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Abstract

Abundance estimation with the use of environmen-
tal samples has been used during the SARS-CoV-
2 pandemic to identify the abundances of different
lineages. AmpliDiff [14], an algorithm that tries
to find parts of DNA that can differentiate between
different input genomes was used on a SARS-CoV-
2 dataset to find these amplicons. The AmpliD-
iff algorithm was able to run on the SARS-CoV-2
set but seemed infeasible for datasets that contain
larger or more complex genomes because of the
computational requirements and runtime. We intro-
duce a new pre-processing strategy based on select-
ing the most differentiable coding regions and show
the modifications done to AmpliDiff to make Am-
pliDiff work following this new method. Based on
the results we conclude that the approach is promis-
ing but still requires more research to be used opti-
mally.

1 Introduction

Using environmental samples to estimate abundances of dif-
ferent strains, variants or species can be useful. This was
especially true during the SARS-CoV-2 pandemic, where
wastewater samples were used to identify abundances of dif-
ferent variants [7]. Genome sequencing, a technique to deter-
mine the content of DNA, is often used in abundance estima-
tion to identify the strain, variant, or species of a genome from
a sample. Whole Genome Sequencing and Target Sequencing
are two ways you can do genome sequencing. One amplifies
the whole genome and later on sequences the genome, and the
other only amplifies a specific target sequence and sequences
this target sequence.

Before sequencing is possible, the whole genome or part of
a sequence needs to be amplified. This is done with a tech-
nique called Polymerase Chain Reaction (PCR). For PCR to
be able to amplify a sequence, a primer is required. Primers
are small parts of DNA that can bind to a single DNA strand
and serve as a starting point for replication in PCR. Tools that
are used to find primers are mostly focused on finding primers
for a region that is already specified by the user [13]. Amp-
1iDiff [14] is an algorithm that combines finding amplicons
with the finding of corresponding primers where amplicons
are defined as parts of DNA that will be replicated by PCR.
The amplicons are the parts of DNA that are getting ampli-
fied by PCR, while the primers are the parts that are used as
starting points for the PCR.

In the AmpliDiff [14] paper, the authors stated that one part
of the algorithm that can be improved is the pre-processing
phase, where all input genomes need to be pre-processed us-
ing Multiple Sequence Alignment (MSA). MSA is a tech-
nique that is used to align multiple input genomes with each
other. In AmpliDiff, genomes with different lengths and DNA
are used as input, which does not make it directly clear which
parts of DNA correspond with each other. The alignment is
essential for AmpliDiff to be able to compare all the input
genomes and discover discriminatory amplicons. However,

MAFFT [8], the multiple sequence alignment algorithm used
in AmpliDiff, is a bottleneck and becomes infeasible for very
large genomes such as E.coli [15]. Not only does the pre-
processing become infeasible, but the AmpliDiff algorithm
itself can also not deal with very large or complex genomes.
Since the algorithm needs to go over all reference genomes in
each phase, it does not scale well.

Here, we introduce a modification of AmpliDiff that allows
the algorithm to scale better to larger and more complex
genomes. We look at improving the runtime of the AmpliDiff
algorithm while at the same time minimizing the loss of po-
tential primers and discriminatory amplicons. We introduce a
new pre-processing strategy for AmpliDiff that fragments the
input genomes based on the coding regions and uses a ranking
algorithm to select the most differentiating coding regions to
use as input for AmpliDiff. Based on three different datasets,
all containing different-sized genomes, we show that Amp-
liDiff becomes feasible to run and has a lower runtime. The
amplicons are benchmarked by using simulated reads and the
VLQ pipeline [3] to perform abundance estimation. By com-
paring the effectiveness of the amplicons found by using only
the most differentiating regions to whole genome sequencing
(WGS), we conclude that this new method is promising but
still requires more research to be used optimally.

2 Methodology

2.1 Background literature

MSA

The AmpliDiff algorithm uses MAFFT [8] to align multiple
sequences with each other. MAFFT is an algorithm that is
widely used and does give decent performance in general but
does not work very well for very large genomes. This has
been shown in a paper where an algorithm called SaAlign
[15] was introduced. SaAlign is a tool that shows a substantial
performance increase compared to MAFFT and does seem to
be able to align 100 large Mitochondrion genomes in 20.2h,
while the MAFFT algorithm was infeasible to run. Another
multiple sequence alignment algorithm that was introduced
in 2021 was FMAlign [9], which also showed major improve-
ments compared to MAFFT. FMAlign was able to align 4 E.
coli sequences in 23 minutes and 53 seconds. However, this
does not show that this is also the case for larger datasets.
So, even though many efforts have been made, there is no
guarantee that MSA remains feasible for very large datasets.
Showing the need to look at other ways.

FMAlign [9] works by using vertical division to divide se-
quences. The different subsequences are then aligned with
MAFFT and, in the end, concatenated back together to create
an entire alignment. The new method proposed in this pa-
per also uses vertical division but in another way. Namely,
fragmenting input genomes by their coding regions. While
FMAlign first needs to find how to divide sequences, the new
method can use existing annotations to fragment the input
genomes, reducing runtime. Vertical division also allows par-
allelization of the alignments, as already shown in FMAlign.
This is also applied in the proposed pre-processing algorithm.



Ranking

For AmpliDiff to find an amplicon in a DNA region, there
needs to be sufficient difference between lineages in that re-
gion. However, in reality, not all regions of a genome contain
the same amount of difference, some may even contain the
same DNA for all sequences depending on the dataset. For
example, a study done on SARS-CoV-2 mutations based on
10287271 sequence samples [ 1] showed that there are regions
in the genome where no mutation occurred in more than 90
percent of the regions. These regions include but are not lim-
ited to nsp11, nsp7 and nsp10.

For E.coli specifically, it has also been shown that core
genes evolve rapidly in a long-term evolution experiment
[10]. They showed that the most evolving genes tended to
be core genes. This could be a great sign that by using only
core genes that existed in all 60 strains used in the study,
there is enough difference to differentiate between all differ-
ent strains.

Based on these observations and findings, a ranking algorithm
is proposed that will rank all coding regions based on the
amount of difference there is between the sequences. This
distance metric is calculated using the Mash algorithm [11].
Only the selected coding regions need to be aligned, reducing
the input size of MAFFT [8] quite substantially depending on
the number of coding regions used.

AmpliDiff

The AmpliDiff algorithm consists of 3 phases: creating a set
of candidate primers, finding amplicons, and selecting ampli-
cons with a greedy algorithm while checking for the existence
of corresponding primers. As shown in the paper of AmpliD-
iff the run of 2749 input sequences all around 30000 base
pairs on a High-Performance Computing (HPC) cluster with
200GB RAM and 12 CPU cores takes 7 hours and 56 min-
utes. Based on the fact that the algorithm needs to go over
all reference genomes in each phase we can conclude that the
algorithm will not scale well to genomes that are 1000 times
larger than SARS-CoV-2 genomes.

2.2 The pre-processing algorithm

The pre-processing strategy requires all input genomes to
have annotations of the coding regions or genes, if they can-
not be downloaded directly from a database like NCBI [12]
one has to annotate the sequences first to be able to run the
pre-processing algorithm. However, this is not taken into ac-
count in this research.

First, the input genomes are fragmented using the location of
the coding regions, having each fragment consisting of one
coding region, resulting in other non-coding DNA being re-
moved (Fig. la). Second, the Mash algorithm [11] is run
on every coding region in parallel, and the most differentiat-
ing coding regions are selected to process further (Fig. 1b).
Selecting the most differentiating coding regions was done
by using the distance metric that was calculated based on the
result from Mash [11]. Mash returns the distance between ev-
ery pair of sequences. The distance metric was calculated by
adding all distances to each other and dividing it by the num-
ber of sequences that were included in the specific coding
region. The number of coding regions is an input parameter
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Figure 1: The pre-processing algorithm. Selecting the two most
differentiating coding regions.

for AmpliDiff. Third, MAFFT [8] is run on every selected
coding region separately in parallel (Fig. 1c). MAFFT makes
sure that in every coding region all sequences are aligned with
each other. Fourth, the multiple sequence aligned coding re-
gions are put back together (Fig. 1d). Between every coding
region, a specific character is placed, in this case, an ’8”, that
would let AmpliDiff know that at that place, a split exists.
For the E. coli and MonkeyPox dataset an extra step was
added to the pre-processing algorithm to deal with missing
annotations and duplicate coding regions or genes. The step
is added before step 1 as shown in Figure la. The method
works as follows. A list is made of regions that adhere to the
following requirements. First, the region should never occur
more than once in a sequence. Second, the region should be
annotated in all the input sequences. After, this list is used
as input for step 1 (Fig. 1a) to make sure that it only selects
regions from that list.

2.3 Modifications of AmpliDiff

Two main modifications were made to the AmpliDiff al-
gorithm to make it able to handle the fragmented input.
First, AmpliDiff is not allowed to select primers or ampli-
cons that are on overlapping regions between two coding re-
gions. Since AmpliDiff does not know about the information
in between coding regions, this could result in amplicons or
primers that do not correspond to the real sequence. Sec-
ond, AmpliDiff is only allowed to select primers in the same



coding region as the amplicon. This prevents the distance be-
tween the primer and amplicon from getting so large that the
amplicon will not be amplified correctly by PCR.

To accommodate these changes, the primer feasibility check
in AmpliDiff is changed to also check if the primer does not
contain any special character. If this is the case, the primer
will be deleted from the primer index. This is the first step
of the AmpliDiff algorithm after pre-processing. To ensure
that primers are in the same coding region as the amplicons,
the algorithm ensures that the amplicon and the search width
around the amplicon do not contain any special characters.
The search width is the range that the AmpliDiff algorithm
uses to find primers and is important to ensure that the primers
and amplicons are not too far away from each other. Other-
wise, they will not be amplified by PCR.

3 Experimental Setup and Results

3.1 Experimental setup

To be able to answer the research questions this project con-
sists of three experiments using three different datasets. All
experiments were run on a High-Performance Computing
(HPC) cluster with 185GB RAM and 12 CPU cores. The
first set consisted of 480 Sars-CoV-2 genomes, the second set
consisted of 359 E. coli genomes, and the last set out of 485
MonkeyPox genomes.

AmpliDiff

All AmpliDiff runs were done with the following input pa-
rameters: the amplicon width is set to 400bp, the number of
cores used in multi-processing is set to 12, and the number of
amplicons that AmpliDiff should generate is set to 10. The
other input parameters are equal to the default values. The
AmpliDiff algorithm is not added in the comparison for the
E. coli dataset since the required pre-processing was not able
to finish within the 24-hour time limit of the HPC cluster.

Abundance estimation

All outputs are benchmarked by using simulated reads done
by ART [6], which are used in the VLQ pipeline [3] to es-
timate abundances. The VLQ pipeline uses Kallisto [4] to
pseudoalign the reads to the different lineages or strains from
the reference set. Two datasets were made for the benchmark.
A simulation set and a reference set. The simulation set con-
tained genomes that were used to simulate reads. While the
reference set contained genomes that were used in the VLQ
pipeline. Kallisto pseudoaligns the reads to the reference set.
Subsequently, the VLQ pipeline can use that output to esti-
mate abundances. The reference set was used as input for
AmpliDiff, while the simulation set was only used to simu-
late reads from. Therefore, the simulation set did not have
any overlap with the reference set, no sequences appeared in
both, but both sets contained the same lineages.

Mean absolute prediction errors (MAPE) were calculated
with the same formula that was used in the AmpliDiff paper
[14]. The absolute difference between the real abundances
and estimated abundances is summed and divided by the total
amount of lineages that occurred in the simulation set. The
reference set being the set that was used to run AmpliDiff

with. The MAPE are used to compare the quality of the am-
plicons found by AmpliDiff, the modification of AmpliDiff
and whole genome sequencing.

The abundance estimation setup is kept the same as the one
described in the simulation study section of the AmpliDiff
[14] paper. However, the read simulation are only done once
for each setting in contrast to the 20 times in the AmpliD-
iff paper. The specific random seeds and parameters can be
found in the Appendix. For every dataset and simulationset
the list of accession numbers can be found in the Appendix.

Cumulative differentiability

For every dataset, the differentiability of the found amplicons
is assessed by showing the cumulative differentiability of the
amplicons. The cumulative differentiability is calculated by
getting the number of sequence pairs the specific amplicon
can differentiate between, and dividing this by the total num-
ber of sequence pairs that need to be differentiated. A se-
quence pair is only counted when the lineage or strain is dif-
ferent.

SARS-CoV-2

To test the new pre-processing strategy and ranking system,
500 Sars-CoV-2 complete annotated genomes were selected
by first downloading a set of accession numbers of all com-
plete sequences using the NCBI [12] web interface. The ran-
dom sampling was excluded, and the filter named proteins
was set to include the following set "ORF1ab polyprotein”,
”ORF®6 protein”, "ORF1a polyprotein” and ”ORF7a protein”.
This resulted in 338754 sequences. This CSV file with acces-
sion numbers is used to download the sequences and coding
regions from NCBI. The 500 genomes dataset was created
using proportionate stratified sampling. Only sequences that
contained all annotations were selected.

Instead of using the overlapping ORF1ab, we used the more
specific annotations of the non-structural proteins. Sequences
that contained the truncated ORF8 protein were filtered out
to avoid missing data, which could potentially influence the
distances in the ranking algorithm. Two sequences contain-
ing an annotation named “orflab polyprotein” were also re-
moved from the dataset because no other sequences had this
annotation. Since ORFlab overlapped with ORFla, ORFla
was not taken into account. This also resulted in NSP11 not
being used as a coding region in the algorithm, all to prevent
overlapping parts. In the end, this resulted in a dataset of 480
genomes.

The simulation set was created by deleting all accessions
from the original CSV file containing 338754 sequences and
removing all lineages that did not exist in the reference set.
By using proportionate stratified sampling, we obtain a simu-
lation set of 601 sequences.

E. coli

The E. coli dataset contains 500 genomes from NCBI [12],
created using proportionate stratified sampling. Further pro-
cessing selected only genomes that contained 3500 gene
annotations or more, resulting in 359 genomes. This set
contained 358 strains, one to two different sequences per
strain. Since E. coli contains a lot of duplicate genes, in



the pre-processing, only the genes that all sequences con-
tained and had no duplicates were selected before the new
pre-processing strategy even began, see section 2.2. In this
case, gene annotations were used because they were using
the same naming scheme in all selected sequences. The sim-
ulation set was constructed in the same way as the one for
SARS-CoV-2. The set contained 387 genomes.

MonkeyPox

The procedure for creating the MonkeyPox dataset differed
from the other two datasets since the new proposed classifi-
cation system [5] for MonkeyPox had not been used yet in
the NCBI [12] dataset. All complete and annotated genomes
were downloaded from NCBI first. The set of 1775 genomes
were assigned a clade using a tool called Nextclade [2].
Nextclade checks which mutations occur in the sequence
based on a reference sequence. With these mutations, it
searches for the closest clade, and that one gets assigned to
the sequence. After, the set was obtained by using propor-
tionate stratified sampling. Sequences with more than 177
coding regions were deleted to maximize the set of coding
regions that were in all sequences. This resulted in a set of
485 sequences and contained 24 clades out of 30 clades that
exist. The simulation set was constructed the same way as
the ones for SARS-CoV-2 and E. coli and consisted of 618
sequences and the same 24 lineages.

3.2 Results

SARS-CoV-2

In Figure 2, one sees the cumulative differentiability of every
amplicon. It can be seen that the cumulative differentiabil-
ity of every amplicon is almost equal in all experiments. The
AmpliDiff amplicons seem to be slightly more differentiable
compared to the other experiments. The 15 most differentiat-
ing regions experiment seems slightly better in terms of dif-
ferentiability than the 5 and 10 most differentiating regions.
In Figure 3, the mean absolute prediction error is displayed
that was obtained after the abundance estimation. It can be
seen that only using 5, 10 or 15 regions is not enough to match
the quality of the amplicons found by AmpliDiff. However,
the mean absolute prediction error when only using 5 or 10
regions is close to the error of AmpliDiff. One striking obser-
vation is that the mean absolute prediction error increased in
the 15 most differentiating regions compared to using only 5
or 10.

Also, looking at the abundance estimation in Figure 3, the
top-10 and top-15 perform worse than AmpliDiff, and the
top-5 is slightly better. All of them perform immensely worse
than whole genome sequencing.

In Table 2, you can see the runtime of AmpliDiff and the
modified AmpliDiff on the 5, 10, and 15 most differentiating
coding regions. Most of the time was spent on the greedy al-
gorithm. Interestingly, the pre-processing phase takes more
time when only a number of regions are selected.

E.coli

In Figure 4, one sees the cumulative differentiability of the
10 amplicons for the 5, 10, and 15 most differentiable genes.
One sees that after adding the second amplicon, the differen-
tiability does not change much anymore. An observation is
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Figure 2: Cumulative relative differentiability of 10 amplicons
found by using the 5, 10 and 15 most differentiating coding re-
gions as well as AmpliDiff. Amplicons generated with SARS-CoV-
2 dataset containing 480 genome sequences.

Coding region name Difference
ORF7b 1.84
surface glycoprotein 1.06
nucleocapsid phosphoprotein | 0.95
ORF3a 0.81
membrane glycoprotein 0.80
ORF6 0.77
nsp6 0.65
ORF7a 0.64
ORF8 0.63
envelope protein 0.57
nsp4 0.50
nsp9 0.39
3C-like proteinase 0.33
leader protein 0.31
3’-to-5’ exonuclease 0.29
endoRNAse 0.29

Table 1: Most differentiating coding regions in the SARS-CoV-2
dataset. Sorted from most to least differentiating. Rounded to two
decimals.

Task AmpliDiff [Top-5 |[Top-10 |Top-15

pre-processing 111 263 309 319
Constructing primer database 1803 87 108 160
Determining feasible amplicons 27 6 6 11
Amplicon differentiability 33 7 8 13
Greedy algorithm 20009| 24871 20251 26195
Total in seconds 21984 25233 20683 26697
Total in hours 6,11 7,01 5,75 7,42

Table 2: Runtime comparison using the SARS-CoV-2 dataset. Com-
paring 5, 10, and 15 of the most differentiating regions to AmpliDiff.
All numbers displayed are in seconds, rounded to whole seconds, ex-
cept for the last row that shows hours, rounded to two decimals.
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Figure 3: The mean absolute prediction error for abundance estima-
tion of the SARS-CoV-2 dataset. Comparing the 5, 10 and 15 most
differentiating coding regions to whole genome sequencing and Am-
pliDiff. The vertical axis is logarithmically scaled.

Differentiability of amplicons E. coli

1
1 2 3 4 5 6 7 8

Amplicon number

(=}
oo

(=}
=3}

o
s

o
T

Cumulative differentiability

mTop> mTop 10 Top 15

Figure 4: Cumulative differentiability of 10 amplicons found by us-
ing the 5, 10 or 15 most differentiable genes. Amplicons generated
with the E.coli dataset containing 359 genome sequences.
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Figure 5: The mean absolute prediction error for abundance estima-
tion in the E. coli dataset. Comparing the 5,10, and 15 most differ-
entiating genes to whole genome sequencing. The vertical axis is
logarithmically scaled and starts at 0,01 instead of 0,10 shown in the
other MAPE figures.

Task Top-5 Top-10 Top-15

pre-processing 1361 2408 2435
Constructing primer database 25 99 266
Determining feasible amplicons 3 6 8
Amplicon differentiability 3 4 6
Greedy algorithm 601 481 404
Total in seconds 1993 2998 3118
Total in hours 0,55 0,83 0,87

Table 3: Runtime comparison using the E. coli dataset. Comparing
the runtimes of the 5, 10, and 15 most differentiating regions. All
numbers displayed are in seconds, rounded to whole seconds, except
for the last row that shows hours, rounded to two decimals.
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Figure 6: The mean absolute prediction error for abundance estima-
tion in the MonkeyPox dataset. Comparing the 5, 10, and 15 most
differentiable coding regions to whole genome sequencing and Am-
pliDiff. The vertical axis is logarithmically scaled.

that all amplicons that were found by using more genes were
always equally or more differentiable. The differentiability is
very close to each other for every number of genes. Only by
adding amplicon 2 can a clear difference in differentiability
between the 5 most differentiating genes and the 10 and 15
most differentiating genes be noticed. It also shows that there
is not much difference between the differentiability when us-
ing 5, 10, or 15 genes. This is a good sign since this gives
some evidence that not only the ranking algorithm selected
the most differentiable genes, the most differentiable genes
also allowed differentiating amplicons to be found that can
be amplified.

In Table 3, different runs of the modified AmpliDiff algo-
rithm on 5, 10 and 15 of the most differentiating genes are
compared with each other. Adding more genes in the input,
results in a higher runtime as expected. Figure 5 show the
MAPE for the E. coli dataset. Here, not much difference can
be seen between the 5, 10, and 15 regions. However, the
same striking observation as for the SARS-CoV-2 dataset can
be done relating to the increase in error when instead of 10
regions, 15 regions were considered.

MonkeyPox

In Table 4, the runtime comparison using the MonkeyPox
dataset can be seen. As expected, all runs that focused on spe-
cific regions were significantly faster than AmpliDiff when
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Figure 7: Cumulative relative differentiability of 10 amplicons
found by using the 5,10 and 15 most differentiating coding re-
gions as well as AmpliDiff. Amplicons generated with MonkeyPox
dataset containing 485 genome sequences.

Task AmpliDiff Top-5 Top-10 Top-15

pre-processing 25714 360 231 362
Constructing primer database 18372 17 26 39
Determining feasible amplicons 246 2 4 7
Amplicon differentiability 102 1 2 3
Greedy algorithm 2820 1211 2077 3091
Total in seconds 47254 1591 2340 3503
Total in hours 13,13 0,44 0,65 0,97

Table 4: Runtime comparison using the MonkeyPox dataset. Com-
paring 5,10, and 15 of the most differentiating regions to AmpliDiff.
All numbers displayed are in seconds, rounded to whole seconds,
except for the last row that shows hours, rounded to two decimals.

we include the pre-processing. However, looking specifically
at the greedy algorithm task, the run shows that including the
15 regions, is slower than AmpliDiff itself. In Figure 6, the
MAPE is shown in the same way as the previous datasets. In
this figure, it is very clear that only using five regions is not
enough to find good amplicons. Only using 10 or 15 regions
seems to have a lower MAPE than WGS. However, AmpliD-
iff still shows the lowest MAPE.

Not all AmpliDiff runs were able to find 10 amplicons. When
using 10 regions, the algorithm could only find four. When
using 15 regions, the algorithm could only find six. This can
also be seen in Figure 7. As expected, more regions result in
amplicons that are more differentiable. However, it is impor-
tant to note that the differentiability is very low in all exper-
iments. Certainly, when compared to the differentiability of
the amplicons found by AmpliDiff. Another interesting ob-
servation is that even though the amplicons found when using
only the 10 and 15 most differentiating regions were substan-
tially worse in terms of differentiability, they still showed a
lower MAPE than WGS.

4 Responsible Research

The following steps were taken to ensure reproducibility. All
the source code used during this project is publicly available
on GitHub. The GitHub repository URL can be found in the
Appendix. The code is written in Python, and all libraries
used are defined in the repository. All the libraries that are

used are widely available. Also, in section 3.1, the experi-
mental setup is explained in great detail to allow anyone to
reproduce the results. In addition, all the data that was used
during this research is from a public database called NCBI
[12] that anyone can access. All the specific sequences used
are defined in the Appendix. Furthermore, during simulat-
ing reads with ART [6], the generations of the reads were
done with specific random seeds to allow anyone to create
the same reads. The random seeds are specified in the Ap-
pendix. An important aspect to take into account is that re-
producing this work without the use of a High-Performance
Cluster is more difficult because of the high computational re-
quirements. However, since the datasets are relatively small,
fast desktop computers might be able to run the algorithms
within a reasonable time frame.

5 Discussion

5.1 Differentiability of coding regions

In Table 1, one can see which coding regions were most dif-
ferentiating based on outputs from the Mash algorithm [11].
A study published in 2023 showed comparable results [1].
This study observed the highest frequency of mutations in
’membrane glycoprotein’, ’envelope protein’, and ’nucleo-
capsid phosphoprotein’. On the contrary, our results did not
contain the coding regions in the same order but still showed
that these coding regions belonged to the most differentiable.
The study also observed no mutations in 90 percent of nsp7,
nsp8, nsp9, nspl0, nspll, and nspl6. However, in our re-
sults, nsp9 belongs to the 15 most differentiating coding re-
gions. This can potentially be explained by the size of our
dataset, which is very small compared to the one they used in
the study [1]. Additionally, the distance metric considers the
difference between sequences from the same strain or lineage.
This results in counting differences between sequences that
do not have to be differentiated. Even though there should
only be a small difference between sequences from the same
strain or lineage, it could be part of why the order in terms of
differentiability is different compared to the previously men-
tioned study [1].

As mentioned in chapter 3.2, when only using 10 or 15 re-
gions with the MonkeyPox dataset, the algorithm could not
find 10 amplicons. It could be that the 15 most differentiat-
ing regions do not contain enough variability to create highly
differentiable amplicons. Or that the variability could make
finding primers for the amplicons infeasible.

5.2 Runtime

In the SARS-CoV-2 dataset, the new method does not gener-
ate better runtime results than AmpliDiff, except for the run
with the 10 most differentiating regions where the results of
the new method were better. The results could be explained
by the variability of the used computing resource, since only
single runs were done and no averages were taken.

In the runtime comparison for the SARS-CoV-2 dataset,
the new pre-processing phase takes longer than the pre-
processing from AmpliDiff. This can potentially be explained
by the need to calculate all the distances between every pair
of sequences for every coding region when only some regions



are selected. Since the SARS-CoV-2 genome is relatively
small, it shows that the extra calculations do not outweigh
the normal pre-processing.

The runtime comparison for the SARS-CoV-2 and Monkey-
Pox datasets shows that the greedy algorithm takes longer
when only a selected number of regions is considered instead
of the whole sequences in AmpliDiff. This can potentially be
explained by the extra constraints introduced in the AmpliD-
iff algorithm.

Overall, for larger genomes such as MonkeyPox and E. coli,
the pre-processing strategy is quite effective. This is espe-
cially seen in the runtimes of the experiments done on Mon-
keyPox. Using the 15 most differentiating regions has a ten
times reduction in runtime compared to AmpliDiff.

5.3 MAPE

The amplicons found in the E. coli dataset showed a sig-
nificantly higher MAPE than WGS. The difference between
the original sequence length and the actual sequence length
when only selecting the most differentiating coding regions
was tremendously more significant than the differences in the
other two datasets. Increasing the number of coding regions
used for E. coli could potentially fix this problem.

The MAPE showed an increase in all datasets when compar-
ing the use of 15 to the use of 10 regions. Additionally, this in-
crease was even more prominent in the SARS-CoV-2 dataset.
A potential reason for this could be the following. In Am-
pliDiff, primers that do occur multiple times in a single se-
quence are removed from the feasible primer set because they
could create unwanted byproducts. However, since the same
checks are done when only some coding regions are used, this
can cause problems. Since AmpliDiff does not know about
the missing DNA, it cannot check if primers occur multiple
times in a single sequence. It could be that the extra five re-
gions added for the top-15 run contained primer sequences
used in the top-10 run. Which could mean that primers oc-
curred more than once in a single sequence. This could have
forced AmpliDiff to delete these primers to prevent unwanted
amplifications.

5.4 Missing sequence in AmpliDiff

The version of AmpliDiff used in this research did contain a
bug that deleted one sequence from the input when the num-
ber of input sequences was not explicitly defined. This will
probably have a low impact on the results since it was only
one and the same sequence that was left out. The only com-
parison made in this research that could have been influenced
was the comparison in MAPE. The difference between the
error obtained when using amplicons instead of WGS could
potentially be lower since the algorithm could also have ac-
counted for the last sequence to find the most differentiable
amplicons. The left-out sequences are mentioned for every
set and can be found in the Appendix.

6 Future Work and Conclusion

6.1 Future Work

There are still a lot of parts of the algorithm that can be im-
proved or require more research. One of them is about the

constraint that forces primers to be in the same region as the
corresponding amplicon. In the currently proposed modifi-
cation, all primers will be filtered out when there is a split
between an amplicon and the area around the amplicon that
is searched for primers, called the search width. This pre-
vents primers from being in different coding regions than the
amplicons are from. Since the search width during this ex-
periment was 50bp and the primer size 25bp, there could be
feasible primers in this region. How many primers we lose
in practice by doing this could be researched. As well as the
trade-off between the potential increase of the runtime and
having more feasible primers.

Another part is about unwanted amplifications. Currently,
there is no check for checking if a primer exists somewhere
else in the genome outside of the regions used. In the original
AmpliDiff algorithm, the whole genome could be checked
since the input consisted of the whole genome sequences.
However, it could not be used as effectively in the modified
version since the AmpliDiff input was reduced to a certain
number of input coding regions. The information of the other
DNA was missing, which made checking if a primer already
existed somewhere infeasible. This could, however, be solved
by checking the whole sequence that the primer occurred in
for duplicate primers when a primer is found in the algorithm.
Last, some other things that should be considered when us-
ing the ranking selection method are the following. First, it
is difficult to tell how many coding regions one will need to
be able to differentiate between all input sequences without
experimenting. Second, this method does not consider that
one needs more conserved areas to be able to design primers.
Since we only select the most differentiating coding regions,
it could be the case that less differentiating coding regions
are needed to be able to also find corresponding primers. One
way to resolve this problem would be to make the ranking
selection iterative. AmpliDiff will start with a low number of
selected coding regions and try to find amplicons and primers,
adding coding regions iteratively until the amplicons’ defined
differentiability is met.

6.2 Conclusion

In this research, we looked at improving the runtime of Amp-
liDiff while minimizing the loss of potential primers and dis-
criminatory amplicons. We showed that only using the ten
most differentiating regions in MonkeyPox had better results
than whole genome sequencing. However, this could not be
shown for E. coli, which could have required the use of more
differentiating regions because of the size of the genome. Ap-
plying the new method to the SARS-CoV-2 dataset showed
comparable mean absolute prediction errors when compared
to AmpliDiff, except for using 15 regions, which can poten-
tially be explained by primers occurring more than once in a
single sequence. The new method reduced the runtime sub-
stantially for larger genomes but not for the smaller genome
of SARS-CoV-2. We conclude that the new method looks
promising but will require more research to be applied cor-
rectly.
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A

Appendix

The code for the modification of AmpliDiff as well as
the data used in this research can be found on GitHub
(https://github.com/SamuelKarskens/AmpliDiff). The spe-
cific random seeds and parameters that were used for the
abundance estimation can also be found on GitHub.
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