13 JUi 1978

ARCHIEF Lab. v. Scheepsbouwkunde
| Technische, Hogeschool
Delft

Principles of propulsion and its optimization

in incompressible and inviscid fluids

J.A. Sparenberg

Uitgave: september 1977

Prijs: f 9,00




Principles of propulsion and its optimization

in incompressible and inviscid fluids

J.A. Sparenberg




Acknowledgement:

Ir. M. Kuipers and Ir. A.I. Wiersma read all of the manuscript,
Ir. W.G. Frederiks and Dr.Ir. G.H. Schmidt parts of it. Their remarks
improved substantially the presentation. Miss T.E. Stuit took care of

the typing in an expert way.

— e — TN
R R R R IR O R R R ERRREERRE———EI"m————————S



Contentg

1. Introduction 1
. Mean forces and moments in relation with shed vorticity 3
. Equations of motion with external force fields 8
. Relation between external forces and their induced pressure fields 11

2

3

4

5. Relation between external forces and their induced velocity fields 15
6

7

8

. The singular force in the direction of its motion 18
. The singular force perpendicular to the direction of its mction 21
. On the concept bound vorticity of a wing 25
9. A bound vortex "ending'" at a rigid plate 28
10. The actuator surface 32
11. The circular flat actuator disk 37
12. Rotating vortex model of actuator disk 41
13. Some remarks on actuator disk theory 44
14. The ship screw, general considerations 46
15. The geometry of a ship screw 48
16. The screw blade with thickness and without loading 53
17. The velocity field induced by a rotating force 56
18. The screw blade of zerc thickness with prescribed load, a) 61
19. The screw blade of zero thickness with prescribed load, b) 72 [
20. Some additional remarks 76
21. Unsteady propulsion 80
22. Small amplitude, two dimensional propulsion 84
23. The solution of the Hilbert problem 88
24. The simple time harmonic motion 9B
25. Some additional remarks 97
26. Thrust production by energy extraction 89
27. Optimization theory, general considerations 103
28. Lifting surface systems, linear theory (regime i) 106
29. The variational problem for lifting surface systems 109
30. Necessary condition for the optimum Lie2
31. Optimum ducted screw propellers 115
32. The boundary value problem for the potential 119
33. Bound vorticity on blades and shroud 122
34. The efficiency of optimum ducted propellers 25
35. Numerical data, quality factor ) ) 128
36. The optimization of a sail of a yacht 132
37. Class of lifting surface systems 137




38. The ideal propeller
39. On a semilinear optimization theory
40. Two examples

41. Existence of optimum propellers

References

II

139
143
146
151

155




1. Introduction

In these notes we consider propulsion in an inviscid and incom=
pressible fluid. We discuss mainly propellers which exert forces on the
fluid by 1lift such as the screw propeller, the swimming plate and the
sails of a yacht. Because we neglect viscosity.this subject belongs to
applied potential theory. We will direct our attention to principlesy
hence we do not claim the results to be apélicable directly to practice.

The principle tool in the first part of the work is the velocity
field induced by an external force moving in an arbitrary way through
the fluid. This is from a theoretical point cof view a satisfactory ap-
proach because vorticity is induced in the fluid by the rotation of the
externdl force field, hence it is not necessary to consider the limiting
case of vanishing viscosity. The concept of external force field is also
useful for a description of the actuator disk model of a screw propeller.
In the non linear case this model still defies a theoretical descriptian
of the flow at its edge.

The second part of these notes is concerned with optimization theory
of lifting surface systems. By a simple application of the calculus of
variations, necessary conditions for smallest induced resistance are found.
The existence of optimum propellers in a class of admitted ones is still
not quite known and further research is desirable on this subject.

In general the theories we discuss are linearized, by which we can
carry on the analysis further than is possible in non linear theories.
However with respect to optimization some semi-linear results are given
among others about the screw propeller mounted on a large hub of finite
length.

We do not discuss slender body propulsion which is important in
bio-mechanical theories on the swimming of fishes. For this we refer
to the survey given in [ 30].

It is assumed that the reader has already a working knowledge of
hydrodynamics and is aquainted for instance with Bernoulli's law for
instationary flow, the suction force at the leading edge «of a wing, the
linearization of a flow around a thin wing, the lifting line theory and
other basic ideas.

The exercises given at the end_of a number of sections are not
meant in general to be solved by mathematics, often they are intended

to stimulate thinking about the subject.




At last we remark that it is important to be conscious of the many
approximations made in our considerations, we mention the linearizations
and the neglect of viscosity. It is worth while to try to estimate to

which extent the results are still valid in realistic situations.




2. Mean forces and moments in relation with shed vorticity.

There is a tight connection between the production of a force action
on a fluid by a body and its shedding of vorticity. This will be discussed
in this section.

Consider a body, possibly filexible, of finite extent moving with some
mean velocity through an inviscid and incompressible fluid. The motion of
the body will be periodicwith respect to a reference frame translating
with the mean welocity of the body. It is assumed that the motion started
infinitely long ago. A well observed fact is that in general the body
leaves behind vorticity in the fluid. Examples are the trailing vortex
sheets behind an airplanewing or behind a screw propeller of a ship. In
the first part of this section we will show that when a body exerts a
non zero mean force on the fluid it inevitably has to shed vorticity. An
analogous statement is proved for one of the components of the couple
exerted by the body on the fluid. The addition “"of finite extent" in the
first sentence of this paragraph is essential as will be seen in the se-=
cond part of this section where the two dimensional case is considered.

We will use a Cartesian coordinate system (x,y,2) with respect to which
the undisturbed fluid at infinity is at rest. The body B will move with a
mean velocity of advance U in the positive x direction and repeats its velo-

cities after each time. period T or after each covered distance

b=v iz , (2.1)

Fig. 2.1. The body B with mean velocity U.

If the fluid motion is irrotational and without divergence, its velocity

-
field v can be derived from a potential function ¢=0¢(x,v,z,t)

>
v

(u,v,w) = grad o (2.2)

with




A b= (— + + Y = 0 . (2.3)

We assume that no vorticity is shed by rhe moving body B and then
show that no non zero mean forces can be exelted on the fluid by B. In

this case ¢ is defined in the whole space ojitside B. When the velocities

induced by the body tend to zero sufficientlfr fast at large distances R
of the body, the force F(t) exerted by the flluid on B, which is the op-
posite of the force exerted by B on the flu?i, has the value ({12), page 349)

F(t) =udij [enas , ' (2.4)
=3 B ‘

where u is the density of the fluid, 3 g‘is‘&he boundary of B, d S an

element of drea and ; = (nx,ny,nzj the local}outward normal on 4 B. 1In

[12) this formula is derived for a moving ri?id body, but it is easily

seen to be true also for a deformable body. tn the latter case also the
velocities tend to zero sufficiently fast fof large values of R, ﬂzﬂ‘w O(R_Z),
which occurs in the case of a temporarily exbanding body.

- >
The mean value of F(t) over one period/t of time hecomes
t+1

1
= [ B(tyat = & [[{e(x+b,y,z,t+T)n(x+b,y,z,t+7) +
g T
t 3B
- ®lx,y,z,t)n(x,y,z,t)} d S. (2.5)

The velocities of the fluid at times t and t+T are the same £for the points
(x,v,2z) and (x+b,y.z). Hence the difference of the potential for the differ-

ent values of place and time can be only a constant ¢, then
p BT c ;>
—f Fyae=X ffnas=0 . (2.6)
Tt E BB

From (2.6) we find that a body of finite extent, moving periodically
cannot experience a force with a non zero mean value without shedding vor-
ticity. Inversely, by the principle of action = reaction, such a body cannot
exert a mean force on the fluid without leaving behind vorticity. Hence it
cannot act as a lift producing wing or a thrust producing propeller. When
voricity is shed periodically, the function ¢ is not defined inthe whole
space and (2.4) is not valid, so that the foregoing argument does not hold.
Because the velocity field belonging to the shed vorticity represents
kinetic energy, we can state that when a body of finite extent exerts a

mean force on the fluid this is inevitably accompagnied by energy losses.




The moment with respect to the fixed origin O, exerted by the fluid

on the body B of finite extent can be written as ([12], page 350),
- > > .
H=t ] o.Emas | (2.7)
dt -
9B
> _
where r is the vector from O to the surface element d S. Equation (2.7)

is walid when no vorticity is shed. Hence the mean value of the moment

with respect to the x axis becomes

> T
e > u > - >
ff" I M(t)dt = %-ex . ff¢(x+bvypz,t+7){(r(X,Y,ZrtY+bex) £
0 9B
;(x+bmy,z,t+T)}d s -‘%-gwaIQ(x,y,z,tb{;(x,yrzmt) *‘;(x,y,z(t)}d s (2.8)
© 9B

Because again the difference of the potentials can be only a constant c

we flgd
e

X

T

-

QA
=V
Q

t=XSff(yn -zn)ds=0 . (2.9)
R - z Y

We can consider also moments with respect ta lines £, and %,, for

i 2"
instance parallel to the y and z axis respectively, which are translated
in the positive x direction with a velocity U (Fig. 2.1.). It can be easily
seen that moments about these lines need not have zero mean values. Indeed
there seems to be an essential difference between the moment about the x axis
which is parallel to the mean direction of motion and those about £1'and 22
which are perpendicular to this direction. Consider a moment about llﬂ A
fluid particle in front of B will obtain a velocity in some direction, how-
ever when B has passed it is conceivable the same moment will try to give
the particle a velocity in the oppposite direction. These effects counter act

each. other. The same holds for a moment about the line % However when a

5"
moment with a non zero mean value is exerted about the X axis, it always
has the same influence on the fluid particles in front as well as behind B.
This means such a moment could induce a rotational motion of the fluid
around the x axis, hence vorticity would be shed. Because this was excluded
such a moment with a non zero mean value is not likely to exist. An example
is a thrust producing stationary rotating screw propeller advancing through

a fluid at rest in a direction parallel to the axis of rotation of the pro-

peller. Then we have both @ force in the direction of the x axis and a mo-




ment around it, hence by two reasons vorticity has to be shed.

The two dimensional case is different from the three dimen-
sional one. In fact it can be considered as & three dimensional
problem in which the velocities are, for instance, independent of
the z coordinate, hence they do not tend to zero at infinity as
was required in the foregoing. For instance & two dimensional wing
can have a 1lift force per unit of length without shedding vorticity.
Stated otherwise the tip vortices of such a wing are at infinity,
outside the field of vision.

For the time dependent force F per unit length of span (z di-
rection] exerted by the fluid on the profile, the following formula
K[12], page 282) holds

d

Fi{t) = iy <13

[ ¢ a otx,y,t) . (2.10)
3B

where ¢ = x+iy, ¢ is the real velocity potential,
F(t) = F (t) + i F (t) (2.11)
X b4

Fx and Fy are the components of F in the x and the y direction, i is
the imaginary unit and 9B the contour of the profile, passed through
in anti-clockwise direction.

Formula (2.10) is valid when the velocities tend to zero with
large distances R as O(R—l) in the two dimensional complex plane.
This happens when no free vorticity is shed by the profile. From
{2.10) and (2.11) we find for the mean value of F(t) over one
period 1 of time

t+1 t+T

1 _ . e
= { Flt)de = = { (F (£} + 1 F (t)) dt =

#}'I {(z+b) d ¢(x+b,y,t+1) = ¢ @ ¥(x,y.,z,t)} =
JE

LA .
L S e ot L (2.12) t
Y eB B ! |

where, because ¢(x,y,t) is real the circulation T around the pro-

£114 is'real. From (2.12) we find

1 t+1
?{ F (t) dt =0 . (2.13)




Hence we have the result, when a periodically moving two di-
mensional body does not leave behind free vorticity, it cannot

exert a mean force in the mean direction of its motion.

Exercise.

Discuss that a body of finite extent moving periodically in
the direction of the x axis with mean velocity U, can exert mo-

ments‘around.z1 or L. (as defined above) with non zero mean va-

2;
lue, without shedding vorticity.




3. Equations of motion with external force fields.

We consider the equations which describe the motion of an
inviscid and incompressible fluid with respect to an inertial
Cartesian frame of reference (x,y,z)}. These read ([12], page B8)

av v

dt ot

+ (V. grad)v = —i— grad p + %F , (3.1)

div v = 0 (3.2)

where F(x,y,z,t) is an external force per unit of volume, acting
on the fluid. Here and in the following we assume that the field
of flow exists and is uniquely determined by suitably chosen
initial or other conditions.

First consider a force field
N
F = grad Y (x,y,z,t} , t >0 , (3.3)

where Y is some sufficiently smooth scalar function and assume

at t = 0, v = 0. Then we can satisfy (3.1) and (3.2) by
P=VY(x,y,2,8) VO , t>0 . (3.4)

Hence such a force field does not induce any motion in the £fluid.
In general only force fields will be of interest for which rot F # 0.
Next consider two force fields Fl(x,yrzwt) and Fz(x,y,z,t) to
+
which belong the pressure fields and velocity fields (Pl’vl) and
-> B
(p2.v2) respectively. The velocity fields are assumed to satisfy

the same initial conditions at t = 0. The question can be posed,
when do we have

> >
vl(x,y,z,t) = v2(x,ycz,t) L, t3.5)

The answer is of course closely related to §3.3) aud (3.4), in

fact when

—)
FI(X,y,Z,tN - Fz(x,y,zwt) = grad ¥ (x,y.,z,t) , £3.6)



this will happen. Then by
Pp=my = ¥k

the righthand side of (3.1) in both cases will be the same and hence
(3.5) is valid.

With respect to theories where vorticity is created in an inviscid
fluid, external force fields are very useful. Indeed in domains where
the rotation of the force field is not zero, in a natural way rotation
of the motion of the inviscid fluid hence vorticity, is induced. We

write (3.1% in the form

> >
+V* w = -

2l

A grad (%]3[2 + %)

> -
where W = rot v. Application of the operation rot to both sides, yields

>
o w > > 1 -
- — + rot (v* W) = = T rot ¥

at
From (3.9) it follows, when rot F # 0 then E £ 0.
Consider a closed contour C in the fluid and coupled to the
particles, hence it is transported by the velocity field. At some
time instant we calculate the circulation T of C, defined by the

integral
T= [%.ds ,
C

>
where the integration is taken around C' and ds is an element of

length. We determine

>

. ds + | v . d &
C

Ez ds

|24

d
t

Qu

ar
= = f‘
C

It is well known ([3], page 20) that the second integral vanishes.

‘The first integral can by (3.1), be written as

1 ;
f (- — grad p + 1-?] A ég = l—f ; ” ég 5
c " 2 s

Hence we have the result

(3.7)

(3.8)

£3.9)

(3.10)

(3.11]

(3.12)
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aL f P.& ., (3.13)
5

dat

i =3

Analogous results are valid with respect to the linearized version of

the equation of motion (3.1), which reads

grad p + ﬁ-? . (3.14)

V)
ot
b=R

Assume .again that v = 0 at t = 0. We suppose that the external force field
F is 0(e), where € is a small parameter. By this it is reasonable to assume
that also the pressure p and the components of the vlocity 3 and their

derivatives are O(e), then in (3.14) we have neglected quantities of 0(€2)

with respect to quantities of 0(e).

s g -/F).(X,‘J,'l(,t)
! e ) PO
' X =) S -
2’ m T O ~
pii

Fig. 3.1. Moving force field F and fixed contour C.

Equation (3.13) is now correct for a contour C fixed in space. It can
be used to check in a linearized theory if vorticity is left behind in the
fluid by a force field F(;x,y,z,t)U confined to a moving finite region B
(figure 3.1).

Suppose that the circulation of the "probing contour" C is zero when the
force field is in position I. ‘Then in general it becomes non zero when C
cuts the force region B (position II). When B moves on, it has no longer
contact with C hence the circulation remains constant (position III). FEn
this way we can check by using different kinds of contours C, if vorticity

has been shed by F(x,y,z,t).
Exercise.

Use the method of the "probing contour"™ to show that behind an infinitely thin
wing of finite span which moves stationary in an inviscid and incompressible fluid
and delivers lift, trailing vorticity occurs. Replace the wing by an external force
field which is concentrated on the wing and has a strength per unit area equal to
the pressure jump across the wing.
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4. Relation between external forces and their induced pressure fields.

We consider again the equation of motion in the form {3.8), and

apply the operation div to it. The by (3,2] we find

> 1 >
A 44 v]?y = ~aiv F. 4.1y
H H
When we consider a region of space where the fluid particles
have not entered or passed through any force field, for this region
-+ >
we have F = 0 and w = 0, then it follows from (4.1), that
Ap < 0. {4.2)
Hence p is a superharmonic function outside the force region. It
seems difficult to give more explicit general properties of p in
this non linear case.
When we use the linearized version of the equation of motion
{2.10), equation {4.1) changes into
-
Ap = div F, (4.3)

hence there is a direct relationship between p and ;m Outside the force
field p is a harmonic function.

We will consider the linearized case more closely for E.being a
singular force field concentrated in a point Q. It 1s clear that for
such a field the linearized equations of motion do not hold in the
neighbourhood of Q where the induced velocities become very large.
However, the result can be used as a Green function in an integration
procedure. By this the velocities can again become small so that the
result will be a good approximation of the exact solution of the non=
linear equations.

The point of application Q of the singular force field moves in

some prescribed way
Q= x = E(t), y = n(t), z = ¢(t), (4.4)

where £, n and { are sufficient)y smooth functionsof time. The

B - _> .
velocity V of the point Q becomes
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| . - o > o |
Vo= (E(R), nit), ott), v o= |[V] = (€2 + n2 + g2)2, (4.5)

we assume that V 3_5 > 0, where V is some number.
The components of the singular force field are functions of time,

hence
> - )
Flx,y.z,t) = £{t)- 8(x -~ E(t)) Sy ~n (t)) 8(z - ¢z{)), (4.6)

where §(x) is the delta function of Dirac, %(t) will be called the
singular force applied at Q with
1

1
F(ey = (£.(t), £ (€}, £.(t), £ = |F| = (£2 + £2 + £2)' . (4.7)
X y z X y z

We consider first the pressure field at each moment t, caused by

the x component of E“Equation %4.3) becomes
Ap = fx(t)d’(x - E(t) 8(y - nit)y 6(z = £ (t), 4.8)

where the Laplace operator acts on x, y and z. The solution of this

equation can be derived simply from the solution of

Ag = -4m & (x - E{t)) 6(y - n{t)} &(z = ¢(t)), “4.9)
which has the form

g={(x-82+ (y - w2+ (2 -‘;)2}_& def g™ | (4.10)

By differentiation of {4.10) with respect to x we find the following
solution of (4.8}

1 fx(t) wx‘-»ETF)J

’ ‘(4.:11)
R3
where we have neglected a possible additive constant pressure
P_- In the same way we can derive the pressure fields connected to
_>
the y and z components of F. Because (4.3} is a linear equation we

obtain, by superposition, for its solution

1 £ (E) (x-E(t) + fy(tr(y—n?FDf+ £ (t) (2- c(t)w= 1 R R

(4.12)
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where
=
R= ({x-&), {(y ~n), (z-20)). (4.13)

In potential theory the function (4.12) is called the field of
a dipole, with its axis parallel to the force E_ Because here it
represents a pressure field we will call it a pressure dipole field
of strength I%I. When we draw a picture of this field around the

point Q of application at some distance from it, we obtain figure 4.1.

Fig. 4.1. The pressure field induced by a singular external
force £.

The pressures are plotted radially, the length of each radius denotes
the pressure at the point of the circle.Regions indicated by a "+"
("-") have a positive (negative) disturbance pressure.

It may be remarked that as a result of our approximations
(incompressibility, no viscosity, linearization) this pressure field
depends only on the momentary vector ? and on the point of applicatiepm;
hence not on the past. This means that as soon as the external force
field has been switched off the pressures will have vanished everywhers,
although as will become clear later on the velocities are not zero i
general. In connection with (3.10) we find that when in a linearized theory
the external force field has disappeared, hénce also the pressure field,

we have

== =0, (4.14)

in words, the velocity field has become independent of time.
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Exercises.

; +-2
i Show that Ajv 3_0, (4.1).

2L Discusss that the last paragraph of this section only
applies to an unbounded fluid. When for instance a body
moves freely in it or when an elastic plate is present
(4.14) is no longer true when the force field has dis=

appeared.
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5. Relation between external forces and their induced velocity fields.

We consider again the linearized equations of motion and determine
the velocity field belonging to a singular force moving through space.
Outside the region of space through which the force has passed and where

we assume rot v = 0, the equation of motion (3.10) with (4.12) yields

>
oV _

~1 £(t) R
ol grad '(*"—Ra—)l X (5.1)

. ->
Introducing for this region a velocity potential with v = grad ¢

and integrating with respect to time, we find

o
1 f?(t)ﬁ

— dt, (5.2}
™ o RS

@(X( Ye Z¢ t) ="'4

where R is given by (4,13) and (4.14). We supposed in (5.2)that

Fig. 5.1. The force %(tl moving along the line L

the velocity field is zero at t = to and that the force has been switched
on at t = to. For t > t the force is uwoving along the line L=(x=E{t),

w
y = ni{t), z = ¢(t). Along L we introduce a length parameter s. Hence

by our assumption V E_V' > 0 (below (4.5)) it is possible to write

s = s(t), t t(s), s =s(t) {5.3)
o o

Then (5.2) can be put into the form

i R ?( ) ﬁ
T e ese——— s'-— .
(x, ¥y, 2z, t) y i Vis) | 3 ds. (5.4)
(o]
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The velocity which follows from (5.4) is

2 R (E(s)-B)
> . :
v = rad Q 8 o —— f {—' - e ————————— }ds. (5.5)

g 4mu So V(s) R3 V(s) RS

This result will now be interpreted in terms of vorticity. We
consider a "small" flat ring vortex of area dS and strengh I at the

point (£, n, z). The direction of the vorticity is coupled with a

%4,2)
i

Fig. 5.2. "Small" ring vortex

right hand screw to its locally induced@ velocities. We erect at the
=

centre of T the unit normal n, related to I' by a right hand screw

(figure 5.2). It is well known ([12], page 170), that the potential

dg(x, Y, 2, t) of this small vortex has the value

+
~ ' n.-R I' cosa
O = - —— - H o o as S.
| 4m ? &= a1 R2 ! {5-5)

where a is the angle between ; and i. From this it follows that we
can consider (5.4) as a super position of ring vortices around the
line L enclosing an area 4S, perpendicular to ?(s), connected with
a right hand screw to the direction of ; and of strength

_ 1 lzL ds’

= L V(s &8 * G

More precisely we have to consider the limit dS + 0 for the velocity
potential induced by these ring vortices in order to obtain the
velocity potential induced by the moving force field (4.6).




Now we can split the vector % uniquely into two parts
> .
F(t) = g(ty + hit) (5.8)

>
where gkt) is tangent to L and h(t) is perpendicular to L, hence

il

glE) = A(t) V(L) (5.9)

and
Rlt)- Vit] = 0. (5.10)

where A{t} in a scalar function.
Because our-theory is linear we can add the velocities induced
l by these moving forces. In the next two sections we will discuss

-> >
l separately g(t)Y and h(t).
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6. The singular force in the direction of its motion.

In the case of a singular force in the direction of its motion
we write (5.4) as

=3
i
o0yz,t) = =g [ TS 282 as, gle) = [ts] (6.1)
S

R

o
Because we are interested in propulsion, hence in forces exerted |
on the fluid in the opposite direction of the velocity V (4.5), we
reckon g(s) to be positive in the negative s direction. The .angle .
in (6.1} is defined as the angle between the tangent to L pointing
in the negative s direction and E. !

We can now rewrite (6.1} as

i

"
—_ g(s) d 1, . ‘
b = + 3 JS’ = @ as - (6.2

By partial integration we obtain

g‘(so) 5 . 3 .
B 1 4 gis)
e = Sy 9 - (6.3)

gls) 1
V(s) R(s) V(s )R{(s )
(o] o

1
¢ = Z}a'(
o
This formula can be given a simple interpretation. It is known
that a source placed at a point (&,u,Z), which yields a unit volume

of fluid per unit of time, has the velocity potential

1
- (6.4)

Hence [6.3) has the following meaning. On the line L we have a source

distribution of strength

l _d_. g(s) = 1 i g(t) (6.5)
M ds V(s) uv(t) at v(t) o
At the starting point s = s, we have a starting sourceof strength
Ig‘(so)y
Wis) .
o}
at the point where the force acts we have a source of strength
_ _g(s) (6.7)

uv(is) *
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hence a sink. When the force is switched off at t = te, for s = selthere
remains an ending source of strength (6.7) for s = Sq-
‘The velocity follows from (6.3) by
> > >
1 glis) R(s) g(sé) R(so) s R(s) d gl(s)

+ r
v = grad ¢ = - + +

- - ds] {6.8)
4w V(s) R(s) V(s ) R(s) 5_R(s)ds V(s)

The velocity potential ¢ given by (6.1) or (6.3) is only valid for points
(x,y,z) not on L. It seems that by the source distribution (6.5) along L and
the starting and ending sources (6.6) and (6.7) the divergence of the flow
is no longer zero, hence we would not satisfy (3.2). However the total divergence
in the fluid is zero. This is proved by integrating (6.5) along L and adding to
the result (6.6} and (6.7). What we have left out of consideration is the local
flow inside the narrow vortex tube around L, which follows from the vortex
interpretation given in section 5. Because the shape of the small vortex rings
around L is irrelevant we choose them circular with radius b. Then we find

from (5.6)

6.1 The line L surrounded by the "circular" cylinder

for the vortex strength of the tube per unit of length along L

vis) = —1; g8l (6.9)
wub ‘

where V{(s) 3_V > 0, (4.5). This vorticity y(s) is reckoned positive when
it induces a flow in the negative s direction, hence when it is coupled
with a right hand screw to the negative s direction. When b + o the velocities
of the fluid inside the tube increase and become approximatelyJ;(s) = y(s) !
reckoned positive in the negatiwe s direction. Hence the fluid transport inside
the tube in the negative s direction becomes

i(s) fp2 = s} (6.10) ‘
uvi(s)

This singular mass transport along L clearly meet the sources (6.6) and (6.7)

and the distribution (6.5) in such a way that mo divergence of the flow occurs.
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Exercise.

Show the "existence®™ of the "narrow" free vortex tube by the method
mentioned at the end of section 3. The singular force can be spread out
homogeneously over a small cylinder and the probing contour can be

chosen as in figure 6.2.

s,

C
~—

Fig. 6.2. Probing contour C and moving force field E;
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7. The singular force perpendicular to the direction of its motion

We now consider a singular force K perpendicular to its velocity 6.
The induced velocity field is given by {5.5). We will also in this case
discuss a different expression, which is much more complicated but gives
an insight in the "vortex configuration”™ behind this singular force.
This vortex distribution follows from the one behind a lifting line of |
varying intensity moving arbitrarily through space, by a limiting

procedure.

Fig. 7.1. Vortex representation of a moving force perpendicular
to its velocity.

At the place where the force is acting we consider three mutual
orthogonal unit vectors. The vector ; tangent. to L, the vector ; along
K'and the vector ﬁ perpendicular to both, so that I,;;E form a right
handed system. Then we "replace" the force K by a bound vortex of constant
strength of length 2¢ in the direction of K. The strength of this bound

vortex fallows from the law of Joukowski

T v2e = b = [h], (7.1)

=i
and because h is the force exerted on the fluid I' is with a right hand
>
screw in the negative k direction. In the neighbourhcod of L we have

‘two lines‘L1 and L, which have the representation (4.4)

(E(s), n(sy, T(s¥) + ek(s) , (7.2)

where the + (-) sign belongs to LI(LZ)‘
Hence by the length parameter s on L we have also a parameter on thand
Lz,vhowever this is no longer a length parameter.

Along L1 we have a tip vortex of strength
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A (7.3)

'with a right hand screw in the +s direction and along L2 we have a tip

vortex of the same strength however in the -s direction. For s = sO‘We have
>

a starting vortex of strength (7.3} in the +k direction. At last we have

. >
distributed vorticity along L in the +k direction of strength

—
o}
o
0

]
— — .- 7;4
(ds V(s)) Pg = ( .
per unit of length in the s direction. TheSe four types of vorticity are
>
such that, i) the desired force h(s) 1is induced and ii) the vortex field
is free of divergence. We show that this vortex field in the limit € -+ o
induces the same velocity field as is given in (5.5).
In order to do this we need the law of Biot and Savart ([12] page 168),
which states the following. Consider a line element
Fig. 7.2. Biot and Savarts law.
>
dsi around the point (£,n,Z) where I is a unit vector, with a vortex of
intensity I'; coupled with a right hand screw to I, This vortex element
induces at the point (x,y,2}) a velocity
- r e %
AV o=-— (182 as. (7.5)
a7 3
R
By (7.5) the tip vortex along Ll induces the wvelocity
+
> dk > >
s ‘ (i+e =) (R - €k) =
= 1 1 1 his) * ds’ i > dk
v o ——— AL * — — |
v (x,7,2:5)) = 7= 52 f TieT o 8 — 1} i+ 3= | gs (7.6)
s i dk 2 B
I} o] i+e 3= I -ekl
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at the point (x,y,z) while the force is at s = 8. Analogously the tip

vortex along L2 induces the velocity at (x,y,z)

(1 - d]—z) (R+ ek >
> , 1 30 Y s € ds (Reekl dk ‘
v (x,y,z,sl) = 2= - e — @ } ' - ¢ = ds, (7.7)
2 T € S . ) dk [_} B 3
o ﬂ‘l - € d—S 'R+ ek

when the force is at s = sl. In the limit € + o we can write

s S - >
- = 1 I h(s) 4 7 dk (R = Ak Y :
% o weie & (342 o BRI 4| g, (7.8)
L, L2 4wy s, vis) dx ds ‘E"M-zl Y=o

Carrying out the differentiation yields

e 2d

s > -
> 1 1 h(s) (R.X) . 2, 4. €k ) e - -

—_— —_— — —— - — | I Q
J v(s) [+3—F—.1@R+=5 5> 8K i@Xk]ds. 17.9)

._.
)
o
e
w

o]

o1 his) 1 dz _ = > R h(s) - i e B o
>
| Vi) —E-ag ®# Rds = k & —3——5— f (ag V(Sz) — k@R ds +
s R RV(s) s S 5
o 0
! s > >
h > 1N (R.1) > Y
g Sl RaTas-3 f BELTEDEoRas . {7.10)
s V(‘s)R3 ey R5
fe) =)
[0}
Hence
S > > > >
> - 1 1 hi(s) o .1
va T Vg = g 1} VEZ;[ 3(Rsk)za_ﬁ-3(Rsl)fﬂﬁ—%zﬂilds+
1 2 s, R R R
1 *1a ,h(s), @, > = 1 his) = _ = -1
= f 3 Gy T XeRds+ 0 —— keR | (7.11)
S V(s)R s
O (o]
'The contributions from the starting and the bound vortex to the velocity
are
> s = a5
1 his) 1 > R 1 1 h(s) > R 4 1
(==« o~ = .k ® = = = = =3 7.12)
ar " Ww(s) 2¢ © <% °37%) ﬂs‘ mwis) %3 ls O

o] ‘ 0
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and the contribution of the distributed vorticity of strength (7.4) in

>
the + k direction is

1 1 a  his), > _R
arn f 35 (V(s)) k ® 5 ds. (7.13)
S R

O

By adding (7.11), %7.12) and (7.13} we find for the total velocity induced

by the vorticity distributions

- 1 'Sl h( EK) > > E_')) > > 2 >
v = ] S) (3 R:KE) T o3 R g o2 710K as. (7.14)
g s patsh R5 R5 RB

"o
The question is now if the velocity (7.14) is equal to the one given

in (5.5) or if the following equality is true.

=4
J

Xy

R(3.R) (R.%) + 2
> a

SlepayEloe g Eflig®- @ o =

3 RS 5 3

iek. (7.15})

o)
o
Y]
«

>
This can be proved by taking inproducts of both sides of (7.15) with I,j and
=
k respectively. In each of these three cases equality is proved easily hence
(7.15) is correct and our vortex configuration can be considered as to be

induced by the moving singular force perpendicular to its velocity. 1

Exercise. ]
Discuss the concept of a lifting line by a continuous distribution of |
external forces per unit of length along a line segment, placed in a parallel |

flow.
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8. On_the concept bound vorticity of g:fggi

The results of the previous section can be used after a simple Galilei
transformation, for the description of a wing of zero thickness placed in a flow.
We consider first the two dimensional case of a profile of zero thickness in
a homogeneous flow of velocity U, hence the flow field is independent of the

z coordinate. The profile is supposed to induce only small disturbance

3 i ‘E/ )[)1

Fig. 8.1. Profile of zero thickness placed in a parallel flow.

velocities in the fluid and lies in the neighbourhood of the interval
a < x < b of the x axis. Because the theory is linearized we satisfy the
boundary conditions for the flow not on the profile itself but on the
interval (a,b).

The camber <of the profile will cause pressure differences between

the + and the -side of the profile i

Ap(x) =p(x) - p (x). (8.1).

From this it follows that the profile can be represented by an
external force distribution F(x) per unit of length in the z direction,
acting at the fluid. The force distribution is applied at the interval
(a,b) and reckoned positive in the negative y direction. The strength of
this field is
F(x) = =0p(X). (8.2)

By the previous section it is clear that we can replace this force field
by a stationary bound vortex distribution along the interval (a,b) of

strength per wunit of length in the x direction

F(x)

I'(x) = ot

(8.3)

where T' is reckoned positive in the direction denoted in figure 8.1.




26

The reason that here a natural "bound" vorticity can be introduced is
that the velocity of the points of the profile with respect to the fluid
seems to be well defined; namely U. We intuitively couple to these points
the elementary forces F(x)dx, which then have the velocity U with respect
to the fluid and hence can be replaced by the time independent elementary
bound vortex T (x}dx (8.3).
This certitude disappears when for instance the leading edge position
a and the trailing edge position b become functions of time, then the
identity of the points is no longex obvious. Two possible different realisations
are for instance drawn in figure 8.2, where we assume that the parts of the

profiles are infinitely thin and glide along each other without space inbetween.

s

TS — T T

4 i L,(_ d— - e - > £ el = 2974
N7 3 — - : + ﬁx ' i ‘) ’g 4
| aw ) — (¢)

Fig. 8.2. Two different realisations of a contracting and expanding profile.

Because the fluid is inviscid the difference in construction of the profiles
will not have any influence on the pressure distributions nor on the induced
flow field, hence is not relevant. This means that it is not necessary to tie
the bound vorticity to the material points of the profile and to give it
the velocity of those points.

Even for the case of fixed a and b it is easy to show the ampiguity of the
above introduced (8.3) bound vorticity concept. Consider for simplicity
the case of a profile with a constant préessure jump (Ap = const.) over its
whole chord. Then we can take a constant layer of bound vorticity T" of

strength per unit of length in the x direction (8.3), (8.2)

T =« %5—='const,, (8.4)

here the elements of bound vorticity I' dx are coupled to the elementary
forces F.dx = ~Ap dx moving with velocity U with respect to the fluid.

Next we assume however that the elementary forces F.dx have a velocity
V in the negative x direction, hence have with respect to the fluid, a
velocity U + V. Then by (8.1) the strength of their elements of bound
vorticity become

~ _ F dx .
de—m. (8.5)




The following happens, first the elementary forces are created at the
trailing edge, hence their starting vortices of strength T dx remain
behind and are transported downstream by the flow. This gives rise to a

vortex sheet of strength per unit of length in the x direction

- YTI; ] (8.5)
Second the elementary forces move to the leading edge and create a bound
vortex layer of strength
T. (8.7)

Third the elementary forces reach the leading edge are switched off and leave
behind their elementary amount of vorticity which is transported downstream

from the leading edge. This creates a layer of strength.

<l

(8.8)

Hence at the profile we have a layer of bound vorticity of strength (8.7)

and a layer of free floating vorticity of strength(8.8). Their total strength is

T~ o= (8.9)

which is exactly the strength of the bound vorticity in the first case.
Behind the trailing edge we have the sum of the two free floating layers

of strengths (8.6) and (8.8), hence their total strength is zero, as it has
to be in comparison with our first approach.

From this it follows that the flow field in both approaches is the same,
because the law of Biot and Savart makes no distinction between bound
and free vorticity.

This can be generalized to arbitrary moving flexible lifting surfaces
which are allowed to expand or contract. The velocities of its points are
of no interest and can be chosen at will, the same holds for the velocities
of the time dependent elementary forces which represent the lifting surface,
only the vorticity created by theﬁ has to be calculated in the way as is
discussed in the previous section.

The description given here will be needed when we consider the optimization

of flexible wing systems (section 28).
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9. A bound vortex "ending" at a rigid plate .

The following statement is sometimes heard; a bound vortex can end against
a rigid wall. This kind of configuration is rather important in aero and
hydrodynamics. In ship propulsion we have for instance the shrouded propeller,
Here the tips of the blads with their bound vorticity, move along the inner
side of the schroud which is in first approximation a cylindrical surface.

In order to focus attention we will consider the schematic case of a half
infinite rigid flat plate which is infinitely thin. The plate {(figure 9.1)

coincides with the x,y plane of the Cartesian coordinate system x,y,z, for x < O.

j?)
ety . A,
L f_l% : -t

\JA

Fig. 9.1. Half infinite plate with vortex system in its neighbourhood.

The fluid in which it is embedded has a velocity U in the positive x direction.

We consider the linear theory for a half infinite bound vortex of strength T
parallel to the z axis and coupled to the +z direction by a right hand screw.
This vortex lies in x,z plane with x =a < 0; z > b > 0. The velocities
induced by T are small of 0i(e) while U is assumed to be 0(€°). From the end
(a,0,b) of the bound vortex starts a free vortex of the same strength which,
lies along a stream line of the parallel flow, hence parallel to the x axis.

The question is, what happens when b tends to zero hence when the bound vortex
touches the plate.

To simplify this problem we assume first that the bound vortex is far upstream
of the trailing edge, hence we consider the case a = -®, Then there remains
only a free vortex stretchifig from x = -» along the plate at a distance b of it.

The problem of flow for this configuration can be found by assuming on the
half infinite plate, a system of vortices which has to be chosen in such a
way that, first, the component of the fluid velocity normal to the plate
is zero and.second, that the Kutta condition at the trailing edge of the
half infinite plate is satisfied. This latter condition is equivalent to the
Statement that at both sides of the plate, when we tend to the trailing edge,
the pressures must become equal for each value of y.

An exact solution to this problem is found easily in the following way. Suppose
the plate is not half infinite but stretches from x = -» towards x = +». Then

the problem is trivial.
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T’/ v
= .59 L _ <
e A
PP & Eﬁ
a) 4)

Fig. 9.2. Cross section for the case of the two sided infinite plate (y axis),

a} with mirror wvortex, b) with vortex layer y(y) on plate.

At points with 2 > 0, the influence of the plate is the same as the influence
of a vortex which is the image of the free vortex under discussion {(figure 9.2 a)).
By this the tangential velocity at the plate is known namely -Tb/m (b2 + yz) in
the y direction. Assuming that the flow behind the plate, hence for z < 0, is
undisturbed, this is also the strength of the vorticity which can represent
the plate

Yy (y) s, mlBEiy ' (9.1)

7 (b2 +y?)

coupled with a right hand screw to the positive x direction (figure 9.2 b)).
In order to take into account the two sided infirite plane we only need

vortices parallel to the z axis. Then our disturbance velocities are all

perpendicular to the main stream. This means that everywhere the pressure

([12], page 99)
P=p +%u02 =% u(U+u)?+v?+wlmp + 0(c2y, (9.2)

! is constant, because the x component of the disturbance velocity 3 = {u,v,w)

is zero. Now we take away the added half plane x > 0, however we let intact

the vortex system for x > 0 ‘then we have found the solution for the half

infinite plate, with a free vortex at a distance b. This is correct because

first we have satisfied at the half plane z = 0, x < 0, the boundary condition

of vanishing normal component of the velocity and second we satisfied the

Kutta condition at the trailing edge, all pressures are equal to p, within the V

accuracy of a linearized theory. We remark that

s i, 19.3)
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Next we consider the limit b + 0. Then from (9.1) y(y) + O for each y # O,
however as follows from (9.3) the total strength of the ¥ (y) remains constant
and equal to I'. Hence for b - 0 the free vortex I and the free vorticity
y(y) annihilate each other and no vorticity remains for x < 0 as well as
for x > 0.

The result obtained in this way describes exactly the influence of a
half plane on our two sided infinite free vortex. The problem stated at
the beginning however is more complicated. There we have to take into
account the bound vortex parallel to the z axis and the fact that the
free vortex is only half infinite - a < x < +, These differences however
cannot cause infinite induced vlocities in the neighbourhood of the trailing
edge ©of the plate and will not give rise to concentrated free vorticity.
Hence we conclude that also in this case, when b + 0, the concentrated free
vortex disappears: and only distributed free vorticity flows from ‘the
trailing edge.

By this it is acceptable that in the case of a plate of finite extent
only distributed and no concentrated free vortex will leave the trailing
edge when a bound concentrated vortex ends against the plate.

Because the vector field of vorticity is without divergence it is
clear that from the trailing edge free vorticity starts, with the same
total strength as the bound vortex. It seems a contradiction that in the
case of the two sided infinitely long concentrated free vortex and the half
infinite plane when b + 0 all vorticity disappeared although at x = -«
there must be a bound vortex of finite strength ending at the plate. The
reason is, that because the trailing edge is infinitely long, the density of
the free vorticity can become "infinitely small”, hence zero, when we
consider the limiting procedure a + -« in figure 7.1, while still it will
have a finite nonzero total value.

It is also easy to describe the vorticity at the plate in the direct
neighbourhood of the point Q where the concentrated bound vortex of strength T
meets the plate. Then we can neglect the influence of the tralling edge. Hence
we consider a vortex ending at an infinite plate. By r we denote the distance
from a point of the plate to Q. In this case the exact solution is as follows.
At the plate .we will have a radially converging or diverging vortex system

of strength I'/2wr per unit of length at a circle with radius r (figure 9.3).

-
( 4 o Fig. 9.3. The vorticity at the plate
; . X in the neighbourhood of

e gy

the end point of the
concentrated bound vortex.
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Then it is seen that the total three dimenSional.vSrticity field is without
divergence and it can simply be proved that the component of the induced
velocity normal to the plate, is zero. The reader can check that behind
the plate the velocity of the half infinite bound vortex T is opposite
the velocity induced by the vorticity at the plate, hence behind the
plate the velocity is zero.

When the trailing edge is present it is heuristically clear that

the spreading of the vorticity is qualitatively as given in figure 9.4.

¥

Fig. 9.4. A concentrated bound vortex ending at a flat plate in the

neighbourhood of the trailing edge.

Because we have to satisfy the Kutta condition at the trailing edge, hence

no pressure jump is allowed at this edge, the vorticity at the plate has to

meet the edge at right angles.

Exercises.

1. Derive an integral equation for the vorticity at the plate
in the case of fiqure 9.4.
2. Make clear by a heuristic argument that in figure 9.4 all the

vorticity will leave thé trailing edge.
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10. The actuator surface

In general the detailed action of propulsion systems is rather complicated.
Some times this detailed action is of ng interest and only a more global
knowledge of the induced velocities is needed. For instance when we are
interested in the overall influence of a ship propeller on parts of the
ship at a distance to -the propeller which is large with respect to its
dimensions. In these cases a simplified representation of the propulsion
system can be given by some suitably chosen forcefield acting on the fluid.

It means that in order to know the velocity field induced by the propeller
we have to solve (3.1) together with (3.2} or given ;(x,y,z,t)m For a
propulsion device we assume in general that its action is periodic with
respect to time while the flow at infinity is an incoming parallel flow.

Instead of a general three dimensional force field it is simpler in many i
cases to represent the propeller by a force field which is concentrated on a

surface

Gix,y,z) = 0. (10.1)

The active part of this surface, where the force field is non zero, will

be denoted by S. When the surface S is a flat circular region, the representation
is generally called an actuator disk. The surface will have a + and -side,

for instance the +side faces the neighbourhood of G = 0 where G > 0. For
simplicity we assume that the force field and also the velocity field is

independent of time. It will be represented by

> >
F(x,y,z} = £.8(m) = (£ ,f ,£ ) 6{m) (10.2)
xSy

where fx, fy and fz are sufficiently smooth functions of position at the
surface, m is the distance from a point in a neighbourhood of S' to G = 0,
reckoned positive when the point is at the +side and &(m) is the delta function
of Dirac . The vector % at § represents the force per unit area. We do not
take into account gravity which is a force field derived from a potential
hence it can be included simply in p(3.4).

Consider an area A of the active region S and around it a box BA of small
width h. We apply Greens theorem to the interior of BA and take the limit h =+ Q.

Because A has arbitrary shape, we find the following jump relation across S,

via =0, (10.3) |




->
where n is the unit normal at G = 0, pointing in the direction G > O.

Integrating the equation of motion (3.1) for the time independent

case over a region B of space yields
> -+ -+ 1
f (v . K) v do = L f F dv - —
H H
B

oB oB

f P K do,
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where 4o and dV are elements of area and volume and OB is the boundary of B,

Choosing for B the volume BA defined above we find by taking the limit h + 0

from the component normal to G = 0 and using (10.3),

[plT =2 .5 def

£
= n

and from the component in the plane tangent to G = 0

->

e ot t
H [thg = ;— '

=]

where t denotes the tangential component.

This formula has a meaning only at places of S where it is really crossed

by fluid particles hence where v # 0.

Introducing the head H by

H = §-+ L (u? + v2 + w?)

we find by (10.5) and (10.6)

<+
rf-k_‘
<4
ot |

ulnlr = £+
& n

<p=

n

We can write the equation of motion (3.1) for the time independent case

as ([3] page 16),

-> -> ->
V Xw= - F + grad H.

|-

>
where o = (wx, w, s wz) is the vorticity of the fluid. Outside the force

y

free region we find for the change of H along a streamline, hence in the

. . ->
direction of v,

dH >
ac - v.grad H = 0.

This represents the well known fact that cutside the region of force H

is a constant along the streamlines. Of course this constant can change

from one streamline to another.

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)




34

By equations (10.3), (10.5), (10.6) and (10.8) we can express the
values of p, 3 and H at one side of the actuator surface in their values
at the other side when E and v, are known.

We now discuss some formulas for the vorticity induced by the externdl
force field. From (10.6) we see that when Ft # 0, there is concentrated
vorticity at the actuator region in a direction perpendicular to %t and of

-
intensity  per unit of length in the ft direction

Q=—, (10.11M
R i
where f_ =lfJ. From (10.11) it follows that £ = O when £, =0 and v # €. |
>

So normal forces do not induce a jump in Ve hence do not induce concentraged
vorticity at the actuator surface, again when v # 0.

When v, = 0 then ft = 0 by (10.6) and the quotient at the right hand side
of (10.11) is not determined. In this case it still can happen that a concentrated
free vorticity sheet is transported by the fluid flow along S where only normal
forces are acting. Then of course a jump occurs in ¢t and @ # 0. However this
Q is, so to speak, not caused by the local force field but can be interpreted
to'be shed by "upstréam" force fields. In this way also an infinitely thin
wing can be discussed [21].

In order to discuss the free vorticity just outside the actuator surface,
hence outside.the force region, we translate the origin of the Cartesian
coordinate system to the point under consideration at §. The x,z plane will
be tangent to S and the positive y axis is at the + side of S. Outside tFe
force region, hence for ; = 0, we apply (10.9), which yields twb independent

equations for Wy wy and w, for instance,

1 oH
wx = 3 {- 52 +u wy} 0 (10.12)
n
_ L , 2E .
w, = v {+ T wwy} , (10.13)

The y component (10,9) (F = 0) yields an equation which is a linear combination of
(10.12) and (10.13), this follows from (10.10). The value of my in (10.12) and
(10.13) can be computed from 3, since in its definition only the partial
derivatives in the x,z plane occur,

]
w = =— u -

v 3z Szw. (10.14)
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Hence when the force field is given and at one side of § the quantities 3wand
H, we can calculate at the same side z‘and at the other side 3, H and 3 as
well as the concentrated worticity £ at S.

From (3w5) and (3.6) we obtain interesting information with respect to
changes of the velocity field 3 caused by a change of Fy hence of the actuator
surface G = 0 and the force vector ? per unit area of G = 0. Suppose we have

two different actuator surfaces, one with an active region S, and another with

an active region S2 on different surfaces Gj (X,¥,2) =-0and¥G2(x,y,z) = 0,

A cross section with the x,y plane is drawn in figure 10.1. We assume however,
that SI and 52 have the same edge and the same normal load fn’ which is
independent of the position on S1 or on Sz, while ft = (O, This means that the

difference

-> =
F2 eryrz)' = Fli(x,y’z) r (1'0.‘15)

of the force fields (10.2) consists of two & functions of Dirac

Fig. 10.1. Two different active regions‘slxand S, with the same edge.

2

one at S_1 and the other with “opposite sign" at Sz. We introduce the volume

B. in between S. and S .
12 1 2

We now put

pzﬁerrZ)' ‘plfx,y,z) , (x,v,2) & B,12 (10.16)

9_2‘(,x1y,2) '-'_pvl(x,ywz)‘ = fn ¢ (X,v,2) € 1312. (10.17)

Then the function Y(x,y,2) of (3.7) is zero outside Blzyand has the constant

value - fn inside Blz' By this choice of Y we satisfy (3.6) and hence Si and

.52 with the same fn induce the same velocity field.

T E ———
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From the foregoing we find that the shape of the inner part of an
actuator surface with a constant normal load is of no importance for the
induced velocities. Of course this holds only for the in viscid and
incompressible fluid we consider here.

In the general equation of motion {3.l) we call the region where the
three dimensional force field F>is not zero, the actuator region. As is
clear from this section the actuator surface theory discusses only a
special case of the general equation of motion. We can go one step further
by concentrating the force field ; on a line, such lines could be called
actuator lines. Fjnally we can concentrate‘g so that it is only non zero at
a point, then a singular force (actuator point) occurs.

We mention that a singular force has no meaning in the non linear ‘theory
for inviscid fluids, it induces no velocities [21]. This is also partly
true for the actuator line, although these are used as lifting lines.
However when we consider for instance an infinitely long line embedded in a
fluid, which is at rest at infinity, it can be shown that this line loaded
by a constant force per unit of length does not induce any velocity in the

fluid.

Exercise

Show that the independence of the velocity induced by an actuator surface,
from the shape of the inner part of the active region for a normal load
which is independent of position, holds also when fn = fn(t) and S is time

dependent but with its edge fixed.




Summing up we find

~ e ~ o~ ~
fN‘(anJ R . = {f;‘(Y'Z)h(x)IOAO}

~ o~ e~ 1 r X
V(X,y z,t = 0) = m J,‘J' -—--Rs—,— dn &g + " r
where
- ~ ~ a~ ~ ~
R={x,y-n, z-2z¢}

and h{x) is the unit step function

hix} =1, x>0 , hi(xy=0,x<0,

We still more 51mp11fy this problem by assuming that ﬁ~(y,z) = f is
independent of y and z, hence we have a constant normal load over the disk.
Using the method of section (3.1) (figure 3.1), we will give a description
of the worticity left behind by this disk. We use a rectangular probing

contour C, lying in the (;;;) plane, with corner points A., A_, A_ and A“

(figure 11.1). We assume that the sides &AIWAZ) and (As,Ai)ariof3length

2 and parallel with the x axis. The sides (Al’AuD and (Az,Ag)are of length
h and perpendicular to the x axis. First we consider the case that the
distance of AZKABT to the X axis is smaller (greater) than b. Hence when
the @isk moves to the left it will be cut by the contour. After the passing

of (AQ,A3)only (AIJAZ) pieces through the disk. From (3.12) we find

£

dt g rYr‘zrt")' . ds = = u— -

Before thé disk has met the contour its circulation T, €3.11) is zero.
When the disk has passed entirely along C we find

fn
F‘ == e
u

o] ltlﬁ

Hence per unit of length vorticity is left behind of strength

[
Bl —

coupled with a right hand screw to the‘{z direction. Because the width

h of C can be made arbitrarily small, this free vorticity is concentrated
at the half infinite cylinder behind the edge of the disk. Clearly (11.10)
is in agreement with the second term at the right of (11.5), which causes
a discontinuity in the % component of the velocity behind the disk, hence

concentrated vorticity.
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(11.5)

111 .6]

(11.7)

(11.8)

{11.9)

(11.10)
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11. The circular flat actuator disk

We consider now a simple example of an actuator disk, using the linearized

theory. The disk is the circular region

X = -Ut , (32 + 22) < b2,

R

Fig. 11.1 The moving actuator disk.

It is represented by the time dependent force field

>~ A~ A ~ ~
F(x,y,z,t) = i(‘ff;(y,z), 0,0y 8§(x + Ut),

where f;(§223:c7for ;2 + z2 > p?. This force field can be considered as a
set of an "infinite number" of forces (f;%y,zM,0,0)dy dz. Then we can use
(6.8) and (6.10) to calculate by superpocsition the velocity field induced
by this disk. We consider the moment at which the disk just arrived at the
(;’E} plang hence t = 0. The length parameter s of (6.8) becomes here —;r
while we assume that the motion started infinitely long ago hence Sy = =

The force gis) in (6.8) has to be replaced by

gi(s) = -f-;('g?,’Z) dy dz,

and the path L of it is a line parallel to the‘; axis. This force is
independent of s = - hence the third contribution at the right of (6.8)
disappears. The second contribution vanishes already because so = =,
The velocity which follows from (6.10) is in this case only in the x
direction, it becomes
£~(y,2) £2(¥,2)

. X dx dy = + -

T

(11.1)

(11.2)

(11.3)

(11.4)
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When we take the distance of Au to the ; axis smaller than b, both
LAI ,AZ)‘and KA3,A4) pierce through the disk and the contributions of the
integrals (AI,AZ) and (A3,Au) cancel each other hence A4l'/dt remains zero.
By using other probing contours parallel to the (y,z) plane and parallel
to the (;:;) plane it is seen that no other vorticity is left behind.
So (11.10) describes the only vorticity shed by this disk with a constant
normal load fn.

Because only the relative motion of the disk with respect to the

direction of a reference system (x,y,z) (figure 11.2). This problem is
‘éfx
= - T
Ftly /7
&

U ——F -~ {:—f_ i S
AL A L

Fig. 11.2. The actuator disk placed in a parallel flow.

independent of time hence it is a special case of the type of problems
discussed in the previous section, although there the theory was non linear.
The velocity field in this case simply follows from (11.5) by adding the x

component U

{fn h(x),0,0}

4muu uu

> £ 2
vix,y,2) = (U,0,0) + — ff B ana + , (11.11)
S

R3

Because the actuator disk is covered with a layer of pressure dipoles with
their axis perpendicular to the disk, the induced pressure field will have
a jump of magnitude fn' This is in agreement with (10.5). From {10.11)
it follows that 1no concentrated vorticity is present at the disk, 2 = 0,
because the load is normal in this case.

When fn < 0 the disk acts as a propeller and it follows from (11.11) or
(11.5) that behind the disk is a jet in which the fluid flows downstream
with a larger velocity than the surrounding fluid outside the vortex
cylinder. This is in agreement with the slipstream which can be expected

behind a propeller.
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Suppose the total thrust of an actuator disk with a constant normal
load over its area A is T and theinCOming”velocity is U. Then by (11.11)
the excess velocity far behind the disk is T/pAU. Hence the kinetic energy

-

Ei.éhed per unit of time becomes
E. = T2/2uUA. (11.12)
L

The efficiency n, which is defined as the quotient of the useful work TU
and the total work which is the sum of the useful work and the lost

kinetic energy, becomes

-
TU +E,
1

i =T
jo= {1+ r2 } (11.13)
2uu“a

In section 38 it will be shown that this is the smallest upperbound for the
efficiency of a propeller acting in an inviscid and incompressible fluid
with the same total thrust T, working area A and velocity of advance U.

Therefore this actuator disk is sometimes called an ideal propeller.
Exercises.

1. Discuss by the method of the probing contour the vorticity shed by the

actuator disk when the normal load depends on §'and z (11.2).

2. Show that the thrust of a normally loaded actuator disk and the impulse
far behind it in the slipstream are in agreement with the momentum theorem

([12] page 54).
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12. Rotating vortex model of actuator disk

The question arises if we can give a simple vortex representation of an
actuator disk which resembles a screw propeller. This will be shown to be
possible. For simplicity we assume a constant normal load and a linear
theory.

We introduce a cylindrical coordinate system {x,r,p) as drawn in figure

12.1, Consider a straight vortex OA of length b. The endpoint 0 coincides

Qs

Fig. 12.1. The rotating vortex O0A.

with the origin of the coordinate system and the vortex rotates with angqular
velocity win the plane x = 0. The strength of this vortex is I' coupled with
a right hand screw to the positive r direction. From the endpoint 0 starts

a free vortex of strength T stretching along the x axis and from the endpoint

A a free vortex of the same strength along the helicoijal line
$-wt+ax=0 , r=0b, (12.1)

where a = w/U. These two free vortices are connected by the starting vortex
02A2, which was shed by the beginning of the proces "long ago"” and which
makes the vortex field free of divergence.

By the theorem of Joukowsky the force per unit of length exerted by the

fluid on the vortex OA becomes 1
u(U,0 —wr) & (0,T,0) = u{wrl,0,uT), (12.2)

where the components of the vectors are their physical components in the
(x,r,p) system. For I" < 0 the x component of this force becomes negative
hence the vortex acts as a propeller.

Now suppose that w increases indefinitely and T decreases so ‘that T'w
remains constant. Then several limits have to be considered. First, the
free vortex along the x axis and the starting vortex disappear. Second,

the helicordal vortices become circular and their strength per unit of length
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in the x direction assumes the value

Tw/27U0 (12.3)

coupled with a right hand screw to the negative ¢ direction. Third, the
force exerted on the vortex becomes perpendicular to the actuator disk

{(x =0, 0 <r <b) and its mean value per unit of area at a radius r becomes

y wr I dr _Hw r
2t r d&r  2u : Lo

which is independent of r.

When we suppose

Lyl - (12.5)

we have the actuator disk with a constant normal load of the previous section. i
We will check if the characteristic features of the disk also: can be recovered I
by the model of this section. The vorticity (12.3) on the cylinder behind the |
edge of the disk becomes by (12.5)

Trw/2ny = £_/uU , (12.8)

which is i1n agreement with (11.10), the change of sign is only due to the
different definitions of positive direction in both cases.

The vorticity on the disk tends to zero because I' > 0, this is in agreement
with @ = 0 for ft = 0 in (10.11). At last we discuss the pressure jump over
the disk which in the previous section followed from the force representation
almost directly.

Consider in figure 12.1, the two points Q& and Q6 which we suppose to be
close to each other, Ql with a negative x coordinate and QG with a positive
one, hence each at a side of the "disk". We connect these points by a contour
Qv Qe Qyr Qs Qs er where the parts (Q3'Qk) and (QS,QG)»are very long
because we assumed that the process started long alo and the contour encircles
all vorticity at the cylinder. In order to calculate the pressure difference
between Q1 and QS' in the limit w -+ =, we use the instationary and linearized

formulation of Bernoulli's law ([12] page 99),

: u 22 ”
P =-"u Uu i T (12.7)
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where ¢ is the velocity potential and a possible addition of a time
dependent "constant" is neglected. The potential difference 61 = @6 between
the two points Qj and Qeﬂ can. be written as
Q, (o . R
¢6—¢1=‘(f + e+ f )yv .as, (12.8}
Qﬁ Qc
This potential difference is equal to the total vorticity enclosed by the
contour, because by (12.6) this is each unit of time increased by an amount
fn/u, we find
N fn
o]
— - ) = — 12080
3 g Ty u Ao -

The condition of no divergence of the velocity field has as a consequence that
the u component of it must be continuous across the disk, also in the case

of w » ». Then we find from (12.7)

- B ==f , (12.10)
which is the desired pressure jump.

Exercises.

1. Give also a rotating vortex model when the normal load fn = fn(r), hence
depends on r, by choosing the strength of the rotating vortex I' to depend

also on r.

2. Create a vortex model in the most general (linear} case, when the load
depends arbitrarily on position and time, while the plan form of the

disk is no longer circular,
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13, Some remarks on actuator disk theory

We considered in sections 10, 11 and 12 the non linear and linear theasy
of actuator surfaces with prescribed loads. In this section we will conclude
with some short remarks on these subjects and also with respect to the casé
that the load is not prescribed but has to be determined.

For the case of a prescribed load we refer to [28] for a method to regast
the problem in an integral formulation. By this it is possible to carry aut
effectively numerical calculations by means of an iteration procedure. Iny
this work an actuator disk is considered with normal and tangential componants
of the load, in such a way that an approximation of the loading of a ship screw
is obtained. In [6]} this method is used to calculate numerically the flow pattern
of an actuator disk of this type. However it is not quite clear if the assmmption
made in [6] on the release of the vortex sheet from the edge is correct. In a
linearized theory there is no problem with respect to this because the vorticity
of the sheet remains at the place where it was formed, with respect to the fluid,
it is not transported by its own induced velocities. In the non linear case
this is no longer true. In [6] it was assumed that the sheet leaves the adge
of the disk in some well defined direction. In [21] it is argued that possibly
such a direction need not to exist and it is proved mathematically that in a
very simple case this sheet can have the shape of a spiral encircling an infinite
number of times the edge. In figure 13.1 we have drawn a picture of this
phenomenon. The question is still open what happens in more realistic cases.
It can be remarked that by experiments the spiralling behaviour is not togbe
rejected.

When the device which has to be represented by an actuator disk is very well
specified it can be desirable not to assume a load but actually to calculate

it. This could be done as follows.

X
~

5

Lo
/;/’
9

Fig. 13.1. Cross section of an actuator disk with spiralling vortex sheet.
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First assume some unknown }oad on the actuator disk. Write down the induced
velocities by this load and add these to the known incoming flocw. Next we
use the geometrical description of the device to find an additional relation
between the velocities at the place of the disk and the force field. In
this way we have two equations for the unknown velocity field as well as
for the unknown force field. This has been done inr [9] for a gquickly rotating
boomerang under the assumption of small forces and small disturbance
velocities, hence in the linearized case.

Other applications of actuator disk theory are for instance in the theory

of helicopter rotors we mention [19] for a more general survey we mention [10].

I
|
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14. The ship screw, general considerations

Our next subject will be the ship screw which is up to now the most importané
device for hydrodynamic propulsion. It consists of a number of heliccidally
shaped blades connected to a hub. The number of the blades can vary from two

upto about six. The hub is mounted on a shaft {figure 14.1), which is rotated

Fig. 14.1. Ship screw.

by the engine. The problem 1s how to shape the blades so that at a given
rotational velocity, a prescribed thrust is produced which moves the ship
with a desired speed. This is a very difficult problem because of the many
complications which occur in a realistic situation. We now discuss, not at all
in an exhaustive way, a number of these.

The ship screw is generally working behind the ship in a flow which is
disturbed by the ship. This disturbance roughly proceeds from two different
origins. First, the water has to follow the ship's form, hence behind it,
it has to converge and by this the inflow in the propeller region is not
homogeneous. Second, the water flows along the ship is dragged with it by
viscosity and becomes turbulent.

The hull of the ship influences in still another way the propeller. Because
it is a rigid surface it will hinder the water to be get into motion by the
propeller hence the resulting pressures on the blades will be changed. The
free surface of the water has an analogous effect. It is also a boundary of
the domain in which the propeller is working although perhaps with an opposite
effect to that of the rigid hull. The tip of the blade will experience a
different inertia of the water when it is in the neighbourhood of the free
surface than when it is far beneath it.

Considering such difficulties it seems wise to make simplifications in order
to obtain a model which is still tractable by mathematics. However, these simplifi-—
cations may not go too far, so that no conclusions about the real propeller can be
obtained.

We will neglect viscosity and assume no influence of the ship hull at all




|
1

and also not of the free surface. The incoming flow will be a homogeneous
one with velocity U. The thrust is mostly delivered by parts of the blades
which are not too close to the hub, because the relative velocity of the
water is larger at those parts which have a certain distance to the axis of
rotation. This makes it acceptable to.neglect in first instance the influenge
of the hub. Hence we consider a number of blades moving "freely" through
the fluid, however along a prescribed path. The last step is to consider only
one blade because this already shows all the mathematical difficulties which
can be encountered. ;
Later on we shall discuss some possible corrections such as the influenge

of the other blades and the influence of an inhomogeneous inflow.

47




15. The geometry of a ship screw

For the description of a screw blade we use a cylindrical coordinate
system x,r, of which the x axis is along the axis of rotation of the

screw (figure 15.1). With respect to the coordinate system we have an

Fig. 15.1. A blade of a screw propeller.

incoming homogeneous parallel flow with its velocity U in the positive x
direction. Our first aim is to find impermeable surfaces which can rotate
about the x axis without disturbing the parallel flow.

Suppose we have a surface
G(x,r,Q,t) =0

moving through a fluid with a velocity field (U + Ver Voo vw) and ask for

(15.1)

the conditions which the velocity field has to satisfy in order that the fluid

flows along this surface. Consider G = G(x,r,®,t) as a function defined iwm
space. Then each moving particle of the fluid perceives at the place where
it is at a certain moment, some value of G. When this particle moves on,

the rate of change of this value is easily calculated as

dG _ 3G 3G 3G 3G
dat ~ 3t T (U+Vx) x F V%t Vo Top °

A particle moving along the surface (15.1) has to observe the value G = 0
during its motion. This means that the velocity (U-+vk, Ver v ) of that

particle has to satisfy

oG 3G oG oG
o S+ AT e
at * (U-+v*) 3x | 'r 3¢ Vw rayp

[15.2)

(15.3)
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This is the well known condition which the velocity field has to satisfy
at the surface (15.1) in order that the fluid flows along the surface.

Now we consider a rigid surface rotating around the x axis
G(x,r,p-wt) = 0. ) (15.4)

In order that this surface does not disturb the homogeneous incoming parallel

flow it has to satisfy (15.3) with Ve =SV, TV, = 0. at t = 0 we find

Qp
9G 3G
-w 2= LA = 3
30 (x,x,0) + 0 3% (x,x, V) 0. (15.5)
The general solution of this equation is |
G =G+ ax - wt,r) , a=uw/0U, (15.6)

where G is an arbitrary function of its arguments (P + ax - wt) and xr. We ‘

restrict ourselves here to the case of the simple helicoidal surface H

H=+ ax - gt = 0. (15.7)

This surface will be called the helicoidal reference surface.
On H we choose a two dimensional coordinate system for instance x and r.
Then we can define on H the planform B of a propeller blade by

x, (r) <x<x(r) , r. <r<r , (15.8)
£ -7 ="t i— -0

where xz(r) and xt(r) are given functions.

The plan form (15.7), (15.8) as an impermeable rigid surface does not
disturb the incoming flow. A realistic blade however produces a thrust and
because it is a body of finite extent it has to shed vorticity (section 2
and disburbs the parallel flow. Because we discuss a linear theory the
disturbance velocities (vx,vr,vw) will be small. This happens when the

blade is in the qeighbourhood of the plan form B. We represent it by
@ - pt + ax + € fj(x,r) =0 , j=1,2, (15.9)
fl(x,r) > £, (x,x), (15.10)
where ¢ fl(x,r) and € fz(x,r) describe the small deviations of respectivefly
the upper side and the lower side of the blade from B. The number € is a small

parameter which is used to linearize the theory, we will neglect quantities

of 0(e?) with respect to quantities of O(e). The leading edge and the trailing
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edge of the blade correspond to the functions xz(r) and xt%r) used in (15.8),

hence in general

flfxl(r")‘ y ‘r:?» = f_z(xz(r)", r)“r fl (xt(‘r')lr‘) = fz(‘xt(r:)vr, r‘)’.

We introduced the upper-side and the lower-side of the blade. This can be

(15.11)

dorie otherwise by saying, the upper-side of the blade is that side which can be

approached with constant x;r and t through increasing values of . The other
side is the lower-side. The upper-side is in general the suction side, the
lower-side is in general the pressure side of the blade.

The thickness D of the blade for an arbitrary point {x,r) of the planform
will now be defined. Introduce the unit normaljz.on the plan form, pointing

in the direction of decreasing values of

_*_(: ) A -1
n = wnx, nr, n)y = ———7;—

(1 +a?r?)

(ar,0,1).

Determine the points of intersection of a line through the point (x,r) on the

plan form .and perpendicular to it, with the upper- and lower—-side. Then the

(15.12)

thickness D of the blade will be the distance of these two points of intersection

{fl(x,r) - fz(x.r)}
L .

D(x,r) = & ¢
(1 + a?r?)

At the leading and the trailing edge of the blade D = 0 (15.11).

(15.13)

The mean plane Hﬁ lying in the middle of the upper- and the lower-side, has

the form

H =@~ wt+ax+ef(xr),

where the camber € f3(x,;) which is the deviation of Hm from the plan

form B {(15.8), follows from

£ x,x} = 4 {flcxw;) + fQ(x,r%}

In the sequel we need the concept of the local angle of incidence di of
Hm at some point (x,r). This is the angle which the helicoidal line at the
planform hence at H = 0, through the point (x,r) forms with Hm at (x,r). This
angle follows from the scalar product of the unit normal at Hm”fbr'(x,r) and

the unit tangent to the helicoidal line at that point,

(15.14)

(45.15%
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9 9
{rta+e — f ), r e — f_, 1}
o, = - 9x "3 dx e _(.lL__OL_a_r.)_ ] 0{(52) =

{r2(a+e¢ %-f3)2 + (re _a% f3)2+ 1Y* (1 +a2y2}"

s _52 £+ 0(e2). (15.16}
(1 +a2r?) ® 3

A profile of the blade is defined as the cross section of the blade with
a cylinder r = const. The profiles are symmetric with respect to the skeleton
line, which is the intersection of the middle plane ﬁm(15m14) with the
cylinder r = const.

At the upper- and lower-side of the blade we have to satisfy the boundary
conditions for the flow, stating that the fluid velocities are tangent to
these surfaces. Because our theory is a linearized one; these conditions
will not be demanded at points of the blade itself but on the planform.

In the following we generally identify the blade of the propeller and its
pianform B. A chord of the blade is by definition a line r = const. at B.
Chord lines can be chosen as reference lines for profiles because they lie
in their neighbourhood.

We now state the problem which has to be solved by the lifting surface
theory. Assume that the load Q which is defined as the pressure difference
between upper and lower surface of the blade, is given as a function of

position

Q= Q(x,r) (15.17)

Besides this assume that, for instance by demands on strength and stiffness,

the thickness D of the blade is known at each point

D = D(x,r). (15,189

Then the question is, how do we have to choose the middle surface Hm‘of the
real blade so that we obtain the desired load (15.17). When Hm is found we

can construct the upper- and the lower-side of the blade, because the thickness
is known.

This problem can be split into two separate parts. First, what is the
camber € f3DKx,r» (15.14) which yields a loading Q(x,r) = 0, while the
thickness D = D(x,r) is taken into account. Second, what is the camber
€ fas(x,r) which yields the prescribed load Q = Q(x,r) while D(x,r) = O. Then
the total camber needed to satisfy (15.17) under the demand (15.18) follows

from
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f3(x,;) = f3D(x,r) + fas(x,r)_ {15.19)

This is allowed because our theory is linear.

The splitting of the problem into two independent parts is interesting
from several points of view. By changing either the thickness D or the load
Q separately, we need to take into account the changing quantity only. A
simple multiplication of D or Q by a constant is reflected by a simple multi-

plication of féD or fss‘by‘the same constant.
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16. The screw blade with thickness and without loading

We will discuss now the first part of the problem as described in the
last paragraph of the previous section. How can we construct a screw blade
with & prescribed thickness distribution D(x,r) and without pressure differences
between upper- and lower-side, Q(x,r) = Q.

Consider a layer of sources placed at the planform B. This layer induces

a disturbance potential ¢ of the form {[11], page 160},

w|Q

1 '
¢ =-=— [f a s, (16.1)

4

B

where 0 is the local strength per unit of area of the source layer and R is
the distance from the point where we calculate ¢ towards the place of the
element of area d S. We also determine the limiting values of the normal
derivative of ¢ at the upper-side (1} or at the lower-side (2) respectively

([11], page 164),

2

1 o 1 ! N |
3n 2 4u Ng 0 & RSk (16.2)
o0

2 __o 1 Dy 2 o E
3n 2 an /I o n R & Sk (16.3)

B

Gl o ! . . . o4 . .
where 5, means differentiation in the direction of the normal n given in (15.12).
Hence we find for the difference of the normal components of the disturbance

velocity at both sides of the blade B

= O, (16.4)

which is a well known formula in potential theory.
The condition that the fluid flows along the upper- and lower-side of
the blade, follows from substitution of {15.9) into (15.3). This yields

when we neglect terms of 0(e2),

v
J . 9,3 , ‘ {
U —= = -, = . .5
€y IX (a V'XJ,j + = Y ] 1.2, (16.5)
where v . and Y@ 3 denote the disturbance velocity components at the
’ 14

upper-side (j = 1) or at the lower side (j = 2). The difference of the normal

components. of the disturbance velocity at both sides can now be written as

3¢ﬂ 0@2

1]
<
|
<
"
<
<

AT T 3 = n. _ , 5 Y .
o n X,1 x,2* Tr,1 =28 Y, 1% V2" (Loeey
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Using (15.12), {16.5), (16.4) and {(16.6) we find

€U r Bty | iy

= . =
(1 +a2r2)5 3x ox

). {16.7)

By the definition of the thickness D of the blade (15.13) we can write this

as

olx,r} = U 2—-DKx,r) =U (1 + azrz)% QD (x,x) . (16.8)
ox 9s
where s is a length parameter along the planform B for r = const.

This formula could have been derived more directly.

The gquantity

% 5

Ul + a2r?)? = w? +w?e?)?, (16.9)

is the relative velqcitywof the fluid with respect to B, hence the right
hand side of (16.8) can be interpreted as the difference in normal velocity
of the fluid at both sides of the blade, because 3D/3s is the difference
in slope of the sides of the blade. Then in connection with {16.4) we obtain
(16.8) .

Now we derive a relation between the middle surface Hm {15.14) and the
disturbance velocities. Consider the sum of normal components of the disturbance

velocities,

3¢1 3@2 N
_3; * ﬁ - (erfl * v,xv.z i vrll - Vr"z ! v(pr‘l ¥ v(p'Z)]. CheAY

By [15.12); (16.2), (16.3), {16.4) and (15.4) we find

Er v ad 3d

» 3 1 1 2 1 ¢ 3 1
—t = f =5 (—+=—==) =~ = [f o— = ds. (16.11)
K1-+a2r2)% ox. "3 2 on on 4 = an R

The physical meaning of this result can be understood in the following way.
We calculate the normal component of the undisturbed parallel flow with respect
to the middle plane Hm, from (15.16) we find the value
L Eryu ]

o, . Ul +a?r?)’ = - e = F (16.12)
* e, = B

This however is exactly minus the left hand side of (16.11). Hence when we
disturb the parallel flow only by the second term of the right hand sides

of (16.2) and (16.3), there results a flow tangent to the middle surface. The
first term at the right hand sides of ¥16.2) and (16.3) takes care of

difference in slope at both sides of the blade.
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The middle surface Hm‘is not defined uniquely by (16.11). We can choose
at the planform B some line £ in which Hm-cuts B, for instance a line x = const.
Then by integration with respect to x along lines r = const., we can determine fam
hence Hmm

We have the following result. Given the thickness distribution D = D{x,r)
of the blade. From (16.8) we find the source distribution (sinks when
6 < 0) on the blade B. By (16.11) we construct a middle surface Hm' around
which we have to build symmetrically the blade with the prescribed thickness.

One question is left, are the pressures at both sides of the blade, constructed
in the way just mentioned, equal to each other so that Q = 0. This follcws
directly from the fact that we have used only sources and sinks to represent the
blade. The instationary linearized version of Bernoulli's law [([12], page 99)
reads in our case

R Y S )
B = W G 5

0, (16.13)
which we apply in the neighbourhood of the blade. Because the blade rotates,

we can replace the partial derivative with respect to t by a derivative with
respect to P, as follows

3o 3¢
B = - - —— '+ U — ). .
P uo( T30 rw+ U e D (16.14)
This is the inner product of grad ¢ and (U,0,-wr). The latter vector is the
velocity of a particle of the undisturbed parallel flow with respect to the
planform B. This means that (16.14) represents the rate of change of ¢ by
b

moving along the planform with r = const. with a velocity (02 +w2r?)’,

Hence we can write

= (16.16)

p = -u (U2 + Wlr

where s is a length parameter along B for r = const. It is well known
({117, page 160) that the tangential derivative of the potential of a layer
of sources is continuous across the layer. Hence p has at both sides of B

the same value.




17. The velocity field induced by a rotating feree

After having diseussed in the previous seetion the ship serew vith
P{x,x) and sere leading @ = 0, we eonsider

prescribed thiekness D
the ship screw with sero thickness D £ 0 and prescribed loading.
9 = 0Q(x,x)., Firat determine explieitly the prinecipal tool namely the
Green function used in the integral representation of the geometry of such a
screw, This Green funetion is the veleeity field induged by a retating
forece perpendieular te and rotating with the helicejdal reference surface
{15,7), its peint of applicatien moves aleng the line x = £, r = p,

The relevant features eof this veleeity field are described in sections
$ and 7, however we eannet use these feormulas direetly because they are
derived for a force moving im a fluid at rest while here we have an incoming
velocity U: First we will show how we can refermulate the problem slightly
80 that we ean apply the theery of sections 5 and 7.

The helicoidal referenece aurface H = ®© - wt + ax = 0 rotates about the
® asis and is placed in an ineeming parallel flow with velocity U in the
+ x direction. On this surface we have, using eylindrical coordinates,
a point A = (£,p,8 + wt)., This peint is on H when @ =~af,

At the peint A there is a force of strength h, perpendicular to H and
with a component in the +1 direction, hence 1t can be represented by

(apl O\’ l\) (17.1)

hR=t(.,h,h)=-hs=«h
= ’ ’ J B =hn =
£ 'p €] (1 +azp‘2)

where n is given in (15.,12). We remark that the components of 4 given in
{17.1) are in the local directions of the coordinate system at the point
(€:p+0). This force is assumed to be rotating already infinitely long so .

that its vortex system stretches at each moment t along the helicoidal line L
Lryy-wnt+ax=0 , r=p=const., (17.2) ]

upto x = +o, |
With respect to the coordinate system (x,r,(p), the rotating force K keeps l
the same value of its axial c¢oordinate x = £. We can however also refer this
force t¢ a cylindrical coordinate system fx',r",p*} translating in the +x
direction with a velocity U, x" = x -Ut, r = r' and @ = ¢*. With respect to
the (x',r',@"') system the fluid &t r' + « is at rest and the force 4 is moving

along the helicoidal line L'
L' 9" +ax>=0 , r¥=p, (17.3)

in the -x" direction with a velocity V = U(1 + 5202)& along L' and is perpendicular
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to its velocity. At t = 0 both coordinate systems coincide and at t = 0
the force is at the point A = (£,p, -af). Because the force induces

at t = 0 in both systems the same disturbance velocity field, it is clear
‘that we can derive the velocity field in system (x,x,9) at t = 0 also in
the following way. Consider a force of strength h, moving in the negative
x direction along the line ({17.2), t = 0) W+ax =0, r = p = const. ;
with a velocity V = U(1 + azrz)%. The force is perpendicular to ¢ + ax = 0
and in the + @ direction. It started to move at x = +» and arrives at
{C,p,~af) exactly at t = 0. The advantage of this change of view point is
that now we can apply the results of sections 5 and 7.

The velocity field follows from (5.5) which reads

s{oy - > > -
3(x,r,w» t=0) = (v ,v ,v) = - Zl— Il { L& 2 3 Bu(h(eefl) }ds, (17.4)
i 4 ™ V(s) R? V(s) R®

where the integration is performed along L. The components of all vectors

in (17.4) have to be taken into the directions of the coordinate system at
(Xpr,©), this is denoted by the indices x, r and @ to the components of 3.
‘Hence we have to transform ‘the components of a vector at a point (£,p,0) which
are generally given in the directions of the coordinate system at (£,p,9), intc
the components of the same vector with respect to the coordinate directions

at (x,r,w) To carry this out we have the following simple scheme. Consider

a vector g written in its components at (€,n,0)and at (x,r,®) hence

- >

= ’Gggl gp Iz ge) 7 g = (‘gx‘r grr g(p) (17‘5)
then
g, = 9 7 9, = 9, cos (P = O)‘+-gO sin (@ =~ 0O} ; 9p="9, sin (v - 0} +‘QGCOS(¢F@).
(17.6)
In (17.1) are given (hg, hp, ha)'hence we can write alsgo
> h R o~ ~ ~ ~o ,
h=¢(h,h,h}=— (ap, sin(@ - ©)), cos(p = 9)),0 = -af , (17.7)
X r [€) (1 +a202)12

we have given the © and € a ™tilde" in order to denote that in the integral

(17.4) E becomes a variable with respect to which the integration is carried

out. Analogously we find for the vector R from (£,p,0) towards {x,xr,0),

~

> T~ ~ ~ ~
R = (qu Rr"Rw) =(x-&, r=np cos(P - 0),p sin(p - 6)),0 = -af . (17.8)
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Substitution of (17,7) and (17.8) inte (17.4) yields

> - o _h_ (" itap, sin (@+ak), gos{p+akb))
[ . £ = @ = { ¢ E O Tmeer o [ i o - e
VAR T (P A\ P SLLI TS *aZpZ)% E r3 L
3 =% r-p costwal) »a-ﬁs;%n_f‘@;@..é'lﬁég Byt rosin(orablly o (17,9)
R

where R = lﬁl, vis) = U({f + @292)55 congt. and ds = {1 + azpz)lz dE,

In order to bring this integral into a form used in literature we put

~
E = =7 + wXQv then

(x~E)

> ‘ ; 1 h
vixer,@,t =0} = fv_, v , v ) = — T e
X x 0] 47y U?"1A+a‘2p2)% i

[~ fap, sin(@+alx 1)), coswraix~1))) ,
3
R-

+3 I, x-p cos(@+alx-Ti),p sintp+a(x~11)) . {apr+ r sin (p+a(x-1))} i ar
RS

(17.10)

where

2

R = {12 +x2 +p2 -2rp cos (> + a(x-—r))}%. (17, 41)

We will give another representation of this velocity field by using the
vortex model of section 7. The velocity field consists of two parts in our case.
First we have a contribution ;1” by the short vortex which represents the
force and for which the contribution is given by the upper bound in {(7.12).

The relevant quantities in that formula are V(s) = U(1 + azoz)%, the vector
K pointing in the +p direction hence by (17.6}

-+ >
= = - = 3 = (i i 0-0), -si = U= - ’
k = {k k , ke) = (0,1,0) k (kx, kr, k@) {0, cos( @)y, -sin{p-06),0 at

g' P
(17.12)




we consider the point (£,p,-af) where at t = 0 the force is acting. In this

way the contribution of (7.12) becomes

31 (%, r,p t=0) = ?(jvl Vi Vi i 1S = 41 h
' x 1o ™ U1l +a?p?)
(r sin(@+ag),-(x-E)sin(@+ak),~(x-§)cos(g+ak)) £17.13)
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and the vector .ﬁ, given in (17.8) however without tilde, because here
i {(x--g)2 + r2 + p2 - 2rpcos(p+at)}3/?

> -+
Second we have to add to v, the contribution v7 from the two tip vortices

(figure 7.1), given in (7.8). This formula reads in our case

> T h B s @ B 3y
V2 = \(_\IZXV,V2 V2( ) = T I *GT {‘.(i + A(—ig) & —'—"+—'} ] . =~{1 +a2p2) deg,
r 20 Yoo 0T ra%? |r - k] 3 a=0
(17.14)
where we changed from the parameter s in (7.8) to the parameter E = —(1-+a2p2)_%sm

The quantities in the integrand are the following and can be determined easily.

first
o . . . . 1Yy E & 3 A= 1 i ar = ’ g -+ i" .
i - Kl'g,l. i) = (-1,0 ap)12 = (g ’l(p)‘ _ (-1, ap sin(® 12aE) ap cos(p+ag) .
(1 +a2p?) (1 +a2p?)
(17.15)
In (17.12} i is given,from which we find by differentiating
ak ak aF 1
B e e (0,-a sin(@+ a'g) , —a cos((p+a’g),)4. (17.16)
dg (1 +ap?)
which are the components "at x,r,;p". At last ﬁ is given in (17.8).
We now can carry out the vector product in (17.14) and find
oo ~ ~e
v i le BN RGN i Jlatp +N)2-ar(p + Mcos(@+ad), (x-Elalp + N cos(@+ab)+
4
2 T UKl<+a202)5 dax

+(p+A) .sin(tp+a’§)‘,—r +(p + 1) cos(p+ak)-(x —'g)a_(p + )\)sin((p+a’€) YaE . (17.17)
4 ] -
1R - k|3 =0




iIn order to bring this formula in the form used in the literature we

change again the integration variable into 1 = -’“g" + %. Further we remark

that in the integrand only the combination {p + A} occurs, hence we can
put X = O and change the differentiation with respect to A into a

differentiation with respect to p. We find

¥

1 h 3 J- ,ap“ —arp cos{@+alx-1)),
X

n ’
AT g1 +a2p2) e

<

,T ap cos(@P+a(x-T)+p sin(@+a x -1)),~r+p cos(P+a(x~r1))-1ap sin{w+alx-1)),
or = 2
3/2

(12 + 12 + p2 - 2rp cos(W + a(x-1)))

dr. (17.18)
> ->
The total velocity is then given by vy + v2,
= = P(vx’vr’vgp’ - b . {(-r sin(@+ag), (x~£E)sin(p+ak), (x ~ E)cos (P +ak))
4mu0(1 + a2p2) {{x - 5)2'4— r? +-p»2 -~ 2rp cos (Pp+ak) }3/2
X~

(ap2 ~arp cos(P+alx~-1)),Tap cos{P+a(x-1))+ p sin(P+ a(x--"f))r,

9
+$ E

—= OO

,~r+p costP+al(x—-1))-tap sinfp+al(x-1))}

dr }. (17.19)
(12 + 2 +r,w2 -2rp cos((,0+‘a(,x--'r)))3/2
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18. The screw blade of zero thickness with prescribed load, a.
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We will discuss the screw blade of zero thickness and prescribed load
Q(x,r). It is only necessary to consider the blade in its position at
t = 0 because during its rotation in a homogeneous incoming flow the
pressures on it are independent of time. All positions are equivalent
in the sense that the whole disturbance field of the propeller rotates
with the blade and is independent of time with respect to the blade.

Two different ways can be followed. One way is by using the
representation of the velocity field (17.10) for a rotating singular force,
the other way is by using (17.19). We will treat both methods separately
and start with the first one.

Suppose the screw blade, with zero thickness, is defined by
@ -wt + ax + € f(x,r) =0 (18.1)

x (r) < x < x (x) P, Sx<xo. (18.2)

The condition (15.3) for the fluid flow to be tangent to the blade, becomes

€U g£-= - (avx + ;9 . (18.3) ﬂ

We assume that the blade experiences a load Q = Q(x,r) perpendicular to
the blade as a result of the action of the fluid. This load is called positiive
Q > 0, when it has a component in the negative x direction, hence when it
contributes to the thrust of the propeller. Inversely an elementary area
dS of the blade exerts a force QdS on the fluid in the direction of increasing
@, by this it is allowed to replace h by QdS in formulas (17.10) and (17.19]
in order to find the velocity field induced by the elementary force QdS.

We want to determine the right hand side of (18.3) at the blade, then
also 9f/9x is known and by an integration we can find f£(x,r). Then by (18.1)
the blade is known. First we calculate the right hand side of (18.3) for a
point (x,r,®) at a finite distance of the blade. By (17.10) we find

v (x-£) 2
~4muur (av_ + ;Q) = [ oo [{a rp tcos(P+alx-1))}
B

-0 R3

_3 fart +p sin(@+a(x-1)) Hapt +r sin(@+a(x-1))} latacde ﬁ
RS
(x-E) *
= If Q(&,p) I G(x,xr,0,p,1)dTdEdp iii II Q(&,p) K (x,r,p,E,p)dEdp, (18.4)
B

-0 B
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where we replaced the element of area dS by (1 + aZp2)5d€dp, introduced the

functions G and K*¥ and where (17.11)

R= {12 + 12 + p2 - 2rp cos(@*—a(x-—f))}%. (18.5%

As has been said, we have to take the limit (x,r,p) = (a,r,-ax), where
x and r satisfy (18.2), then the point (x%,r,¢®) tends to the blade. From

{18.3) we find

of lim

2 y =
4mpe U¢r Ey (x,1) ® 5 -5

I 9(£,0) X*(x,r,@,&,0)dEdp. (18.6)
B

First we simply try to interchange the limit procedure and the integration.

Hence we have to consider the kernel function

def

Kf(x,..r,E Py _ R (xnrl'“axriwpl) =
) (x~&) {a2rp + cos at} _ 3{art -p sin at}{apTt -r sin aT}]d
Sy 2 °
—~co (12 +r2 +p2 - 2xp cos aT}3/2 {12+ r?2+p2-2rp cos at} /

(18.7)

When x ~ £ > 0 and p - r this function becomes infinite. The singularity
arises from a small part of the range of integration in the neighbourhocd
of T = 0 because there the denominator tends to zero for 1 - 0 and p -+ r.
For the study of this singular behaviour the range of integration in (18.7)
can be changed into -a < T < a, where a is some sufficiently small but fixed
positive number. Putting p = r + v, where |v| is assumed to be small, we expand

the numerators in (18.7) with respect to 1T and v, then we obtain integrals of

‘the form

2 e ar g g Pat

v a9 ¢ PR

=0 {12+ r2 + (r +v)2-2r(xr +v) cos a1} -a {12 4+2}4
+a/v m a/v
2+m+1- = = »

< ytmtl=a 5—7 ag < WG g 0 ™Y g, (18.8)

o (g2 + 114 1

where 2 and m are 0,1,2,... and g = 3 or 5. It is seen easily that for

2 +m>qg - 1 this expression remains finite or increases logarithmically
when v -+ 0. By this we have to expand the numerators of the first and

‘the second term under the integral sign in {18.7), only up to and including
terms of the second and the fourth order, respectively. By doing this we find

after an estimation of the resulting integrals
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2.2,% 2
K(x,r,8,0) v 2122707) X3 + 0(n |xr-p|), E<x, p>r (18.9)

(r -p)2 (1 +a2r2>1’(r-p)

This singularity cannot be integrated in the p direction. Hence the interchange
of the limit ¢ + ~ax and the integral in (18.6) is not allowed. A more careful
method for giving a meaning to this limit will be given in the following.

We divide the area of the blade into three regions (figure’18.1). The

4C 2y

B 5,
. | E—— - i_z(s

B

3

> £
X, ) X

Fig. 18.1. The domain of integration B = Bl + 32 4 Bs.
strip Bl defined by xz(r) fE<x -, Ip - r] < B, where xz(r) is the leading
edge (15.8), y and B are sufficiently small positive quantities. Next the rectangle
B2 defined by Jx-—EI <Y, lp-rl < B and the remaining part B,.
The domain B3 does not yield any difficulty in the limiting process (@ + -ax,
because for its points (£,r) the value of (r - p) doez= not become zero.
The integration in (18.4) over B1 when first @ >+ -ax and then B + 0, can

be written as

-y r+f +0,
lim S J Q(e,0) { | G(x,r,9,0,7) dt} dpdk, (18.10)

P> —ax xz(r) r-f -a

where a is again a small, however fixed quantity. The restriction of the imtegration
over T to the interval (-a, +o) is valid because only the singular part of the
kernel can possibly yield a contribution to the integral over the strip of

vanishing width, B + 0. We introduce the new variables & and v, by

§=¢ +ax , v=p - r. (18.11)

Substitution of (18.11) into (18.10) vields
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x-y +B b
lim ] [ o(g,r +v) { f G(x,r, ~ ax+6, r+v,1)dt}dvdE. (18.12)

650 X, (r) -8 -

First we consider the integrations with respect to T and v. When a, B and &
are sufficiently small we assume that we can expand Q(&, r +v) and the two
numerators in the function G (x,r, -ax+§, r+v,1)(18.4) with respect to

T, v and §. Then we obtain integrals of the form

+B +0. m n
I(L,mn,q) =6 [ | TV drdv = (18.13)
8 -a {12 +r2+(r+v)2-2r(r + v)cos(§ -at1)}?
where
£ >0, m>0,n>0, g= 3 or 5. (18.14)

We have to keep in mind that we consider the limiting procedure, first § - 0
for fixed B, 0 < B 5_80 and then B + 0. There exists a constant k > 0,

independent of B, such that

I+B J_+(y, Lflml\)ln at av

i 2
|I(2‘lmlnlq)l < |6I
-8 -a {t2+v2+k rz(a'r--G)z}q/2

? (1i8.15)

Next we introduce new variables of integration 1* and v* by

: h &

1= |8[{t* (1 +xa%r?) " + akr2(1 +ka?r?)” |6l (a,s* +a), 6 <0,  (18.16)

v=|6]v*, (18.17)

where the upper signs are related to § > 0 and the lower signs to § < 0, thiws
will be assumed also in the following. Substitution of (18.16) and (18.17) into
(18.15) and neglecting the asterisks, yields

1, 0 =

{ + a_)
B/ 4 18] 2
(24m+n~g+2) J' 151 | v | nd\) I

11(2,m,n,q)| i_allél o
-B/151 -a]l(TgT'i.az)

lat +a |"
1 = 2

drt, (18.18)
(12 + v2-+a3)q/2
where
2
a = —XX (18.19)




65

The constant a3 # 0 for r z:ri > 0 which will be assumed in the following.
It is clear that in (18.18) the origin T = v = 0 is no longer the

dangerous location when § + 0. The singular behaviour of the two dimensional

integral is now determined by the behaviour of the integrand for large

values of T and v. This means that we can replace (18.18) by

‘1( ¥a)
8/ ~ ) 2 i
. a+ ,
I1(2,m,n,q)] iC1:6l(£+m+n q+2) f |6} VPay H » T’ -, ar,
] o O (TZ +\)L +‘a3)q
(18.20)
where Ci is a suitable constant independent of 8
We now consider the case
L+m+m=-q+ 2> 1, (18.21)

/rv
R
IS P77
/A
/ 72
W\ —
v ' af'/__- T o)

T

Fig. 18.2. Several parts of the domain of integration in
(18.20), |8] << g.

Then it is allowed to neglect in (18.20} the area of integration 0 < 1, v <1
(figure 18.2), of which the contribution |I(£,m,n,q)|‘tends to zero with §

because ag > 0 (18.19). We consider also separately the area of integration

0<t<1,1=<v<p/|s].

(s4min-g+2) B8] g ' "ar (L+m+n-g+2)
<, sl 0 ey (] a2
1 0 (t<+v +&3)
B/
o 181 pmare
1
g/
= ,5,(Jl+m+n-q+2) o lre |6 , (18.22)

(n-g+1+¢)
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where C2 is a suitable constant independent of B and € a sufficiently small
positive fixed number, introduced to keep the denominator of the last expressiom
away from zero. Then we find (18.22) - O when § + 0. Analogously we estimate
. . . . -1, a
‘ <
the contribution of the area of integration, 0 < v <1l,1<n1 i_al (TET + QE),
which also tends to zero for § —+ 0.

In this way we can replace (18.20) by

-1, & =
at ( +a,)
R/ 1 5] 2 m
+m+n-qg+ 8 :
Tmn,] <l oIl g, : —ax+o(8),
1 1 (12-+v2-+a3)q -
(18.23)
where o(8) is a quantity which tends to zeroc with 8.
We estimate the denominator of the integral as follows
q qge
o = € 2-¢ a, q/2
(12402 40 )V/2 = Z278) T 0 Ly -1 >
3 v T 2_€ € =
T v
22-e)
> T v , (18.24)

where € is a sufficiently small positive fixed number. This holds because

we have 7/v > 1 or v/1 > 1 in (18.23). Hence we find from (18.23)

B/16]  (n -5 aI”T%r Y3 (n-q el
II(Y:,IH,n,q)M icllsl(£+m+n—q+2) _f V 2 dv T = at =
1 )
B/ aTl(q31 + a,)
l§l(2+m+n—q+2) (n-—%g+-1)‘ IGI (m~-g+ ggubl) . TET- .
=C, = = v T + 0 (8) =
(n——2—+1) (m-q + 2+1) 1 1
, @ Sl
= 0(|8]" 8 ) +o0(8). (18.25)

For 2 > 1 this tends to zero with § -~ 0, for £ = 0 it tends to zero with
B+ 0.
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We have found the result that under condition (18.21), the integrals
(18.13) tend to zero under the limits first 8 + 0, or what is the same
¢ > =ax and then 8 + 0.

Next we consider more closely the expansions of the function
Q(E,xr +Vv) and of the two numerators in G (x,x,—ax +8, r+v,T) in (18.12).
From the foregoing result it follows that we have to develop these functions

to such an extent that {18.21%,
2+%#m+n<1,qg=3 ; #+m+ng<3,.q=5, (18.26)

higher order terms will not give a contribution in the limit procedure under
consideration.
First we consider the numerators of G(x,r,-ax+§8, r+v,t)(18.4). In

connection with (18.26) and the definitions of 2, m and v (18.13) we take

{azr(r~+v) + cos(S-at)} = {(1 +a%x2) + @2r Vv + veepe--al o qg =3, (18.27)
-3 {ar T+ (r +v)sin(6 —a1) Ha(r + V)1 +¥ sin(d —at)} = -3{r282 +rv 62}, q=5,
(18.28)

where v and 1 have there original meaning. In connection with {(18.26) it
follows that we have to expand Q(£,r +v) only up to and including terms of

the first ordex

@
[a

QUE, r+Vv) M Q(E,r) + v = (E,r) + ..... . (18.29)

Then we find for (18.12), when we still disregard for a while the integration

with respect to §

Es
/2

8 to P 2
im [ {Q(E,x) + v —2—% gors o, e ' §—L0rar) +amryrug 5
§-0 -8 - [12+ 2 +(r +Vv)2-2r(r +v)cos($ +at1) }
3{p282 2
- e S eliegs.) 1 arav , (18.30)

{12 + 24 (r +v)2-2x(x + v) cos (8 +a'r)}3/2

where we replaced the variable of integration T by -T. Next we want to expand

the cosine in the denominators. We write

{12-+r2+(r-+v)2 —2r(r-ﬁv)cos(6A+ar)}={T2-+v2-+r2(6 +at)2}H1 +O((6-harwg

(v + (8 +at)?) } (18.31)
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which is upto and including second order quantities even in v.
Using this property and again (18.26), we find by expanding the
denominators in (18.30) that we can replace (18.30) by
+8 +a : 2.2 252
lim o,r0 [ (2 ta're) —77 - g 6= o Javav.
6-+0 -8 —a {12 +vZ +r2(§ +ar)?} {12 +v2 +r2¢8 +at1)?2}
{1£.32)
We now choose new variables of integration A and ¢ as follows
u o= ———~£§———¥ N — ———59————~u (0 -ar). (18.33)
(1 +a2r?) (1 +a2r?)
Then (18.32] changes into
+ Bl + o1 +a
(1 +a?r? . 4 s ¥ s : 1 3
-(—_i_r—l— Q(g,r) 1lim 5 IB Ia { 575 " -5/2},
§+0 8! 1 (02 +22 +1) (62 + A2 + 1)
- = = == Ao
§ $ 2
»dAdo , (18.34)
where
/1 + a2r2 (1 +a’r?)a
Bl = T e B oy = m——— v 0, = ar, (18.35)
and where we assume § + 0 through positive values.
First we remark that
400 400 3 . 4o |
! 3 , 1 3 _
I J 4 : - - }darxdo = 2n [ : - }
! < 2
wm =e o4 A2 % 1)37/2 gal sp2s 1 0T a  (pZ+13777  [pluNUE |

epdp = O (18.36)

hence a finite limit for § » 0 is possible in (18.34). The integrals in (18.34)

can be calculatec in closed form ([7] , I, page 48, 13) and page 49, 18a), 18b)).

We do not enter 1. all details but state that after some calculations we can

write (18.34) in the form

7 ‘
) 4/1"+a;r QETE . ey (18.37)
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This result substituted into €18.12) yields four the contribution of the
strip Bl(figure 18.1) to the integral (18.4)

- iy x=y
f‘m—?r— J Q(g,r)dE + o(8). (18.38)
' x, (1)

The remaining part of the integration over the blade, is over the region

.Bz(figure 18.1) in which the point (x,r) is situated. The contribution of Bz’

when first @ »+~ax and then B -+ 0, has the form

r+R x+y %'S
lim { d [ a& g0 | G(x,r,p,p,T)dT =
Pr-ax r-8 x=y —
w r+8 N x+ N x-
= lim B e J -t [ &-0"a& [ Gxz,0p,1d,
@r=-ax n,n=0 r-B x=y =00
{18.39)
‘where
g Jmn 7
] . Q(x,r), (18.40)
¢xX d9r

and we assumed the expansion of Q t6 be valid, as well as 'the change of
summation and integration.

Introducing again the variables §

" + ax and v = p-r (18.11) and the new

variable
n==%&—-x, (18.41)
we write (18.39) as
=°° +8 2 -n
lim b 0 f vndv‘f n dn ﬁ G(x,xr,-ax + 8§, r +v ,t)dr. (18.42)
mn
§>0 n,m=0 =B -y — |

First we discuss the integrations with respect to n and t. Partial integration

with respect to 1 yields

14y
1 m+ 1 J'—n ]

(m+1) {n

=00

+y
) . m+ 1, o
G(x,r,~ax + §,r +v,t)dT + [ n G{x,r,-ax + §,r +v,=n})
: =Y

"oy an}.  (18.43)

The value of the first term of (18.43) for the upper bound +y is finite because
Y is fixed and positive, hence it yields no contribution to (18.42) in the limit

§ > 0. Then the relevant part of (18.43) can be written as
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a o mh
| Gix,r, —ax+8, r+v,T)dt + [ (1) ‘G{(x,zjax+8,r+v,t)dr}.
-

-—-’}_—
(m+1)

- {—(—Ylm+1

(13.44)
We consider separately the two terms in (18.44). We find for the contribution
of the first one to (18.42)
m+ 1 + +
(-v) A

n a3

_ 6 : b = W . (18.45

lim z e ) Q { f velx,r, —ax+8,r+v,1)d1dv £18.45)
§+0 n,m=0

-B -

Analogous to our previous reasoning we can show that only for an interval

of T enclosing 17 = 0 and for n = 0, we have a contribution in the case f > O.
Hence instead of (18.45) we consider

0,

lim - Z
80 m=0

+y
Glx,rx,-ax+38,v +v,T)dTdV. (18.46)

(_Y)m+1 BmQ(x,r) I+B I
(m+1)7 S e

We compare this expression with (18.12). When we replace there Q(Z,r +v)

by the constant

m+ m
=™ 3ox,x) (18.47)
meo (MF D) ax"
I
and replace the fixed constant o by the fixed constant y, we can use the
result (18.37). In this way we find for (18.46)
AT ° (™ o ATl X
L Wratr® o (oY) . T . o &L LASE [ o(g,r)aE. (18.48)
B ot (m+1)! m B -
m=0 ax x=-y

This is the extension upto x of the integral in (:8.38).
It can be proved that the second term in (18.43) gives no contribution when

first §+0 and second B+0. In this way we give the following meaning to (18.6).

o Of - r-8 r, x_(p)
4mue U ro- (x,r) = lim {t « 7 "o Q(E,p)K(x,x,E,p)dAEdp +
80 7 r+8 x,(p) |

4/1 +a2r2 Ix
——

Q(g,r) &t }, (18.49)
x, (r)
where K(x,r,&,p) is defined in (18.7) and the first two terms of its singular
behaviour are given in (18.9}).

The limit procedure defined in (18.49) is called the Hadamard

principal value of the integration with respect to p. In the one dimensional

L e T o o



case the Hadamard principal value of the "non existing" integral

b
I f(p) o

, a<rc«<b, (18.50)
a (p-1x)?
is defined by
r-€ b '
lim {( | + f y L) 4 - 2k (18.51)
e-+0 a r+e (p-x)2 €

which corresponds to (18.49) for a fixed value of £ < x.
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19. The screw blade of zero thickness with prescribed load, b

In this section we will discuss again the screw blade of zero thickness
with prescribed load, however we will start from the representation (17.17)
of the velocity induced by a rotating force. The basic expression at the

right hand side of (18.3) now has to be calculated using (17.17). We find

V, 2. _ Y
-4muUx (a v, + _r_ﬂ_p)=”Q(£,p)[{+ar sin(@ + ag) (x —&)cos(+ak)} o~ +
B {(x-£)2+r2 +p2 -2rp cos(p+ag)}3'?
+-g_p' M(Xlrw(Dl'glp)] d&dp , (19.1)
where
x=£ {p(azrz—l)cos(w-ba(x-T))+r(1-wa2p2)+1ap sin{p+a(x -1))}
M(x,r,0,E,p) = I ' dT-,

- {‘r2+r2+[p2—2rp cos{pP+a(x-1)) }3/2

(19.2)

and (x,r,@) is still an arbitrary point in space. By partial integration we can

write (19.1)% in the form

v [av2as - - .
—4ﬂuUr(a\& o ;2 ) = f o€, {ar‘sin(@+af) - (x - E)cos(@+ak)} dEdp +
B {(x-g)2 +r2+p2— 2rp cos((0+a€)‘}3/2
X
- Jf 2R wikr,0,600 afdo + [ QUE.p (E)) M(x,r,@,E.p, (E)) dE +
B R x s
£
X,
- J 7 QU 1E)) Mix,T,0.8,0,(E))EE , £19.3)
e

£
where (figure 19.1} Xf.and Xy denote the smallest and the largest value of the
£ coordinate on the screw blade and pu(g) and pd(g) describe the upper and
lower edge of the blade as a function of £. The above is correct in the ¢ase
that the blade in the (€,p)plane is a convex domain, which we assume to be

true. Otherwise the integration boundaries have to be specified somewhat more

carefully.
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Fig. 19.1. A typical vortex system on the blade of the screw.

We again want to obtain information about the local angle of incidence
of the screw blade, hence we have to consider the limit P > -ax. When we
consider the case ¢ = -ax the kernels in (19.3) pcssess singularities which

can easily be estimated. We find for the kernel of the first integral

lim tar’sin(a(E-x)) - (x~&)cos(alf-x))} -
E>x {(x -£)2+ r? +p2- 2rp cos(a(E-x))}3/2
pPrx

-(1 +a’r?) (x - &)

~ . (19.4)
{(1 +a2r?) (x-£)2 + (r_‘p)2}3/2‘
The singular behaviour of the function M(x,r, ¥,£,p) is given by
2,2
lim ‘M“(x'rl_axr'grp) wg(l'-”a -4 )" s X > 5 (19.5)

L] (r -p)
By excluding a strip Ir-p& < B from the domain of integration we exclude the
singularity and it is possible to carry out the integrations in (19.3). From
(19.4) and (19.5) it follows that the limit B > 0 exists. However when the
integrals can be interpreted in this way, we are not sure that the result is

correct. There remains a possibility of contributions of functions which for

¥ = ax are zero everywhere except for p = r (¢ functions of Dirac or its derivatives)

That this does not happen follows from a more careful passing to the limit first
¢ > ax and then B -+ 0,
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The last two integrals in (19.3) are one dimensional with £ as the variabie
of integration. It is more natural to introduce p instead of £ because then for
r, < p 5-?0 the whole leading edge and the whole trailing edge are covered
separately. Using (18.3) we obtain

Amepu?r %é"=‘lim [ bexfr—8‘+ fpu(g)N Q(grp}{-arzsin 2 T EY—te - E)oop aiifacstll

i

B->0. Xe pd(g) r+8 {(x -€)2+ r2-+p2-2rp cos a(x-—E)}S/2
« dpdg +
n_ (&)
X r-R8
[ > T + f ) '-aQ—;E'—p) M(x,r.-ax,E,p)dpdE +
xg 0y (E) r+8 P
r—f ro dg (p)
+ i m + f ) Q(E () ,0) M(x,r,-ax,& (\D):P) —==—=dp +
: L % dp !
ri r+B 1
I
r-g r dEt(pi
-0+ [ U0 (o), p) Mix,x,-ax,E (p), p¥ —=— dp ] (19.6)
r, r+f8 e

We now discuss the physical meaning of the different parts of the right hand
side of equation (19.6). The first integral represents the velocity induced by i
the bound vortices of which in figure 19.1 a typical one is drawn, the thick |
line BC. The second integral provides the velocities induced by the variation of
the bound vorticity in the p direction. In the figure the vortices are drawn
as horizontal lines starting at BC and stretching to the right. The last two
equations in {19.6) give the velocities induced by the free vortices which
arise by the ending of the bound vortices at the circumference of the blade.
Typical ones are CD and BA.

Possible directions of the rotation of these vortices (right hand screw) are
indicated by arrows. In figure (19.1) it is clear that the bound vortex BC
attains its maximum value at about its middle, at the place where the free
vortices of the second integral (19.6) change their direction. Although we have
used the word vortex in this description it is clear that in fact we have vortex

densities.
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Fig. 19.2. Another picture of the vorticity on the blade of the screw.i »

It is well known that

divfrot. (U + Ver Voo vw)) = 0. (19.7)

This means that when we consider lines on the blade of the screw, which
are everywhere tangent to the direction of vorticity (figure 19.2) we get
a picture which represents the flow of a two dimensional incompressible
fluid on the curved surface consisting of the blade and the helicoidal surface
behind it. However then the vorticity in the neighbourhood of the 1eadinq
edge will be tangent to it. That this happens follows from (19.6). The voxticity
component Q(E,p)/uU(l+a.?-r2);2 is the density of the bound vorticity in the
p direction per unit of length in the £ direction. The density of the free

vorticity in the £ direction, per unit of length in the p direction, at the
point E in figure 19.2 has the value

dg
2(p)
Q(El(p)lp) 3 ! (19.8)

which follows from the third integral in (19.6). Hence the tangent of the angle
which the resultant vorticity forms with the p axis at the point E is

dg, (p) ) -1 9g,(0)
Q(Ez(p)‘r P) T . Q(EZ(M:D) = T v (19.9)

which has to be proved.
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20. Some additional remarks

In lifting surface theory, as treated in sections 18 and 19, there are
two main types of problems. First the problem of determining the shape of
the surface for a given load distribution. Second, the inverse problem
where the surface is given and it is asked to determine the pressures exerted
by the fluid. The first problem is more interesting from the point of view
of the design of ship screws. Mathematically it means that in our integral
equations (18.49) and (19.6) the function ng“p) is knowrt. In order to
calculate the function f(x,r) which determines the angle of attack and
the camber of the blade sections, we have to carry out the indicated
integrations. This is rather cumbersome owing to the complicated nature
of the kernels. In practical calculations (18.49) seems to be more adequate B
for the origin of this method we refer to [18].

Another point which has to be discussed is the extension of the theory to
more blade screws. Here we have to consider also the velocities induced by the
other blades. We assume that the pressure distributions on the N equally

spaced blades are identical. Then we can simply replace (18.6) for instance by

N-1
] of ) 2
Ampeu’r 3= lim  J Q€ T K* (x,r,0 + —%5 +E,0) dEdp. (20.1)
WY*r-ax B n=0

The added part of the kernel has no singularities, because ‘the points of one
blade are at a finite distance of the points of the other blades. From this it
follows that all our limit considerations and statements about integrability
remain valid. The same can be done with respect to the vortex theory. For
applications of this theory we refer to [5] where also some non linear effects
of the flow have been taken into account.
Next ye discuss shortly the screw behind a ship, in which case the inflow
is no longer homogeneous. The presence of the hull induces perturbation velocities
at the screw disk. These perturbations depend in general on the angular coordinate
P of our cylindrical coordinate system. Then the load of the screw will possess
a periodic character. In order that the phenomenon can be described by a linear j
theory the deviations of the homodeneous flow at the place of the 'screw must 1
remain sufficiently small. Hence we have to make the assumption that the total

>
velocity Uo behind the ship when the screw is absent, can be written as

—}
U =@W+v,v ,v) , {20.2)
& oxor oy

where v , v and v which are induced by the hull, satisfy the relation
OXor )
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We can assume further, that because of the short distance covered by the

874
. E}ﬂ << 1. (20.3)

scréw in the x direction these components are independent of x. In practice
the condition (20.3) can be relieved to a certain extent by comparing the
disturbance velocities mot with the incoming velocity U, but with the relative

velocity Ul +wr?) at some place r. Of course the velocity v does not enter
Y2 o
into this theory (18.3) when a single helicoidal reference surface (15.7) is

used.

In order to calculate the fluctuations of the loading during each revolution
of the screw, we can consider N blades which are parts of exactly helicordal
surfaces

@ + 2%5 -wt +ax =0 ry N =0,00., N=1, (20.4)

Having found, in one way or another, the fluctuating pressures in this case we €an
simply add them to the pressures of the screw with thickness and load, working
in an undisturbed parallel flow. This is allowed because our theory is linear.
We refer for instance to [25].

Next we mention the very important combination of a propeller with an
annular ™airfoil™ (figure 20.1). This annular airfoil is also called a
duct, a shroud or a nozzle. We distinguish between the accelarating duct and the
decelarating duct. The first one is often used in the case of a heavily loaded
screw, it can improve the efficiency of the propulsion system. The second one is
used to increase the pressure inside the duct, hence it can be used for retardation

of cavitation. We do not enter here into the hydrodynamical problems connected

Fig. 20.1. A ducted propeller.

with this configuration but refer to [17]. In connection with the optimiiation
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of propulsion systems we will discuss some of the properties of a duct with respect
to its ability of spreading vorticity which is shed by the screw blade tips.
At last we make a remark on the concept of thrust deduction. When a propeller
is placed behind a body (figure 20.2), we can measure the force transmitted
by the propeller shaft. This force T which is exerted by the propeller on the
fluid is in general, also in inviscid potaptial flow as is considered here,

not equal to the total thrust on body and prbpellerwtogether, The reason is that

U

Fig. 20.2. Thrust deduction.

the body is in the influence region of the pressures induced by the propeller.

By the negative pressures in front of the propeller a force Ti is exerted on

the aft in the direction opposite to the thrust, Both the thrust T and the
counteracting T, are Of(e). '

When the propulsion system is placed besides the body it can happen that the

Figure 20.3. 1Increase of thrust.

thrust is increased by the interaction. The body is then with its front in a
region of lower pressure and with its aft in a region of higher pressure,

hence a force Ti is exerted on the body which is a propulsive one. |

Exercise.

Discuss that the thrust deduction and the increase of thrust is in
agreement with the work done by the propellers in the two cases considered
in figures 20.2 and 20.3. In the first one the mean value of the velocity

of the fluid at the place of the propeller is lower, in the second one it is
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larger than the velocity of advance U of the body, where in both cases
we assume that the disturbance velocities induced by the body are

0(ely .
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21. Unsteady propulsion

It is the intention to discuss in this section and in a number of following
ones some aspects of unsteady propulsion. First we will give a meaning to the
expression "unsteady propeller'. The most simple ocne seems to be: a propeller
is unsteady when no inertial reference system exists with respect to which the
induced flow is time independent. This however is not appropriate, we probably
exclude from the conceivable propulsion systems only the sails of a yacht in
steady motion, even the free running propeller becomes unsteady. A better
definition seems, a propeller is unsteady when the relative fluid flow is time
dependent while this time dependency is essential for its functioning. The second
part of this definition is vague in some degree, it is intended to exclude
for instance the screw propeller in a wake. Essential unsteady propulsion occurs
in the case of Voith-Schneider propellers, contrarotating propellers, the propul-
sion wheels of a paddle boat, the fish tail, the flagella of bacteria, etc:

The type of unsteady propulsion we will consider here belongs to a more
restricted class. We assume that the fluid is incompressible and inviscid and
that propulsion occurs by lift and suctionforces. The last two assumptions
exclude the flagella of bacteria and the paddle wheel. We also demand that the
propulsion device will be lightly loaded, hence its shed free vorticity is
small of O0(e) and is not transported by its own induced velocities.

What is left are propulsion systems consisting of possibly flexible lifting

surfaces making flapping motions which are assumed to be periodic and which are
still allowed to have a small or a large amplitude of O(e) or of O(EQ) respectively,
For the propellers of this type we admit three different regimes of working,which
we will discuss now. .
Regime i, finite amplitude motion, the flexible wing W moves in an € neighbour-
hocd of a periodically curved reference strip H (figure 21.1) which is at rest
with respect to the undisturbed fluid. When W moves exactly along H it does not
disturb the fluid at all and hence does not shed free vorticity, this motion

will be called the base motion. Small deviations of O{e) of this base motion

g

Fig. 21.1. Large amplitude flexible wing, regime i.
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which induce velocities and vorticity and by which thrust can be generated,

will be called the added motion. The boundary conditions related to W

as well as its bound and free vorticity of 0(eg) are assumed to be at H,
The pressure differences between the two sides are O(e), the angles

of W with the x axis which can be replaced by the angles of H with the

X axis, are O(so), hence the thrust will be 0(eg),

T(t) = 0(g) (21.1)

Regime ii, finite amplitude motion of a wing which induces finite disturbances,

however which sheds free vorticity of Q(e). We restrict ourselves to the two

¢ 4

Fig. 21.2. Rigid profile moving along L, regime ii.

dimensicnal case in which the phenomenae are independent of the z coordinate
(figure 21.2). We first describe a way to obtain a two dimensional base
motion for a conventional profile. This is again a motion which does not shed
free vorticity, hence the circulation of the profile has to be .constant.

For simplicity we take this constant equal to zero. In the sequel we assume
that the Kutta condition is satisfied at the sharp trailing edge of the
profile.

Consider a point Q(figure 21.2) fixed with respect to the profile such that
when we rotate the profile around it the circulation of the profile is zero.
The existence of such a point is easily demonstrated as follows. First consider
a point Q1 with coordinates (- %—A, -A) for sufficiently large values of A.

A clockwise rotation about Q,1 will induce a positive circulation around the
profile. The value l--J‘.s chosen because it seems realistic,it has no exact

3
significance. Next we take a point Qé with coordinates (%—A,»—A). A clockwise

rotation about Q, will induce a negative circulation around the profile,
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Hence when we connectQ1 and QQ by a line, there will be, by continuity,
a point Q on this line such that the circulation is zero when the profile
rotates clockwise about it.

For each profile we can also find a direction of translation so that the
circulation is zero, ‘this direction is denoted by the line m. When we have
found a line m and one point 6, we can find a straight line of such points,
namely like the line r through 3 perpendicular to m. This is correct because
a rotation around any point Q of r can be represented by a rotation around 5
and a translation in the direction m, hence the circulation is zexro. Now we
let the profile move in the following way. Choose any curved line L and a
point Q on r. Let Q move along L and keep the line m drawn through Q@ tangent
to L. Then the profile moves in a well defined way in the neighbourhood of L.
During this motion the circulation of the profile is zero, because at each
instant the motion can be described as a rotation about Q and a translation
in the direction of m:

In the neighbourhood of the base motion described above, we can carry out
the added motion, which deviates from it by quantities of O{(e). This added
motion causes free vorticity shedding and can procure a thrust of 0(e) as in

regime i.

of course we can also consider motions of‘O(so) which yield a thrust of
0 . . .
O0(e”). Because the theory of these is non linear in every respect, it is

difficult to give an, analytical treatment which reveals general trends.

Regime iii, small amplitude propulsion, including propulsion of fishes
by tail and fins. For a survey we refer to [30] and for later work to
[20].

We consider a lifting surface W which moves in an € neighbourhood of a
flat strip H, while also the local angles of incidence of W are assumed
to be of O(e). The strip is part of the plane y = 0 (figure 21.3) and

-~ )

Fig. 21.3. small amplitude flexible wing, regime iii.
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stretches along the x axis. W moves in the positive x direction with a
velocity U of O(so). When W moves exactly along H, it does not cause
any fluid flow and hence does not shed any free vorticity. ‘This motién
is the base motion. Small deviations of the base motion, which are 0O(e)
and by which thrust can be generated, form the added motion. The boundary
conditions related to this lifting surface as well as its bound and free
- vorticity are assumed tu be at the reference strip H.
Because the pressure differences between the two sides of W are 0(g)
and also the angles of incidence are 0(e), the time dependent thrust,

| which is the force component in the positive x direction, will be G(e?),

T(t) = 0(e?). (21.2)

In the next sections we will discuss the twa dimexsional case of regime iii.




84

22, Small amplitude, two dimensional propulsion

We consider now the two dimensional case of regime i). The fluid is as
always in these notes, inviscid and incompressible. In figure 22.1 is drawn

the profile stretching from x = -2 towards x = +{. The motion of the profile

¢
K T /zef z(x,t—)

¥
x

Fig. 22.1. Two dimensional small amplitude swimming motion
which we assume to be of zero thickness, is given by
y = h(x,t) , |x| <z (22.1)

The real valued function h(x,t) and its derivatives with respect to x and
t are assumed to be 0O(e). The profile is placed in a parallel flow of velocity
U = 0(e°).

The thickness of the profile is neglected because in linearized theory
for a nearly flat profile it does not influence the thrust or lift prodﬁ%tionﬂ
of the profile. Its flow field, described by a source and sink distribution
at the x axis from x = -¢ to x = +4, can simply be added to the flow described
here. It has neither an influence on the pressure differences between the two
sides of the profile nor on the leading edge suction force, which together
determine the thrust. We remark that this is not true for the ship screw (section
16), because of the finite curvature of the blades. Also it is not true in theories
for profiles of finite thickness of OKEQ), for instance f{24].

The velocity of the fluid is denoted by (U + u,v) where u and v are the disturban-

ce velocities. These satisfy the linearized equations of motion

Pu, du_ _13p .
at &Y 9x N M ox ' {22.2)
o . 3v_ 1 op

ot " Ve T T Way ¢ (22.3)




and
ou ov
=B " =g == —_— E .4
div(u,v) . + 5y 0] (22.4)
We introduce the function
, 1 ’
‘lD(er,t) 8= E p‘(X,y,t)_«\ (22.5)

Differentiation of {22.2) with respect to x and (22.3) with respect to y and using
(22.4) vyields

2 2
il SRS (22.6)
ax? 8y2

The function @(x,y,t) is called the acceleration potential because its gradient
yields the components of the acceleration of a particle, given in the left hand
sides of (22.2) and (22.3). Next we introduce the complex variable z = x + iy

and the analytic function
£(z,t) = Olx,y,t) + i¥(x,y,t), (22.7)

where y is the complex conjugate of (, hence ¢ and § are connected by the well

known Cauchy=Riemann relations. The complex velocity vector is denoted by

wiz,t) = ulx,y,t) - ivix,y,t), {22.8)
hence

B _ 3 30, 4w _d0 %0 _dw,  dw ,

9z ax  ox T 1 hx T 3k % oy ot Y3z - R

where we used one of the Cauchy-Riemann relations. i

At the profile we have by (15.3) the boundary condition

V% +0,8) = v(x,=0,8) = (= + U3 nix,t) 2°F vix,0), (x| < 1. (22.10)

From the equations of motion (22.2) and (22.3) it follows by (22.10)

()

Ay _ % __13p ]
ax (xlo.lt') - ay (xlo_lt)l — u ay (X,O,t) = (at

3
+ U 3;0 vix,t), (22.11)
hence this expression is known for -1 < X < +4. Because we can represent the

prafile by a distribution of line forces at y = 0 parallel to the y axis it follows

from section 4 that

®(x,0,t) =0 , &< |x]|. (22.12)




and that

w(xq-omt) = —®(x1+olt» [ Xj <2 .

Because g%- is continuous at the x axis (22.11) we have

Yix,-0,t) = Pix,+0,t) ]X‘ < o,

As wkz,t) > 0 for z + -=(real), we find by integration of (21.9)

f(z,t) = U wiz,t) + f %% {z,t) 4z .

Comparing imaginary parts in (22.15}

X
Vix,y,t) = -U vix,y,t) - [ g—z (€,y.t) 4dg.

— 00

Again from (22.9), by solving for w(z,t) we have

z
| _L o BE L, i-2z
wiz,t) = = f(z,t) S £ 3¢ Grt + 25)de .
Comparing imaginary parts in (22.17)
1 1 ’ Y £ -x
Vx,y,t) = - S Uy, t) = {.,, 3¢ 6oyt +=52)ag.

By substituting (22.10) into (22.16) for y = 0, Ixd < 2, hence on the

profile we find

R % = v
Vix,+0,t) = - (U = + 5{) {1 V(E,ty A - {m v (£,0,t)y &€ =
= ¥, (x,t) + A(th , fx] < 2,
where
3 3 %
Py lxet) = —(U g {2 V(E,t) df ,

is a known function for y = 0, lxﬁ < &, the remaining part of (22.19) denoted

by A(t) is an unknown real function of time.

We will derive still another expression for A(t) which will be used in

following sections, from (22.16) we have

-2
Y(-£,0,t) = -U v(-2,0,t) - v v ,
1 ) v ( ) gm - (£,0:t) 4t
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(22.13)

(22.14)

(22.15)

{22.16)

(22.17%

(22.18)

(22.19)

(22.20y

(22.21)
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and from (22.18)
1 -2

- 1 v E-x |
V(=2,0,t) = -U v(-£,0,t) + f 5 (Ehyet + =55 )ac. (22.22)

Combination of (22.21) and (22.22) yields with the definition of A(t) (22.19)

A(t) = - (x,0,t + T ) dx . (22.23)
With respect to the unknown function f(z,t) (22.7) we have the followin%

data. For its real part ¢ we have equations (22.12) and (22.13) and for its

imaginary part ¥,holds (22.19). From this it follows |

£, + £ (2,8) = 2000 (x,8) + AR, x| <2, N (22.24)
£ (z,t) - £ (z,t) = 0 , |x} > 2, (22.25)
where " " and " ~ " denotes the limit of (z,t) for y + 0 through positiwe

and negative values respectively. The type of problem stated in (22.24) and
(22.25) is called@ a Hilbert problem for the function f(z,t) [16]). We remark
that the complex function f(z,t) will be analytic in the whole complex p;ggg
with the exception of the line |x| <%, y =0, where it exhibits a jump

discontinuity. Such a function is called Sectionally holomorfic.
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23. The solution of the Hilbert problem

We first consider thei homogeneous part of (22.24)

xT(2) + X (2) = o. (23.1)

“# @

Py
i,

: SO SN2 . i
el !
|

T—
CE.

Fig. 23.1. The complex domain with the line of discontinuity of
f(z,t).

A simple non trivial solution which satisfies (23.1) is

X(z) = vVz-2 Vz+o = V/ZZ 4?, (23.2)

where we define the square roots by assuming that we start with the value

Yz -2 8 Vz + ¢ mvx , (23.3)

for large real positive values of x and then continue the function values,
the segment 'x! X% y=0'is a cut in the complex z plane.

We now can write the solution of the inhomogeneous equation (22.24) as

e +L (Y, (g, t) + A(t)) -
flz ) = 2L : & + et EhY, (23.4)
-2 AT-ET (€ - 2)

calculus of residues that the first term at the right hand side of (23.4)
satisfies §22.24). The second term is another solution of the homogenecus
part. We now choose C(t) in such a way that the disturbances tend to zero

at infinity or

lim f(z,t) = 0. (23.5)




+
+4 gt _ L aE B T
J —— = , = - —, (23.6)
-2 2Z- £2 -2 2 gz (g -2) V22 =372
where in the second one we assume a cut along the real axis from x = -% te

X = +4, we find from (23.4) and (23.5) for z -+ + {real),
+2 wl(E,t)di

cley = -2 [ 2 oyaqe. (23.7)
2 /AT El

Substitution of this value of C(t) in (23.4) yields

L MY (E,Y) oy
Ehy 1 f ! (Y22 2o bhy g (23.8)

f(z,t) = ia(t) {1-
zZ+ R T Ze /Ez_—gz- (8§ -2) +ﬂ.

We have now to determine the still unknown function A(t). For x < -2

we obtain from (23.8)

Y (E,t) o
V(x,0,t) = A(t) {1 - (_i_x);’}—% j 2 (’E‘_ ‘)L + "+§ 4. (23.9)
X -5 ,_2_2-2 ‘E X X
Substitution of (23.9) into (22.23) yields
X+ L
- _ 3T V1 (€, e+ =)
A(t) = & I [ar e+ 225 (1 - Eodyy L ﬁ I
S -L Xz
VxZ = 972 1:
. {- = * x” } ag]) ax. (23.10)
We assume that the profile is at rest for t < T,
= h(x,t) =0 , (t<T), (23.11)

and that the motion starts smoothly at t = T. It is assumed that the homogeneous
incoming parallel flow of velocity U is present also for t < T. Then for t > T,

we find from (23.10)

-9 -2

x+ 2 x-2. % _
(t T)U{ T Gap Tax - - I
=t~ - -(t -T)Uu-2

=||'-

+ £
[I*‘L—* Ce+557) moan TR
-4 ATTET oErE G

x)} dgJdx. (23.12)
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‘When we replace x in (23.12) by U(£ -t} - £ and & in (23.12) by x, we

obtain
a,
t _ t 2 = §(x,E) o
Jare (BE e - L gy 2 (St ,
- T -2 NRZ-%F
- 3 Y
_uE-0 -07-3 } axlag, 5 49

(x =g-(EN=E) & o)

from which the right hand side is a known function (22.19). We write this

equation as follows.

€
J av(E) K(t-E)aE = Y(t), (23.14)
2y
where
_ e 2%
K(t) = (5" (23.15)
and
+2 €
P 1 d
veey = -+ f [ ] 37 9,(Ex) e(u(x-tr -2,E)ax] dg, (23.16)
- T °X
with
= o ] Z = 92
G(x,E) = ! {& "’)!"j o Lol } o, o(x o< - ). (23.17)
V2T EZ X+42 (€ -x)

Equation (23.14) is a Volterra type integral equation of the first kind
for the unknown function A'(t). The kernel depends on (t - £) hence the equation
can be siolyed by the Laplace transform method [4]. Having found A" (t) we can find

A(t) by a simple integration

t
a(t) = [ a'(&) 4t , (23.185
T

because for t < T we have A(t) = 0.

When A(t) is determined from equations (23.14) and (23.18), the complex
acceleration potential f(x,t) (23.8) is known. Then the forces on the profile
can be determined by simple integrations. The thrust delivered by the profile
consists of two parts. First, the physically most important part is caused

by the pressure differences between the two sides of the profile, then by the
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slope of the profile a force in the x direction, hence a thrust, is induced.
Second, we have a leading edge suction force ([12] page 251) which is proportional
to the square of the factor of the leading edge singularity of the vorticity.
When the vorticity of the profile in the neighbourhood of the leading edge

behaves as

! (23.19)

then the leading edge suction force per unit cf span has the magnitude

T
o 0 5 En: (22.20)

The reason that the suction force can be physically less important is that
it depends critically on the flow following the strongly curved surface of the
nose of the profile. If the flow separates the suction force will become much
smaller than its theoretical value.

The thrust reckoned positive in the negative x direction, can be written as

+2 ;

T(t) = f Kpr(x,t)—p+(x,t)) %%’(x,t)dx +‘Z u Sz(t) (23.24)
-] X
where
+. + : .
P-(xt) = =u 0(x,+ 0,t)=Re £- (z,t) , [Re z| < &, (23.22)

and f(z,t) is given in (23.8). The value of S(t) follows also from (23.8). j
We consider the singularity of the pressure difference at the leading edge
Y, (gt

+
J atc} ‘(‘z:ki)lzl~ . Ire z| < g, (23.23)
-2 Vit - E;Z z !

= [

Re[{-i a(t) =

where we remind that A(t) and.wl(ﬁvt) are real functions. When z tends to

the segment of the real x axis Jxl < & from above or from below we have to

take
z-2,% 2 g -x %
(GF Y =t1 g™ =
Hence in the neighbourhood of x = -8 we find as the principal contribution
to @
+L Y. (E,t)
: ‘ 1 . .
Lin  @(x,t) & + {ae) + % [ ag} (2%, (23.25)

x> -4 =L V-




From (23.25) and (23.19) it fellews
1 lim A l;m Zsz

8({t) = = NN

where Ap is the pressure difference betweern the + and the =

4 ¥, (£, 6548

14

1
R =

(23,28)

side of the

profile and zp the limiting value of ¢ at the + side of the profile, By

(23.21) and (23.26) we ean ealeulate the thrust T(E),
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24. The simple time harmonic motion

We now discuss the function A(t) for the simple time periodic case, hence when the
motion of the profile (22.1) is given by

y = h(x,t) = h(x) ¥ | |x| < g, (24.1)

where w is the angular frequency and j is the imaginary unit used in the time
domain, which is distinguished by its notation from the imaginary unit i in flow
domain. We remark that here h(x,t) is a complex valued function with respect to j.
Hence in order to calculate "realistic" values of pressures or other physical
quantities we have to take real parts of these quantities with respect to j.

In order to assure convergence of our integrals we assume that w has a small

negative imaginary part

w=w - jw {24.2)

1 2 & 2 .

hence the motion started long ago very smoothly with a steadily increasing amplitude.
Afterwards we can take the limit w, > 0.
Because the problem is linear we take A(t) as

ae) = a ¥t (24.3)
where A is an unknown constant which we have to determine. Substitutién of (24.3)
in the left hand side of (23.14) and taking T = -», yields
i B gue ot _-jw
Jar@® ket -8)a = jua [ eI x(t-£)ag = ju aed¥t [ eI

-0 -00 o3

" k(nydan,  (24.4)

where obvious change of integration variable is performed. By (23.15) we find

[- <4

jw Ae Jut E e U (236%2&)5 dan. (24.5)
(o]

Introducing the variable £ = (Un/%) + 1 we obtain

o = WL,
g -1 £

jut + ——)a
VEZ -1

e E. (24.6)

(__
1 T =1

jw Ae

ale

The integration of the first part of the integrand is well known ([26], page 170),
the second part can be rewritten as the derivative with respect tc w of the first
one, we find . .
. jwl jwl
JQ),Q. ® = —U_E @ - o
s e (L e A 1
1 g =1

jw Ae

i :wz - -
jw aelvt é. elUf {1+ %g, Q_} N (2)(9&0=

W

(24.7)

L
AeJw(t + 1) Log (2)
U "o
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where Hv(z)Lx) =va(x) -3 YQ(X)’ v = 1,2, are Bessel functions.
Next we determine the right hand side of {(23.14) for the motion {24.1). We
first consider V{x,t) and wl(x,t) in this case, by (22.10) and (22.20)

3
ax

Vix,t) ==__:_V(x) ef t. (jw + U ) h(x) ejmt a (24.87
and ) . X .
wlxx.,t,)f‘_i_i_f v, (x) 2 (ovixy + ju [ vig)ag)eIt. (24.9)
=0,

Substitution of {24.9) in (23.16) and taking T = -» yields

+4 t 4 x
‘ 1 jux x - t) - S (Ux~e)- )T - LE
I N B R i L R L
- - /277 = ' .
(24.10)
We now introduce the new variable of integration n = %-(xw—t) -~ 1, then (24.10)
changes into
jw(—+t : jwl
A
Y(t) = - TJTE- e P — « B {El—7 =8 Tonny) andg. (24.11)
-2 7% e n oy
We introduce the two constants G1 and G2 by
£
- -jw(=+ t)
S, = |
wt € ¥it) =6, + @, (24.12)
. Jitwd
where —
ooy -1 gt
-2 AT E 4

Replacing n by -z, the integral with respect to i in (24.13)} becomes of the tyre
of the integral in (24.6), by this we find

+2 111<1 (&)

g =~y @Ry g @@,y UL (24.14)
1 2 o L ! U Ly AT

The integral over ¥, (€) in (24.4) can be reduced to an integral over V() by a
Ppartial integration,; we find
I +£
(2 2 ' i , ) .
G, = = 4d (g ( )(9&) -j H ( )(2&)} f {jw(i - arcsin 51 e S— W()ae. (24.15)
1 2 o U 1 U 2 2 L ViZ - EZ

Next we come to the part G2 of ¥Y(t) (24.12), which is more complicated.
Jwi

+oy(E) = Y gy
G,==8 [ L2— [ e gy ande. (24..16)
2 f12-¢2 > ”
Because wl(g) consists of two parts (24.9) we split again G2 into two parts
G2 = G21 + G22 ; (24.17}%

where




SbFai g ey e e —nm

L, 95
+2 -1 [§]
A ——M dndE. (24.18)
-2 \(22..&2 —co N
jwl
and 3 Ji-n
-1
. +2 ILV(C)dC U /Y_]ZT
G =+ jwul —_— e TE-na) dndg. (24.19‘J
22 2t TS e n
We go on with G,,, whigh we write as Jwl
. +2 (IJL v(Z)ar) -1 mZo1 Y
G22 =U _— (E=n1) de dg =
-2 AT -7 e
+£ Fwl jwl
- e
) ([ voa T - U 5 ST
=U [(E—nz) e | - e = danlag.  (24.20)
-4 ‘/22 = gz n= - -00 n
The first term between square brackets vanishes as well for n = - on behalf
of the imaginary part of w(24.2), as for n = -1. We now use the following
identity [29]
L ) /n? -1 1 9 VoZ €2
o (€ -nn) 3 (E-nv) b
/AZ-gz N " oy A
Fwl
then =N
_ t +E -1 g Ny
G =7- J (f vman [ e — g—i ——(é_ng) dndg. (24.22)
-2 -2 - /nZ -1
Integration by parts with respect to the £ coordinate yields
Jaw
¢ 0
- +2
u V22 -2
Gty | A== [ v = asan (24.23)
-0 /71 -2
By (24.17), (24.18) and (24.23) we find
jwl
U
+2 -1 2 2
Gz(t) = Ug I V(# ! e(g___z){,/nz_l + 1_ .(2'___.&;._1. } andg =
-2 NAT-E " 22 /71
jwl &
_-u f” V(E) U g |
5 i e =" gnag =
=} 177 e n“-1
ju v (2) wk ' (2) wl
= J —=— {¢= (%= ) -32 H (%9} a& . (24.24)
22 ") m o) U 1 u
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From (24.12), (24.15) and (24.24) it follows that

jm(éw+ ty 1 +2
_ o we : (2) wh, .= () wl Wicdon 30 e g8 )
Y(t) = - 5 e [ {Ho (=) -3H, ( U)} { {Jw(2 arcsin ¢+ ) +
U U e VA{(E) (2] wh (2} ,wl
e VB - 7 [ ——= % (R GIY aEl
AT L Ly T
(24,25)
Comparing the left hand side {(24.7) of (23.14) with the right hand side
(24.25), we can calculate A(t) (24.3) as
jut g . M. £ u
Aty = Ag” == —=— [ [ {julz = arc sin &) - ~———} V(E) &£ +
U -2 2 L (ﬁ?f:i??
42 SRR CLINEYT ST
_% J = 0(2) 22 : (Z)UwSL }acl, (24.26)
-9 V12 % Lo ey
2 Ve £ Ho. ( U) JHl ( U)

the function between brackets in the second integral can be called Theodorsen's
function.

It is now possible tc calculate by the formulas (23.21) - (23.26) the thrust
of the swimming profile. Of course we have to take care to use only real parts,
both with respect to i as well as with respect to 9§, of the relevant functions
in these formulas, because otherwise we could get products of imaginary quantities
which become real again. We remark that the product ij cannot be reduced to a

real quantity.
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25. Some additional remarks

In technics is one important realization of unsteady propulsion namely

the Voith-Schneider propeller, of which a scheme is drawn in figure 25.1.

Fig. 25.1. Scheme of a four bladed Voith-Schneider propeller.

Under a ship we imagine a horizontal circular disk which rotates about a
vertical axis £, through its centre C. The rotational velocity of the
disk isw . On the disk are mounted several vertical wingiiké : blades.
These blades can perform oscillatory motions about vertical axes,
which we call pivotal axes and which are denoted in figure 25.1 by
21, cee 0 Ly

We now discuss the cylindrical surfaces described by the pivotal
axes. As a reference system we take a right handed Cartesian coordinate
system x,y,z in rest with respect to the fluid. At time t = O the y axis
coincides with the axis of rotation % of the propeller which has a trans-
lational velocity U in the direction of the positive x axis. The points
in which the axes 21, «es o2&y cut the (x,z) plane are called the pivotal
points. We will consider the path of one of these points, denoted by Q,
in the (x,z) plane. Assuming that at t = 0, Q is on the z axis we find

X = R(v wt + sin wt), z = R cos wt, v = %E 0

where R is the distance from the pivotal axes 21, coag 2u to . The path
given by (25.1) is a cycloid of which the character is drawn in figure 25,2

for two values of v. When v > 1 a fish tail like motion occurs, when

(25.,1)
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Fig. 25.2. Two types of cycloids.

0 < v <1 the cycloid intersects itself. When v < 0,212 more intersections
occur. In practice we have v < 1. In order that the propeller provides

a. mean force in the +x direction it is necessary that the blades have an
appropriate angle of incidence Quring ‘their motion. This is accomplished
by having them execute a periodic motion about their pivotal axes, as is
drawn in figure 25.2. The way in which the motion of the blades about
their axeswzi, o0 ,&k is controlled mechanically will not be discussed
here. We refer to [15]. We only menticn that when it is possible to create
a thrust in a certain direction we can, by turning the whole machinery
over an angle, turn also the thrust. By this it is possible to steer a
ship, which is provided with this type of propeller, hence a rudder becomes
superfluous.

When the length of the chords of the wings are not too large with
respect to the radii of curvature of their paths it is probably possible
to describe the working of the Voith-Schpeider propeller by regime i of
section 21. Instead of one wing W and one surface H, we have in this case
4 wings each moving along its own surface, however this is not essential.
In order to take into account the bottom of the ship, we can in figure
21.1 take the span of W two times the span of the wings of the propeller.
Then the plane through the midspan points, is a plane which by symmetry

is not passed through by fluid particles, hence it can represent the bottom.

Exercise.
Discuss a lifting surface theory for the blades of the Voith-Schneider

propeller on the assumption that regime i of section 21 is valid.




26. Thrust production by energy extraction

We now will make some remarks on propulsion systems moving in an incompressible
and inviscid fluid which in some sense is not homogeneous. First we mention
a number of examples.

An unbounded fluid can have been disturbed before by the passing of some
device which has shed vorticity which is equivalent to the existence of non
homogeneous velocity fields. Hence in this fluid there are regions where
kinetic energy is present.

Also it is possible that by viscosity in a real f£luid a boundary layer has
been formed because the fluid has passed along a body, for instance when air is
flowing over land or water. With respect to our idealized fluid this boundary
layer can be represented by vortex layers.

The fluid can be disturbed in a more or less inviscid way by flowing along
a fixed object. Under a free water surface we can have mearly inviscid
disturbances by a train of waves moving along the surface.

When we consider the air flowing over a water surface we can loock at both
media together. Then we have first an inhomogeneity of density because the water
is much heavier, while also we can have a relative velocity of both components..
In an idealized model we can neglect boundary layers or surface waves, and
consider the two homogeneously moving half infinite media.

Of course many other inhomogeneities can be thought of and all kinds of
combinations of the above mentioned ones can be made. We next show how energy
can be extracted.

First consider an unbounded inviscid and incompressible fluid in which a
disturbance velocity field (G;,G;,;;) is present. These velocities are
assumed to be small of O(e), independent of time. Through this fluid moves
a flexible wing W along some prescribed reference strip H which may be curved
in a sufficiently smooth way. The velocity V with which the wing W moves
along H will be OKGO) and may be time dependent. Because we consider a linearized

theory the wing W will deviate from H by distances of O(e). The question

Fig. 26.1. Energy extraction by a flexible wing W.

SR
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of interest is which amount of energy can be extracted out of the kinetic
energy in the fluid by the wing W.

The only possibility in a linearized theory for a lifting surface W to
sense the velocity field.(Gg,Gg,Q;)in space is by its normal component at H.
Hence we can replace the velocity field (uo,vo,wo) by any other (uo,vo,wo)
which has the same normal component at H, without altering the situation for W.
We choose for (uo,vo,wd) a velocity field which is induced by a vortex layer

== —
Y, on H. This layer is uniquely determined by the normal component of the

leocity field when we add the condition that its total circulation about H
is zero. It can be found numerically by solving a Neumann problem for H,
where the normal component of the unknown new velocity potential is prescribed.

Now the kinetic energy in the fluid is altered because in general the
velocity field (u ,v_,w ) is quite different from ('{IO,VO,.%}'O). It is this
‘new kinetic energy which can be extracted by W. The only thing W has to do is
to deform, while gliding "along" H, in such a way that it sheds free
vorticity of strength -;5. Then it sweeps clean the strip H and no kinetic
energy is left in the fluid.

The reason that we assumed the total circulation around the ship to be zero
is that we want to replace the original kinetic energy by kinetic energy 'which
can be entirely extracted by the wing, while the conditions at H remained the
same. Because a wing can leave behind only free vorticity with zero total
circulation this is in agreement with our reformulation of the problem. In case
of a technical device the extracted energy can be stored in one way or another for
instance in a flywheel and can be used to lower the power needed for propulsion.
In case of animals using muscles the question remains which part of the extractable
energy can be used effectively.

Another example is the thrust production by sails and keel of a sailing boat,
Here we use essentially the different velocities of the two media water and air
with respect to some inertial reference frame. The boat is extracting energy from
these media by protruding one wing, the sail, into the air and another wing, the keel

into the water. When we suppose the boat to be upright, we have figure 26.2,

//L—-T/\ Dw@,f&/z St /’l ]

Nl e TN e

L=
o

»

Fig. 26.2. Forces LA‘and Ly on upright sailing boat.
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where we have replaced the mast and the keel by lifting lines m and k respectively.
The relative velocities of air and water with respect to the boat are denoted by
UA‘and Uw which make an angle with each other. This is possible by giving the

boat a suitable course direction with respect to the inertial frame mentioned
before. Then also the lift forces LA and Lw,induced.by U and U

A W
with each other, hence they produce besides a moment als¢ a thrust. The moment

make an angle

has to be balanced in the upright position by the crew and in more general
conditions also by the weight in the keel and the stability of the boat. ‘The
thrust is balanced by the resistance of hull and rig when moving with respect
to air and water.

We return to this subjedt in section 36, where we will discuss the optimization
of a sail in a simplified case.

At last we mention a possibility of extracting energy by means of a body
which does not shed vorticity itself. When a body of finite dimensions (O(eo))
moves in an inviscid and incompressible fluid it will in general have
altered the relative position of fluid particles when they come to rest again
after the body has passed. Suppose that vorticity of O(e) is present in the
fluid, of which we neglect as usual the transportation by the velocitiesg induced
by itself. Then after the passing of the body the relative position of the
vorticity will have changed and also ‘the kinetic energy of the fluid. In the
case the kinetic energy, which is of 0(82), has been lowered the body must
have experienced a mean thrust of 0(e?) in the direction of its motion, by which
the energy is extracted. We give a simple example of this.

Consider the two dimensional case of a circular cylinder moving through the

Fig. 26.3. Deformation of straight lines by the passing of a circle cylinder.

i
fluid, the velocity field will be independent. of the z coordinate. In the

fluid we have marked a number of straight lines, hence lines coupled to the
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fluid particles. When the circle moves through the fluid the lines will
deform and remain deformed after the circle has passed(figure 26.3). Now

we assume that we have two vortex layers 21 and l: defined by vy =va1 and
y=a,a,_ > a1 > Q0 sufficiently far ahead of the circle. There the vorticity

2 2
on each layer has the strength

Y =A cos wx , w>0, (2¢.1).

where A is O(e) and vy > 0 is coupled with a right hand screw to the positive

. . . . 2n . .
z direction. The kinetic energy E_ per length period - in the x direction

b
of these layers can be calculated explicitly as
2 2n +
o A 2,2 e . )
E = = J" 2 4,0 [0(x,a,)] ax= 2L o, gula,-a)), (26..23
A I Iy j d _ &

Far behind the moving cylinder the layers assume again their previous
position however they have been translated with respect to each other in
the x direction over some distance b = b(al,az). By this the kinetic energy
which we now denote by EA is different in general,

2m2p2

E =
a.

; (1 & sdefub)e " om —ap)y (26.3)
[

The difference Ea'— Eb can be extracted out of the £fluid only by the m

work done by the mean value T of the thrust when it is displaced over one

length period Z% » hence

=l - = 5D - ;
T KEb- Ea) w:A (1 cos w b)e

—wmz—a}
27 ' -

1 (26.4)

When a_, a2,.A and w are given the value b has to be calculated by numerical

means ér "measured” from figure 26.3.

We remark that the model discussed above is not at all reliable when the
vorticity passes to close along a body because then viscosity effects become
Aimportant.

More information about energy extraction is given in the optimization theory

in sections 27 -~ 30.
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27. Optimization theory, general considerations

The optimization theory we will discuss here is intended to give insight
in the best way of working of a lift, thrust or any other prescribed force
action producing device, in an inviscid and incompressible fluid. First of
course we have to define what will be called the best way of working. We
restrict ourselves to the minimization of a simple cost function, namely
the kinetic energy losses per unit of time in the fluid. For instance
consider the well known problem solved already long ago [2] of the screw
propeller with a given diameter, velocity of advance and rotational velocity,
which has to yield a prescribed thrust. The question is what has to be its circu-
lation distribution in spanwise direction along the blades in order that the
kinetic emergy left behind is as small as possible. This energy is put into
the fluid by the engines which have to deliver the useful work but also
have to overcome the induced resistance of the blades. This trailing
vorticity in the case of an optimum screw propeller can be characterized as
follows. Consider the two sided infinite helicoidal surfaces passed through
by the blades when the screw, while rotating with its prescribed rotaticnal
velocity, has moved along a straight infinitely long line from one "end”
to the other. Assume these surfaces to be rigid and impermeable and translate
them, without rotating, with a suitable velocity in the direction of the
line just mentioned. The vorticity needed to let the fluid move around the
helicoidal surfaces happens to be the free vorticity shed by the cptimum
propeller.

In the following we will derive conditions for the optimum working of more
general devices, including unsteady onés. We assume that the motion of the
propulsion systems we consider will be periodic with respect to a reference
frame translating with the mean velocity of the system. We have to demand i
a non zero mean value with respect to time of the force action, otherwise
the kinetic energy left behind can be made zero and we have a trivial optimum.
The constraints on the force actions can be rather general. For instance
it can be demanded that a wing carrying out a flapping motion delivers lift as
well as thrust. Then we can ask for the optimum motion which yields both force
actions at the same time. Again it will turn out that also in these more
complicated cases the shéd vorticity of the optimum system can be characterized
by moving the surfaces passed through by the blades or wings, in a certain way

through the fluid.
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It can be allowed that the fluid through which the device is moving is
disturbed before, hence it has a non homogeneous velocity field. From
this energy can be extracted by our system which then needs less energy from
cutside to perform its task, as is discussed in the previous section.

We shall discuss two types of optimization theories, a linear one
and a semi linear one. To the sphere of the linear theory belongs the
sculling propulsion of regime i} secticn 21, which in fact includes as
a special case the lightly loaded screw propeller when the hub is neglected,
sections 18 and 19. The semilinear theory is necessary for the optimization
of the sculling propulsion of regime ii) section 21. Here we have a base
motion which induces finite disturbances on which is superimposed a
small added motion which can produce non zero mean values of O(e) of thrust,
lift, etc. This theory also describes the lightly loaded screw propeller with
a hub of finite dimension5a

The question of the existence of optimum motions yields rather delicate
problems. In certain circumstances which seem physically not unrealistic, no optimum
motions exist.

The theory developed here leaves out of consideration many aspects of real
fluids. An important property of a fluid with respect to optimization in the
sense as defined here, is its viscosity. When viscosity is neglected it will
be seen that by increasing the size of propulsion systems the efficiency of it
can be increased. This is the reason that in our theory based on inviscid fluids,
we have to make a choice of the working area of the propeller. This restriction
generally does not occur in real optimization problems because there viscosity
puts a natural bound on the dimensions of the propeller. In that case the diameter
of a screw propeller has to be chosen so that the potential theoretical
increase in the efficiency caused by an increase in diameter will be annihilated
by the decrease caused by friction losses. Althouch we agree that viscosity
is very important in optimization theory, we will in order to avoid mixing
difficulties first give a consistent linearized theory for inviscid fluids.

In the linear optimization theory we will in first instance neglect forces
of 0(e?). These are forces due to leading edge suction, forces in the direction
of motion of the blade caused by small local angles of incidence and second
order errors of the first order forces caused by the assumption that the blade
vorticity as well as the trailing vorticity lie on the reference planes. For a
lightly loaded ordinary screw propeller the leading edge suction forces are
not too important because these forces are nearly pe:rpendicular to the
direction of the thrust. When however we have a shrouded propeller or a ring
bropeller, ‘the suction forces acting at the leading edge of shroud or ring

point in the direction of theé thrust and will be in practice a non neglicible

part of it.
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In case of the sculling propulsion described by regime iii) section 21,
the second order forces are the only propulsive forces. This means that
the non linear effects are dominant and have to be discussed separately.

The objection can be made that in the case of a prescribed mean value
T{(e) of the thrust with respect to time of 0{e), errors %(52) of 0(e?) are
present. These are of the same order as the kinetic energy E(ez) left behind
per period. So it seems that the efficiency n cannct be calculated at all.
However we find

~ 2 "
ﬂ:=.U(T(€) + T(e€)) ) _ U T(e} + 0(e?), (27.1¥

U(T(e) + T(e2)) + E(e2) U T(e) + E(e?)

where U is the velocity of advance of the propelled body. From (27.1) it
follows that n is accurate up to and including 0O(e).

First as has been said, we direct out attention to the strictly linear
theory, wvalid for propulsion systems which induce small disturbance velocities
of O(e) and which have force actions of which the mean values with respect to

time are also 0(e).
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28. Lifting surface systems, linear theory (regime i)

We have a Cartegian reference system x,y,z, embedded in an inviscid and
incompressible fluid. The reference system is at restwith respect to undisturbed
parts of the fluid. Consider in this fluid m sufficiently smooth reference

surfaces Hk,
Hb(x,y,z) = @ . k=1, oo , m (28.19

with

Hk(x +b,y,2) = Hk(x,y,z), (28.2)

hence these surfaces are periodic with period b in the x direction. On each

surface we have an, orthogonal coordinate system £ (figure 28.1) in such a

k' Mk
way

Fig. 28.1. A lifting surface system, m = 2.

that an increase in Ek by a number bk, while n_ remains constant makes that

k
we obtain an equivalent point of Hk with respect to its periodicity. The

regions of Ek and n. are given by

k

I BT My EM S e k=, (28.3)
"o,k =0 f'nlwk‘ r k=341, ..., m, (28.4)

where the half open intervals in (28.4) belong to closed surfaces as for instance

H2 in figure 28.1. The lines

n, = const., (28.5)
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will form a one parameter family of curves on Hk' such that through
each point of Hk passes one and only one such a line.

In order to introduce a + and a-side on Hk we consider the unit
vectorsé’g and gn, tangent to Hk and in the positive directions of
s »
vector points from the negative side H

> ->
and n,. Then we construct the vector e, ¥ e, Now we agree that this

[ [a .
= . . +
" to the positive side Hk\of Hk

(figure 28.1).

Next we have lifting surfaces Wk moving along the reference surfaces

Hk. We assume that the velocity of the points of the Wk can be described
by functions kagk, nk, tY, k=1,...,m, with
i
£ + ) + = ' ) (28.6)
Vigl& ¥ by M g+ T) S V(R Ngr ) (28.6)

where bk is the period of Hk with respect to the Ek coordinate and T

1s the time period of the system under consideration. These velocities are

assumed to be tangential to the lines (28.5) and are reckoned positive

in the direction of increasing values of Ek“This choice of the velocities

of the points of the lifting surfaces Wk is not a restriction of generality
as is discussed in section 8.

At last we have functions Fk(ék, n,t), k = l,.naym, which are of 0(c)

k

b

with

1 , il
Rk(Ek‘+ bk, N t+ T) Fk(Ekr n s t), (28.7)

and which represent the bound vorticity of the lifting surfaces Wk moving

k,‘with the velocity Vk. This vorticity is reckoned positive when

it has a positive component ¢right hand screw) in the positive n

along the H

K direction.

It is assumed that when Tk(Ek,nk,t) # 0 for some values of Ek n, and t then

£

T lEL o t) = 0; bep = &

A e (28.8]

~

where C is some constant, for all nk

surfaces Wk of finite dimensions, gliding along the Hk'

« This means that we consider lifting

: - . . . 5
Bound vorticity was introduced in section 7 (figure 7.1, along k} as

vorticity which is perpendicular to the local relative velocity of the

fluid, hence to the lines (28.5) and which gives rise to pressure differences

Apk between the + and the =gside of the Hk, of magnitude

+ =
— = g - ﬁ
{p el i S Bp = T Vi (28.9
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We define a lifting surface system, denoted by {Hk' Vs Tk}, as the
periodic surfaces Hk’ together with the velocity distributions Vk and
‘the bound vorticity distributions Fb.

Because our theory will be linear, the free vorticity Yk which is
shed by the bound vorticity rk‘ remains where it is formed, hence at the
surfaces Hkm

Finally we iutroduce the working region of a lifting surface system
{Hk r ¥ou
most. narrow cylinders with generators parallel to the x axis which enclose

Fk}m‘We agree that it is the region of space enclosed by the

the Hk. The cross section of these cylinders will be called the working
area of the system. In figure 28.1 these cylinders are denoted by Clland
C,. The working area is allowed to consist of disconnected regions denoted

2
by A1 and AZ, which themselves can be multiply connected.




29. The variational problem for lifting surface systems

Our next subject is the optimization of lifting surface systems {Hk,vt Pk}
defined in the previous section of which the reference surfaces Hk are prescribed
and Vk and Fk may be varied. For simplicity we assume that we have only one
reference surface denoted by H, along which one lifting surface W is moving.

The casé of more reference surfaces can be discussed essentially in the
same way.

The fluid is allowed to have a time independent velocity field (G;;:;) of
O(e] which is periodic with period b in the x direction. As has been discussed’
in section 26 we~replace this velocity field by another one (u o™ gy )caused
by a vorticity layer Y of O(e) at H of total circulation zero around H and
which has on H the same normal compenent as (u,v,wb.

When the wing has passed along, it has left behind free vorticity ; at H
by which it alters the kinetic energy which before passing belonged to y alone
The resulting kinetic energy E due to Y and Y together is wasted and should
be made as small as possible. We 1ntroduce the velocity potential ¢ (x,y,z)
which belongs to the velocity induced by Y and the potential Q(x,y,z) which
belongs Y- These potentials are 1ndependent of time because the wing is
assumed to be already at a large distance. The kinetic energy left behind per
period can be written as

+® 40 b
E=hy [ [ [ {c—- (@ +0))2 + (—— (¢ +9)2 + (——-(o +9)?} dxdydz.  (29.1)
~ —w g

The energy E has to be minimized under some constraints. For instance we demand

that the mean value T with respect to time of the thrust (force in the positive x

direction) ,must have some prescribed value. This can be written as

= %‘ f ff Ap(&,n,t) cos x(E,n) dasdt = T, (29.2)
o H '

where Ap is given in (28.9), cos is the cosine of the angle between the normal
at H and the positive x direction and ds is an element of area of H. The
coordinates at the surface H are denoted by £ and n, the period of length

of the £ coordinate will be bl. Substitution of (28.9) into (29.2) wyields

- I rtene viEne cos  (g,m) asae - T (29.3)
o H .
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only the lifting surface W which is a finite part of H, contributes to the
integral. By the periodicity of the problem with respect to the £ coordinate

and the time we can write instead of (29.3)

= %- f = ff r(,n,t+n1) V(E,n,t +nT) cos_ _(E,n) dsdt = T, (29.4)
o]

N=-o Hb v

where Hb is a fixed period of H stretching over the interval 0 < x < b. Hence

+o0 !

-2 J  Jfr&m t+s) Vg, tesicos  (g,n) dsat =T, (29.5)
-0 Hb v
only a finite region of time, when the blade W passes the part Hb of H,
contributes to the integral. We next consider a contour &(figure (28.1) which

connects the two sides of Hb for some point (&,n). Then first before the blade
has arrived at that point

[ecg,m1’ = 6" (g,m) -07(g,m = o0, (29.6)

+
where by [f]_ we denote the jump across H of any quantity f and ®(£,n) denotes
the value of ¢{(x,y,z) at the point (§,n) of H. When the blade has passed entirely

we have

oo
[og,m1’ = - [ T,nb viEnbadt . (29.7)
Hence we can rewrite (29.5) as

+
+ 2 ff teg,m1’ cos_ _(E,m as =T, (29.8)
T Hb - n,x

where the integration over Hb has to be carried out when the wing has pasged
Hb.

Formula (29.8) represents a constraint on the admitted potential functions
®(x,y,z) with respect to the mean value of the thrust which has to be delivered
by the blade. By replacing for instance the function cos (E n) by cosn (&,n)which
is the cosine of the angle between the normal n and the p031t1ve y direction we can
put a demand on %(x,y,z) so that a mean force in the y direction is delivered. More

ggnerally we can replace the cosnx(E,n) by any function, then we obtain a number

of constraints

[Jlee,mll gyemas -6, =0, , i=1, ..., M (29.9)

"
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where gi(g,n) are prescribed functions and Gi prescribed constants.

Now we have to minimize E for a given function Qo(x,y,z% with respect
to the unknown function %(x,y,z) which has to satisfy a number of constraints
(29.9).

We have to be careful by demanding conditions (29.9), that they are not
contradictory. For instance we can describe the thrust of a screw propeller
to be T, while also we prescribe its moment about the x axis along which
it is moving, to be M. This is not allowed because M is uniquely determined by T
by means of the geometry of the screw blades. In fact the energy necessary
for the useful work UT of the Screw, where U is the velocity of advance,

must be supplied by the torgque hence
UT = wM, (29.10)

where both quantities are Of{e).
The same happens when we would prescribe both the thrust and lateral force
acting on the sail of a sailing boat of which the course makes a finite
angle with the direction of the relative wind.
We remark that (29.9) represents constraints which are related to mean f
values of force actions with respect to time. It is however also possible
to consider constraints which prescribe force actions at each moment of time.

We refer for this to [22].

Exercises.

N . +
1) Discuss the relation between the potential jump [¢)  at H when the wing

has passed, and the free vorticity shed by the wing.

2} Formulate the variational problem in case there are more reference surfaces
,Hi, .o HN.q
3) Discuss the function gi(g,w) (29.9) which belongs to a prescribed mean

value of the moment exerted by a lifting surface about the x axis.
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30. Necessary condition for the optimum

In this section we minimize E (29.1) under the constraints (29.9). Suppase,
the function $(x,y,z) is the optimum potential we are looking for. We change=~
it by § ¢(x,y,z), which has to be a periodic function with period b in the x

direction. Then the first variation of E has to be zero,
+o0 b
_ ] ] 9 ] ] e )
§E = _ijf g {300, + ) o “’*ay (9, +0) 5 80 + o= (& +0)3— 66} dxdydz = 0.

(30.1)

We carry out partial integrations of the three terms in the integrand in (30.1)

with respect to x, y and z respectively. Consider the first term

+e b +0 b
w g—; (%, +9) -g? §¢ dxdydz =y [ [ [ g—x (¢ +0) dsedydz =
[¢] [o]

-

+oo " b b azmow) g %
=1 -{,I 55 ¢, +® .80 | - { 89. T dxlaydz-u [ f [55(8, + 9 60]_dyaz.
=0

(30.2)

The second term can be rewritten as follows

+o b 3 3 4o b 4o 3
u LI { 3y (%, +®) 55 Sedxdydz = u {m { L 3y (8, +9) ddedxdz =
*= b +o0 +o0 32(d +9) 5 -
=uw [ [ G, *®. 60 | - [ oo dylaxdz-u | I[‘é‘;(@oef 9).801;

» dxdz. (30.3)

The third term becomes

o o 32(0 +9) 2 -
J 86 —2  azlaxdy-u [ [5o(, +®8e] axdy.

9z2

+ 4o
u J -

-0

2 9
({ 5 (0, +0).60 |

Z=—00

(30.4)

We have to add (30.2), (30.3) and (30.4) and make use of the fact that both
Qo and ¢ are potential functions and that Qo,é and 6¢ tend to zero for y2 +z2sm,
Also we know that ¢0,¢ and 8¢ are periodic functions of period b in the x direction.

Then a number of terms cancel each other in the sum, we find

SE = -y [ [ g— (¢o+¢).[54>]:' ds = 0. (30.5)

Hb n
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’

By the continuity of %;-(@°-+0) across any surface in space, we are allowed to
put this expression out of the square brackets.

The jump [6¢]r can be chosen zerc everywhere with the exception of the
neighbourhood of some arbitrary point P at Hb This is most easily effectuated
by plac1ng on Hb' around P a slightly distributed closed vortex ring §y.

Then [6¢] is zero for (§,n)outside this ring and has non zero values inside

this ring (figure 30.1). However we have to satisfy M constraints (29.9).

Fig. 30.1. The disturbance potential §¢.

In order to handle these we consider a disturbance [5¢]+ which is non zero in the

neighbourhood of M + 1 points P ¢ cees PM+1

[6¢] at point P£ over the small region where it is non zero will be denoted

at Hb The integral over the disturbance

by GQI' then we can replace (30.5) by

1 M1 o ‘
7 0B =~ £§1 an (8, (R + 0(P)T§0, = 0. (30.6)

For these disturbances the constraints (29.9) are written as

M+1
251 9, (P,) 8¢, =0 P =1, ... M. (30.7)

By equation (30.7) we can express 6¢1, ces ,S@M into 6¢M+1' We introduce the

following determinants

D= g, | i =1, ..., M, (30.8)

gl(Pl) gl(Pk_ ) g (P, ) g (Pk+1) gl(PM)

D, = : . X1 ' e . , (30.9)
I P,) TP Iy Py Ty Pryy) Iy Py’
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where k = 1, ..- , M. Then we find by Cramer's rule
-1
: = = . , 5 .10
5¢k_ D Dk 6®M+1 (30.10)
Substituting this result in (30.6) and dividing by 6¢M+1 yields
i M 3 0
-— ] —— q b % 3 q = — d 3 Hj V. ' ‘..1"
B Qfl on (QO(PQ) E ¢(Pz)) Dk ) an (QO(PM+1) i @(PM+1)) (284188

Next we assume the points P ,PM to be chosen at fixed places atiHb,

1r e

while the point P is allowed to move freely over Hy . This latter point

M+1
will be denoted by P. Hence we find from (30.11) by expanding the daterminants
DZ(3O.9) with respect to the column which contains PM+1 = P
) 3 s
o $(BX = = ™ @o(p) + i§1 xi 9; {P) , P EH, (30.12)

where Ai are unknggn constants. This relation is a necessary ccondition for the
normal component Y of the velocity induced at H at an arbitrary point P by
the free vorticity sheet left behind by the optimum wing at H. Herewith we have
found for the optimum potential ¢ a necessary condition in the form of a Néumann
problem. This has to be solved while the Xi are still unknown, afterwards the
Xi' i =1, w.. ,M, can be determined by the M constraints (29.9).

Condition (30.12) follows also from the demand that the linear homogeneous

equations (30.6) and (30.7), for the unknowns 6¢ L =1, .., » M+ 1, would

2,'
possess a non trivial solution.

Exercise.

Discuss the optimization condition (30.12) in case there are more reference

surfaces Hl’ = HN.



31. Optimum ducted screw. propeliers

We consider a screw propeller with mﬁbi;ges placed in a shroud cf zero
thickness » which is in the neighbourhood of a circular reference cylinder
of finite length and of radius I - The blades of radius r, are connected
to a two sided infinitely long hub of radius ri; In section 39 we return
to this model of a hub and discuss its limitation. The propeller rotates with

an angular velocity and is placed in a parallel flow with wvelocity

U in the negative x direction:

Fig. 31.1. Two bladed screw propeller within a shroud (partly removed).

It has to deliver a prescribed thrust T in the positive x direction.

In the optimum case the free vorticity shed by the blades and the shroud is
determined by the optimization theory. The bound vorticity on shroud and blades
in turn is determined by this free vorticity. Because the free vorticity
behind the shroud is not rotationally symmetric as a consequence of the
presence of the helicoidal vortex sheets behind the blades, also the
circulation around the shroud will not be constant in circumferential direction.
Therefore the shroud must have profiles which vary along its circumference.

It is clear that the vortex configurations both on the screw as well as on the
shroud are stationary with respect to a system of axes which rotates with the
screw. In order to have alsc a stationary vortex configuration and local

angles of incidence with respect to the shroud, we can assume that the shroud
rotates with the same angular velocity as the screw. The profiles of the shroud

are defined as the intersections of the shroud and the helicoidal surfaces

@ + ax = const. (31.1)
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It has been remarked already in section 20 that a shroud can be favourable
with respect to efficiency by the interaction of the vorticity flowing from
its trailing edge and the vorticity shed by the blades. The influence of the
type of shroud described here will be optimal. This means that when a shroud
of this type has nmot much influence, a rotationally symmetric conventional
shroud when it has the same diameter cannot have more influence, irrespectively
of its length. In the case of zero clearance (ro-= rs) we have an optimum
ring propeller of which the ring is not rotationally symmetric. For ring
propellers with rotationally symmetric rings, we refer to [8]. The meaning
of the schematization we use here will be discussed more extensively in section 35 .
The reference surfaces Hkvof the previous section are in our case the following.
First, the Hj =j=1, ... , m, are the stationary helicoidal surfaces along
which the m blades of the propeller are moving when the fluid is put to rest and
the screw has the velocity U in the positive x direction, which is of course
the same problem. The surface Hm+1 is the surface along which the shroud is
is the two-sided infinite shaft. On these surfaces we can

+2
introduce orthogonal length coordinates (Ek,nk), k=1, ..., m+ 2, as follows,

moving and Hm

On Hj' j=1, ..., m we choose as nj the distance of a point of Hj to the

x axis, hence nj = (y2'+22)% = ry; (x,y,2) € H, . We take for Ej the length
J

coordinate along lines “j = r = const. The positive direction of nj is chosen
in the direction of increasing r values. We can also introduce on Hj the
. =
non-length coordinate x = £_(1 +a?r? « At H we ke = x and = n
g 55 ) me ¥ tARE S M1 T Fs @

analogousl = - ] =
gously at Hm+ B x and nm+‘ ri@.

2" "m+2 2
In this case we assume that the incoming fluid is homogeneous, this means that

for the problem of the advancing screw,the fluid is not disturbed before, hence

¢b = 0. We have only one force condition (M = 1, (30.12)) . The function gi(E:n)

(29.9) becomes, as has already been discussed (29.8)

N

gl (E,n) = = cos

. @,x) (el (31.2)

where now (£,n) is any point on Hl’ Bt Hm+2.‘Then the necessary condition

for an optimum becomes

d .
35 2(&/m) = Al cos(nﬁx)(i,nlz (31.3)

where we have absorbed the constant U/t in the still unknown constant Xl.
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The meaning of (31.3) is the following. Consider the m helicoidal surfaces

Hl' - Hm and the two circular cylinders Hm+1 and Hm+2' all two sided
infinite, to be rigid and impermeable. Then the potential ¢(x,y,z) belongs

to the fluid motion which arises by translating these surfaces in the positive
X direction with a velocity Al' First we will discuss this potential problem.

Introduce a helicoidal coordinate system (Z,p,0) by

=@+ ax , p=ar = a (y2 + zz)ﬁ:, o=¢ , a=uwlU. (31.4)

The potential equation for the function ( becomes

2 2 2 2
¥£—+%§EW%+L-@~+23 + 23 #(z,0,0) = 0. (31.5)
ag? 02 a3z 3z30 302

We first show that this potential is independent of o. This is clear from
the statement of the problem for the velocities, however because the pbfential
arises from these by means of integration, this is not evident for ¢ itself.
Suppose ¢ is given in a point Co' po, co and we calculate the poteqtial in

a general point Cl’ Pyr Ul. Then by figure 31.3

N COIQOrQL
¢(C1;Dlr01) = Q(Co,po,OO) + ﬁv(co,oo)g cos a . ds + t
COIOO: -
& P, .0 P O
(o] 1 1 -> = > ->
+ J vigeb, s+ [0 T g a8, (31.6)
CO ’p‘o"o’.lj CO lpl ,.10"1

where a = a(;ofco) is the angle between the velocity ziand the helicoidal
. r >
line through (Co'po’oo)"and ds is an ™infinitesimal length"™ vector.
The first integral in (31.6) is along a helicoidal line, the second along

a radius and the third in the x direction. From {31.6) it follows that we can

A._ . .
‘s | BT = .

1)

7 J

“_h_mw ! " m+/ p
;o)[%)Cl) y ‘ i ’ / f

4

H
i
1

(S0 fi.50)

Fig. 31.2. The path of integration (Co,po,co) > (CI,D mol)w

1




write the potential at the point (Cl,pl,ol) in the form

®€Zy,Py,0y) = (L 4P ,0 ) + (0)= 0 )k(E ,p ) cos a +F (L),0,), (31.7)

where k(co,po) is a non zero constant and F is a function independent of O'y.
Formula (31.7) shows that when cos o # 0, we have a term which is linear

in (o -co), hence the potential will increase indefinitely with o_, by

1 1
fixed Cl and Py- Connect a point A outside Hm+1 with a point B inside
Hm+1 by means of a long slender contour 2(figure 31.2) around the "beginning"

of Hm+1' Then the potential difference between A and B equals the enclosed
vorticity at Hm

. However the vorticity at Hm+ is a periodic function of x

+1 1
with zero mean value hence the potential difference between A and B has to

remain finite. This yields a contradiction when cos a # 0 and the fact thar

outside of Hm the disturbance velocity is zero. Hence cos o = O or a = 7/ 2

+1
radians which means that the velocity field induced by the translation
of the helicoidal surfaces Hl, noo @ Hm and the cylinder Hm+1

to the helicoidal lines T = Co' p = po < rs. Then

©
[

= ¢(Clp)- (

 is perpendifcular
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31.8)




32. The boundary value problem for the potential

We consider the m helicoidal free vortex sheets far behind the propellerx
blades. Also we imagine m bisector helicoidal surfaces, exactly in between
them. These two types of surfaces can be generated by straight lines
perpendicular to the x axis, which move along this axis with the appropriate
angular velocity.

Now we take such a line g generating a bisector plane consider it in
a fixed position and rotéte the whole system of vortex sheets and bisector
surfaces about g over an angle of 7 radians After that each surface
coincide with one or another surface of its own type of the original configurxamien.
When we multiply next the vorticity on the vortex sheets and on the cylinder
behind the shroud by -1, we obtain again the original velocity field.

X

9%

Fig. 32.1. Velocities in two pointé, symmetrically placed with respect
to a bisector surface. 7

Consider an arbitrary pair of points P and Q, which have equal values of @ d
and r and which changed position after the rotation mentioned above. It follows
that the velocities in P and Q possessthe symmetry relation drawn in figure
32.1. The velocity components perpendicular to the r direction have to be parallel
and of equal magnitude while the components in the r direction are of the same
magnitude however opposite in sense.

When P and Q tend to each other and hence to the bisector plane, we see that 3
the components of the velocity in the r direction have to vanish. This means
that, because we found already that a = w{? radiansin figure 31.2, the whole
bisector surface has a constant potential, say ¢ = 0. Then however each bisector
plane has the potential zero. This can be seen as follows, suppose the potential
difference between two neighbouring bisector surfaces is A. Then we have mA = 0,

because after m steps we are again  the same bisector surface, hence A = 0.
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An analogous reasoning cau be given for two points which change position
when we rotate the whole system overn radiansabout a generating line of a
helicoidal surface Hj, j =1, ... ,m. The only difference is that here the
velocity components in the r direction do not have to vanish when both
points tend to the free vortex sheet.Hs, because by the presence of the
vorticity on the sheet a discontinuity can be tolerated. However on the

extensions of the Hj’ =1, .-s ,m, to H the r component has to be zero,

+
hence there the potential is constant. Itmc;n be seen that first all these
extensions have the same potential and second that this value is zero.
From these results it follows for the potential ¢(Z,p) = - ¢(iE - Z,p)
whenfz belongs to a point on a bisector surface or on a vorticity sheet
Hj' j=1, ... ,m.

We now discuss the boundary condition on the rigid and impermeable
vorticity sheets Hj' which translate in the positive x direction with the

velocity Al (31.3). The equation of these surfaces in cylindrical coordinates

a l
G=®+ a(x = k1tw - 2%1 =0 , J3=0,1, 0. , m =1, (32.1)
The boundary condition (15.3) yields
) 3P 1 9d _ ,
ai +a 5 ¥ » =0, 132.2)
X
or in helicoidal coordinates
A
. 1 2
g_z ) = 1 (32.3)
1 +p2

From this and the symmetry relations we find that the potential ¢ has to

satisfy the boundary conditions denoted in figure 30.2. Because $(f,p) does

3‘@ =0
5P

;
56" +

Jon L5 geo
" k!

R . :
0" o - 1 oty A%s

N

Fig. 32.2. The boundary conditions for the‘potentiai ®(C,p) -
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not depend on ¢, (31.5) simplifies to

) 2
g—p Pl 140 £l ) Sl ® 0: (32.4)

{p
ap acZ

This boundary value problem has to be solved by numerical means. In the case

’7A1

= 1, we denote the solution by ¢1(c,o).
When we have a screw propeller without a shroud we have to take in figure
*®.2, r_ = =, hence we have to solve the boundary value problem for a semi

infinite strip.
Exercises.

1. Show that the effect of the infinitely long cylindrical hub of figure
31.1 is,; in the optimum case, the same as an "inner shroud"™.
2. Show that when we have no hub in this problem then we have instead of

figure 32.2, the following boundary conditions.

St e

Iz | = ]

R 24
1,38, 5 T
+3-
5 §_ o !
o B-¥ip do|
0 ai; “ dQn =3

Fig. 32.3. Boundary conditions when hub is neglected.
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33. Bound vorticity on blades and shroud

At a certain value of nl = r we place a contour % around the blade‘Wi
(figure 31.1} by which we define the circulation [I'(r) around Wi. This
circulation is reckoned positive when it is coupled with a right hand screw
to the positive r direction. The total amount of free vorticity shed by the
blade between the place.r and the tip equals this value. We reckon the free
vorticity, which lies along the E coordinate line, positive when it is
coupled with a right hand screw to the positive S direction NMext we consider
far behind the propeller the point Q on H, and the contour 2 which connects

1
the -side and the +side of H1 at Q. Then we find

22,
rir) = -[o(@1 =2 ¢(0,ar) = — ¢,(0,03 , p = ar, (33.1)

where @1 is the pitential which follows from the Egundary value problem of
figure 32.2 for gi"= 1. We remark that contour £ can be obtained from contour
4 by & continuous deformation without cutting vorticity lines hence without
a change of enclosed vorticity.

Next we have to determine the unknown cqnstant,k1 by means of condition

(29.9) which in this case has the special form (29.8) We can take

) : 2m () !
T = 21/w . b=U1= N . (a = GJ , (33.2)
hence because we have m blades (29.8) becomes
27U
umm Hwm @ ol + ar dr
IJ [og,m1" (€,m das == J [em] 2
®n,x 2m 3 ~ 1+ )%
b ;s ar
Yo Yo
¢ /1 +a%r? dx = pwm I ' [¢Qr?]: rdr = ~pwm I r T'(r) dr = T. (33.3)
r, .
il i

. , -
In (3.13) we used the fact that behind the propeller blade [¢] depends only on

ny = v where r is the distance of a point to the x axis. We remark that by the
choice of the helicoidal surfaces (31.1) w = - %% . Substitution of (33.1) into

(33.3) yields

-1 def w?T

. —w? T S
A, = — {J P ¢, (0,0} dp}

=
J f{ar., ar s ars,m).
2umU3 mﬁ MmU3 =

(33.4)
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where we introduced the quantity J.
Next we direct our attention to the circulation Ps around the shroud.

Around the shroud we take a narrow contour ABCD (figure 33.1).

Fig. 33.1. On the circulation around the shroud.

This circulation is reckoned positive when it is coupled with a right hand
screw to the direction of increasing ¢ on the shroud. First we observe

that Fg is to a certain extent independent of the shape of ABCD. This
contour may be deformed continuously, however when doing this it may not cut
through vortex lines. Hence another more natural choice is to let it lie on
a helicoidal plane ax + @ = [ = const. (K;E;E;S) around a profile (31.1)

of the shroud. Next we let A and B tend along § = const. to a place far

behind the propeller. Then it follows that

I (2) = ¢y - o(®) , (33.5)

where A is just outside Hm+_ and B just inside it. Then we find

1

S|
PS(C) = §(a) - = ¢1(;,apsl . {(33.6)

The potential ¢(A) is not fixed because only the normal derivative %% is prescribed

at the surfaces Hj' J=14 cuv , m+ 2, and Hm shields the outer region from

+1 .
the inside. This means that outside we can take any constant"function™as potential.
From this it follows that we can add a constant value to the circulation of the
shroud. This added constant circulation does not shed any vorticity, it increases

or decreases the fluid velocity at the place of the screw.
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The question remains how we have to find the shape of the blades and
of the shroud which induces the optimum bound vorticity. First we consider
the blades and assume the planform of them to be given.The known circulation
has to be distributed in some way in chordwise direction. The way in which
this is done is of no importance for the free vorticity left behind in our
linearized theory. For instance we can take the bound vorticity constant
along each chord, then we have along each chord a constant pressure jump
which varies with r. By this the loading (15.17) of the blade becomes

b

0x,r) = u(v? + w2r2)? P(r)/blr) , (33.7)

where b(r) is the length of the chord. From this loading follows by
considerations about the strength of the blade, its thickness distribution.

For instance consider the case that no shroud is present (rs = «f and that

the influence of the hub is neglected. This means that in our previous formulas
we have to use the potential which belongs to the boundary values of figure
32.3. Then by the lifting surface theory ofsections 14-19, we can determine

the shape of the blades in this optimum case.

When a shroud is present we have to discuss both blades and shroud together
in one lifting surface theory. This is not more difficult in essence than the
theory for the blades alone, however being rather complicated we will not discuss
it here.

We still shortly discuss the interesting case that the clearance between blade
tip and shroud is zero (io = rs)m Then it follows from numerical calculations
that the bound vorticity on the blades does not tend to zero for p *> ar .

Hence a concentrated free vortex of strength Zgl‘Ql(O,aro) (32.1) leaves the

tip of the blade. Next the vorticity on the shroud is odd with respect to the

blades and discontinuous at the blades. Hence a jump in its vorticity exists

by which a concentrated free vortex is shed, which is by (33.6) of the same strength
as the tip vortex however of opposite sign so that they cancel each other.

In the case of a small clearance no concentrated free vortices arise, however
the principle remains the same, a strong free vortex shed by the shroud interferes

favourably with a strong free tip vortex.

Exercise.
Derive the last equality of equation (33.3) directly by means of the law

of Joukowski for a force on a bound vortex.
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34. The efficiency of optimum ducted propellers

In this section we will calculate the kinetic energy E left behind by the
optimum directed propeller per unit of time. From this energy follows the
efficiency of the propulsion system. We do not use formula (29.1), but a
well known form which results by partial integration from it. The kinetic

energy within a closed surface S, can be written as

B=-%yu ffo as, (34.1)
s

where the normal derivative is with respect to the inward normal and dS is
a surface element.

In our case we have to consider the kinetic energy in a part of space
far behind the propeller, bounded by the hub, the cylinder behind the shroud
and two flat planes perpendicular to the x axis at a distance U of each
other. When the screw has m blades this kinetic energy is 2 m times the
kinetic energy between a helicoidal surface behind one of the blades,
extend to the cylinder and a bisector surface. From figure 32.2 it follows

that the only contribution to (34.1) comes from the helicoidal surface. The

value of n is given in (31.3) by the optimization condition
g_: = a __ar_% (34.2)
(1 +a%r?)*
Hence we find for (34.1)
umka ar Umkiu
B o= — — p @1 (0,p)dp = ——— J , (34.3)
a? r. a2
i
where we used the symbol J introduced in (33.4). Using (33.4) we can write
the efficiency n as
TU ) wir -1
n‘ = \TU+E = (l + — “n 3 - (34\.4:)
ﬂmU“J

From {34.4) it follows that the efficiency of the optimum directed propeller
increases with the number J From the boundary values prescribed in figure
32.2 it seems reasonable that this happens when r > ro,‘because then the

influence of the values & = 0 at ¢ = Owuaro i_p_f_ars becomes less.




126

This follows by interpreting the values of ¢ as the small deviation of a
membrane from its neutral position, it will be confirmed by the numerical
results of next section. Hence the clearance between blades and shroud must
be as small as possible.

For convenience we will compare the kinetic energy left behind by the
ducted propeller with the kinetic energy left behind by the actuator
disk with a constant normal load, same total thrust, same working area and
same velocity of advance. The quotient of the kinetic energy Ei shed per
unit of time by the disk (11.12) and E becomes

_ B 2mo¥
% =~ .

Aw

where A is the working area of the disk. Using this coefficient we can

write the efficiency (34.4) as

T =i

n= (1 +—
2quu?a

This efficiency equals for g = 1 the efficiency of the ideal propeller, as
the actuator disk was named in section 11. We will call g the quality

factor and prove lateron that

q < 1.

We remark that the quality factor and the efficiency are each cther
supplementing informations about a propeller. If under general conditions
the efficiency of a propeller is in the neighbourhood of one, we can say
the propeller is a good cone, and it makes no sense to improve it. However
when a propeller has to have prescribed dimensions and when it has to
deliver a certain thrust it can happen that its efficiency is bad. Then
we can test by considering its quality factor if this bad efficiency could
be raised . When the quality factor is in the neighbourhood of one this
is not possible and we have to say that even then it is a good propeller,

under the conditions it has to satisfy.

(34.5)

(34.6)

(34.7)




127

In order to give numerical data for q we have to determine the working
area A of the ducted propeller. In section 28 it was defined as the cross
section of the most narrow cylinder with its axis along the direction
of advance of the propeller which encloses all the vorticity belonging to the
propulsion system. This means here rhat we have to enclose the free vorticity
behind the shroud and behind the blades. Hence the cross section of the cylinder
consists of a circle with radius ri which has zero arza and the area between the
two circles with radius r, and rim‘Hence-we can take for the working region

A~=-n(r02-~ riz)l~ However because we consider in the next sections different

values for r, it seems more appropriate to choose

B=1r 2, (34.8)
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35. Numerical data, guality factor

We consider here numerical results with respect to optimum ducted propellexs
as described in section 31. Hence we have an infinitely long cylindrical hub
of radius ri, 6n which a number m of blades are mounted of tip radius ro and
around which there is a duct of radius r, which is not rotationally symmetric
but which rotates with the blades. We have solved equation (32.4) numerically
for the potential ¢ under the boundary conditions of figure 32.2.

First we show the influence of the clearance between shroud and the blade
tips on the quality factor g {34.5). This will be given for a special choice
of the parameters as is denoted in table 35.1. As working area we choose
i roz as has been discussed in the previous section (34.8). In the first column
we give two values of QarO). The second column gives for each of these values

two values of the number of blades m. In the first row are given the values

of r_/r ., which is a measure for the width of the clearance.

ar, m | I | 1,025 1,05 | 1,075 | 1,1 P ¥ e
@ r == - S —~
I 2| .s58 .363 3.1 0 A .308 .290
2 | :
1 : N
1 5| .581 .448 | .433 “ 427 .424 .416
' - n
] {' 2 | .856 .685 .656 i 644 .638 .631
| |
| M 5 | .858 .761 .754 | .753 .752 .749
—— | l o0 ! _

Table 35.1x Influence of the clearance on q , ri/ro =0,2.

The whole table is valid for a constant ratio of hub and blade radius,
(ari)/(aro) = 0,2. We see from this table that already a small slit of
about 5% causes a sharp decrease of the value of g, especially for smaller
values of r, and m.

Next we give a more general survey of the influence of the parameters
on the guality coefficient g. The grouping of the results in table 35.2
will be clear. From the numerical values it follows that the case of zero
Clearance ps/ro = 1, is substantially better than the case in which the
shroud is absent rs/ro = o. This is especially true for a small number of
blades.

These tables can possibly be used to judge if it will be appropriate from
the viewpoint of efficiency, to apply a shroud. When in given circumstances
the difference of q for the case with and without a shroud is small, then the
losses by viscosity effects will nullify the gain in efficiency predicted

by potential theory.
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ar ;i/r lrs/ro 1 ‘ 2 3 4 5 m
3 i | - = _I J
] S S 1 i !
T 509 | .539 .560 | .572 .579
|| BN :
| f o .190 .285 .345 .387 417
‘ B, i i
p 1 .544 .558 568 | .576 | .s81
‘ 2 0,2 y—— }
f | | = .190 .290 .350 .390 .419
i : |
| ; 1 .558 | .563 .568 | .572 575 |
¥ .0!»3 - i = = $ <
[ o 479 . | 762 .344 | .384 .412
1 4 |
1 B I N i
' f 1 691 | .713 726 1 .732 .736
! 1
! | 0,1 Y
r I o .304 .438 .512 .558 .589 |
E - 1
g | 1 .713 .722 .728 731 .733 |
[ 3 [ 0.2 : — : ‘ 4
| o {302 441 513 .557 | .586
| | . !
! 1 .709 712 715 717§ .718
| 0,3 - |
J | o .283 .425 498 | .542  .570 |
] { | i i
i uj° i
» l 1 .793 .806 .813 .816 | .818
0,1 I
w .402 .553 626 .668 | .692
i .802 .807 .810 | .st1 .812
4 0,2 ¥ 4
o .397 .551 622 | .e62 .686
1 .784 786 787 .788 .788
0,3 — |
o Big vl m»2w .599 .639 662 |
| 1 .855 .862 .864 .866 867
0,1 l
o .514 .647 .706 .738 .759
1 .853 .856 .856 .856 .858
5 0,2 . -
o .504 .631 .697 729 749
1 .826 .826 .826 .827 .827
0,3
1 w .472 .609 .667 .699 .719
. t

Table 35.2. Survey of values of q.

Finally we give two examples of optimum circulation distributions on the
blades and on the shroud. These follow from (33.1) and (33.6) respectively.
In fact we discuss only the circulation of the shroud, for which the constant
¢(;3 in (33.6) is zero, hence the part which actually increases efficiency

in potential theory by the favourable vortex interaction.
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The two cases are, z-ero‘clearance‘aro =.ars = 2,5 (figure 35.1) and a small

clearance ar, = 2,5 and r = 1,04 r, (figure 35.2). We have a propeller with

] I
<=z / a5 s T
() »_-2_)5/“' /] )
/ “\
/ \\ N

Fig. 35.1. The optimum circulation distribution on the bladée and on part
of the shroud, ar, = 0,5, ar = ar_ = 2,5 and m = 3.

Fig. 35.2. 'The optimum circulation distribution on the blade and on part
of the shroud, ar, = @15y, arlo = 2,5, ar_ = 2,6 and m = 3.
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three blades, m = 3. In both figures the blade is represented by the 1ine:from
(0 = 0,5; £ = 0) towards (p = 2,5; T = 0), the shroud by the circle and the
dashed line is a bisector plane. Both cases are calculated for 25-= 1, hence
the potential used is Ql(t,p) (figure 32.2). This does not mean that the
thrust of both propellers is equal, however we can read from the figures
the relative strength of the circulation on the blades and on the shroud.
Because the circulation on the shroud is odd with respect to the blade
there is, in the case of zero clearance (figure 35.1) a finite jump in the
circulation of the shroud which cause a concentrated free trailing vortex.
This vortex has the same strength as the concentrated vortex shed by the
blade tip, however, with opposite sign. Therefore they cancel each other.
This can be seen in figure 35.1, where at the end of the blade the circulation
has the strength 1,64 and the circulation on the shroud exhibits a jump
of 2.0,82 = 1,64. The directions of the circulation on the blade and on the
shroud are denoted by a double arrow (right-hand screw).
The case of finite clearance is given in figure 35.2. There we have
the same parameters as in figure 35.1 only ars is different, we take
ar_ = 2,6. The circulation at the blade tip now becomes zero and also at

the shroud just opposite the tip.




132

36. The optimization of a sail of a yacht

We will give in this section a second application of the optimization
theory and discuss a simple case of the optimization of a sail. We assume
that the sail is represented by a lifting line OA of length &, this is
in the linearized theory not a restriction of generality. The line OA
is assumed to be perpendicular to the water surface which coincides with
the (z,x) plane and lies along the y axis. Also we assume that there
is no gap between sail and water surface. In order to Simulate the
boundary between air and water we consider as usual the image OB of the

lifting line with respect to the plane y = 0, then it is allowed to

|
H < > =
. .

Fig. 36.1. The lifting line OA and its image OB.

consider the whole space to be filled with air. This air has a velocity of
magnitude U with respect to the yacht. The x axis of the coordinate system
is chosen so that the relative velocity of the air is in the negative x
direction. The thrust of the sails has to be in a direction which, as denoted
in figure 36.1, makes an angle o with the positive x axis. In this flow

we now have a lifting line of lendgth 2%. In accordance with the terminology
of the optimization theory we can state that this lifting line moves with
respect to the air along a reference surface H which is the strip

—©® <X < 42, ly| <2, z = 0. As coordinates on H we could choose £ = (x -Ut)
and N = y.

Now we will impose two conditions on the force action of the lifting
line. First the thrust of the sails will have the magnitude T(0(e)). Because
the lifting line has become two times as long by means of the mirroring,
we demand a lift for the total line L = 2T/cos o. Hence for the disturbance

potential far behind the sail we have the constraint (29.9)




+2 + :
-uu [ [¢l_ dy=wuuUu [ T(y) dy = 2T/cos a, (36.1)
-2 -2 i

+2

where T'(y) is the circulation around the sail, reckoned positive with a right

hand screw in the positive y direction. Second we prescribe the heeling

moment of the sail
+2 + +4£

-wu [ [e]_ lylay =w v [ T lyl ay = 2m, (36.2)

-2 -2

where M is the moment exerted by the sail about the x axis, this moment jis

reckoned positive with a right hand screw in the negative x direction.

By (36.1) and (36.2) and because 00 = 0, we find for the necessary condition
(30.12) for minimum energy losses or what is the same for minimum induced

resistance
3 etyemy=a +a vl . Iyl <t,z=0 (36.3)
on ! 1 2 ! - ! ! 2

where we absorbed some constants in the still unknown Al and Az. This is a

two dimensional Neumann problem, the x coordinate does not enter into the
problem because far behind the sail the disturbance velocities are independent
of x. We introduce the potential functions Ql(y,z) and Qz(y,z) by

a¢1 8¢2(y.2)
3 vez) =1, o =lyl . lyl <2, z=o0. (36.4)
Then
¥(y,z) = Al ¢1(y,z) + A2¢2(y,z). (36.5)

32¢ 329
, —d 4+ —3 -0, §=1,2.

8y2 az2

Fig. 36.2. The Neumann problem for ¢j




We have to determine Al and Xz by the two conditions (36.1) and (36.2),

this yields

= ) 36.6

AI I10 + >‘2 Izo pUcosa == Al ( )
-2 M def

= o 36.7

A1 I11 * A2 21 W = A2' (BT
where
+£ - j

.= J [e1  |yllPay , x=1,2;3=0,1, (36.8)
kj ~e k™ -

we remark that I11 = 120, see the exercise at the end of this section.

When we have no constraint on the heeling moment we can neglect condition

(36.2) and put Az = 0 in (36.3). Then we find by (36.6)

Al = Al/I10 ’ (36.9)

where by a " we denote in the following that the quantity belongs to the
case of no constraint on M. Then from (36.7) it follows that the moment

becomes
I

ua L, (36.10)
11I
10

M= -

N

The constraint on the moment M will now be put in the form

M=vM (26.11)

where v denotes the fraction of the moment in the unrestricted case,which is

tolerated, so in practice v < 1. Hence by (36.7) and (36.10),

I

A =va —L, (36.12)
2 1 Ilo

Next we calculate the kinetic energy per unit of length in the x direction,

this is equal to the induced resistance R, of the sail hence

i
+£
N T L ) G
R, =3 _{ s, [0l av. (36.13)

Substitution of (36.5) in (36.13) and expressing Al and Az by means of (36,6) and
(36.7) into A1 and A2' where A2 in turn .can be expressed in v by (36.12) wields

after an elementary reduction,
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= B ; . _ 21 14
Ri 5 T {1+ » {1 v)<l, (36.14)
10
where D = (110121 = 1112).'The induced resistancerig for no constraint on

M is found from (36.14) by putting v = 1. In this way we find

2
In

D

: (1 - vy2}. (36.15)
1

R, = E; 5 {1 +
The dimensionless factor of (1 - \))2 can be found by a numerical computation,
and becomes 1112/D = 8,07. Formula (36.15) shows explicitly by which factor
the induced resistance increases by putting a constraint on the heeling
moment M of the sail.

In figure 36.3 we have given numerical results for the circulation distribution
F(y) around the sail for some prescribed thrust. This has been done .for several
constraints on the heeling moment M = v ﬁ, first v = 1 hence no constraint,

second v = 0,4 and third v = 0 hence the heeling moment is zero.

Fig. 36.3. Some circulation distributions I'(y) = -[Q]t around the sail,

for a fixed tE;ust T and different constraints on the heeling
moment M = v M,

We remark that when we consider a more realistic theory for a sail of
a yacht; we have to consider sail and keel in their reciprocal relation.

This means that the constraint on the heeling moment of the sail is determined
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‘ by the action of the keel. In the case of sailing close to wiﬁd the
theory becomes, although not essentially, somewhat different because
the thrust T can be only of 0(e?). We refer for more general information
for instance to [13], [14] and specifically for optimization problems
to [27].

Exercise.

Consider two Neumann problems of the type described by figure 36.2,

1l

for the potential functions Wi(y,z) i 1,2, with boundary conditions

BWi
s=—=h ., lyl<e, =2

0. (36.16)

Proof that the functions WI and Wz satisfy the relations

wo, o
JoIInwa= f (¥1 nyay. (36.17)
) )
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37. Classes of lifting surface systems

Up to now we have introduced lifting surface systems and have discussed
their optimization. The reference surfaces Hi were given and we had to determine
the circulation distribution of the wings wi moving along them in such a way
that certain constraints were satisfied and the kinetic energy left behind
per unit of time is minimum. Next we will give more freedom to the admitterd
lifting surface systems, to this end we first introduce classes of these
systems. We use the notations of section 28.

A class of periodically moving systems consists of all those which meeb
a certain number of conditions. We have two principal conditions which systems
belonging to one class have to satisfy always. First, they have to have the
same mean velocity of advance and second they have to have the same workimg
area, as it was defined at the end of section 28. Besides these conditions
we have to prescribe which force actions have to be delivered by the system.
This can be done in exactly the same way as in section 29 where we introduced
constraints by (29.9), of course the same caution has to be taken that thgse
conditions are not contradictory.

Additional conditions, with respect to the geometry of the reference surfaces
H which are admitted in the working area, can be imposed. For instance we can
impose the constraint that the normal on these surfaces makes an angle with
the x axis which is smaller than or equal toc a prescribed value. This means
that the surfaces H are not allowed to be too steep.

We now define the concept of an optimum wing system with respect to a class.
This is a system which leaves behind the greatest lower bound of the kinetic
energy losses of the systems of that class.

Not each class has optimum wing systems. When we consider for instance the
class of screw propellers with prescribed diameter D, velocity of advance U,
thrust T, number of blades m and a not prescribed but finite rotational velocity,
this will happen. The reason is, as we will see later on, that the kinetic
energy can always be lowered when it is possible to increase the rotational
velocityr Hence no finite rotational velocity can appear as the result of an
optimization process and hence there is no optimum propeller in this class.

Of course the foregoing only holds in our linearized theory w@en viscosity
and or cavitation is neglected.

We next consider a class of lifting systems for which the period of the
motion is prescribed, its working area, mean velocity of advance and the

mean value of the force action. No other conditions are imposed on this class




138

which will be denoted by C. Suppose we choose a set of reference surfaces
Hk which are compatible with C, this means they are within the working
area A and have the right period. Then we can find an optimum wing system
W for those Hk by the methods described before. This system belongs to C.
It is not necessary that W is an optimum system for C because in general
we will need other surfaces Hk for that. Choose another set E;, which

is aieo compatible with C and look at the combined*set of surfaces Ek

and Hk' Again we can find an optimum wing system W by our previous method
which now belongs to Hk and Hk. This system also belongs to C and again it

need not to be optlmum with respect to C.

s
Now we have the following important criterion. When for each combinatxgn

of a fixed set Hk with other Hk no free vorticity is needed in the optimum
case on the set H , it is clear that the set Hk itself is able to yield

k
an optlmum wing system of the class C.

Blade systems which are optimum with respect to a class C of the type
discussed above, will be called ideal. The reason is that, given their
mean velocity of advance, their working area and their mean force action,
there are no systems which have a higher efficiency. Hence they are the
best that can be constructed, any how in the realm of a linearized potentdal
theory. In the next section we will apply these considerations and especially
the above mentioned criterion to the actuator disk with a constant pressuze

jump or force field and prove that indeed it is ideal.
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38. The ideal propeller

Consider in the (y,z) plane the circular region y2 + 22 §_R2. This
area is assumed to be the working area of a class of lifting surface
systems C as discussed in the previous section. The 1lifting surface
- system has a velocity of advance U and has to deliver a mean value of

thrust T. We will construct an ideal propeller for this class C.

> X

Fig. 38.1. A possible "realization" of an ideal thrust producing system.

A set of two reference surfaces Hl and HZ can be used for this purpose.

The surface H1 is the cylinder which is the boundary of the working region
Hl(x;y,z) =y2 + 22 - R2 = 0, (38.1)

The surface H2 is more complicated. First it is periodic in the x direction
with period b and rotationally symmetric around the x axis. Second it
contracts up to the x axis, then expands up to the surface Hl' then contracts
again and so on.

The condition for the perturbation potential ®(x,y,2z) far behind this
propeller is in accordance with (30.12), because ¢° Z 0 and we have only

to deliver a thrust,

a 0
3;'¢(5.n) ? 11 cos(n'x)(Epn), (38.2)
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where (§,n) is any ©point on.H1 or HQ. As before this potential can be

created by translating the two reference surfaces H and H2, as rigid

1
and impermeable surfaces with the velocity hl in the positive X direction

or what is the same by placing them in a parallel flow of velocity Xl in

the negative x direction. The vorticity needed on Hi and H2 then is the

free vorticity left behind by the optimum propeller. The constant Al follows
again from the condition that the mean value of the thrust has to be T.

It is clear that when H1 and H2 are placed in a flow parallel with the
X axis, no velocity inside HI‘ hence inside the working region will occur.
This means that H2 will not carry any free vorticity. Outside'H1 we have

the undisturbed parallel flow, hence the vorticity on Hl is constant and

perpendicular to the x axis.

We now consider two circular wings W. and W2 of variable diameter moving

1

" and H2 respectively. Assuming without restricting

generality, that their chord lengths are very small, we represent them by

in the neighbourhood of H

two circular bound vortices Fl and FZ. For simplicity we assume that the
velocity of I1 is U and that the velocity of P2 along H2 is such that it
remains in the plane of Fl, This bound vortex system is not unigque at all,
however we choose some realization.

The thrust is entirely delivered by Fz because Fl cannot produce a force
in the x direction. The working i1s as follows. Fl increases linearly with
time, hence it sheds the optimum vorticity which is constant at Hl' This
however cannot go on indefinitely because then the strangth of Fl would
increase beyond all bounds and the propulsion system would not be periodic.
It is here that F2 appears on the stage. First it may not leave behind any

vorticity inside H . Hence its strength has to be constant at parts of

1
H2 which are not at the x axis or at Hl" However when F2 has to deliver

a thrust it must have opposite signs at the different slopes which H.2 forms
with the x axis. When Pz arrives at the contact circle of H2 with Hl' A=t
changes sign instantaneously and leaves behind a concentrated free vortex

at Hlm However when Pl changes magnitude at exactly the same place it <an

cancel this concentrated free vortex. By this change however Pl need not to

grow beyond all bounds. The bound vorticity F2 can also change sign at the points
where.H2 touches the x axis because there its length is zero and hence no
concentrated free vorticity is left behind. In figure 38.2 we have drawn

the strength of Fl‘and FZ as a function of x. We note that never we may

leave behind concentrated free vorticity, because the kinetic energy around

a concentrated vortex is infinite. Hence the efficiency would be zero.
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Fig. 38.2. Bound vorticity Fl and rz as a function of x.

From the construction it follows that this propulsion device is ideal
in the sense of the previous section. When any other reference surface I*!,_!i
is added inside Hl’ it will not get any vorticity on it by the optimizati.n
procedure. Hence the free vorticity behind the supplemented propeller will
be the same as before. This means that the efficiency of the original one
cannot be raised. We remark that the surface H2 is not unique at all, eaeh
surface which divides the interior of H1 into disconnected parts could be
used.

When we look at the free vorticity which is left behind by our ideal
propeller, we see that it is exactly the same vorticity as is left behind
by the actuator disk with a constant load, described by a linear theory(section
11). This means that both systems must have the same efficiency. However the
system described here has the highest possible efficiency in comparison with
each system of lifting surfaces with the same thrust, mean velocity of
advance and working area. Hence also the efficiency (11.8) of the actuator
disk yields an upperbound for any conceivable propeller of the class C under
consideration. It is alsc the smallest upperbound because, as is discussed

in this section, it yields the efficiency of some admitted bound vortex system.
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Exercises

1. Consider the class C of the previous section for wings which have
to deliver a 1lift force L in the y direction (figure 38.1), have a
velocity of advance U and have the working region of which the boundary
is given by (38.13). Determine explicitly the circulation distribution

for an ideal ring wing of this class.

2. Consider the case of a working region defined by —-= < x < +«,
|yh < a, Iz[ < b. Discuss an ideal propeller in this case, consisting
of a number of concentrated straight bound vortex lines of finite length.
Describe a possible motion of these vortex lines and in which way their

strength has to vary.
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39. On_a gemi-linear optimization theory

In this section we discuss the optimization of lifting surface systems,
again acting in an unbo&ded” incompressible and inviscid fluid. The
difference with the previous theory is that now the disturbance velocities
induced by the devices are finite (0(€9)), however we assume that the
free vorticity shed by them is small of O(e). This means that we can split
the motion, which is also in this case assumed to be periodic, into two

parts. First a periodic base motion which will be such that no free vorticity

is shed. This motion may induce velocities of 0(e®), which have to be determined

by numerical means and are assumed to be known. Second, an "added motion"
with the same periodicity as the base motion and superimposed on it, which
induces added disturbance velocities of 0(e) and causes free vorticity

of O(e) to be shed. Because the base motion cannot be described by a linear
theory we use the term semi-linear optimizaticn theory.

We consider a system of possible flexible lifting surfaces and bodies
moving together periodically through the fluid. The mean direction of the
motion is in the positive x direction of a Cartesian coordinate system which
is at rest with respect to the undisturbed fluid. The spatial pericd aleng
the x axis is b. We make the restriction that one of the following cases
occurs; either the system has finite dimensions or all the lifting surfaces
and bodies are cylinders with generators parallel to the v axis, so that
a two dimensional problem is at hand.

Further we restrict ourselves for the three dimensional case to a
prescribed mean value, with respect to time of the force exerted by the
system on the fluid or to the mean value of its moment around the x axis.
For the two dimensional case we restrict ourselves to the mean value with
respect to time of the force per unit of length of span. These force actions
are assumed to be 0(g).

First consider the system under consideration moving without shedding
vorticity. This means that it carries out the base motion. We keep in
view the fluid particles which have passed the trailing edges of the lifting
surfaces, these lie on surfaces Hk, which belong to the 1lifting surface
W _. When we look in the neighbourhood of the W, the shape of these surfaces

k k

will be influenced strongly by the base motion. However when the\wk advance

further in the x direction, the Hk will become more periodic and ultimately

when the Wk are at infinity they are periodic with period b in the x direction.
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Now we introduce the added motion and suppose, for the time being,
that it is already the optimum one. We have free vorticity shed of 0(g),
which by the linearity of the theory will stay at the Hk and ultimately

become periodic with period b in the x direction when the W, are sufficiently

k
far away.

Next we put at the surfaces Hk' far behind the wings W bound vorticity

kl

of strength ATk(Ek,ng,t) (0(e)) where EE and n_ are again suitable coordinates

k

on the H . This vorticity moves along the H with the same mean velocity

k k

in the positive x direction as the wk. Its strength will be such a function

of time and position that the free vorticity it leaves behind annihilates the

k

wk and the —Tk does not leave behind free vorticity, hence we can apply the

results of section 2.

free vorticity shed by the W . This means that the system consisting of the

Consider for instance in the three dimensional case the mean value
of the thrust in the x direction to be prescribed. From the statement

under formula (2.3) it follows that bound vorticity of strength-+Pk(£ t),

£
moving in the same way as the aforementioned bound vorticity —Fk(Ek,hkt),
hence far behind the wing system exerts the same mean force with respect
to time on the fluid as the original system and leaves behind the same free
vorticity.

We assume that the propulsive system Wk is connected to a large body
which has to be propelled and which moves with uniform velocity U. The
possibly time dependent thrust T(t) of the system delivers per period
an amount of useful work equal to

b/U

o | T{t} dt. (39.1)
fo)

However because the concentrated bound vortex system +Fk(E 't} , has the

n
g'
same mean value of the thrust with respect to time, it yields the same
amount of useful work per period. This means that, because both systems
leave behind the same free vorticity and hence the same kinetic energy, their
(€

efficiencies are equal. In this way the vorticity +T (t) is equivalent

g5 e

to the original system.

By the foregoing we arrive at the important result that instead of the
original system we can optimize the system of bound vortices mowing along
periodical surfaces Hk under the constraint of a prescribed value of the
mean thrust. This is however a special case of the problems discussed

in sections 28 - 30.




For the three dimensional case we can treat equally well conditions

for a mean force in the y or z direction, or for a moment about the

X axis. A non zero mean force of 0O(e) per unit of span in the y or

2z direction for the two dimensional case is without interest. This can
always be obtained without energy losses by a constant circulation arousd
the cylinders.

From what has been discussed it is clear that we can calculate the
energy losses of the wing system by looking at the ultimately periodic
surfaces Hk far behind the wing system, which in some cases are not
difficult to calculate by numerical means. This facilitates calculations
to a high extent.

It is not possible in general in our case to calculate the energy losses
by looking at the pressure distribution around the wing system. An |
apparent way would seem to calculate by means of the pressure distribution
at the wing system the energy supplied to it and subtract the useful
work. Now the induced velocities are accurate up to and including O(e)
and hence also the pressures have the same accuracy. Because the amplitude
of the motion is finite, there is an inaccuracy in the power of 0(e?).
However the kinetic energy left behind per unit of time is also of 0(62).

Hence no correct answer can be expected by such a computation.

Exercise.

Discuss how from the optimum free vorticity far behind in the wake, the

vorticity on the wing system itself can be calculated.
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40. Two examples

a) First we consider as an example of the method of the previous section.
a periodically moving rigid profile of finite chord length which is described
as regime ii in section 21. We use the notations of that section and consider

the special case of an infinitely thin and flat profile.

= m

= )0

Fig.-40.1, Flat profile moving along L.

Along the flat profile we have a length parameter s (figure 40.1) which is
zero at the midpoint of the profile, at the leading edge s = £ and at the trailing
edge s = =2. The direction m is of course the direction of the profile itself.
Now we have to determine one point Q (figure 21.2) of the line r.-We look for a
point Q lying on the profile and denote its parameter value s by a. When we
rotate the profile around @ with rotational velocity w, the velocities of the

points of the profile are in the direction of the normal n and amount to
v_(s) = w(s = a}. ' (40.1)
‘The vorticity I'(s), needed on the profile in order that the fluid -flows along it,

satisfies

1 o (o)
Vn(Sw) = LE fz .(—S.——O')_ do.. (40.2)

The solution of this equation which satisfies the Kutta condition at the trailing

edge s = -4, is

T'(s) = 2wla + 2 = §) jfi = Z - (40.3)
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The condition that the total circulation is zero yields

+2
[ Ti(s) d@s = mw & (2 + 2a) = 0O, (40.4)
-2

hence

a==2/2. {40.5)

This means that o) is the well-known three quarter chord point. Hence when a
flat profile moves with its three quarter chord point along an arbitrary line L
and is tangent to L, then its total circulation is zero while its vorticity
has the form
! » - “27{ - ]
T(s,t) = alt) (2 - 200V =2 (40.6)

When the periodic line L is prescribed and also the periodic velocity with
which the plate moves along L, at each moment we can calculate &(t) and hence
I'{(s,t). Then by the law of Biot and Savart for the two dimensional case we

can calculate the velocity of each fluid particle, we find

e
) F) +4 (2 -2s) ¥ %—;—i {y-—y-—(5'+ 2/2) sin a}
k(e = - = 2 2_ .. ds, (40.7)
. H +2 (8 - 2s) V‘%f;—ﬁ-{x-—x -(s + £/2) cos a}
yie) = + = 5 2 as, (40.8)
T : ‘.
=1 R
where
R? = {x - xQ ~(s + /2) cos a}? + {y - YQ -(s +%/2) sin a}?, (40.9)

and X_ {t) and y_{(t) are the coordinates of the point Q. This is a system of

Q Q
two coupled ordinary differential equations for the path x = x(t), v = y(t)
of a fluid particle.
We now define the motion of the wake H of our profile. A point X, § belongs

to the wake if there exists a solution of (40.7), (40.8) with

x = x(t) , y = y(t) (40.10) “

and if there exists a t* f_E‘such that i(t‘) and §(t') are the coordinates of
the trailing edge at the moment t". In words, the wake consists of all those
fluid particles which once have been in contact with the profile and hence have
left it at the trailing edge.

It is not difficult to solve by numerical means the equations (40.7) and
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(40.8) for a particle which at t = tj’ leaves the trailing edge. By doing
this for a large number of tj' j =1, ...,N, reqularly distributed over one
time period of the motion the wake H (figure 40.1) can be calculated.
For the motion of the profile which has zero circulation and which is the base
motion as discussed in section 21 and the previous section, this wake has
no relevant physical meaning. When the profile has to deliver a nonzero mean
value of the thrust, however, its added motion sheds free vorticity of O0(e)
which is assumed to be situated at the wake as defined.

Next the optimization of the free vorticity at the wake can be carried out
as discussed in the previous section hence using condition (30.12) with respect

to the thrust

90 (E) _
on Ai c

{40 )
05 1 (8) (40.11)

where £ is a length coordinate along the wake H {(figure 40.1). Having solved

numerically this Neumann problem for Al = 1, we have to determine kl,_by

(29.8). Then we know the optimum free vorticity infinitely far behind the profile.
The next step is to calculate numerically the density of the vorticity behind

the profile at any place. This can be done as follows. Consider far behind the

profile two points A  and A_ close together at H. Suppose the density of the

1 2
free vorticity at that place is

+ —
Y(g) = é(b_ (E) — M

oF 3t B (40.12)

where Y(£) is reckoned positive with a right hand screw in the direction of a

rotation of the y axis to the x axis. The points A, and Az can be traced backwards

1

~

to a time they were still at a finite distance behind the trailing edge Xl’ Az.
Then the free vorticity at that place becomes
la &,
~ 2.
Y = —’Vl—"v— « Y ¥ ‘(40.13)
where l +~ | is the distance between the denoted points.

The last step is to determine the added motion which can be defined by the
angle B(t) which is 0(e), which has to be added to a(t). We denote the normal
component of the velocity induced by the wake by ;;(s,t), where s is the parameter
on the profile. This is by our optimization process and by the calculation of the
free vorticity at a finite distance behind the profile a known function of s and
t. Then when Fko,t} is the vorticity at the plate we have the following two

equations
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i 'f"(o,t)

21 1 ! ; [ S = 1_ q

fv (s,t) + a(t)(s-a)} + B(t) U(t) + B(t)(s -a) = = {z s~ oy 99 (40.14)
4 +2 ~ =
— T(o,t) do = U(t) v(t), (40.15)
ac 1,

where ? is the density of the free vorticity at the trailing edge and U(t) the
velocity of Q aleng H. Eguation (40.15) states that the circulation along a
contour which surrounds the profile and floats with the £luid has -to be cunstant.
¥From these equations we have to solve B(t) and ?(o,t), ;hen‘our semilinear
optimization problem is solved. We remark that in the last two equations we

can subtract from ?(c,t) the 0(e?) part (40.6) when we meglect in (4C.14) at

the left hand side the term a(t) (s - a).

b) As a second example we consider the large hub propeller, which is also
discussed in [1] from a more practical point of view. We assume that the hub
induces disturbance velocities of 0(60)-and that the prescribed thrust T to
be delivered by the blades is 0O(e). For simplicity these blades are assumed

to be infinitely thin. The base motion of this system is a rotation around

Fig. 40.3. The two bladed, large hub propeller.

the x-axis with a constant angular velocity w, while it moves forward with

a constant velocity U. We suppose that in the base motion the blades do not
disturb the flow around the hub. This can easily be achieved. Choose some

line %} which is not necessarily straight, connected to the hub, which moves
with the hub and remains in the same relative position. The paths of the
particles of fluid which cut the line zlform.a more or less helicoidal surface

H!.When the blade W1 is part of this surface, then it does not disturb the fluid

flow around the hub. In the same way the other blades can be formed.
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As the base motion plus the added motion we define the motion of a large=
hub propeller with the same rotational velocity and velocity of advance as
before, which however deviates geometrically as well for the blades as
possibly for the hub, from the original one by 0(e).

Now the theory of the previous section says that the free vorticity shed
by the optimum propeller can be found by optimizing bound vorticity far behind
the propeller, moving along the surfaces Hi (figure 49.3) which zre formed by
the particles that have passed along the blades. As we have seen the optimum
free vorticity on the Hi can be found by translating them as rigid and impermeable
surfaces in the x direction with some velocity Al (31.3). The unknown factor
1] follows again from the prescribed total thrust T.

It is clear that no concentrated vortex exists at the x axis which is the
line in common of the surfaces Hi, otherwise the efficiency of the system
would be zero. From this follows the important conclusion that in the optimum
case the circulation around the blades along sOme contour g (figure 40.3) is
zero at their roots.

We draw the attention to the essential difference between this hub of finite
length and the infinitely long cylindrical hub of section 3.1. There the
vorticity shed by the root of the blade at the cylinder never enters freely the
fluid and hence the circulation at the root of the blades need not to be zero.
Hence from this point of view an infinitely long hub is rather pocr approximation.

which conceals some interesting phenomenas.

Exercises.

1. Calculate the total force and the total moment acting on the flat profile
in the base motion, when the vorticity is given by (40.6). For the suction
force at the leading edge use (23.20).

2. Show that the added motion in the case of the profile is not unique to
realize the optimum propulsion, discuss another possibility which is also
optimum.

3. Discuss in the case of the large hub propeller, in which way the profiles
of the blades follow from the known optimum free vorticity far behind the
propeller. This can be done most easily by also changing the shape of the
hub by deformations of 0O(e), by which the hub is no longer rotationally
symmetric. When the hub is kept rotationally symmetric it will induce
velocities on the blades because the normal component of the velocity at its
surface has to remain zero.

4. Give an analogous reasoning for the large hub propeller for the case
that the blades have finite thickness((O(eo)), however possess a sharp trailing

edge. Again the thrust T is assumed to be of 0(e).
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41. Existence of optimum propellers

Questions of existence of optimum propulsion systems are rather delicate.
We confine ourselves to the three regimes described in section 21, which we
will discuss successively. These discussions will not at all be exhaustive
because several of the problems connected with themhave not been solved up
to now,

We start with regime i. In order not to get lost into too much generality
we will consider the case of only one lifting surface W which has to deliver a
prescribed mean value T of the thrust.

When the reference surface H is prescribed the calculation of the optimum
free vorticity is not difficult by numerical means. We have to solve a Neumann
problem of which the solution from the point of view of applied mathematics
can be found for instance by finite difference methods, then the existence
seems to be assured.

A more complicated situation arises when the reference surface H is not
fixed, hence when we consider a class of lifting surfaces. For instance we

assume a working region -« < x < 4w, ﬂy| < a, ﬂz1 < £ and because we want

Fig. 41.1. Large amplitude flexible wing, regime i.

to have some more or less technically realizable reference surface we put
constraints on the slope, curvature and some higher order partial derivatives.
The spatial period will be b in the x direction. We consider a space of

admissable reference surfaces H of the representation
Y = gix,z) . ﬂZ! < a. (41.1)

The space of all such continuous functions with continuous partial derivatives
upto and including the second order, will be denoted by G. As a norm we introduce
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) (41.2)

‘g!fg‘ = max ﬂg!; 'ng'{gzl’ngxl’igxz]'lgzz|

0 <x<b
',z\u <2

This space is complete which means that for each Cauchy sequence‘fgm} €G

there consists a g € G with

lim ][Igm—-g|v| + 0. (41.3)

m>®

Next consider the subset F € G consisting of elements g € G,which have continuous
third order partial derivatives with

ig‘ iAll lgxl iAzl ngl iA3J wwe g lgxzz? £A9r ]gZZZ; iAllc' (41.4)

Then it can be shown that F is relatively compact, by which is meant that
the closure F of F is compact.

On F we define the functional E which is the kinetic energy left behind
per period b in the x direction when the lifting surface W moves along
some H {y = g(x,z)) in an optimum way and delivers a mean thrust T, This
functional can be expressed as follows.

Denote by'clf,1 = ¢1(x,y,z) the velocity potential which belongs to the Neumann
problem

ad
= (E,n) = co?qgﬁﬁdn), (41.5)

where (£,n} is a point at H. Suppose ¢ = AIQI belongs to the optimum wing

when W delivers the mean thrust T. Hence (33.3)

+
uy : ‘
5 M R (e e,m}_ co%)x)(e,n)dc = T. t41.6)

The lost kinetic energy E can by (41.5) and (41.6) be written as
1

) + 09 2m2. -
- 2 1o, 7 —2L gq = BT +
E=tp 2 ® [ [ o] 5—a0= S U le g,m1¥ cos xfEsmas) . (41.7)
21U Hbi

From the point of view of applied mathematics there seems to be little
doubt that the integral at the right hand side of (41.7) is a continuous
functional for the norm (41.2) on G. In fact consider two surfaces H and E‘
represented by two equations y = gi{x,z) and y = g(x,z), then to each of these
surfaces belongs lost kinetic energy E and E in the optimum case for the
same T and mean velocity of advance U. Then it is acceptable that for fixed

g(x,2z) and variable Ekx,z) for each € a §(eg) exists such, that, when
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[lgx,2) = G(x,2) | < 8(ey, (41.8)

then

e = E| < «. (41.9)

A rigorous proof for this statement is rather complicated and should be given
for a good foundation of the theory.

Assuming this for granted we have a continuous functional E on a relatively
compact subset F € G. Such a functional assumes its extremes hence also its
minimum at the closure F of F. Hence G being complete this minimum is assumed
for some v = g(x,z) € G. This means there exists an optimum reference surface
H with continuous and bounded slopes and curvatures which satisfy (41.4) upto
and including A.

Next we shortly consider the two dimensional case of regime ii. Suppose
the only condition on the lime L (figure 40.2), along which the rigid profile
is moving, is that it can be described by a one valued function of x and
has to remain within the strip lyl < a. Then it is proved in [23] that we
can construct a series. of rather complicated lines L by which the wake, which
was defined in section 40, can be made wider and wider. Then by our semi linear
theory the free vorticity shed by the added motion is transported over
larger and larger distances at both sides of the mean direction of motion.
From our optimization theory it follows that the efficiency of such a series
of motions tends to one and it is seen that no optimum can exist (see the
exercises) .

When we demand that the lines L, hence the base motions, have to be
sufficiently smooth, then it can be proved that the efficiency, under the condition
of a prescribed mean thrust T and mean velocity of advance U, cannot approach
one.

At last some remarks on regime iii.‘Whenithe constraints on the flexible
profile ¥ = 'h(x,t) (22.1) are chosen too loosely no optimum profile motion
will exist. It can be shown » that then profile motions can be designed
which have the possibility to wriggle with sharper and sharper bends,
by which the efficiency increases {theoretically), such that in the limit
there is no longer a decent profile. This happens when for instance we demand
only

In(x,t)| < B, (41.10)

‘hence for bounded amplitudes. When we only admit motions which satisfy a
sufficient number of constraints on their partial derivatives with respect to

time and place it can be proved that optimum motions do exist.
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Exercises.

l,a. Consider in the semi linear theory a series of base motions, for
instance in the two dimensional case, by which the wake can be made
wider than any given width. Discuss that then the efficiency of the

propulsion tends to one for a fixed value of the prescribed thrust T of 0{e).

1,b. Discuss that when a series of base motions of a profile can be
constructed for which the efficiency tends to one for fixed T, no optimum

base motion can exist in the semi linear theory.
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