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1.1  BACKGROUND  
Shell structures have been around for ages. The dome of the Pantheon for instance, built around the 

year 120, is one of the oldest examples of a shell structure. It is only in the recent history however 

that shell structures would take a more complex form. The shells by Heinz Isler for instance, or the 

shells by Candela are freeform shells from the 20
th

 and 21
st

 century (Figure 1 (b) and Figure 2). 

  

Figure 1 (a) Interior of the Pantheon, Rome, painted by Panini (1734).(b) L’Oceanogràfic designed by 

Felix Candela, 2003 (Gabaldón, 2010) 

 

Figure 2 Heinz Isler, 1968, Laboratory and research facility for the Gips union (Töffpix, 2011) 

Shell structures are usually calculated using the Finite Element Method (FEM). In this method, a 

structure is split up in small parts and the forces working on each part are calculated, including the 

forces working in between parts. Using this method, all the forces in the structure can be 

determined. 

Using FEM for shell structures has two main disadvantages. The most important disadvantage is that 

it does not give any insight in the mechanics of shell structures in general. The calculations give 

numerical results, which can tell us something about a specific shell structure, and whether or not 

the structure will fail, but does not show the connection between the geometry and the structural 
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performance, making it a kind of black-box method. Because of the lack of knowledge on this 

connection, designing a shell structure can only be done intuitively, by trial and error, which makes 

designing shells a difficult task. 

The second problem is the efficiency of this method. These calculations can only be done for a 

finished structural design. If the design turns out not to be strong enough or is suspected to be 

inefficient in material use, a new design has to be made, which can then be checked, after which the 

cycle may need to be repeated. This can make the design process very time-consuming for more 

complicated designs, like the Candela shell for instance. Because a finished design is needed in order 

to get the calculation results, the feedback on the structural performance is slow which can result in 

an inefficient design process.  

These problems can be solved when a new direct graphical method is found to calculate shells. To 

illustrate why this can help, the calculation of a simple truss structure can be taken as an example, 

for instance the one in Figure 3. The truss can be calculated by FEM (upper figure). To calculate the 

structure this way, everything about the structure has to be known, the type of material the material 

properties and the geometry of the material, so it should be a finished design. Also a mesh to 

subdivide the structure needs to be made. The calculations will output numbers on where the 

normal forces will be the biggest, which bars are in compression and which are in tension etcetera. 

However it does not show why some bars are in tension and others in compression or why some 

normal forces are bigger than others. 

When this truss is calculated using graphic statics (the lower figure), the normal forces can be 

calculated without knowing the material properties and the thickness of the structure. Using this 

method, it will also give more insight on why some bars are in tension and others are in compression.

 

Figure 3 A simple truss calculated through the Finite Element Method (upper figure) and through 

graphic statics (lower figure) 
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Both the calculation methods have their strengths and their weaknesses. The FEM is a method which 

is very useful when a design is finished and a structural engineer wants to make sure that the 

structure is strong enough. The graphic statics method however is more useful at the beginning of 

the design process, being able to give insight in the way the truss works and why it works that way, 

without knowing the exact material properties yet. 

When for shells a similar method is found, using graphic statics, it is expected to show the link 

between the structure and its performance in a similar way. 

1.2  CURRENT STATE OF RESEARCH  
Some research is done already on this subject by several graduating students at the TU Delft, 

focusing on a way to calculate shell structures using graphic statics. The general aim of this research 

is to (i) find a graphical method to calculate these shells and to (ii) model these methods in a 

computational program linked to a 3D visualization, which results in a tool that can be used early in 

the design process and gives direct feedback on the structural performance of a shell. Some results 

of this research are discussed in chapter 2. 

Part of this research focuses on a simple graphical method of calculating arches, with the idea that 

once a simple and accurate method is found for arches, this can be translated into a method for 

calculating shells. This is not a simple translation since a shell has some properties that an arch does 

not have (the ability to carry hoop forces for instance). However, since an arch is the two-

dimensional equivalent of a shell, it is likely that structural concepts occurring in arches can be 

translated to shells. 

A method to calculate arches in a graphical way is already found in the minimum complementary 

energy method (section 2.4). This is an iterative method which uses the thrust line to find the 

stresses in an arch. However, this method is not a solution for aforementioned problem because it 

does not give the possibility to calculate arches or shells in a direct way and does not provide a direct 

link between the structure and its structural performance. 

The most recent research by van Dijk (2014) proposes a new method to calculate arches (the equal 

area method) which is further explained in section 2.5. This method is not proven yet, but the results 

of the calculations using this method look promising. 

1.3  PROBLEM STATEMENT  
Calculating a shell using the Finite Element Method does not give insight in the relation between the 

geometry and the structural performance. An input can generate an output, but why shells transport 

forces the way they do isn’t explained through this method. 

Another problem with the current method of calculating a shell is that it results in a time-consuming 

design process because it only can be done on a finished structural design. 

This problem is already partially solved for arches, using the minimum energy method, which 

provides a graphical way to calculate arches. It is only known how to use this method in an iterative 

way. So for a structure, several thrust lines can be generated and checked whether it is the correct 

one, until the correct solution is found. It is a method which (given enough calculation power) can 
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find the solution. The problem with this method is that it is an indirect method which does not 

directly show the relation between geometry and structural performance. 

A more direct method is desired for two reasons. The most important reason is that a direct method 

will make the relation between the structure and the results more visible. It can easier be deducted 

which factors influence the calculation results the most. 

Another reason is that a direct method will cost less calculation power and can maybe even be done 

by hand, making it an easier to use method early in the design process. 

1.4  OBJECTIVE  
The aim of this research is to find a method to calculate shell structures in a graphical way, so that 

the relation between the geometry and the structural performance is preserved. 

To be able to get direct feedback on changes in geometry, a computational algorithm will be 

designed and modelled in a 3D visualization program. 

In order to solve this problem for shells, it needs to be solved for arches first. Starting point of the 

research will be the equal area method, which provides a promising hypothesis on how this works for 

arches. When this method is proven, the step to shells can be made. 

1.5  RESEARCH QUESTION  
The problem statement and objectives stated in previous paragraphs lead to the research question: 

How can the structural performance of a shell structure be calculated in such a way that the relation 

between the geometry and the structural performance is shown? 

To answer this questions, the sub questions that need to be answered are: 

• Can the method of equal areas be proven for arches? 

• Which methods can be made applicable to shell structures? 

• How can this calculation method be translated into a computational algorithm and modelled 

in a 3D visualization program? 

To get started on this subject, a literature study is done, starting with the question: 

What methods can be used to calculate shell and arch structures? 

1.6  RELEVANCE  

Scientific relevance 

Currently there is not a lot of insight in the mechanics behind shell and arch structures. This research 

aims to give more insight in these mechanics. 

Societal relevance 

This research aims to provide in a tool for designers which gives them insight in the structural 

performance of a shell structure earlier in the design process. This will lead to a less time-consuming 

design process, but also to a more direct feedback on the design changes. It will probably lead to 

more efficient structural design, in which less material can be used for a similar performance. 
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More on the relevance of the results will be discussed in section 4.2 

1.7  APPROACH AND METHODOLOGY  

Literature study 

The whole research will be done within the field of structural mechanics. For this reason, the 

literature to be studied is mainly in the field of structural mechanics. To get the research started, a 

literature study on several subjects needs to be done. Part of these subjects are studied already. The 

following subjects will be studied: 

• Force density method  

• Complementary energy method 

• Graphic statics in arches 

Method development 

From the literature study hypotheses will emerge. From these hypotheses one or several methods to 

calculate arch structures will be developed. Once a method for arches is proven to work, the step to 

shell structures can be made. 

Design computational algorithm 

The found method will be translated into a computational algorithm and modelled in a 3D 

visualization tool. To model this, the 3D program Rhino will be used, with the Grasshopper-plugin. 

This should be a tool which can be used early in the design process, to give more insight in the 

structural performance of an arch or shell. 

Validate method 

The computational algorithm will be compared to FEM calculations for several case studies. 

Differences in results from these calculations will show whether or not the method is valid. 
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CHAPTER 2 - THEORY  

Before starting the method development, a literature study was done to get insight in the current 

state of research. During method development some more subjects came up that needed to be 

studied. The results of these studies are summarized in this chapter. It mostly deals with theory 

regarding the calculation of beams and shells. First of all, a method developed by Calladine for 

calculating shells is summarized. The second and third section give an overview of methods of 

designing arches, using a chain line to construct a thrust line. It explains what a thrust line and its 

force polygon are, and how it relates to an arch and its loads. The fourth section explains a method 

to determine which thrust line is the correct one and the fifth section summarizes a graduation 

report by van Dijk (2014) which is partially the starting point for this research. The sixth and seventh 

paragraph summarize some insights and some research done alongside the development of the 

calculation method. Lopshits equation, a way to calculate the area of any polygon, is introduced and 

related to the calculation of arch structures. The final section of this chapter discusses the topics of 

research and how they relate to the calculation method to be developed. 
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2.1  CALCULATING SHELLS THROUGH THE SPLIT IN SURFACES  
To be able to calculate a shell, C.R. Calladine (1977) describes an element of a shallow shell  which is 

conceptually split into two elements, one element which can only stretch and one which can only 

bend. The stretching element is similar to for instance a bar network with hinges only, it can only 

transport normal forces. For the bending element there is no well-known equivalent, but it can be 

visualized as the beam shown in figure Figure 4(d), which shows a beam that can only transport 

bending moments.  

 

Figure 4 A representation of Calladine’s split of a surface (a) into a stretching (b) and bending (c) 

surface. (d) shows a 2-dimensional equivalent of a bending surface. (Calladine, 1977) 

Figure 4 (a)-(c) visualize this conceptual split. Surface (a) is the actual shell surface with all stress 

resultants. Figure 4(b) shows the stretching surface (S-surface), with all the stress resultants working 

in plane. The external load is represented by a pressure p. Figure 4(c)shows the bending surface (B-
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surface) with the bending and twisting stress resultants and the shear stress resultants working out 

of plane.  

These two surfaces are separated so the equilibrium equations can be written out separately. To 

relate these two surfaces together, it is stated that the sum of the pressure of each surface should 

equal the pressure in the non-split surface. So: 

p = pS + pB 

The two surfaces are also related through the equation 

gS = gB  

which means that the geometry of the S-surface should always be equal to the geometry of the B-

surface. This means that the deformations of the two surfaces should be the same, because in reality 

both are one surface.  

Pavlovic (1984) made a scheme to use this theory to solve an element of a shell (Figure 5). In this 

scheme, a value for pS is chosen and with this value, the deformation is calculated. The new 

geometry gS is set equal to gB and from gB the value for pB is calculated. If the resulting pB  and the 

chosen pS added up together are equal to p, the solution is reached. If not, the value for pS should be 

changed and the cycle repeated until the correct solution is found. So the solution for each element 

in this case can be found through trial and error.  

So the ratio between pB and pS is unknown. Once it is known how the ratio between these two is 

determined for each part of the structure, it is possible to make a relation between the geometry 

and the structural mechanics of a shell. 
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Figure 5 The flowchart by Pavlovic, used to determine the split in bending and normal forces in a shell 

structure (Pavlovic, 1984) 

2.2  ARCHES AND THRUST LINES  
A thrust line is the line in which a 2-dimensional structure (arch or beam) with a given load (own 

weight for instance) can make equilibrium using compression only. This line can be found for 

masonry arches using the analogy of the chain models as shown in Figure 6. The loads resulting from 

the own weight are discretized in a point load and projected on a chain (a). This chain line inverted in 

(a) shows the thrust line, the line along which all the masonry blocks make equilibrium through 

compression only. 

In (c) all the forces working on a masonry block are drawn. To prove that these make equilibrium, a 

force polygon can be drawn, using the head-tail method (d). In this method all the forces working on 

the block are joined together, head to tail. If the forces make a closed polygon, it means that the sum 

of the vectors is equal to 0, proving that the block is in equilibrium. Since two of the three forces on 

block 6 have their reaction forces on other blocks (5 and 7 in this case), all the closed force polygons 

of the different blocks can be joined together, resulting in the force polygon in (b). This force polygon 
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and the thrust line in (a) are each other’s reciprocal figures, which means that if one of them is 

changed, the other one will change accordingly.  

 

Figure 6 A thrust line in masonry blocks. (Block, 2006) 

This means that other correct thrust lines can be drawn for the same load, simply by moving point O 

(called the polar coordinate) for instance closer to the own weight lines. If the point moves closer, 

the thrust line will become steeper (see Figure 7). So for each load an infinite amount of thrust lines 

can be drawn.  
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Figure 7 A set of loads can give an infinite number of thrust lines by moving the polar coordinate to 

the left or right. (van den Dool, 2012) 

As long as the line lies within the masonry blocks, the blocks will make equilibrium through 

compression. Since these blocks can’t handle tension or bending moments, the line has to lie within 

the structure, otherwise the structure will fail. However, when a structure can handle bending 

moments, a structure made out of reinforced concrete for instance, the line of thrust can lie outside 

the material without the structure failing. In this case the thrust line does not represent the actual 

transport of loads through normal forces anymore, because it is a combination of normal forces and 

bending moments. 

Consider the example in Figure 8 to see what a line of thrust outside the material represents. The 

force in the thrust line in point A can be found in the reciprocal grid as FA. So the force FA can be 

drawn on the thrust line. (a) This force can be translated onto the structure by decomposing FA in 

two forces, one shear force and one normal force, and adding a bending moment equal to the 

eccentricity e times FN. (c) This can be done for the whole structure resulting in a combination of 

bending moment, shear force and normal force. In this case again, an infinite amount of thrust lines 

can be drawn. For both the thrust line in- and outside the structure, section 2.4 will explain which 

one the correct one is. 

 

Figure 8 Projecting the force in a thrust line outside the material. 
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The thrust line has its 3D equivalent for plates and shells in the thrust network or thrust surface 

(Figure 9). The thrust network also has a reciprocal figure as can be seen in Figure 10. More on this 

thrust network and how to calculate it can be found in the graduation report of Tiggeler (2009) and 

the research of Block (2007). 

 

Figure 9 The 3D equivalent of a thrust line: a thrust surface (Tiggeler, 2009) 

 

Figure 10 The reciprocal grid of the thrust surface (Block, 2009) 

2.3  UNEVEN SUPPORTS  
In the previous paragraph, only situations with supports in a horizontal line (or loads perpendicular 

to the line between the two supports) are shown. The reciprocal figure can be used for uneven 

supports as well. Consider a situation as in Figure 11, four loads and two supports (a) are drawn, one 

of them being positioned lower than the other. For the force polygon the loads are drawn and a 

random position is chosen for the polar coordinate (b). If the corresponding thrust line is drawn, 

chances are that the thrust line will not fit to the supports. (c) To find the situations for which the 

thrust line will fit, the following steps need to be taken: draw a line between the first support and the 

end of the non-fitting thrust line (the blue line in c). Draw a line parallel to this one through the first 

random chosen polar coordinate and mark the position where this line intersects the loads in the 

force polygon drawing. Draw a line through the two supports, called the closing line (the red line in 

c). Finally draw a line parallel to the closing line through the point marked in the force polygon (d). 
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Any point on this line chosen as polar coordinate will result in a thrust line which begins and ends in 

the two supports (e/f). The angle of this closing line will be used in this research and will be called θc. 

(Beranek, 1980) 

 

Figure 11 Determining and using the closing line 
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2.4  COMPLEMENTARY ENERGY METHOD  
As shown in the previous sections, each set of loads can generate an infinite number of thrust lines. 

To determine which the correct one is, the complementary energy method can be used. This section 

will give a brief explanation of this method. For more examples and a more extensive explanation of 

the rewriting of the equations shown in this section, see the paper by Borgart and Liem (2011) and 

the graduation report by van Dijk (2014). 

The complementary energy method is based on the premise that nature will always strive for the 

situation containing the least energy. Even though complementary energy is something conceptual, it 

does not exist in nature, when simplified it can be considered to be the energy needed to deform a 

certain structure. Forces can theoretically be transported through a structure in several ways, but in 

reality it will always be the case which contains the least deformation energy. So the correct thrust 

line for a structure, the one which will occur in reality, will always be the one with the least 

complementary energy. If the structure is made from a single homogenous material, the correct 

thrust line will also be the one which causes the structure to deform the least. 

When a normal force works on a single bar the stress in the bar will cause it to strain. The work 

needed for this deformation is called strain energy.  From the strain energy the complementary 

energy can be calculated by: 

��;� =	12
	
�
��  

The complementary energy due to bending moments can be calculated by: 

 	
��; =	12

�
�
��  

This complementary energy can be used to determine the flow of forces through a statically 

indeterminate structure. A simple example is shown in Figure 12, in which a statically indeterminate 

structure can be seen. The structure consists of three bars, three supports and one load called F1 is 

applied. To calculate the forces in this structure, one force is replaced by a force with a value φ. 

Using φ, all the normal forces can be calculated as shown in the table. From the normal force and the 

length of the bars, Ec can be calculated as well, with φ as the only unknown. The three values for Ec 

added together is the total complementary energy. Taking the derivative of this total and setting it 

equal to zero will result in the φ for which the complementary energy is the lowest. Since φ is now 

known, all normal forces can be calculated. 
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Figure 12 Calculating a statically indeterminate structure by finding the least complementary energy 

(Liem, 2011) 

This principle can be applied to thrust lines as well. For a certain set of loads and a structure, the 

correct thrust line can be found by determining the one with the least complementary energy. 

Since we are not interested in the actual energy but only in the situation in which the 

complementary energy is minimal and we consider the Young’s modulus E to be equal throughout 

the structure, the equations for the complementary energy can be simplified to: 

��;� �		
� 

��; �	12�
 �

� 

Both these energies together will give the total complementary energy. Finding the thrust line for a 

structure containing the lowest total energy will result in the correct flow of forces through the 

structure. 

2.5  GRAPHIC STATICS IN ARCHES  
In the graduation report by van Dijk (2014), an iterative graphical way to calculate beams and arches 

is described, and an iterative tool is made in Grasshopper to calculate arches in a quick and easy way. 

The calculation method is summarized in Figure 13. The first step is to draw an arch, which can be 

irregular shaped and with uneven supports. The program discretizes both the projected load and the 

load due to own weight of the arch. This discretized load can lead to an infinite number of force 

polygons and their corresponding thrust lines as shown in Figure 7. From a thrust line and the 

structure together, the complementary energy is calculated as shown in the previous paragraph. 

With the height of the thrust line as a variable, the solution with the least complementary energy can 

be found, simply by changing the horizontal support until the lowest value is found.  
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Figure 13 Calculating a thrust line by changing the horizontal support reaction (van Dijk, 2014) 

In this report, the discovery is described that the area under the correct line of thrust equals the area 

under the structure (Figure 14). This leads to a shorter iteration loop (Figure 15) for calculating the 

correct thrust line. Even though there is not a mathematical proof for these areas being equal yet, 

this reports shows some arches (Figure 16) for which the forces are calculated using three different 

methods: the method of equal areas, the Finite Element Method and the method using the lowest 

complementary energy. This leads to results with a maximum deviation of 4%. These deviations are 

attributed to different ways of discretizing loads in different calculation methods.  

 

Figure 14 The area under the structure (grey) equals the area under the thrust line (black). (van Dijk, 

2014) 
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Figure 15 The shorter iteration loop uses the method of equal areas (van Dijk, 2014) 

 

Figure 16 Arches for which the method of equal areas was tested (van Dijk, 2014) 

2.6  FORCE DENSITY  
Using the thrust line and its reciprocal figure, the force polygon, some observations are made on how 

these work together. This section summarizes these observation, not to prove a theory, but to make 

the reader familiar with how these relate to each other. In this section the force density is introduced 

as well, a ratio between the force in a bar and the length of that bar. 
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If we consider a force polygon as shown in Figure 17 corresponding to a structure, the force F and the 

length l of a bar can be drawn in one figure. If both are projected onto a horizontal line, the ratio 

between F and l will stay the same, so: 

�
� �

�′
�′  

 

Figure 17 Relation between force polygon and structure 

The horizontal projection of each force in the force polygon equals FH as can be seen in the force 

polygon. The horizontal projection of each bar in the structure equals ��. The force density (FD) 

equals the force divided by the length of a bar, so: 

�� � ��
�� � ��

�� 

In a similar way can be shown that: 

�� � ��
�� 

This explains why if the polar coordinate of a reciprocal grid is moved horizontally, the FD will change 

in a similar way. If FH doubles, FD doubles as well. This also explains why the FD in each bar is the 

same when a constant �� is chosen. The FH for each bar is equal resulting in an equal FD. 

Figure 18 shows a force and a bar length in one figure. For the F, the FV stays the same, for the l, �� 

stays the same. FH is changed by steps of 1. If  �� � 2, this figure shows that the FD will increase by 

½. 
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Figure 18 The force in a bar and the length of that bar in one figure 

 

2.7  CALCULATING THE AREA OF A POLYGON  
Part of this research deals with trying to prove that the area under the structure equals the area 

under the correct thrust line. In this process Lopshits (1956) way to calculate the area of any force 

polygon is used. This paragraph will explain how this method can be used. 

 

Figure 19 Calculating the area of a triangle 
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This method calculates the area by using only the length of each segment and the inner angle of each 

two segments. The area of for example the triangle in Figure 19 can be calculated by: 

� � 1
2 ���
 sin � 

 

To understand the way the Lopshits equation works, the following concept needs to be understood. 

Consider any parallelogram, the one in Figure 20 (a) for instance. Two points on the same place on 

two opposing sides are moved (the drawing may seem like a 3D representation, it is a 2D drawing 

though), creating two new parallelograms (b). The area of the two parallelograms together (2 and 3) 

equal the area of the first parallelogram (c). This can be seen if we look at the areas marked as A, A’ 

and B and B’ in (d). The area removed at the bottom is added at the top of the figure, resulting in the 

same area. This goes for the triangles marked in (e) as well, since each triangle equals half the 

parallelogram. 

 

Figure 20 The area of rectangle 1 equals the areas of the parallelograms 2 and 3 together  
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Consider as an example for the Lopshits calculation the polygon drawn in Figure 21, which consists of 

five points. The coordinates of the points are unknown, only the lengths of l1 to l5 are known and the 

angles �� to  ��. To calculate the total, Lopshits adds up the areas shown in Figure 22: 

���
� �!�� � ���
� + ��� �! + ���!�� 

The first step is quite simple since all the variables are known: 

���
� � 1
2 ���
 sin �� 

For the second step, calculating A1A3A4, Lopshits translates the figure (or at least the points needed 

for this calculation) over l3, creating several parallelograms (Figure 24). Using the theory above, we 

can see that: 

��� �! = ���
#� + �
� #
 

The same is done for the final triangle. Even though the final triangle can be calculated by using l4, l5, 

and ��, in this example it will be calculated using Lopshits equation for consistency. In this case the 

figure is translated over l4. Since this is not the biggest triangle of the ones used (like triangle 1 in 

Figure 20), not all the triangles need to be added, one needs to be subtracted. An easy way to 

determine this is to check in which direction the points rotate from low to high, A to B. The areas of 

the triangles with the same direction as the triangle to be calculated need to be added (Figure 25), 

the other one subtracted. This results in: 

���!�� = −���
%� + �
� %
 + � �!%  

Combining these equation we see that: 

���
� �!�� = ���
� + ���
#� + �
� #
 +−���
%� + �
� %
 + � �!%  

To calculate the total area, only the angles shown in Figure 26 needs to be known. These can be 

calculated using the known angles. 
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Figure 21 A random chosen polygon with only length and inner angels known 

 

Figure 22 The polygon is split up in triangles 

 

Figure 23 Calculating A1A2A3 
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Figure 24 Calculating A1A3A4 

 

Figure 25 Calculating A1A4A5 
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Figure 26 All angles and lengths needed to calculate the total surface of the polygon 

2.7.1  LOPSHITS FOR THRUST LINES 
In Figure 27 a simple thrust line is drawn and Lopshits is used to calculate the area. In this case not 

the inner angles are known but only the differences between the slopes is known and used to 

calculate the area. The first triangle can simply be calculated by: 

�� � 1
2 ���
 sin&180 $	)�* 

For the second triangle the two red triangles in Figure 28 are calculated. The lengths are all known. 

The figure shows that the first inner angle equals 180 - 	)� -	)
. In a similar way all the areas can be 

calculated: 

�
 � 1
2 ��� sin&180 $	)� $ )
* + 1

2 �
� sin&180 $	)
* 

� � 1
2 ���! sin&180 $	)� $ )
 $ ) * + 1

2 �
�! sin&180 $	)
 $ ) * + 1
2 � �! sin&180 $	) * 
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�! � 1
2 ���� sin&180 $	)� $ )
 $ ) $ )!* + 1

2 �
�� sin&180 $ )
 $ ) $ )!*

+ 1
2 � �� sin&180 $ ) $ )!* + 1

2 �!�� sin&180 $ )!* 

 

 

Figure 27 A thrust line with the lengths and change in slope known 

 

Figure 28 Calculating the area of thrust line with Lopshits equation 

2.7.2  RELATING THE ANGLES OF A THRUST LINE 
If in a force polygon the polar coordinate moves, the thrust line changes in a uniform way. The angles 

of all the bars change in a uniform way as well. This shows that they are all related to each other. The 
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attempts to relate the angles which are described in chapter 3 use a way of relating them through FH. 

Another way in which this relation can be uses is within the Lopshits theory. This theory uses the 

outer angle � or the inner angle β. These angles are of course related: 

)� � 180 $	�� 

This section shows how the angles between two forces in the force polygon can be seen as the outer 

angles in the thrust line. 

In Figure 29 can be seen how these are related. The ) angles in the force polygon can be seen in the 

thrust line as well. )� and )+ can be found in the force polygon if we extend the horizontal supports 

(or the closing line in the force polygon). This line is not an actual force in this direction but it shows 

where this angle can be found. 

 

Figure 29 The outer angles of a thrust line equal the angles in the force polygon 

2.8  CONCLUSIONS  
The aim of this chapter is to determine which methods can be used to calculate arches and shells. To 

understand the methods, the relation between arches and their thrust lines is described. 

The only new theory described is the method using equal areas (section 2.5). This method looks very 

promising, the first calculations suggest the method works. So if the method can be proven it will 

provide a simple and easy to understand method to calculate thrust lines. If it can be translated to 

shells, it can make shell calculating simpler as well. 

The second method described is the complementary energy method, an iterative method to 

calculate arches and shells. This method works but does not give a direct result and does not provide 

a direct link between the structure and the calculation results. If this iterative method is written out 

in an analytical way and the resulting equation is rewritten for finding the lowest value it offers a 

direct method of calculating arches. It is expected that this method can then be translated to shells 

as well. 

If the equal area method is correct as well, both methods can be linked together. If the 

complementary energy method is written out analytically, it should result in the same as the area 

method. Rewriting one method into the other will prove the validity of the equal area method. The 

starting point can be either one of these methods. 
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Since the aim of this research is to find a simple method to directly calculate arches and shells, the 

most logical next step is to investigate the equal area method and try to prove it. 
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CHAPTER 3 - CALCULATING ARCHES 

THROUGH A DIRECT METHOD 

This chapter deals with the main aim of the research: finding a new method to calculate arches. In 

section 2.4, a method is described to calculate the correct thrust line for a certain load in an iterative 

way, the complementary energy method. Section 2.5 describes how van Dijk (2014) suggests a new 

way of calculating the correct thrust line using the equal area method. The first step in this chapter is 

to connect these two methods with each other. If the minimum energy method, which can be 

considered a valid method, is translated into the equal area method, this method can be considered 

proven. Proving this method is the most logical first step because it is a plausible method, since the 

calculation results are equal to FEM results. If it is a valid method it provides a simple to use graphical 

method. 

Proving this method can have two starting points, either by translating the complementary energy 

method into something related to the areas of the structure and thrust line or by describing the 

equal area method and see how this can be translated into something related to the complementary 

energy method. These two approaches are described in the first two sections. From the equal area 

method an equation is derived which allows for a direct calculation of the thrust line instead of an 

iterative one. This equation is translated into a tool which calculates the thrust line from a structure 

as input using the equal area method. However, when testing this tool by comparing it to other 

calculation methods, the results are slightly off, causing the first doubts about this method. 

The third section is a more extensive comparison of different calculation methods, including the 

equal area method, all tested for a wider variety in topology of structures. From these tests, the 

conclusion is drawn that the theory of equal areas does not always give the correct result. 

During the research aimed at proving the equal area method, a new idea emerged: the idea that 

minimizing the energy resulting from a bending moment will give the correct thrust line. This idea is 

further explored in section 3.4. Using this idea, a new method is developed to calculate the correct 

thrust line, first for a simple 2-bar structure, after that for a more generic one. This section also tests 

this new method for accuracy and discusses why this method does work. 
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3.1  MINIMIZING COMPLEMENTARY ENERGY FROM NORMAL FORCES  
The minimum complementary energy method is the method to calculate the thrust line. The equal 

area method is a quick and simple method to calculate the thrust line as well but this method is not 

proven yet. The first step in this research is to describe in an analytical way how the solution with the 

minimum complementary energy can be found. If this equation is rewritten to an equation which 

outputs the minimum complementary energy, it will provide a direct method to calculate the thrust 

line. 

The expectation is that the result of this can be related to the equal area method, and will thus prove 

this method. If this method is proven, the result will be a simpler method of determining the thrust 

line. If the complementary energy method however can not be related to the equal area method, the 

rewritten and minimized equation will still provide a correct method of calculating the thrust line. 

Since describing the energy in a structure mathematically is a very extensive exercise, it is first done 

for a simplified situation. The first analytical description of the energy in a structure is done for 

normal forces only. Also, the starting point is not a structure which needs to be calculated, but just a 

set of loads and two supports. Once the simpler situation is described, the method can be expanded 

to more extensive situation, including a predefined structure and also including energy due to 

bending moments. 

First of all, the starting point of this research will be discussed, for instance which variables are 

known and which are unknown. After that, the aim of this part of the research is described, followed 

by a section in which an equation is derived using ,� as the only known variable. Since this means 

that there are still multiple variables, the , of each bar, the next paragraph expresses all the different 

angles in one single angle, ,�. The final section discusses the results. 

3.1.1  STARTING SITUATION 
The aim is to calculate a thrust line for a given load and supports. These supports are not necessarily 

even. See for instance Figure 30, two supports and four loads and their positions together define the 

starting situation. For the reciprocal figure, only the loads are known, which make up the line at the 

most right of the figure.  As described in section 2.3, the closing line can be determined as well and 

drawn in this partial reciprocal figure. The result is a line along which the polar coordinate can move 

to make a thrust line which touches both the supports. One point on this line represents the solution 

containing the least complementary energy.  
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Figure 30 The initial situation in black, with the unknown values in red 

In this situation, some variables (which are all dependent on each other) are unknown, others are 

known. 

Unknown variables Known variables 

FH Fz1 - Fzn 

- ��� –��� 

 

./ ,� 

.0  

3.1.2  AIM 
In this part of the research a structure is not introduced yet. The aim is to find the thrust line which 

can transport a certain set of load in the most efficient way. This question can be answered by 

finding the thrust line with the least complementary energy due to normal forces. 
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The complementary energy for each bar can be calculated by: 

��;� = 	
 ∙ � 
Moving the polar coordinate closer to the loads will result in a small normal force and a big bar 

length. Moving it further away will do the opposite. So in this case we are looking for the best trade-

off between N and l. Complicating factor is that this trade-off will probably be different for each bar 

of the structure. But since the shape of all bars are related together through the reciprocal grid, there 

is probably a way to relate them in an analytical way. 

The most logical way for calculating the correct thrust line in a direct way is by setting one variable, 

which defines where the polar coordinate is placed. With only this one variable the complementary 

energy must be calculated. Once an equation is found with only one variable, the derivative can be 

taken from this equation and can be set equal to zero. The solution for this equation will result in the 

correct thrust line. 

3.1.3  ENERGY DEPENDENT ON THE ANGLES 
This section explains how the complementary energy can be calculated with only the slopes of the 

bars (θ) as variables. Figure 31 is a part of a polar figure in which only Fn, Fn+1 and Fzn are shown. In 

this drawing, the slope of the forces and the difference between the two slopes (αn) are visible. Fn+1 is 

extended and a new line called A is introduced. The upper angle of this triangle is called βn. Since the 

two opposite angles are equal and the two right angles are equal, the angle underneath αn is equal to 

βn. From this drawing follows: 

�� =	 �
sin�� 

� = cos)� ∙ 	�4� 

)� =	,� −	�� 

Since �� is the difference between two slopes 

�� =	,� −	,�5� 

These equations combined give the equation for the force in a member expressed in the slope of that 

member, the member next to it: 

�� = cos 	,�5� ∙ �4�sin&,� − ,�5�* 
The length of a member can be expressed in the slope and the δx: 

�� = ���cos,� 

Substituting these equations in the simplified equation for the complementary energy as described in 

section 2.4 gives: 

��;�� = 	�
 ∙ �� 
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��;�� � 6 cos 	,�5� ∙ �4�sin&,� $ ,�5�*7


∙ ���
cos ,� 

�	 89:

,�5� ∙ �4�


:;<
&,� $ ,�5�* ∙
���
cos ,� 

Which means for the complementary energy in the whole structure: 

��;� �= 89:
,�5� ∙ �4�

:;<
&,� $ ,�5�* ∙

���
cos ,� 

The result is an equation which uses the loads and distance between the loads as input (Fz and δx) 

and has the θ as a variable. 

 

Figure 31 A part of a polar figure 

This equation is tested in Excel for a simple situation and a situation with uneven supports. The result 

is the same result as a calculation by hand, showing that the equation derived is correct and can be 

used to calculate the complementary energy due to normal forces. The file can be obtained from the 

CD and is named 3.1.3_minEcN. 

The next step would be taking the derivative of this function and setting it equal to zero to find the 

situation with the least complementary energy. However, there are two problems which need to be 

solved in order to be able to take the derivative. The first one being the fact that there are (for each 

member) two variables, ,� and ,�5�. The second problem is the fact that for the whole structure, 

there are as many variables as there are members, from ,� up to ,�. For taking the derivative, only 

one unknown variable is allowed. The polar figure shows that changing the polar coordinate affects 

all the slopes, so all the slopes are related to each other and supposedly can be expressed in one 

variable. This way the energy can be calculated with only one variable, which should lead to a direct 

method of calculating the correct thrust line. The next section describes an attempt to change this 

equation into having only one variable 
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3.1.4  RELATING ALL ANGLES  
The first attempt was to use ,� as the only variable. In the initial situation (Figure 30), ,� determines 

the length and position of F1. From this the position of the polar coordinate follows which results in 

all the slopes of all the forces. This means that the energy of the whole structure can be expressed in 

,� (or in any other ,). 

In Figure 32 can be seen how the horizontal support reaction FH can be calculated from the known 

values. In this figure the values FvA and FvB are introduced, which are only temporarily needed. 

�� � �>?tan ,� 

�� = �>Btan ,� 

And if we define	�>� as the vertical distance from the point where the closing line intersects the loads 

to the point where �� crosses the loads: 

�>� = �>? + �>B = &tan,� + tan,�* ∙ ��	 
tan ,�	 = ����� = ��� ∙ tan ,� + tan,��>�  
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Figure 32 Calculating all angles from ./ 

3.1.5  CONCLUSIONS 
A method is found to calculate the energy in a certain thrust line, depending on all the angles of the 

structure bars. It is obvious that these angles are all related, it can be seen from the way the 

structure changes with a change in the force polygon. If one angle is set, there is only one possibility 

of what the whole thrust line could look like. This relation is described in the previous section. These 

two section provide two equations: 

�� �= 89:
,�5� ∙ �4�

:;<
&,� $ ,�5�* ∙

���
cos ,� 

tan ,�	 � ���
�� � ��� ∙ tan ,� + tan,�

�>�  

So once ,�	is now expressed in known values, the ,-values in the �� equation can be substituted 

resulting in a complete equation for the complementary energy of a thrust line.  The next step would 

be taking the derivative of this new equation and setting it equal to zero. This should result in a direct 

method of calculating the minimum complementary energy. However it turns out that this equation 

a very extensive one and not very insightful as well. And since this equation still excludes energy due 

to bending moments, because a structure is not predetermined, this method seems far off from the 
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initial goal: finding a direct and insightful method. For this reason, problem is approached from a 

different angle: the equal area method. The next section starts with describing the equal area 

method to see if it can be related to the complementary energy method. 

3.2  CALCULATING ARCHES USING AREAS OF THRUST LINE AND 

STRUCTURE  
Since minimizing the normal energy didn’t lead to a simple method of calculating the thrust line, 

another approach is applied. This time it is based on the presumption described in chapter 2.5, that 

the thrust line with an equal area to the area under the structure is the thrust line containing the 

least complementary energy. The idea is that if both areas are expressed in a mathematical way and 

related together, the result might be an equation which is a new starting point from which the equal 

area theory can be proven. 

The first section shows how a direct method of calculating the thrust line with an equal area is 

derived. In the second section is described how this is translated into a Grasshopper algorithm. This 

algorithm is compared with other calculations in the third section, showing that the results do not 

match. The final section discusses what the explanation can be why the results do not match. 

3.2.1  CALCULATING THE AREA UNDER A STRUCTURE 
The area under the structure can be represented by the rectangles shown in Figure 33. All the areas 

can be calculated by  

�CDE � 

			��� ∙ 12 ∙ �F� 

+	��
 6�F� + 1
2 ∙ �F
7 

+	�� 6�F� + �F
 + 1
2 ∙ �F 7 

+	��! 6�F� + �F
 + �F + 1
2 ∙ �F!7 

	+	��� 6�F� + �F
 + �F + �F! + 1
2 ∙ �F�7 

or more general: 

�CDE = 

			��� ∙ 12 ∙ �F� 

+	��
 6�F� + 1
2 ∙ �F
7 

+	�� 6�F� + �F
 + 1
2 ∙ �F 7 
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+	… 

+	��� 6�F�+. . . +�F�I� + 1
2 ∙ �F�7 

 

Figure 33 Calculating the area of a structure 

 

 

Figure 34 The force polygon related to the thrust line 
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In Figure 34 is shown that the area under the thrust line depends on the variable ��. The other 

variables, such as ��� are determined by the loads, which are not variable. �FDJ	� is variable as well 

but this variable can be expressed in ��: 

 
KLM
KN � OPQR	M

OSM   

which means that: 

�FDJ	� � ��� ∙ �����  

The area under the thrust surface can be calculated in a similar way as the area under the structure. 

�F is substituted using the equation above. 

�DJ = 

			��� ∙ 12 ∙
��� ∙ �����  

+	��
 6��� ∙ ����� + 1
2 ∙

��
 ∙ ��
�� 7 

+	�� 6��� ∙ ����� + ��
 ∙ ��
�� + 1
2 ∙

�� ∙ �� �� 7 

+	… 

+	��� T��� ∙ ����� +. . . +��&�I�* ∙ ���I��� + 1
2 ∙

��� ∙ ����� U 

 

Since every term contains the factor 
�
� the equation can be rewritten as:  

�� = 1
�DJ ∙ T	��� ∙

1
2 ∙ ��� ∙ ��� 	+	��
 6��� ∙ ��� +

1
2 ∙ ��
 ∙ ��
7	+ ⋯	

+	��� 6��� ∙ ���+. . . +��&�I�* ∙ ���I� + 1
2 ∙ ��� ∙ ���7U 

 

Since we assume �DJ = �CDE, the equation for the area of the structure can be substituted, resulting 

in: 

��
=	��� ∙

12 ∙ ��� ∙ ��� +	��
 W��� ∙ ��� + 12 ∙ ��
 ∙ ��
X+. . . +	��� W��� ∙ ���+. . . +��&�I�* ∙ ���I� + 12 ∙ ��� ∙ ���X
��� ∙ 12 ∙ �F� +	��
 W�F� + 12 ∙ �F
X + 	�� W�F� + �F
 + 12 ∙ �F X +	…+	��� W�F�+. . . +�F�I� + 12 ∙ �F�X	

 

With this equation, the correct �� can be calculated from a given structure resulting in the correct 

thrust line. 
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3.2.2  GENERATING THE THRUST LINE 
The method above gives a direct way to calculate the �� of a certain structure. Until now it was only 

possible to do this in an iterative way as described in section 2.5. This method is written in 

Grasshopper, a Rhino-plugin. Figure 35 shows the input and the output of the component. The actual 

algorithm is summarized in Figure 36. As a first step, a curve is drawn and set as input of for the 

algorithm. This curve needs to be drawn in the XY-plane and needs to start at the origin of the grid. 

The end points are marked as supports. For two situations the load is determined. In one situation a 

q-load is projected onto the surface. The other situation has its own weight as input. The algorithm 

allows choosing one of these. In the next step the load is discretized in point loads. This discretization 

is based on the chosen �� or the segment length, depending on whether it is projected q-load or the 

own weight of the structure. In the next step the area of the structure is determined, using a 

Grasshopper function. After that, �� is calculated by the equation which is shown in the previous 

section. With a known �� the force polygon is drawn and the thrust line is generated. The 

Grasshopper file can be obtained from the CD and has the file name 3.2.2_eqA. 

The result of this algorithm is a 2D program in which any 2-dimensional structure can be drawn 

which will instantly output the thrust line with the same area. Since a thrust line is now known, which 

holds all the information for calculating a certain structure, this algorithm can quite easily be 

extended with functions like outputting the bending moment diagram for instance, or any other 

diagram. Also, a function can be added which allows for assigning material and section properties to 

the structure and outputting deformations of the structure. But before options like this are added, 

the newly designed algorithm is compared with other calculations to verify whether it outputs the 

correct results. These calculations are described in the next section. 

 

Figure 35 The in- and output of the Grasshopper algorithm 
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Figure 36 The algorithm summarized 

3.2.3  COMPARING TO COMPLEMENTARY ENERGY METHOD 
To verify whether or not this equation works, three calculations were done. These calculations only 

deal with the question whether or not this equation can predict the thrust line containing the lowest 

complementary energy in a linear way. The control calculations are done in a non-linear way. The 

energy of a certain structure combined with a thrust line is calculated in excel, based on a randomly 

chosen ��. The value for �� is changed until the lowest complementary energy is found. 

Subsequently the direct method as described in the previous section is applied to the same structure. 

If these calculations lead to the same result for ��, this equation can be considered a valid method to 

determine the thrust line with the least complementary energy. The calculations in this section can 

be found in a spreadsheet on the CD with the file name 3.2.3_eqA_minEc. 

Calculation 1: a thrust line as structure 

For the first calculation, a structure and loading is used from which is known that the thrust line will 

coincide with the structure (Figure 37).  This way, bending moments don’t play a role in the 

calculation, making it a first step in verifying the validity of this method. 
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Figure 37 A structure with coincides with a thrust line 

First the energy is calculated by using ��;� � 	
 ∙ �  to calculate the energy for each bar. Bending 

moments are not included in this calculations because they don’t occur in this structure. The energy 

of these bars are added together for the total complementary energy of the structure. The value for 

�� is changed until the lowest energy is found. This shows that, according to this method, the �� is 

2,22, making the thrust line coincide with the structure. The equal area method results in the same 

value. 

 

Calculation 2: a symmetrical structure 

For the second verification, a random structure and loading is chosen, expecting the thrust line to be 

outside the structure (Figure 38). 

  

Figure 38 A symmetrical structure with a thrust line outside the material 

In section 2.2 is described how, using the thrust line outside the material, the forces can be projected 

on the structure by adding the eccentricity of the forces to the equation. This is needed for the non-

linear calculations, used to check the new method. Since this is not easily done in excel, an 

approximation is done. The bending moments should be projected on the point perpendicular to the 

thrust line. This results in a change in bending moment throughout the bar. To keep the calculations 

simple, for each bar the bending moment is calculated from the thrust line within the same δx. The 

eccentricity is calculated from the thrust line halfway each bar. This way the results will lose accuracy 

but it is a simple first calculation to see whether the results are promising. Once the forces and 

YZ[\]^ _` 

min E 2,22 

eq A 2,22 

YZ[\]^ _` 

min E 4,00 

eq A 4,00 
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bending moments are determined, a check can be done. Using ��;�, � W	
 + �
&�∙b*c
Dc X �  the 

complementary energy due to normal forces and bending moments is calculated. The overall 

thickness is considered to be 0,1 m. The results are shown in the table next to the figure. 

 Calculation 3: an irregular shaped arch   

The third calculation is conducted in a way similar to the second. The only difference is that this 

structure is more irregular shaped (Figure 39). The results of the direct calculation method gives a �� 

of 1,89 N. The table below shows that the indirect method results in a �� of 1,70 N, making this 

result a little bit off. 

 

  

Figure 39 A irregular shaped structure 

 3.2.4  CONCLUSIONS 
The aim of this section was to describe both the complementary energy method and the equal area 

method in a mathematical way and relate them together. Both methods are described in a 

mathematical way but could not be related together. However, the equal area method is now 

described in an equation which makes it possible to be applied in a direct way, instead of an iterative 

way. Turning this equation into a Grasshopper tool allowed for easy testing this method. The 

previous section compares the equal area method with the complementary energy method. The first 

two calculations give a very accurate result, the third is slightly off. There is at this point in the 

research no simple explanation for these differences, resulting in doubts about the validity of the 

equal area method. To get more clarity on the validity of the equal area method, the next section 

describes a broader comparison of different calculation methods and more structures. 

During the derivation of the equal area method, attempts were made to connect both methods 

through the Lopshits equation (section 2.7), however, when the doubts about the validity of this 

method arose, this path of research was not continued. 

  

YZ[\]^ _` 

min E 1,70 

eq A 1,89 
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3.3  COMPARING DIFFERENT METHODS  
To verify whether or not the equal area method works, for a broader range of structures different 

calculation methods are compared. In the previous section, only the complementary energy method 

and the equal area method are compared. To eliminate the possibility that the complementary 

energy method is not valid, a third method is added, the Finite Element Method. The different 

calculation methods are described in the first section. 

The structures  which are tested include the structures from the previous section, this time also 

calculated with the Finite Element Method. Next to these, two more structures are added, which are 

both tested for distributed loads as well. The tested structures and their results can be seen in the 

second section. The first four figures show two structures with point loads and distributed loads. The 

first structure is a symmetrical arch which is chosen so the method can be tested for a simple 

situation. The second structure is chosen as a more asymmetrical one, with a bigger deviation from 

the thrust lines. This way the method can also be tested for situations with bigger bending moments. 

3.3.1  METHODS USED 

FEM 

The Finite Element Method calculations are done using GSA Suite. This method is a reliable method 

which is used in current practice. It is used as a method from which we can be sure that it is correct. 

The results of both other methods are compared with this method to see how well they perform. 

Minimum Ec 

The method using the minimum Ec is for the point loads calculated in an excel file as described in 

section 3.2.3. Through trial and error (so in an iterative way) the situation with the lowest 

complementary energy is found. The excel files used in this calculations can be found on the CD and 

are called 3.3.1_eqA_minEc_1 and 3.3.1_eqA_minEc_2. 

Since this excel file doesn’t allow for q-loads to be entered, the load case with the q-load is calculated 

using a grasshopper algorithm which is an adaptation of an algorithm created by van Dijk (2014). A 

new algorithm was made because the old one did not give correct results, possibly due to updates in 

the Grasshopper software. The algorithm is based on the flowchart in Figure 13. The algorithm was 

tested by comparing it to FEM results, giving the same results. The calculations are done through an 

iterative method, by changing FH until the lowest complementary energy is found. (Grasshopper file 

on CD is called 3.3.1_minE) 

Equal areas 

The equal area method is calculated for the q-load using the equation derived in section 3.2.1. This is 

done in Grasshopper using the file described in section 3.2.2 

The case with the point loads is calculated with the same excel files which are used for the minimum 

Ec method. The situation with equal areas is found in an iterative way. 

3.3.2  RESULTS 
The results are shown in the tables below. All the minimum Ec calculations and FEM calculations give 

a very good result. For the first shape, the equal area method gives a slight difference of only 1,1% 

and 2,3%. The second shape gives bigger differences of 11,7% and 13,1%.  
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method H 

equal A 2,00 

min. Ec 1,79 

FEM 1,79 

method H 

equal A 12,19 

min. Ec 11,96 

FEM 11,96 

method H 

equal A 2,86 

min. Ec 2,83 

FEM 2,83 

method H 

equal A 8,53 

min. Ec 7,55 

FEM 7,54 
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method H 

equal A 2,22 

min. Ec 2,22 

FEM 2,22 

 

 

 

method H 

equal A 1,89 

min. Ec 1,70 

FEM 1,70 

 

3.3.3  CONCLUSIONS 
The differences, especially for the second shape, are too big to be explained by discretization errors 

or rounding errors. From these calculations can be concluded that the method of equal areas actually 

does not work for calculating the correct thrust line. The reason why it seems to work can be 

method H 

equal A 4,00 

min. Ec 4,00 

FEM 3,99 
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explained with the help of Figure 40. The correct thrust line is the one with the lowest 

complementary energy. This energy is dependent on the bending moment and the normal force.   

�� �		
� + 
�

Dc �
� 

Since the thickness t of the structure will often be quite small in comparison to the width of the total 

structure and thus the ∑ � as well, the bending moment will have a much bigger influence on the 

total energy then the normal force. The bending moment can be calculated by: 

� � e� ∙ f 

The figure shows that for symmetrical arches with not too irregular geometry, the thrust line 

calculated by equal areas (shown in red) lies very close to the thrust line calculated through 

minimum energy (shown in green), because the eccentricity e is very small for equal areas. So as long 

as the arches to be calculated are chosen quite conventional, (the arch to the right) the equal area 

method will result in small errors. The structure to the left shows that for more irregular shapes the 

lines are further apart. The figure to the right is one of the arches also used by van Dijk (2014) to 

support the equal area method. More of the arches from that research are included in appendix II. 

This shows how it could be that the equal area method seemed so promising, even though it turned 

out not to be correct. The arches calculated were all quite symmetrical (even though not completely 

symmetrical), resulting in very small differences in thrust lines. 

 

   

Figure 40 Structures (in black) with both the thrust line calculated using equal areas (red) and 
minimum energy (green). In the right figure, both lines coincide. 
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3.4  MINIMIZING COMPLEMENTARY ENERGY FROM BENDING MOMENT  
Since the method of equal areas does not give the correct thrust line, a new simple method needs to 

be found. When trying to prove the equal area method for a simple situation, a new idea emerged on 

how a method for calculating the correct thrust line can be developed. This method is based on the 

idea that the thrust line with a minimum total energy is approximately the same as the thrust line 

with a minimum bending energy. The reason for this is the equation for the total energy as 

introduced in chapter 2.4: 

�� �	6	
 +	12�
 �
7 � 
Since the thickness t of the arch or shell will be quite small in relation to the length l, and the 

thickness is squared as well, the bending moment will often be of a much bigger influence on the 

total than the normal force will be. 

This section explains how this proposed method works and why it works that way. In the first 

subsection will be discussed in more detail how this idea conceptually works. Before the actual 

derivation can be explained, the second subsection will explain in more detail than the equation 

above how the bending energy can be calculated. The third subsection is a description of a proof 

written to show that for a certain situation, the thrust line with a minimum bending energy is the 

same thrust line as the one having an equal area to the structure. This proof was written when trying 

to prove the method of equal areas. It is however included in this chapter because it also illustrates a 

way of finding the situation with the minimum bending energy. The fourth section shows how this 

proof can be translated into a method of minimizing bending energy for a more complex situation, 

giving a more general method. The following two subsections compare the results of the developed 

method to FEM calculations to show that the equation gives correct results for normal situations and 

also explore the boundaries of this method by determining the accuracy for different thicknesses. 

Finally the possible applications of this method in practice are discussed. 

3.4.1  OMITTING COMPLEMENTARY ENERGY DUE TO NORMAL FORCES  
When the complementary energy in a structure is calculated to find the correct thrust line, we are 

only looking for the situation in which the energy is the lowest. Because of this, factors like the 

Young’s modulus are omitted of the equation already, they do not influence which thrust line gives 

the lowest value since these values are equal for the whole structure. The normal forces however do 

influence the thrust line, and so do the bending moments and the length of the structure. This results 

in the equation for the complementary energy: 

�� =		
� +	12�
 �
� 
It does not actually return the correct value for the complementary energy since EA and EI are 

omitted, but the lowest value will be found for the same N, M, t and l. 

The thickness t is for arches and shells usually quite low, also in comparison to beams because of the 

very nature of arches and shells: that they mainly transport normal forces. If the thickness t is low, 

the factor 
�

Dc  will be big, giving the part with the bending moment a bigger influence on the total �� 

than the bending moment part. If t is small enough, the bending moment will have such a big 
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influence on the outcome that the normal force will not be relevant anymore. In the following 

sections, this idea is further explored by omitting the 	
� from the equation and see how accurate 

the results are. 

To understand this concept it can also be seen in another way: if we consider the complementary 

energy to be the energy stored in a structure due to deformation of the structure, in arches and 

shells, the deformation due to bending moments is so big in comparison to deformation due to 

normal forces that the deformation due to normal forces can be ignored. 

3.4.2  CALCULATING THE ENERGY DUE TO BENDING MOMENT  

The energy due to bending moments can be calculated, as mentioned before, by ��; � �

Dc �
�. 

There are more steps involved to get from a drawing with a force polygon, a thrust line and a 

structure to the energy from a bending moment in a bar. This is somewhat more complex than the 

energy due to the normal forces, especially because the bending moment changes throughout a bar 

and the normal forces doesn’t. Consider for instance the situation in Figure 41. A part of a structure 

is shown together with a part of the corresponding thrust line. The force drawn in this thrust line can 

usually be obtained by the corresponding force polygon which is not shown in this case. There are 

several different ways of determining the bending moment in a certain point of the structure, from 

which three will be discussed here. 

 

Figure 41 Thrust line outside the material 

The first method (Figure 42.a) is to draw a line perpendicular to the force in the thrust line through 

point A. The bending moment equals the length of the eccentricity e times the force in the thrust 

line. The advantage of this method is that the force can be directly obtained from the force polygon. 

� �	egK ∙ � 

The second method (Figure 42.b) shows a line perpendicular to the structure from point A to the 

thrust line. The force needs to be decomposed into one perpendicular to the eccentricity and one 

parallel to the eccentricity, resulting in: 

� �	egCDE ∙ �� 

In the third method (Figure 42.c) the eccentricity is chosen vertically. The corresponding component 

of the force is the horizontal component, which can be obtained from the force polygon as well. 
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� �	e� ∙ �� 

The advantage of this method is that for a vertical load, the force needed to calculate this bending 

moment will be equal throughout the whole structure.  

 

Figure 42 Three different ways to calculate the bending moment from the thrust line 

To calculate the energy for a structure, the example  of Figure 43 is used. The structure, force 

polygon and thrust line are shown. The first step is calculating the eV, the vertical difference between 

the thrust line and the structure. This difference is plotted in Figure 43.b. Figure 43.c shows the 

bending moment throughout the structure which equals the first plot times FH. Since these graphs 

show the bending moment changing over δx, and the change over the length is needed to calculate 

the energy, the x-axis is changed to the length of each bar, resulting in Figure 43.d. To get a better 

understanding of what this step does, one can also consider this as being the bending moment 

diagram, which is usually drawn directly on the structure, in which the structure is taken as the x-axis 

(Figure 44). In the next step, the graph with the bending moments is squared, since the energy 

consists of the bending moment squared times the length. This result in the Figure 43.e in which the 

area between the x-axis and the graph equals the total Ec;M. 

This method will be used in the following sections to find an analytical way for calculating the 

minimum complementary bending energy. 
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Figure 43 Calculating the bending energy of a structure 
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Figure 44 The structure is used as the x-axis 

3.4.3  PROOF OF EQUAL AREAS  
In an attempt to prove in an analytical way that a thrust line with an area equal to the structure will 

be the line with the lowest Ec;M, the proof is written for a very simple situation (Figure 45), one load, 

two supports, two bars. In red, the force polygon and the thrust line are drawn. It is obvious that the 

lowest energy in this case will be the case where the areas are equal, since the thrust line will, for a 

correct FH be equal to the structure, resulting in the bending moment being zero. So the result of this 

proof is not very surprising, however it is a basis on which a more extended proof is written later. 

 

Figure 45 A structure consisting of two bars and one point load 

The area of this structure can be calculated by �� ∙ ��. The area of the thrust line by ��DJE ∙ ��. So to 

prove that both areas are equal the following needs to be proven: 

�� ∙ �� � ��DJE ∙ �� 

The height of the thrust line is dependent on the FH and can be described as: 

��DJE �	12
�4
�� �� 

Since Ec;N is not included in this calculation, 
�

Dc  does not influence the position of the lowest point of 

the complementary energy, it can be omitted from the calculations. 

��; � �
� 
The vertical eccentricity at any point in the structure can be calculated by: 
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e� � � $	�DJE 

The left half of the structure can be described as 

� � ��
�� �		for	domain	l0, ��m 

Since this can be applied to the left half of the thrust line as well, the vertical eccentricity can be 

calculated 

e� = �ℎ −	�ℎDJE�� �		for	domain	l0, ��m 
If the length of the bar is taken as x-axis instead of ��, the following equation applies: 

 

e� = �ℎ −	�ℎDJE� �		for	domain	l0, �m 
Substituting the equation for �ℎDJE and rewriting the equation results in 

e� = 6�ℎ − 1
2
�4�� ��7

�
� 	 

Multiplying this with �� gives the equation for the bending moment: 

� = 6���ℎ − 1
2�4��7

�
�  

�
 = 6���ℎ − 1
2�4��7


 �

�
 		for	domain	l0, �m 

The M
2
 is the equation which represents a graph similar to Figure 43.e for the left bar of the 

structure. Integrating this function over x for domain	l0, �m will give the complementary energy for 

this part. 

��; = n6��	�ℎ − 1
2�4	��7


 1
�
 �


o

p
	�� 

��; = 1
36��	�ℎ −

1
2�4	��7


 1
�
 �  

= 1
36��	�ℎ −

1
2�4	��7 6��	�ℎ −

1
2�4	��7 � 

= 1
36��
�ℎ
 − �4	��	��	�ℎ + 1

4�4
��
7 � 

= 1
3�ℎ
�	��
 −

1
3�4	��	�ℎ	�	�� +

1
12�4
��
� 

Taking the derivative of this equation with 	��	as the only variable, and setting that equal to zero 

should result in the minimum ��; . 
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��;s � 2
3��


�	�� $ 1
3�4	��	��	� 

2
3��


�	�� $ 1
3�4	��	��	� � 0 

2
3 ��


�	�� � 1
3�4	��	��	� 

2	��	�� � �4	�� 

	��	 � 1
2
�4
�� 	�� 

Substituting the equation for ��DJE shows: 

�� � ��DJE 

This shows that through calculating the bending moment and setting the derivative of that bending 

moment equal to zero, it can be proven that these two areas are equal when the bending moment is 

minimal. 

During the making of this proof, the first doubts arose about the equal area method. For this reason 

no attempt was made to prove this for a more complex structure. However this method is expanded 

in the next paragraph, not to prove the areas to be equal, but to find another method through which 

the complementary energy can be calculated in a direct way. 

3.4.4  MINIMIZING THE ENERGY DUE TO BENDING FOR A THREE-BAR STRUCTURE 
The approach described in the previous section will be applied to a more advanced and slightly more 

general structure in this section. This time however the aim is not to prove the areas being equal, the 

method is only used to provide a direct method of calculating the structure with the minimum 

bending energy. The structure calculated is shown in Figure 46. This time the structure can be non-

symmetrical (if ��
 does not equal zero) so it can have bending moments. 

 

Figure 46 A structure consisting of three bars (in black) with the force polygon an thrust line (red) 

To make the calculation simpler, some values are set equal to each other: 

��� � ��
 � �� � �� 
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��DJE� � ��DJE
 � ��DJE � �� 

�t� � �t
 � �t 

�� � �  

��DJE� � $��DJE  

��DJE
 � 0 

The height of �ℎDJE�	can be calculated by 

�ℎDJE� =	 �4�� �� 

Just like in the previous section, the bending energy can be calculated by 

��; = �
� 
Again, the e� is calculated for each bar. 

e�� = �ℎ� −	�ℎDJE��� �		for	domain	l0, ��m 

e�
 = �ℎ
�
 � + �ℎ� −	�ℎDJE�		for	domain	l0, �
m 

e� = �ℎ +	�ℎDJE�� � + �ℎ� + �ℎ
 −	�ℎDJE�		for	domain	l0, � m 
This can be written as 

e�� = �ℎ��� � − �4��
��
�� �		for	domain	l0, ��m 

e�
 = �ℎ
�
 � + �ℎ� −	 �4�� ��		for	domain	l0, �
m 

e� = �ℎ � � + �4��
��
� � + �ℎ� + �ℎ
 −	 �4�� ��		for	domain	l0, � m 

These eccentricities are multiplied by �� and then squared to get the �
. Rewriting this equation in 

the form of u�
 + v� + 8	results in 

��
 = ��
 6�ℎ��� − �4��
��
�� 7


 �
		for	domain	l0, ��m 

�

 = ��
 �ℎ




�

 �
 + 2�ℎ
�
 ��&��	�ℎ� − �4	��*� + �ℎ�
��
 + �t
��

− 2	�ℎ�	�t	��	��		for	domain	l0, �
m 
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� 
 � ��
 6�� � + �4
��

��
� 7



�
 + 2	��
 6�ℎ � + �4��

��
� 7 6�ℎ� + �ℎ
 −	 �4�� ��7 � + �ℎ�
��


+ 2	�ℎ�	�ℎ
	��
 − 2	��	�4	��	�ℎ� + �ℎ

��
 − 2	��	�4	��	�ℎ

+ ��
�t
		for		domain	l0, � m 

Calculating these areas, as shown in Figure 43 can be done by integrating these equations. This 

results in the bending energy. 

��;� = n��

o

p
	�� = 1

3��
 6
�ℎ��� − �4��

��
�� 7


 ��  

��;
 = n�


o

p
	��

= 1
3��
�ℎ
	
	�
 + �ℎ
	��&��	�ℎ� − �4	��*�
 + �ℎ�
��
�
 + �t
��
�


− 2	�ℎ�	�t	��	��	�
 

��; = n� 

o

p
	��

= 1
3��
 6

�ℎ � + �4��
��
� 7


 �  +	��
 6�ℎ � + �4��
��
� 7 6�ℎ� + �ℎ
 −	 �4�� ��7 � 




+ �ℎ�
��
� + 2	�ℎ�	�ℎ
	��
� − 2	��	�4	��	�ℎ�	� + �ℎ

��
� 
− 2	��	�4	��	�ℎ
	� + ��
�t
�  

These equations are rewritten in the form of u��
 + v�� + 8 from which c is omitted since these 

terms do not influence the position of the minimum bending energy 

��;� = 1
3�ℎ�
����
 	−

2
3 �ℎ�	�4	��	���� + 8 

��;
 = 613�ℎ

 + �ℎ��ℎ
 + �ℎ�
7	�
	��
 − &2	�ℎ� + �ℎ
*	�4	��	�
�� + 8 

��; = 613�ℎ 
 + 2	�ℎ��ℎ
 + �ℎ�
 + �ℎ

 + �ℎ��ℎ + �ℎ
�ℎ 7	� 	��

− 6�ℎ� + �ℎ
 + 1

3�ℎ 	7 	�4	��	� �� + 8 

Taking the derivative of the sum of these equations and setting that equal to zero and solving it will 

result in the point for the least complementary energy. 

��;s = 2
3�ℎ�
���� −

2
3�ℎ�	�4	��	�� +	6

2
3 �ℎ

 + 2	�ℎ��ℎ
 + 2	�ℎ�
7	�
	��

− &2	�ℎ� + �ℎ
*	�4	��	�

+ 2613�ℎ 
 + 2	�ℎ��ℎ
 + �ℎ�
 + �ℎ

 + �ℎ��ℎ + �ℎ
�ℎ 7	� 	��
− 6�ℎ� + �ℎ
 + 1

3�ℎ 	7 	�4	��	� = 0 
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Rewriting this gives 

�� 623 �ℎ�
�� +
2
3�ℎ

�
 + 2	�ℎ��ℎ
�
 + 2	�ℎ�
�
 + 2

3�ℎ 
� + 4	�ℎ��ℎ
� + 2	�ℎ�
� + 2	�ℎ

� 
+ 2	�ℎ��ℎ � + 2	�ℎ
�ℎ � 7
= 	 	�4	��	 623 �ℎ��� + 2	�ℎ��
 + �ℎ
�
 + �ℎ�� + �ℎ
� + 1

3 �ℎ � 7 

�� = 

	�4	��	 W23 �ℎ��� + 2	�ℎ��
 + �ℎ
�
 + �ℎ�� + �ℎ
� + 13�ℎ � X23 �ℎ�
�� + 23�ℎ

�
 + 2	�ℎ��ℎ
�
 + 2	�ℎ�
�
 + 23�ℎ 
� + 4	�ℎ��ℎ
� + 2	�ℎ�
� + 2	�ℎ

� + 2	�ℎ��ℎ � + 2	�ℎ
�ℎ 
In this way, the situation with the minimum bending energy can be calculated directly. 

3.4.5  COMPARING EQUATION TO FEM 
With the equation described in the previous section, the correct thrust line can be directly calculated 

from the structural properties combined with the loads. To check the equation, the results are 

compared with the results obtained from the Finite Element Method. Again GSA is used for the FEM 

calculations. The structures calculated with the equation can be applied to any thickness of the 

structure. For the FEM calculations, a thickness of 0,2 m is chosen for a span of 6m. The results are 

shown in the tables below the figures. The differences that occur are very small, all less than 0,10%. 

These calculations show that the derived equation is valid to find the situation with the least 

complementary energy due to bending moments, which is nearly the same as the one with the least 

total complementary energy. 

Both the GSA and excel files can be found on the CD. 
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Figure 47 

 FH  

FEM 1117  

min. Ec;M 1118 0,09 % 

 

 

Figure 48 

 

 FH  

FEM 311  

min. Ec;M 311 0,00 % 
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Figure 49 

 FH  

FEM 2249  

min. Ec;M 2250 0,04 % 

 

3.4.6  BOUNDARIES OF THE METHOD 
As discussed in section 3.4.2, this method is a simplification since the normal forces are ignored when 

calculating the correct thrust line. This can be done because the thickness t is assumed to be very 

small. The bigger the thickness is, the less accurate the method will be. This section shows to what 

extent the method is accurate. Figure 50 shows four structures, each with the same shape, only the 

thickness is changed. Since the minimum Ec;M method does not take thickness into account, the 

resulting thrust line is for all the shapes the same, the one with a FH of 1118 N. When the calculations 

are done in GSA using FEM however, the results change with a changing thickness. The results of this 

can be seen in the table. This shows that with a thickness of 0,5 m (which is quite big for a span of 6 

m), the difference is still lower than 0,40%. 

The GSA and excel files of these calculations can be obtained from the CD. 

 



70 

 

 

Figure 50 Four structures with a thickness varying from 0,01 m up to 1,00 m. The span of each 

structure is 6 m. 

 

 

 

 

 

 

 

3.4.7  APPLICATIONS OF THE METHOD  
This method can be used in several different ways. Not only does it give insight in the way arches 

carry loads, it has advantages for the design of arches as well: it can be used as a calculation method 

and it can be used as a guideline during design. 

A graphic calculation method 

Not only gives this method a way to calculate arches in a direct way through an equation as derived 

in section 3.4.4, it can also function as a graphic method. Consider for instance the structure and the 

loads as given in Figure 51 (a). 

Direct 

method 

FH  

t undefined 1118  

FEM FH  

t = 0,01 1118 0,00% 

t = 0,1 1118 0,00% 

t = 0,5 1114 0,36% 

t = 1,00 1102 1,45% 



71 

 

 

Figure 51 Determining which thrust line is the correct one 

From these loads, several different thrust lines can be drawn (b). The correct thrust line can be 

calculated by minimizing ��;, which is calculated by: 

��; �	e�
 ∙ ��
 ∙ � 
Since the length is a property of the structure, which is already determined in this case, minimizing 

the energy is a trade-off of the vertical eccentricity and the horizontal component of the reaction 

force. This means that the situation for the lowest energy will be found by making e�
 ∙ ��
 as small 

as possible. Figure 51 (c) and (d) show how the thrust lines can be compared, each line has a total 

e� 	equal to the areas between the thrust line and each line has a ��, which is bigger for lower thrust 

lines and smaller for higher thrust lines. The line with the lowest combination of these two is the 

correct one. 

Determining which line is the correct one can give a rough indication of the forces in the arch, 

already in the early phase of the design. 

A partially graphic calculation method 

In order to get more precise results instead of a rough indication, the calculation can be done 

partially with the derived equation for this method. The result of this is the correct thrust line which 

can then be drawn in a figure together with the structure. Projecting the forces from the thrust line 

onto the structure will give the designer insight in why bending moments for instance are bigger in 

some places and smaller in other places. It can also give an indication of which parts of the structure 

can be made smaller or bigger. 



72 

 

A guideline during design 

Not only does this method give an indication of the forces in an arch as mentioned in the previous 

section, it can also be used as a guideline during the design of an arch. Consider for example a certain 

space that needs to be covered by an arch shown in Figure 52 (a) which needs to carry a certain load. 

For this load, an infinite amount of thrust lines can be drawn (b). A designer can start designing with 

the idea that (i) an arch is the most efficient if the eV is kept small, so the vertical distance between 

structure and a thrust line should be kept as small as possible. Which thrust line this is does not 

matter, the designer can choose a thrust line depending on the concept or the program of the 

building. In this case, it could be the one in (c) for example. The designer can design an arch with 

some deviations of the thrust line as desired, knowing that a bigger deviation will result in a bigger 

bending moment, resulting in either a simpler arch (d) or an arch which is reinforced or made thicker 

in some places (e).  

 

Figure 52 The calculation method as a tool for design 

3.4.8  CONCLUSIONS 
The newly developed method, minimizing only the energy due to bending moments, provides a 

simple and direct method to calculate the correct thrust line. It is extended for a three-bar structure 

now, which has all the variables that any structure has, and can thus be expanded to structures with 
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more than three bars. It is also a very accurate method as shown in section 3.4.6, even with 

structures with a thickness as will probably never be applied in practice, the differences are no more 

than 1,5%. 
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4.1  RESULTS AND CONCLUSIONS  
This section will discuss the results and conclusions of the research. The first three subsections 

discuss the three sub questions. The final subsection discusses the main research question and gives 

the final conclusions of the research. 

4.1.1 PROVING THE EQUAL AREA METHOD 
The first research question was: Can the method of equal areas be proven for arches? This question 

was chosen because the equal area method seemed a promising method at the beginning of the 

research. 

Results 

• Section 3.1 shows a description of the complementary energy which was derived in order to 

connect it to the equal area method and prove it. This results in two equations which 

together can express the complementary energy due to normal forces: 

�� �= 89:
,�5� ∙ �4�
:;<
&,� − ,�5�* ∙
���cos ,� 

tan ,�	 = ����� = ��� ∙ tan ,� + tan,��>�  

This path of research was not continued because combining these two equations and writing 

them out for every separate bar of a structure would result in an equation which would be 

too extensive. 

• The iterative equal area method was translated into a direct method by describing it in a 

mathematical way. The resulting equation (see section 3.2) was translated into a 

Grasshopper tool as described in section 3.2. Connections to the complementary energy 

method were not found. This tool provided a simple way to compare the equal area method 

to other methods. 

• The equal area method is compared to the Finite Element Method and the complementary 

energy method in section 3.3. The complementary energy method and the FEM both give the 

same results for all the cases. The equal area method does not give the same result for most 

of the cases. For structures which are (almost) symmetrical the equal area method often 

gives small deviations. For structures which are not symmetrical at all the method gives 

bigger deviations of more than 25%. 

• The equal area method is proven in a mathematical way for a very specific situation as 

described in section 3.4.3. This is a situation consisting of two supports, two bars and one 

load. In this situation the thrust line coincides with the structure. 

Conclusions 

From these results, it can be concluded that the equal area method is not applicable as a general way 

to calculate arches. This explains why different attempts to prove this theory gave no result, it can 

not be proven because it is not a valid method. The method gets more inaccurate when the arch is 

more irregular shaped and has bigger bending moments. 

The method is applicable to some cases however. It is proven for a particular situation consisting of 

only two bars . Because the thrust line coincides with the structure there are no bending moments 

and the areas of both are equal to each other. 



78 

 

This proof, together with the fact that the equal area method gives more accurate results in case of 

smaller bending moments can explain why the reason seemed to be valid in the first calculations. As 

long as situations are chosen with only small irregularities, the bending moments will remain small 

and the deviations that this method gives will remain small as well. 

This means that the equal area method is applicable to situations for which there are small or no 

bending moments. Whether or not a structure has bending moments is what the method aims to 

calculate but is also needed to know to determine the accuracy of the method. This renders the 

method not useable for this purpose. 

4.1.2  APPLYING CALCULATION METHODS TO SHELLS  
The second research question was: Which methods can be made applicable to shell structures? The 

expectation was that once the equal area method was proven, this could be translated into shell 

structures. 

Results 

• Since the equal area method turned out not to be generally valid for arches, no attempt was 

made to translate this method to shell structures 

• Developing a method for arches turned out to be a bigger challenge than expected. For this  

reason the research has been limited to developing the method using complementary energy 

due to bending for arches only. 

Conclusions 

The equal area method does not provide a general method to calculate shell structures. It can be 

applied however to shells without bending moments in a same way as it can be applied to arches 

without bending moments, simply because in this case the thrust surface coincides with the shell 

structure. This makes it plausible that this method can be applied to shells with only small bending 

moments, just like arches with small bending moments can be calculated using this method. To be 

sure about this, calculations should be made for a number of cases, comparing FEM to the equal area 

method. 

However, applying this method to shells will hold the same problem as mentioned for arches: the 

aim of the method is to calculate (amongst others) the bending moments in the structure, but the 

accuracy of the method is dependent on the magnitude of the bending moments. Because of this, 

the accuracy of the method can not be known for sure unless another calculation method is used as 

well.  

It is not directly clear whether or not the method using minimum bending energy can be made 

applicable to shells. It seems plausible because the deformations due to bending are often 

accountable for the most complementary energy. A phenomenon that occurs in shells but does not 

occur in arches are hoop forces. Since hoop forces consist of normal forces, these can influence the 

ratio between bending moments and normal forces, which influences the accuracy of this method. 

To be sure whether this method can be applied, more research is needed. 

4.1.3  MODELING METHODS INTO GRASSHOPPER 
This section reflects on the subquestion: How can this calculation method be translated into a 

computational algorithm and modelled in a 3D visualization program? This was a follow-up question 
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presuming that a method for calculating shells would be found. Even though this is not the case, 

there are some results related to this question which can be answered. 

Results 

• After the equal area method was described in a direct way, the resulting equation was 

translated into a Grasshopper algorithm as described in section 3.2.2. This algorithm required 

as input the arch to be calculated and the loads acting on this arch. The output was the 

corresponding thrust line according to the equal area method. This tool was intended to be 

further developed and to be used as a design tool. It is only used as a research tool however, 

since it allowed for testing the equal area method. Because the equal area method turned 

out not to be valid, developing this tool was not continued. 

• The method using minimum complementary energy due to bending is described for a 3-bar 

structure. Theoretically this can be expanded to a general method applicable to all arches. 

But because this method is not described in a general way yet, it was not relevant to turn this 

into a Grasshopper algorithm. 

• The start of a graphical method is described in section 3.4.7. The exact calculation of the 

correct thrust line is only partially a graphical method, as a start it still requires the equations 

derived in section 3.4.4. This is an opportunity where a Grasshopper tool could be used. 

Conclusions 

When the tool using the equal area method was developed thus far that it could directly generate a 

thrust line, it was used as a research tool. The thrust lines from this tool were compared to thrust 

lines calculated by FEM and by the complementary energy method (section 3.3 and appendix II). The 

tool can be used if more research were to be done into the equal area method. 

Since the Ec;M-method still uses an equation to exactly determine the thrust line, the non-graphical 

part of this method can be modeled in a computational tool. This would result in a tool which allows 

the user to focus on the graphical part only. This tool  would require the shape of an arch and the 

loads acting on it as input. The tool then calculates the correct thrust line and gives that as output. 

This will give the designer insight in how the loads will flow through the structure. 

Additionally this tool can offer the functions to output the diagrams and values for bending 

moments, normal forces and shear forces. This can be calculated in the way described in section 2.2, 

which can easily be modeled in such a tool. 

This will provide a simple calculation tool which lets the user change the structure, giving instant 

feedback on what this does to the thrust line and thus to the normal forces and bending moments of 

the structure. 

4.1.4  FINDING A GRAPHICAL CALCULATION METHOD 
The main research question was: How can the structural performance of a shell structure be 

calculated in such a way that the relation between the geometry and the structural performance is 

shown? Though the step to shell structures could not be made within this research, the question will 

be discussed for arches and for shells. 

Results 

Most of the results are discussed when answering the subquestions in the previous sections. For this 

reason they are only summarized here. 
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• The equal area method seemed a good method which could show the relation between 

structure and performance (section 3.1). It turned out not to be valid however. 

• The start of a method minimizing the total complementary energy is made in section 3.2. The 

equation resulting from this method turned out to be too extensive to continue. 

• The method using minimum complementary energy due to bending (Ec;M-method) is 

developed as described in section 3.4. This method is based on the idea that the normal 

forces attribute to such a small fraction of the total complementary energy that they can be 

ignored when determining the thrust line. 

• The results of the Ec;M-method are compared to results of the Finite Element Method. This 

shows that the deviations are negligible (section 3.3 and appendix II). 

• The step from an iterative to a direct calculation is made for the Ec;M-method for all three-bar 

structures as described in section 3.4.4. 

• The boundaries of the Ec;M-method are explored showing that even for very thick structures 

which are not built in practice, the deviations are smaller than 2%. (section 3.4.6) 

• The ways the Ec;M-method can be used in practice are explored in section 3.4.7, showing how 

the relation between structure and performance is preserved. 

Conclusions 

The equal area method can not be used as a method for calculating the correct thrust line. Even 

though it gives correct results for some cases, it is not clear for which cases this is, making this 

method not usable.  

Finding the correct thrust line by minimizing the total complementary energy gives the correct 

results when done in an iterative way. Since the rewriting of this method into a direct one resulted in 

a too extensive equation, even without the bending moments added, it is not expected to result in a 

simple graphical method. However, since this path of research is not continued, it can not be ruled 

out that this can lead to a simple graphical method. 

The Ec;M-method is rewritten from an indirect to a direct method which is shown by the 

mathematical proof in section 3.4.4. There is no doubt about the validity of this part of the method.  

The assumption that normal forces can be ignored is very likely according to the results. A broad 

range of structures is calculated, resulting in differences of less than 2%, even for extreme cases. 

The method is not an exclusively graphical method, part of it still uses the equation. But the use of 

this equation in combination with graphic statics can give more insight in a structure in an early stage 

of the design. Section 3.4.7. gives some examples of graphical applications of this method. Designing 

an arch using this method gives the designer an idea of how the shape of an arch determines the 

magnitude of the forces and moments in the arch. 

As described in section 4.1.3, this provides an excellent opportunity to design a computational tool 

which allows both the mathematical part and the graphical part of the method to be used together. 

The mathematical part will be modeled in a computational tool and the graphical part can be either 

interpreted by the user, but can be output by the tool as well. 

The Ec;M-method can probably be applied to shells as mentioned in section 4.1.2, since the normal 

forces in shells are quite small as well in relation to bending moments. 
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4.2  RELEVANCE  
The two most relevant results of this research are (i) the conclusion that the equal area method is 

not valid and (ii) the developed method to calculate a thrust line through minimizing the 

complementary energy due to bending. The relevance of both the results will be discussed in this 

section. 

Disproving the equal area method 

The proof that the equal area method is not valid as a general calculation method is relevant because 

it first seemed to be a promising and simple method. It seemed a good starting point for a method to 

calculate shells, so it needed to be either proven or disproven. 

Next to that, trying to prove this method led to the insight that the bending moment is the most 

important, or even the only factor to determine which thrust line contains the lowest energy. The 

newly developed Ec;M-method is based on this idea.  

Minimizing bending energy as a step towards calculating shells 

The idea of omitting the energy due to normal forces may seem logical and maybe even obvious in 

hindsight, however, it is not used before and thus a completely new method. The big advantage of 

this method is that the calculations get a lot simpler now half of the equation can be omitted. This 

can be beneficial to the research towards a direct graphical calculation method for shells. As 

mentioned before, because in shells the deformation due to bending moments are a lot bigger than 

deformations due to normal forces as well, the expectation is that this method can be applied to 

shells as well. When this method is expanded to shells, which are more complex than arches, this can 

simplify the calculations a lot and may lead to a direct graphical way to calculate shells as well. So the 

result of this research provides an interesting hypothesis on how to find a direct graphical method 

for calculating shells. 

Insight in arches as a structural element 

Not only does this pave the way to a direct method for calculating shells, it also gives insight in the 

way arches work. The resulting equation shows that the way arches carry loads is dependent on two 

factors. First it is dependent on the way the loads are distributed and thus the possible thrust lines. 

And second, it is dependent on which thrust line is the correct one, which is in turn determined by 

the total vertical eccentricity of that line, the horizontal component of the forces and the total length 

of the structure. 

Minimizing bending energy during the design process 

Section 3.4.7 describes how this method can be used as a graphic calculation method during the 

design process. First of all it can be used as a guideline during the process. Drawing a possible thrust 

line and designing the structure from the thrust line can give the designer an idea of why a structure 

should have a certain shape. Next to that it can be used as a tool to calculate structures whilst the 

details of the structure are still unknown. This can give the designer early in the design process an 

indication of what the forces in the structure are and from that a rough dimension can be 

determined. 
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4.3  RECOMMENDATIONS  
There is still a lot which needs to be researched in this particular area of structural mechanics. 

Following are a few recommendations on whether and how this research can be continued: 

• Research needs to be done into the method of minimizing bending moments. A study could 

be done to how accurate this method is. What does the accuracy exactly depend on? It is 

shown that it will be applicable to most of the situations in today’s building practice, since 

the thickness is always quite small in relation to the span, but it is not known exactly how the 

accuracy is determined. 

• The Ec;M-method is written out for a three-bar structure. If the method is written out for a n-

bar structure in a similar way, the result will be a general theory, applicable to all arches. 

• Once the Ec;M-method is written out for all arches, research can be done into applying this 

method to shell structures. 

• Since the equal area method does not hold for situations with irregular shapes, it is 

recommended not to continue this research. However, to be completely sure, a research 

could be done to determine for which situations this method does give an accurate result 

and for which it does not. 

• The research from section 3.1 on minimizing the total complementary energy could be 

continued, however, if the Ec;M-method is made more general and expanded to shells, it is a 

less interesting path to follow, since it will be of less use. 

4.4  PROCESS  
During the process a lot of time went into trying to prove the equal area method. The process could 

have been more efficient if the research would have started with calculating different types of arches 

through the equal area method to compare them with the Finite Element Method. This might have 

resulted in the conclusion that the equal area method is not valid for all arches. This way less time 

would have been invested into trying to prove this theory. 

The research started off with the aim to prove the equal area method directly at the beginning and 

then extend this method to shells. When this method turned out not to be correct, the focus had to 

be adjusted to finding a new method of determining the correct thrust lines. This is inherent to doing 

this kind of research, when trying to find a new method it can not be known in advance whether the 

hypotheses turn out to be correct. Because the focus had to be adjusted to developing a new 

calculation method, the research into expanding the method to shells could not be conducted. 
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LIST OF SYMBOLS  

 

��	or	�� vertical component of the length of a part of a structure or thrust line 

��  horizontal component of the length of a part of a structure or thrust line 

,�  angle between the closing line of a structure and the horizontal axis 

,�  angle between the nth bar of a structure and the horizontal axis 

�  area 

�CDE  the area between a structure and its closing line 

�DJ  the area between a thrust line and its closing line 

�  Young’s modulus 

e�  the vertical eccentricity of a force in a thrust line 

��  force density 

��  horizontal component of a force 

��  force in the nth bar of a structure 

��  vertical component of a force 

�4  gravitational force 

�  area moment of inertia 

�  length 

�  bending moment 

�  thickness 
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APPENDIX I  EXCEL AND GRASSHOPPER CALCULATIONS 

The CD included with this report contains a folder with all the files referenced to in this report. Next 

to that, it also contains the digital version of this report and more files created during the process. 

The files referenced in this report are: 

Name Type 

3.1.3_minEcN Microsoft Excel Spreadsheet 

3.2.2_eqA Grasshopper Document 

3.2.3_eqA_minEc Microsoft Excel Spreadsheet 

3.3.1_eqA_minEc_1 Microsoft Excel Spreadsheet 

3.3.1_eqA_minEc_2 Microsoft Excel Spreadsheet 

3.3.1_minE Grasshopper Document 

3.4.5_FEM (1) GSA Document 

3.4.5_FEM (2) GSA Document 

3.4.5_FEM (3) GSA Document 

3.4.5_minEcM Microsoft Excel Spreadsheet 

3.4.6_FEM_thickness GSA Document 

3.4.6_minEcM Microsoft Excel Spreadsheet 

Appendix II_comparison Rhino 3-D Model 

Appendix II_comparison Grasshopper Document 
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APPENDIX II  COMPARING MINIMUM ENERGY METHODS TO EQUAL 

AREA METHOD 

To determine the accuracy of different methods and to discuss why the equal area method seemed 

to work at first, several arches were calculated using three different methods. Below, the arches with 

their thrust lines are plotted and the FH of all the thrust lines is compared in the tables. For each arch, 

both the projected load situation and the own weight situation are calculated. How big the loads are 

is not relevant because that does not affect the correct thrust line. 

The first four arches are the same arches as tested in the graduation report of van Dijk (2014). This 

gives an indication of why the equal area method seemed so promising: these arches are 

symmetrical enough to give an accurate result. Only in asymmetrical arches like arch 5 and 7, the 

differences get bigger, which shows why the equal area method can not be used. For each arch the 

minimum Ec method is also compared to the newly developed minimum Ec;M method, showing the 

accuracy for this method. 

In these comparisons, the thickness of each arch is considered to be 0,2 m and the span 10 m. 

The red  line is the line calculated by the equal area method. Both thrust lines calculated by the 

minimum Ec and minimum Ec;M coincide for all the situations and are represented by the green line. 

The files used for calculations can be found on the CD. 

 

Figure 53 Arch 1 from van Dijk (2014) 

own weight FH  

min. Ec 5,50  

min. Ec;M 5,50 0,00 % 

equal A 5,50 0,00 % 

 

projected 

load 

FH  

min. Ec 4,67  

min. Ec;M 4,67 0,00 % 

equal A 4,67 0,00 % 



98 

 

 

 

 

Figure 54 Arch 2 from van Dijk (2014) 

own weight FH  

min. Ec 13,70  

min. Ec;M 13,70 0,00 % 

equal A 13,62 0,58 % 

 

 

Figure 55 Arch 3 from van Dijk (2014) 

own weight FH  

min. Ec 8,54  

min. Ec;M 8,55 0,12 % 

equal A 8,71 1,99 % 

 

projected 

load 

FH  

min. Ec 12,94  

min. Ec;M 12,95 0,07 % 

equal A 12,85 0,70 % 

projected 

load 

FH  

min. Ec 8,03  

min. Ec;M 8,04 0,12 % 

equal A 8,17 1,74% 



99 

 

 

 

Figure 56 Arch 4 from van Dijk (2014) 

own weight FH  

min. Ec 26,71  

min. Ec;M 26,72 0,04 % 

equal A 26,72 0,04 % 

 

 

Figure 57 Arch 5 

own weight FH  

min. Ec 6,48  

min. Ec;M 6,48 0,00 % 

equal A 7,77 19,91 % 

 

projected 

load 

FH  

min. Ec 25,60  

min. Ec;M 25,60 0,00 % 

equal A 25,63 0,12 % 

projected 

load 

FH  

min. Ec 3,41  

min. Ec;M 3,41 0,00 % 

equal A 4,35 27,57 % 
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Figure 58 Arch 6 

own weight FH  

min. Ec 6,19  

min. Ec;M 6,20 0,16 % 

equal A 6,21 0,32 % 

 

 

 

Figure 59 Arch 7 

own weight FH  

min. Ec 13,23  

min. Ec;M 13,23 0,00 % 

equal A 13,40 1,28 % 

 

  

projected 

load 

FH  

min. Ec 4,73  

min. Ec;M 4,73 0,00 % 

equal A 4,73 0,00 % 

projected 

load 

FH  

min. Ec 3,68  

min. Ec;M 3,68 0,00 % 

equal A 3,94 7,07 % 
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APPENDIX III  REFLECTION  

RESEARCH PROPOSAL  
In the research proposal the methods to be used are described. These methods will be described 

here as well. 

Approach and methodology 

Literature study 

The whole research will be done within the field of structural mechanics. For this reason, the 

literature to be studied is mainly in the field of structural mechanics. To get the research started, a 

literature study on several subjects needs to be done. Part of these subjects are studied already. The 

following subjects will be studied: 

• Complementary energy method 

• Arches and thrust lines 

• Graphic statics in arches 

• Hoop forces 

• Split in surfaces 

• Curvature 

Method development 

From the literature study hypotheses will emerge. From these hypotheses a method to calculate 

shell structures will be developed. 

Design computational algorithm 

The found method will be translated into a computational algorithm. For this algorithm, the 3D 

program Rhino will be used, with the Grasshopper-plugin. 

Validate method 

The computational algorithm will be compared to FEM calculations for several case studies. 

Differences in results from these calculations will show whether or not the method is valid. 

Relevance 

Societal relevance 

This research aims to provide in a tool for designers which gives them earlier in the design process 

insight in the structural performance of a shell structure. This will lead to a less time-consuming 

design process, but also to a more direct feedback on the design changes. It will probably lead to 

more efficient structural design, in which less material can be used for a similar performance. 

Scientific relevance 

Currently it is still unknown what the mechanics are behind shell structures. This research aims to 

give more insight in these mechanics.  
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METHODS DURING THE RESEARCH  
During the research, some of the research was conducted as planned but not all of it. This section will 

reflect on how these methods worked out. 

Literature study 

All the subjects in the literature study were researched extensively. However, alongside this study, 

the first hypotheses emerged. Some of the topics studied turned out to be less relevant to the 

hypotheses which were to be tested.  

Method development 

The method development turned out to be a bit less structured then imagined in the first instance. 

Even though from the literature study some ideas emerged, only when the first calculations are 

done, you really understand how the theories work. This results in constantly changing of ideas of 

what might work and how to test it. Some hypotheses could be tested quite quickly (in a day or two) 

and if they didn’t seem to work out, they were not included in any report. 

Design computational algorithm 

The design of the algorithm was done before the theory was proven, making it more of a research 

tool than a final product. 

Validate method 

The theories that seemed to be promising were always compared to a FEM calculation to see 

whether it was accurate or not. 

RESULTS  
These methods resulted in several products: 

� A summary of some of the methods to calculate the bending energy in arches (chapter 2 

and section 3.4.1) 

� An equation for calculating the energy due to normal forces 

� An equation for directly calculating the thrust line using the equal area method 

� An algorithm using the equal area equation 

� FEM calculations compared to the algorithm, which prove that the equal area method is 

not valid for a lot of situations 

� A proof of the equal area method for one situation in which it is valid, the situation in 

which the thrust line coincides with the structure 

� A hypothesis on how to calculate the correct thrust line, by only minimizing the bending 

energy 

� An equation using the minimizing of bending energy to find the correct thrust line for 

three-bar structures 

� FEM calculations showing how accurate this method is 

CONCLUSIONS  
As can be seen from the results, the methods were adequate for this type of research. The aim of the 

research however is not fully achieved, finding a method to calculate shells. It turned out that for 

arches, there was still so much to be discovered that the step to shells could not be made in this time 

frame. This results for instance in some of the subjects (curvature and hoop forces) which are 

included in the literature study but not in the final report, since they mainly deal with shell 
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structures. The process might have been more efficiently if the literature study was more 

fragmented, by studying arch related literature first, conducting that part of the research after that 

and wait with the second part of the literature study until the problem is solved for arches. 

Since the equal area method is proven to be invalid, the second and third product in the list are less 

relevant than they would have been if it turned out to be valid. This inefficiency could have been 

prevented if some more extensive calculations were done on this subject. This way the theory would 

probably have been proven wrong earlier in the process, making sure that less time was spent on 

trying to prove this subject. 

Apart from these two inefficiencies, the methods turned out to fit the problem quite well. Even 

though the scope of the research was during the process limited to arches, the methods could be 

applied to this part of the subject as well. 


