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ARTICLE INFO ABSTRACT
Dataset link: https://doi.org/10.17632/xjf5cm Reliable detection of subsurface defects in thick composite materials is critical for ensuring structural integrity
kjm3.1 in industrial applications such as wind turbine blades, aerospace components, and marine structures. This paper
Revwords: addresses dataset scarcity in Al-aided damage detection for thick composites using infrared thermography
Co}rlrlu;osiges through a transfer learning framework leveraging finite element simulation data. Experimental datasets were
Damage detection obtained by conducting step-heating thermography experiments on glass-fiber-reinforced polymer (GFRP) and
Step-heating thermography epoxy resin plates with artificial subsurface defects. Transient thermal analyses were performed on finite
Finite element analysis element models to mimic the actual step-heating thermography process, resulting in a large simulated dataset
Deep learning containing thermal videos representing the plate’s surface thermal behavior during the heating-cooling process.
Transfer learning Principal component thermography was used to extract features from both simulated and experimental thermal
videos, compressing damage-related information in the raw data and enhancing the most informative features.
Noise analysis on the experimental data revealed key differences compared to the simulated dataset. A U-Net
architecture for image segmentation was implemented within the transfer learning framework, first pre-trained
on simulated data and then fine-tuned with experimental data. The results revealed fundamental features
shared across domains and demonstrated improved damage detectability in thick composite plates, especially
for defects deeper than 15 mm. This approach demonstrates the potential of transfer learning to improve
damage detection in industrial applications involving thick composite structures, such as wind turbine blades.
1. Introduction depth, yielding low surface temperature contrast and poor signal-to-
noise ratio. Composite components used in industrial applications can
Damage detection in composite materials is a critical aspect of struc- easily reach thicknesses of up to 30-40 mm, making them prone to deep
tural health monitoring, particularly in industries such as aerospace, delamination that is difficult to detect using conventional thermogra-
wind energy, and civil infrastructure where safety and reliability are phy techniques. Step-heating thermography has shown to be promising
paramount [1-3]. Composite materials, especially thick composites,  for thick composites, as it employs continuous thermal excitation to

present unique challenges for non-destructive testing (NDT) due to
their heterogeneous nature, anisotropic properties, and the potential
for complex internal damage mechanisms that may not be visible on
the surface [4].

Infrared (IR) thermography has emerged as a powerful NDT tech-
nique for composite materials due to its non-contact nature, the abil-
ity to rapidly inspect large areas, and the sensitivity to subsurface
defects [5,6]. Despite these advantages, traditional IR thermography
methods, such as pulsed thermography, face limitations in detecting
defects at greater depths, particularly beyond 10-15 mm in thick com-
posites [7,8], because thermal waves diffuse and attenuate rapidly with

achieve greater heat penetration, allowing the detection of relatively
deeper defects [9,10]. Longer heating times improve the capability
to detect deeper defects. However, they may also lead to material
overheating and irreversible deterioration of mechanical properties.
A previous study [11] reported a decrease in the tensile strength of
GFRP by 26.6% at 70 °C, compared to its value at room temperature.
Detecting defects at a depth of 30 mm requires about 10 min heating
with three 1000 W lamps placed at a distance of 1 m, which can
raise the surface temperature to around 50 °C [12]. Thus, special care
must be taken to avoid overheating the material. More advanced IR
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List of abbreviations

Acronyms

GFRP Glass-fiber-reinforced polymer

IR Infrared

NDT Non-destructive testing

HD Heating condition

FE Finite element

PC Principal component

PCA Principal component analysis

PCT Principal component thermography

CNN Convolutional neural networks

DL Deep learning

IoU Intersection over union

ReLU Rectified linear unit

LOOCV Leave-one-out cross-validation

CI Confidence interval

Datasets

Lab_C Experimental dataset of composites

Lab_R Experimental dataset of epoxy resin

Sim R Simulated dataset of epoxy resin

Models

BM_C1 Benchmark U-Net trained on Lab_C with 9
PCs

BM_C2 Benchmark U-Net trained on Lab_C with 8
PCs

BM_R1 Benchmark U-Net trained on Lab_R with 9
PCs

BM_R2 Benchmark U-Net trained on Lab_R with 8
PCs

PM1 Pre-trained U-Net trained on Sim_R with 9
PCs

PM2 Pre-trained U-Net trained on Sim_R with 8
PCs

RM_R Re-trained U-Net trained on Lab_R

RM_C Re-trained U-Net trained on Lab_C

RMR_C Re-trained U-Net sequentially trained on
Lab_R and Lab_C

SegNet R SegNet trained on Lab_R

DeepLab_R DeepLabv3+ trained on Lab_R

SegNet_C SegNet trained on Lab_C

DeepLab_C DeepLabv3+ trained on Lab_C

thermography techniques, such as lock-in thermography, have demon-
strated superior performance in deeper damage detection [13], but
their complex methodology and strict testing conditions often make
them unsuitable for industrial applications like the remote inspection
of wind turbine blades. Additionally, noise in thermal measurements
further complicates the identification of thermal patterns associated
with deep defects [14,15].

Recent advances in artificial intelligence and deep learning (DL)
have revolutionized image-based NDT by enhancing defect detection
capabilities beyond what is possible with traditional signal process-
ing techniques [16,17]. Convolutional neural networks (CNNs) have
demonstrated remarkable success in various NDT applications [18—
22]. In particular, the U-Net architecture, originally developed for
biomedical image segmentation [23], has proven to be effective for
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precise damage detection and localization, especially in thin compos-
ites [18,24]. The U-Net is a symmetric encoder-decoder CNN that pairs
down-sampling layers with up-sampling layers via skip connections to
produce pixel-wise predictions. It captures contextual information in
the contracting path and restores spatial details in the expansive path,
yielding precise masks from input images [23].

However, the implementation of DL methods for NDT faces a major
challenge: the scarcity of labeled data [25]. Unlike in general photo-
graphic image processing, where large datasets are readily available,
NDT applications typically rely on limited experimental data due to
the significant costs and time associated with specimen preparation and
testing [26].

To address this challenge, researchers have explored various strate-
gies, including data augmentation [27,28], synthetic data generation
using advanced generative models [29-31], and transfer learning [21,
32-34]. Among these, transfer learning is especially promising. As an
advanced technique in the deep learning field, transfer learning is
defined as the process of reusing the knowledge learned on a source
task and dataset to improve learning on a different but related target
task, typically by starting from a pre-trained model and adapting it
rather than training from scratch. For example, an image classifier pre-
trained on ImageNet, which contains more than 1 million photographic
images, can have its final layers adapted to classify road damage using
a limited amount of labeled data [33]. This approach has been suc-
cessfully applied in various domains, including medical imaging [23],
remote sensing [35], and structural health monitoring [36].

In the context of NDT for composites, finite element (FE) simulation
offers a viable and flexible approach to generate synthetic data to
train DL models [32,37]. By conducting transient thermal analysis,
FE models can replicate thermal behavior under various conditions
and defect scenarios, enabling the creation of diverse datasets that
would be impractical and costly to obtain experimentally. However, the
credibility of simulation strongly depends on demonstrating agreement
between the FE model and relevant experiments within the intended
domain of use. Thus, effective model validation within a specific param-
eter space is essential. The effectiveness of simulation-based training
also depends critically on the extent to which the simulated data
accurately reflect real-world thermal behaviors, accounting for failure
modes, material properties, boundary conditions, and noise charac-
teristics. Several studies have explored the integration of simulation
and experimental IR data for damage detection in composites. Fang
et al. [38] showed that synthetic data generated by FE simulations can
be effectively merged with limited experimental data to train neural
networks. Similarly, Tong et al. [39] validated a neural network trained
only on simulated data using experimental IR results. It was demon-
strated that synthetic IR data share some common features with real IR
data. However, the literature concentrates mainly on the investigation
of thin composites which are no thicker than 5 mm. The effectiveness of
combining simulated and experimental IR data for thicker composites
is still underexplored. Transfer learning has promising potential in the
detection of deeper defects by learning from a large simulated dataset
that contains features of deeper defects, transferring the knowledge
to a fine-tuned model aimed at detecting defects in real IR images.
The detectability of deeper defects is enhanced by the transferred
knowledge.

This paper addresses the challenge of dataset scarcity in damage
detection in thick composites by developing a robust transfer learning
framework, which takes advantage of a large simulated dataset to
enhance performance on limited experimental data. Step-heating ther-
mography experiments and transient thermal analysis are conducted
on physical plate samples and FE models, respectively. The simula-
tion focuses on single material as in the experiments, and includes
thermal maps produced under 960 distinct scenarios, such as varying
defect sizes, shapes, locations, and heating conditions. The proposed
framework reduces the difference between simulated and real IR data
by adding synthetic noise to the simulation results and improves the
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Fig. 1. Illustration of the proposed methodology in detail.

performance of the DL model in the detection of deeper defects by
transferring more diverse features from simulated data to real IR data.

The rest of this paper is organized as follows. In Section 2, the
methodology of this study is explained in detail: Section 2.1 provides
a description of the IR experiments and the specimens, along with an
introduction to the noise analysis for the experimental data. Section 2.2
gives a detailed description of the FE analysis that is used to generate
the simulated dataset. Section 2.3 introduces the supervised learning
procedure comprising PCT and U-Net, which is implemented for the
image segmentation task. A theoretical description of transfer learning
is given in Section 2.4. Following, Section 3 presents and discusses the
results of the experiments and simulations, along with the performance
of the DL model in the proposed framework. Finally, the conclusion of
this work and the recommendations for future work are discussed in
Section 4.

2. Methodology

The methodology proposed in this work is illustrated in Fig. 1. A
small experimental dataset is developed by conducting step-heating
thermography tests on four epoxy resin plates and one GFRP plate
with different subsurface defect characteristics. This results in two
datasets, namely Lab_R and Lab_C, respectively. The noise pattern
in the experimental results is studied and extracted from the thermal
videos.

A large simulated dataset, referred to as Sim_R, is developed by per-
forming transient thermal analyses using a parametric FE model incor-
porating a wide variety of subsurface defects. Accurately modeling heat
transfer in composite laminates is challenging due to their anisotropic
nature. The commonly adopted isotropic assumption tends to under-
estimate in-plane conduction while overestimating through-thickness
conduction, yielding temperature errors in the order of 2-3 °C [40]. To
address this issue, epoxy resin is used instead of composites to preserve
similar but homogeneous thermal properties. This choice allows for
simpler and more reliable validation of the FE models, as the thermal
behavior of epoxy resin is well-established [41].

Synthetic noise is added to the simulated results to increase the
similarity to the experimental results. Both simulated and experimental
thermal videos are processed with PCT to extract informative features
from the raw data, which are then utilized to train the neural networks.

A U-Net model is trained on the simulation dataset Sim_R to obtain a
pre-trained model that captures the common features that are supposed
to be shared in both experimental and simulated thermal images. The
model is then re-trained on experimental datasets Lab_R and Lab_C
by freezing shallow layers and updating final layers. In this way, the
model is adapted to real IR data but still keeping the knowledge of the
common features shared by simulated and real IR data. A parametric
analysis is performed by varying the number of trainable layers to
evaluate its effects on the transfer learning performance. Benchmark
models are developed for damage detection in both composite and
resin plates, which are further used to evaluate the improvement of
the re-trained models.

The U-Net architecture is implemented for the detection of defects
due to its simple architecture and promising performance in image
segmentation with limited training data. Previous studies [18] have
demonstrated that the U-Net outperforms conventional machine learn-
ing algorithms, such as random forest and support vector machines,
in detecting 2 mm-deep delamination in composite plates via pulsed
thermography data. The U-Net achieves an F1-score of 0.745, whereas
none of the conventional machine learning models exceed an F1-score
of 0.2. Although the U-Net provides segmentation results that contain
less information of sharp angles compared to other deep learning mod-
els with more complex architecture such as SegNet and DeepLabv3+,
a much simpler layer structure allows an easier investigation in the
influence of using a different number of trainable layers during transfer
learning. A much faster training and inference process also make the U-
Net one of the most suitable DL models for IR-based damage detection
in composite materials.

2.1. Experimental measurements

Following the motivation in Section 1, step-heating thermography
experiments are carried out in this study to generate datasets to train
DL models. The research utilized the GFRP plate sample from [12],
subjecting it to new tests. In addition, four epoxy resin plates were
manufactured and tested with step-heating thermography.

2.1.1. Step-heating thermography test
Step-heating thermography is an NDT method that employs contin-
uous thermal excitation to achieve deep heat penetration, allowing the
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Fig. 3. Geometry and dimensions of plate specimens. (a) Rear surface of the composite plate. (b) Front surface of the composite plate. (c) Rear surface of the
resin plate with circular defects. (d) Illustration of a flat bottom hole and defect depth.

detection of subsurface damage. A standard step-heating thermography
setup consists of three primary components: a thermal camera, heat-
generating sources, and a data acquisition and analysis system. In this
research, experiments were conducted in the laser laboratory of the
Aerospace Structures and Materials Laboratory at Delft University of
Technology.

A schematic of the experimental setup is provided in Fig. 2(a). The
surface temperature distribution was monitored using a FLIR A305sc
IR thermal camera, operating at a frequency of 50 Hz with an image
resolution of 640 x 480 pixels. Three halogen lamps were used as
heat sources. The specimen was placed approximately 1 m away from
both the heat sources and the IR camera. In the previous research of
Nan [42], the heat flux on a plate specimen generated by a single lamp
was calibrated with different voltages. The heat flux was observed to
remain negligible at voltages below 0~3 V and plateaued above 8 V.
Based on these findings, a heating voltage of 5 V was selected for each
lamp, resulting in an average sample surface heat flux of 350 W/m>.

Each measurement cycle consisted of two phases: a heating phase
followed by a cooling phase, as shown in Fig. 2(b). To prevent material
degradation, the heating duration was limited to 5 min, ensuring that
the surface temperature of the specimen did not exceed 50 °C, well
below the 60 °C threshold known to induce permanent degradation
and to compromise the mechanical performance of composite mate-
rials [43]. During the 5 min heating phase, the IR camera recorded
the temperature variation on the sample surface. The lamps were then
turned off, while the camera continued recording for an additional
5 min to capture the cooling phase. Throughout both phases, thermal
images were acquired at a rate of 2 Hz, resulting in thermal videos that
contained approximately 1200 frames for each measurement.

2.1.2. Plate specimens and experimental dataset

A GFRP composite plate specimen with 13 flat bottom holes was
tested with step-heating thermography experiments. This specimen,
originally fabricated for the investigations conducted by [12], has
overall dimensions of 600 x450x 51 mm (W x H x D), as shown in Figs.
3(a) and 3(b). The flat bottom holes were milled to mimic delamination
defects with varying sizes and depths. The cross-sectional geometry of
a single hole, illustrated in Fig. 3(d), shows the morphology of the
artificial defects. In line with previous experimental work on composite
materials [18,21], the depth of the artificial delamination is quantified
as the material remaining thickness, measured from the front surface of
the sample to the delamination plane. Table 1 provides the dimensional
details of the 13 flat bottom holes introduced in the composite plate.

In addition to the composite plate, four epoxy resin plates were
designed and fabricated for this study. Each resin plate has dimensions
similar to the composite plate, measuring 500x450x20 mm (W x H X D),
and features 9 flat-bottom holes arranged in a 3 x 3 configuration.
These holes, though of the same shape, vary in size and depth, as shown
in Fig. 3(c). Four different defect shapes (circular, square, triangular,
and rectangular) were introduced to increase the diversity of the ex-
perimental dataset. Defects located in the same column have identical
depths (5 mm, 10 mm or 15 mm).

Step-heating thermography was performed on the 5 plate specimens
(1 composite plate and 4 resin plates) with the same experimental
setup. Each plate was subjected to 7 distinct measurements, each
corresponding to a unique heating condition (HD) defined by activating
different lamps during the tests, as described in Table 2. This process
generated a total of 35 thermal videos: 7 for the composite plate and
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Table 1

Defect characteristics of the composite plate.
Flat bottom hole 1 2 3 4 5 7 8 9 10 11 12 13
Defect depth [mm] 25 20 15 10 5 25 20 15 10 5 30 20 10
Diameter [mm] 30 30 30 30 30 60 60 60 60 60 120 120 120

Table 2
Heating conditions applied during the step-heating thermography tests.
HD1 HD2 HD3 HD4 HD5 HD6 HD7

Top lamp v - - v v - v
Left lamp - v - v - v v
Right lamp - - v - v v v

28 for the resin plates, which together formed the two experimental
datasets: Lab_C (for composite plates) and Lab_R (for resin plates).

2.1.3. Noise analysis

Noise in thermal imaging systems poses significant challenges for
accurate temperature measurements and image quality. In this study,
the noise in the experimental data was the main difference compared to
the simulation results. In order to investigate the effects of the signal
noise on the experimental results, a noise analysis was performed to
study the noise patterns in the thermal signals. Previous studies [44,45]
on noise in thermal imaging have shown that most thermal scenes
change slowly over time because heat transfer acts as a strong low-pass
process. As a result, the useful thermal signal is concentrated at low
temporal frequencies, while many noise sources, such as electronics,
quantization, and photon/statistical noise, contribute relatively more
power at higher frequencies, up to a few tens of Hertz. In thermogra-
phy tests, thermal signals are often engineered at specific modulation
frequencies. For example, lock-in thermography periodically varies
thermal excitation at a frequency lower than 2 Hz, while step-heating
thermography uses sub-Hz modulation without any periodic excitation,
resulting in an even lower frequency range than lock-in thermography.

In the image denoising field, Gaussian white noise is commonly used
as synthetic noise to train data-driven denoising algorithms, demon-
strating practical effectiveness despite its simplified representation. For
example, in [46], an image denoiser was trained on paired clean and
noisy images by modeling the noise as Gaussian. Similarly, several
thermal imaging studies have assumed that noise follows a Gaussian
distribution [47,48]. Thus, noise was modeled as a hybrid of multiple
sources in this study, represented by a random variable following a
Gaussian distribution. Since the noise exhibited frequencies signifi-
cantly higher than the main thermal signal, it could be isolated using
signal processing techniques. A high-pass filter was implemented to
remove low-frequency components below a defined cut-off threshold,
while preserving the higher-frequency elements of the signal [49].
The cut-off frequency was manually optimized to meet two essential
objectives: maintaining the sharpness of the signal peaks and ensuring
sufficient smoothness of the thermal data. Following these criteria, a
cut-off frequency of 0.1 Hz was selected.

The high-pass filter was applied independently to each pixel in the
experimental datasets Lab_C and Lab_R. For each pixel, we computed
the statistical parameters of the extracted noise, specifically its mean
and standard deviation. These values were then averaged across the
entire datasets to characterize the overall noise pattern.

2.2. Finite element analysis

To develop supervised learning algorithms for damage detection
within the transfer learning framework, finite element (FE) models
were developed to generate simulation data, addressing the common
challenge of limited labeled data in structural damage detection. This
approach leverages the flexibility of simulation data, which allows cre-
ating extensive datasets for multiple similar structures by systematically

1061 Max
987.17
913.32
839.47
765.62
691.77
617.92
544.07
470.22
396.37 Min

Fig. 4. Non-uniform heat flux with Gaussian distribution on the front surface
of the resin plate.

Table 3
Design parameters of the FE models used for transfer learning.

Design parameters Details

Defect shape Circular, square, irregular
Defect depth [mm] 2-20

Plate thickness [mm] 8-25

Defect location Randomly located

Heat flux Q [W/m?] 200, 400, 600 and 800
Wooden web with/without

varying the design parameters in the FE models. This section explains
the development of FE models of epoxy resin plates with flat bottom
holes and introduces the generated simulation dataset, which will be
used in supervised learning algorithms. All FE models were developed
using the ANSYS Workbench 2023 R1 [50].

2.2.1. Finite element models of epoxy resin plates

To generate a large simulation dataset, a series of FE models was
developed by changing key design parameters, as shown in Table 3.
The models included three different defect geometries: circular, square,
and irregular. The irregular defects were modeled as two circular
overlapping defects, as shown in Fig. 5. In each simulation, both the
depth of the defect and the thickness of the plate were randomly
selected. Each plate model contained four defects with the same shape
and depth but different sizes, with defect positions randomized in each
simulation. For simplification, instead of a non-uniformly distributed
heat flux presented in real IR images, a uniform heat flux was applied
to the front surface of the plate. To investigate the reliability of this
simplification, an additional FE model with a Gaussian distributed heat
flux applied to the same surface was developed, as shown in Fig. 4. The
results for uniform and non-uniform heating conditions are compared
and analyzed at the feature level in Section 3.2. A wooden web, shown
in Fig. 5, was attached to the rear surface of the plates to replicate the
structural features typical of real composite applications, such as wind
turbine blades, where internal wooden supports are common. These
webs alter the thermal behavior of the front surface and were added
as a variation in FE models to induce defect-like thermal features.
Their inclusion allowed for the investigation of the ability of the deep
learning model to distinguish between actual defects and structural
artifacts induced by such features.

In the transient thermal analysis, a heating-cooling process was
employed, with a 5 min heating phase followed by a 5 min cooling
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Fig. 5. Geometry and mesh of the FE model of a resin plate with irregular defects and a wood web.
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Table 4
Physical and thermal properties of the epoxy resin material.

Property Epoxy resin Wood [50]
Density [kg/m?] 960 160
Thermal conductivity [Wm™'K~'] 0.38 0.05
Specific heat [Jkg™'K™'] 1200 900

phase. The material properties of the epoxy resin plate were provided
by the manufacturer, as listed in Table 4. Due to a relatively small
increase in temperature (no more than 30 °C) observed during the ther-
mography tests, the convection coefficient and emissivity were assumed
constant for all surfaces [51]. According to heat transfer theory, the
free convection coefficient for a vertical plate in air is typically in the
range of 2-10 W/m?K. Its exact value was determined by the model
validation procedure described in detail in Section 2.2.3. Since white
paint with an emissivity of 0.9 was applied to the plate front surface
in the experiments, the same emissivity was applied in the FE models.
The ambient temperature was set to 22 °C. The thermal model utilized
SOLID291, a 3D 10-node tetrahedral thermal solid element. An element
size of 6 mm was determined based on preliminary simulations with
varying mesh resolution, with the aim of identifying the maximum size
that ensured mesh convergence, in which case the simulation results
were no longer dependent on the element size.

For each combination of defect shape, heat flux condition, and wood
web inclusion, 40 simulations were performed, each with randomized
defect depths, locations, and plate thicknesses. In total, 960 simulations
were performed to build the simulation synthetic dataset, Sim_R, used
to support the transfer learning framework.

2.2.2. Simulation data conversion

The principal output of the transient thermal analysis was the nodal
temperature history. To mimic real thermal images, these nodal temper-
ature values were converted to pixel-like grid values. More precisely,
temperature data were extracted every 2 s, leading to 300 frames
during the 10 min simulation. The extracted nodal temperature values
were then transformed into a grid format representing image pixels, as
illustrated in Fig. 6. This conversion process was designed to mimic the
functionality of an IR sensor in a thermal camera, which accumulates
the radiation for each pixel and converts it into a temperature value.
This was achieved by first interpolating the nodal temperature data
using a cubic function, and then the temperature value for each pixel
was determined by averaging the function over each pixel.

After this conversion, random noise extracted from the experimental
data, as described in Section 2.1.3, was added to each pixel in the sim-
ulation data. The final Sim_R dataset comprises 960 image series, each
containing 300 frames. This format effectively replicates the structure
of real thermal videos, allowing for the application of post-processing
methods to time-series data.

2.2.3. Model validation

To ensure the effectiveness of the FE model, it must be validated
within a parameter space defined by the experiments. In this study,
the design parameters include the shape, depth, and location of the
defects, as well as the applied heat flux. The FE model is validated by
comparing its simulated results with the experimental measurements
within the same parameter space. Once validated, additional variations
of the design parameters are introduced to create a sufficient number
of FE models across this space.

The comparison is carried out by investigating points at the same
location on the plate surface, which are supposed to have similar
temperature variation trends for simulated and experimental results.
Therefore, 4 additional FE models with the same geometry as the
experimental resin plates were developed for this purpose. To simplify
the analysis, a uniform heat flux was applied to the front surface. The
magnitude of the heat flux was determined as the average heat flux
value generated by a single lamp, as mentioned in Section 2.1.1. Since
the heat flux in the experiments was significantly non-uniform at the
edge of the plate, two reference points were selected in the central
region of the plate, as shown in Fig. 7.

The convection coefficient was determined by a curve-fitting pro-
cess which compared the simulation and experimental temperature
variation curves at the selected reference points on the front surface.
The validation results will be discussed in Section 3.1.

2.3. Supervised learning for damage detection

This research used principal component thermography (PCT) to
extract key features from thermal videos, which were then used in
the training of the DL model. These PCT-derived features, being both
more compact and informative-rich than thermal video data, served
as efficient inputs for the DL model. Subsequently, a U-Net model
was implemented to identify patterns indicative of subsurface damage.
This approach combines advanced feature extraction techniques with a
robust segmentation model to effectively analyze and interpret thermal
imaging data for subsurface damage detection.
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Fig. 7. Two reference points for model validation.

2.3.1. Principal component thermography

PCT is an advanced post-processing technique widely used in active
thermography for NDT and defect detection in various materials [52,
53]. This method enhances defect visibility by applying principal com-
ponent analysis (PCA) to a sequence of thermal images. PCT transforms
the original IR data into a new set of orthogonal components, known as
principal components (PCs), which are ordered such that the first few
capture the most significant variations in the data, often corresponding
to defects or anomalies in the inspected material.

In PCT, the dataset Xy, is a collection of thermal images orga-
nized as a 2D matrix, where N is the number of thermal images and
D is the number of pixels in each image. The elements of the matrix
are the temperature values of each pixel. Thermal images are reshaped
into 1D vectors and stored as the row vectors of X. PCA is then applied
to X to obtain the PCs.

Given a D-dimensional dataset X € RP containing N data points,
PCA aims at finding the PCs of X by looking for the eigenvectors
of the covariance matrix X7 X. According to the theory of eigen-
decomposition, a square matrix A can be decomposed as:

A=0407"! @

where Q is a matrix whose columns are eigenvectors and A is a diagonal
matrix containing eigenvalues. In PCA, given A = X7 X as a symmetric
matrix, Eq. (1) can be written as:

A=XTXx=wawT @)

where W is an orthonormal, satisfying W~! = W7, A typical method
to obtain matrix W is singular value decomposition (SVD), which is
defined as:

T
Xvxp)y = Unser) Zsr)Vioxy 3

where X is the dataset, U and V are orthonormal matrices, X is a
diagonal matrix, and r is the number of PCs to be retained. Substituting
the SVD of X into Eq. (2) yields:

A

wzvhHruzyT
=y’ 4)

Comparing Egs. (2) and (4), a correspondence between W AW and
¥V 22VT can be found, where W equals V, and A equals >2. Therefore,
the eigen-decomposition can be carried out by applying SVD, and the
eigenvectors are expressed as the row vectors of V(rT>< Dy which represent
the PCs. An illustration of the PCT procedure used in this work is shown
in Fig. 8. Based on visual inspection of PC images, the first 9 PCs were

used to build the training dataset in this research.

2.3.2. U-Net

The U-Net architecture consists of an encoder (contracting path)
and a decoder (expanding path) working together to process images
effectively. It takes a multi-channel image as input and outputs a binary
segmentation map indicating the class (defective or non-defective) that

Composites Part B 309 (2026) 113112

Table 5
Dataset distribution for training, validation and testing.
Dataset Train. Val. Test. Total images
Sim_R 672 144 144 960
Lab_C* 4 3 7
Lab_R* 20 8 28

2 Cross-validation was implemented for experimental data.

each pixel belongs to. The main strength of the U-Net architecture
lies in its ability to capture both context and precise localization
through its symmetric design. The encoder reduces spatial dimensions
while increasing feature information, while the decoder restores spatial
details through up-sampling. The three key components in the U-Net
architecture: encoder, decoder, and skip-connections, are shown in Fig.
9.

The encoder consists of 5 double-convolutional layers (3 x 3) fol-
lowed by rectified linear unit (ReLU) activation functions that bring
non-linearity into the model. Each double-convolutional layer employs
two single-convolutional layers with 1 padding. The encoder imple-
ments max pooling (2 X 2) operations to reduce spatial resolution,
allowing the network to capture increasingly complex features through
multiple deeper layers. As depth increases, the spatial dimensions of
the image decrease while the number of feature channels increases.

The decoder symmetrically mirrors the encoder and restores spatial
dimensions through up-sampling operations. It combines high-level
feature information with spatial details from earlier layers. This path
works symmetrically with the contracting path, gradually reconstruct-
ing the spatial resolution while maintaining learned features.

One of the most critical features of U-Net is the skip-connections,
which connect corresponding levels of the encoder and decoder. Each
connection takes the output of each level in the encoder and attaches it
to its corresponding decoder level. This mechanism allows the network
to retain spatial context that might otherwise be lost due to down-
sampling, thereby enabling precise localization in the final output.
Additionally, skip-connections help mitigate the vanishing gradient
problem during training.

The effectiveness of the U-Net has led to numerous variants and ap-
plications, making it a cornerstone model in computer vision tasks [54—
56]. Its ability to work with relatively small training datasets while
maintaining high accuracy has made it particularly valuable in NDT
applications.

2.3.3. Training

The experimental and simulation datasets were first processed with
PCT. For each thermal video in the datasets, the first 9 PCs were
extracted and stacked to form a 9-channel image, which was used as
the input to the U-Net. All datasets used in this work, as well as the
details of dataset splits, are summarized in Table 5.

Due to the very small size of the experimental dataset (only 28
images for resin plates and 7 images for the composite plate), Leave-
One-Out Cross-Validation (LOOCV) was adopted in the training process,
in which only one single image was left out for validation. This process
was repeated by rotating the excluded image to identify the best
hyperparameters, such as batch size, learning rate, and number of
epochs (i.e., one complete pass of the entire training dataset through
the model). Data augmentation techniques, including random cropping
(350 x 350 pixels), random rotating (—90° to 90°), and random vertical
flipping (probability of 0.5), were implemented to increase the variabil-
ity of the training data. This is especially beneficial when dealing with
small datasets.

For the simulation dataset, cross-validation was not implemented
due to its large size. The U-Net model was trained multiple times on
a fixed train-test split (the first row in Table 5) to find the optimal
hyperparameter combination.
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Fig. 8. Post-processing of thermal videos with PCT.
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Fig. 9. U-Net architecture for image segmentation, adapted for multi-channel input images.

Supervised learning requires annotated data to provide ground truth
labels. In image segmentation tasks, the data is annotated pixel-by-
pixel, indicating which class each pixel belongs to. For the binary
classification task in this work, each pixel was labeled as either O
(non-defective) or 1 (defective).

All U-Net model training was implemented using PyTorch 2.0.1 and
CUDA 11.7 on an NVIDIA RTX A1000 GPU.

2.3.4. Model performance evaluation

An effective model evaluation procedure requires the proper use
of metrics that accurately represent the model performance. In image
segmentation tasks, the most commonly used metric is the intersection
over union (IoU), which evaluates the pixel-by-pixel overlap between
the predicted segmentation mask and the ground truth. A score of 1
indicates perfect overlap, while 0 indicates no overlap. In addition to
the IoU, the Fl-score is also a useful metric for the evaluation of image
segmentation models trained on imbalanced datasets, i.e. when one
class contains significantly more pixels than the other. Both metrics
depend on the calculation of true positives (TP), false positives (FP),
and false negatives (FN) pixels. This work conducted a comprehensive
model evaluation by employing all the metrics introduced below:

+ TP: The number of pixels correctly classified as defective.

» FP: The number of pixels wrongly classified as defective.

» FN: The number of pixels wrongly classified as non-defective.
Precision (P.): The proportion of pixels predicted as defective that
are actually defective, calculated as:

TP
P=——t 5
" TP+ FP ®

Recall (R,): The proportion of actual defective pixels that are
correctly predicted as defective, calculated as:
TP

Ry=——"—
*"TP+FN ©)

* Fl-score: The harmonic mean of Precision and Recall, providing
a balanced measure of model performance, calculated as:
2X P.XR, 2TP
' "P+R, 2TP+FN+FP

)

« Intersection over union (IoU): Pixel-by-pixel overlap between the
predicted segmentation mask and the ground truth, calculated as:

_ Area of intersection _ TP

ToU =
TP+ FN+FP

(3

Area of union

2.4. Transfer learning

Transfer learning is a powerful machine learning technique that
enables models to leverage knowledge gained from one task to enhance
performance on different but related tasks. This approach mirrors
human learning, where previous experience accelerates the acquisition
of new, related skills. In transfer learning, knowledge from a source
domain is systematically transferred to a target domain to enhance
learning. A domain D encompasses a feature space X coupled with a
marginal probability distribution P(X), where X = {x;,...,x,} € X.
The corresponding task 7 is defined by a label space Y and a predictive
function f : X — Y. The transfer learning architecture consists of two
essential components. The source component includes domain Dg =
{Xg, P(X)} and task Ty = {Vs, fg(x)}, while the target component
comprises domain Dy = {Xy, P(Xp)} and task 7 = { Yy, fr(x)}, where
Dg # Dy or Tg # Tr. The goal is to improve the target predictive
function f; in Dy using knowledge from Dg and 7 [57].

In practice, transfer learning is implemented by reusing a pre-
trained model as the starting point for a new learning task. This
significantly reduces the amount of data and computational resources
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Fig. 10. Schematic explanation of transfer learning.

required for training, making it particularly valuable in deep learn-
ing applications where large datasets and extensive computational
resources are not available. As shown in Fig. 10, the U-Net model
A described in Section 2.3.2 was first trained and validated with the
simulation dataset D, for task T,, i.e. damage detection in resin plates
based on simulation IR data. This pre-training step enabled the U-Net
model to learn useful features from simulation data. The pre-trained
model was then divided into two parts: A’ and B. A’ contained the
shallow layers which captured some generic features common to both
simulated and experimental thermal images. The parameters in A’ were
frozen and did not update during the re-training. B included the final
deep layers that contained more specific features of the simulated
thermal images. These layers were set as trainable, so that the model
was able to learn from experimental thermal images by updating the
parameters during re-training.

3. Results and discussion
3.1. Finite element model validation and noise analysis

A representative example of the experimental data is shown in
Fig. 11. This setup refers to the heating condition HD7, where the
composite plate was heated from room temperature using the 3 lamps.
Two reference points were identified for comparison: P, located in a
defective region and P, in a non-defective region, as shown in Fig.

425
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11(a). The temporal evolution of the surface temperature exhibited
a two-stage pattern, as depicted in Fig. 11(b). The data reveal that
while both defective and non-defective regions demonstrated similar
temperature trends, the defective area heated more rapidly due to its
reduced material thickness.

The experimental results for the resin plates were utilized to validate
the FE model. The validation results for the plate with square defects
are shown in Fig. 12. Two image frames, one from the numerical
simulation and one from the experimental data, were extracted at 340 s.
In the experimental results, the temperature distribution in the central
and upper regions of the plate showed notable uniformity, despite the
non-uniform heating from the three separate lamps. Therefore, refer-
ence points A, within a defective area, and B, in a non-defective area,
were selected from these regions. By fitting the simulated temperature
curve with the experimental temperature curve for the reference points,
the mean value of the convection coefficient in the simulation was
determined as 6 W/m’K. The temperature profiles at the reference
points show close agreement between experimental and simulation
results, indicating a robust model design and effective validation. This
validation was also performed for the other three plates. The use of a
uniform heat flux in the simulations allowed accurate reproduction of
the experimentally observed thermal behavior in the central area of the
plates, while preserving computational efficiency.

Furthermore, the thermal measurements reveal notable noise com-
ponents, as shown in Figs. 12(b) and 12(c) after zooming in, which con-
stitute the primary distinction between the experimental measurements
and the FE simulation results. Therefore, the noise in the experimental
data was analyzed using a high-pass filter as described in Section 2.1.3.

Fig. 13(a) shows an example of the noise extracted from the original
temperature measurements by applying a high-pass filter with a cut-
off frequency of 0.1 Hz. Under the assumption that the thermal noise
exhibited a Gaussian distribution, the statistical analysis shows that
the noise is characterized by a mean of 0 and a standard deviation
of 0.0325. Based on this, synthetic temporal noise was generated
following the distribution N(0,0.0325%), as shown in Fig. 13(b). This
synthetic noise pattern was manually added to the Sim_R dataset to
make the simulation results more representative of the real thermal
images, as plotted in Fig. 13(c). The result shows that after adding
synthetic noise, the simulated signal presents significant similarity in
noise patterns compared to the experimental signal plotted in Fig.
12. The clean simulated data and the noisy simulated data were both
processed using PCT in Section 3.2 to gain more insight at feature level.

3.2. Feature extraction

The PCT technique outlined in Section 2.3.1 was implemented to
analyze thermal video data from both experimental tests and numerical
simulations. Fig. 14 displays the first 9 PCs extracted from thermal
videos of datasets containing square-shaped defects. The first column
presents the PCs derived from the Lab_R experimental dataset, while
the second and third columns correspond to the FE model of the resin
plate under uniform and non-uniform heat flux, respectively. The fourth

—— P1 (defective)
—— P2 (non-defective)

0 100 200 300 400 500 600 700

Time [s]

(b)

Fig. 11. (a) Thermal image of the composite plate at the end of heating (300 s). (b) Temperature history curves at points P, (defective region) and P, (non-defective

region).
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Fig. 12. Validation results of the FE model through curve fitting. (a) Reference points A and B selected from experimental (left) and simulation (right) results.
(b) Temperature curve of point A. (c) Temperature curve of point B.

— 0.15 — 0.15
O O
2. 0.10 e, 0.10
o o
5 0.05 5 0.05
© ©
g 0.00 g 0.00
£-0.05 g 0.05
& -0.10 12 -0.10
0 100 200 300 400 500 600 ~0.15 0 100 200 300 400 500 600
Time [s] Time [s]
(a) Extracted noise (b) Synthetic noise
36.0
0355 —— Simulated signal
2. —— Simulated signal with synthetic noise
®35.0
=
g 34.5
234.0
§
2335
33.0

350 360 370 380 390 400 410
Time [s]

(c) Simulated thermal signal

Fig. 13. (a) Noise extracted from experimental data using a high-pass filter. (b) Synthetic Gaussian noise. (c) Comparison between the original simulated signal
and the simulated signal after adding noise.

column shows the PCs of the simulation with synthetic noise under the different conditions. The PC1s in columns (a) and (c) reveal distinct

uniform heat flux. non-uniform heating patterns, reflecting real experimental heating and

High similarity is observed among the four sets of PCs, particularly manually applied Gaussian distributed heat flux in simulation, respec-
from PC2 to PC7. In contrast, PC1 exhibits significant differences across tively, whereas the PC1s from the uniform heating simulation display a

10



M. Liet al

much more uniform thermal distribution. This discrepancy is confined
to PC1, indicating that heating information is primarily captured in the
first component. These results support the rationale for using a uniform
heating flux in the simulations, as the effect of heating distribution can
be effectively mitigated by excluding PC1 during the analysis.

Additional differences are visible in the final two PCs. In the noise-
free simulation (second column), PC8 and PC9 clearly reveal defect-
related information. However, this information is significantly masked
in the experimental results and in the simulated results with added
synthetic noise. This demonstrates the impact of measurement noise
on the detectability of the defect.

This comparison shows that the noise in the thermal images reduces
the defect-related features that can be extracted by PCT. By adding
synthetic noise, the simulation data were made more comparable to
the real IR data, which in turn improved the effectiveness of transfer
learning, as more common features were introduced between the two
domains. Therefore, only the noisy simulation dataset was utilized in
the following steps of the transfer learning framework. Taking into
account the different features observed in PC1, the U-Net models were
trained with two combinations of PCs: PC1-9 and PC2-9. This approach
allowed for the investigation of the impact of including or excluding
PC1 on the model performance. The deep learning experiments carried
out in this study are listed in Table 6. The objectives and results of these
experiments are discussed in the following sections.

3.3. Benchmark model and pre-training

Benchmark models for evaluating transfer learning were developed
by training the U-Net architectures using Lab_R and Lab_C. Expt.1-4 in
Table 6 outline the training strategies for different benchmark models
trained on different datasets and PC combinations. Pre-trained models
were obtained by training the U-Net with the same simulation dataset
but different combinations of PCs (Expt.5 and 6). This study assumes
that simulated and real thermal images share fundamental features,
making transfer learning a viable approach. To test this hypothesis, the
pre-trained models were evaluated using the Lab_R (Test 2 in Expt.5
and 6). Moreover, to provide a comparison with more advanced image
segmentation models with more complex architectures, SegNet [58]
(Expt.10 and 11) and DeepLabv3+ [59] (Expt.12 and 13) were trained
on both Lab_R and Lab_C using the same data splits as the U-Net.

The U-Net models were initially trained with PC1-9. The train-
ing progress, illustrated in Fig. 15, reveals well-behaved loss curves,
indicating successful convergence without signs of overfitting. The
prediction instances are visualized in Fig. 16, where PC2 is plotted as
an indication of the input image. It can be seen that PM1 effectively
classifies defective pixels, regardless of the interference from the wood
web (Fig. 16(a)). BM_C1 and BM_R1 work well in detecting shallow
defects, but the information of deeper defects (< 15 mm) is hard to
recognize (Figs. 16(b) and 16(c)). The model performance is quantita-
tively evaluated in Table 7. When using PC1-9 (Expt.1, 2 and 5), the
pre-trained models demonstrated superior performance with excellent
F1-score and IoU metrics, while the benchmark models showed moder-
ate performance. This is because PM1 and PM2 were trained and tested
exclusively on simulation data, which, despite the added noise, was
relatively cleaner compared to the real thermal images. As a result, the
U-Net model in the simulation data successfully captured the defects.

However, when tested on Lab_R, PM1 failed to detect defects effec-
tively, as shown in the third column of Fig. 17. This performance gap
can be attributed to the discrepancy in PC1 between the simulation
and the experimental data. As discussed in Section 3.2, PC1 captures
information about the heating conditions. Therefore, when trained
exclusively with Sim_R, the model developed a bias toward uniform
heating patterns, which hindered its ability to process real thermal
images with non-uniform heating distributions.

To address this limitation, a new set of models was developed by
removing PC1 and using only PC2-9 (Expt.3, 4 and 6). Although this
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Fig. 14. First 9 principal components of the resin plate with square defects
extracted from: (a) experimental dataset (Lab_R), (b) simulation dataset with-
out noise, (c¢) simulation dataset with Gaussian distributed heat flux without
noise, and (d) simulation dataset with synthetic noise.

modification resulted in a slight decrease in overall performance met-
rics (as shown in Table 7), due to the reduction of effective information,
the new pre-trained model showed a marked improvement when tested
on Lab_R. The fourth column of Fig. 17 shows that PM2 successfully
identified several defective pixels in real thermal images. However,
it is important to note that the performance of PM2 is not directly
comparable to BM_R, as PM2 was trained without any exposure to
experimental data.

3.4. Transfer learning

The pre-trained model PM2 was re-trained on Lab_R and Lab_C
datasets following the steps explained in Section 2.4. Three re-training
processes were performed using different training datasets, as sum-
marized in Table 6: RM_R, trained only on Lab_R (Expt.7), RM_C
trained only Lab_C (Expt.8) and RM_R_C trained on both Lab_R and
Lab_C (Expt.9). The third process involved training RM R on Lab C. A
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Table 6
Design of deep learning experiments.
Objective Expt. PCs Model? Dataset Train/Val® Test 1 Test 2¢
Benchmark training 1 1-9 BM_C1 Lab_C 4 3 -
2 1-9 BM_R1 Lab_R 20 8 -
3 2-9 BM_C2 Lab_C 4 3 -
4 2-9 BM_R2 Lab_ R 20 8 -
Pre-training 5 1-9 PM1 Sim_R 672/144 144 8 (Lab_R)
6 2-9 PM2 Sim R 672/144 144 8 (Lab_R)
Pre-trained Re-trained
Transfer learning 7 2-9 PM2 RM R Lab_R 20 8 -
8 2-9 PM2 RM_C Lab_C 4 3 -
9 2-9 RM_R RMR_C Lab_C 4 3 -
SegNet 10 2-9 SegNet R Lab_R 20 8 -
11 2-9 SegNet_C Lab_C 4 3 -
DeepLabv3+ 12 2-9 DeepLab R Lab R 20 8 -
13 2-9 DeepLab_C Lab_C 4 3 -

2 BM: Benchmark model, PM: Pre-trained model, RM: Re-trained model, C: Composite, R: Resin.
b Cross-validation was implemented for experimental data.
¢ Pre-trained models were tested on experimental data without re-training.
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Fig. 15. Training and validation loss curves of (a) PM1, (b) BM_C1, and (c) BM_R1.

Fig. 16. Visualizations of PC2 as an indication of input images (left column), ground truth (middle column) and predictions (right column) for (a) PM1, (b)
BM_C1 and (c) BM_R1.
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Table 7
Results for the benchmark models and pre-trained models.
Expt. Model Epochs Precision Recall Fl-score IoU
1 BM_C1 800 0.794 0.736 0.764 0.618
2 BM_R1 1000 0.874 0.795 0.866 0.713
3 BM_C2 800 0.781 0.743 0.762 0.615
4 BM_R2 1000 0.877 0.786 0.829 0.708
57 PM1 1600 0.928/0.152 0.901/0.103 0.914/0.128 0.842/0.065
6% PM2 1600 0.931/0.524 0.900/0.396 0.915/0.451 0.843/0.291

2 Two values for each metric are exhibited as Test 1/Test 2.

Fig. 17. The second principal component (1st column), ground truth (2nd
column), and prediction results for PM1 (3rd column) and PM2 (4th column)
tested on Lab_R dataset.

parametric analysis was performed by varying the number of trainable
layers to examine its effect on the re-training results. The IoU scores
of the models re-trained with different numbers of trainable layers are
shown in Fig. 18(a). The results show that when a small number of
layers are trainable, the re-trained models exhibit poor performance,
which leads to underfitting resulting from a very limited number of
trainable parameters. As the number of trainable layers increases,
the three models reach and in some cases slightly outperform their
benchmark models (BM_C2 and BM_R2).

An additional analysis was performed to better understand the
benefits conferred by transfer learning. Specifically, PM2 was fine-
tuned using varying amounts of training data from Lab_R and Lab_C,
progressively reducing the dataset to identify the minimum size re-
quired to match the performance of BM_R2 and BM_C2. Fig. 18(b)
presents the IoU values for re-trained models across varying numbers
of training data points. For both resin and composites, model perfor-
mance declined with reduced training data. Benchmark performance
was attained with 15 data points for resin and 2 for composites. The
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Number of trainable layers
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proposed transfer learning framework required fewer data points to
achieve equivalent performance, effectively addressing data scarcity.

The best performance of the three re-trained models is summarized
in Table 8. Higher Fl-score and IoU were achieved after re-training,
compared with the benchmark performance shown in Table 7. Com-
pared with Expt.3, the results of Expt.8 showed an improvement of
3.2% on Fl-score and 4.4% on IoU for the composite plate. An im-
provement of 2.6% on Fl-score and 3.9% on IoU was observed for
epoxy resin plates comparing the results of Expt.4 and Expt.7. Although
RM R _C was re-trained on actual infrared images of resin plates, its
ability in detecting damage in composite materials was comparable to
that of RM_C. This suggests that the knowledge transferred from RM_R
had only a minimal impact on the performance of RM_R_C. This limited
contribution can be attributed to the greater dissimilarity between
the experimental data of resin and composite materials, compared to
the difference between simulated and experimental resin data. Among
the evaluated architectures, the re-trained U-Net achieved a higher
Fl-score and IoU than SegNet. While DeepLabv3+ performed slightly
better on the resin dataset, the re-trained U-Net outperformed it on the
composite dataset.

Besides the observation in the final performance, a significant re-
duction on training epochs was achieved during the re-training process.
This faster convergence indicates that the generic features learned
from the simulation data can be effectively transferred to the deep
learning model by training only a subset of the layers, rather than
the entire model. The computational costs of the models trained on
the composite dataset are reported, as shown in Table 9, in terms of
total floating-point operations (FLOPs) per inference, the number of
trainable parameters, the training time per epoch, and the inference
latency. Compared to SegNet and DeepLabv3+, the U-Net architectures
have a lower number of trainable parameters, especially for the re-
trained U-Net. A significant reduction of training time per epoch is
achieved thanks to fewer trainable parameters.

Figs. 19(a) and 19(b) visualize the prediction results for RM_R
and RM_C, respectively. The last columns represent the results after
re-training. Compared to SegNet and DeepLabv3+, the re-trained mod-
els demonstrate slightly improved performance in detecting internal
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Fig. 18. Re-trained model performance with varying number of (a) trainable layers and (b) re-training data.



M. Li et al

Table 8

Composites Part B 309 (2026) 113112

Performance of the U-Net after applying transfer learning using different training datasets, and the testing results of SegNet and

DeepLabv3+ on experimental datasets.

Expt. Model Trainable layers Epochs Precision Recall Fl-score IoU

7 RM_R 9 150 0.894 0.819 0.855 0.747
8 RM_C 6 100 0.801 0.788 0.794 0.659
9 RMR_C 6 100 0.799 0.784 0.791 0.655
10 SegNet R - 1000 0.867 0.816 0.841 0.725
11 SegNet C - 750 0.779 0.649 0.708 0.548
12 DeepLab R - 1200 0.904 0.821 0.861 0.755
13 DeepLab_C - 1000 0.747 0.787 0.766 0.621

Table 9

Computational cost metrics for the U-Net, SegNet and DeepLabv3+.

Model FLOPs [-] n_parameters [-] Training time/epoch [s] Inference latency [s]
BM_C2 1.96 x 10" 7.7 % 10° 8.71 1.548
RM_C 1.96 x 10! 2.3x10° 2.45 1.551
SegNet_C 1.89 x 10! 2.9 % 107 10.98 1.783
DeepLab_C 2.58 x 10" 6.1 x 107 20.12 2.145
PC2 Ground truth BM RI SegNet C DeepLab C RM R

Ground truth

BM CI

SegNet C

Fig. 19. Prediction results for (a) RM_R and (b) RM_C on the testing samples. Comparison is made with benchmark U-Net (BM_R1 and BM_C1), SegNet and

DeepLabv3+.

defects in both resin and GFRP plates. Compared with benchmark U-
Net models, a significant improvement is observed in the detection of
deeper defects located on the left side of the plates. The re-trained
models outperform the benchmarks because the pre-trained model pro-
vides stronger general-purpose feature representations, which reduces
overfitting and accelerates convergence on limited experimental data.

The re-training process starts from a better initialization of the training
parameters in the pre-trained model that already encodes reusable
information from the simulated data (e.g., edges, textures, thermal-
related characteristics), which the re-training step then specializes for
defect detection in real thermal images. This advantage becomes even
more pronounced when the amount of training data is limited, as in
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Fig. 20. Depth-based defect classes definition in (a) Lab_R dataset and (b) Lab_C dataset (Unit: mm).

Table 10

Performance metrics comparison across different defect depths for Lab_R and Lab_C datasets.
Defect depths Lab_R Lab_C

15 mm 10 mm 5 mm > 20 mm 10-20 mm < 10 mm

Fl-score (benchmark) 0.694 0.913 0.934 0.582 0.818 0.909
Fl-score (re-trained) 0.844 0.914 0.937 0.785 0.879 0.910
IoU (benchmark) 0.532 0.841 0.876 0.410 0.692 0.833
IoU (re-trained) 0.730 0.842 0.882 0.646 0.783 0.835

the cases of BM_C2 and RM_C. The U-Net trained exclusively on the
small Lab_C dataset does not achieve optimal performance. However,
by incorporating knowledge transferred from the simulated data, this
shortcoming is effectively mitigated. This improvement is particularly
significant, indicating the increased capability of the re-trained models
to detect and characterize structural anomalies at greater depths.

Since the models show varying performance across different defect
depths, a depth-based evaluation was performed in addition to the
overall performance assessment. For Lab_R, the images were divided
into 3 sections, each containing one of the three defect columns shown
in Fig. 20(a), which contains defects at depths of 15 mm, 10 mm, or
5 mm, respectively. Performance metrics were calculated separately
within each section. For Lab_C, three levels of defect depth were
defined: d < 10 mm, 10 mm < d < 20 mm, 20 mm < d < 30 mm
(Fig. 20(b)). The performance of the model was evaluated separately for
each depth level. As shown in Table 10, the transfer learning process
predominantly improved the detection of deeper defects. For 15 mm-
deep defects in the resin plates, the Fl-score increased from 0.694 to
0.844 and the IoU from 0.532 to 0.730. For the defects deeper than
20 mm in the composite plate, the Fl-score increased from 0.582 to
0.785, while the IoU improved from 0.410 to 0.646. The metrics for the
shallow defects showed only minimal improvement after re-training.

The results of transfer learning experiments demonstrate that the
proposed approach enables the pre-trained model PM2 to learn from
real IR data in a very efficient way. In addition, the pre-learned knowl-
edge of a more diverse simulation dataset makes the re-trained models
able to achieve a higher Fl-score and IoU values compared to the
benchmark. These improvements are mainly attributed to the improved
ability of re-trained models to detect deeper defects (> 15 mm).

3.5. Model generalization and uncertainty evaluation

The generalization capability of the developed models was assessed
using the LOOCV approach during training. Each cross-validation ex-
periment involved multiple training runs on different subsets of the
data, with performance evaluated on the corresponding validation sets.
The IoU was chosen as the primary metric, and its mean, standard devi-
ation, and coefficient of variation were calculated across all validation
folds. The results of this evaluation are presented in Table 11. For both
resin and composite datasets, the retrained U-Net models achieved low
coefficients of variation, all below 0.1. This indicates that the proposed
transfer learning framework successfully enhanced the generalization
of the U-Net architecture in defect detection from thermal images.
In contrast, SegNet and DeepLabv3+ exhibited higher coefficients of
variation, which can be attributed to the limited size of the training

data. The greater complexity of their architectures also requires more
training data to achieve better performance compared with U-Net.
Another notable observation is that the models trained on resin data
consistently exhibit slightly lower coefficients of variation compared to
those trained on composite data. This difference can be attributed to the
variation in dataset size available for resin and composite materials.
Uncertainty evaluation is essential in deep learning research as it
provides a measure of the reliability of model predictions. To assess
the uncertainty of the re-trained U-Net model RM_C, given the ultimate
goal of applying the framework to defect detection in composites, a
bootstrap-based confidence interval (CI) analysis was conducted. A
total of 500 bootstrap resamples were generated with replacement
from the testing set of Lab_C. For each defect depth level, 10 samples
were randomly cropped and resized from the 3 available multi-channel
images to form the testing set. The RM_C model was evaluated on each
of the 500 resamples, resulting in 500 IoU scores, and 95% CIs of
the IoUs were calculated to quantify uncertainty across different defect
depth levels. The results are shown in Fig. 21, with mean IoU values
of 0.632, 0.77 and 0.841 for defects depth > 20 mm, 10-20 mm, and
< 10 mm, respectively. The uncertainty of RM_C was further assessed
by calculating the relative half-width (RHW) as:
rirw = S~
mloU
where C1,, and CI,,,, are the upper and lower bounds of the C1, and
mloU is the mean IoU. Across the three defect depth levels, RHW
values of 5.2%, 3.7%, and 3.3% were obtained, demonstrating low
model uncertainty and robust performance gains for the composites,
consistent with the results reported in Table 10.

ci,,
ol o 100% ©

4. Conclusions and recommendations

This study addresses the challenge of dataset scarcity in Al-aided
damage detection for thick composites using IR thermography by de-
veloping a comprehensive simulation dataset integrated with a transfer
learning framework. Step-heating thermography experiments were con-
ducted on GFRP polymer and epoxy resin plates. In addition, FE models
were validated against experimental results, confirming their accuracy
in capturing the thermal behavior during the heating-cooling process.
To support the transfer learning approach, the simulation dataset was
expanded to incorporate various defect configurations. PCT was ap-
plied to extract the first 9 PCs from both experimental and simulation
thermal videos. A noise analysis revealed that the defect-related in-
formation in the deeper PCs (PC8 and PC9) was largely obscured by
experimental noise. To address this, synthetic noise was added to the
simulation data to enhance comparability with real IR data.

15



M. Li et al

Composites Part B 309 (2026) 113112

2 e 0.615 0.681 E 0.741 0.798 0 80 0812 = 0868

=% =% =y

: : = 60

40 - £ 40 é

E e 40

1) D b5y

£20 £20 220

= = =]

Z 0 _l_?—[ Z o =mll ]_\ Z 0 J 1= I
0600 625 630 (61> 0150 o175 80 0800 25 830 (g7>

IoU IoU IoU

(a)

(b)

(c)

Fig. 21. Histograms of IoU scores for bootstrap-based CI estimation. Analysis was conducted for defect depth level of (a) > 20 mm, (b) 10-20 mm, and (c¢) < 10 mm.

The CIs are highlighted in red.

Table 11

Statistics of the IoU for the LOOCV of benchmark U-Net (BM_R2 and BM_C2), re-trained U-Net

(RM_R and RM_C), SegNet and DeepLabv3+.

Model Mean [u] Standard deviation [c] Coefficient of variation [o/u]
BM_R2 0.686 0.076 0.111
BM_C2 0.601 0.101 0.168
RM_R 0.739 0.064 0.087
RM_C 0.662 0.060 0.091
SegNet R 0.712 0.088 0.124
SegNet_C 0.659 0.086 0.131
DeepLab R 0.731 0.076 0.104
DeepLab_C 0.673 0.078 0.116

Initial results showed that U-Net models pre-trained only on sim-
ulated data performed poorly when tested on experimental data, pri-
marily due to discrepancies in PC1, which captured heating condition
differences. Excluding PC1 from the input significantly improved per-
formance, confirming the hypothesis that fundamental features are
shared between simulation and experimental data, and validating the
feasibility of the proposed transfer learning approach.

Re-training the pre-trained model with experimental data, while
updating only selected layers, resulted in faster convergence and en-
hanced performance metrics. Overall, the re-trained U-Net achieved
higher performance and better generalization compared with SegNet
and DeepLabv3+. Compared to the benchmark U-Net, the model re-
trained on experimental data demonstrated higher ability in detecting
subsurface defects, due to the preserved feature representations in the
pre-trained model. The transfer learning approach led to improvements
of 2.6% (on F1-score) and 3.9% (on IoU) for epoxy resin plates, and
3.2% (on Fl-score) and 4.4% (on IoU) for the composite plate. In
particular, the most significant improvements were observed in the
detection of deeper defects located more than 15 mm beneath the
surface. The U-Net re-trained on the composite dataset shows low
uncertainty, as demonstrated by a bootstrap-based confidence interval
analysis across defect depth levels, thereby confirming the robustness
of the model improvements.

This research demonstrates that transfer learning provides a reliable
and scalable solution to enhance the detection of deeper subsurface
defects in thick composites. The U-Net architecture pre-trained on
simulation data proved capable of capturing common features in ther-
mal images used for NDT, making it adaptable to various real-world
experimental datasets. While the proposed transfer learning framework
demonstrates promising performance on experimental thermography
data acquired under controlled laboratory conditions, its validity for
industrial composite components remains to be established. Future
research should focus on extending the approach to practical inspec-
tion scenarios through the incorporation of representative datasets
acquired from industrial composite components with diverse materials
and geometries, thus strengthening its robustness and generalization
ability.
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Moreover, other possible directions for future work are highlighted
after understanding the limitations of this study. The simulation dataset
could be improved by implementing non-uniform heat flux in FE mod-
els to better replicate actual testing conditions. Furthermore, rather
than adding noise to the simulation data, applying advanced noise re-
duction techniques to the experimental data could help preserve defect-
related information in deeper PCs. Finally, exploring alternative ad-
vanced deep learning architectures for image segmentation within the
proposed transfer learning framework could offer valuable comparative
insights into the relative performance of different models.

CRediT authorship contribution statement

Muyao Li: Writing - original draft, Validation, Software, Methodol-
ogy, Investigation, Formal analysis, Data curation, Conceptualization.
Davide Leonetti: Writing — review & editing, Supervision, Project
administration, Methodology, Funding acquisition, Conceptualization.
Donatella Zappala: Writing — review & editing, Supervision, Project
administration, Methodology, Funding acquisition, Conceptualization.
H.H. (Bert) Snijder: Writing — review & editing, Supervision, Method-
ology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank Dr. Roger Groves, Dr. Nan Tao
and Dr. Yanan Zhang for their support in our experimental work in the
TU Delft Aerospace Structures and Materials Laboratory. This research
is part of the Holi-DOCTOR project, which is funded by the Dutch
Research Council (NWO).



M. Liet al

Data availability

Significant research data and algorithm have been shared
through a link to Mendeley data repository https://doi.org/10.17632/
xjf5emkjm3.1.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Ciang C, Lee J, Bang H. Structural health monitoring for a wind turbine system:
a review of damage detection methods. Meas Sci Technol 2008;19(12):122001.
Diamanti K, Soutis C. Structural health monitoring techniques for aircraft
composite structures. Prog Aerosp Sci 2010;46(8):342-52.

Maljaars J, Leonetti D, Hashemi B, (Bert) Snijder HH. Systematic derivation of
safety factors for the fatigue design of steel bridges. Struct Saf 2022;97:102229.
Wang B, Zhong S, Lee T, Fancey KS, Mi J. Non-destructive testing and evaluation
of composite materials/structures: A state-of-the-art review. Adv Mech Eng
2020;12(4):1687814020913761.

Liu J, Liu L, Wang Y. Experimental study on active infrared thermography as a
NDI tool for carbon-carbon composites. Compos Part B: Eng 2013;45(1):138-47.
Li Y, Yang Z, Zhu J, Ming A, Zhang W, Zhang J. Investigation on the
damage evolution in the impacted composite material based on active infrared
thermography. NDT E Int 2016;83:114-22.

Ball RJ, Almond DP. The detection and measurement of impact damage in
thick carbon fibre reinforced laminates by transient thermography. NDT & E
Int 1998;31(3):165-73.

Ibrahim M. Non-destructive evaluation of thick-section composites and sandwich
structures: A review. Compos Part A: Appl Sci Manuf 2014;64:36-48.

Ardebili A, Alaei MH. Non-destructive testing of delamination defects in GFRP
patches using step heating thermography. NDT E Int 2022;128:102617.
Badghaish AA, Fleming DC. Non-destructive inspection of composites using step
heating thermography. J Compos Mater 2008;42(13):1337-57.

Cerbu C, Wang H, Botis MF, Huang Z, Plescan C. Temperature effects on the
mechanical properties of hybrid composites reinforced with vegetable and glass
fibers. Mech Mater 2020;149:103538.

Tao N, Anisimov AG, Groves RM. Towards safe shearography inspection of
thick composites with controlled surface temperature heating. NDT E Int
2023;139:102907.

Montanini R, Freni F. Non-destructive evaluation of thick glass fiber-reinforced
composites by means of optically excited lock-in thermography. Compos Part A:
Appl Sci Manuf 2012;43(11):2075-82.

Deane S, Avdelidis NP, Ibarra-Castanedo C, Zhang H, Yazdani Nezhad H,
Williamson AA, Mackley T, Maldague X, Tsourdos A, Nooralishahi P. Comparison
of cooled and uncooled IR sensors by means of signal-to-noise ratio for NDT
diagnostics of aerospace grade composites. Sensors 2020;20(12):3381.

Vavilov V, Chulkov A, Shiryaev V, Kuimova M, Zhang H. Noise suppression in
pulsed IR thermographic NDT: Efficiency of data processing algorithms. NDT E
Int 2024;148:103240.

Niccolai A, Caputo D, Chieco L, Grimaccia F, Mussetta M. Machine learning-
based detection technique for NDT in industrial manufacturing. Mathematics
2021;9(11):1251.

Yousefi B, Kalhor D, Usamentiaga Ferndndez R, Lei L, Castanedo CI,
Maldague XP. Application of deep learning in infrared non-destructive testing.
In: QIRT 2018 proceedings. 2018.

Pedrayes OD, Lema DG, Usamentiaga R, Venegas P, Garcia DF. Semantic
segmentation for non-destructive testing with step-heating thermography for
composite laminates. Measurement 2022;200:111653.

Luo Q, Gao B, Woo WL, Yang Y. Temporal and spatial deep learning network
for infrared thermal defect detection. NDT E Int 2019;108:102164.

Liu K, Zheng M, Liu Y, Yang J, Yao Y. Deep autoencoder thermography
for defect detection of carbon fiber composites. IEEE Trans Ind Informatics
2022;19(5):6429-38.

Saeed N, King N, Said Z, Omar MA. Automatic defects detection in CFRP
thermograms, using convolutional neural networks and transfer learning. Infrared
Phys Technol 2019;102:103048.

Kompanets A, Duits R, Pai G, Leonetti D, (Bert) Snijder HH. Loss function inver-
sion for improved crack segmentation in steel bridges using a CNN framework.
Autom Constr 2025;170:105896.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention-MICCAI 2015: 18th international conference. Springer; 2015, p.
234-41.

He Y, Mu X, Wu J, Ma Y, Yang R, Zhang H, Wang P, Wang H, Wang Y. Intelligent
detection algorithm based on 2D/3D-UNet for internal defects of carbon fiber
composites. Nondestruct Test Eval 2024;39(4):923-38.

Miorelli R, Skarlatos A, Vienne C, Reboud C, Calmon P. Deep learning techniques
for non-destructive testing and evaluation. Appl Deep Learn Electromagn: Teach
Maxwell’s Equations To Mach 2022;99-143.

17

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]
[53]

[54]

[55]

Composites Part B 309 (2026) 113112

Jia J, Li Y. Deep learning for structural health monitoring: Data, algorithms,
applications, challenges, and trends. Sensors 2023;23(21):8824.

Virkkunen I, Koskinen T, Jessen-Juhler O, Rinta-Aho J. Augmented ultrasonic
data for machine learning. J Nondestruct Eval 2021;40(1):4.

Cormerais R, Longo R, Duclos A, Wasselynck G, Berthiau G. Data augmentation
and artificial neural networks for eddy currents testing. In: Electromagnetic
non-destructive evaluation. I0S Press; 2020, p. 245-52.

Jiangsha A, Tian L, Bai L, Zhang J. Data augmentation by a cyclegan-
based extra-supervised model for non-destructive testing. Meas Sci Technol
2022;33(4):045017.

Tian L, Wang Z, Liu W, Cheng Y, Alsaadi FE, Liu X. A new GAN-based approach
to data augmentation and image segmentation for crack detection in thermal
imaging tests. Cogn Comput 2021;13:1263-73.

Luleci F, Catbas FN, Avci O. Generative adversarial networks for labeled
acceleration data augmentation for structural damage detection. J Civ Struct
Heal Monit 2023;13(1):181-98.

Tavares A, Di Lorenzo E, Cornelis B, Peeters B, Desmet W, Gryllias K.
Machine learning approaches to damage detection in composite structures
combining experimental and simulation domains. Mech Syst Signal Process
2024;215:111412.

Arya DM, Maeda H, Ghosh SK, Toshniwal D, Mraz A, Kashiyama T, YSIIof
Technology Roorkee, India, TUof Tokyo, Japan, E. Amazon Luxembourg. Trans-
fer learning-based road damage detection for multiple countries. 2020, ArXiv
abs/2008.13101, https://api.semanticscholar.org/CorpusiD:221377141.
Chamangard M, Ghodrati Amiri G, Darvishan E, Rastin Z. Transfer learning for
CNN-based damage detection in civil structures with insufficient data. Shock Vib
2022;2022(1):3635116.

Ma Y, Chen S, Ermon S, Lobell DB. Transfer learning in environmental remote
sensing. Remote Sens Environ 2024;301:113924.

Soleimani-Babakamali MH, Soleimani-Babakamali R, Nasrollahzadeh K, Avci O,
Kiranyaz S, Taciroglu E. Zero-shot transfer learning for structural health mon-
itoring using generative adversarial networks and spectral mapping. Mech Syst
Signal Process 2023;198:110404.

Seventekidis P, Giagopoulos D, Arailopoulos A, Markogiannaki O. Structural
health monitoring using deep learning with optimal finite element model
generated data. Mech Syst Signal Process 2020;145:106972.

Fang Q, Ibarra-Castanedo C, Maldague X. Automatic defects segmentation and
identification by deep learning algorithm with pulsed thermography: Synthetic
and experimental data. Big Data Cogn Comput 2021;5(1):9.

Tong Z, Cheng L, Xie S, Kersemans M. A flexible deep learning framework for
thermographic inspection of composites. NDT E Int 2023;139:102926.

Brachna R, Kominek J, Guzej M, Kotrbacek P, Zachar M. Numerical computation
of anisotropic thermal conductivity in injection molded polymer heat sink filled
with graphite flakes. Polymers 2022;14(16):3284.

Wan X, Demir B, An M, Walsh TR, Yang N. Thermal conductivities and
mechanical properties of epoxy resin as a function of the degree of cross-linking.
Int J Heat Mass Transfer 2021;180:121821.

Tao N, Anisimov AG, Groves RM. FEM-assisted shearography with spatially
modulated heating for non-destructive testing of thick composites with deep
defects. Compos Struct 2022;297:115980.

Jin F, Park S. Thermal properties of epoxy resin/filler hybrid composites. Polym
Degrad Stab 2012;97(11):2148-53.

Chatterjee K, Tuli S, Pickering SG, Almond DP, pulsed Acomparisonofthe. Lock-
in and frequency modulated thermography nondestructive evaluation techniques.
Ndt E Int 2011;44(7):655-67.

Chrzanowski K. Critical review of present-day methodology of thermal imager
noise characterization. Metrol Meas Syst 2025;1-21. http://dx.doi.org/10.24425/
mms.2025.154668.

Milanfar P, Delbracio M. Denoising: A powerful building-block for imaging.
Inverse Probl Mach Learn 2024.

Van Trees HL, Detection, estimation, theory modulation. Part III: radar-sonar
signal processing and Gaussian signals in noise. John Wiley & Sons; 2001.
Vizioli L, Moeller S, Dowdle L, Akcakaya M, De Martino F, Yacoub E, Ugurbil K.
Lowering the thermal noise barrier in functional brain mapping with magnetic
resonance imaging. Nat Commun 2021;12(1):5181.

Orfanidis SJ. Introduction to signal processing. Prentice-Hall, Inc.; 1995.
ANSYS, Inc. ANSYS mechanical, release 2023 rl, help system. Canonsburg, PA:
ANSYS, Inc.; 2023, aNSYS®, https://www.ansys.com.

Bejan A. Convection heat transfer. John wiley & sons; 2013.

Rajic N. Principal component thermography. Tech. rep., DSTO; 2002.

Rajic N. Principal component thermography for flaw contrast enhancement
and flaw depth characterisation in composite structures. Compos Struct
2002;58(4):521-8.

Amin A, Ma H, Hossain MS, Roni NA, Haque E, Asaduzzaman S, Abedin R,
Ekram AB, Akter RF. Industrial product defect detection using custom u-net. In:
2022 25th international conference on computer and information technology.
IEEE; 2022, p. 442-7.

Vasquez J, Furuhata T, Shimada K. Image-enhanced u-net: optimizing defect
detection in window frames for construction quality inspection. Buildings
2023;14(1):3.


https://doi.org/10.17632/xjf5cmkjm3.1
https://doi.org/10.17632/xjf5cmkjm3.1
https://doi.org/10.17632/xjf5cmkjm3.1
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb1
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb1
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb1
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb2
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb2
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb2
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb3
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb3
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb3
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb4
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb4
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb4
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb4
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb4
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb5
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb5
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb5
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb6
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb6
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb6
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb6
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb6
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb7
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb7
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb7
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb7
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb7
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb8
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb8
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb8
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb9
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb9
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb9
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb10
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb10
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb10
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb11
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb11
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb11
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb11
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb11
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb12
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb12
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb12
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb12
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb12
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb13
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb13
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb13
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb13
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb13
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb14
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb15
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb15
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb15
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb15
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb15
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb16
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb16
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb16
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb16
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb16
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb17
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb17
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb17
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb17
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb17
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb18
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb18
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb18
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb18
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb18
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb19
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb19
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb19
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb20
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb20
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb20
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb20
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb20
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb21
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb21
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb21
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb21
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb21
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb22
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb22
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb22
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb22
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb22
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb23
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb24
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb24
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb24
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb24
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb24
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb25
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb25
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb25
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb25
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb25
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb26
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb26
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb26
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb27
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb27
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb27
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb28
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb28
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb28
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb28
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb28
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb29
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb29
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb29
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb29
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb29
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb30
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb30
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb30
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb30
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb30
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb31
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb31
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb31
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb31
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb31
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb32
https://api.semanticscholar.org/CorpusID:221377141
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb34
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb34
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb34
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb34
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb34
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb35
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb35
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb35
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb36
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb37
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb37
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb37
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb37
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb37
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb38
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb38
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb38
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb38
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb38
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb39
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb39
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb39
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb40
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb40
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb40
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb40
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb40
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb41
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb41
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb41
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb41
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb41
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb42
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb42
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb42
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb42
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb42
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb43
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb43
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb43
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb44
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb44
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb44
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb44
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb44
http://dx.doi.org/10.24425/mms.2025.154668
http://dx.doi.org/10.24425/mms.2025.154668
http://dx.doi.org/10.24425/mms.2025.154668
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb46
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb46
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb46
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb47
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb47
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb47
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb48
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb48
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb48
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb48
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb48
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb49
https://www.ansys.com
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb51
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb52
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb53
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb53
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb53
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb53
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb53
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb54
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb55
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb55
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb55
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb55
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb55

M. Liet al

[56] Wang H, Li X. Expanding horizons: U-net enhancements for semantic segmenta-
tion, forecasting, and super-resolution in ocean remote sensing. J Remote Sens
2024;4:0196.

[57] Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data
2016;3:1-40.

[58] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder—
decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach
Intell 2017;39(12):2481-95.

18

Composites Part B 309 (2026) 113112

[59] Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the
European conference on computer vision. 2018, p. 801-18.


http://refhub.elsevier.com/S1359-8368(25)01028-5/sb56
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb56
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb56
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb56
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb56
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb57
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb57
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb57
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb58
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb58
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb58
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb58
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb58
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb59
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb59
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb59
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb59
http://refhub.elsevier.com/S1359-8368(25)01028-5/sb59

	Infrared-based damage detection in thick composites via transfer learning on simulated and experimental data
	Introduction
	Methodology
	Experimental measurements
	Step-heating thermography test
	Plate specimens and experimental dataset
	Noise analysis

	Finite element analysis
	Finite element models of epoxy resin plates
	Simulation data conversion
	Model validation

	Supervised learning for damage detection
	Principal component thermography
	U-Net
	Training
	Model performance evaluation

	Transfer learning

	Results and discussion
	Finite element model validation and noise analysis
	Feature extraction
	Benchmark model and pre-training
	Transfer learning
	Model generalization and uncertainty evaluation

	Conclusions and Recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


