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1. Introduction

i

In these notes we consider propulsion in an inviscid and incom-

pressible fluid. We discuss mainly propellers which exert forces on the

fluid by lift such as the screw propeller, the swimming plate and the

sails of a yacht. Because we neglect viscosity this subject belongs to

applied potential theory. We will direct our attention to principles,

hence we do not claim the results to be applicable directly to practice.

The principle tool in the first part of the work is the velocity

field induced by ari external force moving in an arbitrary way through

the fluid. This is from a theoretical point of view a satisfactory ap-

proach because vorticity is induced in the fluid by the rotation of the

external force field, hence it is not necessary to consider the limiting

case of vanishing viscosity. The concept of external force field is also

useful for a description of the actuator disk model of a screw propeller.

In the non linear case this model still defies a theoretical description

of the flow at its edge.

The second part of these notes is concerned with optimization theory

of lifting surface systems. By a simple application of the calculus of

variations, necessary conditions for smallest induced resistance are found.

The existence of optimum propellers in a class of admitted ones is still

not quite known and further research is desirable on this subject.

In general the theories we discuss are linearized, by which we can

carry on the analysis further than is possible in non linear theories.

However with respect to optimization some semi-linear results are given

among others about the screw propeller mounted on a large hub of finite

length.

We do not discuss slender body propulsion which is important in

bio-mechanical theories on the swimming of fishes. For this we refer

to the survey given in [3O.

It is assumed that the reader has already a working knowledge of

hydrodynamics and is aquainted for instance with Bernoulli's law for

instationary flow, the suction force at the leading edge of a wing, the

linearization of a flow around a thin wing, the lifting line theory and

other basic ideas.

The exercises given at the end of a number of sections are not

meant in general to be solved by mathematics, often they are intended

to stimulate thinking about the subject.



At last we remark that it is important to be conscious of the many

approximations made in our considerations, we mention the linearizations

and the neglect of viscosity. It is worth while to try to estimate to

which extent the results are still valid in realistic situations.
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2. Mean forces and moments in relation with shed vorticity.

There is a tight connection between the production of a force action

on a fluid by a body and its shedding of vorticity. This will be discussed

in this section.

Consider a body, possibly flexible, of finite extent moving with some

mean velocity through an inviscid and incompressible fluid. The motion of

the body will beperiodicwith respect to a reference frame translating

with the mean velocity of the body. It is assumed that the motion started

infinitely long ago. A well observed fact is that in generai the body

leaves behind vorticity in the fluid. Examples are the trailing vortex

sheets behind an airplanewing or behind a screw propeller of a ship. In

the first part of this section we will show that when a body exerts a

non zero mean force on the fluid it inevitably rias to shed vorticity. An

analogous statement is proved for one of the components of the couple

exerted by the body on the fluid. The addition "of finite extent" in the

first sentence of this paragraph is essential as will be seen in the se-

cond part of this section where the two dimensional case is considered.

We will use a Cartesian coordinate system (x,y,z) with respect to which

the undisturbed fluid at infinity is at rest. The body B will move with a

mean velocity of advance U in the positive x direction and repeats its velo-

cities after each time period T or after each covered distance

in the positive x direction.

-e,

with

b=U T

Fig. 2.1. The body B with mean velocity U.

If the fluid motion is irrotational and without divergence, its velocity

field can be derived from a potential function (x,y,z,t)

y = (u,v,w) = grad (2.2)

(2.1)
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(2.3)

We assume that no vorticity is shed by he moving body B and then

show that no non zero mean forces can be exe ted on the fluid by B. In

this case is defined in the whole space ottside B. When the velocities

induced by the body tend to zero sufficienti' fast at large distances R

of the body, the force F(t) exerted by the fLuid on B, which s the op-

posite of the force exerted by B on the f lull, has the value ([121, page 349)

(2.4)

where u is the density of the fluid, B is fte boundary of B, d S an

element of area and = (n ,n ,n )
the localoutward normal on 3 B. In

X y z
[121 this formula is derived for a moving riid body, but it is easily

seen to be true also for a deforrnable body. the latter case also the
-* -2

velocities tend to zero sufficiently fast for large values of R, vi O(R ),

which occurs in the
cas:

of a temporarily exanding body.

The mean value of F(t) over one period.T of time becomes
t+T

i - p -

-- J F(t)dt = - fJ{(x+b,y,z,t+T)n(x+b,y,z,t-i-T) +
It T35

- ct(x,y,z,t)n(x,y,z,t)} d S. (2.5)

The velocities of the fluid at times t and t+T are the same for the points

(x,y,z) and (x+b,y,z). Hence the difference of the potential for the dif fer-

ent values of piace and time can be only a constant C, then

t+T
i + pc -*-J F(t)dt=ffndS=O (2.6)
Tt T as
From (2.6) we find that a body of finite extent, moving periodically

cannot experience a force with a non zero mean value without shedding vor-

ticity. Inversely, by the principle of action = reaction, such a body cannot

exert a mean force on the fluid without leaving behind vorticity. Hence it

cannot act as a lift producing wing or a thrust producing propeller. When

voricity is shed periodically, the functionis not defined inthe whole

space and (2.4) is not valid, so that the foregoing argument does not hold.

Because the velocity field belonging to the shed vorticity represents

kinetic energy, we can state that when a body of finite extent exerts a

mean force on the fluid this is inevitably accompagnied by energy losses.



The moment with respect to the fixed origin O, exerted by the fluid

on the body B of finite extent can be written as ([12], page 350),

-* d
M =p f5 .{r*n} d S

aB

where r is the vector from O to the surface element d S. Equation (2.7)

is valid when no vorticity is shed. Hence the mean value of the moment

with respect to the x axis becomes

T

f t(t)dt = f5(x+b,y,z,t+V){((x,y,z,t)+b) *
T

o
T X

aB

(x+b,y,z,t+T)}d S - .5f(x,y,z,t){(x,y,z,t) *(x,y,z,t)}d S
3B

Because again the difference of the potentials can be only a constant C

we find
e T- Jdt=-ff (yn -zn) dS=0

o aB
z y

(2.9)

D

(2.7)

(2.8)

We can consider also moments with respect to lines and
2'

for

instance parallel to the y and z axis respectively, which are translated

in the positive x direction with a velocity U (Fig. 2.1.). It can be easily

seen that moments about these lines need not have zero mean va].ues. Indeed

there seems to be an essential difference between the moment about the x axis

which is parallel to the mean direction of motion and those about and

which are perpendicular to this direction. Consider a moment about L1. A

fluid particle in front of B will obtain a velocity in some direction, how-

ever when B has passed it is conceivable the same moment will try to give

the particle a velocity in the oppposite direction. These effects counter act

each other. The saine holds for a moment about the line Z2. However when a

moment with a non zero mean value is exerted about the x axis, it always

has the same influence on the fluid particles in front as well as behind B.

This means such a moment could induce a rotational motion of the fluid

around the x axis, hence vorticity would be shed. Because this was excluded

such a moment with a non zero mean value is not likely to exist. An example

is a thrust producing stationary rotating screw propeller advancing through

a fluid at rest in a direction parallel to the axis of rotation of the pro-

peller. Then we have both a force in the direction of the x axis and a mo-



ment around it, hence by two reasons vorticity has to be shed.

The two dimensional case is different from the three dimen-

sional one. In fact it can be considered as a three dimensional

problem in which the velocities are, for instance, independent of

the z coordinate, hence they do not tend to zero at infinity as

was required in the foregoing. For instance a two dimensional wing

can have a lift force per unit of length without shedding vorticity.

Stated otherwise the tip vortices of such a wing are at infinity,

outside the field of vision.

For the time dependent force F per unit length of spari (z di-

rection) exerted by the fluid on the profile, the following formula

([12], page 282) holds

F(t) = i p j d (x,y,t)

where ç = x+iy, is the real velocity potential,

F(t) = F (t) + i F (t)
X y

F and F are the components of F in the x arid the y direction, i is

the imaginary unit and B the contour of the profile, passed through

in anti-clockwise direction.

Formula (2.10) is valid when the velocities tend to zero with

large distances R as O(R) in the two dimensional complex plane.

This happens when no free vorticity is shed by the profile. From

(2.10) and (2.11) we find for the mean value of F(t) over one

period T of time

t+T t+T

--- f F(t)dt = ! (F(t) + i F(t)) dt =

= -- f {(ç+b) d (x+b,y,t+T) - ç d (x,y,z,t)} =
'JE

ipb
j

ib
= d (x,y,t) = r,

T T

where, beause c(x,y,t) is real the circulation F around the pro-

fi3 is real. From (2.12) we find

(2.10)

(2.11)

(2.12)

6

t+T

F(t) dt=0 (2.13)



Hence we have the result, when a periodically moving two di-

mensional body does not leave behind free vorticity, it cannot

exert a mean force in the mean direction of its motion.

Exercise.

Discuss that a body of finite extent moving periodically in

the direction of the x axis with mean velocity U, can exert mo-

ments around Z1 or Z2 (as defined above) with non zero mean va-

lue, without shedding vorticity.
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3. Equations of motion with external force fields.

We consider the equations which describe the motion cf an

inviscid and incompressible fluid with respect to an inertial

Cartesian frame of reference (x,y,z). These read ([12], page 8)

- -* 1±dv v -*
= + (y, grad)v = - grad p + - F

p

8

(3.1)

div=O , (3.2)

where F(x,y,z,t) is an external force per unit of volume, acting

on the fluid. Here and in the following we assume that the field

of flow exists and is uniquely determined by suitably chosen

initial or other conditions.

First consider a force field

F = grad 'Y (x,y,z,t) , t > O , (3.3)

where 'Y is some sufficiently smooth scalar function and assume

at t = O, y = O. Then we can satisfy (3.1) and (3.2) by

P = 'Y (x,y,z,t) ;
E O , t > O . (3.4)

Hence such a force field does not induce any motion in the fluid.

In general only force fields will be of interest for which rot O.

Next consider two force fields 1(x,y,z,t) and 2(x,y,z,t) to

which belong the pressure fields and velocity fields (p1,1) and

(p2,2) respectively. The velocity fields are assumed to satisfy

the same initial conditions at t = O. The question can be posed,

when do we have

1(x,y,z,t) r2(x,y,z,t) (3.5)

The answer is of course closely related to (3.3) and (3.4), in

fact when

- 2(x,y,z,t) = grad 'Y (x,y,z,t) (3.6)



this will happen. Then by

p2 'i -

the righthand side of (3.1) in both cases will be the same and hence

(3.5) is valid.

With respect to theories where vorticity is created in an inviscid

fluid, external force fields are very useful. Indeed in domains where

the rotation of the force field is not zero, in a natural way rotation

of the motion of the inviscid fluid hence vorticity, is induced. We

write (3.1) in the form

av - - 1-_+v*w=-_F+grad(½Vj +)
I_I

where w = rot y. Application of the operation rot to both sides, yields

1. -
+ rot (y W) - - rot F

t p

From (3.9) it follows, when rot O then $ 0.

Consider a closed contour C in the fluid and coupled to the

particles, hence it is transported by the velocity field. At some

time instant we calculate the circulation T of C, defined by the

integral

T= (3.10

C

±
wnere the integration is taken around C and ds is an element of

length. We determine

dr_ 5dv - d-- -. ds+fv.dsdt dt
C C

It is well known ([3], page 20) that the second integral vanishes.

The first integral can by (3.1), be written as

1± - 1 -* -*

f (- grad p + - F) . ds = J F . ds

C j-I

Hence we have the result

9
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± +
J F . ds

dt - 1.1

C

Analogous results are valid with respect to the linearized version of

the equation of motion (3.1), which reads

4-v_ 1+gradp+F

Assume again that y E 0 at t = 0. We suppose that the external force field

F is 0(c), where c is a small parameter. By this it is reasonable to assume
4-

that also the pressure p and the components of the vlocity V and their

derivatives are 0(c), then in (3.14) we have neglected quantities of 0(c2)

with respect to quantities of 0(c).

Fig. 3.1. Moving force field and fixed contour C.

Equation (3.13) is now correct for a contour C fixed in space. It can

be used to check in a linearized theory if vorticity is left behind in the

fluid by a force field (x,y,z,t), confined to a moving finite region B

(figure 3.1).

Suppose that the circulation of the "probing contour" C is zero when the

force field is in position I. Then in general it becomes non zero when C

cuts the force region B (position II). When B moves on, it has no longer

contact with C hence the circulation remains constant (position III). In

this way we can check by using different kinds of contours C, if vorticity

has been shed by (x,y,z,t).

Exercise.

Use the method of the "probing contour" to show that behind an infinitely thin
wing of finite span which moves stationary in an inviscid and incompressible fluid
and delivers lift, trailing vorticity occurs. Replace the wing by an external force
field which is concentrated on the wing and has a strength per unit area equal to
the pressure jump across the wing.

;:)

(3.14)

10

(3.13)



11

4. Relation between external forces and their induced pressure fields.

We consider again the equation of motion in the form (3.8), and

apply the operation div to it. The by (3,2) we find

li il

+ Il2 = div (4.1)

When we consider a region of space where the fluid particles

have not entered or passed through any force field, for this region
-

we have F = O and w = 0, then it follows from (4.1), that

Ap 0. (4.2)

Hence p is a superharmonic function outside the force region. It

seems difficult to give more explicit general properties of p in

this non linear case.

When we use the linearized version of the equation of motion

(3.10), equation (4.1) changes into

Ap = div F, (4.3)

4
hence there is a direct relationship between p and F. Outside the force

field p is a harmonic function.

We will consider the linearized case more closely for F being a

singular force field concentrated in a point Q. It is clear that for

such a field the linearized equations of motion do not hold in the

neighbourhood of Q where the induced velocities become very large.

However, the result can be used as a Green function in an integration

procedure. By this the velocities can again become small so that the

result will be a good approximation of the exact solution of the non-

linear equations.

The point of application Q of the singular force field moves in

some prescribed way

Q : x = (t), y = rl(t), z = (4.4)

where E, n and are sufficiently smooth functionsof time. The

velocity V of the point Q becomes



- . . - . . . i

V = ((t) , (t), ç(t) , V = IVI
(2 + + ç2)2

f (t) (X -i X

R3

12

where we have neglected a possible additive constant pressure

p. In the same way we can derive the pressure fields connected to

the y and z components of F. Because (4.3) is a linear equation we

obtain, by superposition, for its solution

f (t) (x-e (t)) + f(t) (y-n (t)) + f (t) (z- ç (t)) -X z i f(t)R,

R3 '- R3

(4.11)

(4.5)

(4.12)

we assume that V > > 0, where is some number.

The components of the singular force field are functions of time,

hence

F(x,y,z,t) = f(t). 6(x - (t)) 6(y - r (t)) 6(z - ç(t)), (4.6)

where 6(x) is the delta function of Dirac, f(t) will be called the

singular force applied at Q with

(t) = (f(t), f(t), f(t), f = = (f2 + f2 + f)2 (4.7)

We consider first the pressure field at each moment t, caused by

the x component of F. Equation (4.3) becomes

= - (t) 6(y fl(t) 6(z - (4.8)

where the Laplace operator acts on x, y and z. The solution of this

equation can be derived simply from the solution of

L\q = -4ir 6 (x - (t)) 6 (y - ri (t) ) 6 (z - ç (t)) (4.9)

which has the form

q = f(x )2
+ (y - )2 + (z

ç)2} df R (4.10)

By differentiation of (4.10) with respect to x we find the following

solution of (4.8)



where

R = ((x-c), (y - rì), (z - (4.13)

In potential theory the function (4.12) is called the field of
-3.

a dipole, with its axis parallel to the force f. Because here it

represents a pressure field we will call it a pressure dipole field

of strength ¡J. When we draw a picture of this field around the

point Q of application at some distance from it, we obtain figure 4.1,

Fig. 4.1. The pressure field induced by a singular external
force f.

The pressures are plotted radially, the length of each radius denotes

the pressure at the point of the circle.Regions indicated by a "+"

("-") have a positive (negative) disturbance pressure.

It may be remarked that as a result of our approximations

(incompressibility, no viscosity, linearization) this pressure field

depends only on the momentary vector and on the point of application,

hence not on the past. This means that as soon as the external force

field has been switched off the pressures will have vanished everywhere,

although as will become clear later on the velocities are not zero in

general. In connection with (3.10) we find that when in a linearized theory

the external force field has disappeared, hence also the pressure field,

we have

-3.

r'- 'J,

in words, the velocity field has become independent of time.

13
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Exercises.

Show that lI2 > o, (4.1).

Discusss that the last paragraph of this section only

applies to an unbounded fluid. When for instance a body

moves freely in it or when an elastic plate is present

(4.14) is no longer true when the force field has dis-

appeared.

14



5. Relation between external forces and their induced velocity fields.

We consider again the linearized equations of motion and determine

the velocity field belonging to a singular force moving through space.

Outside the region of space through which the force has passed and where

we assume rot = 0, the equation of motion (3.10) with (4.12) yields

- -tv1
=----.grad (. ).
t 4iri R3

-3.
Introducing for this region a velocity potential with V = graa

and integrating with respect to time, we find

c(x, y, z, t) -
(t)

dt,4TUR3

where is given by (4,13) and (4.14). We supposed in (5.2)that

',7S)

(2) - Xs
s
+

-3.
Fig. 5.1. The force f(t) moving along the line L

the velocity field is zero at t = to and that the force has been switched

on at t = to. For t > to the force is moving along the line L(x(t),

y = n(t), z = (t)). Along L we introduce a length parameter s. Hence

by our assumption V > > O (below (4.5)) it is possible to write

s=s(t), t=t(s), s =s(t) (5.3)
o o

15

(5.1)

(5.2)

Then (5.2) can be put into the form

s(t) +
1 f(s) Rf - ds.'(x, y, z, t) = - i y(s) 3

s
o

(5.4)



The velocity which follows from (5.4) is

S(t) . -*- i {f(s) , R (f(s).R)
y = grad = -

V(s) R3 y(s) R5
} ds.

s
o

This result will now be interpreted in ternis of vorticity. We

consider a 1small" flat ring vortex of area dS and strengh F at the

point (, r, ç). The direction of the vorticity is coupled with a

T

Fig. 5.2. t'Small" ring vortex

right hand screw to its locally induced velocities. We erect at the

centre of F the unit normal , related to F by a right hand screw

(figure 5.2). It is well known ([121, page 170), that the potential

d'(x, y, z, t) of this small vortex has the value

- +
F n.R F CO5= - s- dS =

R2
dS,

+
where c is the angle between n and R. From this it follows that we

can consider (5.4) as a super position of ring vortices around the
+

line L enclosing an area dS, perpendicular to f(s), connected with

a right hand screw to the direction of f and of strength

ds
p y(s)

X

16

More precisely we have to consider the limit dS - O for the velocity

potential induced by these ring vortices in order to obtain the

velocity potential induced by the moving force field (4.6).

(5.5)

(5.6)

(5.7)



and

Now we can split the vector f uniquely into two parts

f(t) = g(t) + h(t) (5.8)

where g(t) is tangent to L and h(t) is perpendicular to L, hence

g(t) = À(t) V(t) (5.9)

17

h(t) V(t) = O. (5.10)

where À(t) in a scalar function.

Because our theory is linear we can add the velocities induced

by these moving forces. In the next two sections we will discuss

separately g(t) and h(t).



6. The singular force in the direction of its motion.

In the case of a singular force in the direction of its motion

we write (5.4) as

s
i g(s) cosa -(x,y,z,t) = J y(s)

R2

ds , g(s) = g(s)
I

s
o

Because we are interested in propulsion, hence in forces exerted

on the fluid in the opposite direction of the velocity V (4.5), we

reckon g(s) to be positive in the negative s direction. The angle a

in (6.1) is defined as the angle between the tangent to L pointing

in the negative s direction and R.

We can now rewrite (6.1) as

s
g(s) d

J y(s)
s
o

By partial integration we obtain

1 g(s) i

4iîp 'y(s) R(s)

This formula can be given a simple interpretation. It is known

that a source placed at a point which yields a unit volume

of fluid per unit of time, has the velocity potential

i

4TIR
(6.4)

Hence (6.3) has the following meaning. On the line L we have a source

distribution of strength

ldg(s) 1 dg(t)
p ds V(s) pV(t) dt V(t)

At the starting point s = s we have a starting source of strength

g(s)

g(s)

pV(s)

g(s0)

V(s )R(s
o o

i d (L)_) ds)ifa; y(s)
s
o

(6.1)

(6.2)

(6.3)

(6.5)

(6.7)

pV(s (6.6)
o

at the point where the force acts we have a source of strength



hence a sink. When the force is switched off at t = t for s = s there
e e

remains an ending source of strength (6.7) for s = Se
The velocity follows from (6.3) by

y = grad =

g(s) R(s) g(s ) R(si [ __ O O
+ +

4iq.i y(s) R3(s) V(s ) R3(s
o o

The velocity potential given by (6.1) or (6.3) is only valid for points

(x,y.z) not on L. It seems that by the source distribution (6.5) along L and

the starting and ending sources (6.6) and (6.7) the divergence of the flow

is no longer zero, hence we would not satisfy (3.2). However the total divergenc

in the fluid is zero. This is proved by integrating (6.5) along L and adding to

the result (6.6) and (6.7). What we have left out of consideration is the local

flow inside the narrow vortex tube around L, which follows from the vortex

interpretation given in section 5. Because the shape of the small vortex rings

around L is irrelevant we choose them circular with radius b. Then we find

from (5.6)

1'

y(s)
i g(s)
2 V(s)

v(s) 7tb2
g(s)

pV(s)

,1,75

6.1 The line L surrounded by the Hcircularu cylinder

for the vortex strength of the tube per unit of length along L
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s R(s) d g(s)

J.
( ) dsj (6.8)

s R (s) ds y(s)

(6.9)

where y(s) >v > 0, (4.5). This vorticity y(s) is reckoned positive when

it induces a flow in the negative s direction, hence when it is coupled

with a right hand screw to the negative s direction. When b o the velocities

of the fluid inside the tube increase and become approximately y(s) = y(s)

reckoned positive in the negative s direction. Hence the fluid transport inside

the tube in the negative s direction becomes

(6.10

This singular mass transport along L clearly meet the sources (6.6) and (6.7)

and the distribution (6.5) in such a way that no divergence of the flow occurs.

e



Exercise.

Show the "existence" of the "narrow" free vortex tube by the method

mentioned at the end of section 3. The singular force can be spread out

homogeneously over a small cylinder and the probing contour can be

chosen as in figure 6.2.

b

Fig. 6.2. Probing contour C and moving force field
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7. The singular force perpendicular to the direction of its motion

We now consider a singular force h perpendicular to its velocity V.

The induced velocity field is given by (5.5). We will also in this case

discuss a different expression, which is much more complicated but gives

an insight in the Itvortex configuration!t behind this singular force.

This vortex distribution follows from the one behind a lifting line of

varying intensity moving arbitrarily through space, by a limiting

procedure.

1S)

Fig. 7.1. Vortex representation of a moving force perpendicular
to its velocity.

At the place where the force is acting we consider three mutual

orthogonal unit vectors. The vector i tangent to L, the vector j along

and the vector perpendicular to both, so that Î,3,Ï form a right

handed system. Then we "replace" the force h by a bound vortex of constant

strength of length 2 in the direction of k. The strength of this bound

vortex follows from the law of Jcukowski

Ti T V2e = h = (7.1)

and because h is the force exerted ori the fluid T is with a right hand
+

screw in the negative k direction. In the neighbourhood of L we have

two lines L1 and L2 which have the representation (4.4)

(c(s), n(s), c(s)) + Ei(s) , (7,2)

where the + (-) sign belongs to L1(L2)..

Hence by the length parameter s on L we have also a parameter on L1 and

L2, however this is no longer a length parameter.

Along L we have a tip vortex of strength
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with a right hand screw in the +s direction and along L2 we have a tip

vortex of the same strength however in the -s direction. For s = s we have
o

a starting vortex of strength (7.3) in the +k direction. At last we have

distributed vorticity along L in the +k direction at strength

1 (d h(s)) 1

u ds \7(s) 2c

per unit of length in the s direction. These four types of vorticity are

such that, i) the desired force h(s) is induced and ii) the vortex field

is free of divergence. We show that this vortex field in the limit c -+ o

induces the same velocity field as is given in (5.5).

In order to do this we need the law of Biot and Savart ([12] page 168),

which states the following. Consider a line element

Fig. 7.2. Biot and Savarts law.

dsi around the point where i is a unit vector, with a vortex of
-4

intensity r coupled with a right hand screw to i. This vortex element

induces at the point (x,y,z) a velocity

h(s) 1

pV(s) 2c

-4 -
+ r (i&-)ds.

4w
R
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(7.3)

(7.4)

(7.5)

By (7.5) the tip vortex along L1 induces the velocity

+ d -

s (j-i-e ) (R-ck)
- dki i h(s) ds. - ds, (7.6)y (x,y,z,s1) - r- 2e y(s) 4-

3 ds
s - dk' -- -#L1

i+c - R-ekj
ds



at the point (x,y,z) while the force is at s = s. Analogously the tip

vortex along L2 induces the velocity at (x,y,z)

- dk - -*

s (i-)
__ dk

ç I h(s) ds
vL(xlYlzlsl) = - y(s)

(R+ek) ±
} i - e ds, (7.7)

s dic
±3

o i - IR+ekI
ds

when the force is at s = s. In the limit e -* o we can write

- -* i
1l

h(s) d
VL + VL - y(s)

(i +

o

- - i j1 h(s) (R.k) -:)-

±
(R.i) - - 2 ± ±

V +V - [+3
L1 L2 4mp (s) 5

- kR----ik1dS+
R Rs R

o

The contributions from the starting and the bound vortex to the velocity

are
-* s -+ s

± R i 1h(s) i -± R
r . k - 2) =

1 h(s)
k -

4IT pV(s) 3

R s R S
o o

ds

Carrying out the differentiation yields

s ±-* -+

1 1 h(s) r (R.k) -- i dî -- i ± ±
1+ 3 . i R + - -- R - ---- i & ki ds. (7.9)VL +vL y(s) 5 3 ds 3

1 2 s R R R
o

By partial integration we find

ss
d h(s)

±

kh(s) 1 d - - R h(s)
- 1 V(s)

i k R ds +
3y(s) ds R y(s) s ss R

o o o

(Xi
3} ds.

R-Akj A=o

s
-* -

h(s) ±
S1

h(s) (R.i) k R ds+ J k i ds - 3
y(s) 5

s V(s)R R
o s

o

Hence

i d (h(s) i -* -*

ds
h(s) R

4irp ds V(s)
k R

V(s)R3 ss
o o
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(7.8)

(7.10)

(7.11)

(7.12)



and the contribution of the distributed vorticity of strength (7.4) in

the + k direction is

1 rSl d h(s) - Rk ds.
4irp ds V(s)

R3s
o

- i r1 h(s)
3

(R.k)
--

(R. -* -* 2 -i)
k R - - i k] ds.V

41rj y(s)
s R R R3
o

The question is now if the velocity (7.14) is equal to the one given

in (5.5) or if the following equality is true.

- -* - -* -.9. -9. -9.
(R i) ± - 2 - -*

+
R(j.R) (R.k) - ; - 3 k P. -- - i k

R3 R5 R5 R5 R3
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By adding (7.11), (7.12) and (7.13) we find for the total velocity induced

by the vorticity distributions

-9. -9.
This can be proved by taking inproducts of both sides of (7.15) with i,j and
-9.

k respectively. In each of these three cases equality is proved easily hence

(7.15) is correct and our vortex configuration can be considered as to be

induced by the moving singular force perpendicular to its velocity.

Exercise.

Discuss the concept of a lifting line by a continuous distribution of

external forces per unit of length along a line segment, placed in a parallel

flow.

(7.13)

(7.14)

(7.15)



8. On the concept bound vorticity of a wing

The results of the previous section can be used after a simple Galilei

transformation, for the description of a wing of zero thickness placed in a flow.

We consider first the two dimensional case of a profile of zero thickness in

a homogeneous flow of velocity U, hence the flow field is independent of the

z coordinate. The profile is supposed to induce only small disturbance

Fnc)

X.

Fig. 8.1. Profile of zero thickness placed in a parallel flow.

velocities in the fluid and lies in the neighbourhood of the interval

a < x < b of the x axis. Because the theory is linearized we satisfy the

boundary conditions for the flow not on the profile itself but on the

interval (a,b).

The camber of the profile will cause pressure differences between

the + and the -side of the profile

+
p(x) = p (x) - p (x). (8.1)

From this it follows that the profile can be represented by an

external force distribution F(x) per unit of length in the z direction,

acting at the fluid. The force distribution is applied at the interval

(a,b) and reckoned positive in the negative y direction. The strength of

this field is

F(x) = -Ap(x). (8.2)

By the previous section it is clear that we can replace this force field

by a stationary bound vortex distribution along the interval (a,b) of

strength per unit of length in the x direction

r(x) =

where r is reckoned positive in the direction denoted in figure 8.1.
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The reason that here a natural "bound" vorticity can be introduced is

that the velocity of the points of the profile with respect to the fluid

seems to be well defined, namely U. We intuitively couple to these points

the elementary forces F(x)dx, which then have the velocity U with respect

to the fluid and hence can be replaced by the time independent elementary

bound vortex F(x)dx (8.3).

This certitude disappears when for instance the leading edge position

a and the trailing edge position b become functions of time, then the

identity of the points is no longer obvious. Two possible different realisations

are for instance drawn in figure 8.2, where we assume that the parts of the

profiles are infinitely thin and glide along each other without space inbetween.

-
L_L F - .-'------------- )

c ( 4í) ,- aJ4)

Fig. 8.2. Two different realisations of a contracting and expanding profile.

Because the fluid is inviscid the difference in construction of the profiles

will not have any influence on the pressure distributions nor on the induced

flow field, hence is not relevant. This means that it is not necessary to tie

the bound vorticity to the material points of the profile and to give it

the velocity of those points.

Even for the case of fixed a and b it is easy to show the ambiguity of the

above introduced (8.3) bound vorticity concept. Consider for simplicity

the case of a profile with a constant pressure jump (p const.) over its

whole chord. Then we can take a constant layer of bound vorticity r of

strength per unit of length in the x direction (8.3), (8.2)

F = - = const.,

here the elements of bound vorticity F dx are coupled to the elementary

forces F.dx = -p dx moving with velocity U with respect to the fluid.

Next we assume however that the elementary forces F.dx have a velocity

V in the negative x direction, hence have with respect to the fluid, a

velocity U + V. Then by (8.1) the strength of their elements of bound

vorticity become

Fdx
(U +V)

(8.4)

(8.5)



The following happens, first the elementary forces are created at the

trailing edge, hence their starting vortices of strength F dx remain

behind and are transported downstream by the flow. This gives rise to a

vortex sheet of strength per unit of length in the x direction

VF

U

Second the elementary forces move to the leading edge and create a bound

vortex layer of strength

27

Third the elementary forces reach the leading edge are switched off and leave

behind their elementary amount of vorticity which is transported downstream

from the leading edge. This creates a layer of strength.

VF
U.

(8.6)

(8.7)

(8.8)

Hence at the profile we have a layer of bound vorticity of strength (8.7)

and a layer of free floating vorticity of strength(8.8). Their total strength is

''U+V _F
-

which is exactly the strength of the bound vorticity in the first case.

Behind the trailing edge we have the sum of the two free floating layers

of strengths (8.6) and (8.8), hence their total strength is zero, as it has

to be in comparison with our first approach.

From this it follows that the flow field in both approaches is the same,

because the law of Biot and Savart makes no distinction between bound

and free vorticity.

This can be generalized to arbitrary moving flexible lifting surfaces

which are allowed to expand or contract. The velocities of its points are

of no interest and can be chosen at will, the same holds for the velocities

of the time dependent elementary forces which represent the lifting surface,

only the vorticity created by them has to be calculated in the way as is

discussed in the previous section.

The description given here will be needed when we consider the optimization

of flexible wing systems (section 28).

(8.9)



9. A bound vortex "ending" at a rigid plate -

The following statement is sometimes heard; a bound vortex can end against

a rigid wall. This kind of configuration is rather important in aero and

hydrodynamics. In ship propulsion we have for instance the shrouded propeller.

Here the tips of the blads with their bound vorticity, move along the inner

side of the schroud which is in first approximation a cylindrical surface.

In order to focus attention we will consider the schematic case of a half

infinite rigid flat plate which is infinitely thin. The plate (fire 9.1)

coincides with the x,y plane of the Cartesian coordinate system x,y,z, for x < O.

LL

Fig. 9.1. Half infinite plate with vortex system in its neighbourhood.

The fluid in which it is embedded has a velocity U in the positive x direction.

We consider the linear theory for a half infinite bound vortex of strength r

parallel to the z axis and coupled to the +z direction by a right hand screw.

This vortex lies in x,z plane with x = a < O; z > b > O. The velocities

induced by r are small of O(e) while U is assumed to be O(0). From the end

(a,O,b) of the bound vortex starts a free vortex of the same strength which

lies along a stream line of the parallel flow, hence parallel to the z axis.

The question is, what happens when b tends to zero hence when the bound vortex

touches the plate.

To simplify this problem we assume first that the bound vortex is far upstream

of the trailing edge, hence we consider the case a = Then there remains

only a free vortex stretching from x = - along the plate at a distance b of it.

The problem of flow for this configuration can be found by assing ori the

half infinite plate, a system of vortices which has to be chosen in such a

way that, first, the component of the fluid velocity normal to the plate

is zero and second, that the Kutta condition at the trailing edge of the

half infinite plate is satisfied. This latter condition is equivalent to the

statement that at both sides of the plate, when we tend to the trailing edge,

the pressures must become equal for each value of y.

An exact solution to this problem is found easily in the following way. Suppose

the plate is not half infinite but stretches from x = - towards x = +. Then

the problem is trivial.
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Fig. 9.2. Cross section for the case of the two sided infinite plate (y axis),

a) with mirror vortex, b) with vortex layer y(y) on plate.

At points with Z > o the influence of the plate is the same as the influence

of a vortex which is the image of the free vortex under discussion (figure 9.2 a)).

By this the tangential velocity at the plate is kncwn namely -Fb/ir(b2 + y2) in
the y direction. Assuming that the flow behind the plate, hence for z < O, is

undisturbed, this is also the strength of the vorticity which can represent

the plate

y(y) -
rb

(9.1)
r(b2 +y2)

coupled with a right hand screw to the positive x direction (figure 9.2 b)).

In order to take into account the two sided infinite plane we only need

vortices parallel to the z axis. Then our disturbance velocities are all

perpendicular to the main stream. This means that everywhere the pressure

([12], page 99)

p p + ½ p U2 - ½ p((U + u )2 + + w2)cp + O(e2), (9.2)

is constant, because the x component of the disturbance velocity = (u,v,w)

is zero. Now we take away the added half plane x > O, however we let intact

the vortex system for x > 0, then we have found the solution for the half

infinite plate, with a free vortex at a distance b. This is correct because

first we have satisfied at the half plane z = O, x < O, the boundary condition

of vanishing normal component of the velocity and second we satisfied the

Kutta condition at the trailing edge, all pressures are equal to within the

accuracy of a linearized theory. We remark that

¿co
dy

y(y)dy
= ;- j = F.

(b2 +y2)
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Next we consider the limit b - O. Then from (9.1) y(y) -* O for each y

however as follows from (9.3) the total strength of the y(y) remains constant

and equal to F. Hence for b -- O the free vortex F and the free vorticity

y(y) annihilate each other and no vorticity remains for x < O as well as

for x > O.

The result obtained in this way describes exactly the influence of a

half plane on our two sided infinite free vortex. The problem stated at

the beginning however is more complicated. There we have to take into

account the bound vortex parallel to the z axis and the fact that the

free vortex is only half infinite - a < x < +. These differences however

cannot cause infinite induced vlccities in the neighbourhood of the trailing

edge of the plate and will not give rise to concentrated free vorticity.

Hence we conclude that also in this case, when b -- O, the concentrated free

vortex disappears and only distributed free vorticity flows from the

trailing edge.

By this it is acceptable that in the case of a plate of finite extent

only distributed and no concentrated free vortex will leave the trailing

edge when a bound concentrated vortex ends against the plate.

Because the vector field of vorticity is without divergence it is

clear that from the trailing edge free vorticity starts, with the same

total strength as the bound vortex. It seems a contradiction that in the

case of the two sided infinitely long concentrated free vortex and the half

infinite plane when b + 0 all vorticity disappeared although at x = -

there must be a bound vortex of finite strength ending at the plate. The

reason is, that because the trailing edge is infinitely long, the density of

the free vorticity can become "infinitely small", hence zero, when we

consider the limiting procedure a - - in figure 7.1, while still it will

have a finite nonzero total value.

It is also easy to describe the vorticity at the plate in the direct

neighbourhood of the point Q where the concentrated bound vortex of strength F

rets the plate. Then we can neglect the influence of the traillng edge. Hence

we consider a vortex ending at an infinite plate. By r we denote the distance

from a point of the plate to Q. In this case the exact solution is as follows.

At the plate we will have a radially converging or diverging vortex system

of strength F/2r per unit of length at a circle with radius r (figure 9.3).

L1t
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Fig. 9.3. The vorticity at the pia
in the neighbourhood of
the end point of the
concentrated bound vorte

te
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Then it is seen that the total three dimensional vorticity field is without

divergence and it can simply be proved that the component of the induced

velocity normal to the plate, is zero. The reader can check that behind

the plate the velocity of the half infinite bound vortex r is opposite

the velocity induced by the vorticity at the plate, hence behind the

plate the velocity is zero.

When the trailing edge is present it is heuristically clear that

the spreading of the vorticity is qualitatively as given in figure 9.4.

Fig. 9.4. A concentrated bound vortex ending at a fiat plate in the

neighbourhood of the trailing edge.

Because we have to satisfy the Kutta condition at the trailing edge, hence

no pressure jump is allowed at this edge, the vorticity at the plate has to

meet the edge at right angles.

Exercises.

Derive a integral equation for the vorticity at the plate

in the case of figure 9.4.

Make clear by a heuristic argument that in figure 9.4 all the

vorticity will leave the trailing edge.
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10. The actuator surface

32

In general the detailed action of propulsion systems is rather complicated.

Some times this detailed action is of no interest and only a more global

knowledge of the induced velocities is needed. For instance when we are

interested in the overall influence of a ship propeller on parts of the

ship at a distance to the propeller which is large with respect to its

dimensions. In these cases a simplified representation of the propulsion

system can be given by some suitably chosen forcefield acting on the fluid.

It means that in order to know the velocity field induced by the propeller
4-

we have to solve (3.1) together with (3.2) or given F(x,y,z,t). For a

propulsion device we assume in general that its action is periodic with

respect to time while the flow at infinity is an incoming parallel flow.

Instead of a general three dimensional force field it is simpler in many

cases to represent the propeller by a force field which is concentrated on a

surface

G(x,y,z) = 0. (10.1)

The active part of this surface, where the force field is non zero, will

be denoted by S. When the surface S is a flat circular region, the representation

is generally called an actuator disk. The surface will have a + and -side,

for instance the +side faces the neighbourhood of G = O where G > 0. For

simplicity we assume that the force field and aLso the velocity field is

independent of time. It will be represented by

4- +
F(x,y,z) = f.6(m) = (f ,f ,f ) 6(m) (10.2)xy z

where f , f and f are sufficiently smooth functions of position at theX y z -
surface, m is the distance from a point in a neighbourhood of S' to G = 0,

reckoned positive when the point is at the +side and 6(m) is the delta function

of Dirac . The vector at S represents the force per unit area. We do not

take into account gravity which is a force field derived from a potential

hence it can be included simply in p(3.4).

Consider an area A of the active region S and around it a box BA of small

width h. We apply Greens theorem to the interior of BA and take the limit h ± 0.

Because A has arbitrary shape, we find the following jump relation across S,

4-+4- 4--± def - ± + def +
I (10.3)v.n-v.n [v.n] [y] =0

- n -



where ri is the unit normal at G = 0, pointing in the direction G > 0.

Integrating the equation of motion (3.1) for the time independent

case over a region B of space yields

-* -+ - 1 1 -*f (y . n) y do = - f F dv - - f p n do,

aB B aB

where do and dv are elements of area and volume and B is the boundary of B.

Choosing for B the volume defined above we find by taking the limit h -* O

from the component normal to G = O and using (10.3),

+ -* -* def
[pL = f . n

and from the component in the plane tangent to G = O

± +
p [vtl

=

where t denotes the tangential component.

This formula has a meaning only at places of S where it is really crossed

by fluid particles hence where y 0.

Introducing the head H by

H = + ½ (u2 + y2 + w2)
p

we find by (10.5) and (10.6)

++ -,--

p[Hj=f +1 -

n y 2
n

We can write the equation of motion (3.1) for the time independent case

as ([3] page 16),

-+ -# 1 -*
V X w = - - F ± grad H.

where w (w , w , w ) is the vorticity of the fluid. Outside the forceX y z

free region we find for the change of H along a streamline, hence in the

direction of y,

dH
= v.grad H = 0.

This represents the well known fact that outside the region of force H

is a constant along the streamlines. Of course this constant can change

from one streamline to another.
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(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)



By equations (10.3), (10.5), (10.6) and (10.8) we can express the

values of p, y and H at one side of the actuator surface in their values
+

at the other side when f and y are known.
n

We now discuss some formulas for the vorticity induced by the external

force field. From (10.6) we see that when ' 0, there is concentrated

vorticity at the actuator region in a direction perpendicular to and of

intensity Q per unit of length in the direction

f,

Q=

where
t

From (10.11) it follows that Q = O when O and y 0.

So normal forces do not induce a jump in hence do not induce concentrated

vorticity at the actuator surface, again when V 0.

When y = O then
t

= O by (10.6) and the quotient at the right hand side

of (10.11) is not determined. In this case it still can happen that a concentrated

free vorticity sheet is transported by the fluid flow along S where only normal

forces are acting. Then of course a jump occurs in and Q 0. However this

Q is, so to speak, not caused by the local force field but can be interpreted

to be shed by "upstream' force fields. In this way also an infinitely thin

wing can be discussed [21].

In order to discuss the free vorticity just outside the actuator surface,

hence outside the force region, we translate the origin of the Cartesian

coordinate system to the point under consideration at S. The x,z plane will

be tangent to S and the positive y axis is at the + side of S. Outside the

force region, hence for F = 0, we apply (10.9), which yields two independent

equations for u , w and w for instance,
X y zL- {-----+uw } iWX y yn

i
w = - wu I,

Z y cx y
n
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(10.12)

(10.13)

The y component (10.9) (F = 0) yields an equation which is a linear combination o

(10.12) and (10.13), this follows from (10.10). The value of w in (10.12) and
-* y

(10.13) can be computed from y, since in its definition only the partial

derivatives in the x,z plane occur,

a a
w = u--w.

ax (10.14)



±
Hence when the force field is given and at one side of S the quantities y and

±
H, we can calculate at the same side w and at the other side y, H and w as

well as the concentrated vorticity at S.

From (3.5) and (3.6) we obtain interesting information with respect to
±

changes of the velocity field y caused by a change of F, hence of the actuator

surface G = O and the force vector f per unit area of G = 0. Suppose we have

two different actuator surfaces, one with an active region S and another with

an active region S2 on different surfaces G1 (x,y,z) O and G(x,y,z) 0.

A cross section with the x,y plane is drawn in figure 10.1. We assume however,

that S1 and S2 have the same edge and the same normal load f, which is

independent of the position on S1 or ori S2, while = 0. This means that the

difference

2(x,y,z) - (10.15)

of the force fields (10.2) consists of two functions of Dirac

and

Fig. 10.1. Two different active regions S1 and S2 with the same edge.

one at S1 and the other with "opposite sign" at S2. We introduce the volume

B in between S and S
12 1 2

We now put

p2(x,y,z) = p1(x,y,z) , (x,y,z) B1

p2(x,y,z) = p1(x,y,z) - f , (x,y,z) B12.

Then the function W(x,y,z) of (3.7) is zero outside B12 and has the constant

value - f inside B12. By this choice of 'Y we satisfy (3.6) and hence S1 and

S2 with the same f induce the same velocity field.
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From the foregoing we find that the shape of the inner part of an

actuator surface with a constant normal load is of no importance for the

induced velocities, Of course this holds only for the in viscid and

incompressible fluid we consider here.

In the general equation of motion (3.1) we call the region where the

three dimensional force field F is not zero, the actuator region. As is

clear from this section the actuator surface theory discusses only a

special case of the general equation of motion. We can go one step further
±

by concentrating the force field F on a line, such lines could ne called

actuator lines. Fjnally we can concentrate so that it is only non zero at

a point, then a singular force (actuator point) occurs.

We mention that a singular force has no meaning in the non linear theory

for inviscid fluids, it induces no velocities [21]. This is also partly

true for the actuator line, although these are used as lifting lines.

However when we consider for instance an infinitely long line embedded in a

fluid, which is at rest at infinity, it can be shown that this line loaded

by a constant force per unit of length does not induce any velocity in the

fluid.

Exercise.

Show that the independence of the velocity induced by an actuator surface,

from the shape of the inner part of the active region for a normal load

which is independent of position, holds also when f = f(t) and S is time

dependent but with its edge fixed.



where

Summing up we find

R {f-.'(y,z)h(x) ,O,0}
1 x dd' +v(x,y,z,t = 0) -

4ipU
S R3

pU

and h(x) is the unit step function

h(x) = i , x > O h(x) = O , x < 0.

We still more simplify this problem by assuming that f(y,z) = f is

independent of y and z, hence we have a constant normal load over the disk.

Using the method of section (3.1) (figure 3.1), we will give a description

of the vorticity left behind by this disk. We use a rectangular probing

contour C, lying in the plane, with corner points A1, A2, A3 and A4

(figure 11.1). We assume that the sides (A1,A2) and (A3,A4)are of length

and parallel with the axis. The sides (A11Af4) and (A2,A3)are of length

h and perpendicular to the axis. First we consider the case that the

distance of A(A) to the x axis is smaller (greater) than b. Hence when

the isk moves to the left it will be cut by the contour. After the passing

of (A2,A3)only (A,A2) pieces through the disk. From (3.12) we find

fdi i -* -± n= - J F (x,y,z,t) . ds = - -

Before the disk has met the contour its circulation T, (3.11) is zero.

When the disk has passed entirely along C we find

f
!

p U

Hence per unit of length vorticity is left behind of strength

f
F n

-Y = = -

coupled with a right hand screw to the +' direction. Because the width

h of C can be made arbitrarily small, this free vorticity is concentrated

at the half infinite cylinder behind the edge of the disk. Clearly (11.10)

is in agreement with the second term at the right of (11.5), which causes

a discontinuity in the x component of the velocity behind the disk, hence

concentrated vorticity.
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11. The circular flat actuator disk

We consider now a simple example of an actuator disk, using the linearized

theory. The disk is the circular region

o.

= _ut (2 + 2) <b2

Fig. 11.1 The moving actuator disk.

It is represented by the time dependent force field

= (f'.'(,'), 0,0) ( + Ut),

where f(',)o for + > b2. This force field can be considered as a

set of an "infinite number" of forces (f-(Ç) ,O,0)d d'i'. Then we can use

(6.8) and (6.10) to calculate by superposition the velocity field induced

by this disk. We consider the moment at which the disk just arrived at the

(',') plane hence t = 0. The length parameter s of (6.8) becomes here -',

while we assume that the motion started infinitely long ago hence = -.

The force g(s) in (6.8) has to be replaced by

g(s) = -f(y,z) dy dz,

and the path L of it is a line parallel to the axis. This force is

independent of s = -x hence the third contribution at the right of (6.8)

disappears. The second contribution vanishes already because s0
The velocity which follows from (6.10) is in this case only in the x

direction, it becomes

f;)
U

dxdy=+
Udxdy p
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When we take the distance of A4 to the x axis smaller than b, both

(A1 ,A2) and (A3,A4) pierce through the disk and the contributions of the

integrals (A1,A2) and (A3,A4) cancel each other hence dr/dt remains zero.
a-

By using other probing contours parallel to the (y,z) plane and parallel

to the (z,x) plane it is seen that no other vorticity is left behind.

So (11.10) describes the only vorticity shed by this disk with a constant

normal load f
n

Because only the relative motion of the disk with respect to the

undisturbed fluid is essential, we have also solved the problem of an

actuator disk plad in a parallel flow of magnitude U in the positive X

direction of a reference system (x,y,z) (figure 11.2). This problem is

->

I

(

Fig. 11.2. The actuator disk placed in a parallel flow.

independent of time hence it is a special case of the type of problems

discussed in the previous section, although there the theory was non linear.

The velocity field in this case simply follows from (11.5) by adding the x

component U

f {f h(x),0,0}
- n___ - dd +v(x,y,z) = (U,0,0) + 4U

R3

Because the actuator disk is covered with a layer of pressure dipoles with

their axis perpendicular to the disk, the induced pressure field will have

a jump of magnitude f. This is in agreement with (10.5). From (10.11)

it follows that no concentrated vorticity is present at the disk, 2 =

because the load is normal in this case.

When f < O the disk acts as a propeller and it follows from (11.11) or

(11.5) that behind the disk is a jet in which the fluid flows downstream

with a larger velocity than the surrounding fluid outside the vortex

cylinder. This is in agreement with the slipstream which can be expected

behind a propeller.
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Suppose the total thrust of an actuator disk with a constant normal

load over its area A is T and the incoming velocity is U. Then by (11.11)

the excess velocity far behind the disk is T/pAU. Hence the kinetic energy

E. shed per unit of time becomes

The efficiency n, which is defined as the quotient of the useful work TU

and the total work which is the sum of the useful work and the lost

kinetic energy, becomes

In section 38 it will be shown that this is the smallest upperbound for the

efficiency of a propeller acting in an inviscid and incompressible fluid

with the same total thrust T, working area A and velocity of advance U.

Therefore this actuator disk is sometimes called an ideal propeller.

Exercises.

E. = T2/2ÌiUA.

TU 'T -1

= TU ±E
= + }

i 21JU2A

Discuss by the method of the probing contour the vorticity shed by the

actuator disk when the normal load depends on y and z (11.2).

Show that the thrust of a normally loaded actuator disk and the impulse

far behind it in the slipstream are in agreement with the momentum theorem

([12] page 54).
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12. Rotating vortex model of actuator disk

The question arises if we can give a simple vortex representation of an

actuator disk which resembles a screw propeller. This will be shown to be

possible. For simplicity we assume a constant normal load and a linear

theory.

We introduce a cylindrical coordinate system (x,r,q) as drawn in figure

12.1. Consider a straight vortex OA of length b. The endpoint O coincides

Q3

Fig. 12.1. The rotating vortex OA.

with the origin of the coordinate system and the vortex rotates with angular

velocity in the plane x = O. The strength of this vortex is F coupled with

a right hand screw to the positive r direction. From the endpoint O starts

a free vortex of strength r stretching along the x axis and from the endpoint

A a free vortex of the same strength along the helicoidal line

(p-w+ax=O , r=b, (12.1)

where a = u/U. These two free vortices are connected by the starting vortex

02A2, which was shed by the beginning of the proces "long ago" and which

makes the vortex field free of divergence.

By the theorem of Joukowsky the force per unit of length exerted by the

fluid on the vortex OA becomes

p(U,O -wr) (O,r,O) = p(wrr,O,Or), (12.2)

where the components of the vectors are their physical components in the

(x,r,p) system. For r < O the x component of this force becomes negative

hence the vortex acts as a propeller.

Now suppose that W increases indefinitely and F decreases so that F W

remains constant. Then several limits have to be considered. First, the

free vortex along the x axis and the starting vortex disappear. Second,

the helicordal vortices become circular and their strength per unit of length

/
T1

k

k

Q"

'C
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in the x direction assumes the value

FW/2iU , (123)

coupled with a right hand screw to the negative (P direction. Third, the

force exerted on the vortex becomes perpendicular to the actuator disk

(X = O, O < r < b) and its mean value per unit of area at a radius r becomes

p Wr r dr w r

27rrdr 2p

which is independent of r.

When we suppose

pWF
2iî n

we have the actuator disk with a constant normal load of the previous section.

We will check if the characteristic features of the disk also can be recovered

by the model of this section. The vorticity (12.3) on the cylinder behind the

edge of the disk becomes by (12.5)

rw/2u = f/tJ , (12.6)

which is in agreement with (11.10), the change of sign is only due to the

different definitions of positive direction in both cases.

The vorticity on the disk tends to zero because F - 0, this is in agreement

with Q = O for = O in (10.11). At last we discuss the pressure jump over

the disk which in the previous section followed from the force representation

almost directly.

Consider in figure 12.1, the two points Ql and Q6 which we suppose to be

close to each other, Q1 with a negative x coordinate and Q6 with a positive

one, hence each at a side of the "disk". We connect these points by a contour

i' Q2, Q3, Q, Q5, Q6, where the parts and (Q51Q6) are very long

because we assumed that the process started long alo and the contour encircles

all vorticity at the cylinder. In order to calculate the pressure difference

between Q1 and Q6, in the limit w - , we use the instationary and linearized

formulation of Bernoulli's law ([12] page 99),
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where is the velocity potential and a possible addition of a time

dependent "constant" is neglected. The potential difference
-

between

the two points Q1 and Q5, can be written as

'61' ±...+J
Q Q5

This potential difference is equal to the total vorticity enclosed by the

contour, because by (12.6) this is each unit of time increased by an amount

we find

f
n- ) =-

t E i ii

The condition of no divergence of the velocity field has as a consequence that

the u component of it must be continuous across the disk, also in the case

of w - . Then we find from (12.7)

p6 - p1 = - f

which is the desired pressure jump.

Exercises.

Give also a rotating vortex model when the normal load f = f (r), hence
n n

depends on r, by choosing the strength of the rotating vortex F to depend

also on r.

Create a vortex model in the most general (linear) case, when the load

depends arbitrarily on position and time, while the plan form of the

disk is no longer circular.

43

(12.8)

(12.10)



13. Some remarks on actuator disk theory

We considered in sections 10, 11 and 12 the non linear and linear theory

of actuator surfaces with prescribed loads. In this section we will conclude

with some short remarks on these subjects and also with respect to the case

that the load is not prescribed but has to be determined.

For the case of a prescribed load we refer to [281 for a method to recast

the problem in an integral formulation. By this it is possible to carry out

effectively numerical calculations by means of an iteration procedure. In

this work an actuator disk is considered with normal and tangential components

of the load, in such a way that an approximation of the loading of a ship screw

is obtained. In [6) this method is used to calculate numerically the flow pattern

of an actuator disk of this type. However it is not quite clear if the assumption

made in [6] on the release of the vortex sheet from the edge is correct, In a

linearized theory there is no problem with respect to this because the vorticity

of the sheet remains at the place where it was formed, with respect to the fluid,

it is not transported by its own induced velocities. In the non linear case

this is no longer true. In [6] it was assumed that the sheet leaves the edge

of the disk in some well defined direction. In [21] it is argued that possibly

such a direction need not to exist and it is proved mathematically that in a

very simple case this sheet can have the shape of a spiral encircling an infinite

number of times the edge. In figure 13.1 we have irawn a picture of this

phenomenon. The question is still open what happens in more realistic cases.

It can be remarked that by experiments the spiralling behaviour is not to be

rejected.

When the device which has to be represented by an actuator disk is very well

specified it can be desirable not to assume a load but actually to calculate

it. This could be done as follows.
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First assume some unknown load on the actuator disk. Write down the induced

velocities by this load and add these to the known incoming flow. Next we

use the geometrical description of the device to find an additional relation

between the velocities at the place of the disk and the force field. In

this way we have two equations for the unknown velocity field as well as

for the unknown force field. This has been done in [91 for a quickly rotating

boomerang under the assumption of small forces and small disturbance

velocities, hence in the linearized case.

Other applications of actuator disk theory are for instance in the theory

of helicopter rotors we mention [19] for a more general survey we mention (10].



14. The ship screw, general considerations

Our next subject will be the ship screw which is up to now the most important

device for hydrodynamic propulsion. It consists of a number of heliccidally

shaped blades connected to a hub. The number of the blades can vary from two

upto about six. The hub is mounted on a shaft (figure 14.1), which is rotated

Fig. 14.1. Ship screw.

by the engine. The problem is how to shape the blades so that at a given

rotational velocity, a prescribed thrust is produced which moves the ship

with a desired speed. This is a very difficult problem because of the many

complications which occur in a realistic situation. We now discuss, not at all

in an exhaustive way, a number of these.

The ship screw is generally working behind the ship in a flow which is

disturbed by the ship. This disturbance roughly proceeds from two different

origins. First, the water has to follow the ship's form, hence behind it,

it has to converge and by this the inflow in the propeller region is not

homogeneous. Second, the water flows along the ship is dragged with it by

viscosity and becomes turbulent.

The hull of the ship influences in still another way the propeller. Because

it is a rigid surface it will hinder the water to be set into motion by the

propeller hence the resulting pressures on the blades will be changed. The

free surface of the water has an analogous effect. It is also a boundary of

the domain in which the propeller is working although perhaps with an opposite

effect to that of the rigid hull. The tip of the blade will experience a

different inertia of the water when it is in the neighbourhood of the free

surface than when it is far beneath it.

Considering such difficulties it seems wise to make simplifications in order

to obtain a model which is still tractable by mathematics. However, these simplifi-

cations may not go too far, so that no conclusions about the real propeller can be

obtained.

We will neglect viscosity and assume no influence of the ship hull at all
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and also not of the free surface. The incoming flow will be a homogeneous

one with velocity U. The thrust is mostly delivered by parts of the blades

which are not too close to the hub, because the relative velocity of the

water is larger at those parts which have a certain distance to the axis of

rotation. This makes it acceptable to neglect in first instance the influence

of the hub. Hence we consider a number of blades moving "freely" through

the fluid, however along a prescribed path. The last step is to consider only

one blade because this already shows all the mathematical difficulties which

can be encountered.

Later on we shall discuss some possible corrections such as the influence

of the other blades and the influence of an inhomogeneous inflow.



15. The geometry of a ship screw

For the description of a screw blade we use a cylindrical coordinate

system x,r,q of which the x axis is along the axis of rotation of the

screw (figure 15.1). With respect to the coordinate system we have an

u-

Fig. 15.1. A blade of a screw propeller.

incoming homogeneous parallel flow with its velocity U in the positive x

direction. Our first aim is to find impermeable surfaces which can rotate

about the x axis without disturbing the parallel flow.

Suppose we have a surface

G(x,r,,t) = 0 (15.1)

moving through a fluid with a velocity field (U + V V, y) and ask for

the conditions which the velocity field has to satisfy in order that the fluid

flows along this surface. Consider G = G(x,r,p,t) as a function defined in

space. Then each moving particle of the fluid perceives at the piace where

it is at a certain moment, some value of G. When this particle moves on,

the rate of change of this value is easily calculated as
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dG 3G 3G 3G 3G+(tJ+v)+v +v -.
dt 3t x 3x r 3r (pr3(p

A particle moving along the surface (15.1) has to observe the value G = O

durïrìg its motion. This means that the velocity (U+v, V, v) of that

particle has to satisfy

(U+v
3G 3G 3G-+V - +V =03t x 3x r3r wr3p

(15.2)

(15.3)



This is the well known condition which the velocity field has to satisfy

at the surface (15.1) in order that the fluid flows along the surface.

Now we consider a rigid surface rotating around the x axis

G(x,r,(p-wt) = 0. (15.4)

In order that this surface does not disturb the homogeneous incoming parallel

flow it has to satisfy (15.3) with y = '7 = y = 0. At t = O we find
x r (

- W (x,r,.p) + u (x,r, p) = 0.

The general solution of this equation is

G=G(.p+ax-wt,r) a = ui/U, (15.6)

where G is an arbitrary function of its arguments (.p + ax - uit) and r. We

restrict ourselves here to the case of the simple helicoidal surface H

H = (O + ax - t = 0. (15.7)

This surface will be called the helicoidal reference surface.

On H we choose a two dimensional coordinate system for instance x and r.

Then we can define on H the planform B of a propeller blade by

x(r) < x < x(r) , r. < r < r , (15.8)1- - O
where x2(r) and x(r) are given functions.

The plan form (15.7), (15.8) as an impermeable rigid surface does not

disturb the incoming flow. A realistic blade however produces a thrust and

because it is a body of finite extent it has to shed vorticity (section 2)

and disburbs the parallel flow. Because we discuss a linear theory the

disturbance velocities (v,v,v) will be small. This happens when the

blade is in the neighbourhood of the plan form B. We represent it by

(P - uit + ax + c f.(x,r) = O
, j = 1,2,

J

f1 (x,r) f2 (x,r)

where c f 1(x,r) and c f2(x,r) describe the small deviations of respectively

the upper side and the lower side of the blade from B. The nuither c is a small

parameter which is used to linearize the theory, we will neglect quantities

of 0(c2) with respect to quantities of 0(c). The leading edge and the trailing
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edge of the blade correspond to the functions x2,(r) and x(r) used in (15.8),

hence in general

f1(x(r), r) = f2(x(r)1 r), f1(x(r),r) = f2(x(r)r r).

We introduced the upper-side and the lower-side of the blade. This can be

done otherwise by saying, the upper-side of the blade is that side which can be

approached with constant x,r and t through increasing values of 0. The other

side is the lower-side. The upper-side is in general the suction side, the

lower-side is in general the pressure side of the blade.

The thickness D of the blade for an arbitrary point (x,r) of the planform

will now be defined. Introduce the unit normal n on the plan form, pointing

in the direction of decreasing values of .p

n = (n , n , n ) -X r (

D(x,r) = E r

-1

(1 +a2r2)½

Determine the points of intersection of a line through the point (x,r) on the

plan form and perpendicular to it, with the upper- and lower-side. Then the

thickness D of the blade will be the distance of these two points of intersection

{f1(x'r) - f2(x,r)}

(1 + a2r2)½

At the leading and the trailing edge of the blade D 0 (15.11).

The mean plane Hm lying in the middle of the upper- and the lower-side, has

the form

H = - wt + ax + E f3(x,r),m

where the camber e f 3(x,r) which is the deviation of Hm from the plan

form B (15.8), follows from

f3(x,r) = ½ {f1(x,r) +

(ar,O,1).
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In the sequel we need the concept of the local angle of incidence of

Hm at some point (x,r). This is the angle which the helicoidal line at the

planform hence at H = 0, through the point (x,r) forms with Hm at (x,r). This

angle follows from the scalar product of the unit normal at Hm for (x,r) and

the unit tangent to the helicoidal line at that point,

(15.1

(15.1

(15.1

(15.1

1)

2)

3)

(15.14)

5)



=i
{r(a+E p-f ),

3
r e i}

(1, 0, -ar)
0(c2) =

3x 3 3r

{r2(a + f
)2 + (re f )2 i} {i +a2r2}½

3r 3 3r 3

-er
f 0(e).

(1 +a2r2)
3x 3

A profile of the blade is defined as the cross section of the blade with

a cylinder r = const. The profiles are symmetric with respect to the skeleton

line, which is the intersection of the middle plane H (15.14) with the

cylinder r = const.

At the upper- and lower-side of the blade we have to satisfy the boundary

conditions for the flow, stating that the fluid velocities are tangent to

these surfaces. Because our theory is a linearized one, these conditions

will not be demanded at points of the blade itself but on the planform.

In the following we generally identify the blade of the propeller and its

planform B. A chord of the blade is by definition a line r = const. at B.

Chord lines can be chosen as reference lines for profiles because they lie

in their neighbourhood.

We now state the problem which has to be solved by the lifting surface

theory. Assume that the load Q which is defined as the pressure difference

between upper and lower surface of the blade, is given as a function of

position

Q = Q(x,r) (15.17)

Besides this assume that, for instance by demands on strength and stiffness,

the thickness D of the blade is known at each point

D = D(x,r). (15.18)

Then the question is, how do we have to choose the middle surface Hm of the

real blade so that we obtain the desired load (15.17). When Hm is found we

can construct the upper- and the lower-side of the blade, because the thickness

is known.

This problem can be split into two separate parts. First, what is the

camber e f3D(x,r) (15.14) which yields a loading Q(x,r) E 0, while the

thickness D = D(x,r) is taken into account. Second, what is the camber

e f35, which yields the prescribed load Q = Q(x,r) while D(x,r) E 0. Then

the total camber needed to satisfy (15.17) under the demand (15.18) follows

fr orn
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r) + f (x,r). (15.19)f3(x,r) = f3D(xl 3S

This is allowed because our theory is linear.

The splitting of the problem into two independent parts is interesting

from several points of view. By changing either the thickness D or the load

Q separately, we need to take into account the changing quantity only. A

simple multiplication of D or Q by a constant is reflected by a simple multi-

plication of or
3s

by the saine constant.



16. The screw blade with thickness and without loading

We will discuss now the first part of the problem as described in the

last paragraph of the previous section. How can we construct a screw blade

with a prescribed thickness distribution D(x,r) and without pressure differences

between upper- and lower-side, Q(x,r) E O.

Consider a layer of sources placed at the planform B. This layer induces

a disturbance potential c f the form (1111, page 160),

= - i-;-

fj

d S,

where G is the local strength per unit of area of the source layer and R is

the distance from the point where we calculate towards the place of the

element of area d S. We also determine the limiting values of the normal

derivative of at the upper-side (1) or at the lower-side (2) respectively

([ii], page 164),

a1
JJ e -e--- !ds,
B

anR

2 o 1
.?_.

an
B
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(16.1)

(16.2)

(16.3)

a -where means differentiation in the direction of the normal n given in (15.12).

Hence we find for the difference of the normal components of the disturbance

velocity at both sides of the blade B

a2

an an
= o, (16.4)

n. (y -v ,v _v ,v -van an X,1 X,2 r,1 r,2 p,1 (2,2

which is a well known formula in potential theory.

The condition that the fluid flows along the upper- and lower-side of

the blade, follows from substitution of (15.9) into (15.3). This yields

when we neglect terms of 0Cc2),

af.

c U - = -(a y + j = 1,2,
x,j r

where y and y denote the disturbance velocity components at theX,] (4,j

upper-side (j = 1) or at the lower side (j = 2). The difference of the normal

components of the disturbance velocity at both sides can now be written as

(16.5)

(16.6)



Using (15.12), (16.5), (16.4) and (16.6) we find

is the relative velocity of the fluid with respect to B, hence the right

hand side of (16.8) can be interpreted as the difference in normal velocity

of the fluid at both sides of the blade, because DD/Ds is the difference

in slope of the sides of the blade. Then in connection with (16.4) we obtain

(16.8).

Now we derive a relation between the middle surface H (15.14) and the
m

disturbance velocities. Consider the sum of normal components of the disturbance

velocities,

D
1 2 -+ - - n . (y + y , y + y , y y ). (16.10

Bn Bn x,1 x,2 r,1 r,2 p,i p,2

By (15.12), (16.2), (16.3), (16.4) and (15.4) we find

E rU

(1 +a2r2)½

Df DfLUr 1 2

= (i +a2r2)½

By the definition of the thickness D of the blade (15.13) we can write this
as

cl(x,r) = U D(x,r) = U (1
2 2 ½ DD+ar ) (x,r)

Dx Ds

where s is a length parameter along the planform B for r = const.

This formula could have been derived more directly.

The quantity

22½U(1 + a r ) = (U2 + w?r2)½
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(16.7)

(16.8)

(16.9)

-a-
i D

B i+ )Dx 3 Bn 4T
o d S.

B

The physical meaning of this result can be understood in the following way.

We calculate the normal component of the undisturbed parallel flow with respect
to the middle plane Hml from (15.16) we find the value

Et. U(l+a2r2)½=_
1

(1 +a2r2)½ Dx

This however is exactly minus the left hand side of (16.11). Hence when we

disturb the parallel flow only by the second term of the right hand sides

of (16.2) and (16.3), there results a flow tangent to the middle surface. The

first term at the right hand sides of (16.2) and (16.3) takes care of

difference in slope at both sides of the blade.

(16.12



The middle surface H is not defined uniquely by (16.11). We can choose

at the pianform B some line 9 in which Hm cuts B, for instance a line x = ccnst.

Then by integration with respect to x along lìnes r = const., we can determine f,

hence H
m

We have the following result. Given the thickness distribution D = D(x,r)

of the blade. From (16.8) we find the source distribution (sinks when

o < O) on the blade B. By (16.11) we construct a middle surface Hm around

which we have to build symmetrically the blade with the prescribed thickness.

One question is left, are the pressures at both sides of the blade, constructed

in the way just mentioned, equal to each other so that Q 0. This follows

directly from the fact that we have used only sources and sinks to represent the

blade. The instationary linearized version of Bernoulli's law ([12], page 99)

reads in our case

p = -p C + U -
at ax

which we apply in the neighbourhood of the blade. Because the blade rotates,

we can replace the partial derivative with respect to t by a derivative wit.h

respect to p, as follows

pP ( --rw+U).
ratp ax

This is the inner product of grad and (U,0,-wr). The latter vector is the

velocity of a particle of the undisturbed parallel flow with respect to the

planform B. This means that (16.14) represents the rate of change of by

moving along the planform with r = const. with a velocity (U2 +cù2r2)½.

Hence we can write

2 2 ½p= -p (U + wr )
dS

where s is a length parameter along B for r = const. It is well known

([11], page 160) that the tangential derivative of the potential of a layer

of sources is continuous across the layer. Hence p has at both sides of B

the same value.
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(16.14)

(16.16)



force

Itte. hvtng ee in the revieue eetie the hL cew w-th

preseibed thiekies t = D(xr) an Eero l4jn Q Q, we

the hi çew with ere t çlnese Q ebipeding,
(x). it teine eitly the prineipa] t1r n4Th]y the

rnetten used in the teral statien et the mety t h a

3ceW. Thi een tien i the ve eeit-y field tn4uceã y e

tQ end oteting With the he çeLa, etrepçe eitece

(15M, it peint et app tien moves el-eng the J,ine ,

The e1event teete et this velecity tiel4 ee ebed in ctîeri

en 7, heweve we eannet i'se these f mules 4ieet1.y beeeuse they are

ter a force moving in a at sst while here we have an thcomin

xit' U. First we w11 show hew we ean re ul-ete the problem slightly

so that we can apply the theory f 5ection en 7.

The h lçoiial reference surface + a O rQt4t5 about the

asis an is placed in en incoming parallel flew with velocity U in the

+ direction. Qn this surface we have, using cylindrical. covdinates,

a point A + wt). This point ts on H when Q=-a.

At the point A there is a force of strength h, perpendicular to i and

with a component in the +p direction, hence it cn be represented by

(ap, 0, 1)

(1 +a2p2)½

where n is given in (15.12). We remark that the components of h given in

(17.1) are ìn the local directions of the coordinate system at the point

(,p,&). This force is assumed to be rotating already infinitely long so

that its vortex system stretches at each moment t along the helicoidal line L

L:tp-jt+axO , rpconst., (17.2)

upto X =

With respect to the coordinate system (x,r,p), the rotating force h keeps

the same value of its axial coordinate x = E. We can however also refer this

force t a cylindrical coordinate system (x',r',') translating in the +x

direction with a velocity U, x' = x -Ut, r = r' and p = p'. With re5pect to

the (x',r ,.p') system the fluid at r' is at rest and the force h is moving

along the helicoidal line L'

L' ' + ax' = O , r' = p, (17.3)

(17.1)

in the -x' direction with a velocity V = U(1 + a2p2)½ along L' and is perpendicular



to its velocity. At. t = O both coordinate systems coincide and at t = O
the force is at the point A = (,p, -ag). Because the force induces
at t = O in both systems the

same disturbance velocity field, it is clear
that we can derive the velocity field in system (x,r,p) at t = O also in
the following way. Consider a force of strength h, moving in the negative
x direction along the line ((17.2), t = O) W + ax = O, r = p = const.,
with a velocity V = U(1 + a2r2). The force is perpendicular to p + ax = O
and in the +p direction. It started to move at x = + and arrives at

(,p,-a) exactly at t = O. The advantage of this change of view point is
that now we can apply the results of sections 5 and 7.

The velocity field follows from (5.5) which reads

t = O) = (vvrIv(p) = -

where the integration is performed along L. The cornDonents of all vectors
in (17.4) have to be taken into the directions of the coordinate system at
(x,r,W), this is denoted by the indices x, r and p to the components of y.
Hence we have to transform the components of a vector at a point (,p,O) which
are generally given in the directions of the coordinate system at (,p,0), into
the components of the same vector with respect to the coordinate directions
at (x,r,p) . To carry this out we have the following simple scheme. Consider
a vector written in its components at (,p,O)and at (x,r,'9) hence

= (g, g, go) ;

= '
g)

(17.5)

then

= g ; g = g cos (p - O) + g0 sin p - O) ; g=-g sin (p- 0) + gcos((0).

(17.61

In (17.1) are given (he. h, h0) hence we can write also

h = (h , h , h ) =X r (

h
(ap, sin(p - g)), cosp - = -a $

(1 +a2p2)½

s(o) +
h(s)

J I- y(s) R

we have given the O and a "tilde" in order to denote that in the integral
(17.4) becomes a variable with respect to which the integration is carried

+out. Analogously we find for the vector R from (,p,O) towards (x,r,p)

= (R, R, R) = (X - ', r - p cos(W - ) ,p sinp - 'è')) 0 = (17.8)
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+
3 R.(h(s).R)

)ds, (17.4)r
y(s) R

(17.7)



Substitution of (17.7) and (17.8) tnto (17.4) yields

v(x,r,p,t = 0) (y , , =
h

j
1(ap, sin (cp+a), osp+a))

X rq 4iq.t ½ -U(i +a p ) R3

(x-t rp cosUp+at,p sin(2+at) {ap(x-t4r sin(p+at}1 ¿
R5

- ½where R = IR, y(s) U(1 + ap) const. and ds (i + a2p) d.

In order to bring this integl into a form used in iterature we put

-t + x, then

i h
jv(x,r,(p,t=0) (V , y , v)

uU +a2p2)½X r

(ap, sth(&p+a(x--t)), cos(W+.(x --ri))

R3

(t, r-p cos(i.p+a(x-T)),p sín(W+a(x-T))) - {ap'r+ r sin (p+a(x-r))}

R5

(17. 10)

where

R = fT2 +r2 +p2 -2rp cos ((p +

We will give another representation of this velocity field by using the

vortex model of section 7. The velocity field consists of two parts in our case..

First we have a contribution
,

by the short vortex which represents the

force and for which the contribution is given by the upper bound in (7.12).

The relevant quantities in that formula are y(s) = U(1 + a2p2)½, the vector

k pointing in the +p direction hence by (17.6)

k = (kg, k , k ) = (0,1,0) - k = (k , k , k ) = (0, cosUD-0), -sinttp-0),0 = -a
p 0 x r (9

(17.12)
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and the vector i, given in (17.8) however without tilde, because here

we consider the point (,p,-a) where at t = O the force is acting. In this

way the contribution of (7.12) becomes

1 h1(xr,,t=O) = (y ,v V
lx ir' "p

tJ(1 +a2p2)½

(r sin(.p+aE),-Çx- )sjn(p+a) ,-(x-)cos(p+a)) (17.13)

+ r2 + p2 - 2rpcos(p+a)}3/2

Second we have to add to the contribution from the two tip vortices

(figure 7.1), given in (7.8). This formula reads in our case

.L h a - di (R- Ak)
. -(i +a2p2)½city = (y ,v y ) (i+A)

2 2x 2r 2p 4p 2 2 dA ds+ao R-Xk3 A=0

(17.14)

where we changed from the parameter s in (7.8) to the parameter = -(1 +a-p ) s.

The quantities in the integrand are the following and can be determined easily,

fi rs t

- (-1,0,ap) - (-1, ap sin(9+a),ap cos(&p+a')
= (i..,i,iò)

- 22)½
(i 1 ) =

(1+a
X r (i±a2p2)½

(17.15)

±
In (17.12) k is given,from which we find by differentiating

dic dic d 1

ds - -
d

ds
(1 +a2p2)½

(0,-a sin(p+a'), -a cos(p+a')),

which are the components "at x,r,p". At last is given in (17.8).

We now can carry out the vector product in (17.14) and find

i h d ((a(P + A)2-ar(p + X)cos(W+a) , (x - )a(p + X)cos(+a)+
= 4iîp

U(1 +a2p2)½

+(p+A) sin(+a),-r+(p+A) cos(P+a)_(x_)a(p+A)sin(9±a))d
'(17.17)

1 R-XkJ3 x=0

5g

(17.16)



In order to bring this formula in the form used in the literature we

change again the integration variable into T = - + X. Further we remark

that in the integrand only the combination (p + X) occurs, hence we can

put X = O and change the differentiation with respect to X into a

differentiation with respect to p. We find

X-
i h j (ap-arp cos(W+a(x-r)),

V2 =
u(1 +a2p2)½ T

ap cos(.p+a(x - -r))+p sinOp+a.x -T)),-r +p cos(.p+a(x -- T)j-Tap sin(q)+a(x-r)))

(T2 + r2 p2 - 2rp cos(p + a(x-Tfl)3/2

dr. (17.18)

The total velocity is then given by y1 + v2,

h {(-r sin(q)+a), (x - )sin((9+a), (X-y = (y ,v ,v ) =
X r 22½4iîpu (1 + a p ) { (x - + r2 + p2 - 2rp cos (p + a) } 3/2

+
1X- (ap2 -arp cos(+a(x-T)),Tap cos(+a(x-r))+ p sin(p+a(x--T)),

,-r+pcos(W+a(x-T))-Tapsin(p+a(x--T))) dt}. (17.19)
(T2 +r2 +p2 - 2rp cos(+a(x -
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18. The screw blade of zero thickness with prescribed load, a

We will discuss the screw blade of zero thickness and prescribed load

Q(x,r) . It is only necessary to consider the blade in its position at

t = O because during its rotation in a homogeneous incoming flow the

pressures on it are independent of time. All positions are equivalent

in the sense that the whole disturbance field of the propeller rotates

with the blade and is independent of time with resoect to the blade.

Two different ways caiì be followed. One way is by using the

representation of the velocity field (17.10) for a rotating singular force,

the other way is by using (17.19) . We will treat both methods separately

and start with the first one.

Suppose the screw blade, with zero thickness, is defined by

- ut + ax + E f(x,r) = 0 (18.1)

x(r) <x <x(r) r. < r < r . (18.2)1 - O
The condition (15.3) for the fluid flow to be tangent to the blade, becomes

61

V
(4)

EU - = - (av + -)
x r

We assume that the blade experiences a load Q = Q(x,r) perpendicular to

the blade as a result of the action of the fluid. This load is called positive

Q > 0, when it has a component in the negative x direction, hence when it

contributes to the thrust of the propeller. Inversely an elementary area

dS of the blade exerts a force QdS on the fluid in the direction of increasing

(p, by this it is allowed to replace h by QdS in formulas (17.10) and (17.19)

in order to find the velocity field induced by the elementary force QdS.

We want to determine the right hand side of (18.3) at the blade, then

also 3f/x is known and by an integration we can find f(x,r). Then by (18.1)

the blade is known. First we calculate the right hand side of (18.3) for a

point (x,r,q)) at a finite distance of the blade. By (17.10) we find

V (x-a)
(4)

-4PUr(aV + ) = if J
[fa2rp+cOs((p+a(X-T))}

X r
B - R3

3
{arT+psin(q)+a(x_T))}{apT+rsifl((p+a(x_T))}

Jd-rddp
def

R5

(18.3)

(x-c)
= JI Q(,P) f G(x,r,(p,p,T)dTddp 5f Q(,p) K (x,r,q),,p)ddp, (18.4)

B B



3f um
4irpc U2r - (x,r) =

- -ax
K*(x,r,(p,,p)ddp.
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where we replaced the element of area dS by (1 + a2p2)ddp, introduced the

functions G and K* and where (17.11)

R = {T2 + r2 + p2 - 2ro cosp+a(x_T))}½. (18.5)

As has been said, we have to take the limit (x,r,p) - (a,r,-ax), where

x and r satisfy (18.2), then the point (x,r,p) tends to the blade. From

(18.3) we find

First we simply try to interchange the limit procedure and the integration.

Hence we have to consider the kernel function

def
K(x,r»,,p) K (x,r,-ax,F,p) =

{a2rp + cos aT} 3{art - p sin a-r}{apî - r sin at}Jd

{T2 + r2 + p2 - 2rp cos aT}3/2 {T2 + r2 + p2 - 2rp cos aT)
5/2

a/v
i+m+1-q

< 2v j
i+m+1-q

+
m-q a},

o
{21}q/2

where i and m are 0,1,2,... and q = 3 or 5. It is seen easily that for

2. + m > q - i this expression remains finite or increases logarithmically

when u - 0. By this we have to expand the numerators of the first and

the second term under the integral sign in (18.7). only up to and including

terms of the second and the fourth order, respectively. By doing this we find

after an estimation of the resulting integrals

(186)

(18.7)

When x - > O and p - r this function becomes infinite. The singularity

arises from a small part of the range of integration in the neighbourhood

of T = O because there the denominator tends to ze-o for T - O and p - r.

For the study of this singular behaviour the range of integration in (18.7)

can be changed into -a < -r < a, where a is some sufficiently small but fixed

positive number. Putting p = r + , where H is assumed to be small, we expand

the numerators in (18.7) with respect to T and , then we obtain integrals of

the form

+çx m + m
2. r TdT 2. TdT

\) j <u
q/2 -

-a {T2 +r2 + (r +v)2-2r(r+) cos aTs -a {2 2}/2 -

(18.8)

(x- )

=1-



2(l+a2r2) ra2K(x,r,,p) cs

(r -p)2 (1 +a2r2)½ (r -p)

This singularity cannot be integrated in the p direction. Hence the interchange

of the limit .p - -ax and the integral in (18.6) is not allowed. A more careful

method for giving a meaning to this limit will be given in the following.

We divide the area of the blade into thtee regions (figure 18.1). The

Fig. 18.1. The domain of integration B B + B + B
2 3

strip B1 defined by x(r) < < x y, p - rl < where x9(r) is the leading

edge (15.8), y and are sufficiently small posifive quantities. Next the rectangle

B defined by x-! <y, p-ri < and the remaining part B3.

The domain B3 does not yield any difficulty in the limiting process (P + -ax,

because for its points (,r) the value of (r - p) does not become zero.

The integration in (18.4) over B1 when first - -ax and then -3- 0, can

be written as

x-y r+ +a
um f f Q(,p) { J G(x,r,(D,p,T) dr} dpd, (18.10)

(D-3--ax xi(r) r- -a

where a is again a small, however fixed quantity. The restriction of the integration

over T to the interval (-a, +a) is valid because only the singular part of the

kernel can possibly yield a contribution to the integral over the strip of

vanishing width, -* 0. We introduce the new variables and y, by

6 =p + ax , y = p - r. (18.11)

Substitution of (18.11) into (18.10) yields
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+ 0(2n r-pi), < x, p ± r (18.9)



First we consider the integrations with respect to T and y. When a, 8 and 6

are sufficiently small we assume that we can expand Q(., r+v) arid the two

numerators in the function G (x,r, -ax +6, r+V,T) (18.4) with respect to

T, V and 6. Then we obtain integrals of the form

where

2. > 0, m > 0, n > O , q = 3 or 5.

We have to keep in mind that we consider the limiting procedure, first. 6 - O

for fixed 8, 0 < 8 8 and then 8 - 0. There exists a constant k > O,

independent of 1$, such that

xn n+8 +0.

TI y1 d-r dv
jI(2.,m,n,q)

I
< 6

T2 +k r2(aT 13)2}/2

Next we introduce new variables of integration T* and V by

T = 61{T* (1 +ka2r2)i ± akr2(1 +ka2r2
)1}

6ka,T* a ), 6 0,
o

V =

where the upper signs are related to 6 > O and the lower signs to 6 < O, this

will be assumed also in the following. Substitution of (18.16) and (18.17) into

(18.15) and neglecting the asterisks, yields

a
---i-

± a)

I(2.,m,n,q) < a J6
(2.+m+n-q+2)

8

IVI dv I

fl r

i

-8/fl'I a'
---ï-

a
2

where

a
3

I(9,m,n,q) 6

+8 +a mn
2. T V dTdV

-8 -a {T2 +r2+(r+v)2-2r(r + v)cos(6 _aT)}2

m
a T + a1-2

dT,
q/ 2

(T2 + V2+a3)

k r2

92(1 +kar
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(18.12)

(18.13)

(18.14)

(18.15)

(18.18)

(18.19)

x-y +8 +0.

hm J J Q(,r + V) { f G(x,r, - ax +6, r+V,T)dT)dVd.

6-O X(r) - -a



r'' '

Fig. 18.2. Several parts of the domain of integration in
(18.20), «

Then it is allowed to neglect in (18.20) the area of integration O < T, V < I

(figure 18.2), of which the contribution I(.Q,m,n,q) tends to zero with

because a3 > 0 (18.19). We consider also separately the area of integration

O < t < 1, 1 < V <

m
n

c11o1
(9+m+n-q+2)

j y dv f T dt
< C

(9+m+n-q+2)
- 2

I

'J
n-q+c

dv =

= C (i+m+n-q+2) n - q + i + £

2' (n-q+1+E)
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The constant a3 O for r > r. > O, which will be assumed in the following.

It is clear that in (18.18) the origin T = V = O is no longer the

dangerous location when -3- 0. The singular behaviour of the two dimensional

integral is now determined by the behaviour of the integrand for large

values of T and y. This means that we can replace 08.18) by

(+m+n-a+2) j
'T2 Tm

< C J y dv J th1
o

(1.8.20)

where C1 is a suitable constant independent of

We now consider the case

+ ni + n - q + 2 > 1. (18.21)

(18.22)



where C is a suitable constant independent of and E a sufficiently small

positive fixed number, introduced to keep the denominator cf the last expression

away from zero. Then we find (18.22) -* O when ± 0. Analogously we estimate

the contribution of the area of integration, O < y < 1, 1 < T < a1(11 + a2),

which also tends to zero for - O.

In this way we can replace (18.20) by

i a-
aj (Tj-+a2)

n
I(9.,m,n,q)j

rj+m+n_±2
f

i î

where o(e) is a quantity which tends to zero with .

We estimate the denominator of the integrai as follows

q qe
e 2-e a3 q/2

(t2 +v2 +a
)q/2 = 2(2C) y {(I) + + }

3 T t2_E yE -.

2>T V

where E is a sufficiently small positive fixed nuivber. This holds because

we have T/V > i or vit > i in (18.23). Hence we find from (18.23)

Eq a1 ---j-+ a)

I(9.,m,n,q)
(9.+m+n-q+2)

(n -) 2 (m-q+)
dv f T d-r=

i i

(9.+m+n-a+2) (n-2 + 1)
=l

E eq
(n- + 1) (m-q + + 1)

2

Eq
+ 1)

= O(ó
2

For 9. > i this tends to zero with 5 - 0, for 9. = O it tends to zero with

- 0.

-1. a -

-1 -
a ( +a)

i L

+o(5) =
i

(18.25)
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(18.23)

(18.24)

Tn
T

di +0 ('S)
(T2 +v2

T

i



We have found the result that under condition (18.21), the integrals

(18.13) tend to zero under the limits first 6 ± 0, or what is the same

- -ax and then 8 4- 0.

Next we consider more closely the expansions of the function

Q(,r+v) and of the two numerators in G (x,r,-ax+6, r+v,T) in (18.12).

From the foregoing result it follows that we have to develop these functions

to such an extent that (18.21),

i±m+n<1 , q=3 ; +m+n<3 , q=5, (18.26)

higher order terms will not give a contribution in the limit procedure under

consideration.

First we consider the numerators of G(x,r,-ax+6, r±v,T) (18.4). In

connection with (18.26) and the definitions of Q, in ar1d y (18.13) we take

a2r(r+v) + cos(6-aT)} = {(1 +a2r2) + a2ry + ¡ q = 3 (18.27)

-3 {ar T+(r+V)sin(6-aT)}{a(r+y)T +r sin(6-a:) = -3{r262+rv62}, q=5,

(18.28)

where y and t have there original meaning. In connection with (18.26) it

follows that we have to expand Q(,r +v) only up to and including terms of

the first order

Q(, r+v) Q(,r) + V (,r) +

Then we find for (18.12), when we still disregard for a while the integration

with respect to

+6 {(i +a2r2) + a2rv+...} +
1m J (Q(Ç,r) + V (,r)+ . . . }. J [ 3/2
60 - - -t2+ r2+(r+v)2-2r(r+v)cos(6+aT)}

3{r262 + rv62+...}
3/2

dtdv
{T2 + r2+(r +v)2-2r(r + V)cos(6 +aT) }

(v+ (6 +aT)2) }
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where we replaced the variable of integration T by -T. Next- we want to expand

the cosine in the denominators. We write

{T2+r2+(r+y)2_2r(r+y)cos(6aT)}{T2+v2+r2(6+aT)2}{1+0((6+ar)

(18.29)

(18.30)

(18.31)



which is upto and including second order quantities even in V.

Using this property and again (18.26), we find by expanding the

denominators in (18.30) that we can replace (18.30) by

+ +cx

um O(,r) J.
(1 +a2r2) 3r262

]dTd.
- - {T2 +v2 +r2(5 +aT)2}3/2 {t2 +v2 +r2(6 +aT)2}

where
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We now choose new variables of integration A and a as follows

Then (18.32) changes into

a

I 6 62
{

(1 +a2r2) Q(,r) um
+ A2 41)3/2r

6-0

2

r6
A

(1 +a2r2)

rO

(i +a2r2)

22(1 +a r/i+a2r2
I r

and where we assume 6 -- O through positive values.

First we remark that

+ +c +co

J- f{ 1 3 1

_ (2 + A2 +
3/2 (2 + A2 +

} dAdo = 2 J- 3/2
1, o (p21)

4/r2r2 Q(,r)

(a-ar). (18.3

(16.3

(18.3

3

(p2 + 1)
5/

.pdp = 0 (18.3

hence a finite lìmit for 6 - O is possible in (18.34). The integrals in (18.34)

can be calculatec. in closed form ([7] , I, page 48, 13) and page 49, 18a), 18b)).

We do not enter all details but state that after some calculations we can

write (18.34) in the form

(18.3

2)

3)

'dAdo , (18.34)

5)

6)

7)

3

(2 + A2 +



This result substituted into (18.12) yields for the contribution of the

strip B1(figure 18.1) to the integral (18.4)

The remaining part of the integration over the blade, is over the region

B2(figure 18.1) in which the point (x,r) is situated. The contribution of B2,

when first ( ---ax and then 13 - O, has the form

x+y
um I dp J d QÇ,p) f G(x,r,'.p,p,T)dT =
(p-3- -ax r-13 x-y -

x+y x-
= hm Q J (p-r) dp f (_X)m d f G(x,r,q),p,T)dT

(p+-ax n,m=O r-13 x-y -0
(18.39)

where

4l1+a2r2 x-y

13
.

Q(,r)d + 0(13).

x(r)

mn - mn
i

m n
Q(x,r),

Òx r

and we assumed the expansion of Q to be valid,, as well as the change of

summation and integration.

Introducing again the variables = (p ± ax and y = p-r (18.11) and the new

variable

n = - x, (18.41)

we write (18.39) as

+13 +y
iiihim Q J VdV J r d J' G(x,r,-ax + , r + y ,u)dT. (18.42)

S--O n,m0 -13 -_T_,

First we discuss the integrations with respect to fl and -r. Partial integration

with respect to ii yields
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(19.38)

(18 . 40)

1 in+1 -n
(m+1) {n f G(x,r,-ax + ,r+v,T)dT

1
+y

rn+1+ J n G(x,r,-ax+,r+\,-rì)

_
-y d}. (18.43)

The value of the first term of (18.43) for the upper bound +y is finite because

y is fixed and positive, hence it yields no contribution to (18.42) in the limit

6 - O. Then the relevant part of (18.43) can be written as



+-yi m+1 r Xn±i
(m+1)

(y) f G(x,r, -ax+6, r+V,T)dT +j (-T) G(x,rTax+5,r+v,T)dT}.
-y-

(18.44)

We consider separately the two terms in (18.44). We find for the contribution

of the first one to (18.42)

m+l + ±y
(-y)11m
(m+i) mn

»G(x,r, -ax+,r+v,T)dTd\ (18.45)

Analogous to our previous reasoning we can show that only for an interval

of T enclosing T = O and for n = O, we have a contribution in the case 8 - 0.

Hence instead of (18.45) we consider

i5O n,m=0 -8 -

m+1 3mQ() + +Y'

J J G(x,r,-ax+6,r+,T)thdV.hm -
(m+1) in

-*O m=O 3x -8 -y

We compare this expression with (18.12). When we replace there Q(,r+v)

by the constant

- z
3mQ()

(m+1) in
m=0

and replace the fixed constant a by the fixed constant y, we can use the

result (18.37) . In this way we find for (18.46)

m+14/1+a2r2 () 3mQ()
411+a2r2

Q(E,r)d.
+ 8 (m+1) m -m=0 3x x-y
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This is the extension upto x of the integral in (18.38).

It can be proved that the second term in (18.43) gives riocontribution when

first ó--O and second 80. In this way we give the following meaning to (18.6).

3f r-8 r x(p)
4icpe U2r - (x,r) = him {( f + f

°
) J Q(,p)K(x,r,,p)ddp +Bx

80 r. r-3-8 x(p)
i

4/1 +a2r2

8
. Q(,r) d J,

x(r)

where K(x,r,,p) is defined in (18.7) and the first two terms of its singular

behaviour are given in (18.9).

The limit procedure defined in (18.49) is called the Hadamard

principal value of the integration with respect to p. In the one dimensional

(18.46)

(18.47)

(18.48)

(18.49)



case the Hadamard principal value of the "non existing" integral

dp , a<r<b,
a (p-r)2

is defined by

b
f(p) 2f(r)11m {(J + J ) dp- }

a r+c (p-r)2 E

which corresponds to (18.49) for a fixed value of < x
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19. The screw blade of zero thickness with prescribed load, b

In this section we will discuss again the screw blade of zero thickness

with prescribed load, however we will start from the representation (17.17)

of the velocity induced by a rotating force. The basic expression at the

right hand side of (18.3) now has to be calculated using (17.17). We find

V

-4iîUr(av+ IIQ(EP)[{+arsin((P+ac) - (x -E)cos(w+aE)} +

{(x- E)2 +r2 +p2 -2rp cos(+aE)}3/2

where

x-E {p(a2r2-i)cos(+a(x-T))+r(1 -a2p2)+Tap sin(+a(x-i))}M(x,r,p,E,p) = f di-,

- {T2+r2+p2-2rpcos(+a(x-T)) }3/2

(19.2)

and (x,r,p) is still an arbitrary point in space. By partial integration we can

write (19.1) in the form

V

-4Tr.iUr(av + ) = if Q(F,p)
{ar2sin(pa - (x-E)cos(w+aE)}

dEdp +
{(x-E)2 +r2+p2-2rp cos(W+aE)}32B

Xb

- jj Q(,p)
M(x,r,,E,p) dEdp + j Q(E,p(E)) M(x,r,,E,p (E)) dE +

B
ap

Xf

Xb
Q(E(E)) (19.3)

Xf

where (figure 19.1) Xf and Xb denote the smallest and the largest value of the

E coordinate on the screw blade and p(E) and Pd(E) describe the upper and

lower edge of the blade as a function of . The above is correct in the case

that the blade in the (E,p)plane is a convex domain, which we assume to he

true. Otherwise the integration boundaries have to be specified somewhat more

carefully.

B

+ M(x,r,(p,E,p)] dEdpap
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A

A

Fig. 19.1. A typical vortex system on the blade of the screw.

We again want to obtain information about the local angle of incidence

of the screw blade, hence we have to consider the limit (P - -ax. When we

consider the case p = -ax the kernels in (19.3) pc.ssess singularities which

can easily be estimated. We find for the kernel of the first integral

'ar2sin(a(-x))-(x-)cos(a(-x))}hm
{(x _)2 r2 +p2- 2rp cos(a(_x))}3/2

-(1 +a2r2) (x -

(1 +a2r2)(x-)2 + (r-p)2}3/2

The singular behaviour of the function M(x,r,4p,.,p) is given by

2(1 +a2r2)11m M(x,r,-ax,,p)
(r -p)

p-+r -

'j

(19.4)

7 X > (19.5)

By excluding a strip Ir-H < from the domain of integration we exclude the

singularity and it is possible to carry out the integrations in (19.3). From

(19.4) and (19.5) it follows that the limit -' O exists. However when the

integrals can be interpreted in this way, we are not sure that the result is

correct. There remains a possibility of contributions of functions which for

(P = ax are zero everywhere except for p = r (6 functions of Dirac or its derivatives)

That this does not happen follows from a more careful passing to the limit first
(p - ax and then -- O.
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The last two integrals in (19.3) are one dimensional with as the variable

of integration. It is more natural to introduce p instead of because then for

r. < p < r the whole leading edge and the whole trailing edge are covered

separately. Using (18.3) we obtain

x r- p ()
4iîjU2r - = um [ j-

bj
+ j

u Q(,p){-ar'-sin a(x-)-(x-)cos a(x-)

6-FO Xf
r+6

{(x _)2 r2+p2-2rp cos

p ()
X r- u

- j-
b(

j + f ) M(x,r,-ax,,p)dod +
Xf r+6

r-6 r d(p)
+ ( f + f

O Q((p),p) M(x,r,-ax,(p),p) dp +
r.
i

r-6 r

-( J + f Y' P) M(xir,_ax,(P)i dp
dp J.

r,
i

dp

(1

We now discuss the physical meaning of the different parts of the right hand

side of equation (19.6). The first integral represents the velocity induced by

the bound vortices of which in figure 19.1 a typical one is drawn, the thick

line BC. The second integral provides the velocities induced by the variation c

the bound vorticity in the p direction. In the figure the vortices are drawn

as horizontal lines starting at BC and stretching to the right. The last two

equations in (19.6) give the velocities induced by the free vortices which

arise by the ending of the bound vortices at the circumference of the blade.

Typical ones are CD and BA.

Possible directions of the rotation of these vortices (right hand screw) are

indicated by arrows. In figure (19.1) it is clear that the bound vortex BC

attains its maximum value at about its middle, at the place where the free

vortices of the second integral (19.6) change their direction. Although we have

used the word vortex in this description it is clear that in fact we have vorte

densities.

d +

9.6)

f

X



which has to be proved.

Fig. 19.2. Another picture of the vorticity on the blade of the screw

It is well known that

divjrot. (U + V , V , y ) E Q.
x r tp

This means that when we consider lines on the blade of the screw, which

are everywhere tangent to the direction of vorticity (figure 19.2) we get

a picture which represents the flow of a two dimensional incompressible

fluid on the curved surface consisting of the blade and the helicoidal surface

behind it. However then the vorticity in the neighbourhood of the leading

edge will be tangent to it. That this happens follows from (19.6). The vorticity

component Q(,p)/pU(1 +a2r2) is the density of the bound vorticity in the

p direction per unit of length in the direction. The density of the free

vorticity in the direction, per unit of length in the p direction, at the

point E in figure 19.2 has the value

dp (19.8)

which follows from the third integral in (19.6). Hence the tangent of the angle

which the resultant vorticity forms with the p axis at the point E is

d(p) - d(p)
dp = dp
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20. Some additional remarks

In lifting surface theory, as treated in sections 18 and 19, there are

two main types of problems. First the problem of determining the shape of

the surface for a given load distribution. Second, the inverse problem

where the surface is given and it is asked to determine the pressures exerted

by the fluid. The first problem is more interesting from the point of view

of the design of ship screws. Mathematically it means that in our integral

equations (18.49) and (19.6) the function Q(,p) is known. In order to

calculate the function f(x,r) which determines the angle of attack and

the camber of the blade sections, we have to carry out the indicated

integrations. This is rather cumbersome owing to the complicated nature

of the kernels. In practical calculations (18.49) seems to be more adequate
,

for the origin of this method we refer to [18].

Another point which has to be discussed is the extension of the theory to

more blade screws. Here we have to consider also the velocities induced by the

other blades. We assume that the pressure distributions on the N equally

spaced blades are identical. Then we can simply replace (18.6) for instance by

N-1
2 Tm4lTpSU2r = hm if Q(,p) E K* (x,r,(p + ,,p) ddp.3x

(+ -ax B n:=0

The added part of the kernel has no singularities, because the points of one

blade are at a finite distance of the points of the other blades. From this it

follows that all our limit considerations and statements aixut integrabihity

remain valid. The same can be done with respect to the vortex theory. For

applications of this theory we refer to [5] where also some non linear effects

of the flow have been taken into account.

Next we discuss shortly the screw behind a ship, in which case the inflow

is no longer homogeneous. The presence of the hull induces perturbation velocities

at the screw disk. These perturbations depend in general on the angular coordinate

.p of our cylindrical coordinate system. Then the load of the screw will possess

a periodic character. In order that the phenomenon can be described by a linear

theory the deviations of the homogeneous flow at the place of the screw must

remain sufficiently small. Hence we have to make the assumption that the total

velocity behind the ship when the screw is absent, can be written as

U(U+v,v ,v) (20.2)oxor

where y , y and y which are induced by the hull, satisfy the relationoxor
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We can assume further, that because of the short distance covered by the

screw in the x direction these components are independent of x. In practice

the condition (20.3) can be relieved to a certain extent by comparing the

disturbance velocities not with the incoming velocity ti, but with the relative

velocity U(1 +w2r2) at some piace r. Of course the velocity y does not enter

into this theory (18.3) when a single helicoidal reference surface (15.7) is

used.

In order to calculate the fluctuations of the loading during each revolution

of the screw, we can consider N blades which are parts of exactly helicordal

surfaces

2rr wt+ax=0 , n=0,...,N-1. (20.4)

Having found, in one way or another, the fluctuating pressures in this case we can

simply add them to the pressures of the screw with thickness and load, working

in an undisturbed parallel flow. This is allowed because our theory is linear.

We refer for instance to [251.

Next we mention the very important combination of a propeller with an

annular "airfoil" (figure 20.1). This annular airfoil is also called a

duct, a shroud or a nozzle. We distinguish between the accelarating duct and the

decelarating duct. The first one is often used in the case of a heavily loaded

screw, it can improve the efficiency of the propulsion system. The second one is

used to increase the pressure inside the duct, hence it can be used for retardation

of cavitation. We do not enter here into the hyärodynamical problems connected

LL

y
DX
U

Iv
r

u

Fig. 20.1. A ducted propeller.

with this configuration but refer to [17]. In connection with the optimization

V

AD
I « 1U
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of propulsion systems we will discuss some of the properties of a duct with respect

to its ability of spreading vorticity which is shed by the screw blade tips.

At last we make a remark on the concept of thrust deduction. When a propeller

is placed behind a body (figure 20.2), we can measure the force transmitted

by the propeller shaft. This force T which is exerted by the propeller on the

fluid is in general, also in inviscid potantial flow as is considered here,

not equal to the total thrust on body and propeller together. The reason is that

T

ç

Fig. 20.2. Thrust deduction.

the body is in the influence region of the pressures induced by the propeller.

By the negative pressures in front of the propeller a force T. is exerted on

the aft in the direction opposite to the thrust. Both the thrust T and the

counteracting T. are 0(c).

When the propulsion system is placed besides the body it can happen that the

Figure 20.3. Increase of thrust.

thrust is increased by the interaction. The body is then with its front in a

region of lower pressure and with its aft in a region of higher pressure,

hence a force T. is exerted on the body which is a propulsive one.

Exercise.

Discuss that the thrust deduction and the increase of thrust is in

agreement with the work done by the propellers in the two cases considered

in figures 20.2 and 20.3. In the first one the mean value of the velocity

of the fluid at the place of the propeller is lower, in the second one it is
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larger than the velocity of advance U of the body, vzhere in both cases

we assume that the disturbance velocities induced by the body are

O(e3).

7g



Fig. 21.1. Large amplitude flexible wing, regime i.

30

21. Unsteady propulsion

It is the intention to discuss in this section and in a number of followinc

ones some aspects of unsteady propulsion. First we will give a meaning to the

expression "unsteady propeller". The most simple one seems to be: a propeller

is unsteady when no inertial reference system exists with respect to which the

induced flow is time independent. This however is not appropriate, we probably

exclude from the conceivable propulsion systems only the sails of a yacht in

steady motion, even the free running propeller becomes unsteady. A better

definition seems, a propeller is unsteady when the relative fluid flow is time

dependent while this time dependency is essential for its functioning. The second

part of this definition is vague in some degree, it is intended to exclude

for instance the screw propeller in a wake. Essential unsteady propulsion occurs

in the case of Voith-Schneider propellers, contrarotating propellers, the propul-

sion wheels of a paddle boat, the fish tail, the flagella of bacteria, etc.

The type of unsteady propulsion we will consider here belongs to a more

restricted class. We assume that the fluid is incompressible and inviscid and

that propulsion occurs by lift and suctionforces. The last two assumptions

exclude the flagella of bacteria and the paddle wheel. We also demand that the

propulsion device will be lightly loaded, hence its shed free vorticity is

small of O(E) and is not transported by its own induced velocities.

What is left are propulsion systems consisting of possibly flexible lifting

surfaces making flapping motions which are assumed to be periodic and which are

still allowed to have a small or a large amplitude of 0(6) or of 0(c°) respectively.

For the propellers of this type we admit three different regimes of working,which

we will discuss now.

Regime i, finite amplitude motion, the flexible wing W moves in an e neighbour-

hood of a periodically curved reference strip H (figure 21.1) which is at rest

with respect to the undisturbed fluid. When W moves exactly along H it does not

disturb the fluid at all and hence does not shed free vorticity, this motion

will be called the base motion. Small deviations of 0(c) of this base motion



Regime ii, finite amplitude motion of a wing which induces finite disturbances,

however which sheds free vorticity of 0(c). We restrict ourselves to the two

Fig. 21.2. Rigid profile moving along L, regime ii.

dimensional case in which the phenomenae are independent of the z coordinate

(figure 21.2). We first describe a way to obtain a two dimensional base

motion for a conventional profile. This is again a motion which does not shed

free vorticity, hence the circulation of the profile has to be constant.

For simplicity we take this constant equal to zero. In the sequel we assume

that the Kutta condition is satisfied at the sharp trailing edge of the

profile.

Consider a point Q(figure 21.2) fixed with respect to the profile such that

when we rotate the profile around it the circulation of the profile is zero.

The existence of such a point is easily demonstrated as follows. First consider

a point Q1 with coordinates (- A, -A) for sufficiently large values of A.

A clockwise rotation about Ql will induce a positive circulation around the

profile. The value is chosen because it seems realistic,it has no exact

significance. Next we take a point Q2 with coordinates (.- A,-X). A clockwise

rotation about Q2 will induce a negative circulation around the profile,

81

which induce velocities and vorticity and by which thrust can be generated,

will be called the added motion. The boundary conditions related to W

as well as its bound and free vorticity of 0(c) are assumed to be at H

The pressure differences between the two sides are 0(c), t.he angles

of W with the x axis which can be replaced by the angles of H with the

x axis, are 0(c°), hence the thrust will be 0(c),

T(t) = 0(c) (21.1)



Hence when we connect Ql and Q2 by a line, there will be, by continuity,

a point Q on this line such that the circulation is zero when the profile

rotates clockwise about it.

For each profile we can also find a direction of translation so that the

circulation is zero, this direction is denoted by the line m. When we have

found a line m and one point , we can find a straight line of such points,

namely like the line r through Q perpendicular to m. This is correct because

a rotation around any point Q of r can be represented by a rotation arcund Q

and a translation in the direction m, hence the circulation is zero. Now we

let the profile move in the following way. Choose any curved line L and a

point Q on r. Let Q move along L and keep the line m drawn through Q tangent

to L. Then the profile moves in a well defined way in the neighbourhood of L.

During this motion the circulation of the profile is zero, because at each

instant the motion can be described as a rotation about Q and a translation

in the direction of m.

In the neighbourhood of the base motion described above, we can carry out

the added motion, which deviates from it by quantities of 0(c). This added

motion causes free vorticity shedding and can procure a thrust of O(e) as in

regime i.

Of course we can also consider motions of 0(c°) which yield a thrust of

O(e0) Because the theory of these is non linear in every respect, it is

difficult to give an analytical treatment which reveals general trends.

Regime iii, small amplitude propulsion, including propulsion of fishes

by tail and fins. For a survey we refer to [30] and for later work to

[20].

We consider a lifting surface W which moves in an e neighbourhood of a

flat strip H, while also the local angles of incidence of W are assumed

to be of O(e). The strip is part of the plane y = O (figure 21.3) and

N
X

Fig. 21.3. Small amplitude flexible wing, regime iii.
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stretches along the x axis. W moves in the positive x direction with a

velocity ti of 0Cc0). When W moves exactly along H, it does not cause

any fluid flow and hence does not shed any free vorticity. This motion

is the base motion. Small deviations of the base motion, which are 0(c)

and by which thrust can be generated, form the added motion. The boundary

conditions related to this lifting surface as well as its bound and free

vorticity are assumed to be at the reference strip H.

Because the pressure differences between the two sides of W are 0(c)

and also the angles of incidence are 0(c), the time dependent thrust,

which is the force component in the positive x direction, will be 0(c2),

T(t) = 0(c2). (21.2)
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In the next sections we will discuss the two dimeisional case of regime iii.



22. Small amplitude, two dimensional propulsion

We consider now the two dimensional case of regime i). The fluid is as

always in these notes,,inviscid and incompressible. In figure 22.1 is drawn

the profile stretching from x = -i towards x = 9,.. The motion of the profile

Fig. 22.1. Two dimensional small amplitude swimming motion

which we assume to be of zero thickness, is given by

y = h(x,t) , 9.. (22.1)

The real valued function h(x,t) and its derivatives with respect to x and

t are assumed to be O(e). The profile is placed in a parallel flow of velocity
U = O(e°).

The thickness of the profile is neglected because in linearized theory
for a nearly flat profile it does not influence the thrust or lift prcduction

of the profile. Its flow field, described by a source and sink distribution

at the x axis from x = -i to x = +i, can simply be added to the flow described

here. It has neither an influence on the pressure differences between the two

sides of the profile nor on the leading edge suction force, which together

determine the thrust. We remark that this is not true for the ship screw (section

16), because of the finite curvature of the blades. Also it is not true in theories

for profiles of finite thickness of O(e°), for instance [24].

The velocity of the fluid is denoted by (U + u,v) where u and y are the disturban-

ce velocities. These satisfy the linearized equations of motion

1iy
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and

au av
cliv(u,v) = - + - = o

We introduce the function

i

p(x,y,t) = p(x,y,t).
p

Differentiation of (22.2) with respect to x and (22.3) with respect to y and us

(22.4) yields

(22.6)
ax2 ay2

The function p(x,y,t) is called the acceleration potential because its gradient

yields the components of the acceleration of a particle, given in the left hand

sides of (22.2) and (22.3). Next we introduce the complex variable z = X + iy

and the analytic function

f(z,t) = q)(x,y,t) + i(x,y,t), (22.7)

where is the complex conjugate of p, hence p and are connected by the well

known Cauchy-Riemann relations. The complex velocity vector is denoted by

w(z,t) = u(x,y,t) - iv(x,y,t),

hence

-+U- ax - ax 1
ax - ax ay - at az

where we used one of the Cauchy-Riemann relations.

At the profile we have by (15.3) the boundary condition

+O,t) = v(x,-0,t) = (f- + U-I-) h(x,t) V(x,t), X

From the equations of motion (22.2) and (22.3) it follows by (22.10)

- -- (x,O,t) = - (x,0,t) =_! (x,0,t) = (--- + U ---) V(x,t),
axay

hence this expression is known for -2. < x < +2.. Because we can represent the

profile by a distribution of line forces at y = O parallel to the y axis it follows

from section 4 that

p(x,0,t) = O
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and that

,p(x,-O,t) = -p(x,0,t)

Because is continuous at the x axis (22.11) we haveax

(x,-0,t) = (x,+0,t) , x < .

As w(z,t) - O for z _(real), we find by integration of (21.9)

z

f(z,t) = U w(z,t) + J (,t) d . (22.15)at

Comparing imaginary parts in (22.15)

X
( av

.J(x,y,t) = -U v(x,y,t) - J - (,y,t) d.-
Again from (22.9), by solving for w(z,t) we have

z

w(z,t)
jj

f(z,t) L (,t + C_Z)d

Comparing imaginary parts in (22.17)

i i
f

-- (,y,t +v(x,y,t) = - ij(x,y,t) + - atU
-

By substituting (22.10) into (22.16) for y = 0, x < i, hence on the

profile we find

X ia a avi(x,+0,t) = -(ti j + --) f V(,t) dE - f (,0,t) d =

= P1(x,t) + A(t) , xi <

where

X
a a

=
3x

v(,t) d

is a known function for y = 0, lxi < i, the remaining part of (22.19) denoted

by A(t) is an unknown real function of time.

We will derive still another expression for A(t) which will be used in

following sections, from (22.16) we have

-Q,
= -U v(-2,,0,t) - J .3?:

+ at
(,0,t) d

(22.13)

(22.14)

(22.16)

(22. 17)

(22. 18)

(22.19)

(22.20)

(22.21)



and from (22.18)

Combination of (22.21) and (22.22) yields with the definition of A(t) (22.19)

x+
A(t) = (x,O,t + ) dxJ at U

With respect to the unknown function f(z,t) (22.7) we have the following

data. For its real part p we have equations (22.12) and (22.13) and for its

imaginary part holds (22.19). From this it follows

f(z ,t) + C(z,t) = 2i(1(x,t) + A(t)),
lxi <

f(z,t) - f(z,t) = O

where
+

and u -
denotes the limit of (z,t) for y -* O through positive

and negative values respectively. The type of problem stated in (22.24) and

(22.25) is called a Hilbert problem for the function f(z.,t) F16]. We remark

that the complex function f(z,t) will be analytic in the wnole complex plane

with the exception of the line xi < L, y = O, where it exhibits a jump

discontinuity. Such a function is called Sectionally holomorfic.
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(22.23)

(22.24)

(22.25)

= -U v(-Z,O,t) + (,y,t + (22.22)



23. The solution of the Hilbert problem

We first consider the homogeneous part of (22.24)

X(z) + f(z) = 0. (23.1)

Çt)

Fig. 23.1. The complex domain with the line of discontinuity of
f(z,t)

A simple non trivial solution which satisfies (23.1) is

X(z) = /z- /z+ = /TZ , (23.2)

where we define the square roots by assuming that we start with the value

/z - + , (23.3)

for large real positive values of x and then continue the function values,

the segment lxi < 2, y = O 'is a cut in the complex z plane.

We now can write the solution of the inhomogeneous equation (22.24) as

+g (iL1(,t) + A(t))
z -i ½f(z,t) - f d + c(t)TÍj - v/zz_: ( - z)

where £(t) is still an unknown function of t only. It is easily seen by the

calculus of residues that the first term at the right hand side of (23.4)

satisfies (22.24). The second term is another solution of the homogeneous

part. We now choose C(t) in such a way that the disturbances tend to zero

at infinity or

um f(z,t) = O.

Izl-
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(23.4)

(23.5)



Using the following integrals

=ir
+j d

' /2
' ( - z) /z2

where in the second one we assume a cut along the real axis from X - to

x = +i, we find from (23.4) and (23.5) for z - + (real),

+2.

C(t) = - f iA(t).
ir

Substitution of this value of C(t) in (23.4) yields

f(z,t) = iA(t) {i
(Z_2. ½ ±

+2. 1(,t) {vZ-Z z-2. ½
+ ( ) } dF. (23.8)

- ___
- ( - z) z + 2.

We have now to determine the still unknown function A(t). For x < -2

we obtain from (23.8)

+2. (

(x,0,t) = A(t) {i - (

2._X)½} 1 r i
,t) -/x2- x-Q+( )-2.-x ir

( -X) x+
-2. )2

Substitution of (23.9) into (22.23) yields

x+2._ +if-1P1(t+
uA(t) = f [A'

x+2. (X-Z)½} 1 j(t+
U U X+2. 71

d] dx.+((g-x)

We assume that the profile is at rest for t < T,

y = h(x,t) E O , (t < T),

and that the motion starts smoothly at t = T. It is assumed that the homogeneous

incoming parallel flow of velocity U is present also for t < T. Then for t > T,

we find from (23.10)

-2. -x-2.½ if [AI(tX+Z) i dx - - j
-(t-T)u-2. ir(tT)U2.

x+2.+9. --(,t+ I[f u

-
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(23.6)

(23.7)

(23.9)

(23.10)

(23.11)

x-2. ½ Jx-2
____ - (

} dJdx. (23.12)



and

When we replace x in (23.12) by u(-t) - Z and in (23.12) by x, we

obtain

o
t t +Zi1(x,)

f A' ()
U( - t)-2Z}½

dE
1 j {

(U( - t)-22. ½

T T -Z
U(-t)- t)

v'(u(-t) Z)2Z2 dxid,(x-U(-t) + Z)

from which the right hand side is a known function (22.19). We write this

equation as follows.

t

f A'() K(t-)d =
T

where

Ut 29. ½
K(t) = (

+9. t
(t) - 2 j j -*1(,x) G(U(x-t) -Z,)dx] d,

-9. T

with

i x-L ½ /x2_G(x,) = _____x+Z - (-) (x < - 9.).
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(23.13)

(23. 14)

(23.15)

(23. 16)

(23.17)

Equation (23.14) is a Volterra type integral equation of the first kind

for the unknown function A'(t). The kernel depends on (t-e) hence the equation

can be solved by the Laplace transform method [41. Having found A'(t) we can find

A(t) by a simple integration

t

A(t) = f A'() d (23.18)
T

because for t < T we have A(t) 0.

When A(t) is determined from equations (23.14) and (23.18), the complex

acceleration potential f(x,t) (23.8) is known. Then the forces on the profile

can be determined by simple integrations. The thrust delivered by the profile

consists of two parts. First, the physically most important part is caused

by the pressure differences between the two sides of the profile, then by the



+2. 1(,t)
z-2. ½ ±1 d}

:i
, Re z < 9.,Re{{-i A(t) - - j

/9.2

where we remind that A(t) and t1(,t) are real functìons. When z tends to

the segment of the real x axis x < 2. from above or from below we have to

take

Hence in the neighbourhood of x = -2. we find as the principal contribution

to (D

+2.

hm (D(x,t) + {A(t) + --- f d} 22. )½
TF

-2. /9.2_2
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slope of the profile a force in the x direction, hence a thrust, is induced.

Second, we have a leading edge suction force ([12] page 251) which is proportional

to the square of the factor of the leading edge singularity of the vorticity.

When the vorticity of the profile in the neighbourhood of the leading edge

behaves as

S(t)
(23.19)

then the leading edge suction force per unit of span has the magnitude

j:p 52(t). (23.20)

The reason that the suction force can be physically less important is that

it depends critically on the flow following the strongly curved surface of the

nose of the profile. If the flow separates the suction force will become much

smaller than its theoretical value.

The thrust reckoned positive in the negative x direction, can be written as

+2.

T(t) = f (p(xt)-p(x,t)) -- (x,t)dx + p S(t) (23.21)
-2.

where

+ +
p- (x,t) = -p 9(x,± O,t)Re f- (z,t)

, Re z( < 2., (23.22)

and f(z,t) is given in (23.8). The value of S(t) follows also from (23.8).

We consider the singularity of the pressure difference at the leading edge

(23.23)

(23.24)

(23.25)
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The integration of the first part of the integrand is well known ((26], page 170),

the second part can be rewritten as the derivative with respect to w of the first

one, we find
jU)L-

jwti U U"
JwAe - e {f e

U
i

= jw

jwt
jw Ae f

jWfl Un +22. ½
dr.

o

Introducing the variable = (Un/2.) + i we obtain

jwt i
- -1)

1
)d.jwAe e

i /_1

- i

d - H
(2) wi

i +
2 o

L
Trw

= Ae + J) £
{H

(2) wZ (2)

U o U

jwi

-d
f e d}=

L dw
i

- i
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24. The simple time harmonic motion

We now discuss the function A(t) for the simple time periodic case, hence when the

motion of the profile (22.1) is given by

y = h(x,t) = h(x) et lxi (24.1)

where w is the angular frequency and I is the imaginary unit used in the time

domain, which is distinguished by its notation from the imaginary unit i in flow

domain. We remark that here h(x,t) is a complex valued function with respect to j.

Hence in order to calculate "realistic" values of pressures or other physical

quantities we have to take real parts of these quantities with respect to j.

In order to assure convergence of our integrals we assume that w has a small

negative imaginary part

(A) = W1 - j(A)2 w2 > O (24.2)

hence the motion started long ago very smoothly with a steadily increasing amplitude.

Afterwards we can take the limit w -+ O.

Because the problem is linear we take A(t) as

ACt) = A
jwt

(24.3)

where A is an unknown constant which we have to determine. Substitution of (24.3)

in the left hand side of (23.14) and taking T = -, yields

t t
Jw jwtf A' () K(t -)d = jw A f e K(t -)d = jw Ae J e K(fl)dfl, (24.4)

o

where obvious change of integration variable is performed. By (23.15) we find

(245)

(24.6)

(24.7)



(2)
where (x) = J(x) - j Y¼(x), y = 1,2, are Bessel functions.

Next we determine the right hand side of (23.14) for the motion (24.1). We

first consider V(x,t) and i1(x,t) in this case, by (22.10) and (22.20)

def jwt jwtV(x,t) V(x) e = (jw + U -â--) h(x) e

and X
def jwt

1(x,t) i1(x) e = (UV(x) + 1W J V()d)et.
-2.

Substitution of (24.9) in (23.16) and taking T = - yields

+2. t
i 1 {(U(X_t) 22.)½ v'(U(x-t)-2.)2- QZ

(t) = - J J jw 2,

9,2_2 U(x-t) (-U(x-t) + 2.)

dxd.

(24,10)

We now introduce the new variable of integration n = - (x-t) - 1, then (24.10)

into

12 - i
} dnd.

changes

jw(+t)
±

f e U
{

1)½ - 2,

-
ie J= U

We introduce the two constants G1 and G2 by

_jw(!+t)
J7TU Ue P(t) G= +G

2

where

=J
+9, -1 0 ni ½

(24.13)J e
-2, V'9,2-2

Replacing n by -, the integral with respect to n in (24.13) becomes of the type

of the integral in (24.6), by this we find

G = - !2 {H (2) w2. (2) w9.
T

1 2 o - H J2, d. (24.14)
-2, /9,2

The integral over P](F) in (24.4) can be reduced to ari integral over V() by a

partial integration, we find
+2.

G1 = - 2- {H02 () -1 1

(2)

,

{jw(- - arcsin -)

2

where

Next we come to the part G2 of '!'(t) (24.12), which is more complicated.

lw2.
+2. -1

n2 - iG2=-2, f f e dnd.
9,2 ( - nP.)

Because consists of two parts (24.9) we split again G2 into two parts
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(24.8)

(24.9)

(24.11)

(24.12)

}v)d. (24.15)

(24.16)

G =G +G
2 21 22

(24.17)



and

+2.

G =+u2. j
V()

21
_2 ¡2_2

jw2.
-1 U

f-
+ -1 12_

G =+jw2. f f e
22 - - n2.)

The first term between square brackets vanishes as well for n = - on behalf

of the imaginary part of w(24.2), as for n = -1. We now use the following

identity [29]

then

9. !_ v'-1 i

/9.2 3n ( -nfl - /2 - i
( - nfl

j w9.
+9. + -1 U

G22
= f v()d) f e

-i -2. -
Integration by parts with respect to the coordinate yields

U,
U -

+9. /22
G22+

in2 -1
V()

By (24.17), (24.18) and (24.23) we find

j w9.

G2(t) = U9. V() e {/2 - i I (9.2_ 2)
dnd =

/9/ - - ( - nfl 9.2 /2 -

n+2. -1 U-U V(g)
f e (+r9.)

dnd =
- /9.2 1n2 - 1

+2.
TIJU f V() (2) wP. (2) w9.

{ H ( ) -j2. H1 } d- 22.
-9. /9.2_2 o U

I

Vmn2l a (-n)
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(2

(2

(24.18)

24.19)

We go on with G22, which we write as

' /n2 - iG22 = U
- f de d =

2.
/9.2 (-n2-)

(24.21)

dnd. (24.22)

4.23)

4 .24)



From (24.12), (24.15) and (24.24) it follows that

2.

+ t)
+2.

(2) w2. (2) w2.
'i'(t) = - e [ {i ()-jH (--)} J {jw(- - arcsin ) +

2U o U i

+2,
U

} V() d - ! j
V()

H 2c) +j2. H12} ag].
-

o U
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(24.25)

Comparing the left hand side (24.7) of (23.14) with the right hand side

(24.25), we can calculate A(t) (24.3) as

+2.
jwt 2. U

} v() d +A(t) = = - [

{

{jw(- -. arc sin r

+2, H2 (&)_j2,H (2)

U
j } dci,

2,
2.

,1 ¿ (2) w9, (2) (i)9,

- 2. - H (--) - jH (-j-)
(24.26)

the function between brackets in the second integral can be called Theodorsens

function.

It is now possible to calculate by the formulas (23.21) - (23.26) the thrust

of the swimming profile. Of course we have to take care to use only real parts,

both with respect to i as well as with respect to j, of the relevant functions

in these formulas, because otherwise we could get products of imaginary quantities

which become real again. We remark that the product ij cannot be reduced to a

real quantity.



25. Sorne additional remarks

In technics is one important realization of unsteady propulsion namely
the Voith-Schneider propeller, of which a scheme is drawn in figure 25.1.

j R

Fig. 25.1. Scheine of a four bladed Voith-Schneider propeller.

Under a ship we imagine a horizontal circular disk which rotates about a
vertical axis 2,, through its centre C. The rotational velocity of the
disk is (a . On the disk are mounted several vertical winglikè blades.
These blades can perform oscillatory motions about vertical axes,
which we call pivotal axes and which are denoted in figure 25.1 by

We now discuss the cylindrical surfaces described by the pivotal
axes. As a reference system we take a right handed Cartesian coordinate
system x,y,z in rest with respect to the fluid. At time t = O the y axis
coincides with the axis of rotation L of the propeller which has a trans-
lational velocity U in the direction of the positive x axis. The points
in which the axes L]l ... ,L cut the (x,z) plane are called the pivotal
points. We will consider the path of one of these points, denoted by Q,
in the (x,z) plane. Assuming that at t = O, Q is on the z axis we find

UX R(v wt + sin wt), z = R cos t, V = -

where R is the distance from the pivotal axes to L. The path
given by (25.1) is a cycloid of which the character is drawn in figure 25.2
for two values of y. When V > i a fish tail like motion occurs, when

9?

(25.1)



Vit

Fig. 25.2. Two types of cycloids.

o < y < i the cycloid intersects itself. When y < 0,212 more intersections

occur. In practice we have < 1. In order that the propeller provides

a mean force in the +x direction it is necessary that the blades have ari

appropriate angle of incidence during their motion. This is acconplished

by having them execute a periodic motion about their pivotal axes, as is

drawn in figure 25.2. The way in which the motion of the blades about

their axes 2, ... ,2 is controlled mechanically will not be discussed

here. We refer to [15]. We only menticn that when it is possible to create

a thrust in a certain direction we can, by turning the whole machinery

over an angle, turn also the thrust. By this it is possible to steer a

ship, which is provided with this type of propeller, hence a rudder becomes

superfluous.

When the length of the chords of the wings are not too large with

respect to the radii of curvature of their paths it is probably possible

to describe the working of the Voith-Schneider propeller by regime i of

section 21. Instead of one wing W and one surface H, we have in this case

4 wings each moving along its own surface, however this is not essential.

In order to take into account the bottom of the ship, we can in figure

21.1 take the span of W two times the span of the wings of the propeller.

Then the plane through the midspan poInts, is a plane which by symmetry

is not passed through by fluid particles, hence it can represent the bottom.

Exercise.

Discuss a lifting surface theory for the blades of the voith-Schneider

propeller on the assumption that regime i of section 21 is valid.
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26. Thrust roductiorì by energy extraction

We now will make some remarks on propulsion systems moving in an incompressible

and inviscid fluid which in some sense is not homogeneous. First we mention

a number of examples.

An unbounded fluid can have been disturbed before by the passing of some

device which has shed vorticity which is equivalent to the existence of non

homogeneous velocity fields. Hence in this fluid there are regions where

kinetic energy is present.

Also it is possible that by viscosity in a real fluid a boundary layer has

been formed because the fluid has passed along a body, for instance when air is

flowing over land or water. With respect to our idealized fluid this boundary

layer can be represented by vortex layers.

The fluid can be disturbed in a more or less inviscid way by flowing along

a fixed object. Under a free water surface we can have nearly inviscid

disturbances by a train of waves moving along the surface.

When we consider the air flowing over a water surface we can look at both

media together. Then we have first an inhomogeneity of density because the water

is much heavier, while also we can have a relative velocity of both components.

In an idealized model we can neglect boundary layers or surface waves, and

consider the two homogeneously moving half infinite media.

Of course many other inhomogeneities can be thought of and ail kinds of

combinations of the above mentioned ones can be made. We next show how energy

can be extracted.

First consider an unbounded inviscid and incompressible fluid in which a

disturbance velocity field is present. These velocities are

assumed to be small of 0(c), independent of time. Through this fluid moves

a flexible wing W along some prescribed reference strip H which may be curved
in a sufficiently smooth way. The velocity V with which the wing W moves

along H will be 0(c0) and may be time dependent. Because we consider a linearized

theory the wing W will deviate from H by distances of 0(c). The question

Fig. 26.1. Energy extraction by a flexible wing W.
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Fig. 26.2. Forces LA and L on upright sailing boat.

loo

of interest is which amount of energy can be extracted out of the kinetic

energy in the fluid by the wing W.

The only possibility in a linearized theory for a lifting surface W to

sense the velocity field (010,0)in space is by its normal component at H.

Hence we can replace the velocity field (u,v,w) by any other (u,v0,w0)

which has the same normal component at H, without altering the situation for W.

We choose for (u,v,w) a velocity field which is induced by a vortex layer

on H. This layer is uniquely determined by the normal component of the

velocity field when we add the condition that its total circulation about H

is zero. It can be found numerically by solving a Neumann problem for H,

where the normal component of the unknown new velocity potential is prescribed.

Now the kinetic energy in the fluid is altered because in general the

velocity field (u ,v ,w ) is quite different from (u ,v ,' ). It is thiso o o o o o

new kinetic energy which can be extracted by W. The only thing W has to do is

to deform, while gliding "along" H, in such a way that it sheds free

vorticity of strength - Then it sweeps clean the strip H and no kinetic

energy is left in the fluid.

The reason that we assumed the total circulation around the ship to be zero

is that we want to replace the original kinetic energy by kinetic energy which

can be entirely extracted by the wing, while the conditions at H remained the

saine. Because a wing can leave behind only free vovticity with zero total

circulation this is in agreement with our reformulation of the problem. In case

of a technical device the extracted energy can be stored in one way or another f

instance in a flywheel and can be used to lower the power needed for propulsion.

In case of animals using muscles the question remains which part of the extractable

energy can be used effectively.

Another example is the thrust production by sails and keel of a sailing boat.

Here we use essentially the different velocities of the two media water and air

with respect to some inertial reference frame. The boat is extracting energy from
these media by protruding one wing, the sail, into the air and another wing, the keel

into the water. When we suppose the boat to be upright, we have figure 26.2,

1_L

or



where we have replaced the mast and the keel by lifting lines in and k respectively.

The relative velocities of air and water with respect to the boat are denoted by

tJA and which make an angle with each other. This is possible by giving the

boat a suitable course direction with respect to the inertial frame mentioned

before. Then also the lift forces LA and L induced by ti and. tJ make an angle

with each other, hence they produce besides a moment also a thrust. The moment

has to be balanced in the upright position by the crew and in more general

conditions also by the weight in the keel and the stability of the boat. The

thrust is balanced by the resistance of hull and rig when moving with respect

to air and water.

We return to this subject in section 36, where we will discuss the optimization

of a sail in a simplified case.

At last we mention a possibility of extracting energy by means of a body

which does not shed vorticity itself. When a body of finite dimensions (0(c°))

moves in an inviscid and incompressible fluid it will in general have

altered the relative position of fluid particles when they cerne to rest again

after the body has passed. Suppose that vorticity of 0(c) is present in the

fluid, of which we neglect as usual the transportation by the velocities induced

by itself. Then after the passing of the body the relative position of the

vorticity will have changed and also the kinetic energy of the fluid. In the

case the kinetic energy, which is of 0(c2), has been lowered the body must

have experienced a mean thrust of O(E2) in the direction of its motion, by which

the energy is extracted. We give a simple example of this.

Consider the two dimensional case of a circular cylinder moving through the

,10

I

t.'
.. (e,> a2)

Fig. 26.3. Deformation of straight lines by the passing of a circle cylinder.

fluid, the velocity field will be independent of the z coordinate. In the

fluid we have marked a number of straight lines, hence lines coupled to the
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where A is O(e) and y > O is coupled with a right hand screw to the positive

z direction. The kinetic energy Eb per length period in the x direction

of these layers can be calculated explicitly as

27F
2 - +

w 2ir2A -w(a -a
Eb = J - (x,a.) {(x,a )] dx - (1 e 2 1 ).

=1 o
y

-

Far behind the moving cylinder the layers assume again their previous

position however they have been translated with respect to each other in

the x direction over some distance b = b(a1,a. y this the kinetic energy

which we now denote by EA is different in general,

22A2 -w(a -aE = (1 + cos (wb)e 2
a 2w

The difference Ea - Eb can be extracted out of the fluid only by the

work done by the mean value T of the thrust when it is displaced over one
2rr

length period - , hence

-w(a -aT=(E _E)=A2(1_coswb)e 2 1,
2ir b a w
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fluid particles. When the circle moves through the fluid the lines will

deform and remain deformed after the circle has passed(figure 26.3). Now

we assume that we have two vortex layers and , defined by y = a1 and

y = a, a2 > a1 > O sufficiently far ahead of the circle. There the vorticity

on each layer has the strength

y = A cos w x w > 0, (26.1).

When a1, a2, A and w are given the value b has to be calculated by numerical

means or "measured" from figure 26.3.

We remark that the model discussed above is not at all reliable when the

vorticity passes to close along a body because then viscosity effects become

important.

More information about energy extraction is given in the optimization theory

in sections 27 - 30.

(26.3)

(26.4)
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27. Optimization theory, general considerations

The optimization theory we will discuss here is intended to give insight

in the best way of working of a lift, thrust or any other prescribed force

action producing device, in an inviscid and incompressible fluid. First of

course we have to define what will be called the best way of working. We

restrict ourselves to the minimization of a simple cost function, namely

the kinetic energy losses per unit of time in the fluid. For instance

consider the well known problem s1ved already long ago [2] of the screw

propeller with a given diameter, velocity of advance and rotational velocity,

which has to yield a prescribed thrust. The question is what has to be its circu-

lation distribution in spanwise direction along the blades in order that the

kinetic energy left behind is as small as possible. This energy is put into

the fluid by the engines which have to deliver the useful work but also

have to overcome the induced resistance of the blades. This trailing

vorticity in the case of an optimum screw propeller can be characterized as

follows. Consider the two sided infinite helicofdal surfaces passed through

by the blades when the screw, while rotating with its prescribed rotaticnai

velocity, has moved along a straight infinitely long line from one "end'

to the other. Assume these surfaces to be rigid and impermeable and translate

them, without rotating, with a suitable velocity in the direction of the

line just mentioned. The vorticity needed to let the fluid move around the

helicoidal surfaces happens to be the free vorticity shed by the optimum

propeller.

In the following we will derive conditions for the optimum working of more

general devices, including unsteady ones. We assume that the motion of the

propulsion systems we consider will be periodic with respect to a reference

frame translating with the mean velocity of the system. We have to demand

a non zero mean value with respect to time of the force action, otherwise

the kinetic energy left behind can be made zero and we have a trivial optimum.

The constraints on the force actions can be rather general. For instance

it can be demanded that a wing carrying Out a flapping motion delivers lift as

well as thrust. Then we can ask for the optimum motion which yields both force

actions at the same time. Again it will turn out that also in these more

complicated cases the shed vorticity of the optimum system can be characterized

by moving the surfaces passed through by the blades or wings, in a certain way

through the fluid.
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It can be allowed that the fluid through which the device is moving is

disturbed before, hence it has a non homogeneous velocity field. From

this energy can be extracted by our system which then needs less energy from

outside to perform its task, as is discussed in the previous section.

We shall discuss two types of optimization theories, a linear one

and a semi linear one. To the sphere of the linear theory belongs the

sculling propulsion of regime i) section 21, which in fact includes as

a special case the lightly loaded screw propeller when the huh is neglected,

sections 18 and 19. The semilinear theory is necessary for the optimization

of the sculling propulsion of regime ii) section 21. Here we have a base

motion which induces finite disturbances on which is superimposed a

small added motion which can produce non zero mean values of 0(c) of thrust,

lift, etc. This theory also describes the lightly loaded screw propeller with

a hub of finite dimensions.

The question of the existence of optimum motions yields rather delicate

problems. In certain circumstances which seem physically not unrealistic, no optimum

motions exist.

The theory developed here leaves out of consideration many aspects of real

fluids. An important property of a fluid with respect to optimization in the

sense as defined here, is its viscosity. When viscosity is neglected it will

be seen that by increasing the size of propulsion systems the efficiency of it

can be increased. This is the reason that in our theory based on invjscid fluids,

we have to make a choice of the working area of the propeller. This restriction

generally does not occur in real optimization problems because there viscosity

puts a natural bound on the dimensions of the propeller. In that case the diameter

of a screw propeller has to be chosen so that the potential theoretical

increase in the efficiency caused by an increase in diameter will be annihilated

by the decrease caused by friction losses. Although we agree that viscosity

is very important in optimization theory, we will in order to avoid mixing

difficulties first give a consistent linearized theory for inviscid fluids.

In the linear optimization theory we will in first instance neglect forces

of 0(c2) . These are forces due to leading edge suction, forces in the direction

of motion of the blade caused by small local angles of incidence and second

order errors of the first order forces caused by the assumption that the blade

vorticity as well as the trailing vorticity lie on the reference planes. For a

lightly loaded ordinary screw propeller the leading edge suction forces are

not too important because these forces are nearly pe:pendicular ta the

direction of the thrust. When however we have a shrouded propeller or a ring

propeller, the suction forces acting at the leading edge of shroud or ring

point in the direction of the thrust and will be in practice a non neglicible

part of it.



In case of the sculling propulsion described by regime iii) section 21,

the second order forces are the only propulsive forces. This means that

the non linear effects are dominant and have to be discussed separately.

The objection can be made that in the case of a prescribed mean value

T(E) of the thrust with respect to time of O(E), errors of O(E2) are

present. These are of the same order as the kinetic energy E(c2) left behind

per period. So it seems that the efficiency n cannot be calculated at all.

However we find

U(T(E) + U T()
n = + O(E2),

U(T(E) + j'(2)) + E(c2) U T(e) + E(2)
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where U is the velocity of advance of the propelled body. From (27.1) it

follows that n is accurate up to and including 0(c).

First as has been said, we direct out attention to the strictly linear

theory, valid for propulsion systems which induce small disturbance velocities

of 0(c) and which have force actions of which the mean values with respect to

time are also 0(c)

(27,1)
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Fig. 28.1. A lifting surface system, m = 2.

that an increase in
k

by a number bk, while remains constant makes that

we obtain an equivalent point of Uk with respect to its periodicity. The

regions of
k

and are given by

<n <n , k=1, ..., i,k- i,k

n <n
o,k - k - 111,k k = i + 1. ..., m,
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28. Lifting surface systems, linear theory (regime i)

We have a Cartesian reference system x,y,z, embedded in an inviscid and

incompressible fluid. The reference system is at restwith respect to undisturbed

parts of the fluid. Consider in this fluid m sufficiently smooth reference

surfaces

Hb(x,y,z) = o k = 1, ... , in (28.1)

with

Hk(x + b,y,z) = . hO h

hence these surfaces are periodic with period b in the x direction. On each

surface we have an orthogonal coordinate system .?n(figure 28.1) in such a

way

(28.4)

where the half open intervals in (28.4) belong to closed surfaces as for instance

H2 in figure 28.1. The lines

= const., (28.5)



will form a one parameter family of curves on such that through

each point of Hk passes one and only one such a line.

In order to introduce a + and a-side on we consider the unit

vectors and e, tangent to Hk and in the positive directions of

and fl. Then we construct the vector *
.

Now we agree that this

vector points from the negative side Bk to the positive side of Bk

(figure 28.1).

Next we have lifting surfaces Wk moving along the reference surfaces

Bk. We assume that the velocity of the points of the Wk can be described

by functions Vk(kI
k'

t), k = 1,...,m, with

Vk(k + bkl k' tk + T) - vk(kl t), (28.6)

where bk is the period cf Bk with respect to the coordinate and T

is the time period of the system under consideration, These velocities are

assumed to be tangential to the lines (28.5) and are reckoned positive

in the direction of increasing values of k This choice of the velocities

of the points of the lifting surfaces Wk is not a restriction of generality

as is discussed in section 8.

At last we have functions kk' flklt)I k = 1,...,m, which are of 0(c)

with

+ bkr 1k' + T) = rk(k, k'
t), (28.7)

and which represent the bound vorticity of the lifting surfaces Wk moving

along the with the velocity Vk. This vorticity is reckoned positive when

it has a positive component (right hand screw) in the positive
k

direction.

It is assumed that when rk(k?nkt) O for some values of
k

r and t then

rk(k,n,t) = 0, - CkI > C, (28.8)

where C is some constant, for all Tk This means that we consider lifting

surfaces Wk of finite dimensions, gliding along the Rk.

Bound vorticity was introduced in section 7 (figure 7.1, along I) as

vorticity which is perpendicular to the local relative velocity of the

fluid, hence to the lines (28.5) and which gives rise to pressure differences

between the + and the -side of the Hkl of magnitude

(p - p) =
k

= u rk Vk.
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We define a lifting surface system, denoted by {H,, Vk rk' as the

periodic surfaces H.Kl together with the velocity distributions Vk and

the bound vorticity distributions Fb

Because our theory will be linear, the free vorticity
'k

which is

shed by the bound vorticity Ç' remains where it is formed, hence at the

surfaces Hk.

Finally we introduce the working region of a lifting surface system

k'
Vkl rk}. We agree that it is the region of space enclosed by the

most narrow cylinders with generators parallel to the x axis which enclose

the
'k The cross section of these cylinders will be called the working

area of the system. In figure 28.1 these cylinders are denoted by C1 and

C2. The working area is allowed to consist of disconnected regions denoted

by A1 and A2, which themselves can be multiply connected.

iCE



29. The variational problem for lifting surface systems

Our next subject is the optimization of lifting surface systems fHkfvlrk}

defined in the previous section of which the reference surfaces Hk are prescribed

and Vk and Fk may be varied. For simplicity we assume that we have only one

reference surface denoted by H, along which one lifting surface W is moving.

The case of more reference surfaces can be discussed essentially in the

same way.

The fluid is allowed to have a time independent velocity field of

O(E) which is periodic with period b in the x direction. As has been discussed

in section 26 we replace this velocity field by another one (u0,v0,w0)caused

by a vorticity layer of O(E) at H of total circulation zero around H and

which has on H the same normal component as (u,v,w).
-When the wing has passed along, it has left behind free vorticity y at H

by which it alters the kinetic energy which before passing belonged to alone.

The resulting kinetic energy E due to and together is wasted and should

be made as small as possible. We introduce the velocity potential 0(x,y,z)
which belongs to the velocity induced by and the potential c(x,y,z) which

belongs y. These potentials are independent of time because the wing 15
assumed to be already at a large distance. The kinetic energy left behind per

period can be written as

+ +' b
E = J J f {(. ( fl2 + (_ ( ±) + ( ( +)} dxdydz. (29.1)o y o r o

The energy E has to be minimized under some constraints. For instance we demand

that the mean value T with respect to time of the thrust (force in the positive x

direction) must have some prescribed value. This can be written as

--

Ti i.- - j 5f ip(,rì,t) cos (,r) dSdt = T,n,xoH

T
-

- f 55 T(,rì,t) V(E,,t) cos (,rì) dSdt = T,
nix
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(29.2)

where Ap is given in (28.9), cos is the cosine of the angle between the normal

at H and the positive x direction and dS is an element of area of H. The

coordinates at the surface H are denoted by and n, the period of length
of the coordinate will be b. Substitution of (28.9) into (29.2) yields

(29.3)
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only the lifting surface W which is a finite part of H, contributes to the

integrai. By the periodicity of the problem with respect to the ¿ coordinate

and the time we can write instead of (29.3)

t
= rT,- -- E JJ F(,,t+nt) V(,,t+nT) cos (,n) dsdtT fl,x

o n-

where Hb is a fixed period of H stretching over the interval O < x < b. Hence

+
- If F(,n, t+s) V(,fl, t+s)cos (,r) dsdt = T,

T n,x-
Hb

only a finite region of time, when the blade W passes the part HD of H,

contributes to the integral. We next consider a contour (figure (28.1) which

connects the two sides of Hb for some point Then first before the blade

has arrived at that point

= +() _() = 0, (29.6)

where by
[f]+

we denote the jump across H of any quantity f and (,n) denotes

the value of (x,y,z) at the point (,n) of H. When the blade has passed entirely

we have
+

= - f F(,n,t) V(,,t)dt . (29.7)-
Hence we can rewrite (29.5) as

+ - if t,n)] cos (,n) dS = T, (29.8)- nix

where the integration over Hb has to be carried out when the wing has passed

Hb

Formula (29.8) represents a constraint on the admitted potential functions

(x,y,z) with respect to the mean value of the thrust which has to be delivered

by the blade. By replacing for instance the function cos 5(,)by cos(,ri)which
is the cosine of the angle between the normal n and the positive y direction we can

put a demand on (x,y,z) so that a mean force in the y direction is delivered. More

generally we can replace the cos(E,) by any function, then we obtain a number

of constraints

5f g.(,n)dS - G. = 0, i = 1, ... , M (29.9)i i

(29.4)

(29.5)



where g.(,n) are prescribed functions and G. prescribed constants.

Now we have to minimize E for a given function (x,y,z) with respect

to the unknown function c(x,y,z) which has to satisfy a number of constraints

(29.9).

We have to be careful by demanding conditions (29.9), that they are not

contradictory. For instance we can describe the thrust of a screw propeller

to be T, while also we prescribe its moment about the x axis along which

it is moving, to be M. This is not allowed because M is uniquely determined by T

by means of the geometry of the screw blades. In fact the energy necessary

for the useful work UT of the screw, where U is the velocity of advance,

must be supplied by the torque hence

UT = wM, (29.10)

where both quantities are O(e).

The same happens when we would prescribe both the thrust and lateral force

acting on the sail of a sailing boat of which the course makes a finite

angle with the direction of the relative wind.

We remark that (29.9) represents constraints which are related to mean

values of force actions with respect to time. It is however also possible

to consider constraints which prescribe force actions at each moment of time.

We refer for this to [22].

Exercises.

Discuss the relation between the potential jump
[]+

at H when the wing

has passed, and the free vorticity shed by the wing.

Formulate the variational problem in case there are more reference surfaces

H. ...H.
i N

Discuss the function g.(,n) (29.9) which belongs to a prescribed mean

value of the moment exerted by a lifting surface about the x axis.



30. Necessary condition for the optimum

In this section we minimize E (29.1) under the constraints (29.9). Suppose

the function (x,y,z) is the optimum potential we are looking for. We change

it by S (x,y,z), which has to be a periodic function with period b in the x

direction. Then the first variation of E has to be zero,

+ h
ó E = If f {--( + ) -- + ) f- 5

+ f- ( + )f } dxdydz = 0.- Q

(30.1)

We carry out partial integrations of the three terms in the integrand in (30.1)

with respect to x, y and z respectively. Consider the first term

b + b

f J f - ( +) 6 dxdydz = p f f f p ddydz =
3x o

- O
3c o

+ b b 32( +)
3

p f f [---- (4 +).6 - f °
dx]dydz-p f f [-( +)1dydz.X O- o 3x2 3X O

x=o

(30.2)

The second term can be rewritten as follows

b +b +o
p f f L (c + ) ---- 541dxdydz = 3.1 f J f

I-;;-
+ ) d&dxdz =- 3Y O 3y _o -

-foe b -foe 32( +) -

f
[3= u J - ( +). & - f °

dy]dxdz-i.i f f[-(' +).S]
y o- y_oe 3y2 3Y O +

.dxdz. (30.3)

The third term becomes

+co b -foe + 2( +) -
P f f [L

( +).6 - J (5(i)
O)

dz]dxdy-p f f[f.(+)]dxdy.3z ou z=_ - dz'-
Fib

aSE = -3.1 f J --- ( +).[J dS = 0.
o -

Fib
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(30.4)

We have to add (30.2), (30.3) and (30.4) and make use of the fact that both

and are potential functions and that and Sc tend to zero for y2 +

Also we know that and 6t are periodic functions of period b in the x direction.

Then a number of terms cancel each other in the sum, we find

(30.5)
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By the continuity of f- ( +
) across any surface in space, we are allowed to

put this expression out of the square brackets.

The jump can be chosen zero everywhere with the exception of the

neighbourhood of some arbitrary point P at H.p. This is most easily effectuated

by placing on Hòi around P a slightly distributed closed vortex ring Sy.

Then is zero for (,)outside this ring and has non zero values inside

this ring (figure 30.1). However we have to satisfy M constraints (29.9).

Fig. 30.1. The disturbance potential .

In order to handle these we consider a disturbance which is non zero in the

neighbourhood of M + i points P1,
..., at Hb. The integral over the disturbance[J±

at point P over the small region where it is non zero will be denoted

then (30.5)by ó, we can replace by
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M+ i

= - ( (P ) + P)) = 0.n o Z
Z= i

(30.6)

For these disturbances the constraints (29.9) are written as

M+ i

E g.(P) t5 = O , i = i, ... ,M. (30.7)i

By equation (30.7) we can express S,
... '5M

into We introduce the

following determinants

D = g.(P) , i,i = 1, ... , M,

g1(P1) J(P1) g1(P1) g1(P)

(30.8)

g(P) g(P ) g(P )g(P ) g(P)M i M k-1 M M+1 M k+1 M M

(30.9)



where k = 1, . . , M. Then we find by Cramer's rule

6 =-D .D 6
k k M+1

Substituting this result in (30.6) and dividing by yields

M
-D' ( (P ) + (P)) D2, . = f-

3ri o 9,

M
(P) = - (P) ± E A g (P) , P E H,

Bn Bn o i i
i= i

i 1.4

Next we assume the points p1,
... 'M

to be chosen at fixed places at

while the point is allowed to move freely over H. This latter point

will be denoted by P. Hence we find from (30.11) by expanding the determinants

D9(30.9) with respect to the column which contains M+1
=

where À. are unknown constants. This relation is a necessary condition for the

normal component - of the velocity induced at H at an arbitrary point P by

the free vorticity sheet left behind by the optimum wing at H. Herewith we have

found for the optimum potential a necessary condition in the form of a Neumann

problem. This has to be solved while the are still unknown, afterwards the

X., i = 1, ... ,M, can be determined by the M constraints (29.9).

Condition (30.12) follows also from the demand that the linear homogeneous

equations (30.6) and (30.7), for the unknowns 6, 2, = 1, ... , M + 1, would

possess a non trivial solution.

Exercise -

Discuss the optimization condition (30.12) in case there are more reference

surfaces H, ...
, HN.

(30.10)

(30.12)

+
(30.11)
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Fig. 31.1. Two bladed screw propeller within a shroud (partly removed).

It has to deliver a prescribed thrust T in the positive x direction.

In the optimum case the free vorticity shed by the blades and the shroud is

determined by the optimization theory. The bound vorticity on shroud and blades

in turn is determined by this free vorticity. Because the free vorticity

behind the shroud is not rotationally symmetric as a consequence of the

presence of the helicoidal vortex sheets behind the blades, also the

circulation around the shroud will not be constant in circumferential direction.

Therefore the shroud must have profiles which vary along its circumference.

It is clear that the vortex configurations both on the screw as well as on the

shroud are stationary with respect to a system of axes which rotates with the

screw. In order to have also a stationary vortex configuration and local

angles of incidence with respect to the shroud, we can assume that the shroud

rotates with the same angular velocity as the screw. The profiles of the shroud

are defined as the intersections of the shroud and the helicoidal surfaces
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31. Optimum ducted screw propellers

We consider a screw propeller with m blaes placed in a shroud of zero

thickness , which is in the neighbourhood of a circular reference cylinder

of finite length and of radius r . The blades of radius r are connected
s o

to a two sided infinitely long hub of radius r.,. In section 39 we return

to this model of a hub and discuss its limitation. The propeller rotates with

an angular velocity w and is placed in a parallel flow with velocity

U in the negative x direction:

u

.p + ax = const. (31.1)



g (,n) cos
i T (n,x)

It has been remarked already in section 20 that a shroud can be favourable

with respect to efficiency by the interaction of the vorticity flowing from

its trailing edge and the vorticity shed by the blades. The influence of the

type of shroud described here will be optimal. This means that when a shroud

of this type has not much influence, a rotationally symmetric conventional

shroud when it has the same diameter cannot have more influence, irrespectively

of its length. In the case of zero clearance (r = r) we have an optimum

ring propeller of which the ring is not rotationally synmietric, For ring

propellers with rotationally symmetric rings, we refer to [8]. The meaning

of the schematization we use here will be discussed more extensively in sectiort 35

The reference surfaces Hk of the previous section are in our case the following.
First, the H. = j = 1, ... , m, are the stationary helicoidal surfaces along

which the m blades of the propeller are moving when the fluid is put tc rest and

the screw has the velocity U in the positive x direction, which is of course

the same problem. The surface H is the surface along which the shroud is
m+ i

moving and H is the two-sided infinite shaft. On these surfaces we canm+ 2

introduce orthogonal length coordinates (k'»' k = 1, ..., m 2, as follows.

On H., j = 1, ..., m we choose as r the distance of a point of H. to the
J

½x axis, hence n. = (y2 +z2) = r; (x,y,z) E H.. We ta)e for
.

the length

coordinate along lines r = r = const. The positive direction of n. is chosen

in the direction of increasing r values. We can also introduce on H. the
L

non-length coordinate x = .(1 +aLr2) . At H we take = x and n = r .Pj m+l m+1 m+1 S
analogously at H , = x and n = r.tD.m+2 m+2 m+2 i

In this case we assume that the incoming fluid is homogeneous, this means that

for the problem of the advancing screw ,the fluid is not disturbed before, hence

0. We have only one force condition (M = 1, (30.12)). The function g1(,n)

(29.9) becomes, as has already been discussed (29.8)

where now (,n) is any point on H1, . .
,
H. Then the necessary condition

for an optimum becomes

= A cos (,n),n i (n,x)

where we have absorbed the constant p/T in the still unknown constant A1.
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(31.3)



The meaning of (31.3) is the following. Consider the in helicoidal surfaces

H , ..., H and the two circular cylinders H and H , all two sidedm m+1 m+2
infinite, to be rigid and impermeable. Then the potential (x,y,z) belongs

to the fluid motion which arises by translating these surfaces in the positive

x direction with a velocity X1. First we will discuss this potential problem.

Introduce a helicoidal coordinate system (,p,o) by

= (P + ax , p = ar = a (y2 + Z2)½
, G = ( , a = w/U. (31.4)

The potential equation for the function (P becomes

2 a2 i a ._+!__ a2a {- + - - (- +
P ap aP

p2 a2

We first show that this potential is independent of G. This is clear from

the statement of the problem for the velocities, however because the potential

arises from these by means of integration, this is not evident for itself.

Suppose is given in a point C p0, and we calculate the potential in

a general point
,
p1, o. Then by figure 31.3

,p ,a ) = ,p ,c ) + cos a f ds +
1 1 1 000

?; ,Po ,c

,P ,a ,P ,G
+ f 0 1 1

d +
1 1 1

(,p1) d
co,P0,G1 z,p1,o

where a = ct(C,o) is the angle between the velocity and the helicoidal

line through (Ç,p,a) and d is an "infinitesimal length" vector.

The first integral in (31.6) is along a helicoidal line, the second along

a radius and the third in the x direction. From (31.6) it follows that we can

a2
2 + .-)} (,p,a) = O.
aaa aa2

Fig. 31.2. The path of integration (01p,a) -- (1,p1,c1).
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write the potential at the point (fP1IcJ]) in the form

= (CsP,0) + O )k( iP0) COS o. +F (,p1),
o o

where k(,p) is a non zero constant and F is a function independent of cY1.

Formula (31.7) shows that when cos a O, we have a term which is linear

in - o), hence the potential will increase indefinitely czith by

fixed and p1. Connect a point A outside H1 with a point B inside

Hm+i by means of a long slender contour Q(figure 31.2) around the beginning!u

of H+l. Then the potential difference between A and B equals the enclosed

vorticity at H . However the vorticity at H is a periodic function of x
m+1 rn+1

with zero mean value hence the potential difference between A and B has to

remain finite. This yields a contradiction when cos a O and the fact that

outside of H the disturbance velocity is zero. Hence cos ci = O or ci = ff/2
m+ 1

radians which means that the velocity field induced by the translation

of the helicoidal surfaces H1, ... H and the cylinder H+1 is perpendicular

to the helicoidal lines
= C, p = Po r. Then

= (C,P). (31.8)
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32. The boundary value problem for the potential

We consider the in helicoidal free vortex sheets far behind the propeller

blades. Also we imagine in bisector helicoidal surfaces, exactly in between

them. These two types of surfaces can be generated by straight lines

perpendicular to the x axis, which move along this axis with the appropriate

angular velocity.

Now we take such a line g generating a bisector plaile consider it in

a fixed position and rotate the whole system of vortex sheets and bisector

surfaces about g over an angle of r radians After that each surface

coincide with one or another surface of its own type of the original corifiguration

When we multiply next the vorticity ori the vortex sheets and on the cylinder

behind the shroud by -1, we obtain again the original velocity field.

Fig. 32.1. Velocities in two points, symmetrically placed with respect
to a bisector surface.

Consider an arbitrary pair of points P and Q, which have equal values of p

and r and which changed position after the rotation mentioned above. It follows

that the velocities in P and Q possess the symmetry relation drawn in figure

32.1. The velocity components perpendicular to the r direction have to be parallel

and of equal magnitude while the components in the r direction are of the same

magnitude however opposite in sense.

When P and Q tend to each other and hence to the bisector plane, we see that

the components of the velocity in the r direction have to vanish. This means

that, because we found already that a = ir/radiansin figure 31.2, the whole

bisector surface has a constant potential, say = O. Then however each bisector

plane has the potential zero. This can be seen as follows, suppose the potential

difference between two neighbouring bisector surfaces Is . Then we have m = O,

because after in steps we are again, the same bisector surface, hence t = O.

I i.9



An analogous reasoning can be given for two points which change position

when we rotate the whole system overir radiansabout a generating line of a

helicoidal surface H., j 1, ... in. The only difference is that here the

velocity components in the r direction do not have to vanish when both

points tend to the free vortex sheet H., because by the presence of the

vorticity on the sheet a discontinuity can be tolerated. However on the

extensions of the H., j = 1, ... ,m, to H+1 the r component has to be zero,

hence there the potential is constant. It can be seen that first all these

extensions have the same potential and second that this value is zero.

From these results it follows for the potential (p) = - - ,p)

when '' belongs to a point on a bisector surface or on a vorticity sheet

H., j = 1, . . . in.
We now discuss the boundary condition on the rigid and impermeable

vorticity sheets H., which translate in the positive x direction with the

velocity X1 (31.3). The equation cf these surfaces in cylindrical coordinates

is

G = ( + a(x - X1t) -

The boundary condition (15.3) yields

i
-a X1 + a+ =0,

r
Bp

or in helicoidal coordinates

s

- ),

O j = 0,1, ... in - 1. (32.1)

C)

From this and the symmetry relations we find that the potential has to

satisfy the boundary conditions denoted in figure 30.2. Because c(r,p) does

-

ÇO
4- .1

.-?LI.#.i.
I

Fig. 32.2. The boundary conditions for the potential '(,p).
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(32.2)

(32.3)
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not depend on a, (31.5) simplifies to

p p - + (1 + p2) } (,p) = O.
3p

This boundary value problem has to be solved by numerical means. In the case
A1

-= 1, we denote the solution by 1(,p).

When we have a screw propeller without a shroud we have to take in figure

32.2, r = , hence we have to solve the boundary value problem for a semi

infinite strip.

Exercises.

Show that the effect of the infinitely long cylindrical hub of figure

31.1 is, in the optimum case, the same as an "inner shroud'.

Show that when we have no hub in this problem then we have instead of

figure 32.2, the following boundary conditions.

è',

_-L O

I

a_,to &"t

Fig. 32.3. Boundary conditions when hub is neglected.

1:o
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33. Bound vorticity on blades and shroud

At a certain value of n1 = r we place a contour 9. around the blade W1

(f igure 31.1) by which we define the circulation r(r) around W1. This

circulation is reckoned positive when it is coupled with a right hand screw

to the positive r direction. The total amount of free vorticity shed by the

blade between the place r and the tip equals this value. We reckon the free

vorticity, which lies along the

coupled with a right hand screw to

far behind the propeller the point

the -side and the +side of H1 at Q

2 A
i

F(r) = -[(Q)J = 2 (O,ar) = - (O,p) , p = ar,
a

where is the potential which follows from the boundary value problem of
i

Al *
figure 32.2 for = 1. We remark that contour 9. can be obtained from contour

9. by a continuous deformation without cutting vorticity lines hence without

a change of enclosed vorticity.

Next we have to determine the unknown constant A1 by means of condition

(29.9) which in this case has the special form (29.8) We can take

T = 2ir/w
2ffb = UT= -
a

hence because we have m blades (29.8) becomes

E ri cos (,n) dS -
2ff n,x 27r

Ii +ar dx = pwm fo [(r)]

coordinate line, positive when it is

the positive direction. Mxt we consider
i

*
Q on H1 and the contour 9. which connects

Then we find

(a = )

21w- r
w O

O r. (1+a2r2)½
f J ['(r)]

r(Ordr=-pwm j ri'(r) dr=T.

i
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In (3.13) we used the fact that behind the propeller blade depends only on

= r where r is the distance of a point to the x axis. We remark that by the

choice of the helicoidal surfaces (31.1) w = - . Substitution of (33.1) into

(33.3) yields

A
w2

ar
- T ç 0 -1 def w2T

J1(ar., ar , ar ,m).j p 1(O,p) dp}
2pm U ar. - 2iim U 1 0 s

1

(33.1)

(33.2)

(33.3)

(33.4)



where we introduced the quantity J.

Next we direct our attention to the circulation r around the shroud,
s

Around the shroud we take a narrow contour ABCD (figure 33.1).

Lt

H,rr.p
J

= -

where ' is just outside H and just inside it. Then we find
m+ i

Al

F() = '() - -- 1(,ar)

Fig. 33.1. On the circulation around the shroud.

This circulation is reckoned positive when it is coupled with a right hand

screw to the direction of increasing p on the shroud. First we observe

that r is to a certain extent independent of the shape of ABCD. This

contour may be deformed continuously, however when doing this it may not cut

through vortex lines. Hence another more natural choice is to let it lie on

a helicoidal plane ax p = = const. (A,B,,') around a profile (31.1)

of the shroud. Next we let and tend along = const. to a piace far

behind the propeller. Then it follows that

C
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(33.5)

(336)

The potential () is not fixed because only the normal derivative is prescríbed

at the surfaces H., j = 1, ... , m + 2, and H1 shields the outer region from

the inside. This means that outside we can take any constant"function"as potential.

From this it follows that we can add a constant value to the circulation of the

shroud. This added constant circulation does not shed any vorticity, it increases

or decreases the fluid velocity at the place of the screw.
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The question remains how we have to find the shape of the blades and

of the shroud which induces the optimum bound vorticity. First we consider

the blades and assume the planform of them to be given.The known circulation

has to be distributed in some way in chordwise direction. The way in which

this is done is of no importance for the free vorticity left behind in our

linearized theory. For instance we can take the bound vorticity constant

along each chord, then we have along each chord a constant pressure jump

which varies with r. By this the loading (15.17) of the blade becomes

Q(x,r) = p(U2 + w2r2)½ F(r)/b(r) , (33.7)

where b(r) is the length of the chord. From this loading follows by

considerations about the strength of the blade, its thickness distribution.

For instance consider the case that no shroud is present (r = ) and that

the influence of the hub is neglected. This means that in our previous formulas

we have to use the potential which belongs to the boundary values of figure

32.3. Then by the lifting surface theory of sections 14-19, we can determine

the shape of the blades in this optimum case.

When a shroud is present we have to discuss both blades and shroud together

in one lifting surface theory. This is not more difficult in essence than the

theory for the blades alone, however being rather complicated we will not discuss

it here.

We still shortly discuss the interesting case that the clearance between blade

tip and shroud is zero (r = r ). Then it follows from numerical calculations
o s

that the bound vorticity on the blades does not tend to zero for p ar0.

Hence a concentrated free vortex of strength 1(O,ar) (33.1) leaves the

tip of the blade. Next the vorticity on the shroud is odd with respect to the

blades and discontinuous at the blades. Hence a jump in its vorticity exists

by which a concentrated free vortex is shed, which is by (33.6) of the same strength

as the tip vortex however of opposite sign so that they cancel each other.

In the case of a small clearance no concentrated free vortices arise, however

the principle remains the same, a strong free vortex shed by the shroud interferes

favourably with a strong free tip vortex.

Exercise.

Derive the last equality of equation (33.3) directly by means of the law

of Joukowski for a force ori a bound vortex.



34. The efficiency of optimum ducted propellers

In this section we will calculate the kinetic energy E left behind by the

optimum directed propeller per unit of time. From this energy follows the

efficiency of the propulsion system. We do not use formula (29.1), but a

weil known form which results by partial integration from it. The kinetic

energy within a closed surface S, can be written as

(rE = - p jj dS,

s

where the normal derivative is with respect to the inward normal and dS is

a surface element.

In our case we have to consider the kinetic energy in a part of space

far behind the propeller, bounded by the hub, the cylinder behind the shroud

and two flat planes perpendicular to the x axis at a distance U of each

other. When the screw has m blades this kinetic energy is 2 m times the

kinetic energy between a helicoidal surface behind one of the blades.

extend to the cylinder and a bisector surface. From figure 32.2 it follows

that the only contribution to (34.1) comes from the helicoidal surface. The

value of is given in (31.3) by the optimization condition

ar
A

- i (1+ar)½

Hence we find for (34.1)

pmA2 u ar pmA2 u
E r O

= j p (O,p)dp = J , (34.3)
2 1 2a ar. a

i

where we used the symbol J introduced in (33.4). Using (33.4) we can write

the efficiency n as

TU (i2T -1

TU+E =(1+
4pm U J
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From (34.4) it follows that the efficiency of the optimum directed propeller

increases with the number J From the boundary values prescribed in figure

32.2 it seems reasonable that this happens when r - r0, because then the

influence of the values = O at = O, ar < p < ar becomes less.

(34.1)

(34.2)

(34.4)



This follows by interpraing the values of as the small deviation of a

membrane from its neutral position, it will be confirmed by the numerical

results of next section. Hence the clearance between blades and shroud must

be as small as possible.

For convenience we will compare the kinetic energy left behind by the

ducted propeller with the kinetic energy left behind by the actuator

disk with a constant normal load, same total thrust, same working area and

same velocity of advance. The quotient of the kinetic energy E. shed per

unit of time by the disk (11.12) and E becomes

E.
2rnU2J

q
E

Aw2

where A is the working area of the disk. Using this coefficient we can

write the efficiency (34.4) as

T -1
(34.6)

2qPU2A

This efficiency equals for q = 1 the efficiency cf the ideal propeller, as

the actuator disk was named in section 11. We will call q the quality

factor and prove lateron that

q 1. (34.7)

We remark that the quality factor and the efficiency are each other

supplementing informations about a propeller. If under general conditions

the efficiency of a propeller is in the neighbourhood of one, we can say

the propeller is a good one, and it makes no sense to improve it. However
when a propeller has to have prescribed dimensions and when it has to

deliver a certain thrust it can happen that its efficiency is bad. Then

we can test by considering its quality factor if this bad efficiency could

be raised . When the quality factor is in the neighbourhood of one this

is not possible and we have to say that even then it is a good propeller,

under the conditions it has to satisfy.

126

(34.5)



A = r 2,
o

In order to give numerical data for q we have to determine the working

area A of the ducted propeller. In section 28 it was defined as the cross

section of the most narrow cylinder with its axis along the direction

of advance of the propeller which encloses all the vorticity belonging to the

propulsion system. This means here that we have to enclose the free vorticity

behind the shroud and behind the blades. Hence the cross section of the cylinde:

consists of a circle with radius r which has zero area and the area between the
i

two circles with radius r and r.. Hence we can take for the working region

A = TT(r 2 - r.2). However because we consider in the next sections different
o i

values for r it seems more appropriate to choose

1

(34.8)



35. Numerical data, quality factor

We consider here numerical results with respect to optimum ducted tropeller s

as described in section 31. Hence we have an infinitely long cylindrical hub

of radius r. , on which a number m of blades are mounted of tip radius r and
i o

around which there is a duct of radius r which is not rotationally symmetric

but which rotates with the blades. We have solved equation (32.4) numerically

for the potential under the boundary conditions of figure 32.2.

First we show the influence of the clearance between shroud and the blade

tips on the quality factor q (34.5). This will be given for a special choice

of the parameters as is denoted in table 35.1. As working area we choose

î r as has been discussed in the previous section (34.8) . In the first column

we give two values of (ar) . The second column gives for each of these values

two values of the number of blades m. In the first row are given the values

of nr, which is a measure for the width of the clearance.

128

Table 35.1. Influence of the clearance on q , r./r 0,2.

The whole table is valid for a constant ratio of hub and blade radius,

(ar.)/(ar) = 0,2. We see from this table that already a small slit of

about 5% causes a sharp decrease of the value of q, especially for smaller

values of r and m.
o

Next we give a more general survey of the influence of the parameters

on the quality coefficient q. The grouping of the results in table 35.2

will be clear. From the numerical values it follows that the case of zero

clearance rin0 = 1, is substantially better than the case in which the

shroud is absent nr = This is especially true for a small number of

blades.

These tables can possibly be used to judge if it will be appropriate from

the viewpoint of efficiency, to apply a shroud. When in given circumstances

the difference of q for the case with and without a shroud is small, then the

losses by viscosity effects will nullify the gain in efficiency predicted

by potential theory.

an m 1 1,025 1,05 1,075 1,1 r/r

2

2 .558 .363 .331 .317 .308 .290

5 .581 .448 .433 .427 .424 .416

5

2 .856 .685 .656 .644 .638 .631

5 .858 .761 .754 .753 .752 .749



ar
o

r./r
:i O

r /r
s O

Table 35.2. Survey of values of q.

Finally we give two examples of optimum circulation distributions on the

blades and on the shroud. These follow from (33.1) and (33.6) respectively.

In fact we discuss only the circulation of the shroud,for which the constant

4(A) in (33.6) is zero, hence the part which actually increases efficiency

in potential theory by the favourable vortex interaction.

4 5 m
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2

0,1

1 .509 .539 .560 .572 .579

.190 .285 .345 .387 .417

0,2
1 .544 .558 .568 .576 .581

.190 .290 .350 .390 .419

0,3
1 .558 .563 .568 .572 .575

.179 .282 .344 .384 .412

3

0,1

1 .691 .713 .726 .732 .736

.304 .438 .512 .558 .589

0,2
1 .713 .722 .728 .731 .733

.302 .441 .513 .557 .586

0,3
1 .709 .712 .715 .717 .718

.283 .425 .498 .542 .570

4

0,1

1 .793 .806 .813 .616 .818

.402 .553 .626 .668 .692

0,2
1 .802 .807 .810 .811 .812

.397 .551 .622 .662 .686

0,3
1 .784 .786 .787 .788 .788

.371 .527 .599 .639 .662

5

0,1

1 .855 .862 .864 .866 .867

.514 .647 .706 .738 .759

0,2
1 .853 .856 .856 .856 .858

co .504 .631 .697 .729 .749

0,3
1 .826 .826 .826 .827 .827

co .472 .609 .667 .699 .719

1 2 3



The two cases are, zero clearance ar = ar = 2,5 (figure 35.1) arid a small

clearance ar = 2,5 and r = 1,04 r (figure 35.2). We have a propeller with

/
/)- 3

J-ç

/

e

7-J

Fig. 35.1. The optimum circulation distribution on the blade and on part
of the shroud, ar. = 0,5, ar = ar = 2.5 and m = 3.

i o s

-e--- 71.-)- 3
/

/

/
C l,S-

' -

Fig. 35.2. The optimum circulation distribution on the blade and on part
of the shroud, ar. = 0,5, ar = 2,5, ar = 2,6 andm= 3.i o s
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three blades, m = 3. In both figures the blade is represented by the line from

(p = 0,5; Ç = 0) towards (p = 2,5; Ç = 0), the shroud by the circle and the

dashed line is a bisector plane. Both cases are calculated for -= 1, hence

the potential used is (Ç,p) (figure 32.2). This does not mean that the

thrust of both propellers is equal, however we can read from the figures

the relative strength of the circulation on the blades and on the shroud.

Because the circulation on the shroud is odd with respect to the blade

there is, in the case of zero clearance (figure 35.1) a finite jump in the

circulation of the shroud which cause a concentrated free trailing vortex.

This vortex has the same strength as the concentrated vortex shed by the

blade tip, however, with opposite sign. Therefore they cancel each other.

This can be seen in figure 35.1, where at the end of the blade the circulation

has the strength 1,64 and the circulation on the shroud exhibits a jump

of 2.0,82 = 1,64. The directions of the circulation on the blade and on the

shroud are denoted by a double arrow (right-hand screw).

The case of finite clearance is given in figure 35.2. There we have

the same parameters as in figure 35.1 only ar is different, we take

ar = 2,6. The circulation at the blade tip now becomes zero and also at

the shroud just opposite the tip.



36. The optimization of a sail of a yacht

We will give in this section a second application of the optimization

theory and discuss a simple case of the optimization of a sail. We assume

that the sail is represented by a lifting line QA of length 9, this is

in the linearized theory not a restriction of generality. The line OA

is assumed to be perpendicular to the water surface which coincides with

the (z,x) plane and lies along the y axis. Also we assume that. there

is no gap between sail and water surface. In order to simulate the

boundary between air and water we consider as usual the image OB of the

lifting line with respect to the plane y = O, then it is allowed to

Fig. 36.1. The lifting line OA and its image OB.

consider the whole space to be filled with air. This air has a velocity of

magnitude u with respect to the yacht. The x axis of the coordinate system

is chosen so that the relative velocity of the air is in the negative x

direction. The thrust of the sails has to be in a direction which, as denoted

in figure 36.1, makes an angle a with the positive x axis. In this flow

we now have a lifting line of length 22. In accordance with the terminology

of the optimization theory we can state that this lifting line moves with

respect to the air along a reference surface H which is the strip

- < X < +, y < L, z = O. As coordinates on H we could choose = (x-Ut)

and ri = y.

Now we will impose two conditions on the force action of the lifting

line. First the thrust of the sails will have the magnitude T(O()). Because

the lifting line has become two times as long by means of the mirroring,

we demand a lift for the total line L = 2T/cos a. Hence for the disturbance

potential far behind the sail we have the constraint (29.9)

LI
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Then

+9. +

-p U f [J_ dy p U f r(y) dy = 2T/cos
-2. -2.

where (y) is the circulation around the sail, reckoned positive with a right

hand screw in the positive y direction. Second we prescribe the heeling

moment of the sail

+2. +2.

-p U f [J yJ dy = p U f r(y) ¡y! dy = 2M, (36.2)
-2. -2.

where M is the moment exerted by the sail about the x axis, this moment is

reckoned positive with a right hand screw in the negative x direction.

By (36.1) and (36.2) and because = 0, we find for the necessary condition

(30.12) for minimum energy losses or what is the same for minimum induced

resistance

(y,z) = X + A II , y! < Z , z = 0,
1 2

where we absorbed some constants in the still unknown X1 and X2. This is a

two dimensional Neumann problem, the x coordinate does not enter into the

problem because far behind the sail the disturbance velocities are independent

of x. We introduce the potential functions 1(y,z) and 2(y,z) by

i t- y,z) = 1
n - y Y( 2. , z = 0.

t

(y,z) = A1 1(y,z) + A22(y,z). (36.5)

Fig. 36.2. The Neumann problem for . ,
+ = 0, j = 1,2.

y2 z2
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We have to determine A and X2 by the two conditions (36.1) and (36.2),

this yields

-2T def
A I +A I A

1 10 2 20 iUcosa 1'

-2 M def
A I +A I - A

1 11 2 21 3iU - 2'

where

'kj
=

yJ3 dy , k = 1,2 ; j = 0,1,

we remark that I = I , see the exercise at the end of this section.
11 20

When we have no constraint on the heeling moment we can neglect condition

(36.2) and put X2 = O in (36.3). Then we find by (36.6)

À A/I , (369)
1 1 10

where by a we denote in the following that the quantity belongs to the

case of no constraint on M. Then from (36.7) it follows that the moment

be come s

I

=-- (36.10)
10

The constraint on the moment M will now be put in the form

M=vM (36.11)

where y denotes the fraction of the moment in the unrestricted case, which is

tolerated, so in practice V < 1. Hence by (36.7) and (36.10),

I

A = V A
2 11

10

Next we calculate the kinetic energy per unit of length in the x direction,

this is equal to the induced resistance R of the sail hence

=- J - [] dy.
2 an -
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(36.6)

(36.7)

(36.8)

(36. 12)

(36.13)

Substitution of (36.5) in (36.13) and expressing A1 and A2 by means of (36.6) and

(36.7) into A1 and A2, where A2 in turn can be expressed in by (36.12) yields

after an elementary reduction,



A2 2

R = -- ._L_ (1 (1 -i 21 Dlo

where D = (I I - i 2) The induced resistance for no constraint onlO 21 11 i
M is found from (36.14) by putting y = 1. In this way we find

12
11

R. = . {1 + (1i i D

The dimensionless factor of (1 - y)2 can be found by a numerical computation

and becomes 112/D = 8,07. Formula (36.15) shows explicitly by which factor

the induced resistance ìncreases by putting a constraint on the heeling

moment M of the sail.

In figure 36.3 we have given numerical results for the circulation distribution

r(y) around the sail for some prescribed thrust. This has been done for several

constraints on the heeling moment M = y M, first y 1 hence no constraint,

second = 0,4 and third y = O hence the heeling moment is zero.

i N
\\

Fig. 36.3. Some circulation distributions r(y) = -[] around the sail,
for a fixed thrust T and different constraints on the heeling
moment M = y M.

We remark that when we consider a more realistic theory for a sail of

a yacht, we have to consider sail and keel in their reciprocal relation.

This means that the constraint on the heeling moment of the sail is determined
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(36.14)

(36.15)



by the action of the keel. In the case of sailing close to wind the

theory becomes, although not essentially, somewhat different because

the thrust T can be only of 0(c2). We refer for more general information

for instance to [13], [14] and specifically for optimization problems

to [27].

Exercise.

Consider two Neumann problems of the type described by figure 36.2,

for the potential functions 'f'.(y,z) i = 1,2, with boundary conditions

= h.(y)
, jy z = 0. (36.16)

Proof that the functions and
2

satisfy the relations

+9

J [If/i 1 h2(y) dy =
:Ç

'2-
h1(y)dy,

-i
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37. Classes of lifting surface systems

Up to now we have introduced lifting surface systems and have discussed

their optimization. The reference surfaces H. were given and we had to determine

the circulation distribution of the wings W. moving along them in such a way

that certain constraints were satisfied and the kinetic energy left behind

per unit of time is minimum. Next we will give more freedom to the admitted

lifting surface systems, to this end we first introduce classes of these

systems. We use the notations of section 28.

A class of periodically moving systems consists of all those which meet

a certain number of conditions. We have two principal conditions which systems

belonging to one class have to satisfy always. First, they have to have the

same mean velocity of advance and second they have to have the same working

area, as it was defined at the end of section 28. Besides these conditions

we have to prescribe which force actions have to be delivered by the system.

This can be done in exactly the same way as in section 29 where we introduced

constraints by (29.9), of course the same caution has to be taken that these

conditions are not contradictory.

Additional conditions, with respect to the geometry of the reference surfaces

H which are admitted in the working area, can be imposed. For instance we can

impose the constraint that the normal on these surfaces makes an angle with

the x axis which is smaller than or equal to a prescribed value. This means

that the surfaces H are not allowed to be too steep.

We now define the concept of an optimum wing system with respect to a class.

This is a system which leaves behind the greatest lower bound of the kinetic

energy losses of the systems of that class.

Not each class has optimum wing systems. When we consider for instance the

class of screw propellers with prescribed diameter D, velocity of advance U,

thrust T, number of blades m and a not prescribed but finite rotational velocity,

this will happen. The reason is, as we will see later on, that the kinetic

energy can always be lowered when it is possible to increase the rotational

velocity. Hence no finite rotational velocity can appear as the result of an

optimization process and hence there is no optimum propeller in this class.

Of course the foregoing only holds in our linearized theory when viscosity

and or cavitation is neglected.

We next consider a class of lifting systems for which the period of the

motion is prescribed, its working area, mean velocity of advance and the

mean value of the force action. No other conditions are imposed on this class
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which will be denoted by C. Suppose we choose a set of reference surfaces

which are compatible with C, this means they are within the working

area A and have the right period. Then we can find an optimum wing system

W for those by the methods described before. This system belongs to C.

It is not necessary that W is ari optimum system for C because in general

we will need other surfaces FL for that. Choose another set which

is also compatible with C and look at the combined set of surfaces
*

and Hk. Again we can find an optimum wing system W by our previous method

which now belongs to Hk and Hk. This system also belongs to C and again it

need not to be optimum with respect to C.

Now we have the following important criterion. When for each combination

of a fixed set Ek with other Uk no free vorticity is needed in the optimum

case on the set Uk? it is clear that the set Uk itself is able to yield

an optimum wing system of the class C.

Blade systems which are optimum with respect to a class C of the type

discussed above, will be called ideal. The reason is that, given their

mean velocity of advance, their working area and their mean force action,

there are no systems which have a higher efficiency. Hence they are the

best that can be constructed, any how in the realm of a linearized potential

theory. In the next section we will apply these considerations and especially

the above mentioned criterion to the actuator disk with a constant pressure

jump or force field and prove that indeed it is ideal.
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f- (,n) = A cos (,T)n i (n,x)

38. The ideal propeller

Consider in the (y,z) plane the circular region y2 + z2 < R2. This

area is assumed to be the working area of a class of lifting surface

systems C as discussed in the previous section. The lifting surface

system has a velocity of advance U and has to deliver a mean value of

thrust T. We will construct an ideal propeller for this class C.
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(38.2)

Fig. 38.1. A possible 'realization" of an ideal thrust producing system.

A set of two reference surfaces H1 and H2 can be used for this purpose.

The surface H is the cylinder which is the boundary of the working region

H1(x,y,z) y2 + z2 - R2 = O. (38.1)

The surface H2 is more complicated. First it is periodic in the z dIrection

with period and rotationally symmetric around the x axis. Second it

contracts up to the z axis, then expands up to the surface H1, then contracts

again and so on.

The condition for the perturbation potential (x,y,z) far behind this

propeller is in accordance with (30.12), because E O and we have only

to deliver a thrust,
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where (,fl) is any point on H1 or H2. As before this potential can be

created by translating the two reference surfaces H1 and H2, as rigid

and impermeable surfaces with the velocity X1 in the positive x direction

or what is the same by placing them in a parallel flow of velocity À1 in

the negative x direction. The vorticity needed on H1 and H2 then is the

free vorticity left behind by the optimum propeller. The constant À1 follows

again from the condition that the mean value of the thrust has to be T.

It is clear that when H and H2 are placed in a flow parallel with the

x axis, no velocity inside H1, hence inside the working region will occur.

This means that H2 will not carry any free vorticity. Outside H1 we have

the undisturbed parallel flow, hence the vorticity on H. is constant and

perpendicular to the x axis.

We now consider two circular wings W1 and W2 of variable diameter moving

in the neighbourhood of H1 and H2 respectively. Assuming without restricting

generality, that their chord lengths are very small, we represent them by

two circular bound vortices r1 and F2. For simplicity we assume that the

velocity of F1 is [J and that the velocity of F2 along H2 is such that it

remains in the plane of r1. T'ois bound vortex system is not unique at all,

however we choose some realization.

The thrust is entirely delivered by r2 because F1 cannot produce a force

in the x direction. The working is as follows, r1 increases linearly with

time, hence it sheds the optimum vorticity which is constant at H1. This

however cannot go on indefinitely because then the strangth of r1 would

increase beyond all bounds and the propulsion system would not be periodic.

It is here that F2 appears on the stage. First it may not leave behind any

vorticity inside H1. Hence its strength has to be constant at parts of

H2 which are not at the x axis or at H. However when F2 has to deliver

a thrust it must have opposite signs at the different slopes which H2 forms

with the x axis. When F2 arrives at the contact circle of H2 with H1, it

changes sign instantaneously and leaves behind a concentrated free vortex

at H1. However when F1 changes magnitude at exactly the same place it can

cancel this concentrated free vortex. By this change however F1 need not to

grow beyond all bounds. The bound vorticity F2 can also change sign at the points

where H2 touches the x axis because there its length is zero and hence no

concentrated free vorticity is left behind. In figure 38.2 we have drawn

the strength of r1 and r2 as a function of x. We note that never we may

leave behind concentrated free vorticity, because the kinetic energy around

a Concentrated vortex is infinite. Hence the efficiency would be zero.



7'

L;

Fig. 38.2. Bound vorticity r1 and r2 as a function of x.

From the construction it follows that this propulsion device is ideal

in the sense of the previous section. When any other reference surface H3

is added inside H, it will not get any vorticity on it by the optimization

procedure. Hence the free vorticity behind the supplemented propeller will

be the same as before. This means that the efficiency of the original one

cannot be raised. We remark that the surface H2 is not unique at all, each

surface which divides the interior of H1 into disconnected parts could be

used.

When we look at the free vorticity which is left behind by our ideal

propeller, we see that it is exactly the same vorticity as is left behind

by the actuator disk with a constant load, described by a linear theory(section

11). This means that both systems must have the same efficiency. However the

system described here has the highest possible efficiency in comparison with

each system of lifting surfaces with the same thrust, mean velocity of

advance and working area. Hence also the efficiency (11.8) of the actuator

disk yields an upperbound for any conceivable propeller of the class C under

consideration. It is also the smallest upperbound because, as is discussed

in this section, it yields the efficiency of some admitted bound vortex system.
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Exercises

1, Consider the class C of the previous section for wings which have

to deliver a lift force L in the y direction (figure 38.1), have a

velocity of advance U and have the working region of which the boundary

is given by (38.13). Determine explicitly the circulation distribution

for an ideal ring wing of this class.

2. Consider the case of a working region defined by - < x <

< a, < b. Discuss an ideal propeller in this case, consisting

of a number of concentrated straight bound vortex lines of finite length.

Describe a possible motion of these vortex lines and in which way their

strength has to vary.
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39. on a semi-linear optimization theory

In this section we discuss the optimization of lifting surface systems

again acting in an unboded, incompressible and inviscid fluid. The

difference with the previous theory is that now the disturbance velocities

induced by the devices are finite (0(c0)), however we assume that the

free vorticity shed by them is small of 0(c). This means that we can split

the motion, which is also in this case assumed to be periodic, into two

parts. First a periodic base motion which will be such that no free vorticity

is shed. This motion may induce velocities of 0(c0), which have to be determined

by numerical means and are assumed to be known. Second, an "added motion"

with the same periodicity as the base motion and superimposed on it, which

induces added disturbance velocities of 0(c) and causes free vorticity

of 0(c) to be shed. Because the base motion cannot he described by a linear

theory we use the term semi-linear optimization theory.

We consider a system of possible flexible lifting surfaces and bodies

moving together periodically through the fluid. The mean direction of the

motion is in the positive x direction of a Cartesian coordinate system which

is at rest with respect to the undisturbed fluid. The spatial period along

the x axis is b. We make the restriction that one of the following cases

occurs; either the system has finite dimensions or all the lifting surfaces

and bodies are cylinders with generators parallel to the y axis, so that

a two dimensional problem is at hand.

Further we restrict ourselves for the three dimensional case to a

prescribed mean value, with respect to time of the force exerted by the

system on the fluid or to the mean value of its moment around the x axis.

For the two dimensional case we restrict ourselves to the mean value with

respect to time of the force per unit of length of span. These force actions

are assumed to be 0(c).

First consider the system under consideration moving without shedding

vorticity. This means that it carries out the base motion. We keep in

view the fluid particles which have passed the trailing edges of the lifting

surfaces, these lie on surfaces HkI which belong to the lifting surface

Wk. When we look in the neighbourhood of the Wk the shape of these surfaces

will be influenced strongly by the base motion. However when the Wk advance

further in the x direction, the Hk will become more periodic and ultimately

when the Wk are at infinity they are periodic with period b in the x direction.
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Now we introduce the added motion and suppose, for the time being,

that it is already the optimum one. We have free vorticity shed of O(e),

which by the linearity of the theory will stay at the and ultimately

become periodic with period b in the x direction when the Wk are sufficiently

far away.

Next we put at the surfaces
1k'

far behind the wings W, bound vorticity

of strength _Fk(k:nt) (O(e)) where and are again suitable coordinates

on the Hk. This vorticity moves along the Hk with the same mean velocity

in the positive x direction as the Wk. Its strength will be such a function

of time and position that the free vorticity it leaves behind annihilates the

free vorticity shed by the Wk. This means that the system consisting of the

W, and the does not leave behind free vorticity, hence we can apply the

results of section 2.

Consider for instance in the three dimensional case the mean value

of the thrust in the x direction to be prescribed. From the statement

under formula (2.3) it follows that bound vorticity of strength

moving in the same way as the aforementioned bound vorticity _Fk(klflkt)

hence far behind the wing system exerts the same mean force with respect
to time on the fluid as the original system and leaves behind the same free

vorticity.

We assume that the propulsive system Wk is connected to a large body

which has to be propelled and which moves with uniform velocity U. The

possibly time dependent thrust T(t) of the system delivers per period

an amount of useful work equal to

b/u
U f T(t) dt. (39.1)

o

However because the concentrated bound vortex system +Fk(,fl,t), has the
same mean value of the thrust with respect to time, it yields the same

amount of useful work per period. This means that, because both systems

leave behind the same free vorticity and hence the same kinetic energy, their

efficiencies are equal. In this way the vorticity F(,ri,t) is equivalent

to the original system.

By the foregoing we arrive at the important result that instead of the

original system we can optimize the system of bound vortices moving along

periodical surfaces Hk under the constraint of a prescribed value of the

mean thrust. This is however a special case of the problems discussed

in sections 28 - 30.



For the three dimensional case we can treat equally well conditions

for a mean force in the y or z direction, or for a moment about the

x axis. A non zero mean force of 0(c) per unit of span in the y or

z direction for the two dimensional case is without interest. This can

always be obtained without energy losses by a constant circulation around

the cylinders.

From what has been discussed it is clear that w can calculate the

energy losses of the wing system by looking at the ultimately periodic

surfaces Hk far behind the wing system, which in some cases are not

difficult to calculate by numerical means. This facilitates calculations

to a high extent.

It is not possible in general in our case to calculate the energy losses

by looking at the pressure distribution around the wing system. An

apparent way would seem to calculate by means of the pressure distribution

at the wing system the energy supplied to it and subtract the useful

work. Now the induced velocities are accurate up to and including 0(c)

and hence also the pressures have the same accuracy. Because the amplitude

of the motion is finite, there is an inaccuracy in the power of 0(c2).

However the kinetic energy left behind per unit of time is also of 0(c2).

Hence no correct answer can be expected by such a computation.

Exercise.

Discuss how from the optimum free vorticity far behind in the wake, the

vorticity on the wing system itself can be calculated.



40. Two examples

a) First we consider as an example of the method of the previous section,

a periodically moving rigid profile of finite chord length which is described

as regime ii in section 21. We use the notations of that section and consider

the special case of an infinitely thin and flat profile.

7n-
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Fig. 40.1. Flat profile moving along L.

Along the flat profile we have a length parameter s (figure 40..) which is

zero at the midpoint of the profile, at the leading edge s = 2. and at the trailing

edge s = -9,. The direction m is of course the direction of the profile itself.

Now we have to determine one point Q (figure 21.2) of the line r. We look for a

point Q lying on the profile and denote its parameter value s by a. When we

rotate the profile around Q with rotational velocity w, the velocities of the

points of the profile are in the direction of the normal n and amount to

y(s) = w(s - a). (40.1)

The vorticity F(s), needed on the profile in order that the fluid flows along it,

satisfies

+L
i r r(a)v(s)= -

(s-c)
da.

n
-2.

IL + s
r(s) = 2w(a + 2.- s) V

-
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(40.2)

The solution of this equation which satisfies the Kutta condition at the trailing

edge s = -, is

(40.3)



The condition that the total circulation is zero yields

J F(s) ds = 11W Z (Z + 2a) = 0, (40.4)
-2.

hence

a = -2.12. (40.5)

This means that Q is the well-known three quarter chord point. Hence when a

flat profile moves with its three quarter chord point along an arbitrary line L

and is tangent to L, then its total circulation is zero while its vorticity

has the form

F(s,t) = a(t) (2. - 2s)V
+ s

(40.6)

When the periodic line L is prescribed and also the periodic velocity with

which the plate moves along L, at each moment we can calculate (t) and hence

F(s,t). Then by the law of Biot and Savart for the two dimensional case we

can calculate the velocity of each fluid particle, we find

a
ç

2. - s
ds,

2n
-Z R2

+2. (Z - 2s)
/2. f S

{y -v -(s + Z/2) sin a)
(40.7)

+2. (Z-2s) V Z + S
{x_xQ_(s + £12) ces a)2.-s+ --- J ds,

-9. R2

where

R2 = {x - XQ -(s + 9.12) cos a)2 + {y - YQ -(s+Z/2) sin a)2,

and XQ(t) and YQ(t) are the coordinates of the point Q. This is a system of

two coupled ordinary differential equations for the path x = x(t), y = y(t)

of a fluid particle.

We now define the motion of the wake H of our profile. A point x, y belongs

to the waice if there exists a solution of (40.7), (40.8) with

X = x(t) , y = (40.10)

and if there exists a t' < such that (t') and y(t') are the coordinates of

the trailing edge at the moment t'. In words, the wake consists of all those

fluid particles which once have been in contact with the profile and hence have

left it at the trailing edge.

It is not difficult to solve by numerical means the equations (40.7) and
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(40.9)
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(40.8) for a particle which at t = t., leaves the trailing edge. By doing

this for a large number of t., j = 1, . .. ,N, regularly distributed over one

time period of the motion the wake H (figure 40.1) can be calculated.

For the motion of the profile which has zero circulation and which is the base

motion as discussed in section 21 and the previous section, this wake has

no relevant physical meaning. When the profile has to deliver a nonzero mean

value of the thrust, however, its added motion sheds free vorticity of 0(c)

which is assumed to be situated at the wake as defined.

Next the optimization of the free vorticity at the wake can be carried out

as discussed in the previous section hence using condition (30.12) with respect

to the thrust

- Xi COSo (40.11)

where is a length coordinate along the wake H (figure 40.1). Having solved

numerically this Neumann problem for X1 = 1, we have to determine X1, by

(29.8). Then we know the optimum free vorticity infinitely far behind the profile.

The next step is to calculate numerically the density of the vorticity behind

the profile at any place. This can be done as follows. Consider far behind the

profile two points A1 and A2 close together at H. Suppose the density of the

free vorticity at that place is

(40.12)

where y() is reckoned positive with a right hand screw in the direction of a

rotation of the y axis to the x axis. The points A1 and A2 can be traced backwards

to a time they were still at a finite distance behind the trailing edge A1, A2.

Then the free vorticity at that place becomes

Y = __, . Y s (40.13)

A1 ,A2

where , is the distance between the denoted points.

The last step is to determine the added motion which can be defined by the

angle (t) which is 0(c), which has to be added to cz(t). We denote the normal

component of the velocity induced by the wake by v(s,t), where s is the parameter

on the profile. This is by our optimization process and by the calculation of the

free vorticity at a finite distance behind the profile a known function of s and

t. Then when r(o,t) is the vorticity at the plate we have the following two

equations



Fig. 40.3. The two bladed, large hub propeller.

the x-axis with a constant angular velocity w, while it moves forward with

a constant velocity U. We suppose that in the base motion the blades do not

disturb the flow around the hub. This can easily be achieved. Choose some

line L, which is not necessarily straight, connected to the hub, which moves

with the hub and remains in the same relative position. The paths of the

particles of fluid which cut the line L form a more or less helicoidal surface

H1.When the blade W1 is part of this surface, then it does not disturb the fluid

flow around the hub. In the same way the other blades can be formed.
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+2.

{ (s,t) + c(t) (s-a)} + (t) U(t) + 8(t) (s -a) j
r(,t)

do, (40.14)
n - 271 (s -

+2.

g- j ?'(a,t) da = U(t.) (t), (40,15)dt
-2.

where is the density of the free vorticity at the trailing edge and U(t) the

velocity of Q along H. Equation (40.15) states that the circulation along a

contour which surrounds the profile and floats with the fluid has to be constant.

From these equations we have to solve 8(t) and '(c1,t), then our semilinear

optimization problem is solved. We remark that in the last two equations we

can subtract from '?'(a,t) the O(e0) part (40.6) when we neglect in (40,14) at

the left hand side the term (t) (s - a).

b) As a second example we consider the large hub propeller, which is also

discussed in [i] from a more practical point of view. We assume that the hub

induces disturbance velocities of O(e0) and that the prescribed thrust T to

be delivered by the blades is O(e). For simplicity these blades are assumed

to be infinitely thin. The base motion of this system is a rotation around
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As the base motion plus the added motion we define the motion of a large-

hub propeller with the same rotational velocity and velocity of advance as

before, which however deviates geometrically as well for the blades as

possibly for the hub, from the original one by 0(c).

Now the theory of the previous section says that the free vorticity shed

by the oDtimum propeller can be found by optimizing bound vorticity far behind

the propeller, moving along the surfaces H. (figure 40.3) which are formed by

the particles that have passed along the blades. As we have seen the optimum

free vorticity on the H. can be found by translating them as rigid and impermeable

surfaces in the x direction with some velocity X1 (31.3). The unknown factor

follows again from the prescribed total thrust T.

It is clear that no concentrated vortex exists at the x axis which is the

line in common of the surfaces H., otherwise the efficiency of the system

would be zero. From this follows the important conclusion that in the optimum

case the circulation around the blades along sOme contour g (figure 40.3) is

zero at their roots.

We draw the attention to the essential difference between this hub of finite

length and the infinitely long cylindrical hub of section 3.1. There the

vorticity shed by the root of the blade at the cylinder never enters freely the

fluid and hence the circulation at the root of the blades need not to be zero.

Hence from this point of view an infinitely long hub is rather poor apDroximation

which conceals some interesting phenomenas.

Exercises.

Calculate the total force and the total moment acting on the flat profile

in the base motion, when the vorticity is given by (40.6). For the suction

force at the leading edge use (23.20).

Show that the added motion in the case of the profile is not unique to

realize the optimum propulsion, discuss another possibility which is also

optimum.

Discuss in the case of the large hub propeller, in which way the profiles

of the blades follow from the known optimum free vorticity far behind the

propeller. This can be done most easily by also changing the shape of the

hub by deformations of O(E), by which the hub is no longer rotationally

symmetric. When the hub is kept rotationally symmetric it will induce

velocities on the blades because the normal component of the velocity at its

surface has to remain zero.

Give an analogous reasoning for the large hub propeller for the case

that the blades have finite thickness (0(E)), however possess a sharp trailing

edge. Again the thrust T is assumed to be of O(E).



41. Existence of optimumpropellers

Questions of existence of optimum propulsion systems are rather delicate.
We confine ourselves to the three regimes described in section 21, which we

will discuss successively. These discussions will not at all be exhaustive

because several of the problems connected with them have not been solved up

to now.

We start with regime i. In order not to get lost into too much generality

we will consider the case of only one lifting surface W which has to deliver a

prescribed mean value T of the thrust.

When the reference surface H is prescribed the calculation of the optimum

free vorticity is not difficult by numerical means. We have to solve a Neumann

problem of which the solution from the point of view of applied mathematics

can be found for instance by finite difference methods, then the existence

seems to be assured.

A more complicated situation arises when the reference surface H is not

fixed, hence when we consider a class of lifting surfaces. For instance we

assume a working region - < x < +, y < a, < 57 and because we want

Fig. 41.1. Large amplitude flexible wing, regime i.

to have some more or less technically realizable reference surface we put

constraints on the slope, curvature and some higher order partial derivatives.

The spatial period will be b in the x direction. We consider a space of

admissable reference surfaces H of the representation

y = g(x,z) Iz <a. (41.1)
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The space of all such continuous functions with continuous partial derivatives
upto and including the second order, will be denoted by G. As a norm we introduce



Igl - max z lll)t - (Igl , ,lg g xz
O<x<b

Izi

This space is complete which means that for each Cauchy sequence g) E G

there consists a g E G with

hm Hg-gil -- 0. (41.3)

Next consider the subset F C G consisting of elements g E G which have continuous

third order partial derivatives with

g < A1, 1g I < A- x - 2' z1
<A3,

(,n) = cos (,fl)
(nX)

where (,fl) is a point at H. Suppose = X belongs to the optimum wing

when W delivers the mean thrust T. Hence (33.3)

+
X f f [1(,fl)1_ cosb 1 (flX)' = T.

<A<A9, - 10

Then it can be shown that F is relatively compact, by which is meant that

the closure F of F is compact.

On F we define the functional E which is the kinetic energy left behind

per period b in the x direction when the lifting surface W moves along

some H (y = g(x,z)) in an optimum way and delivers a mean thrust T, This

functional can be expressed as follows.

Denote by 4? = 1(x,y,z) the velocity potential which belongs to the Neumann

problem

ft pU' HbD

From the point of view of applied mathematics there seems to be little

doubt that the integral at the right hand side of (41.7) is a continuous

functional for the norm (41.2) on G. In fact consider two surfaces H and H

represented by two equations y = g(x,z) and y = (x,z), then to each of these

surfaces belongs lost kinetic energy E and in the optimum case for the

saine T and mean velocity of advance U. Then it is acceptable that for fixed

g(x,z) and variable (x,z) for each s a (c) exists such that, when
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(41.2)

(41.4)

(41 .5)

(41.6)

The lost kinetic energy E can by (41.5) and (41.6) be written as

+
1 b2T -1

E = ½u A2 J J 'g do = {J f [()] co (na} . (41.7)n



then
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J Jg(x,z) (x,z) JJ < ), (4L8)

E - 'J < e. (41.9)

A rigorous proof for this statement is rather complicated and should be given

for a good foundation of the theory.

Assuming this for granted we have a continuous functional E on a relatively

compact subset F C-. Such a functional assumes its extremes hence also its

minimum at the closure F of F. Hence G being complete this minimum is assumed

for some y = g(x,z) E G. This means there exists an optimum reference surface

H with continuous and bounded slopes and curvatures which satisfy (41.4) upto

and including A6.

Next we shortly consider the two dimensional case of regime ii, Suppose

the only condition on the line L (figure 40.2), along which the rigid profile

is moving, is that it can be described by a one valued function of x and

has to remain within the strip Jyl < a. Then it is proved in [23] that we

can construct a series of rather complicated lines L by which the wake, which

was defined in section 40, can be made wider and wider. Then by our semi linear

theory the free vorticity shed by the added motion is transported over

larger and larger distances at both sides of the mean direction of motion.

From our optimization theory it follows that the efficiency of such a series

of motions tends to one and it is seen that no optimum can exist (see the

exercises).

When we demand that the lines L, hence the base motions, have to be

sufficiently smooth, then it can be proved that the efficiency, under the condition

of a prescribed mean thrust T and mean velocity of advance ti, cannot approach

one.

At last some remarks on regime iii. When the constraints on the flexible

profile y = h(x,t) (22.1) are chosen too loosely no optimum profile motion

will exist. It can be shown , that then profile motions can be designed

which have the possibility to wriggle with sharper and sharper bends,

by which the efficiency increases (theoretically), such that in the limit

there is no longer a decent profile. This happens when for instance we demand

only

lh(x,t)I <B, (41.10)

hence for bounded amplitudes. When we only admit motions which satisfy a

sufficient number of constraints on their partial derivatives with respect to

time and place it can be proved that optimum motions do exist.



Exercises.

Consider in the semi linear theory a series of base motions, for

instance in the two dimensional case, by which the wake can be made

wider than any given width. Discuss that then the efficiency of the

propulsion tends to one for a fixed value of the prescribed thrust T of o(s).

Discuss that when a series of base motions of a profile can be

constructed for which the efficiency tends to one for fixed T, no optitrum

base motion can exist in the semi linear theory.
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