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Abstract

Even though negative effects on the use of crude oil have surfaced over the past years, our energy
matrix still largely relies on this energy source. The production of oil, therefore, plays an important role
in our society. Unfortunately, the process of oil production is highly uncertain. There are uncertain-
ties associated on the production strategy, e.g. where and how many wells should be drilled and how
these wells should operate because of the uncertainties associated with the limited knowledge about
the subsurface. In this thesis we are dealing with the uncertainty of the rock permeability distribution.
Typically, rock permeabilities in the rock vary, but from the outside this can’t be perceived. If these
rock permeabilities are estimated inaccurately, they will result in inaccurate pressure solutions. Then,
this can lead to faulty decisions regarding the oil exploitation. To resolve this issue, a data assimi-
lation technique may be applied to correct these model parameters based on mismatch of simulated
data and observations. For this optimization technique, often gradient information is required. Since
in reservoir simulation the number of parameters generally is extremely high, computation of this infor-
mation is computationally expensive. Therefore, a multiscale framework is employed to improve the
computational efficiency of the forward simulation. Multiscale methods are able to solve the model
equations at a computationally efficient coarse scale and can easily interpolate this solution to the fine
scale resolution. Next, we use a Lagrangian set-up together with a multiscale framework to re-derive
an efficient formulation for the derivative computation. However, as the multiscale method is prone to
errors, this derivative computation formulation is recast in an iterative fashion, using a residual based
iterative multiscale method to provide control of these errors. In this thesis we show that this method
generates accurate gradients. In contract to the high accuracy of the method, this method comprises
a computationally heavy smoothing step. This issue can be resolved by making smart use of the La-
grange multipliers, to re-derive an efficient iterative multiscale solution strategy. The multipliers are
used to identify important domains of the region for which smoothing is required and for which regions
we may neglect the smoothing. We show that the newly proposed iterative multiscale goal oriented
method is computationally more efficient and we show that method is promising for efficient derivative
computation, but that more work is required to fully demonstrate the benefit of this method.
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Introduction

1.1. Reservoir Simulation

1.1.1. Industry

Crude oil is one of the energy sources with extremely high consumer rates. It is estimated that only in
the United States alone around 71.9 billion barrels of oil are consumed per year. This accounts for 37%
of the total energy consumption. Oil can be used for different ends. For example, oil is used to propel
vehicles, heat buildings and produce electricity [35]. Even though throughout the years negative effects
on the use of crude oil surfaced, the industry still remains a billion dollar industry. Large companies
such as Shell form a revenue of USD 450 billion in 2016 [27].

The process of oil production is a highly uncertain process. Oil is exploited by drilling wells into rocks of
the earth that may, or may not, contain crude oil. Then, under high pressure water is pumped through
the pores of this media. Due to pressure differences oil flows from one side to another. Production
wells bring the oil to surface level [31]. This process is visualized in Figure [1.1]. These rocks often
contain natural gas and water next to oil, and therefore also can be produced as side products. So
choosing the location where you produce for crude oil can be critical.

Production Well

Injection Well

Injected Waler Wamr and Ol expands and moves
encounters trapped oil oll mix towards producing well

Figure 1.1: lllustration of exploiting of oil

In secondary recovery [34], one uses two or three different types of wells. There are injection, produc-
tion and observation wells. At the injection wells, water is injected into the natural formation under high
pressure. This injection causes the oil and water to be pushed through the pores of the rock. At the

1



2 1. Introduction

production wells, the wells use pressure to bring the liquids or gas to ground level, all with the goal of
producing as much oil and as little of water as possible. Observation wells are wells that give infor-
mation of different quantities, such as pressure. It is clear that in this process there are many different
variables. Firstly, where should we position the wells? How many wells should we use? At which
pressure rates should the wells operate? To answer these questions optimization methods are used.
In these models, they calculate the optimal parameters to maximize an economic variable such as a
net present value. A net present value is a measure of profit by substracting the cash outflow (costs
for exploiting, or penalties for producing water or gas) and adding the cash inflow (income generated
from oil productions).

1.1.2. Data assimilation

It is known that for rocks containing crude oil, the permeability across these rocks is highly heteroge-
neous. Permeability is a measure of how the pores are connected throughout the rock, and hence
gives a direct relation to the flow of oil. This heterogeneous property has as effect that it makes is hard
to know the complete permeability distribution across the entire rock. For reservoir simulation, this
poses an issue that the parameters for the model, i.e. the permeabilities, are unknown and need to be
estimated to the best of our knowledge. However, estimating these parameters may lead to very inac-
curate models and predictions. To resolve this issue, we apply data assimilation techniques to improve
our estimations of the permeability distribution. Data assimilation [17], is a mathematical technique that
aims to minimize the mismatch or misfit between the measured data and model responses. Typical
measurements are pressures at the observation wells. The model responses are computed by running
the forward model.

In the view of uncertainty in permeability, the goal of this technique is to adjust the permeabilities pa-
rameters in such manner, that the generated model responses are better aligned with the observations.
In other words, we minimize the misfit between these values. This method creates predictions that are
more accurate and reliable.

1.2. Derivative Computation

Now that we know that we want to minimize the misfit between model responses and measured data,
we now ask ourselves the question how we determine for which parameters a correction is required and
how big this correction should be. The model solutions can be used to evaluate an function of interest,
called the objective function. An example is the economic Net Present Value function. To choose an
optimal value of the parameters we must first know the effect to the objective function when a change
in the parameters is made. If the effect is large, we make a large adjustment, if the effect is small we
make a small adjustment. This rate of change in the model parameters is given by the derivative of the
objective function with respect to the model parameters.

For reservoir data assimilation techniques often gradient information is required to find the optimal
value. As we will later discuss, reservoir models are often described by a high number of parameters,
therefore making the computational demand for computing the gradient information high. To resolve
the issue of high computational costs, we will introduce a multiscale framework [43, 44]. The multiscale
method is a method that allows us to calculate the solution on a computational domain of much smaller
size, therefore decreasing the computational cost. Then, the solution is interpolated back to the orig-
inal domain. In conclusion, this framework enables us to efficiently and very accurately represent the
solution in the original computation domain, however with less computational effort.

Now, in order to calculate the gradient information in a multiscale framework, we recast the multiscale
derivative computation introduced in [25] with aid of the Lagrange Multiplier Method [36]. Apart from
giving us a mathematical formulation for the gradient information, this method has another advantage.
The multipliers calculated during this method prove to be beneficial for later utilization.

The multiscale method is prone to generate errors in the solution and therefore may also lead to in-
accurate gradient estimation. To resolve this issue, previous work by [30] has shown that an iterative
multiscale method may provide the solution to resolve the errors generated in the gradient computation.
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The iterative multiscale method [12, 13] is an iterative algorithm that reduces the error of the solution
generated by the multiscale method. It gives more accurate solutions and in this thesis we will show
that this means that it also leads to accurate gradients.

As mentioned before, the Lagrange Multipliers can be extremely beneficial and in our setting, and may
be used for different purposes. Because of their interpretation, Lagrange Multipliers can be used for
different strategies to reduce the computational costs. They are used for grid-refinement techniques
[7], for reducing computational effort and for adaptive coarsening of the multiscale model [39]. In this
thesis we focus on reducing the computational effort of the iterative multiscale method. Because even
though the solution from this method is extremely accurate, the method uses a computationally heavy
smoothing step. By introducing the adjoint [3, 19], we define a method to assess the sensitivity of the
computational domain with respect to the optimization goal. For the domains that have a low effect,
we accept the solution to be accurate enough, and leave out the smoothing stage. This new method
is called the goal oriented iterative multiscale method.

1.3. Research and outline

This research was conducted at Delft University of Technology as collaboration between the depart-
ments of Applied Mathematics and Applied Geo Sciences. In order to successfully complete the master
thesis project, a set of research questions were posed at the start of the thesis:

1. How can we recast the multiscale gradient computation by using a Lagrange Multiplier framework
and how can we benefit from the multipliers in a goal oriented iterative multiscale method?

2. Does the iterative multiscale model provide accurate gradients when compared to the full fine
scale gradient?

3. Can we improve the computational efficiency of the iterative multiscale method by using the La-
grange Multipliers to select the domain that is most sensitive to errors with respect to a user
defined goal?

To answer these questions, we have structured this thesis in as follows. After this introduction, Chapter
two: Mathematical Formulation of Flow in Porous Media will explain the mathematical background of
reservoir simulation. We explain important concepts that are used throughout this thesis. Assumptions
are made and validated. Also, we show how to solve a system of equation using the multiscale model.

Next, Chapter three: Continuous Optimization, briefly describes the concepts and theory behind opti-
mizational techniques. Here, we explain the Lagrange Multiplier method and we introduce the reader
to gradient-based optimization algorithms.

Then, Chapter four: Multiscale Methods, deals with all the theory around multiscale methods. An ex-
tensive derivation of the method is given. Next, we describe the algebraic multiscale method that is
used to solve the forward model equations in a multiscale setting.

Consecutively, we will develop iterative multiscale methods in Chapter five: lterative Multiscale Models.
Here the framework to deal with the errors as generated by the multiscale methods is described.

In Chapter six: Derivation of the Multiscale Lagrange Multiplier Gradient Computation Framework, we
will bring the theory of the Lagrange multiplier method and the multiscale method into practice and we
will derive an analytical expression for the gradient information.

Now that we have found an analytical expression for the gradient information, Chapter seven: Deriva-
tion of the Iterative Multiscale Gradient Computation Framework, will provide algorithms to compute the
analytical terms. Two different methods are provided in both an iterative- and multiscale framework.

Chapter eight: Numerical i-MS gradient computation experiments, focusses on numerical experiments
proving the robustness and accuracy of the iterative Multiscale gradient information, compared to the
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fine scale gradient information. Multiple test cases are considered, with increasing complexity.

Then, Chapter nine: Goal-oriented Adjoint based Optimization, introduces the Goal-Oriented method.
This method aims to identify the spatial regions of the reservoir where errors in the solution lead to big
differences in a specified goal. The other positions are regarded as less important and can therefore
be disregarded in the smoothing stage of the iterative multiscale model, hence decreasing the compu-
tational costs even further.

Chapter ten: Numerical Goal-oriented Adjoint based Optimization experiments, focusses on numerical
experiments to show the computational efficiency with respect to the previous model. Also we will in-
vestigate the accuracy of the gradient computation with this new model.

Finally, we will finish this thesis report with a conclusion about the results generated in the paper. After
this, we give some recommendations for future work.



Mathematical Formulation of Flow in
Porous Media

In this chapter we will discuss the mathematical formulation behind the reservoir simulation models.
Reservoir simulation is about simulation flow of one, or more, fluids through porous media. We present
the mathematical equations that form the basis of the model. During this entire thesis, we consider
single phase flow. Throughout this chapter we follow the works of [16, 18, 45].

2.1. Single phase flow

We start the derivation for the governing equations by considering a one-dimensional, horizontal flow of
a compressible single-phase fluid through a constant cross-sectional area compressible porous media.
To derive the flow equations we consider the mass balance per unit of time for a control volume with
length dx. This idea is illustrated in Figure [2.1a]. Mass conservation leads to the equation

apv—a(p+2Lax)(v+ Lax) = a2 ax 4 pg = 0 2.1
where A represents the cross-sectional area, p(x,t) the fluid density, v(x,t) the Darcy velocity and
source term q(x,t). We use spatial coordinate x and use symbol t to indicate time dependency. For
the one-dimensional case we have x = x. Finally we have porosity ¢(x,t). Porosity as used in this
thesis, is defined as the ratio between pore volume and the total volume of a material. A good example
of a material with high porosity is a scourer, as depicted in Figure [2.1b]

v v+ oV ax
17) 4
ax
(a) Control Volume to derive Mass Balance. (b) Example of Pores in a scourer [1].

Figure 2.1: Left: Control Volume to derive Mass Balance. Right: Visualization of Pores in a scourer.

Now we consider all first order terms, and neglect all higher-order derivative terms of equation (2.1).

5



6 2. Mathematical Formulation of Flow in Porous Media

We expand and simplify to find

(0pv)  0dp¢ wo_
5t P4 =0, (2.2)

where q" = A% is the new source term. If we repeat this procedure for the additional spatial positions
y and z so that x = (x,y, z), we can generalize equation (2.2) into a three-dimensional equation

ap¢ n
Ve(pv) + o= —pa" =0, (2.3)

where v = (v, vy, v,)T represents the Darcy velocity with respect to the spatial direction and where
V = (0,0, d,)7 is the gradient vector. The divergence operator is defined as the operation V - (¢) =

P 90 , Where n represents the number of dimensions. The Darcy velocity is a fictional velocity that

=1 gy,
would occur if the entire cross-section would be open to flow, i.e. if the entire medium would be porous,
hence ¢ = 1 [37]. The Darcy Velocity is given by [37]

1 —
v= —;K(Vp —pgvd), (2.4)

where f{(x) is the permeability tensor and may be written as a diagonal matrix, K= diag(Ky, Ky, K;).
The permeability tensor is an indication of the ease with which fluids can pass through the porous
media. Logically, the permeability is related to the porosity, in the sense that permeability gives an
indication of how well the pores in the material are connected. However, we highlight that even though
if the porosity is high, but the pores are very ill connected, the permeability is low [14]. A visualization
of this explanation is found in Figure [2.2].

Figure 2.2: Visualization of the relationship between porosity and permeability. Left: good porosity, but poor permeability. Right:
good porosity and good permeability [14].

Furthermore, in equation (2.4) we have g as the acceleration of gravity and d(x) is the depth of the
reservoir. Combining equations (2.3) and (2.4), this results in

000,
ot Pq

We may decompose this equation into three parts. The first is the flux term, which indicates the flow
rate per unit of area. Next, we have the accumulation term, which is an indication of how much is
accumulated in the system. Finally we have a source term, indicating the systems in- or outflow. The
different terms are indicated in the following equation

_v. [Eﬁ(Vp - ngd)] + -0 (2.5)

-v. [Zfi(Vp - ngd)] + a(gf)) - pq" =0 (2.6)
—_—— ——

Source term

Flux-term Accumulation term



2.1. Single phase flow 7

Equation (2.6), is also called the mass balance equation, as it describes velocity change and hence, the
displacement of the fluids through the porous media. Here, multiple variables may be dependent on the
pressure. In practice one generally assumes that the variables K, u have a small pressure dependency.
Hence, from now on we will assume independence of these variables on pressure. The variables p
and ¢ are in relationship with the pressure. The relationship between p and p is given by the equations
of state. This equation describes the state of the phase in presence of physical parameters such as
pressure and temperature. We have that our fluid phase has a compressibility ¢;(p) and is defined as

1dp

alp) = —5=

7 2.7)

To
where T, is a constant reference temperature. In the same way we have a relationship between ¢ and
p given by

19¢

¢ (p) = 29 (2.8)

To

This equation, which is called the rock compressibility equation, indicates how the porosity of the porous
media changes as a function of pressure. Since equations (2.7) and (2.8) are first-order differential
equations, we require to specify the integration constants. We pose

Plyep, =Por  Plyep, = o (2.9)

With these equations we are able to rewrite the accumulation term as

a(pd) ¢ dp\ dp op ap
e (PE + ¢%) ¢ = Polat ) =pde, (2.10)

where ¢, = (¢; + ¢,) is referred to as the total compressibility. If we assume slight compressibility, we
allow for the utilization of the compressibility factor. Now equation (2.6) can be written as

J= ap m
-V [;K(Vp - ngd)] + ppas - pg" =0 (2.11)
g —— M
Flux-term Accumulation term Source term

For the rest of this thesis, we will assume fluid and rock incompressibility. This means that the accu-
mulation term vanishes. Therefore we are left with the following equation

-V [Zf{(Vp - ngd)] —pq" =0. (2.12)

Finally, we will ignore gravitational effects and capillary effects leading to

-V [Eﬁ(Vp)] —pq" =0, (2.13)
or
-V-(:-Vp)=gq, (2.14)
where o
A = K (2.15)
t=

is referred to as the mobility tensor.

This equation is of second-order in the spatial coordinate x. Also, since there is no time derivative, this
is a stationary equation. Hence, to solve this equation we require two boundary conditions. Multiple
choices are possible.
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Common boundary conditions are prescribed du| _
conditions, known as Dirichlet conditions or pre- on|p,
scribed outflow at the boundary, known as Neu-
mann conditions. Also mixed boundary condi-
tions are possible, which are referred to as Robin
conditions, but in practice these are generally
not applied. It is also possible to have different
boundary conditions on different sections of the
boundary_ The total computational domain, or Figure 2.3: Visualization of mixed boundary conditions.
porous media, is written as Q and the boundary

of this domain is expressed as 0Q2. We assume a simple domain, i.e. a domain that is unfractured and
has no holes or discontinuous regions. An example of a boundary setting is found in Figure [2.3][38].
In summary we have the following conditions.

U,‘r] = Up

p(x,t)|FO =p°(x), x€IN

Ip(x,t) 1
“on Ir, =p(x), x€IQ

(2.16)
For reservoir simulation one typically employs no-flow boundary conditions.

2.2. Solving the fine scale pressure equation

Before we are able to discuss the framework of multiscale methods, we need to understand how to
solve the pressure equation on a single resolution. Multiple strategies and techniques exist to solve
equation (2.14) on the domain Q, which for reservoir simulation will be the reservoir domain. Among
these techniques one can find the Finite Volume Method (FVM), the Finite Difference Method (FDM)
and the Finite Element Method (FEM). Each method has it's advantages and disadvantages. In this
thesis we will not discuss these differences, but instead we refer to [20, 38], for detailed explanations
of the distinct methods. All methods, however, work by imposing a grid, or mesh, on the domain Q.
This divides the full domain into smaller sub-domains, or cells, that we refer to as sub-intervals (FDM),
control volumes (FVM) or elements (FEM), that interact with other cells in the mesh. See Figure [2.4].
Throughout this thesis we will use the finite volume method as this method preserves mass balance,
however we note that the other numerical techniques may also be applied.

(a) Example of Mesh used FVM

Figure 2.4: Different possibilities of meshes of different domains Q [9].

One may recognize a steady-state heat equation without external sources in equation (2.14). In the
heat equation A, is replaced with k, being the heat conduction. Generally, the heat conduction is taken
as a constant over the complete domain. However, instead of heat we consider pressure in this elliptic
equation. This is directly where the challenge in solving equation (2.14) lies.

We consider the elliptic problem
-V-(A-Vp)=gq, (2.17)
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on a arbitrary domain Q, 9Q = 09, N dQ,, with boundary conditions, Vp-n = p!(x) and p(x) = p°(x)
on boundaries 90, 9Q, respectively. Let Q c RF be the fine grid consisting of F-control volumes. For
simplicity we assume for now that Q = L x L square domain and we impose an equidistant grid, that is
Ax = Ay. In this manner the grid is of the same form as in Figure [2.4a].

To solve equation (2.17), we integrate over all F control volumes ;. We distinguish three different
categories of control volumes.

1. Internal cells: These are cells that have no connection to a boundary.
2. Boundary cells: These are cells that have exactly one connection to a boundary.

3. Corner cells: These are cells that have exactly two connections to two different boundaries.

i,j+1

(1,2) (2,2)

90, Vp-n=f

i+1,5

11 90—
ij—1 o) Mp=g 1,2)

(a) Control Volume of an interior cell. (b) Control volume of an corner cell.

Figure 2.5: Visualizations of two distinct control volumes used for integration in the FVM method.

In Figure [2.5], two examples of control volumes are given. Together with Gauss’ theorem, we find for
an internal cell (i, j), or control volume number i,

f V. (A-Vp)dQ, = f qdQ; (2.18a)
Q Q

o[ @ vp) ndr, = f qdQ; (2.18b)
0Q; Q;

@Z (A-Vp) - ndT, = f qdQ, (2.18¢)
— Joqa? Q

Where o = {S,W, N, E} is the set of edges of control volume i. As example, if we take the west edge of
control volume i we have n = (—1,0)T, using the central differences approximation we have

) e Ty ~ pi—l,j_pi,j)
fmiw(z Vp) - (=1,0)Tdy ~ 41 (—Ax Ay, (2.19)

1=3.J

where 2, 1 i is defined as the harmonically averaged permeability from cell (i, j) to cell (i — 1, j),

2
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Computing the other terms leads to an approximation of

(PR g (B g (”‘;—;”)Ax—amg (u bx = g Axdy
27 2’ - 2 5 2

Ax Ax

By setting

T.l.zl.l._ T..l L. 1/
i-2.j i-5.J Ax’ Lj=3 Lji=5 Ay

we find an equation for each internal cell (i, j).

(Ti—%,j + TH_%‘]' + Ti,j—% + Ti,j_‘_%)pi,j - Ti_%‘jpi—l,j - Ti+%‘jpi+1,j - Ti‘j_%pi,j—l - Ti‘j_'_%pi,j+1 = qi,jV
(2.23)
Note that equation (2.23) can also be expressed as an matrix-vector multiplication
[ Dij-1 ]
Di-1,j
_Tu—- _Ti—%] (Ti—ij + Ti+§} + Ti,j—% + Ti,j+%) _T1+%,j i+l ] Pij |[=4ai;V
Di+1,j
L Dij+1
(2.24)

Now that we have an equation for the internal cells, we must also find equations for the boundary
and corner cells. For illustration, we only give the derivation of a corner cell since boundary cell have
an equivalent derivation. Consider corner point (i,j). Suppose that in our control volume, the west
boundary corresponds to dQ; and the south boundary corresponds to 9Q,. Then,

dp
o (A-Vp) -ndly, = fnw Aa—ndy ~ ALH%fiAy, (2.25)

and o o
Dij — Di-1,j Ax

5 (2.26)

f (A-Vp)ndls = f A-Vp°@)ndls ~ A, 1 .
o o gl
And so we are able to find the following equation for the left corner point (1, 1)

0 0
P11 — P21
<T1+%_1 + Tm%) Pia=Typs pan =Ty ipia = GaV Ay fiay +A,,0 PREE A (227)

Also, (2.27), may be expressed with a matrix-vector multiplication

P11 0 0
P21 | _ P11 — P21
[ <T1+%,1 + T1,1+%) _T1+%,1 _T1,1+% = adV +11’1_%f1,1Ay +)‘1+%.1TAX
P12
(2.28)

If we combine all the equations that correspond to the internal cells, boundary cells and different corner
cells, We find a system
Tp=q (2.29)

In literature the matrix T is also referred to as the transmissibility matrix. From this system we can
calculate our unknown pressure p.

As discussed in [22], it is known that physically A; generally has highly heterogeneous geological prop-
erties. To capture the effect of this physical parameter we require a highly accurate discretized solution.
Higher accuracy is achieved by imposing a more dense grid, or fine scale grid, i.e. a grid that consists
of a high number of sub-domains. Current high-resolution geomodels may consist 10° — 10° cells.
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However, imposing a denser grid comes with a growth in computational cost. Since at this time conven-
tional simulators are capable of handling a maximum of 10> — 10° cells, there is a gap in the resolution.
Thus, we can argue that for reservoir simulation, the costs to achieve an accurate enough solution is
simply too high. Therefore we will investigate solutions to this problem in Chapter [4].






Continuous Optimization

In this chapter we will discuss different optimization methods for constrained systems. Firstly, the
mathematical formulation of the framework used in the continuous optimization setting is explained.
Here, we discuss the difference between Gradient-free and Gradient-based optimization algorithms,
and two examples of algorithms of the second category are presented.

3.1. Introduction

3.2. Types of optimization methods

One can distinguish two type of optimization methods. The first set are the optimization problems for
which the optimal value may be computed directly and analytically. One way of doing this is via the
Lagrange Multiplier Method. For large scale constrained discretized partial differential equations how-
ever, it is not possible to analytically solve the optimization problem. Usually an iterative procedure is
required to compute the optimal solution [17, 36]. Generally, one can categorize the iterative meth-
ods into two different types, either gradient-based methods or gradient-free methods. Gradient-based
methods are methods that require the gradient of an objective function with respect to the to parameters
that you want to optimize for. Gradient-based methods generally find local optima, instead of global
optima. Gradient free methods however, aim at finding a global optimum. The price we pay for this is
the fact that many more function evaluations are required [21, 41]. In the setting of reservoir simulation
a function evaluation is equivalent to performing a full simulation run and therefore is computationally
very expensive. As result, in reservoir simulation we prefer the gradient-based optimization methods
above the gradient-free methods. In this thesis we will only discuss gradient-bases methods. In this
section we will explain the basic knowledge required for optimization purposes.

3.2.1. Introduction into optimization theory

First of all, we briefly explain the basics of optimization techniques. For further details and mathemat-
ical justification we refer to the works found at [8, 17]. We consider unconstrained and constrained
optimization.

Unconstrained optimization
The optimization problem of an objective function with respect to the variable x in most general form
can be written as

r&i)rclg(x) (3.1)

In words this means; find the minimum value of function J, amongst all possible values of x € X. The
set X is referred to as the Feasible Region and we say that x is called feasible if x € X, else, x is
called infeasible. The objective function is in most cases a multivariate. Since there are no constraints
or demands that need to be met, this is also referred to as unconstrained optimization. Note that the
problem for maximizing the objective function is similar to minimizing the function —J. An optimal point

13



14 3. Continuous Optimization

x is called a stationary (or critical) point and satisfies the first-order necessary condition

aJ aJ
V.](x = | — et —— =:0, 32
(7( )lxzxo [axl axn e ( )
and the second-order sufficient condition
N B
ax} 9x10x, x10xy,
aZ 62 aZ
9@ I
9x,0x1 0x% 0x50xy >0 (33)
ox> _w0 : : . :
x=x : : . :
g P9 o
0xp 0%,  0xp0x ax3 x=x0

The matrix as in equation (3.3) is called the Hessian. If the Hessian has negative eigenvalues, the point
x° indicates an maximum, while positive eigenvalues indicates an minimum. If among the eigenvalues
there are eigenvalues with 0 value, x° constitutes a saddle point.

A convex set S is defined as an setin where s = s, +(1—)s, € S,Vsy,5, € 5,8 € (0,1). The epigraph
of a function is the set of all positions above this graph. A convex function is a function if the epigraph
forms a convex set. If not, the set is called concave. Examples of both sets are found in Figure [3.1]. If

a set is convex the necessary condition is also an sufficient condition. In reservoir simulation however,
we rarely deal with convex problems.

® (»
ol

convex nonconvex

Figure 3.1: Left: example of a convex set. Right: example of a concave set, not all combinations between two points are
contained in the set [17].

Equality constrained optimization

In contrast with the fact that we rarely deal with convex problem, it is very common to find optimization
problems subjected to constraints. These constraints often have practical or physical interpretations.
Even though in this thesis we do not consider these types of constraints, in the view of reservoir sim-
ulation optimization, one can think of examples of typical constraints as bounds on the pressures or
injections rates. The effect of posing extra constraints is that the set of all feasible solutions X is limited
to a smaller set of feasible solutions X*. See Figure [3.2]. This optimization problem can be denoted
as

minimize J(X)
xEX (3.4)
subjectto ¢,(x)=0 v=1--V

where ¢, (x) indicate the constraints equations. In total there is a number of V constraints. Solving this
problem also requires handling of the constraints and hence, we will have to find a different method of
calculating the optimum.
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feasible
region

Figure 3.2: Here we can see an example of a feasible region. The feasible region is bounded by the three constraints. Without
these constraints the feasible region would comprise of the entire upper-right quadrant.

Xz

One method to solving (3.4) is by using the Lagrange Multipliers Method. In this method one augments
the objective function J with the different constraints, which are multiplied by the Lagrange multipliers
A, €1 = (14,++,4,)7. The obtained equation is called the Lagrangian, and may be written in general
form as

14
L) = Jx) + Z A,c, (%) (3.5)
v=1

Note thatif x € X, the constraints are met and therefore equation (3.5) leads to the same minimum as in
(3.1). The first-order necessary conditions for problem (3.4) are given by stationarity of the augmented
objective function, just as stationarity provided the necessary conditions for problem (3.1). This leads
to the following system of equations.

OL(xA) _
0192 -°
2 -0 woelLV]

This system of equations is also referred to as the Euler-Lagrange equations. To give an interpretation
of the meaning of the Lagrange Multipliers we write our constraints as a vector ¢ = (cq,**+,¢,)T and we
consider a perturbation in the constraints as

¢(x) = c(x) + dc(x), (3.6)
which leads to a perturbation in the modified objective function
Lx2)=3J+27 [e(x) + Sc(x)] (3.7)

The difference between non-perturbed and perturbed constraint equations of the augmented objective
function is given by
SL(x,A) = L(x,A) — L(x,A) = AT 5c(x) (3.8)

In the non-perturbed optima we may write L(x° A°%) = J(x°) and in the perturbed optima we can write
L(%°,A%) = 7(%°) such that we also have that

J&E°) - J=x°) =27 5¢, (3.9)

or,
87 =T8¢ (3.10)

Thus we can conclude that for all constraints the Lagrange multipliers give a measure of the effect of
perturbing the constraint i € [1,---, V], or state of the system, on the objective function. Moving along
¢; (x) one unit will change the objective function with value 4;.
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3.3. Gradient-based numerical optimization methods

3.3.1. Introduction

The Lagrange Multiplier method is generally used when the solution can be computed directly, i.e. if
the problem is linear and small. However, when the number of parameters is high and the system of
equations is large, this is not a trivial task. For the reservoir simulation models, this is usually the case.
In this section we will briefly explain two numerical optimization methods used to cope with this issue.
These frameworks of numerical iterative optimization methods rely on a search direction and a step
size.

Both methods use the same underlying principle. Suppose that we seek a minimizer (or maximizer) x*
of f(x). In an iterative framework we want to compute a sequence x,, -+, Xy, -+ such that

) < f@),  fimx =x (3.11)

In other words, we aim to get closer to the minimum with every iteration step, where the sequence is
calculated with aid of the gradient of the objective function. Hence, this class of algorithms is called
a gradient-based optimization methods. A visualization of this procedure is found in Figure [3.3],[28].
A classic metaphor for the gradient-based maximization procedure is of climbing down of the top of a
hill as fast as possible, whilst being surrounded by fog. This is known as the steepest decent method,
where steps are taken in the steepest downwards direction. In this case, the slope of the mountain
can be seen as the gradient. This method is based on the interpretation where the descent direction
enables the maximum decrease in the value of f(x) possible. If we take enough steps, eventually we
would reach the minimum. Now if we assume x; = x and we have that Vf(x) # 0, or in other words,
that x is not minimizing our function f, then we take a vector p such that

(P.Vf®)=p"Vf(x) <0 (3.12)

Then, p is proportional to the directional derivative of f(x), and because of equation (3.12), this implies
that we can reduce the value of f(x) by moving in the direction of p. Therefore, p is also called the
descent direction. Now that we have a descent direction, we can find a positive constant a, which in
literature is referred to as the step length parameter such that

X, =X, +ap (3.13)

satisfies the monotonic decreasing property as in equation (3.11). Now we have found a iterative
framework for finding a minimum. There are multiple conditions to define the convergence of the al-
gorithm and therefore set the stopping criteria. The question that remains is; how do we choose p
and a? We will discuss two basic methods. For this master thesis however, only the framework of the
gradient-based methods is important. No study is performed amongst the pros and cons of the different
methods.

3.3.2. Steepest decent method

The first of the two methods we will discuss is the steepest decent method [4]. If we recall that Vf(x)
represents the direction of maximum rate change in f(x), we easily see that p = —Vf(x) would guar-
entee a maximum reduction locally. Then

K41 = X — aVf(x) (3.14)

is known as the steepest descent method. What remains is how to find the best value of «;, at the current
operation point and along the chosen direction —Vf(x). In other words, which value of a decreases
the value of f(x — aVf(x)) most? If we define z(a) = f(x, — aVf(x)), then finding a; corresponds
to minimizing z(a). Hence we solve the one-dimensional minimization problem, which is sometimes

called the line search,
dz

=~ V@~ aVf@)] v/ (®) (3.15)

This method is proven to guarantee the location of a minimum, if one exists. Unfortunately, the draw-
back of the method is its slow convergence rate.
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Figure 3.3: Visualization of a numerical iterative gradient optimization procedure on the level sets of a function. Note how each
iteration a different direction and step length is determined to find the next point.

3.3.3. Newton’s method

The second method is based upon the idea to approximate f(x) by a quadratic second-order Taylor
expansion and to minimize this function. The minimizer of this function will define the new operating
point. This method is called Newton’s method. It uses the same two quantities, a being the step size
and p, being the search direction. We define

1
m(p) = f(x +P) = f(®) + [Vf(®] P + EPT[VZf(xk)]p' (3.16)
as the second order quadratic approximation. Then the gradient of this function is given by
Vm(p) = Vf () + V2f (x,)P (3.17)

Also we have the condition
Vim(p) = V2f(xy). (3.18)
If we want to compute the minimum of m(p), we force the gradient to be zero. Hence we find a system
of linear equations to be solved
V2f(x)P = —Vf (%), (3.19)
which is also known as the Newton’s equation. Solving this equation gives the Newton direction p=*
from which the new point is generated

Xp+1 = X + 0P+, (3.20)

where a is found in the same manner as in the Steepest Descent method. The benefit of this method is
a faster convergence rate compared to the Steepest Descent Method. However, the drawback is that
computing V2f(x;) is extremely expensive and that the method is know to be unstable and doesn’t
always converge [21].
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3.3.4. Gradient accuracy and convergence

In the previous section we have seen that both methods requires gradient information. However, in
some cases the computation of gradient information can be computationally very expensive. This gen-
erally is the case when a lot of parameters are involved. If this is the case, using these methods can
be computationally inefficient.

To resolve this issue, we note that from a optimization point of view, we do not require the exact di-
rection of the gradient, a rough estimation will lead to similar results [10, 25]. As long as the gradient
points to the correct up- or downwards direction, the optimization process is able to converge to the
correct maximum or minimum. This is especially true for the first part of the iteration process, or the
steep region, where big steps towards the optimum are taken. As the iterative process approaches
the optimum however, more accurate gradients need to be computed, in order to evaluate a precise
stopping criteria [26].

Different ways of computing the derivative information are available. First of all we can compute the
gradient on the full model domain. This is called the fine-scale gradient. Because of the fact that the
number of parameters is high, computing this information is computationally demanding. To resolve
this issue we can estimate the gradient by using a multiscale framework [25]. This decreases the
accuracy of the gradient, but improves the computational effort. In this thesis we investigate if we can
control the accuracy of our gradient estimation by introducing an iterative multiscale framework [26].
This increases the accuracy compared to the multiscale gradient, but as it uses a heavy computational
smoothing step we trade the increase in accuracy for a decrease in the computational benefits of using
a multiscale framework. The computational costs of the smoothing step of the iterative multiscale model
can be decreased by using a iterative goal oriented multiscale strategy. In this strategy, only positions
relevant to a certain goal are used in the smoothing step. In this thesis we will formulate the framework
for this method and we show the possible benefits of employing this method.



Multiscale Methods

In this section we introduce the upscaling and multiscale methods (MS) and explain to the reader why
these methods have been developed. Next the properties of upscaling methods and the difficulties
present in these models are discussed. Then the mathematical framework for the multiscale methods
is presented and their advantages to upscaling methods is discussed. After this, we present the mathe-
matical framework for the Algebraic Multiscale Method (AMS). After the Multiscale framework has been
stated, we use the knowledge of chapter [2] to state a formulation of the multiscale model that we aim
to solve.

4.1. Upscaling methods

Work from [22] introduces a solution to resolve the problems associated with a small grid-block size.
These methods are called upscaling methods. In upscaling methods, the equations are solved on a
coarser grid, using upscaled parameters, i.e. parameters that represent the system at a coarser level.
There are multiple possibilities of representing the fine scale heterogeneities at a coarse scale. One
can take combinations of arithmetic, geometric or harmonic averaging. One can apply power averaging
or one can apply equivalent permeabilities. This process can be visualized in Figure (4.1). There are
many difficulties when considering the upscaling method, such as the loss of detail, lack of robustness.
Furthermore it is known that the method has trouble dealing with complex grids, i.e. grids with holes or
fractures.

| HEN

Figure 4.1: Capturing the fine scale heterogeneities at a coarse scale mesh [13].
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4.2. Multiscale methods

4.2.1. Introduction

To improve the upscaling methods, multiscale methods have been developed [22, 24]. Similar to the
upscaling methods, multiscale methods aim to reduce the computational cost by solving the govern-
ing equations on a coarse grid. Yet, where the upscaling methods lack detail, the multiscale method
allows us to reconstruct the fine scale pressure field from a coarse scale pressure solution and hence,
achieve the same resolution as the fine scale solution, but with lower computational costs. The mul-
tiscale methods are designed to compute accurate solutions for highly heterogeneous coefficients 4.
The permeability coefficient has the same resolution as the fine scale solution, that is, this coefficient is
different in each different cell, but is constant inside of each cell. Multiple categories of multiscale meth-
ods exist. There are multiscale finite-element (MSFE) methods [23], mixed multiscale finite-elements
(MMSFE) methods [2, 23] and multiscale finite-volume (MSFV) methods [23, 43, 44]. The two latter
provide us with conservative fine scale veloctiy fields, which is a requirement to solve the transport
equations. The accuracy of the method has been demonstrated by multiple examples [13]. However,
the error present are most prominent in the examples with extremely high permeability contrasts, frac-
tures, obstacles or oddly-shaped domains. These errors mainly come from the so-called localization
error, which we will discuss in later sections more thoroughly. To decrease the errors by we can employ
an iterative multiscale strategy, which is discussed in chapter [5].

4.2.2. Grids

For the derivation of the multiscale method, we consider the MSFV-method and follow the line of rea-
soning as presented in [12, 13, 43]. We impose a coarse grid Q, k € [1, M] consisting of M control
volumes. Next to this we also impose a dual coarse grid O, h € [1, N] consisting of N control volumes.
Each coarse control volume Q, contains exactly one node x,, of the dual coarse grid in it's interior. The
dual coarse grid is constructed by connecting the centers of the coarse grid volumes. Each dual control
volume consists of 2¢ blocks, where d is the dimension of the problem. In Figure [4.2] one can find an
example of the different grids present in the multiscale discretization.

: | |
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Figure 4.2: The grids employed in the finite volume multiscale method. The coarse scale grid is indicated with solid black lines.
The dual coarse grid are indicated with the dashed lines. To the right we have an enlarged coarse cell, containing the fine cells
and exactly one coarse nod x;, [12].

4.2.3. Basis functions

Next to the coarse and dual grids, basis functions play an important role in the multiscale method.
These basis function can be seen as interpolators that are able to interpolate the coarse scale solution
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to the fine scale resolution. The basis functions are obtained by solving

V-A-Vop) =0 in Q"
Dr(R}) = 6p; vj €[1LM]

where ¢ is the basis function associated with coarse node k in dual coarse block h. Solving equation
(4.1) means that locally we solve equation (2.17) without the right-hand side. This is also called the
localization assumption as the boundary condition reduces the problem a dimension. This assumption
is the main contributing factor that causes error in this method. The Dirichlet condition ¢,’;(xj) = 6pj
has a support over a maximum of 2¢ dual grid cells. In the cells where there is no support we may easily
conclude that ¢! = 0. In Figure [4.3], one finds a visualization for the reduced boundary problem, a
basis function example and the support of the basis function [13]. Furthermore, this also means that
for each coarse node k there are 24 non-zero basis functions ¢. This means that the basis function
at coarse node k is given by

b = Z il 4.2)

X
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# b b
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(a) Visualization of the reduced (b)Visualization of an exampleba- (c) Visualization of the support of
boundary problem. sis function ¢. basis function ¢,.

Figure 4.3: In this Figure one can find visualizations of key concepts regarding basis functions.

4.2.4. Compute the coarse grid solution
When we have calculated our basis functions, the next step is to calculate our coarse scale solution.
In this section we will describe how to calculate the coarse scale pressure. We use the work of [44].

Denote the fine scale pressure solution with p’ and the coarse scale pressure solution with p. To
define a coarse scale system, we use previous knowledge to derive an expression for the coarse scale
solution in terms of the fine scale solution. This is done with help of the basis functions. We may write
the fine scale pressure solution, which we have solved in Chapter [2], as a product of the interpolative
basis functions as

M N M
P=p'~ ) dibi=) | ol (4.3)
k=1 h=1|k=1

where we note that in equation (4.3), we do not use a correction factor such as presented in [13]. The
correction factor is supposed to deal with the errors generated from the localization assumption, but
since [43] states that the gain in convergence does not compensate for the additional computational
costs, we decide to leave this out from out method completely.
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Next, we substitute equation (4.3) into expression (2.17) and we integrate over a coarse cell Qj,j €
[1, M]. This gives

N M
—f» v-(A'Vp)de:—f v av Z qu,f;pk dﬂjz—f_ qdd, (4.4a)
& & h=1 | k=1 &
N M
=j_ -1V l drpi| | |- Bjdl; = —j_ qd(; (4.4Db)
oty h=1 | k=1 Y

(4.4c)

where we use Gauss’ theorem. We can simplify this, by interchanging the summations and the integral
over coarse node j. This gives us Vj € [1, M],

_JQ.V.(A.VP) :ip i(} (—1-Vop) - n}dF> —J qdQ; (4.5)

J

Now set
TS, = (f (A-Vppr) - n;dr; ) qf = fﬂ qd{y;, (4.6)
j
Then this leads to a linear system of the form
Tp=q° (4.7)
with solution
p=(T)"'q", (4.8)

Note that T¢ = T, which represents the coarse scale transmissibility tensor. Furthermore, q¢ = q rep-
resents the coarse scale source term. Finally, the fine scale pressure solution is solved from equation
(4.3).

4.3. Algebraic multiscale method

To introduce the Algebraic Multiscale Method (AMS), we remind the reader that relation (4.3) holds,
which algebraically boils down to

P'~Pp, P=[d; ¢yl (4.9)

where P is referred to as the prolongation operator, since it prolongs the coarse scale solution to the
fine scale grid. This means that if we know all the basis functions, one can simply perform a matrix-
vector calculation to retrieve the fine scale solution. However in practice, solving (4.1) is not trivial.
Therefore, in this section, we will present an algebraic method to calculate the prolongation operator,
or equivalently the basis functions. We follow the work of [43].

4.3.1. Calculating the basis functions

If we consider a fine scale model, discretizing equation (2.17) leads to a system of the form Tp = q.
For simplicity we consider a 2-dimensional problem. Then, the dual-coarse grid divides the fine cells
into three distinct categories being: I (internal cells), E (edge cells) and V (vertex cells). An illustration
of the different cells can be found in Figure [4.4].

The system Tp = q is reordered in a wire-basket fashion [42] using a permutation matrix G, such that
it can be expressed as

T, T o P: q;
Tg Tege Tey P |=]| 9 |, (4.10)
0 Ty Ty Pv qv

where sub matrix T;; represents the contribution of category i to category j. For example, T;; consists
of the matrix-values ofT that correspond to the cells that only have interaction with other internal cells.
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Figure 4.4: The three different cell categories imposed by the dual-coarse grid. The arrows indicate the contribution of cell k
w.r.t. neighbouring cells

Now we modify the stencil for the edge cell, so that they represent the localization assumption. This
means that the edge cells only contribute to other edge cells and vertex cells. This is done by setting
T, to zero and it’s corresponding part in Ty to zero giving matrix T.z. This leads to an expression
for the multiscale approximation

Ty T;E o Ps q;
O Tg Tev || Pe (=] Qe | (4.11)
0O O T P q

where TP = q is exactly the coarse scale solution as expressed in the previous section. Since (4.11) is
an upper-triangular system we know that the inverse exists and the inverse can efficiently be computed.
Once we have our coarse scale solution, we can then calculate the pressures for the edges and interior
cells by using backward substitution, hence

P, =P (4.12a)
P, = (Tee) ™ (Tevp), — az) (4.12b)
p, = (T (TIEp’E - QI) = (T;)™* (TIE(TEE)_l (TEVP;/ - QE) - CII) (4.12c)
In total, we can therefore express the solution as
P, Tl_llTIE'i‘EéTEV
P’ = P:E = TEéTEV P{/ + Tcorrq' (413)
Py Iy

where I, is an M x M identity matrix and T,,,,- is a matrix corresponding to the correction function.
However, just as in previous section we will neglect the contribution of this function. Now we com-
pare equation (4.9) with equation (4.13) and remind ourselves that p;, = p we may conclude that the
prolongation operator and/or basis function algebraically can be expressed by

Tl_llTIE'i‘EéTEV
P=gG T iTey : (4.14)
IVV
where the pre-multiplication by G reorders the system to the natural ordering.
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4.3.2. Calculating the coarse scale solution

In the previous section we explained a finite volume method to compute the coarse scale matrix T and
corresponding right hand side vector @. Once more we suppose that there is a fine scale discretiza-
tion Tp = q. We introduce the restriction operator R. This operator has the inverse function of the
prolongation operator and takes you from the fine scale to the coarse scale. It may be defined as

1 if Q; c Q;
R(,j) = J ‘" vie[l,M]jELF 4.15
(H)) 0 otherwise [€E[1,M]jELF] (4.15)

With this operator we are able to algebraically give an expression for the coarse scale system.
Restriction p'=Pp _
Tp'=q————=RTp'=Rq——= (RTP)p=Rq=>Tp=q (4.16)
As a result, we easily have that
p=(1)"'q= (RTP) " (Rq) (4.17)
Now, the fine scale solution can be computed

p' =Pp =P(RTP) ' (Rq) (4.18)

To conclude, we have now fully described an algebraic formulation to solve an elliptic pressure equation
in a multiscale framework.

4.4. The multiscale forward model

Now that we have stated and explained the general multiscale method and found an efficient manner
to compute our basis functions, in this section we will focus on the forward model that we aim to solve
with a multiscale strategy. By using the physical model as in chapter [2], we write these equations in a
generic form of

gr(x,60) =0, (4.19)

with g : RNF x RNe — RNF representing the algebraic simulator equations. Here, x € R"F is the state
vector representing the solution of our model, which typically is the pressure solution, and 8 € RNe is
the vector of parameters. In the next section the subscript F represents 'fine scale’. There are Ny fine
scale cells and a total of Ng parameters. Implicitly, it is assumed that the state is dependent on the
parameters, such that x = x(8) and that we can write g, as

gr =A0)x—q(6) (4.20)

Where A is a matrix of dimensions Nr X Nz and q a vector of length Nz. Next to model states, we can
compute the observable responses generated from the forward simulation. These responses do not
only depend on the model state, but also on the parameters such that

yr = hp(x,0), (4.21)

where hy : R¥F x RVo — RNy represent the output equations.

We aim to compute a multiscale solution. Assume that there are N, coarse-grid nodes (N, << Np),
then for each coarse-grid node we have one basis function ¢; . The prolongation matrix is the matrix
constructed from the basis functions

P=PO)=[ ¢:(0) | @0 | - | on©0 1|, (4.22)

Where P is of dimensions Nz X N and is used to interpolate the coarse scale solution to the fine scale
solution. Restriction operator R, with dimensions N, X Np, maps the fine scale solution to a coarse
scale resolution. For simplicity, we assume that R is independent of 8. Let X € R"c be a solution on
the coarse-grid. Then, x is obtained from solving

g=(RAP)Xx—- (Rq) =0 (4.23)
Finally, we can interpolate the coarse grid solution to the finer scale, giving the solution x’

x =Pk (4.24)
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Even though multiple examples have been able to demonstrate the power and accuracy of the Multi-
scale Methods, errors are still generated by the multiscale method. The error mainly originates from
the localisation assumptions to solve the local fine scale problems [12, 13]. However, for models with
large cohesive structures with high permeability contrasts it is difficult to find an accurate localization
assumption, thus leading to large errors. Typical examples are models with shale layers, fracture or
difficult geometries. For this reason, the iterative Multiscale Finite Volume Method (i-MSFV) has been
developed. In this chapter we we will explain the framework of the Iterative Multiscale Method.

In each iteration the i-MSFV method gives a solution corresponding to fine scale results. These solu-
tions are achieved by an iterative improvement of the high-frequency errors generated in the multiscale
procedure. To remove these errors, we use a smoothing step as in [30]. Corrections are made each
iteration until the desired tolerance is reached. In this section we will directly derive this method upon
the forward model equations as defined in section [4.4]. In this section we will follow the works of [30].

The iterative multiscale methods are residual based. Solving a system of equation with aid of numerical
solvers generate errors [41] and therefore lead to residuals. Let x¥~! be an approximate solution to
equation (4.20) and denote r € RVF as the corresponding residual. At iteration level v — 1 it is defined
as

r'l=q-Ax"! (5.1)

Note that at when v = 0,1° = q. A multiscale improvement can be made, by rewriting equation (4.23)
in residual form. If we denote the coarse scale correction at iteration level v as 6%V, it can be computed
by solving

gV(6%V,x""1,0) = (RAP)SX” — ¥ 1=0 (5.2)
The coarse scale residual ¥ € RYc may be written as Rr”, hence applying the definition of the residual
as in equation (5.1), we find

g'(6%",x""1,0) = (RAP)§%* —R(q—Ax""1)=0 (5.3)

Consecutively, we define the fine scale correction as §x'V. We can calculate this correction by redefining
equation (4.24) to
g'v(6%V,6x",0) = 6%V — Pk =0 (5.4)

After this, there is a smoothing stage. For now, we assume that the smoothing stage operates as
a black-box as opposed to previous work. Denote the smoothing correction as §x},. The smoothed
solution is calculated from

g’ (6x"V,8x),x""1,0) = Adx!, — /"1 =0, (5.5)

where r, € RM is the residual at previous iteration after the smoothing stage. That is the fine scale
residual at previous iteration minus the correction made at the current iteration, i.e.

r = r’~1 — ASx"” = q — Ax""! — ASx" (5.6)

25
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Plugging in the expression for the smoothed residual gives us
g/ (6x",6x),x""1,0) = Adx., —q+Ax"" 1 + A(6x"V) =0 (5.7)
Finally, the updated estimation for x” is given by

gr(x¥,x""1,6x"V,8x),0) =x""1 +6x"V +6x), =0 (5.8)

We note that xV~1 in this iterative fashion may be written as

v—-1
XV 1=x"24+8xV1+6x 1= =x"+ ) (6x7 +6x)) (5.9)
=1
This results allows us to rewrite equation (5.3) to find
V=2
g (6xV,6xV"1,6x"71,0) = RA(6%' +6%x,)" 1+ (RAP)SX’—R| q — AZ(SX’ +48x%x,)") | =0, (5.10)
=1
and equation (5.5) to find
v—1
gl (6x",86x),6xV71,6x.71,0) = A(6x' +6x,)' —q+A Z(b‘x’ +6x,)"|=0 (5.11)
=1

Then, equations (5.8),(5.10), (5.4) and (5.11) give rise to a system of equations that needs to be solved
for every iteration level v.

Ax’ = ¢, (5.12)
where
O RARA O RAP 0 0 O R(q-AX{(6x +6x,)"))
0O 0 0 0 -P I 0O 0
A= Cq = ) (5.13)
0o A A0 o0 A AO0]/ 1 a-AY (6% +6x,)7)
0 0 0 -I 0 -I -I I o

This iterative process is stopped when the residual has achieved the requested accuracy €. Hence the
number of iterations v is controlled by

Ll
lall

In the same way, the smoothing stage is stopped when the smoothed residual has achieved the re-
quested accuracy €,

If

> €, continue, setv =v + 1, else stop. (5.14)

lIrg "]
[lrv]

The algorithm can be summarized into algorithm [1] as in [26]. After convergence we write the solution

in a different notation. The super-vector notation [19, 32] offers a convenient way of writing all solution

into a compact form. This form will prove its benefits in chapter [7]. In this notation we redefine x and
source terms q as

If

> €,, repeat smoothing step, else stop. (5.15)

= 8% o
. ; ox’' 1
x(0) = :_1 , where x' = 5 and q(@) = 3 (5.16)
xV xia qv
XV qv
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Likewise, we rewrite the forward model equations as a super vector g,

0 ' . .
gl(x.Z) E(Sf!l,t?X'_“l,S_xf;l,o)

g (X, ) gl(si‘l’sxu,o)

-1 6x'\,6x.,6x'"1,6x5°1,0)
le’e g ,0X;, 0K 7, 0K, -,
S o) g, (5", 55,z x"6)

gx.0) = =0, where gi= “o

(5.17)






Derivation of the Multiscale Lagrange
Multiplier Gradient Computation
Framework

6.1. Introduction

As seen in chapter [3] the gradient of an objective function plays an important role, but we have also
seen that the computational effort to compute the gradient can become high. In this section we will
recast the multiscale gradient computation introduced by [25] in a Lagrange Multiplier setting to obtain
a mathematical formulation of the gradient. First of all, we will explain how we can calculate gradient
information by applying the method of Lagrange Multipliers as previously discussed in chapter [3]. For
this we distinguish two distinct categories of objective functions. Before the multiscale derivation of the
gradient computation is given, we first discuss the derivation of the computation of gradient information
on assingle, fine scale grid. Finally, we will consider the multiscale framework where we use the forward
multiscale equations as presented in section [4.4].

6.2. Sensitivity matrix and Lagrange Multipliers

The sensitivity matrix is defined as the total derivative of the response function h(x, 8) with respect to
the parameters @ [25]. It is denoted as
G = dh 6.1

The sensitivity matrix shows us how much our responses will change if we perturb the parameters.

To find a formulation for the sensitivity matrix we use the Lagrange Multiplier method. Here we use a
general objective function 0(x,8). Now we distinguish two different categories of objective functions;
scalar- and vectorial objective functions.

Now, the only difference between the scalar- and vectorial objective functions is of the size of the La-
grangian and the Lagrange multipliers, and thus the notation of these quantities. The method however,
is valid for both types [33]. One may conclude that the strategy of augmenting the objective function by
Lagrange Multipliers and applying the first-order necessary conditions results in comparable results.
The exact dimensions are denoted in table [6.1].

For illustration, we explain the Lagrange Multiplier method using a scalar objective function. In both
categories, we augment the objective function with our model equations multiplied by the Lagrange
multipliers. We note that in this sense, the constraint equations as in chapter [3] have a different
interpretation. They do not represent a bound on the pressure or injection rates. However, the same
theory still applies as we want to optimize the value of an objective function where the solution is

29
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Different notations and dimensions
Lagrange Multipliers | dimensions | Lagrangian | dimensions
Scalar OF A RNF L R
Vector OF A RNF x RNy L RMy

Table 6.1: Dimensions of Lagrangian and Multipliers

‘constrained’ by the forward model equations. Then, we find the Lagrangian
L(x,0,0)=0(x0)+21"g (6.2)

To find a maximum or minimum we apply the first-order necessary conditions to find the system of
equations

VaL=0=g (6.3)
_ . 00(x0) _.0g
Vol =0 = —— AT (6.4)
. 00(x0)ox 00(x0) . (0gox 0g
VgL =0 = % 90 50 +2 H@+% (6.5)
Now, we note that because we have that g = 0,
VoL =V (0(%,0) +17g) = V40(%,0), (6.6)

hence if we take 0(x,80) = h, then we see that this method enables us to compute Vgh = G.

6.3. Gradient formulation in a single fine scale model
In this section we will derive a mathematical formulation of the sensitivity matrix on a fine scale system.

6.3.1. Considering a scalar objective function

For the scalar objective function we assume a function 0(x,0) : RV x R¥ — R to be minimized on
the fine scale model. Our Lagrangian can be written as

L(x%,6,1) =0(x,0)+A"g L:R'F x RV¢ x R'F - R (6.7)
and to find a maximum or minimum we apply the first-order necessary conditions. From (6.4) we clearly

see that V4L vanishes if

08 _ 008 . _ (_aoc:,m) (ag>‘1

ox ox ox 0x (6.8)
The values for the Lagrange Multipliers can be substituted into the condition (6.5), giving
-1
00(x,0) 0 20(x,0 20(x,0 0 g d d
ol = J0EO) X 00@6) (90(6)) (0g) " (08 0x , O ©9)
ox 00 a0 ox ox ox 00 00
Vol — 00(x,0)0x 00(x,0) 00(x,0)0x 00(x0)(0g - g 6.10
=7 ox 06 26 ox 00 ox \ox) \a8 (6.10)
The latter expression may be simplified to
-1
_00(x60) 00(x0) (0g g
Vol =3~ "ax \ox 26 6.1
From section [4.4] we have that g = A(0)x — q(8). This gives,
g og OA ox dq
ax A0 5= 36% A% ~ %0 (6.12)
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where we apply the chain-rule. Note that the derivative of A with respect to 6 results in a third-order
tensor. An interpretation of this can be found in [25]. Substitution of the formulations of (6.12) into
(6.11) gives us the final expression

_00(x,0) 00(x,0) _1[(0A ox dq
VgL = 20 - 9% (A) %X + A% - % B (613)
or in other words, if we take O = h, which represents a single model response in this case,
dh 0h _1[0A ox Jdq

6.3.2. Considering an vectorial objective function

In contrast to the previous section, we employ the same single scale strategy, but we consider a vectorial
objective function. This objective function is assumed to be written as O(x, ) : RV xRNe — RNy, where
O = (04,-+,0,)T. Next, we introduce the augmented objective function as

L(x,6,A) = O(x,0) +ATg, (6.15)

where for the first time we notice the different dimensions of L, A. The first-order necessary equations
can be written as

. 00(x0) . 0g
VxL—O—T+A Ix (6.17)
_ . 00(x6)0x 00(x0) . (0gox 0g
Vel =0=— —%8 " 98 "M \ox00 "0 (6.18)
Clearly, V4L vanishes if
-1
00(x,0) (dg
T___— 7S
AT = = <6x> (6.19)
Then, one can easily conclude that
00;(x,6
@AD" = LA‘1 vie{l,,y} (6.20)

ox ’

Before we substitute the values for our Lagrange Multipliers into condition (6.18), we notice that the
structure of the Lagrange Multipliers is similar to the Lagrange Multipliers in (6.8), and the subscript i
directly relates to i — th component of L. Hence, we may state that

 00,(x68) 00,(x8) ., (0A_  9x 0q
Veli=—Zg— ~—ox W) (39% A% 39 )

Vie {1y} (6.21)

which can be rewritten into vector notation as

_00(x,6) 00(x0) _1[0A ox Jdq
But then, if we take 0 = h, which represent multiple model responses.
dh 0h _1[0A dx Jdq

6.4. Gradient formulation in a multiscale framework

As opposed to the previous section where calculated the sensitivity matrix on a fine scale only, in
this section we will derive a different formulation using the computational benefits of the Multiscale
Framework. First we will consider an scalar objective function. Consecutively we will consider a multi-
valued objective function.
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6.4.1. Considering a scalar objective function

In order to compute the multiscale derivatives with respect to the parameters, we will follow the same
line of reasoning as in the previous section. However, in the multiscale method the gradient with respect
to the parameters is build from the coarse scale solution instead of the computationally heavy fine scale
approach. A key aspect in this method is using the framework in section [4.4] to define

cfs] el ] e

In this case we can describe the state of our model not only in fine scale, but also on the coarse
scale. Note that in this case x,g, A € RN<Ns. Once more we consider an objective function of the form
0(x,0) : RNNr x RNe — R, and similarly we write our Lagrangian as

L(x%,6,1)=0(x0)+ATg L:RVF x RV x R'F > R, (6.25)
In accordance to the fine scale, we are able to calculate the coefficients A by forcing Vi L(x,0,4) =

For simplicity, we do not write the dependency of 0 on x and 8. By doing this, we obtain the following
system.

a0 g a0 a0 % 2%
T =07 it T "nT 9%  ox' — 07
=0T (2 (DT @) B & |=o
x' ox’'
RAP O a0 90
s(@AT A7 = —( — )
(@ ())(P 1) % 9%
5 20 20 (RAP)™! O
(AT @A) :(__ __) _ ) 6.26
(@D @ )=(-35 -3 (P(RAP)ll (6.26)
Then, we find an expression for our Lagrange multipliers on coarse- and fine scale as
< 20 60
DT =- % o P | (RAP)! (6.27)
ANT =-— 00 (6.28)
( ) - ox’ ’
In the next step we can plug these values into the third first-order necessary conditions (6.5),
a0 ax a0 dgox 0g
T T _°
Vol = - =5+ +((/1) @) )(6x68+60> (6.29)

[
"

Now, we expand and simplify (), which gives us the following relation

d g
Jgox L 98 g RAP O 3 +| a8
ax 06 ' 26 -P I g g
0 a0
a % OR aq
_( RAP 0O 3 N (AP)+R P+(RA) — 599 Ry
-P I d _®s
3 a6
(6.30)
The previous equation can be simplified further to find
ox %_ OR aq
ogox  0g _ (RAP)—__ + (AP) + R P + (RA) — 594 R5, 6.31)
0x 06 ' 06 _p_ ai - Ex

00 00
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Plugging equation (6.31) into equation (6.29), multiplying with the Lagrange multiplies (6.27) and (6.28),
then leaves us with the expression

doox 00 Jdo a0 P
Vol = == + =5 (ﬁ o )(RAP) ((RAP) [ (AP) + R P + (RA) ==
OR aq ao 0% o0x' 0P

If we work out the product and collect all terms, we are left with

= 200800 (20, 00) %, 00 (08 _OK)_ (90, 20,)
ox 00 00 ox 0x’ a0 a6 a6 ox 0%
(RAP)‘1<[6 (AP)+Ra P+(RA)6P % — a_Rq_Ra_q>+ 00 0P (6.33)
a0 a0 ox’ 60

The reader can see, that many of the terms cancel out on one another. Therefore, there is one more
simplification step required to arrive at the following expression

VL—aO 606P 60+60 RAP 6 AP +R6 P+ RAaP JOR Raq
0" = 30 T ox 96 ox 0x' P)( ) ( ) 00 (RA) FTA 00
(6.34)
For simplicity we disregard the dependency of R, q on 8, hence the final expression is given by
VL—aO 00 6P 60+60 RAP) 'R 0A P+AaP 6.35
ol =36 T ow e \ox T ox T ) RAP R{ 5 26 (6.35)
and thus, if we take O = h,
G = ah dh aP dh N ah RAP)-'R 6AP+A6P 6.36
=90 Vox o™ \ox Toxwt) RAP R 59 20 ) * (6.36)

6.4.2. Considering a vectorial objective function

Finally, we employ the same multi-scale strategy as in the previous example, however now we use the
second category of the objective functions. For this, we suppose that our objective function is of the
form O(x,6),0 : RN<"r x R¥¢ —» RYy. Thus, O = (0,-+,0,)". O, however with different dimensions.
If we define x,g, A in the same manner and introduce our Lagrangian as

L(x,60,0)=0+1"g (6.37)

we easily note that there is a mismatch in the dimensions, since O is a vector, while ATg is a scalar. To
resolve this problem we change the definition of 2. We define

Ay jz jy
A= (A’ Py l&) (6.38)

as the N.Np X N,, matrix of Lagrange Multipliers where A; € RNe and A € RVrvi € {1,-+,y}. Now we
redefine the Lagrangian as
L(x6,A)=0+A"g (6.39)

To calculate the values of A we force V4L(x,8,A) = 0T which leads to the following relation

00 g og 00
T T s _ Y
ox +A ox =0 <A ox ox

-1
oar=-29 (6_g> (6.40)
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We note that 22 is a N, x N:Np matrix. We will write
ox y

201 20
00 ox  ox g RAP O
H - a'Oy 8by ) 5‘ - ( —P 1 ) (641)
0% ox'
simplifying [6.40] to
< a0 a0
AT W7\ [T e ( (RAP) 0 (6.42)
. = ’ ' P(RAP) ! I > :
AT 23T _6& 60
@)« ) ox  ox
601 601 1 a01
(G r R RART -
= : (6.43)
a0 a0 _ a0
- (52 a—JP) (RAP)™ -2
Hence we find an expression for our Lagrange multipliers
< a0; 00;
N = — 1
@) ( <t 3 >(RAP)
20;
T = L i
A) % vie{l, -, y} (6.44)

In similar fashion as in section [6.3.2], we note that the Lagrange Multipliers are exactly the same as
the fine scale multipliers computed in the previous section. This means that we do not need to redo all
the calculations, but that we have that the i — th component of L is of the same form as (6.35). This
leads to

601 ox OOl 601 60, x 601 60
(VoL); = - -

%00 90 \ox oxw )8 \9x ' ox
6R) aoi< ox o0x' apv>

> <[6 0A P
(RAP)" (AP) + R—_P + (RA) -

~309) " 32\ "3 " 30 " 3% (6.45)

which can be simplified to find the following expressions for the gradient of L with respect to the pa-
rameters

00, _ (20, , 20, L ([2R LR\ 001 0P
00 ( ox + ox’ P) (RAP) ([ (AP) + R P t (RA) a6 q) t ox' 060 6.46
VoL = .
’ D (224 22p) RAP-l([—AP +REP+ (RA)Z |- 22q) + 22 2 040
a0 ox ox' ( ) 66( ) L ( )89 x aeq ox' 00

or in matrix-vector notation as

JdO0 00 JP <60 00

oP]. OR 0
VoL = ] q)

09 Rog

(6.47)
For the final step in the derivation, we once again, neglect the dependence of R, q on 8. Next to this, we
take the function h(x, 8), which represent the measurements produced by the model, as our objective
function. Then we find an expression for the sensitivity-matrix

G O OnOP_ (0h Oh \ .. (0A_  OP\ 6.48
“%0 towae™ \ox Tox") RAP R| 50 28 (6.48)

The above results give us a theoretical framework for computing the sensitivity matrix G. It also shows
us that using the Lagrange Multiplier Method gives the same formulation for the sensitivity matrix G as
with the implicit differentiation method in [25]. The benefit however, is that now we have found an explicit
formulation for the Lagrange Multipliers. These multipliers can be important for reducing computational
costs as we will discuss in later chapters. The question that remains is, how to efficiently evaluate this
matrix.

> ([ OR 0A
(RAP)" (AP) + R—

06P+(RA)

90 Tow e \ox T ow



Derivation of the lterative Multiscale
Gradient Computation Framework

7.1. Introduction

In the previous chapter, we have formulated a theoretical framework for finding the sensitivity matrix
G. According to different types of studies, different derivative information has to be provided. Among
these studies one finds the Quasi-Newton methods, which require the gradient of the objective function
as also discussed in chapter [3]. A different example is the category of history matching algorithms that
require the sensitivity matrix. Finally, one finds Gauss-Newton methods that require products of G and
it's conjugate G'. For general applicability of the method one considers the right- and left multiplication
of arbitrary matrices W,V respectively. By defining algorithms for calculating WG and GV, different
types of derivative information can be accommodated in a single framework [25]. In this chapter we
will focus on a framework for the computation of the formulation for the sensitivity matrix. The chapter
is split in three different sections. In the first section we will revise the framework for finding algorithms
to compute the gradient in a non-iterative setting. The second section will focus on the same objective,
but will be formulated in an iterative setting. Finally, we will discuss some similarities and difference
between both methods presented.

7.2. Gradient computation in a multiscale setting
The reader is reminded that in chapter [6] one has found a formulation of our sensitivity matrix G as

ah ahap <6h ah
G=—

— rap)R(2p+ a2l )x (7.1)
36t oxw 9™ \ox tox ) RAP) '

00 00

where the forward model equations are given as in section [4.4].

7.2.1. Direct method

In this section we will employ the direct or forward method [29, 32]. This method starts by considering
the calculation of GV, where V is an arbitrary matrix of dimensions Ny X n. Note that if V. = I in this
method, we would directly compute the sensitivity matrix.

We start with the formulation of G as

ah dh aP <0h 6h

= + —P|(RAP)" 'R 6—p+Aa—P (7.2)
=20 Tox oo™ \ox " ox P)( ) '

00 00

Now if we define

Vv, (7.3)

(0 oP
= [(RAP) R <%P + A%>

35
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we can actually compute this matrix Z by solving the system of equations

RAP)Z = - |R aAP + AaP Vv
(RAP)Z = 26 26
Then, we may write the product GV as

av_ (P ahP NG AW
“\ox " ox 9% 00" 20

This procedure can be summarized into algorithm [1].

(7.4)

(7.5)

Algorithm 1: Right multiplication of sensitivity matrix, by arbitrary matrix

. dA 8h 9h oh
input : R APXV,— 38’ 7%’ ox’ 28

output: The product GV
1 Compute a = (ah + —P) and 8 = g—:Piz;
2 foreachj=1,2,---,ndo
3 Compute y = (%i) \AH
4 Compute § = R(FV ; + Ay);
5 | Solve Z = (RAP)16;

ah ohy, .
6 Compute (GV) ; =aZ— —y + ﬁv_,,-,

7.2.2. Adjoint method

In a similar manner, one may compute the left multiplication of G with an arbitrary matrix W of dimen-

sions m x Ny. This is known as the backward or adjoint method [5]. If we define

Then may write the multiplication as

co (0A_ 0P 9h 0P _
WG=Z'R(-P+A—_ |+ W(_— —x|+W_

a6 96 ox' 00

Finally we may rewrite this as

WG = ZTRa Px + oh\ 0P +Wah
B a0 ox' | 00

This procedure can be summarized into algorithm [2].

(7.6)

(7.7)

(7.8)

(7.9)

Algorithm 2: Left multiplication of sensitivity matrix, by arbitrary matrix

input : R AP x W, 2gg 28 8 b

' 0%’ ax'’ 90
output: The product WG
ah

1 Compute a = (— + —P) and g = Z%Pf:;
2 foreachj=1,2,---,ndo
3 | Solvez = (RAP)'TaWT'
4 | Computem’™=(Z'"RA-W,; x ,)
aP
5 Computey =m (aax)

6 | Compute (WG); =Z7f +y+W,; =

‘00’
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7.3. Gradient computation in an iterative multiscale setting

In this section we will derive the gradient information when an iterative multiscale setting is used. There-
fore we consider the forward model equations in an iterative setting as in Chapter [5]. We apply the
same strategy as in the previous section. Results are based on the unpublished results of [26].

If we repeat the same strategy as in the non-iterative setting, we post- and pre multiply the sensitivity
matrix G by matrices V of order Ng X n and W of order m x Ny respectively we compute

wev = w2 (28 B %2y wilhy 7.10
= W 20 20 (7.10)

ox

7.3.1. Direct method
For the Direct Method we neglect the pre multiplication of matrix W in equation (7.10). Hence, we only
post multiply by an arbitrary matrix V of size Ny x n.

GV = ahZ+ahV 7.1
T ox 0 "’ (7.11)
where )
og\ 0Jg
Z=- (&) %v, (7.12)
and is solved from 5 5
g),_o%%
<£>z_ aaV (7.13)

Now, we are able to use the super vector notation also from Chapter [5]. Let v denote the iteration level

and N,, the number of iterations. If we write Z = (ZO, ---,Z")T, then we may express equation (7.13) in
a matrix block-form as

og° g0

9x0 z° 20

og'  og' VA og'
ox0  ox! ) . = 6 |V (7.14)

ang ang ZV agv

oxNv-1  gxlv Ea

For all iterations v € {0, ---, N, } we have

og’ v-1 08"\ oy _ _ (%8
<6x"‘1>(z )t 5 | @) =—{35 |V (7.15)
From this we clearly can see that this system is solved forward in time. By using the iterative forward
model equations as in Chapter [5], we may conclude that

. AT -PT 0 O . o 00 O
g’y [0 I AT -I g\ | ATRT 0 AT O 216
oxx) | 0 o AT -1 |" \gx»-1/ | ATRT 0 AT O (7.16)
0O 0 1 0 00 -I

Then, equation (7.15), gives the following system of equations for all iteration levels v

s xq [ 08 ) v—1
ZV=A - V-RA(Z +2,)
a0
. og"
wvo_ _ v _
ZzV =-PZ 60V

v -1 0g, v ' v-1
Zz; =A —ﬁV—AZ —-A2Z +2,)

zZ,=2'+2"V+2)
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Note that we neglect the dependency of R, q on 8. Then we may write all the partial derivatives of the
super vector g with respect to theta as

e S
20 |8 2

6agé‘§ _ %\8 v +‘3_95 'V+—Z(8x +8%,)°
%

So finally we may compute the product GV as

GV - ahz +6hv 719
T oxM T 08 (7.19)

The formal algorithm of this method can be found in algorithm [3].

Algorithm 3: Direct method for iterative Multi-Scale gradient computation.

10

11

12

13

input : RA P, 22

20’ 96’ ox’ 09’

dq oh oh
1 x,V

output: The product GV
Compute a = (RAP)™;

Compute f =A™T;
forj=1,--,ndo
forv=0,--,N,

Compute ¢,
Compute ¢,

Compute Z,

Compute GV =

Compute @3 =

do

Compute y = Z—';aszvvuj-

= RAy + R(52P+ R ¥/21 (6%’ + 6x,)7);

= -,
0A aA oA V-
ﬁé‘x‘g + 562:”’ + 35 Z:zf(é‘x’ +6x,)";

. , v—1
Solve z.‘l/j =qa <—<p1V.,j —RA (Z.,j + ZO—.,]’) );
Compute Z'Y = —PZ", — ¢,V ;

v—-1
Solve % = § (—(P3V.,j - Az -A(Z) +2,,) >?

N z/l+2" + Z"_].;

N
P vaV] + V

7.3.2. Adjoint Method

For the Adjoint Method we employ a similar strategy, however instead of post mulitplying, we now pre
multiply G with an arbitrary matrix of dimensions m x Ny. Therefore we find

WG = Zag Wah Z = W g 7.20
@4_ 08’ - 0x \ 0x (7.20)

The matrix Z is solved from

og oh
z(a—x) =W, (7.21)
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and where Z is also written in super vector notation, hence 2¥ = (Z,Z’,Z,, Z,)" Denote v as the iteration
level and N,, as the total number of iteration levels. Then, we may write this as block form

og°
0
_321 o8 oh  oh oh
0 g1 ... gN 5 T . oh  on
(2° z 2% )| w e w( & & ), (722

ang agNV

oxNv=1  g9xMv
where 2¥ = (Z, Z’,Z,,,Zx)v. We can write this in a more convenient form by transposing this system,
resulting in

o8\t (98l T oh
(axo) (axﬂ) (ZO)T (a_O)T
(B_gl)-r (zl)T ﬁ)T
ox! 6ng T : ax.l WT (723)
(8xN ‘1) ; :
Ny z™)7 b 7
o) Garr)

For all iterations v € {0, ---, N, } we have

og\ g \' e [9m)
<ax") (z )T+<W> (z 1)T__<6xv> w' (7.24)

Here we notice the difference with the forward method. This system of equations is not solved forward
in time, but backwards. Once more, from Chapter [5], we have that

. AT -P" 0 O . 0 00 O
g’ [0 I AT -I g\ | ATRT 0 AT O 795
ixv) | 0 O AT -1 | oxv-1/ | ATRT 0 AT O (7.25)
o o 0 1 0 0 0 -I
Plugging (7.25) into (7.24), leaves us with the following system of equations for all iteration steps v
T d T
AT (v _pT wyT I T
AT(zV) -P"(Z2"V) (as;“w) w
T T T T oh \'
(ZIV)T +AT (Zz') _ (Z;/‘) +ATRT (2v+1) +AT (Zg.+1) — (68x7v> wT
T T T oh \'
AT(zY) —(2y) +AT(2V"') +ATRT(Z2V1) = - wT
06x}
T

@) - @) =~ (5 ) W

Finally we may compute all the Z terms by rearranging the terms. We notice that we can make use of
backwards substitution to compute all the terms. Hence we solve

T T oh\'
@) =@ - (5g) W

@) - ) (@) - @) - AR ) - (s ) wr)

T

T T < T T oh
(ZIV)T — _AT (Zz_) + (z;/‘) _ ATRT (Zv+1) _ AT (zz_+1) _ <65X1v> WT

T R Y
@) -6 (rr @ - () W)
(7.27a)
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Algorithm 4: Adjoint method for iterative Multi-Scale gradient computation.
A 9q 0h Oh

input . R,A, P, 5, 5, a_x' ﬁ,x,w
output: The product WG
1 Initialize WG = 0;
2 Compute « = (RAP)™;
3 Compute f =A™T;
4 fori=1,---,mdo
5 forv=N,,:,0do
0A aq 0A v-2,_, .
6 Compute ¢ = ZEPJ:" - RE + Raa_e Yo (X x5
V- ’ q.
7 Compute § = 2 ¥r; (X' +%,)" — -5
8 if v =N, then
T T ah \ '
9 L Compute (Z3), = (2y"') - (ﬁ) W
10 else
T T
1 | set(zy), = (zx)
T T T
12 Solve (Z), =5 ((Z,‘;)l —AT (Z};“)i,_);
T T o T T
13 Compute (2); = —AT (2}), +(2%), —ATR" (2*1), — AT (Z5*1), ;
. \T waT.
14 Solve (2¥), =« (PT z V)i,,),
15 Compute m™ = Z! RA — Z";
16 Compute y = mT" (g—l;z“:") as in algorithm 4 found in [25];
o ah
17 Computen =2y +y +25 6 + W5
18 | Compute (WG);, = (WG); +1n;

Once Z is computed we can update the WG product at each backward iteration by

. ogY og" ogY
(WG)Y = (WG)V™! + ZV—;;; + z’V—ag‘9 +Z 6g0" (7.28)
In conclusion we compute the product as
0 oh

Now we remark that our response function is only dependent on the converged, or iteratively improved
solution. Hence the observations may be describes as

h(x,0) = h(x"",0)

In this manner, we can simplify the partial derivative of our response function to

e 9

26, o P 0
o O O T B I (7.30)
96 ontvt 0 8%V o '

) RN on oh

on’v 20 a8x' Ny 26x

26 oh

oxNv

This method is summarized in algorithm [4].

7.4. Comparison between both methods

In this section we will discuss some of the advantages and disadvantages of both methods. The main
difference between both methods is explained in terms of the computational efficiency. The Forward
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or Direct Method has a computational cost proportional to the columns of V. This can be seen by con-
sidering equations (7.5) and (7.12). Since Z has dimensions N X n, in this equations n linear systems
need to be solved. One can see that if we need to compute the full sensitivity matrix G, i.e. V =1,
the cost will be proportional to the number of parameters Ny. For the Backward or Adjoint method we
note that Z has dimensions of N, X m. From equations (7.7) and (7.21) we may now conclude that the
computational cost of this method is proportional to the rows of W since m linear systems need to be
solved. When we want to compute the full sensitivity matrix G, i.e W = I, the computational cost is
proportional to Ny, or the number of observations. Since in Reservoir Simulation th number of param-
eters generally is much more higher then the number of responses, from this we may conclude that
using the Adjoint Method is more efficient, since less computations are required to compute the product.

However, the Adjoint method also has a drawback. Since we operate backward through the iteration
levels, to compute the final product we must store the intermediate results. Therefore, from a storage
point of view this is a limitation to the method. The computational efficiency however, trumps the
drawback in most situations. Therefore, we are likely to use the adjoint method when dealing with
complex reservoir simulation gradient computations.






Numerical i-MS Gradient Computation
Experiments

8.1. Introduction

In this chapter we will study the performance of the iterative Multiscale Gradient Computation algorithms
as described previously. We also refer the reader to the (unpublished) results presented in [26]. The
main goal is to show that we can estimate the computationally heavy fine scale gradient by deploying
a iterative multiscale method in sense of alignment. In this section we will assume a misfit objective
function with no regularization term, i.e.

1
O(h) = 5 (B 0) = dops) €' (h(%,6) = dops) (8.1)
We note that the analytical gradient formulation of equation (8.1) is given by
VeO(h) = (h(x,0) — dops)"CT'G, (8.2)

This also illustrates the benefit using a framework where we pre and post multiplying the sensitivity ma-
trix. If we set W = (h(x,0) —d,,s)"C™1, then we are able to use the algorithms in Chapter [7]. In this
case, W is the misfit matrix. Next to this, we assume that the observed quantities d,,; are observed
only on fine scale, which is comparable to the setup in the previous chapter. Hence we remind the
reader that if this is the case, all of the partial derivatives of h with respect to a component of x is zero,

except for the (a;%) term.
In the objective function (8.1) we consider observed quantities d,;,;. The observations are the pres-
sures measured at the locations of the observation wells and are obtained by taking the pressures from
a reference case where the permeability field is taken from an ensemble of heterogeneous fields. In
total there are 1000 available geological realisations. These fields are generated using the Principal
Component Analysis parametrization. We refer the reader to [15] for more information. Multiple exam-
ples of these fields can be found in Figure [8.1]. In all experiment we have grid-block dimensions of
Ax = Ay = Az = 1m. Furthermore we have a fluid viscosity of 1.0 x 1073 Pa s. At the injection wells
there is a constant pressure of p;,; = 1.0 Pa, and at the production well we have p,,,, = 0.0 Pa.

8.2. Validation experiments

In this section we will validate the iIMS-gradient method against the numerical differentiation method
with a higher order, two-sided Taylor approximation

1
©266;
where we consider § to be a multiplicative parameter perturbation. We define the relative error as

Vo O; (0(61,+,6;—1,6; + 86;,0;11,+,0y,) — 0(61, -+, 0;-1,6; — §6;,0:41,,6n,)),  (8.3)

_ 1IVeOnum = Vo Oinslla
[V Oimsll2

43

(8.4)
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Different permability fields k(m2)

Figure 8.1: Different Realisations of the heterogeneous permeability fields

Here V4Opyyu is obtained by performing proper amount of iterative multiscale reservoir simulations
required to evaluate equation (8.3). Vg0;ys is obtained by employing the iterative direct- or iterative
adjoint gradient method.

To evaluate the correctness of the implementation and the proposed iterative gradient computation
methods, we investigate the linear decrease of the relative error € by decreasing the parameter per-
turbation & from 10~ to 10™*. This investigation is carried out in two distinct examples. Both have a
fine grid of 21 x 21 grid blocks. We employ a 7 X 7 coarsening ratio, giving a 3 x 3 coarse grid. The
reference twin-experiment is generated with permeability realization number 992. Figure [8.2a] illus-
trates the fine-, coarse- and dual grid cells and the reference permeability is visualized in Figure [8.2b] .

| Reference Permeabilityfield 992 <1013

2 5
| | m 4 45
6
8 35
10 3
- m - - .
14 2
16 15
18 1
m - » "
i 08
5 10 15 20

Edges Vertices Faces

=

Permeability k{m2)

(b) Visualization of reference permeability
(a) Visualization of grid specification field number 992

Next we determine the well positions. We use the so-called quarter well spot. Here, two observation
wells are placed near operating wells. The full specifications can be found in table [8.1]

Well positions
Name | Position Well Type | Pressure (Pa)

INJE (1,1 Injection 1.0 - 10°
PROD | (21,21) | Production 0.0 - 10°
OBSH1 (3,3) | Observation

OBS2 (19,19) | Observation

Table 8.1: Quarter well spot setup.

The results of this experiment are found in Figure [8.3]. Here, we use a single outer iteration. We use a
very high smoothing tolerance of €, = 5x 10718 to ensure that the numerical gradient method produces
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accurate enough gradients. First of all we can see that the fine-scale numerical gradient method and
the iterative MS-gradient methods are of the same order of accuracy with respect to the perturbation
&, for all different cases considered. In all experiments, we can see the linear decreasing behaviour of
the relative error values ¢ as the perturbation § decreases. Also we may easily see that the Adjoint-
and Direct method are equally accurate. They provide the analytical gradient at the same accuracy.
The second experiment indicates the correctness of the method when it is applied to heterogeneous
porous media problems.

og(e)
(.

AN Il 5\

(a) (b)

Figure 8.3: Validation of the iMS gradient computation method compared with a numerical gradient. (a) represents the homo-
geneous test case, while (b) represents the heterogeneous test case.

8.3. Gradient accuracy

We perform multiple numerical experiments to assess the quality of the i-MS Gradient algorithms. We
will discuss the performance over a realization of 1000 heterogeneous permeability fields. We discuss
the quality of the i-MS gradient in comparison to the fine-scale gradient. Suppose that the fine-scale
gradient and i-MS gradient are denoted by Vg O0rs, Vg 0,15 respectively. To asses the gradient we use
the angle metric between the two gradients. This angle is given by

(Vo Ors, Vg Oins)

cos(a) = =Vo07Vg0; (8.5)
IV Orsll: - 1176 Ouusl2 reToTIMS
where Vo0 Vo0
A 60YFs A ovYims
VgOps = ———, VgOiys = ———— 8.6
007 = [W0rslly” 2% = Vg OruisITz ©9)
Hence, the angle between the two vector may be computed as

a = cos™! (VgOhsVgOins) (8.7)

If the angle is close to zero, this means that the i-MS gradient has the same direction as the fine
scale gradient. For the one dimensional case, we have that « = 0°, since there are no localization
errors in the MS solution, we do not need any iterations and hence, the i-MS solution gradient has no
errors. Note that the angle does not tell us if the gradients are equal to one another. If merely tells
us if they are aligned. As a minimum requirement, we accept only the iMS gradients that have an
angle @ much smaller then 90° [10]. We investigate the behaviour of the metric as a function of the
number of iterations. The number of outer iterations in the iterative process is controlled by the residual
[IrV|| > €, where the iterative process continues until this pre-set accuracy is achieved. In comparison,
the smoothing error is controlled by the smoother tolerance ¢,

8.3.1. Investigation of the i-MSFV convergence and gradient quality

In this section we will discuss the behaviour of the i-MSFV gradient computation method and the qual-
ity of the gradient. A fine grid of 21 x 21 is defined. Next to this our coarse grid has dimensions of
7 x 7. For the well positions we impose an inverted five-well spot with four observation wells close to
the production wells. The full specifications of the configuration can be found in table [8.2]. Once more
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Well positions
Name Position Well Type | Pressure (Pa)
INJE (11,11) Injection 1.0 -10°
PROD1 (1,1) | Production 0.0 - 10°
PROD2 (21,21) | Production 0.0 -10°
PROD3 (1,21) | Production 0.0 -10°
PROD4 (21,1) | Production 0.0 - 10°
OBSWELLA1 (3,3) | Observation
OBSWELL2 (19,3) | Observation
OBSWELL3 (3,19) | Observation
OBSWELL4 (19,3) | Observation

Table 8.2: Inverted five well spot setup

we create observations from a twin experiment.

The results of evaluating the metric with respect to the number of iterations is found in Figure [8.4].

35

30}L
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15| :
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5) E- % 1

w ‘

0 1 —— "

| | | | |
No iteration 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6
€(-)
Figure 8.4: Box-plot illustrating the metric @ between fine-scale gradient and i-MSFV gradient computed for the 1,000 mem-

ber ensemble as a function of the outer-loop tolerance error €. "No iteration” is equivalent to the MSFV gradient computation
presented in [25] and as discussed in section 7.2.

From this figure we can clearly see that the angle metric decreases for all realisations if we increase
the outer-loop residual tolerance. Next to this we conclude that the variance of the angle decreases
significantly and becomes zero if we set e = 1-107*. If the residual is set to 1 - 10~° we notice that
there is perfect alignment with the fine-scale gradient in all 1000 permeability realizations. However,
there is very limited permeability contrast between the different realisations of the ensemble. These
permeability fields can be regarded as the uncomplicated geological case. Therefore we assess the
robustness for the iterative gradient computation method for geological settings with higher permeability
contrasts, and hence increasing the complexity of the problem.

8.3.2. Heterogeneity contrast and distribution
To investigate the robustness of the method on examples with increasing complexity with respect to
heterogeneity and distribution, we consider 4 set of 20 equiprobable realizations of log-normally dis-
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tributed permeability fields. These are generated using the sequential Gaussian Simulation [40] with a
spherical variance of ¥, = 0.5,¢, = 0.02. In this algorithm you transform data to fit a Gaussian Ran-
dom Variable. Then you sample multiple sets from this set to obtain the permeability field. For each
set we have that the mean of the grid block permeabilities is u = 3.0 Darcy and the variance is 62 = 2.0
Darcy. We note that if the correlation length i is small, there is a patchy, peaky behaviour, whilst if ¥
is larger, different permeability streaks or layers appear in different angles. In this experiment we con-
sider three different angles (0°, 15°,45°) and the patchy permeability sets. Compared with the previous
experiment, the permeability contrasts are generally much higher in this experiment. A visualization of
the permeability fields is shown in Figure [8.5]
-:9 2e-12

1.0e-13

1.0e-15

6.7e-17
(a)0°

(c) 45° (d) Patchy
Figure 8.5: Visualization of four different realisations taken from the different sets of geostatistically equipobable permeability
fields. In figures (a — ¢) we use different correlation lengths. Also, a patchy field (d) with a small correlation length is considered.

k(m2)

We consider a fine grid of 100 x 100 grid blocks and the coarse grid contains 20 x 20 grid blocks.
The well setup is similar to the quarter well setup in table [8.1], however the Production well is how
in cell number (100,100) and the second observation well is at grid block (98,98). Table [8.3]. In
this experiment we generate observations from a twin-experiment where the permeability is the first
realisation of each set. We sete = 1.0-10"% and ¢, = 1.0 - 1071,

Well positions
Name Position Well Type | Pressure (Pa)
INJE (LD Injection 1.0 - 10°
PROD (100,100) | Production 0.0 -10°
OBSWELLH1 (3,3) | Observation
OBSWELL2 (98,98) | Observation

Table 8.3: Quarter well spot setup for the heterogeneity distribution experiment.

Now Figure [8.7] shows the value of the angle metric for the different sets, when using the multiscale
method and the iterative multiscale method. The box-plot shown in [8.6] summarizes the required total
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Figure 8.6: Boxplot of the convergence behaviour of the different permeability sets.
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number of smoothing steps, for all outer i-MSFV steps, for varying €. We see that if the forward model
is more challenging, the computation of the i-MSFV gradient is more challenging to compute as well.
However, we can also see that in all cases, almost all of the computed i-MSFV gradient realizations
are perfectly aligned with the fine-scale gradient, hence proving the robustness of the method.
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Figure 8.7: lllustration of gradient quality improvement when an i-MSFV gradient computation strategy is employed in comparison
to a MSFV computation strategy for the different equiprobable permeability fields. The x-axis represent the metric « between
fine-scale and the MSFV gradient (illustrated by blue crosses) and the i-MSFV gradient with error tolerance € = 107° (illustrated
by orange circles).

8.3.3. SPE-10 comparative test case

In the final experiment, we investigate the performance of the method it he SPE-10 comparative case
[6]. This project provides test data and files for independent comparison of different methods. Previ-
ous project focussed on black-oil, horizontal wells and gridding techniques. The aim of the 10" project
however, was to compare different upscaling techniques. It considers a fine grid model of 60 x 220 x 85
fine grid cells, with high contrast between permeability regions, throughout the different layers. There-
fore, this case is regarded as challenging. In our experiment we consider flow through the top and
bottom layer of this model. The corresponding permeability fields can be found in Figure [8.8]. In this
permeability field one can see why this model is regarded as complex. There are very high permeabil-
ity contrasts. Next to this, in the bottom layer there are very specific regions of high- and low contrast
adding to the complexity.

We employ a constant coarsening ratio of 5 x 11, hence generating a coarse grid of 12 x 20 grid blocks.
The observations are generated from a homogeneous twin-experiment with a permeability value of
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Figure 8.8: SPE-10 comparative test case: top (a) and bottom (b) layer permeability fields.

k =1-10"3m2. The specifications of the well configuration is found in table [8.4]. In this experiment

Well positions
Name Position Well Type | Pressure (Pa)
INJE (1,220) Injection 1.0-10°
PROD (60,1) | Production 0.0 -10°
OBSWELLA1 (33,5) | Observation
OBSWELL2 | (28,50) | Observation
OBSWELL3 | (28,83) | Observation
OSBWELL4 | (43,204) | Observation

Table 8.4: SPE-10 comparative test case well setup.

we fix e, = 1.0- 1072 and we vary the outer residual e with values of 1.0-1072,1.0-10~* and 1.0 - 107°.
Figure [8.9] shows the results for this test case. Once again, we clearly see that for this geological
challenging setting we can provide more accurate gradient alignment by using an iterative method
when compared to the non-iterative multi-scale gradient. This is for both the top- and the bottom layer,
however we do notice that the top layer performs significantly better then the bottom layer, which has
more extreme permeability contrasts.
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Figure 8.9: i-MSFV gradient quality as a function of residual error € for the SPE-10 top layer (a) and bottom layer (b).
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Goal-Oriented Adjoint Based
Optimization

9.1. Introduction

In the previous chapter we showed the performance of the iterative multiscale gradient computation
algorithm. In this algorithm, a smoothing step is applied to remove errors. This step comes with the
computational cost of solving a fine scale system, and hence is expensive. In this section we introduce
a new method, the iterative multiscale goal oriented method (iIMSGo(m,4;)), with the goal of reducing
the computational cost of the fine-scale smoothing. This method identifies the regions of the com-
putational domain that have a high impact with respect to a user defined goal. Then, the smoothing
step is performed only on these positions, hence improving the computational efficiency of the system.
Selecting these positions mean that we have to permute our system equations to reorder the system
accordingly. First, we will describe how to permute the system of equations. Then we determine two
types of convergence control criteria. The first being residual-based, the second being the goal ori-
ented adjoint-based convergence criterion. There, we also explain the goal oriented method where
two different frameworks are applied. We state the criterion on a fine scale and multiscale basis.

9.2. Adaptive iterative multiscale finite volume method
9.2.1. Permutation of system equations

Fine-scale
Let P be a RNr x RNF permutation matrix [11] that re-orders the original system of equations in a block-
wise fashion
A A b4 q
arr) o= e ] <[] - o)
( ) Apx App|  |%p 9 4

where A, is a RV x RV« matrix composed of equations regarding the N, unknowns selected, A,,is
a R"» x RM matrix composed of equation regarding the equations which N, variables are considered
known according to a given criterion, and A,, € R¥ x R and A, € Rz’z’v x RNx are the matrices
representing the couplings between known and unknown variables. x, € R"* and x, € R are,
respectively, the known and unknown vectors. Also, q, € R¥» and q,, € RM» are, respectively, the
knowns and unknowns right-hand-side vectors.

Assuming certain variables are known enables us to remove these equations from the system (9.1).
The strong assumption is that there is no coupling between known and unknown variables. Hence,
under the assumption that A,,, = 0, A, = 0 and A, = I, from (9.1), it follows that

A X, =qy, (9.2)

is the system that should be iterated over in the i-MSFV smoothing stage.

51
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Iterative Multiscale

For the iterative multiscale model the same formulation holds, but instead we deal with known and
unknown corrections §x,, §x, and their corresponding residuals r,, r,, at different iteration levels.
Note that, because PV can theoretically be reconstructed at every iteration v, the size of the operators
in (9.1) can also change. Also, because of this dynamic behaviour, the convergence criterion must be
carefully defined. For instance, having a norm-2 of the reduced residual after smoothing the reduced
system of equations does not imply that the norm-2 of the full system will be also smaller than the
tolerance.

9.2.2. Residual-based Convergence Criterion

A logical criterion for the determination of the reduced smoothing system is based on the fine-scale
residual. If r; < €,i = 1--- Ng, € being the i-MSFV tolerance, implies that fine-scale mass conservation
is respected given e sufficiently small. Consequentially, that also implies that §x; < €,i = 1--- Np. That
allows a rigorous enough criterion so that (9.2) holds.

Therefore P can be built such that if r,,. < ¢, 6x; € 6x,, otherwise 6x; € 5x,.

The convergence is controlled based on the norm-2 of £/ ~1.

9.2.3. Goal Oriented Adjoint-based Convergence Criterion

Fine Scale

Suppose that the final state x is used to evaluate a quadratic or integral goal J(x). Examples are
Net Present Value, or Misfit functions. Depending on the type of goal imposed on the problem, one
can formulate a minimization or maximization problem to find the optimal goal value where the flow
discretized system of equations is used as constraint. At a fine scale this gives the problem

minimize J(X)
6 (9.3)
subjectto gr(x,0) =A@)x—q@)=0

Problem (9.3) can by solved using the Adjoint Method [3, 7, 19].

The Adjoint Model has already been defined in Chapter [6]. This method produces so-called Adjoint

Variables or Lagrange Multipliers. Futhermore, this method enables us to write the gradient of J(x)
with respect to the parameters as

dJ(X) — AT 6gF

deé a0

(9.4)

The Adjoint Variables, or Lagrange Multipliers A is a vector of size N X 1, and may be interpreted as
a measure of the effect of perturbing the model equations, and thus the state, on the goal J(x). The

matrix 252 ae £ of size Np x Ny gives for each spatial coordinate the rate of change in model equations when
the parameters of the systems are perturbed.

Equation (9.4) is equivalent to

d(j(x) _ BgF _ aﬁ agF 3 agF agF
T ( 20’ A 69N9>—<</1 20, (4, 20, >>, (9.5)
hence,
dJ(x) agFl agFl
Z}” 00, ’ le 05, (9.6)

From (9.6), we see that for all parameters, the gradient with respect to the parameter can be written as
an summation of the product between the effect to the model equations when perturbing parameters
and the effect of change in the model equations to the posed goal.
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For each degree of freedom x; and parameter 6 ;, we have the product

0gri

Mg

(9.7)

and, following the interpretation, this gives a measure of perturbing parameter 8 ; for variable x; to our
posed goal. This measure is called the sensitivity as high values of this measure indicate that perturb-
ing this parameter at this degree of freedom has a high effect to our posed goal. If this measure is low,
it has a low effect to our goal.

If there is only one parameter 6, the Goal Oriented Criteria is simple. After evaluation of equation (9.7)
for all degrees of freedom, the sensitivity region is defined as all of the positions for which the sensitiv-
ity value is above a pre-set tolerance mg,,,;. In this sense one builds the matrix P, by determining for

which i one has that [|4; 22|, > myo,. If ||2; 285

PY:S i 30 ”2 > Mgoal X € X,, else X; € Xp-

If however, as often is the case in reservoir simulation, the number of parameters is greater then one,
the Goal Oriented Criteria is slightly less trivial. For one parameter, equation (9.7) enables us to visual-
ize the sensitivity of the parameter across the entire domain of our model. If there are more parameters,
we conclude that for each parameter we can perform this visualization. However, this means that for
all parameters Ng we get a different pattern for the sensitivity effect in the domain.

Therefore, the strategy for a single parameter doesn’t hold as for different parameters we may find
different regions of high sensitivity. The question that remains is how we dilute one sensitivity region
out of these different patterns?

Naturally, if
dJ(x) dJ(x)
=g, 11 <115,

for two given parameters, we want to give the sensitivity region for parameter j more importance.
Therefore, one could argue that the gradient could serve as a weighting. The weight of parameter
is given by

&) Zivzpl Ai @
_ doj _ aej 9 8
T IR ©8)
ag 12 ag 12

and can be interpreted as the importance of parameter 8 ; with respect to the other variables. For all
variables x;, the total sensitivity therefore may be written as

Ng 6

Zaiﬁw,- 9.9)
LFTY

=

We note that by introducing this weighting the total sensitivity can be thought of as stacking all the
relative sensitivities at that degree of freedom. We denote

N I'VF i ogri N, I'VF @
= 1 ae] ||d<7(x) || b Nr ag} ”dJ(X)“ .
j=1 ae 2 Jj=1 a8 :

as the vector of spatial sensitivities. As an effect, we have the total sensitivity of all spatial positions. If
the value is high, it means that perturbations in one or more parameters has a big effect. In contrast,
if the value is low, perturbing the parameters has a little effect to our goal. We may therefore define
our criteria based upon §. However, in order to do so, one must first apply a scaling of this matrix.
This is because the results of the forward model may vary in orders of magnitude if different settings
are applied, so that it is impossible to find a value-based criteria that is generically applicable. Scaling
removes these setting dependent differences in magnitude of the solution and gives a possibility to
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Algorithm 5: Scaling of Matrix using the Min-Max
input : S
output: Normalized product §

1 Find MinV = minS§;, Vi€ {1,--Ng};

2 Find MaxV = maxS§;, Vi€ {1,---Ng};

3 if ||[MinV|| > MaxV then

4 Set Ryax = |IMinV]|;

5 L Set Rin = MinV;

6 else

7 Set Ryax = MaxV;
8 Set R in = —MaxV;

A 28
9 Calculate § =

'max —Rmin

define a measure.

The scaling procedure is found in algorithm [5]. Note that this algorithm takes scales all values accord-
ing the highest and lowest, whilst still maintaining the correct spread between all values.

Independent from the settings, this scaled vector § may now be used to form the criterion for the
determination of the reduced smoothing system.

If 18;] > Mgoar, X; € Xy, €ls€ ,X; EX, (9.11)

Multiscale

The Goal Oriented Adjoint-Based Convergence Criteria as previously determined, is based upon a
fine-scale model. Hence, for complex models, this leads to expensive computations. To resolve this
problem, we try to reduce this complexity by employing an Multiscale framework. Here we use the

model formulation as in [25],
18| _ _|x
g= [g,] =0, x= [X] (9.12)

where g € RNcNr x € RNcNF. To derive the Adjoint Model, we maintain a similar strategy. For the
Lagrange Multiplier method this leads to an augmented Lagrangian of

Lx6,)=J®+(i" 17)e (9.13)

where our goal is evaluated only on fine scale level, hence = 0. The Lagrange Multipliers is a
structured vector, with 2 € R¥¢NF. We are now able to formulate the multiscale equivalent of equation

9J=x)
%

as
0J®) 8J(x) ST A 0\ _
(B 2wy, (i am)(4 §)-o (0.14)
Rearranging the terms, enables us to find the following expressions
< o d
i —atpa-, a7 - %@ (9.15)
ox
Similarly, the gradient of J with respect to the may be written as
dj(x) .0g(x6) .70g(%0) 8%, 80)
T =1 50 =1 50 +2 0 (9.16)

where, if we apply the same decomposition as in (9.5), we find a relation comparable to (9.6),

o Np o
dJ(x) 0g og
leaei ZAJ 20, Z"‘ae,vl +Z/1} 36y, |’ (9.17)
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where the final term in expression (9.17) gives the total sensitivity for each parameter on fine scale.
Hence, for each parameter we can split the sensitivity into a spatial-coarse sensitivity $ and a spatial
fine sensitivity §’. In a similar manner as in (9.9), we may write the coarse sensitivity as

. N¢ 5 08
Zg 08; i —Z 126, (9.18)
nr T .
i=1 ”A 6_ | |2
Similarly, the fine-scale sensitivity may be expressed as
N , Bg’
J ] r Z]fl A] #
ZA] wl, Wy = L % (9.19)
96, g,
so that the total sensitivity is given by 3
Sn =8, + S5, (9.20)

After normalization as in algorithm (5), the Goal Oriented Adjoint-Based Criterion will be to select all
positions x; for which 1S;] > Mgoa, =1+, Np. Therefore P in (9.1) can build such that if

1S;] > Mgoal, X; € Xy, €lse x| € x,,

9.2.4. Algorithm

In this section we will present the algorithm used to implement the Goal-oriented adjoint based criterion.
We write mg,,; to denote the goal tolerance. We note that, in our algorithm, we deal with the known
positions x,, as if the solution at these positions is considered to be good enough. Hence, we deal with
these positions as if they are Dirichlet Boundary conditions. However, in order to create a valid system
of equations, we need to adapt the residual and system matrix accordingly. The Dirichlet condition is
r, = 0. Then, for the system matrix we adapt the entries as follows. For simplicity, assume that there
is exactly one known position x,,, which in the unpermuted system corresponds to spatial position x;.
The original system can be represented in general form as

a1 aiz aiz 0 Qg vt Qg
az1 azz Az3 =+ Qpp - Qg
A= ’ ’ ' ) ) (9.21)
in Gz Gz v Qo vt Gy |
anp1 Ongz ANg3 0 Ongi " ANpNg

and we incorporate the Dirichlet conditions by adapting the matrix to

a;; Q1 Qg3 0 Qg 0 Qg I

Qz1 Q2 QA3 '+ Az 0 Agng r
A=| | : ; ‘ ; i,=| 9.22
0 0 0 R 0 o Ip 0 ( )

Ang1  Ang2 ANz 0 Angi  ANgNg Ly

If there are more positions, then we repeat this procedure for all corresponding spatial positions. Finally,
there after we use the system

Ax =i,
We also note that by not necessarily selecting all positions the stopping criteria of the algorithm is ad-
justed too. Instead of using a stopping criteria based on the total residual r¥, we define our system to
have been converged if the residual belonging to the positions that are smoothed is below a certain
tolerance. The process can be seen in algorithm [6].
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Algorithm 6: Algorithm for Goal - Oriented iterative Multi Scale Method
inPUt LA, 4, Meo1, Mgoal
output: The state of the system x
1 Setr® =% =gq;
2 Setv=1,;
Setx = 0;
4 Construct Sensitivity Matrix §;
5 Calculate Permutation Matrix P ;
6 while [|¥V]|, > m,,, do
7
8
9

w

Solve Ax¥ = ¥ 1;
Compute x' = PXV ;
Setx=x+x"V;
10 Setr’ =rV — AX"V ;
" if mgoq # 1 then
12 Permute matrix A = (PAPT)(Px');
13 Permute residual #¥ = Px'";
14 Smooth and solve for A, X!, = F ;
15 Set# = # — AxY;
16 Permute r¥ =V — PT¥ and x),, = P'x);
17 Setx=x+x; ;
18 SetrV =r' - Ax}, ;
19 Compute A and set A = A;
20 else
21 L Set# = 0;
22 v=v+1;

23 Return x;

If we take a close look at this algorithm, we see that mg,,; = 1 is equivalent with the MS method. This
is because by construction all positions are to be considered as known, hence no smoothing is applied.
In similar fashion we have that mg,,; = 0 corresponds to the iIMSFV method, because now all positions
are considered to be unknown, hence smoothing is applied across the entire domain.
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Numerical iterative Multiscale Goal
Oriented Experiments

10.1. Introduction

In this section we perform numerous numerical experiments to test the robustness and computational
efficiency of the iterative Multiscale Finite Volume Goal Oriented Adjoint-Based criteria methods (iMS-
FVGoal, or shortiMSGo). The main goal is to show to computational gain when using the iIMSGo(mgq;)
method compared to the original iIMS method. The second objective is to show that this method is also
capable of producing gradients accurate enough for optimization purposes. Firstly, we will perform
experiments which use the fine scale sensitivity region. Finally we will give a short proof of concept of
the iIMSGo(m,;) method, where the sensitivity matrix is obtained in a multiscale framework. During
this section we will employ a misfit objective function without regularization term as our to be minimized
goal J(h(8)). Hence,

1
J(0(6)) = 5 (B 0) = dops) "€ (h(,0) = dops), (10.1)

where we assume that the observed quantities d, ;s are observed only on fine scale. In all experiment
we have grid-block dimensions of Ax = Ay = Az = 1m. Furthermore we have a fluid viscosity of
1.0 x 1073 Pa s. At the injection wells there is a constant pressure of pinj = 1.0 Pa, and at the produc-
tion well we have p,,,q = 0.0 Pa.

In this thesis we will perform test cases that correspond to the previous test cases in chapter [8].

10.2. Fine scale sensitivity region numerical tests

In this section we test the IMSGo(m,4;) where the sensitivity matrix § is constructed using a fine-scale
computation. This means however, that before we can run the iterative goal method, we must first
solve the fine scale model. We don’t consider this to be an issue as an optimziation algorithm is an
iterative process that requires many forward simulations. Hence, the cost of running one full fine scale
forward simulation is compensated by the fact that all other forward simulations will benefit from the
more efficient strategy here introduced. Firstly, we perform the three different categories of experiment
to show the computational efficiency of the method.

10.2.1. Investigation of the iterative multiscale goal gradient accuracy

In this section we validate the results for the i-MSGo(m,4;) method. Since, previous results from chap-
ter [8] have validated the results of the MSFV gradient computation method and the i-MSFV gradient
computation method, we are able to use these results to verify the validity of our newly introduces
method to also compute gradients. Because theoretically, m,,,; = 0 corresponds to the i-MS method
and mgy,,; = 1 corresponds to the MSFV method as explained in the previous chapter, the require-
ment for the method being valid is that the gradients calculated with the different methods should be

57
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comparable. Note that if the gradients are equal, the pressure solutions must also be the equal.

This investigation is carried out using the two-dimensional homogeneous test case as presented in
section [8.2]. We have a fine grid of 21 x 21 grid blocks. We employ a 7 X 7 coarsening ratio, giving
a 3 x 3 coarse grid. For this experiment we employ a quarter five spot well setting. We check the
difference between the gradients in a numerical and analytical setting.

Note that we use a single outer iteration. In the analytical experiments we use € = 1le — 6,6 = 1le — 1.
We use a very high smoothing tolerance of e, = 5x 1078 to ensure that the numerical gradient method
produces accurate enough gradients. The results of this experiment are found in table [10.1]. From
this we may conclude that indeed, the MS and iMS method are equivalent to the iIMSGo(m,4;) method
with goal tolerances 1 and 0 respectively, since the differences between the methods are all zero. Also,
we conclude that the pressure solutions generated with the IMSGo(m,4;) method are equal to the MS
and iMS method.

Gradient Comparison
[IVeOms — Vo Oimscoyll2 | 11VaO0ims — Vo Oimsco(oll2
0 0

Numerical
Analytical 0 0

Table 10.1: Difference Norm for different methods

10.2.2. Validation of Sensitivity Region

In this section we validate the computation of the Lagrange Multipliers and the sensitivity region. For
illustration we consider once more the two-dimensional test case as in section [8.2], but now two twin
experiments with different reference fields are used. One is a homogeneous reference field and the
second is heterogeneous.

We note that because we are using an goal function as in equation (10.1), the algebraic formulation of
the Lagrange Multipliers can be written as

T — -1

A= WaxA , (10.2)
where W indicates the misfit at the observation wells. We can see that the Lagrange Multipliers are
directly dependent on the misfit , i.e. if the misfit is large, then so will be the Lagrange Multipliers. For
the two-dimensional homogeneous test case, with the homogeneous twin experiment, the pressure
solution will be symmetric and the misfit will therefore be the same for all the observation wells. This
also means, that from equation (10.2) we have that the Lagrange multipliers are symmetric along the x—
and y—axis. Then, also the sensitivity region must show a symmetric behaviour. Figure [10.1] shows,
that this is indeed the case. To build the sensitivity matrix as in equation (9.11) we use mg,q; = le — 2
purely for illustrative reasons. For the twin experiment with the heterogeneous reference field, we
can see that the Lagrange Multipliers indeed are related to the misfit at these positions. Furthermore,
we clearly see that the sensitivity region is not symmetric and that the sensitivity region selects more
positions in the neighbourhood of the largest misfit. This can be explained easily, as the largest misfit
leads to high values of our posed goal, we want to accurately calculate the solution near this location
so that we can minimize this effect. Therefore, more positions in this neighbourhood are marked as
sensitive. These results confirm the correctness of the computation of the Lagrange Multipliers and the
sensitivity regions.

10.2.3. Investigation of the i-MSFVGoal convergence behaviour
In this section we will we test if the IMSGo(m,,4,;) is computationally more efficient, by investigating the
total number of smoothing steps required for the convergence to the outer tolerance €. Next to this, the
correctness of the method can be illustrated with aid of the difference in pressure solution. We define
the pressure error norm to be

Y = l1%r — Rull2, (10.3)
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Figure 10.1: The Lagrange Multipliers for the two-dimensional test case with two different twin experiments. Also the Sensitivity
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where F is the subscript for the fine scale pressure solution and M denotes the method used to approx-
imate the solution. In this thesis we approximate the solution using our newly introduce iIMSGo(m,4;)
method. We investigate the pressure error norm as a function of the goal tolerance. We note however,
that the pressure error norm is not evaluated as an criteria for the quality of the method. This is because
in the algorithm, we accept that some positions in our domain are not important to our goal and there-
fore the solution is already good enough. This means that by assumption, the error pressure norm for
the iIMSGo(m,4;) method is not comparable to the iIMS error pressure norm. Still, you would like the
pressure error norm to decrease and we can use the error pressure norm to validate the correctness of
the algorithm as the error pressure should decrease when the goal tolerance mg,,; decreases as well.

Homogeneous and Heterogeneous distribution tests

First of all we test the behaviour in a two-dimensional homogeneous setting. The full details of the
settings of the method have already been described, and we refer the reader to section [8.2] for the full
specifications. We investigate the behaviour by adapting the input parameter mg,,;. These different
goal tolerances lead to different sensitivity regions as indicated in Figure [10.2].

Sensitivity Region for 2D homogeneous test case

goalTolerance = 0.37627 goalTolerance = 0.010447 goalTolerance = 0.0010678

goalTolerance = 2.9648e-05

2
n
6
8

Figure 10.2: Figure indicating four different sensitivity regions
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We remark that instead of supplying the algorithm with a goal tolerance mg,4;, sometimes it is benefi-
cial to supply the algorithm with the total number of positions to be smoothed, say P,. From this number
P;, one can determine the corresponding goal tolerance by sorting the total sensitivity § in ascending
order. Then, if we select entry S(F;), this gives the corresponding goal tolerance. This feature can be
important as for each model the sensitivity matrix § is different, and hence imposing the same goal
tolerance mg,,; may lead to different results. By fixing P, we force the algorithm to smooth over the
same number of positions and therefore give more reliable results.

The pressure error norm and total number of smoothing iterations for different tolerances is visualized
in Figure [10.3]. If the goal tolerance equals 1, the method is equivalent to the MSFV method and has
the largest pressure error norm. Gradually increasing the goal tolerance means decreasing the number
of positions that we smooth, hence gradually decreases the error norm. The error norm is the smallest
when a goal tolerance of 0 is used, because then the entire model is smoothed. From this figure, we
can see that the total number of smoothing steps decreases as the goal tolerance increase.

Error Norm ()
Total number of smoothing steps

o5 . . . . . . 0 . . . . .
107 100 109 10* 10° 102 10t 10° 107 100 10° 10* 10° 102 10? 10°
Goal tolerance (m,,,) Goal tolerance (m,.,)

Figure 10.3: Figure indicating the pressure error norm (left) and the total number of smoothing steps (right) as a function of the
goal tolerance.

However, we notice that even though that the pressure error norm decreases as the goal tolerance
decreases, it decreases at a slower rate and the error remains relatively large. To show that these
results are correct, we show the effect of selecting 95% of the domain to be smoothed. Then, we ex-
pect the pressure error norm to be very close to the iMS method, because almost the entire domain is
smoothed over. Figure [10.4] shows the final pressure solution, the final residual, and the sensitivity
region for the iIMSGo(m,4;) method, where in total 433 positions are selected in the sensitivity matrix S.

Results from Figure [10.4] shows us that the method behaves correctly. Exactly at the positions where
we do not smooth the solution, we see the biggest value of the pressure error norm. Furthermore, the

Pressure and residual visualization for a large sensitivity region
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Figure 10.4: Final Pressure solution, Final Residual and Sensitivity Region
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residual at these positions is high, which is to be expected as the convergence criteria only looks if the
norm of the smoothed positions is below a certain tolerance.

Next, we discuss the heterogeneous realizations to slightly increase the complexity of the problem. The
specifications of the model can be found in section [8.3.1]. Figure [10.5] shows us the behaviour with
respect to the iterations and the pressure error norm. The results are comparable to the homogeneous
test case. The result from the pressure error norm indicate the correctness of the method as gradu-
ally the error norm decreases when the goal tolerance is increased. However, it is observed that the
decrease of this pressure error norm is slow. For smoothing 92.5% of the complete domain, the error
norm decreases on average with only 1% compared to the errorneous MS method. However, increas-
ing the goal tolerances over the 1000 test cases, eventually leads to a rigorous decrease in the amount
of smoothing steps. Also we can see that the variance in the convergence behaviour decreases when
the goal tolerance larger.
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Figure 10.5: Left: Total number of smoothing steps required for convergence as a function of the amongst full ensemble size for
different goal tolerances. Right: Pressure Error Norm for different goal tolerances amongst the full ensemble size.
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Investigation of Highly heterogeneous permeability distributions

The next experiments are based upon the highly heterogeneous permeability distributions as in sec-
tion [8.3.2]. This section also contains the full model specifications. The most important note for the
reader, is that the permeability distributions are generated in four sets of 20 realizations each, with
patches of high- and low permeability differences in streaks of different angles. We consider angle
sets of 0°,15°,45° and a patchy behaviour set. We use a coarsening ratio of 25 x 25.

Before we illustrate the solution behaviour of the iIMSGo(mg,4;) method, we calculate the fine scale
sensitivity matrix § for the different sets. This is illustrated in Figure [10.7]. We notice that the sensitiv-
ity region aligns with the direction of the flow governed by the heterogeneity.

0 degree sensitivity 15° degree sensitivity 45° degree sensitivity patchy sensitivity

Figure 10.7: Visualization of examples of sensitivity regions for the different angle sets

Figure [10.8] shows the total number of smoothing steps for the four different permeability sets. For
computational reasons and readability we only discuss experiments where more then 50% of the do-
main is smoothed. We notice that for all sets increasing the goal tolerance leads to a rigorous decrease
in the number of total smoothing steps. Only for the 45° angle set, there is an increase first.
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Figure 10.8: Results for the four different angle set realization for smoothing of 50% of the system, or more.

Figure [10.9] shows the relative decrease of the mean number of smoothing steps. It shows us that
if we use 80% of the total positions in the smoothing step, the number of total smoothing steps is ap-
proximately 30% of the computational effort required in the iMS method. This already proves to be a
significant improvement on the computational efficiency.

We also observe that, the pressure error norm performs in a similar way in the previous experiments.
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Figure 10.9: The decrease of number of smoothing steps percentage wise as function of the percentage domain used for
smoothing in the smoothing step.

So even though the decrease in computational effort is promising, the pressure error norm decreases
at a slow rate. To show that this conclusion holds, we confirm this conclusion also holds for the final,
most challenging test case.

SPE-10 Comparative test case

For our final test, we investigate the convergence behaviour of the SPE-10 comparative test case. The
full model specifications are already discussed and can be found in section [8.3.3]. Also mentioned in
this section is the great complexity of the associated with the very high heterogeneity in the permeabil-
ity distributions. We consider experiments on two different permeability fields and we use two different
coarsening ratio’s. One of 5x 11, which corresponds to the original setting, and one of 5 x 5, increasing
the coarse grid size by a factor 2.5. We investigate the total number of smoothing steps taken in the
algorithm, and the pressure error norm. Figure [10.10] visualizes the results.
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Figure 10.10: Results for the SPE-10 comparative test case

These results show us that once again, that the total number of smoothing steps decrease quite rigor-
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ously. Therefore we may conclude that using the iterative goal method may be beneficial for compu-
tational effort. From the pressure error norm however, we indicate that changing the coarsening ratio
does not necessarily improve the quality of the basis functions. This method proves to be promising,
but because of the behaviour of the pressure error norm, further investigation needs to be performed
of how to increase the accuracy of the solution to prove it's full potential.

10.3. Multi Scale Sensitivity Region Numerical Tests

The previous results where based upon building a Sensitivity Matrix §, for which computations on a fine
scale model where required. This heavy computation can be simplified by computing the Sensitivity
Matrix in a multiscale framework by means of equation (9.19). We use a multiscale pressure solution
to build the finescale sensitivity region. As this is not fully supported by the multiscale formulations as
presented, the results presented here can be thought of as a proof of concept. The results are not
waterproof but they give a good indication to whether the method proves to be efficient or not.

Firstly, we investigate the sensitivity region for the two-dimensional homogeneous test case. Here we
investigate, if the same regions are identified for both methods. We investigate the overlap of the sen-
sitivity regions as a function of number of smoothing positions. Figure [10.11] visualizes the results.
To check if these regions align, we look at the mismatch between the regions. Next we determine the
percentage match between both regions. These results are found in Figure [10.12].

Sensitivity Regions of Fine Scale v.s. Multiscale for different smoothing positions
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Figure 10.11: Figure of the different sensitivity regions when computed by the fine scale and multiscale model.

From these figures we see that the resemblance in both sensitivity regions is quite well. At minimum
there is a 69% overlap between the regions. One can note that for a low number of smoothing posi-
tions, up to approximately 50% of the region the overlap is more then 80%. This means, that using
a computationally more efficient solving method leads to comparable sensitivity regions. What is also
noticeable, and probably causes the lowest percentages for smoothing more then 50%, is that the iIMS
sensitivity regions are not symmetrical in the sense that the regions expand faster to the wells where
the mismatch is the largest. For the iIMSGo(mg,;), the sensitivity regions show a more symmetric
behaviour. Probably, this is because the approximations in the multiscale solution also effect the La-
grange Multipliers that are used.

To complete this proof of concept we investigate the effect when heterogeneity is introduces. We
investigate the percentage of overlap for the 2-dimensional heterogeneous test case, where 1000 re-
alisations are used. The investigation is performed for different number of smoothing positions. The
results are found in Figure [10.13] and give similar results. For the entire ensemble the average over-
lap between the sensitivity regions is not lower then 73%. There is, however some variability amongst
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Figure 10.12: Percentage of overlap of the sensitivity regions for different numbers of smoothing positions

the ensemble if around half of the positions are smoothed in the domain. However, again, in the low
and high numbers of the smoothing positions the multiscale sensitivity region resembles the fine scale
sensitivity region quite well. What remains to be seen is that if using the multiscale sensitivity regions in-
stead of the fine scale sensitivity regions lead to similar results in the IMSGo(m,;) method. For future
research one can investigate whether the multiscale regions are accurate enough, or if the positions
that do not overlap lead to inaccurate results.
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Figure 10.13: Percentage of overlap of the sensitivity regions for different numbers of smoothing positions in the heterogeneous
case
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Conclusion and recommendations

In this chapter we will summarize the results of this thesis and we will draw conclusions based on these
results. Finally we will make some recommendations for future work.

Firstly, we investigated how to reformulate the multiscale gradient computation using the Lagrange
Multiscale method. The benefit of this method is that we have a clear formulation for the Lagrange
Multipliers, which are used in a later stage of this thesis for improving the computational efficiency of
the iterative multiscale method. We successfully implemented algorithms that not only compute the
gradient, but also save the Lagrange Multipliers for different usages.

Secondly, we have seen that by adapting our multiscale method to a residual based iterative multiscale
method we are able to align our gradient estimation to the fine scale gradient with a very high accuracy.
This result is validated for both the Adjoint and Direct iterative method. This has been observed for
different test cases of increasing complexity. Because of the nature of our data assimilation problem,
where the number of parameters is greater than the number of output functionals, we used the Adjoint
method in the test cases to show the efficiency and accuracy of the iterative MS gradient computation
strategy.

After this, we have shown that the Lagrange Multipliers used in the algorithm for gradient computation
are useful to create a sensitivity criteria for the iterative multiscale smoothing step. Results for the ho-
mogeneous test case have indicated the validity of the method . Furthermore results show decreasing
numbers of smoothing steps in the iterative loop for smaller sensitivity regions, indicating that the con-
vergence behaviour of the newly proposed method is faster then the original method. This is shown
by all test cases considered. It is also observed that the method seems to be prone to the quality of
the corrections made at the MS stage, and hence the pressure solution may not be as accurate as the
original iterative method. A strategy to solve this problem is to use a more refined coarse grid, however
results show that this still may not necessarily lead to good enough results for the more challenging
test cases when compared to the fine scale solution. We conclude that the method therefore leads to
promising results, but that more investigation is required to prove it’s full potential. Next to this, we have
shown that even though the gradient estimation using this method shows much variability, the results
are promising for estimating gradients as well. However, more investigation regarding the gradient
computation using the newly introduced strategy is still necessary. Finally, we have shown in a proof
of concept that the multiscale sensitivity region resemble the fine scale sensitivity region.

For future work many next steps could be taken. Firstly, further investigation should be performed
to find out how the solution of the iIMSGo(mg,,;) method behaves, and how we could increase the
accuracy of the solution using the iterative multiscale goal method. We note that the solution errors
are associated with the degrees of freedom associated with the regions that have less impact on the
objective function. For problems with a smaller sensitivity region, this number is higher and hence,
less accurate solutions could be accepted as they do not impact our goal. Thus we pose the question
if we can indeed afford to accept less accurate solutions in the non sensitive areas, and how we can
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increase the accuracy in the sensitive areas. This investigation could take several directions. One of
the solutions we would suggest to investigate in, is to use the Lagrange Multipliers, or the sensitivity
region, to define a non-uniform coarsening ratio for the MS-stage as we have seen that corrections
made at the multiscale solving stage, are important to the overall accuracy of the solution. This in-
vestigation could be beneficial, since decreasing the coarsening ratio over the full domain is not only
costly, it is also not necessary if you consider the sensitivity regions. A second solution is to decouple
the positions associated to the sensitive region completely from the rest of the positions. However, this
requires a bit more work as the original settings posed in multiscale framework need to be redefined to
fit the new decoupled system dimensions. It would, however remove the dependency of the solution
of smoothing position on the non-smoothed positions.

Next, the adaptation in the code for the computation of the iterative gradient using the newly introduced
method should be made, so that we can verify the correctness of the method for estimating gradients.
Even though we have validated the gradient computation for the outlier cases, the gradient computation
using the iIMSGo(m,4;) method needs more investigation. In iteratively solving for the pressure, we
adapt the the system matrix A to A, where the new matrix deals with the fact that for the non-smoothed
positions we accept the solution as it is. Then, when we perform the computations required in the iter-
ative Multiscale Backward Gradient Computation algorithm however, we use the non-adapted system
matrix. Obviously, since the solution is build from using the adapted system matrix, one must system-
atically use this adapted matrix in this algorithm too.

Also, the implementation for computing the multiscale sensitivity region should be finished in order to
verify the proof of concept made, leading to another decrease in computational effort.

Even though the goal method is promising, the question remains; what goal tolerance should we use,
so that we find the required accuracy, without doing too much work? In order to answer this question,
one must know beforehand how accurate you want the solution or gradient to be. Therefore, one must
find a a-priori formulation for the accuracy of the gradient. If we know this, we can adapt our system
parameters in a way that allows us to control the optimization process fully.

When one is happy with the convergence control of the gradient estimation, model extensions can be
considered. Currently, we are considering incompressible flow leading to a time independent problem.
Firstly, we would suggest to re-derive the iterative multiscale gradient estimation method for compress-
ible flow, as the time dependecy could change the system behaviour. This would also lead to sensitivity
regions in the goal method that are time dependent and it would be interesting to see this effect. One
could also consider extending the model to multi-phase flow.
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