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ABSTRACT

Multiple robots are increasingly being considered in a variety of tasks requiring continuous surveillance
of a dynamic area, examples of which are environmental monitoring, and search and rescue missions.
Motivated by these applications, in this paper we consider the multi-robot persistent coverage control
problem over a grid environment. The goal is to ensure a desired lower bound on the coverage level of
each cell in the grid, that is decreasing at a given rate for unoccupied cells. We consider a finite set of
candidate poses for the agents and introduce a directed graph with nodes representing their admissible
poses. We formulate a persistent coverage control problem as a MILP problem that aims to maximize
the coverage level of the cells over a finite horizon. To solve the problem, we design a receding horizon
scheme (RHS) and prove its recursive feasibility property by introducing a set of time-varying terminal
constraints to the problem. These terminal constraints ensure that the agents are always able to terminate
their plans in pre-determined closed trajectories. A two-step method is proposed for the construction of
the closed trajectories, guaranteeing the satisfaction of the coverage level lower bound constraint, when
the resulting closed trajectories are followed repeatedly. Due to the special structure of the problem,
agents are able to visit every cell in the grid repeatedly within a worst-case visitation period. Finally, we
provide a computational time analysis of the problem for different simulated scenarios and demonstrate

the performance of the RHS problem by an illustrative example.

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in the capabilities of robotic agents have led
to an increase in the number of the tasks agents can perform as
a team. Among others, particular tasks requiring repetitive execu-
tion have attracted interest, examples of which are area surveil-
lance [34], cleaning [10] and forest fire monitoring [8]. In such
tasks agents need to cooperatively plan their moves so that a given
area is continuously covered. This problem is known in literature
as the Persistent Coverage Control (PCC) problem [24].

PCC is closely related to the Coverage Control (CC) problem in
which an area needs to be covered either once (sweeping methods
[1,11,23,31,40]) or until a desired level of coverage is reached (dy-
namic coverage methods[12,14,29]). Sweeping methods are based on
the decomposition of the area of interest in cells [11] assigned to

* This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.
* Corresponding author.
E-mail addresses: mariacha@kth.se (M. Charitidou), T.Keviczky@tudelft.nl (T. Ke-
viczky).
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the agents either online [31] or prior to the task. Contrary to pre-
vious approaches, in which coverage was achieved by non-moving
agents optimally placed in each Voronoi cell of the area [6], here
mobile agents are considered, covering the assigned cells by fol-
lowing a lawn-mowing pattern [23]. Other methods [1,40] approx-
imate the area with a grid and construct Spanning Trees connecting
the centers of the cells such that the maximum distance between
any two agents is minimized.

In all these methods every point in the area is considered
equally important for coverage. This assumption is relaxed in Dy-
namic Coverage methods [12,14,29], where each point has a value
assigned to it expressing its coverage priority. Here, the agents are
equipped with sensors with a known sensor model and the goal is
to provide a desired level of coverage at fixed points in the area.

A common characteristic of the aforementioned CC tasks is
their finite duration. This differentiates them from PCC tasks as
the latter are executed repeatedly. In literature several solution ap-
proaches to the PCC problem are proposed that either decouple
the sensor deployment problem from trajectory planning [27,36] or
consider a motion planning framework under coverage specific
objectives (patrolling methods [25,30,32], coverage level methods

0947-3580/© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.
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[26,28,33,35,]). To overcome the complexity of PCC, authors in
[27,36] propose a multi step method in which closed paths are de-
signed for guaranteeing periodic coverage of points/sub-areas with
known, predetermined periods while maintaining a desired level
of coverage [27] or respecting frequency of visitation constraints
[36]. In [4] stochastic Petri nets are considered for modelling the
PCC problem under stochastic duration times of the coverage tasks
while [3] proposes policies ensuring asymptotic satisfaction of a
set of given specifications.

Patrolling methods consider a graph G with vertices defined as
a finite set of points in the area to be covered and the goal is to
design paths such that the maximum time elapsed since a point
was last visited is minimized over the vertex set. In [30] polyno-
mial time methods are proposed for the design of agents’ paths
in chain, tree and cyclic graphs. In [25] a greedy policy is intro-
duced for non-holonomic agents while in [32] closed paths are de-
signed considering different frequency of visitation constraints for
each vertex of G. In all these methods, paths are designed once
and possibly offline with the PCC task being considered successful,
when agents follow these paths repeatedly.

While patrolling methods consider a static environment, in cov-
erage level based methods the "level of coverage” of a point in
the area to be covered is considered time-varying with known
dynamics. Early works consider a finite set of points in the area
and assume the existence of a single [19] or multiple closed paths
[33] passing through every point in the set. Then, the goal is to
design speed controllers so as the coverage level at these points is
asymptotically driven to a desired value [19] or becomes asymp-
totically bounded [33]. Infinitesimal Perturbation Analysis was used
in [20] for designing closed, elliptic trajectories minimizing the
"coverage level loss” over a finite set of points in the area to be
covered or more recently for allocating agents along linear seg-
ments minimizing coverage level loss while accounting for dwell
times at the points of interest [41-43]. In [26,28] the coverage level
of every point in the area is considered and the goal is to plan
agents’ actions so that a desired level of coverage is maintained
over the area. To that end, authors propose feedback control laws
steering agents towards less covered points in the area lying in-
side the agents’ Voronoi cells. Nevertheless, authors do not con-
sider frequency of visitation constraints in the area while cases of
non-uniform coverage are allowed with the coverage level of some
points being significantly lower than the desired one or close to
zero.

In this paper we consider a grid environment and a team of
robots responsible for maintaining a desired lower bound on the
coverage level of each cell in the grid at all times. Similar to
[26,28], the coverage level of each cell is decreasing over time for
non-visited cells. Nevertheless, in our formulation we allow only
one agent per time step to contribute to the coverage level of each
cell by resetting it to a given constant. As a result, and due to the
lower boundedness of the coverage levels, we can derive our first
contribution as a lower bound on the frequency of visits at ev-
ery cell. This allows us, in contrast to existing literature, to provide
simultaneously both an upper bound on the worst-case revisiting
time interval length and a lower bound on the quality of coverage
of each cell. The second contribution of this paper is the formu-
lation of a finite horizon MILP problem, the solution of which de-
fines the trajectories of the agents satisfying the lower bound con-
straint over the horizon. To guarantee feasibility when the prob-
lem is solved in a receding horizon scheme (RHS), a set of time-
varying terminal constraints is added to the problem. These con-
straints force agents’ final poses to be along a set of predefined,
closed trajectories and we propose a two step method for their de-
sign. To the best of our knowledge, this is the first online trajectory
planning method with both worst-case frequency of visitation and
coverage level guarantees.
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Fig. 1. Representation of the admissible moves for an arbitrary node (x;,.y;,, ;).
For simplicity we omit x,y, 6 and use only the indices iy, iy, i3.

The remainder of the paper is organized as follows:
Section 2 introduces the basic elements of the problem. In
Section 3 the MILP formulation of the problem is established.
Section 4 presents the RHS-problem and the proposed two-step
method for designing the closed trajectories for the terminal sets.
Finally, in Section 5 numerical simulation results are shown while
in Section 6 our conclusions are summarized and directions for
future research are proposed.

2. Problem formulation

In this work a known, compact area Q c R? is considered. The
area is decomposed into a grid of ny, =C x L square cells with
L, C denoting the number of rows and columns in the grid respec-
tively. Without loss of generality a Cartesian coordinate system is
assigned to the grid and an index w e [ = {1, ..., ny} to each cell in
the grid. A team of n, agents is employed for the task. The agents
are equipped with identical sensors of finite and known sensing
area.

Remark 1. Grid-based environments have been extensively consid-
ered in robotics for path planning, given a starting and goal posi-
tion of an agent [2,16,37]. The grid is often abstracted by a graph
with nodes representing the centers of the cells and edges con-
necting the neighboring cells, allowing the use of graph based al-
gorithms such as Dijkstra and A* [15] for finding the shortest path
with respect to a given cost function. Contrary to these approaches,
where the size of the cells is often chosen arbitrarily small, in (per-
sistent) coverage control problems a coarser grid can be generally
considered, where the size of the cells is at most equal to the sens-
ing area of the agents. This low resolution choice of grid offers sev-
eral computational benefits while ensures that no point in the area
is left uncovered [13].

Each agent is assigned to an index re K= {1,...,n,} and its
position and heading at time step k is denoted by p¥ and 6 re-
spectively. In this work, the agents’ allowable poses (positions and
headings) are finite and agents’ moves are constrained. At each
time step k an agent is placed at the center of a cell w € I, denoted
by cw with its heading 6F taking values from the set {0, 7, %, 32 }.
Based on their current position and heading, agents are able to
perform one of the following actions:

« Stay at place (position and heading stays the same)
 Turn at place by 90°
« Move to an adjacent cell in the direction of their heading

Let the allowable poses of the agents be of the form
(Xi1’yi2*9i3)' i1 € {1,...,C}, iz € {], ...,L}, i3 € {1,,4} with 91 =
0,0,=%,0;=m, O4= 37” Then, for arbitrary center coordinates
(xi,,¥i,) depending on the heading 6;,, i3 € {1,2, 3,4} the admis-
sible moves are defined as in Fig. 1.
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To simplify notation we introduce a single-index label q to each
allowable pose (x;,,y;,, 0;,) with g defined as:

q=4(@(1-1)+4@{—-1)C+is, (1)

where iy €{1,...,C},ip e{1,...,L},i3 €{1,2,3,4}. Based on the
above definition the index of the cell w is expressed with respect
to g by the following equation:

q
w= [ 4] .
Using the simplified labelling, we introduce a directed graph
G(V,E) with V the set of nodes q defined in (1) and E the set of
admissible moves as presented in Fig. 1.

Next, we consider the coverage level at the center of cell wel
at time step k, denoted by z,(w). Depending on the task, the cov-
erage level may express the amount of dust removed in a cleaning
task, the temperature in a heating task or the quality of informa-
tion in an information gathering task. In [26,28] authors consider
a non-negative coverage level value for each point that increases
per time step with respect to the contribution of every agent at
the corresponding point. Here, we allow at most one agent to con-
tribute to the coverage level increase per time step. More specifi-
cally, we define the coverage level dynamics as follows:

(W) = dy(1 - 68)z 1 (W) +0Z, (2)

with dy € (0, 1) a known, constant value called the coverage decay
factor, Z > 0 a known, constant value to which the coverage level
resets when an agent visits the corresponding cell center and oX a
binary variable representing occupancy of cell w by an agent, de-
fined as:

ok_ 11, 3rek: [4]=w
" 10, otherwise ’

with g¥ the pose of agent r at time instant k. Based on (2), the
coverage level of cell w decreases with a rate proportional to the
coverage decay factor dy, when w is not covered and resets to Z if
an agent is placed at its center.

In many coverage tasks we may require agents to cover the area
providing at least a sufficient level of coverage equal to a constant,
pre-defined positive value Z < Z. Therefore, the following should
hold for every k:

z(w) = Z. (3)

Based on the above, we are now in a position to define the prob-
lem considered in this paper as follows:

Problem 1. Given a planning horizon of N time steps, a team of
n, agents, the graph G defining the allowable poses and moves
of the agents and the coverage level dynamics defined by (2), de-
sign the agents’ trajectories such that (3) is satisfied for all k € Ty =
{1,..., N}.

If N =00 we will refer to Problem 1 as the infinite horizon PCC
problem and consider Ty\{N} = Ty.

3. Formulation of the MILP problem

In this section we formulate Problem 1 as a Mixed Integer Linear
Program (MILP) that aims at maximizing the sum of the coverage
levels of all cells while penalizing agents’ intention to visit cells
covered by peers at the previous time instant. A set of binary vari-
ables qu, is introduced expressing whether a transition from pose

geV to q eV is activated or not at time step k. Their exact defi-
nition is the following:
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if at time k 3 r € K performing transition (q, q')

X =)L .
aq 0, otherwise

where (q,q’) €E, k € Ty.

The above variables capture the change on the agents’ poses
while at the same time remain agnostic about the agent perform-
ing the pose change. Moreover, their number depends on the size
of the grid and the horizon length, i.e, it is independent of the size
of the team.

In order to discourage distinct agents from covering the same
cell at subsequent time instants, we introduce an extra set of bi-
nary variables uX, depending on qu/ such that the following con-
straints are satisfied:

(4)

My = D X <0, (5a)
(q.9")eVw
wh— Y Xt<o, (5b)
(5,5")eVin\Vyy
> Kt D xJ-mns1, (5¢)
(9.9)eVw (5,5")eViw\V,

Vwel, ke Ty\(N} with Vi ={(q.q)eE: qeV, ¢ =4(w-
D+1,...4w}, Vi, ={@q)€E: q¢.¢ =4w—1)+1,..., 4w},
Constraint (5a) ensures that uk <1 if there exists an agent r
covering w at time step k. Similarly, (5b) implies that uk <1 if at
time step k + 1 another agent r, enters w. If the agents rq, ry visit
w at time step k and k+ 1 respectively, by (5¢) we have uk > 1.
Hence, 1%, = 1. In all other cases u¥, = 0. In many coverage appli-
cations it is often desirable to minimize unnecessary visits at cells
in order to save resources and minimize costs. Therefore, as we
discuss later in (11), the cost of subsequent visits at each cell w
is linearly introduced with respect to X, and penalized over the
horizon N.

In addition to the aforementioned binary variables, we define
the continuous variables z,(w) € [0, Z], w € I, k € Ty expressing the
coverage level of cell w at time step k.

A direct consequence of the variable definitions stated above is
the quadratic form of the coverage dynamics in (2), due to multi-
plication of decision variables. Addressing this problem, we refor-
mulate the coverage level dynamics using a set of linear inequali-
ties as follows:

—zW)+Z Y x5, <0, (6a)
(q.9)eVw
(W) —dwzi (W) -2 Y Xk, <0, (6b)
(q.9")eVw
(W) — dyzi 1 (W) — (1 —dma)Z Y X, >0, (6¢)
(9.9")€Vw
7 (w) < Z, (6d)

with wel keTy and dmax = Mmaxyedw. Due to (4), ok=
Y @0V xgq,, for every ke Ty and we . If ¢ , =0 for all (q,q') €
Vw (e.g., no agent visits w at time step k), then due to (6b) and
(6¢) we have:

(W) = dwzy_1 (W).

On the other hand, if o/} = 1, then, due to (6a), (6d) it holds that
z,(w) = Z. Therefore, satisfaction of (6a)-(6d) ensures satisfaction
of the equality constraint (2).
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An important consideration for the current problem formula-
tion is guaranteeing that the variables x’éq/, k € Ty uniquely define
the trajectory of each agent over the horizon. To achieve this, we
introduce the following constraint:

X
dooxk, <1, (7)

(q.9)€Vw

w e I, k € Ty. This guarantees that each cell is visited by at most
one agent per time step. Therefore, given the pose transition his-
tory, starting at k= N and back-propagating in time returns the
initial poses of the agents. Given that agents are initialized at dif-
ferent cells, we may conclude the unique correspondence between
trajectories and agents.

The aforementioned result is partially based on the fact that
agents’ pose transitions are admissible and exist over the horizon.
To ensure the above, we consider the following constraints:

DY kg =nr, kely (8a)

qeV q'ev

k k+1
XQQ' Z Xq/Q” <0,
(q.9")eE

ke TN\{N}’ (q’ q/) eE. (Sb)

Constraint (8a) ensures that the number of pose transitions per-
formed over the graph G at each time step k € Ty is equal to the
number of agents in the team. Additionally, by (8b), if x’éq, =1,

then there should exist at least one variable x’;f;}/ with (q/,q") € E
such that XZU’ = 1. This implies that an agent must perform a tran-
sition from pose q’ to pose q” at time step k+ 1 only if (¢/,q") € E,
i.e.,, only if the transition (q’, q”) is admissible. Finally, constraints
are introduced to define the initial pose transitions of the agents
and initial coverage level of the cells. In addition, we consider
(3) over the horizon and ensure that the problem variables are
taking values among the admissible. These are summarized by the
constraints below:

Y o Xxe=1 ek (9a)
(qr.q)eE
ow)=2Z, wel, (9b)
Z(w) > Z, wel keTy, (9¢)
Xk, €{0.1}, (q.9) €E keTy, (9d)
uk €{0,1}, wel keTy\{N}, (9e)

where g € V is the initial pose of agent r,1 € K.
Let x=[b" 2 [LT]T be the variable vector with b the
stacked vector of xgq,, (q,q/) € E,k € Ty, z the stacked vector of

zz(w),wel keTy and u the stacked vector of k., wel ke
Tv\{N}. In addition, let f,,fi,, i, be the length of the vector
b, z, p respectively with n, = (ny — 2(C+L))N, fi; = nyN and 1, =
nyw(N — 1). Then, we are in position to define the problem consid-
ered in this paper as follows:

max J(x) (10)
subject to the constraints:
(5a) — (5¢)
(6a) — (6d)
(7)
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(8a) — (8b)
(9a) — (9e)
with J(x) the objective function of the problem defined as:

Joo =[05, 15, —B1;]x (11)

where 1, =1 1 1] is the vector of 1s of length p and
B a positive constant expressing the importance/weight of forcing
agents to avoid cells covered at the previous time step by peers.

In the above problem revisiting frequency constraints are not
explicitly defined. However, based on the coverage level dynamics
and the required lower bound of the coverage level of each cell we
can state the following:

Proposition 1. If problem (10) is feasible, then the resulting trajecto-
ries guarantee a lower bound f,, on the frequency at which each cell
w, w e | is visited, defined as:

fue \‘an—anJ’1
v Ind, :
Proof. The coverage level of w evolves over time based on (2) as

follows:
ze(w) = dw(1 — 0%) 21 (W) + OfZ.

Due to (2), z,(w) is monotonically decreasing between two sub-
sequent visits at the cell. Assuming that an agent covers cell w at
time step kq,we have that zy, (w) = Z. We need (3) to hold until
the next time an agent visits w, thus:

d\z>72, k> ky.

Solving the inequality above leads to: k < and since ke Z

we have the result. O

InZ-InZ
Indy

4. Modified MILP with guaranteed feasibility

The MILP problem presented above guarantees a desired lower
bound on the coverage level of the cells for N time steps. However,
PCC is by its nature an infinite horizon problem, in which agents’
actions need to be continuously planned so as the total coverage
level of the area is maximized. As solving the infinite horizon PCC
problem is computationally intractable, motivated by Model Pre-
dictive Control schemes [22], our approach is to implement the fi-
nite horizon solution of the problem described in Section 3, in a
receding horizon fashion: each agent implements their first move
from the solution of (10), then resolves the problem over a shifted
time horizon in the next step, starting from their new pose. How-
ever, for N < co problem (10) might not be always feasible due to
different initial conditions, especially when the problem is solved
recursively. In order to address this problem, in this Section we
propose a modified version of (10) in which a set of time-varying
terminal constraints is added to the problem as in [17]. These con-
straints force agents to move at the end of the prediction horizon
along predefined, closed trajectories that are designed to guaran-
tee the lower coverage level bound when repeatedly followed. In
that way, it is possible to prove the recursive feasibility property
of the new problem when it is solved under the receding horizon
scheme.

Remark 2. Model Predictive Control has been extensively con-
sidered for setpoint stabilization [9]| and reference tracking [19].
The problem involves the solution of a finite horizon optimization
problem online and under certain assumptions can ensure stabil-
ity of the system under consideration. Although initially proposed
for deterministic systems, it can be efficiently applied to uncertain
systems with bounded or unbounded noise ensuring asymptotic
convergence to a neighborhood of the goal position or reference



M. Charitidou and T. Keviczky

trajectory by means of an offline designed controller [18] or con-
straint tightening techniques [21].

Let u e V™ be the stacked vector of the agents’ current poses
and z" € [Z, Z]™ the vector of the coverage levels of the cells de-
fined by (2) based on u. For M € N, M > 0 consider a sequence of
sets {So, ..., Su—1} with M the length of the closed trajectories and
Sy, v=0,...,M —1 defined as:

u -
S,,:H:Zu]e[Z,Z]”WxV”’:z“:z,‘,‘,u:uv}, (12)

where z} is the vector including the coverage levels of the cells at
time step v when the agents’ poses are defined as elements of the
vector u,. The sets S, are defined such that UVM;OI Sy introduces the
set of the agents’ closed trajectories. Therefore, it holds that:

{(uL,uLH)eE, ve{0,....M-2}

, 13
(uj, ,,up) €E (13)

for every r € K with ul, € V defining the pose of agent r at time
step v. Due to (13), z}} ; (w) is defined by (2) based on zj(w), u,
for every v e {0,...,M -2}, w eI and z§(w) based on zy; , (w), uo.
A systematic procedure on how to design these trajectories is pre-
sented later in Section 4.1.

Lett; > 0,i=0,1,... denote the absolute time instants at which
the optimization problem is solved. The team is assumed to be ca-
pable of communicating with a central base or a specific agent
responsible for solving the MILP problem. At each time instant
t; agents communicate with the base/agent receiving information
about their planned trajectories. Each agent performs the first pose
transition along its recently planned trajectory and the procedure
is repeated over a shifted planning horizon.

Let Xif € {So,....Su-_1} be the terminal constraint set at time

t;. The coverage level constraints defining Xif in (12) are inherently
linear and thus can be directly incorporated to the modified MILP
as constraints of the form:

wel (14)

On the other hand, u = u, is not linear in X. A naive but straight-
forward way to introduce the final pose constraints linearly could
be the following:

> X =1, Vau (15)
(9.9v)€E

zy(w) =z (w),

where g, €V is an element of u,, v e {0, ..., M — 1}. Although the
above constraint forces agents’ poses to be along one of the pre-
defined closed trajectories, it does not guarantee that agents will
have the same initial and final pose. For example, this could hap-
pen when two agents ry,r, with initial poses gr,qr, €V "flip”
poses at the end of the horizon. To avoid this and drawing in-
spiration from [7], we introduce an extra set of integer variables
denoted by xX, w eI, k € Ty. These variables take values in K U {0}
and are responsible for keeping track of the agents’ moves over the
horizon. If the cell w is covered by agent r at time step k, kX =r.
Otherwise, we set kX = 0. This is equivalent to the satisfaction of
the following constraints:

K‘ﬁ, — Ny Z ngr <0, (163)
(q.9")eVw
itk Xk <n wEW, (16b)
)kl ek, Z x";q, <ny, (16c)
(q.9")€Vy
n
s n(n-+1)
RAUARLY (16d)
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Kk e KU {0}. (16e)

Constraints (16a), (16e) guarantee kX =0 for all cells w € I not
covered at k while (16b)-(16c¢) introduce n, inequalities of the form
K‘f‘vc >, c=1,...,n. In order for these inequalities to be true in
conjunction with (16d), (16e) kf_ =rc, c=1,....n; should hold.
Thus, the new variables are well-defined.

Considering the newly introduced variables in the modified
MILP, we may define their initial and final conditions within the
problem as follows:

qrt;
r, w=|-F
K0=1" [ 4 —| , (17a)
0, otherwise
T. w= u
Kx _ b ( 4_—| . (17b)
0, otherwise

where ¢r, €V is the pose of agent r at time ¢t; and uj, is the r-th
element of the vector u,.

Let X = [xT ICT]T be the new decision variable vector where
K is the stacked vector of the «X variables of length i, = nyN. At
each time instant t; the base/agent in charge updates the poses
of the agents and the coverage level of the cells such that g, =
qrt. T € K and zo(w) =z, (w),w el and proceeds with the solu-
tion of the modified-MILP problem defined as:

m;;ax]’(f() (18)
subject to:
(5a) — (5¢)
(6a) — (6d)
(7)
(8a) — (8b)
(9a) — (9e)
(14) — (15)

(16a) — (16e)
(17a) — (17b)
with z; (W) € [Z,Z] the coverage level fo cell w at time t; and
J®) = [Oﬁb 15, —ﬂlﬁu Oﬁ’(]ﬁ the objective function of the
modified problem for which J'(X) = J(x) holds.

At time ty the terminal constraint set Xof can be chosen as any

set of the sequence such that (18) is feasible. Suppose x/ =S

It follows that X{ =Syi1, X2f =Spi2, s XAf/,_l_V =Sy-1, XAf/,_U =
Sos s XI\];Fl = Sy. Then, for any i € N we can obtain the following
rule [17]:

Xg =S = X,-f = S(1/+i)moclM~ (19)

Based on the above we can state the following theorem:

Theorem 1. Suppose problem (18) is feasible at time t; with ini-
tial coverage level values z;(w),w €I, initial agents’ poses qry,. T €

K and terminal set Xif as defined in (19). Suppose u*(t;) =
[u;‘i+1 u;‘_m] e V<N is a feasible sequence of the agents’

poses found as a solution of (18) at time t;. Then, the problem will
be feasible at t;, 1 with the initial poses of the agents defined by u;‘iﬂ
and the initial coverage level of every cell w computed by (2) based

on z;,(w) and “Z-+1'
Proof. For any t; € N there exists an index p € {0,...,M — 1} such
Z*
that: I:“%+l\1\ll:| € X/ = St iymoam = Sp Where z .
it
tors including the feasible poses of the agents and the feasible cov-
erage levels of the cells at k =t; + N respectively. Due to (19) it

.
u; ,y are the vec-
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holds that:
X [Ser p<M-1
i+1 SO, p= M=1

In order for the problem to be feasible at t;;; a pose sequence

u(ty; ;) e V"N should be defined such that: 214N ex/

fi+l+N H
Consider the input sequence u(ti.) = [uz‘iﬂ ll;:,JrN U]
with:
u Upi1, p< M-1
“ Nuy, p=M-1
Due to (13), (u;!y,u") eE for any r. In addition, z;, n(W) is

computed by (2) based on ZZ+N(W)~“ for all w e I. For the cells
covered at t;;; + N both the coverage levels at t;, 1 + N and the
coverage levels of the terminal set corresponding to these cells
are equal to Z. For the rest of the cells due to the linear cov-
erage level dynamics of (2) and the construction of the sets, it
holds that thﬁN(w) =dy ZZ+N(W) > dw Zp(W) = zg/ (w) with p’ =

p+1ifp<M-—1 or 0 otherwise. Hence, 214N e X/ . holds.
u[i+1 N i+1
This completes the proof. O

4.1. Designing the terminal trajectories

An important question arising at this point is how to design the
closed trajectories guaranteeing the recursive feasibility of (18). To-
wards this goal, we propose a two-step method for designing a set
of closed trajectories for the agents. These trajectories are jointly
constructed to ensure satisfaction of (3) at all times when agents
follow their corresponding trajectories repeatedly. In the first step
of the method the closed trajectories are found as the solution
to an optimization problem of the form (18) in which we make
the following modifications: 1) discard the terminal coverage level
constraints (14) for every w €I, 2) introduce constraints ensuring
that the initial and terminal poses of the agents are the same and
the corresponding variables «X at time steps k=0 and k = M sat-
isfy kM = k0 and 3) add the following constraint to the problem:

M
Z Z x’éq,zl, wel

k=1 (q.9")eVw

guaranteeing that each cell of the grid will be covered at least once
over the planning horizon of length M. The resulting trajectories
guarantee the satisfaction of (3) when they are followed by the
corresponding agents once. However, (3) might be violated when
the same trajectories are repeatedly followed. To resolve this is-
sue, we consider a second step and design a Linear Program (LP) is
designed aiming at finding the minimum Z value for which (3) is
always satisfied when the trajectories of step 1 are followed in-
finitely many times. This problem is of the following form:

minZ (20)
subject to:
zcw) =dw(1 =)z (W) +0kZ, ke Ty wel (20a)
STW
avl;z{l’ ATk =W o wer (20b)
0, otherwise
wo=uw, kely (200)

o(w) =zys(w), wel (20d)
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up = uys, (20e)
ziw) e[Z,Z], keTywel, (20f)
where Ty = {1, ..., M} and u, 4, z;  the vector of the agents’ poses

and the vector of the coverage level of the cells at time k as found
in step 1, respectively. The optimization problems at step 1 and 2
are solved over the same, fixed horizon M. If for a given M the
MILP problem at step 1 is not feasible or a maximum computa-
tional time limit is reached, a larger M can be chosen [5]. If M
reaches a maximum expected value, then it is possible that Z can
not be ensured with the given number of agents n,. Hence, the
designer should consider increasing the number of agents in the
team or decreasing the worse case visitation frequency of each cell
by increasing the value Z at step 1.

5. Simulations

In this section we examine the computational performance of
(10) under different scenarios and validate the effectiveness of the
method presented in Section 4 with an illustrative example. All
simulations were run on an Intel Xeon W-2145 3.70 GHz CPU, 31GB
RAM computer using MATLAB 2018b while the MILP problems are
solved using the commercial solver GUROBI 8.0.1. In the follow-
ing simulation experiments a computational time-limit is set in
GUROBI equal to 5 hours.

5.1. Computational time analysis

For the computational complexity analysis we consider a closed
environment of size 24 x 24 m? decomposed into a 6 x 6 grid with
4 agents. The agents’ trajectories are planned over a horizon of
N = 10 steps, unless otherwise stated. Different maps of coverage
decay factors are considered with the average decay factor value
being lower bounded by 0.85. We set Z =300, Z=20, §=0.38.
Keeping the other elements of the problem unaltered, we consider
changing one of the following: 1) the team size, 2) the planning
horizon length and 3) the grid resolution when 20 different decay
factor maps are given.

In the first experiment we consider teams of size n, =3,4,5
with the agents initially placed at cells w; = 6i, i € K with headings
equal to . An example for n, = 4 is shown in Fig. 4. In the second
experiment, 4 agents are employed for the task and their trajecto-
ries are planned over an optimization horizon of N = 7, 10, 12 time
steps. In all these experiments we assume that the environment is
already decomposed into a 6 x 6 grid. In the last experiment, we
introduce different grid resolutions and plan the 4 agents’ trajec-
tories over a planning horizon N = 10. Here, we consider a grid
resolution o x o with o =4,6,8. Let £y (wl,) denote the set of
points (x,y) € R? belonging to the i-th cell of the grid of resolu-
tion o x & withi eIy, Iy = {1,...,«2}. In addition, let us introduce
the set Jo (W},) as:

JaWh) = {J €6 : La(Wh) N Le(Wh) # 0}

This set includes the indices of the cells in the 6 x 6 grid "sharing”
points (x,y) e R? with wi,. Based on that, we may define the decay
factor dwf of the cell fo, iely in the a x o resolution as follows:

d,; = min {atwé e Ju(wWh)) (21)
for i € Iy, o = 4, 8. The agents are initially placed at cells with in-
dices i, i =1, ..., 4 with headings equal to 7. As found in practice

Z =300 renders many problems infeasible. Therefore, only for the
last experiment Z is chosen equal to 800 as this is the smallest
value guaranteeing convergence for all 20 cases within the time
limit independent of the choice of resolution.
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Fig. 2. Coverage Level Map and Agents’ Poses at different time instants t; over the simulation horizon.
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while in (3c) a team of 4 agents is employed and paths are designed over an optimization horizon N = 10.

ot br 4

o S 3

o015 15

7 7
(b)

Fig. 4. The coverage decay map and the constructed terminal, closed trajectories
for Scenario 1 a) the map of the coverage decay factors d,, b) the resulting terminal
trajectories.

Number of agents In Fig. 3 the computational time required
by the solver to terminate is presented in seconds. When differ-
ent team sizes are considered (Fig. 3a) 80% of the cases achieve
convergence before the time limit with the average time increas-
ing from 8 to 4100 sec when n; is 3 and 5 respectively. This is a di-
rect consequence of the increased number of the cell combinations
when the number of agents and consequently the possible transi-
tions increase. As the number of agents increases, the number of
non-zero variables x*  increases proportionally allowing more cells

to be covered per time step. Therefore, the MILP solver, often based
on a branch and cut method, may require more time to expand the
tree of possible solutions, evaluate their feasibility and cost with
respect to the objective function, and possibly cut those that are
found non-feasible or costly with respect to the given solution.
Planning horizon Similarly, an increasing computational time is
observed in Fig. 3b when the horizon length grows with the aver-
age time for convergence being 6100sec for N = 12. This increase
is partially expected due to the proportional relationship of N with
the number of binary variables in the problem. We also note that
only 50% of the cases converge within the predefined time limit
highlighting the difficulty of the solver to cut infeasible nodes and

move towards the parts of the decision tree maximizing the objec-
tive function.

Number of grid cells In the final experiment, a different rela-
tion between the computational time and number of grid cells is
shown. When n,, = 64 the average time for convergence is 290 sec
with the latter reaching 4800sec for ny, = 16. This result may be
explained with respect to the number of cells with low decay fac-
tors and the (minimum) distance between the agents and the cen-
ters of these cells over the graph G. On the one hand, due to
(21) the number of cells w with low d,, factors increases both in
the 4 x 4 and the 6 x 6 resolution of the grid. It is indicative that
only 7.64% of the cells in average has a worst case revisiting inter-
val length < 10 in the 6 x 6 grid with this amount rising to 29.36%
and 15.78% in the 4 x 4 and 8 x 8 grid respectively (the number
of the cells with f,;! <10 is averaged over the total number of
cells of the 20 different coverage decay maps of this study). On the
other hand, agents may cover every cell in the 4 x 4 grid once after
4 time steps. This gives them the freedom to visit several different
cells over the horizon with the solver requiring more time to ex-
amine which combination of plans is the most coverage-effective.
On the contrary, agents should choose wisely which cells to visit
in the 8 x 8 grid so as (3) is always satisfied. This may often mean
that agents will reach cells with low decay factors exactly after
fi;! time steps due to the large number of edges in G to be tra-
versed. Hence, the number of feasible plans in the 8 x 8 grid is
significantly reduced compared to the 4 x 4 case resulting in the
surprising computational time result shown in Fig. 3c.

In general, we may conclude that the computational time in-
creases with the number of agents and the length of the horizon
while the results with respect to the grid resolution are amenable
to the choice of the decay factors. Nevertheless, as the resolution of
the grid becomes finer, we expect an increase in the computational
time when more coverage decay factor maps are added to the
study. For example, the complexity of the problem may increase
in the following cases: 1) when for every cell w, under the reset
value Z the worst case visitation period of w satisfies f;;! > 10, or
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2) when the reset value Z becomes higher, increasing f;!, for ev-
erywel

Future work will consider ways to decrease the computational
complexity of the problem. A promising way towards reducing the
"curse of dimensionality” is the design of a distributed framework
in which agents will design their plans based on local information
exchange among a small number of peers. When large areas are
considered, the problem could also benefit from an initial decom-
position of the area and an offline assignment of regions to small
teams of agents. Finally, with the rapid development of 5G tech-
nologies and cloud services, the proposed problem could be also
solved off-board by remote, powerful servers [39] while account-
ing for problems related to the quality of communication and the
latency.

5.2. Performance of the RHS scheme

To validate the feasibility of the modified MILP of Section 4, we
simulate a persistent coverage task in a grid environment of 6 x 6
square cells with 4 agents. We refer to this example as Scenario 1.
The lower coverage level Z is set equal to 20 and 8 = 0.8. The cov-
erage decay factors of the cells and the initial poses of the agents
are shown in Fig. 4a. Initially, we design the closed trajectories for
guaranteeing feasibility. The planning horizon of the closed trajec-
tories is chosen arbitrarily to be M = 18. The trajectories found in
step 1 do not satisfy (3) when repeatedly followed. Therefore, step
2 is initiated and Z is found as the solution of (20) and equal to
1995.5. The constructed trajectories are shown in Fig. 4b.

Given the closed trajectories and Z = 1995.5, we run (18) for a
simulation horizon of 100 steps. The optimization horizon N is set
equal to 18. Initially, the terminal constraint set X({ is chosen to be
So. In Fig. 2 the coverage level map of the grid and the correspond-
ing poses of the agents are shown at different time instants ¢;. As
expected, agents move towards the left part of the area where the
cells with the lowest dy, values are. At t;o the cell with center co-
ordinates (10,10) has a low coverage level. However, due to the ex-
istence of the terminal constraints an agent can reach it within 4
time steps before (3) gets violated. A video of the simulations for
Scenario 1 can be found in [38]. The average computational time
of the online optimization problem over the simulation horizon of
100 steps is 115sec. Observe that the computational time of the
online problem is moderate due to the existence of the terminal
constraints which most likely decrease the set of feasible solutions.
The computational time of the closed trajectories is significantly
higher verifying the results of Section 5.1 but it is performed of-
fline, hence does not affect the complexity of the online algorithm.

Comparison with a greedy policy To further illustrate the effi-
cacy of our method, we consider Scenario 1 and compare the re-
sults of the proposed RHS to those obtained by a greedy algorithm,
i.e., a method that plans the poses of the agents only for the next
time step t;. Motivated by [25,26], where agents move towards the
least covered areas, we solve (10) for N =1 without considering
(9¢), i.e., the constraint ensuring a lower coverage level Z. As men-
tioned in Section 3, this problem aims at maximizing the total cov-
erage level of the area while discouraging agents from covering
recently visited cells. As expected, the computational time of the
problem is significantly lower than the RHS. However, after 12 time
steps the coverage level of the cell with center coordinates (6,14),
i.e, w =20, becomes equal to 19.3341. Hence, it drops below the
desired lower bound Z = 20. In Figure (5) the coverage level of an-
other cell, namely the one with center coordinates (4,10) is shown.
When the greedy algorithm is considered, the cell is visited only
at time steps t; with i = 3,23 while for i > 40 its coverage level is
less than Z and 2;,(16) — 0 as i — 100. When (9c¢) is considered in
the greedy algorithm, (10) becomes infeasible at t; with i =13 as
no agent performing an admissible pose transition is able to cover
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Fig. 5. Coverage Level of the cell with center coordinates (14,10) as a function of t;,
obtained by a greedy algorithm and the proposed RHS scheme.
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w = 20 before its coverage level drops below Z. On the other hand,
as shown in Figure (5) and discussed earlier in this Section, the
proposed RHS scheme ensures that the coverage level of all cells
is lower bounded by Z and remains feasible for all t; with i > 0 at
the cost of increased computational complexity.

Comparison with no coverage penalization at subsequent
times Next, we study the effect of the objective function in the tra-
jectory design when the proposed RHS scheme is considered. More
specifically, we consider solving (18) without considering the u
variables and corresponding constraints (5a)-(5b). As a result, the
new objective function becomes J” (X) = [Oﬁb 1;, 0, 0 ])”(
where X = [bT 2" ICT]T. For the problem without the g vari-
ables, the optimal Z value is found using the proposed two-step
method equal to 1995.5 as in (18). In Figure (6), the normalized
coverage level of the cells, averaged over the simulation horizon of
100 time steps is shown, when the RHS scheme with and without
the w variables and corresponding constraints is solved. Specifi-
cally, we compute Z as follows:

100

ZI=——= z,(w), Ywel

1002 g k( )
Although, there are cells whose coverage level might be higher
when the constraints and p variables are omitted, the average cov-
erage level in both cases is equal to 0.5822. While the average cov-
erage level remains the same, the computational time of the prob-
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lem when no p constraints are considered increases to 143.61 sec
on average (as opposed to 129.8 sec of (18)). In both problems the
agents have avoided interchanging cells with only 1 case of "flip-
ping” over 100 steps. Finally, the minimum time between two con-
secutive visits (excluding the cases when an agent stays at place
after coverage) is on average 20% of the worst-case upper bound
of Proposition 1. Based on the above, we can conclude that for the
given scenario the presence of the u variables is beneficial both in
terms of coverage performance and computational complexity.

6. Conclusions

In this work we introduced an MILP problem for planning the
trajectories of agents performing a persistent coverage task in a
grid environment. In this task the goal of the agents is to main-
tain a predefined lower bound on the coverage level of each cell
when the coverage level dynamics are known. Due to the special
design of the problem a lower bound on the frequency of visita-
tion of each cell is also guaranteed. In addition, a modified version
of the problem is presented that is found to be recursively feasible
when solved in a receding horizon scheme. The key difference be-
tween the aforementioned problems is an extra set of time-varying
terminal constraints added to the latter problem. These constraints
force agents to terminate their plans at closed trajectories at the
end of the planning horizon in order to guarantee recursive fea-
sibility. We proposed a two-step method for the construction of
these closed trajectories such that the coverage level lower bound
constraint is always satisfied when the trajectories are repeatedly
followed.
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