
Di
, (3)

for positive α and β, leading to a total cost per time step of

β∆t

2Di
s2i + (α∆t)si. (4)

2) Storage dispatch: In the interest of simplicity, we assign
the units full efficiency. As our modelling incorporates all
losses into recharging operation, this should have a negligible
effect when units can usually fully recharge between shortfall
events; see [12] for further discussion on this point. We also
set p = p.

The compound round-trip policy of [12] involves instanta-
neously targeting an equal value of time-to-go, the remaining
time for which each device can discharge at its maximum rate,
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across the fleet. During discharging operation, this involves
ordering devices by descending time-to-go and allocating at
maximum rate until the request is satisfied or all available
devices are utilised [11]. During recharging operation, this
is inverted: devices are ordered by increasing time-to-go and
allocated at maximum recharge rate [12]. By targeting an even
time-to-go across the fleet, the policy aims to keep devices
non-depleted, and therefore available for utilisation, under pure
discharging request signals for as long as possible. From this
intuition, one can deduce that devices with low time-to-go
are inherently valuable; that is, there is a lower opportunity
cost to dispatching high time-to-go devices than there is to
dispatching low time-to-go units.

When composing our objective function, we aim to capture
this value, in the form of a value function, so that the returned
optimum will push the time-to-go of each device in the correct
direction. We achieve this by assigning a marginal value per
unit of energy of

γ − δ

pi
ei, (5)

for positive γ and δ satifying 0 < δ < piγ/ei. Integrating
from ei = 0 results in a total value of

Vk = γei −
δ

2pi
e2i (6)

at the beginning of a time slice. A comparison with the value
function after an allocation of pi over one sample period leads
to a reduction in value (i.e. implied cost) of

Vk − Vk+1 = (γ − δ

pi
ei)pi∆t+

δ

2pi
(pi∆t)

2. (7)

We attempt to minimise this expression via the decision
variable pi. In order to capture that shortfall minimisation takes
precedence over correct dispatch of storage units, we also set
parameters such that (3) is larger than (5) for all units and
areas.

IV. SOLUTION METHODOLOGY

A. Network model

We partition the GB network into three geographical re-
gions: Scotland, Northern England and Rest of GB. We then
model the network as a complete three-node graph, where each
node corresponds to one region. Transfer capacities between
nodes are given by the bulk power transfer limits between
regions. A flow network formulation was used in this paper,
but this could be replaced by a power flow formulation if
desired.

B. Chance-constrained optimisation

In this work, we utilise a comparable Monte Carlo procedure
to that of [2]. N samples are composed by drawing demand
and supply traces and computing, for each class of shortfall
event, the boundary storage value at which the transition oc-
curs from success to failure in adhering to the event criterion.
A bisection routine is used to determine this value, with the
output taken as the lower bound of a 1 GW interval. Once

this routine has been repeated for all N samples, we choose
the value corresponding to success in (1−c(j))N samples, for
event classes j = 1, ..., q, as can be seen in Figure 1.

Fig. 1: The Monte Carlo procedure

C. Trace generation

The above procedure is repeated to return results for all
future years up to 2050. In each case, annual supply and
demand traces, of 1 h sample period, are generated according
to the methodology of the following subsections. Once these
have been generated, they are scaled to reflect National Grid’s
current prediction of the energy mix (under the ‘2 Degrees’
scenario) [3] for the considered future year.

1) Wind and solar: We draw historical traces from the
range 2000-2018, generated according to the reanalysis
methodology of Staffell and Pfenninger [13], [14]. One trace is
composed per node, for each of offshore wind, onshore wind
and solar. The location for each region is assigned to the largest
(in terms of power rating) site in that region, which is used as
the input coordinates to the data generator available at [15].
The output of this process is scaled to reflect the proportion of
total generation of that class currently provided by the chosen
region [16]. In order to account for geographical correlations,
identical years are used for all solar traces, and identical years
are used for all wind traces.

2) Thermal plant, hydropower and marine: The capacity
for all thermal plant, including nuclear, is combined and
then distributed among nodes according to current proportions
[16]. The nodal total is then divided among generators of
500 MW rating. We repeat this generator assignment process
for hydropower. We then compute traces for each generator
via a 2-state Markov chain corresponding to up and down
states, with a mean time between subsequent failure events of
2000 h. We set availability values based on the mean across
relevant (Winter) data from Figure 3.1 of [17]. As no marine
generation is currently deployed on the system, we neglect any
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contribution for this source. However, this represents at most
2% of predicted capacity moving forward in time.

3) Interconnectors: We assume the interconnectors that will
be online from 2022 according to the market regulator [18],
with the same proportion of total interconnection capacity
allocated to each moving forward in time. We assign each
to the nodes at which they are connected, then aggregate and
divide the total capacity among 500 MW circuits that are able
to fail independently. We model each of these circuits via the
above 2-state Markov Chain procedure, this time with a 100 h
mean time between subsequent failures (reflecting availability
of power in the connected system). We assume that National
Grid de-rating factors are a good representation of availability
in this case, and so take the mean 2023/2024 value from [19].

4) Demand: We draw aggregate demand traces from histor-
ical national demand traces, covering the period 2006-2018,
which we scale to reflect predicted peak demand according
to [3]. These data are provided by National Grid [20], and
converted from half-hourly to hourly averages. In order to dis-
aggregate total demand, we divide this by region in proportion
to total energy use for the same historical year [21].

V. RESULTS AND DISCUSSION

A. Event categories

For our case study, we choose four event categories, as
shown in Table I (recall that PPNS is the peak-power-not-
served, and that an event is registered whenever the given
value is exceeded). The boundaries between classes are defined
based on 1, 3 and 5 multiples of the magnitude of the GB
power cut on the 9 August 2019 [1]. It would be possible
to extend our criteria to include considerations of recovery
time, but we choose not to do so as it is difficult to predict
the consequence of secondary effects. For example, following
the 9 August event, poorly designed train post-fault protocols
caused passengers to be stranded for significantly longer than
it took to restore power [1].

Category PPNS (GW) Number/year Exceedance probability

Routine 0 3 1 year in 2

Mild 1.9 0 1 year in 5

Medium 5.7 0 1 year in 10

Severe 9.5 0 1 year in 15

TABLE I: The categories of shortfall event considered.

B. Three-node model

We perform the full study detailed above, across N = 104

samples, with the total storage divided among nodes in pro-
portion to demand. The observed progression of storage need
over time can be seen in Figure 2. These results would need
to be verified, for example by running the procedure for a
longer period of time to ensure convergence to true values, and
refinements made to modelling assumptions. The results do,
however, demonstrate the potential impact of the framework
that we present.
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Fig. 2: The progression of storage need over time, under the
three-node model.

C. Single-node model

For comparison, we also perform the analysis for a single-
node model. This is equivalent to the three-node model under
the conditions that transfer capacities are not limited and with
the applied storage composed of a single unit. The results of
this investigation can be seen in Figure 3.
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Fig. 3: The progression of storage need over time, under the
single-node model.

D. Discussion

Firstly, we compare the results from the three-node and
one-node models as follows. We note that the trends are
very similar in the two cases, including the ordering of
event category requirements over time: in both cases, the
Mild curve dominates up to approximately 2040, after which
point it is the Medium curve that sets the maximum storage
requirement. For all event categories and at all times, the 1-
node results set lower bounds on the three-node results. This
is as to be expected, since the combining of storage units and
neglecting of transfer capacity limits should allow for better
cross-compensation among nodes. The lack of optimisation
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in the distribution of total storage capacity among nodes
will likely mean that the returned values for the three-node
model are larger than the true storage needs for a three-node
network. Conversely, limiting our analysis to three nodes and
disregarding additional power flow constraints serves to reduce
the storage requirement. Further investigation would be needed
to quantify these effects for a particular case.

The multi-node storage dispatch policy presented in this
paper assumes that units prioritise addressing shortfalls over
other objectives. This could reflect, for example, a system
operator providing very large financial incentives for ancillary
service participation. In cases where this compensation was
in fact comparable to the potential earnings of the storage
operator under alternative service routes, this modelling as-
sumption might no longer hold. In order to roughly account
for this, one could scale the resulting storage requirement by
the inverse of the expected availability at the start of a shortfall
event. For example, if the operator expected to have a 50%
state-of-charge at the start of each event, then the requirement
would be doubled.

The exact storage requirement returned by our framework
depends on the parameters of the model, for example: the
choice of storage duration and conventional generation avail-
ability values; the distribution of storage among nodes; and the
event category definitions. It would be up to the user of the
framework, most likely a system planner, to set representative
parameters and further investigate sensitivity to these choices.

For the purposes of this study, we have only considered total
storage capacity as a decision variable, with all other capacities
set to a constant value. A techno-economic optimisation that
also considered changing the generation portfolio, or included
flexible demand, might arrive at novel solutions to tackle the
risks considered.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a framework for the chance-
constrained determination of electricity system storage re-
quirements, demonstrated through application to the GB net-
work. The framework is capable of encoding multiple event
categories, defined based on PPNS, allowed annual frequency
and probability of exceeding this number of occurrences per
year. This work has also introduced a foresight-free multi-node
dispatch strategy for energy storage units that reduces to the
policy of [12] for the single-node case.

In future work, the authors intend to extend this model to
include probabilistic transfer capacities and the effect of power
flow constraints. They also plan to derive a theoretical basis
for the value function used in dispatch optimisation, and in
addition to extend this for cases where devices have imperfect
efficiencies and asymmetric power ratings.
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