
Delft Center for Systems and Control

On the road from Model-Based
Dynamic Programming to Model-
Free Reinforcement Learning
A sample efficient approach

Pol Mur i Uribe

M
as

te
ro

fS
cie

nc
e

Th
es

is

On the road from Model-Based
Dynamic Programming to Model-Free

Reinforcement Learning
A sample efficient approach

Master of Science Thesis

Pol Mur i Uribe

March 15, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright ©
All rights reserved.

Abstract

This thesis introduces a new method, called Mixed Iteration, for controlling Markov Decision
Processes when partial information is known about the dynamics of the Markov Decision Pro-
cess. The algorithm uses sampling to calculate the expectation of partially known dynamics
in stochastic environments. Its goal is to lower the number of iterations and computational
steps required for convergence compared to traditional model-free algorithms. By lowering
the number of samples required to achieve convergence Markov Decision Processes can be
controlled and trained more efficiently. Additionally, the thesis discusses how this algorithm
can enhance the sample efficiency and convergence rate of Reinforcement Learning algorithms
like Q-Learning. The effectiveness of the proposed method will be evaluated in standard Rein-
forcement Learning problems and compared with the performance of Q-learning. The results
show that under certain conditions that will be discussed in the thesis, the new proposed al-
gorithm outperforms classical algorithms in terms of sample efficiency. The study will provide
insight into the field of previous partial information in Reinforcement Learning alternatives,
as well as the challenges that researchers in this field continue to face.

Keywords: Markov Decision Process (MDP), Reinforcement Learning, partial information,
sample efficiency.

Master of Science Thesis Pol Mur i Uribe

Table of Contents

Acknowledgements ix

1 Introduction 1

2 Markov Decision Processes 3
2-1 Markov Processes . 3
2-2 Markov Decision Processes . 4
2-3 Solving a Markov Decision Process . 4

3 Model-Based and Model-Free Algorithms 6
3-1 Model-Based Value Iteration . 6

3-1-1 The Value Iteration Algorithm . 7
3-1-2 Convergence Guarantee of Value Iteration 8

3-2 Model-Free Q-Learning . 8
3-2-1 The Q-Learning Algorithm . 10
3-2-2 Convergence Guarantee of Q-Learning 10

3-3 The gap between Value Iteration and Q-Learning 12
3-4 Accelerated Versions of Q-Learning . 13

4 Alternatives in the Literature 15
4-1 Robust Reinforcement Learning . 15
4-2 Transfer Learning . 16
4-3 System Identification . 16

5 Mixed Iterations 18
5-1 The Mixed Iterations Algorithm . 20

Pol Mur i Uribe Master of Science Thesis

Table of Contents iii

6 Design of the Experiments and Simulation Results 21
6-1 Riverswim MDP . 22
6-2 GridWorld . 23
6-3 The Mountain Car Problem . 25
6-4 The Inverted Pendulum Problem . 27
6-5 Summary of the Results . 30

7 Final Remarks 32
7-1 Performance of the algorithm in comparison to Q-Learning 32
7-2 Limitations of the algorithm . 34
7-3 Future Work . 35

A Proof of unique solution for the Bellman Equation 38

Bibliography 41

Master of Science Thesis Pol Mur i Uribe

iv Table of Contents

Pol Mur i Uribe Master of Science Thesis

List of Figures

3-1 RiverSwim MDP – solid and dotted arrows denote the transitions under actions
‘right’ and ‘left’, respectively [1] . 12

3-2 In thick red the average of the evolution of the error between the value of Qk and
Q∗ over 50 runs. In shadowed red 10%-90% and 25%-75% confidence intervals,
using Value Iteration and Q-Learning for the RiverSwim MDP case along 500
iterations . 12

4-1 Derivation of Robust RL solving the uncertainty when the transition probability
matrix is not known [2] . 15

4-2 The Online System Identification provides a policy π to the controller that provides
the action to the environment [3] . 17

5-1 Transition Probability Tensor P of MDP with full information 18

6-1 Performance of Mixed Iteration (MI) Algorithm with varying percentage of known
transitions in comparison with Q-leaning (QL) and Value Iteration (VI) algorithms
for the RiverSwim MDP. 23

6-2 Shape of the different size mazes used to test the algorithm 24
6-3 Average evolution of the error of Qk and the number of elements in the policy

πk(x) ̸= π∗(x) using Q-Learning (QL), Value Iteration (VI) and Mixed Iterations
(MI) over 25 runs . 24

6-4 Optimal cost and optimal policy obtained using model-based methods for Mountain
Car . 26

6-5 Average of the evolution of the error of π(x) along iterations with Value Iteration
(VI), Q-Learning (QL) and Mixed Iterations (MI) algorithms over three runs . . . 26

6-6 Evolution of the states during a sequence of control actions over different initial
conditions . 27

6-7 Optimal cost and optimal policy obtained using model-based methods for the In-
verted Pendulum . 28

6-8 Evolution of the error of πk(x) along iterations with Value Iteration , Q-Learning
and Mixed Iteration algorithms . 29

Master of Science Thesis Pol Mur i Uribe

vi List of Figures

6-9 Evolution of the states during a sequence of control actions over different initial
conditions . 29

7-1 Percentage of Improvement of Mixed Iterations respect to Q-Learning in all envi-
ronments . 33

Pol Mur i Uribe Master of Science Thesis

List of Tables

6-1 Summary of the results obtained after applying the Mixed Iterations algorithm to
the different environments proposed, the number of iterations to achieve a 90%
accuracy and the improvement respect Q-Learning are shown 30

7-1 State-Action spaces dimensions and Iteration Complexities across test environments 33
7-2 Possibilities for implementations in accelerated versions of Q-Learning 36

Master of Science Thesis Pol Mur i Uribe

viii List of Tables

Pol Mur i Uribe Master of Science Thesis

Acknowledgements

I would like to thank my supervisor Peyman Mohajerin Esfahani for his assistance during the
writing of this thesis and the support during these months. I would also like to thank Amin
Sharifi Kolarijani and Pedro L. Ferreira for all the meetings and knowledge you shared with
me. Lastly, to all my friends and study partners that shared with me uncountable hours of
studying and finally, to you Lara.

Delft, University of Technology Pol Mur i Uribe
March 15, 2023

Master of Science Thesis Pol Mur i Uribe

x Acknowledgements

Pol Mur i Uribe Master of Science Thesis

Chapter 1

Introduction

Stochastic processes were mathematically defined in the early 1930s by Aleksandr Khinchin [4]
as a probability model describing a collection of time-ordered random variables that represent
the possible sample paths. Stochastic Processes can be grouped into different categories
being one of them Markov Processes introduced by Andrey Markov [5]. A Markov Process is
described as a stochastic model that describes a sequence of events in which the probabilities
of future events are determined by the previous state [6]. Markov Decision Processes (MDP)
are an extension of Markov Processes where the transition between the states is influenced
by the action chosen by a decision maker. Markov Decision Processes are known since 1950s
after the paper published by Richard Bellman in 1954 [7]. Markov Decision Processes are a
powerful tool used in the optimization of the actions determined by the decision maker.

MDPs future states are determined by the combination of the action chosen by the decision
maker with a stochastic transition probability distribution. Depending on the amount of
prior knowledge regarding the transition probability distribution, model-free or model-based
[8] algorithms must be applied to optimize the choice of the sequence of future actions.
Model-based algorithms [9] are any MDP approach that uses a model previously known or
learned. On the other hand, model-free algorithms are used without the explicit model of the
environment. Model-free methods [10] abstain from learning the model and directly determine
a value to either a state or a state-action pair.

Richard Sutton formalized Reinforcement Learning (RL) in 1984 during his PhD thesis [11]
as an area of artificial intelligence where an agent takes actions in an environment, usually
described by an MDP, in order to optimize an objective function. Reinforcement Learn-
ing is used in several research fields including robotics, energy management, manufacturing,
and economics [12]. Another research area where RL is widely used are games, where algo-
rithms have been developed since the 1990s, when TD-Gammon was introduced for solving
the Backgammon game [13]. Another successful implementations of similar algorithms are
AlphaZero [14], for Chess and Go, and AlphaStar [15] for Starcraft II, both algorithms devel-
oped by DeepMind.

Master of Science Thesis Pol Mur i Uribe

2 Introduction

The duality between model-based and model-free algorithms will allow the combination of
them in certain scenarios aiming for an improvement of the metrics that determine their
success. The aim of this thesis will be to find an efficient combination of model-free and model-
based methods to reduce the sample complexity and improve the convergence of the algorithms
under different environments. By reducing the sample complexity, the number of iterations
required can be decreased significantly in complex environments. In some applications where
every iteration is highly costly, diminishing the number of iterations required to obtain an
optimal solution will have a substantial impact.

In Chapter 2 the concept of Markov Decision Processes (MDP) will be discussed as well as
the problem that needs to be solved when dealing with MDPs. In the following Chapter 3,
the difference between model-free and model-based algorithms will be studied when trying to
solve an MDP as well as the gap between the two algorithms and the problem statement will
be posed. In Chapter 4, the alternatives that are currently present in the literature will be
discussed for solving the problem of the gap in performance between model-free and model-
based algorithms. The solution proposed in this thesis is presented in Chapter 5, where the
newly proposed algorithm is described and the principles behind it as well as convergence
guarantees. The next step in the thesis will be to design the experiments where the algorithm
will be tested, simulate the algorithm and obtain results, this will be done in Chapter 6.
Finally, in Chapter 7 a further analysis of the results will be done followed by the limitations
found for the algorithm proposed and directions for future research will be appointed.

Pol Mur i Uribe Master of Science Thesis

Chapter 2

Markov Decision Processes

MDPs are a discrete- or continuous-time stochastic control process where the Markovian
property is kept along the states. MDPs provide a framework for decision-making where
the transition between the states is partially random and influenced by a decision-maker or
controller. In this chapter, the definitions of Markov Decision Processes and the elements
that compose the Markov Process framework will be explained. The scope of the thesis will
be restricted to discrete-time stochastic processes and all the definitions provided during the
next sections will assume a finite state-action space.

2-1 Markov Processes

Markov Processes are stochastic processes that in a discrete-time setting the transition prob-
abilities between the states are defined as follows.

Definition 2.1. A stochastic process X = {Xt : t ≥ 0} is a Markov Process if

P{Xt+1|X0, X1, ..., Xt} = P{Xt+1|Xt}, (2-1)

Moreover, for a time-homogeneous Markov Chain,

P{Xt+1 = j|Xt = i} = Pi,j ∀i, j ∈ X, ∀t ≥ 0. (2-2)

The first equation in the definition is the Markov Property that states that at any step t, the
probability of Xt+1is only dependent on the current state Xt and independent of the previous
states. In the case of time-homogeneous transition probabilities then the second condition
states that the probabilities are homogeneous for all steps t and only depend on the current
state. An extension of Markov Processes are Markov Decision Processes, where at every step
t a decision-maker chooses an action in order to optimize an objective function according to
the dynamics described by the transition probability matrix P.

Master of Science Thesis Pol Mur i Uribe

4 Markov Decision Processes

2-2 Markov Decision Processes

Markov Decision Processes are defined as a discrete-time stochastic control process where at
every time step an action needs to be chosen and the outcome is stochastic. MDP theory is
applied to control of Markov Processes.

A Markov Decision Process is fully described with the elements in the tupleM = (X,U,P, cx,u, γ):

• The set X is the state space of finite size |X| = n.

• The set U describes the action space of finite size |U| = m.

• The function c : X× U→ R is the cost function associated with a state-action pair.

• The transition probability kernel P defines the probability of landing in the next state
given the current state and the action chosen by the decision-maker, that is,

xt+1 ∼ P (· | xt, ut). (2-3)

• The discount factor γ ∈ (0, 1) will determine how much the distant future cost will be
considered compared to the immediate costs.

2-3 Solving a Markov Decision Process

The objective of describing an environment as a Markov Decision Process is to optimize
the sequence of future actions according to a policy π. The objective function that will be
minimized will be the expected sum of discounted costs during an infinite horizon of time.
The optimal sequence of actions will be obtained after finding the policy π : X → U that
minimizes the sum of discounted costs over an infinite horizon of time.

The optimal cost will be the solution obtained after applying the optimal policy π∗, the
minimizer of the optimization problem below

J∗(x) = min
π:X→U

EP

[∞∑
k=0

γkc (Xk, π (Xk)) | X0 = x

]
∀x ∈ X. (2-4)

The standard solution for the problem posed is the solution of the next fixed-point equation

J∗ = T J∗. (2-5)

To achieve the desired solution, consecutive applications of the Bellman operator will be
performed until the fixed-point solution is reached. The Bellman Operator T ,

T J(x) := min
u∈U

{
c(x, u) + γ

[
Ex+∼P(·|x,u)[J(x+)]

]}
∀x ∈ X, (2-6)

by applying the Bellman Operator recursively the cost J(x) will be computed for all x up-
dating the values of the entire vector J ,

Jk+1 = T Jk . (2-7)

Pol Mur i Uribe Master of Science Thesis

2-3 Solving a Markov Decision Process 5

The Bellman Operator is known to be a contractor [16]. This means that the following
property applies to the iterations with γ < 1, where the infinity-norm is defined as ∥x∥∞ :=
maxi |xi|,

∥T J − T J ′∥∞≤ γ∥J − J ′∥∞. (2-8)

The previously mentioned contraction property ensures that for any starting point, the itera-
tions will converge to a unique fixed point J∗(x). One of the main challenges of the equation
proposed above is how to solve the expectation with respect to P, as the probability distribu-
tion is often unknown or partially known. Depending on the amount of prior knowledge on P
we can divide the approaches between model-based, when P is fully known, or model-free in
the rest of cases. In both scenarios the existing literature provides algorithms for model-free
and model-based cases. However, there are several differences in the performance as in the
model-based case all the information is available making the process of solving the expectation
simpler than in the model-free scenario.

Master of Science Thesis Pol Mur i Uribe

Chapter 3

Model-Based and Model-Free
Algorithms

During this chapter, the nature of model-based and model-free algorithms will be discussed
as well as their performances. When analyzing their performances, we will highlight the gap
in the existing literature and the reasons why the proposed algorithm could help close this
gap. The algorithms presented in this chapter are the simplest first-order algorithms in both
model-based and model-free algorithms, namely, Value Iteration [17] for model-based and
Q-Learning [18] for model-free. The chosen algorithms despite being the simplest show the
differences between the two approaches and the same comparison could be made with second-
order algorithms of both families or their respective accelerated versions. However, in order
to make a fair comparison we should always compare algorithms of the same nature between
model-free and model-based algorithms.

3-1 Model-Based Value Iteration

Value Iteration was introduced by Bellman in 1957 [19] and simply involves consecutive appli-
cations of the Bellman operator as in Jk+1(x) = T Jk(x). The iteration is typically performed
until two steps are smaller than a certain threshold ϵ, i.e.,

max
x∈X
|Jk(x)− Jk+1(x)| < ϵ. (3-1)

Value Iteration can be used in the case when the transition probability tensor, P, is fully
known:

Jk+1(x) := min
u∈U

{
c(x, u) + γ Ex+∼P(·|x,u)[Jk(x+)]

}
∀x ∈ X. (3-2)

In particular, in the case of finite state space, the expectation operation reduces to

Ex+∼P(·|x,u)[Jk(x+)] =
∑

x+∈X
P(x+ | x, u)Jk(x+). (3-3)

Pol Mur i Uribe Master of Science Thesis

3-1 Model-Based Value Iteration 7

The algorithm is guaranteed to converge to the unique fixed-point J∗ of the Bellman operator
T , that is, Jk → J∗ as k →∞ if 0 < γ < 1. The preceding result follows from Banach Fixed
Point theorem [20] and the fact that the Bellman operator is a contraction with coefficient γ,
that is, for any two cost functions J1 and J2,

||T (J1)− T (J2)||∞ ≤ γ||J1 − J2||∞. (3-4)

The optimal policy is then the greedy policy with respect to J∗ given by,

π∗(x) = arg min
u∈U

c(x, u) + γ

 ∑
x+∈X

P(x+ | x, u)J∗(x+)

 ∀x ∈ X. (3-5)

Finally, the cost function Jπ will be defined as the cost function obtained if the policy π is
followed,

Jπ(x) := EP

[∞∑
k=0

γkc (Xk, π (Xk)) | X0 = x

]
∀x ∈ X. (3-6)

The same notation can be used for any other policies that could be obtained, so for the
optimal policy π∗, the cost Jπ∗ will be the same result of Equation 3-6. It can be also defined
after Equations 3-6 and 3-5 that J∗ = Jπ∗ .

3-1-1 The Value Iteration Algorithm

The Value Iteration algorithm is presented next and it is guaranteed to converge as was
discussed in the previous section. The inputs required for the algorithm will be explained as
follows. The first variable ϵ will be the convergence threshold that will determine when the
error between two consecutive iterations is close enough, X and U will be the possible set of
states and actions that comprise the state-action space, c(x, u) determines the stage cost of
choosing a particular action being at a particular state, P is the transition probability tensor
that defines the dynamics of the MDP, and finally γ is the discount factor between 0 and 1.

Algorithm 1 Value Iteration
Input: ϵ, X, U, c(x, u), P, γ
Output: ϵ-optimal policy

for x ∈ X do
J0(x)← minu c(x, u)

end for
while maxx∈X |Jk(x)− Jk+1(x)| > ϵ

1−γ do
for x ∈ X do

Jk+1(x) := minu∈U
{
c(x, u) + γ

[∑
x+∈XP(x+ | x, u)Jk(x+)

]}
end for

end while
π(x) = arg minu∈U

{
c(x, u) + γ

[∑
x+∈XP(x+ | x, u)J(x+)

]}
∀x ∈ X

Master of Science Thesis Pol Mur i Uribe

8 Model-Based and Model-Free Algorithms

3-1-2 Convergence Guarantee of Value Iteration

In Appendix A the Banach fixed-point theorem is discussed, it ensures that the Bellman
Equation has a unique solution and is guaranteed to converge due to the contraction property
the Bellman Operator has. We will discuss the effect of γ and derive a bound for the number
of iterations needed to converge within ϵ. An ϵ-optimal value function will be any value
function J such that ∥J − J∗∥ ≤ ϵ. When obtained, the greedy policy with respect to J can
be obtained so an ϵ-optimal policy can be derived. It has been discussed [21] that given the
iterative nature of the algorithm the closer to 1 the value of γ is, the slower the convergence
will be. This is because the future values will be less discounted and will be taken more into
account, thus needing a long-term horizon view to derive the optimal policy.
Then it can be derived that for any J(x) a finite number of iterations is needed to reduce the
error between the current cost and J∗(x) so an ϵ-optimal cost function is found. The number
of iterations can be derived as follows. Assuming that the costs are bounded

|c(x, u)| ≤ cmax ∀x ∈ X,∀u ∈ U. (3-7)

Then applying the property of geometric series,

− cmax

1− γ
≤ J(x) ≤ cmax

1− γ

||J(x)− J∗(x)||∞ ≤ 2 cmax

1− γ
.

(3-8)

Then the upper-bound on the number of iterations k needed to guarantee convergence within
ϵ will be the value that satisfies,

γk 2 cmax

1− γ
≤ ϵ

k ≤

 log
[

2 cmax
ϵ(1−γ)

]
log

(
1
γ

)
 .

(3-9)

According to the expression derived for the number of necessary iterations to converge within
ϵ it can be observed that the number of iterations increase in the order of log(1

ϵ). Also, the
closer γ is to 1 then the number of iterations will also increase rapidly.
In order to derive the computational complexity, apart from determining the number of
iterations needed to converge it needs to be derived the per-iteration complexity. In the case
of Value Iteration, the complexity of every iteration depends on the space of the state-action
space. To complete one iteration, for each state, it is needed to minimize over all possible
actions while computing the objective requires computing the expectation with respect to all
possible future states. Then, if n is the size of the state space and m is the size of the action
space, the iteration complexity of Value Iteration will be O(n2m).

3-2 Model-Free Q-Learning

An alternative approach to minimizing the expected value of the infinite sum of discounted
rewards when P was unknown or partially known was introduced in 1989 by Chris Watkins

Pol Mur i Uribe Master of Science Thesis

3-2 Model-Free Q-Learning 9

[22]. The algorithm proposed is named Q-Learning and solves the problem of computing the
expectation via sampling the system. In the Q-learning algorithm, a cost function will be
associated with every state-action pair, Q(x, u). The goal of the algorithm will be the same
as in the model-based case, finding an optimal policy for every possible state. The algorithm
is guaranteed to converge into the optimal policy if all state-action pairs are visited infinitely
often [23]. So the goal of Q-Learning will be to achieve Q∗ such that,

Q∗(x, u) = c(x, u) + γ Ex+∼P(·|x,u)
[

J∗(x+, u+)
]

. (3-10)

Q-Learning is an iterative algorithm that will be performed until the difference between
iterations is below a certain value ϵ. Ideally, with an infinite amount of time and visiting every
state-action pair it is guaranteed to converge, however, once the ϵ-optimal value function has
been found then the greedy-policy π(x) respect the optimal Q-function will be obtained,

π(x) = arg min
u∈U

Q(x, u). ∀x ∈ X (3-11)

If we combine Equation 3-10 with the Bellman Equation 2-5 then one can also derive the
following relation,

J(x) = min
u∈U

Q(x, u) ∀x ∈ X, u ∈ U. (3-12)

The expectation described in Equation 3-10 with respect to P cannot be computed directly
in the model-free case as there will be a lack of knowledge about P. To compute the value
of the expectation another approach will be used. By sampling the system and receiving
the information of the next state x+ ∼ P(·|x, u) we can solve the expectation with respect
to P. The approximation of the mentioned expectation follows a similar principle to the
Stochastic Gradient Descend algorithm. To prove the convergence of the algorithm and the
relation between the Bellman Operator and Q-Learning, we will introduce the estimator of the
Bellman operator. The estimator of the Bellman Operator T̂ will be defined as an estimator
of T ,

T̂ Q(x, u, x+) := c(x, u) + γ min
u+∈U

Q(x+, u+) (3-13)

The estimator T̂ will converge to T with enough sampling of the system and visiting all the
possible states infinitely often. The Bellman Operator as described in Equation 3-2 is defined
as,

T Q(x, u) := c(x, u) + γ EP
[

min
u+∈U

Q(x+, u+)
]
∀x ∈ X, ∀u ∈ U (3-14)

as a consequence of the definition of T̂ through enough sampling and visiting all the state-
action pairs infinitely often, for any fixed Q(x, u) the estimator will converge to the Bellman
operator

EP
[
T̂ Q(x, u, x+)

]
= T Q(x, u) ∀x ∈ X,∀u ∈ U. (3-15)

As it was derived in the previous section when the Bellman Operator was discussed the
approximate Bellman operator also suffices the Banach Fix Point theorem as the contraction
property also applies [24],

||T̂ Q(x, u)− T̂ Q∗(x, u)||∞ ≤ γ||Q(x, u)−Q∗(x, u)||∞ ∀x ∈ X, ∀u ∈ U. (3-16)

Master of Science Thesis Pol Mur i Uribe

10 Model-Based and Model-Free Algorithms

The learning rate typically used in Q-Learning, α is a polynomial learning rate that decreases
over the iterations 1

kω where ω ∈ (1
2 , 1) [25]. The values of Q(x, u) will be obtained with the

next update rule,

Qk+1(x, u) = Qk(x, u) + α
(
T̂ Qk(x, u, x+)−Qk(x, u)

)
∀x ∈ X, u ∈ U. (3-17)

3-2-1 The Q-Learning Algorithm

The Q-Learning algorithm that will be used in future sections and used as a reference is the
algorithm shown next. It can be observed in the algorithm the needed inputs for it to work and
after iterating the optimal policy will be obtained as the process is guaranteed to converge.
The inputs required for the algorithm will be explained as follows. The first variable ϵ will
be the convergence threshold that will determine when the error between two consecutive
iterations is close enough, X and U will be the possible set of states and actions that comprise
the state-action space, c(x, u) determines the stage cost of choosing a particular action being
at a particular state, P is the transition probability tensor that defines the dynamics of the
MDP, and finally γ is the discount factor between 0 and 1. The convergence is guaranteed
however it might take a significant number of states, for this reason a maximum number of
iterations kmax will be also added to the algorithm.

Algorithm 2 Q-Learning
Input: ϵ, X, U, c(x, u), γ, kmax

Output: π, the sub-optimal policy
Q0(x, u)← 0n×m

while max(x,u) |Qk(x, u)−Qk+1(x, u)| > ϵ and k < kmax do
for x ∈ X, u ∈ U do

x+ ∼ P(· | x, u)
Qk+1(x, u) = Qk(x, u) + α

(
T̂ Qk(x, u, x+)−Qk(x, u)

)
end for

end while
π(x) = arg minu∈U Q(x, u)

3-2-2 Convergence Guarantee of Q-Learning

The discussion of the bounds for convergence of Q-Learning has been addressed for years
by the Reinforcement Learning community under different conditions. In this section, the
iteration complexity will be discussed for the cases of linear and polynomial step sizes. The
first results on the convergence of the algorithm were presented in the late 90s [26] [27] and
showed that the convergence rate of Q-Learning is strongly linked to the learning rate in the
order of 1

1−γ . The bounds for the Q-Learning algorithm for the non-rescaled linear step size
αk = k−1 and the polynomial step-size αk = k−ω for ω ∈ (0, 1) were derived by Even-Dar
and Mansour [25] and will be the bounds considered as the algorithm will be implemented
with polynomial step sizes. For all the sequence of step sizes considered they need to meet
two criteria to ensure convergence,∑

k

αk =∞
∑

k

α2
k ≤ ∞. (3-18)

Pol Mur i Uribe Master of Science Thesis

3-2 Model-Free Q-Learning 11

The type of MDPs considered for this analysis will be cost-bounded, that is

|c(x, u)| ≤ cmax, ∀x ∈ X,∀u ∈ U (3-19)

and the iteration complexity will be the number of iterations required to reduce the expecta-
tion of the infinity norm E||Qk−Q∗||∞ below ϵ. Notice that with Q-Learning the per-iteration
complexity is of the order of O(m2n), where m and n are the sizes of the action and state
spaces respectively. The total computational complexity will be the one derived in the next
subsections times the per-iteration complexity.

Linear Step Sizes

The first results regarding the iteration complexity of unrescaled step sizes were quite pes-
simistic exponentially growing in the order of 1

1−γ [24]. However, if the rescaled version of
the step size is used αk = 1

1+(1−γ)k then the iteration complexity grows polynomially instead
of exponentially [25]. To derive the expression for the bounds in the number of iterations,
there are two variables that need to be explained. The first one is the span seminorm of Q∗

described as,
||Q∗||span = max

(x,u)
Q∗(x, u)−min

(x,u)
Q∗(x, u). (3-20)

And the second one will be the maximal standard deviation. As the iteration process will
be i.i.d. and zero mean the variance can be computed easily and the value of the maximal
standard deviation will be defined as

∥σ (Q∗)∥∞ =
√

max
(x,u)

σ2 (Q∗) (x, u). (3-21)

After having explained these two variables Wainwright [24] derived the iteration complexity
for the rescaled linear step size,

k ≾

(
∥Q0 −Q∗∥∞

1− γ
+
∥Q∗∥span
(1− γ)2

)(1
ϵ

)
+
(
∥σ (Q∗)∥2∞
(1− γ)3ϵ2

)
(3-22)

iterations, convergence can be guaranteed within ϵ. The notation ≾ means that the derived
equation is a simplification that holds after dropping logarithmic factors. The main concern
that will be considered when designing the parameters that will determine the success of
the convergence will be the choice of the parameter ϵ. If the rest of the parameters are
considered constant across all design scenarios then we can drop them and the resulting
iteration complexity will be dependent on ϵ in the order of,

k ≾ Õ

(1
ϵ2

)
. (3-23)

Polynomial Step Sizes

In the case of Q-Learning with polynomial step sizes Even-Dar and Mansour [25] in their
Theorem 2 they proved that it suffices to take at most

k ≾

(
c2

max
(1− γ)4ϵ2

) 1
ω

+
{ 1

1− γ
log

(
cmax

(1− γ)ϵ

)} 1
1−ω

(3-24)

Master of Science Thesis Pol Mur i Uribe

12 Model-Based and Model-Free Algorithms

iterations to bring the infinity norm of the error of any MDP with bounded rewards below a
certain threshold ϵ. As we did in the case of rescaled linear step sizes for the polynomial step
sizes the dependency on ϵ will be,

k ≾ Õ

(1
ϵ

2
ω

)
. (3-25)

3-3 The gap between Value Iteration and Q-Learning

During this chapter, the principles and derivations of Value Iteration and Q-Learning were
explained. When both algorithms are implemented there are obvious differences in their
performances that should be highlighted. The algorithms will be implemented in a simple
MDP called the RiverSwim MDP [28] with six states and two actions. The probabilities of
the transitions as well as the costs associated with the states are shown in Figure 3-1.

Figure 3-1: RiverSwim MDP – solid and dotted arrows denote the transitions under actions
‘right’ and ‘left’, respectively [1]

When trying to solve the MDP and obtain the optimal policy as well as the optimal values of
J∗(x) and Q∗(x, u), it can be observed that Value Iteration converges faster than Q-Learning
as shown in Figure 3-2.

Figure 3-2: In thick red the average of the evolution of the error between the value of Qk and Q∗

over 50 runs. In shadowed red 10%-90% and 25%-75% confidence intervals, using Value Iteration
and Q-Learning for the RiverSwim MDP case along 500 iterations

Pol Mur i Uribe Master of Science Thesis

3-4 Accelerated Versions of Q-Learning 13

As Q-Learning has some stochasticity associated due to the random sampling of the next
state, a series of 50 runs were performed and the results shown in the plot are the mean
and the 10%-90% as well as the 25%-75% percentiles. When we compare the performance of
both algorithms, Value Iteration converges after very few iterations while Q-Learning takes a
significant number of iterations to converge to the optimal cost function. The fact that Value
Iteration converges faster than Q-Learning is due to the order of the polynomial convergence
guarantee as it is higher in Q-Learning than in Value Iteration. In the case of Value Iteration,
the expectation of future costs is computed analytically while in Q-Learning we have to
rely on solving the expectation through sampling. If we want to find the exact value of the
expectation infinite sampling and visits to every state-action pairs are required and sometimes
this is hard to achieve. After discussing the differences between the two algorithms a question
arises: How could this gap be filled in the cases where partial information is known? Is it
possible to solve the expectation including partial knowledge about the transitions to make
the process converge faster? In some reinforcement learning applications, computational
complexity is crucial as every iteration can be associated with a cost per iteration so reducing
the number of iterations needed to provide an accurate control policy will reduce the cost of
implementing the algorithm.

The algorithm to be designed must:

• Ensure convergence under the same conditions required in Q-Learning and Value Iter-
ation solving the fixed-point equation discussed.

• Reduce the number of computations needed to obtain reliable solutions making the
algorithm more sample-efficient than Q-Learning.

• Be able to converge under any percentage of previously known probability transitions.

Once the problem has been formulated, the coming chapters of the thesis will focus on ex-
ploring different alternatives that are found in Literature and analysing them. It will also
be further discussed the exact goal of the algorithm proposed. Lastly, the algorithm will
be tested in benchmark Reinforcement Learning problems and the results obtained will be
compared to the performance of Q-Learning. The metrics used to compare the success of the
algorithm will be also discussed.

3-4 Accelerated Versions of Q-Learning

The goal of the thesis and the algorithm proposed will not be to accelerate the speed of
convergence of Q-Learning. The goal will be to propose a framework to combine model-
based and model-free algorithms so the methodology can be implemented to faster versions
of Q-Learning in future work. If we would like to reduce the number of iterations needed
to converge to the optimal Q∗, algorithms like Double Q-Learning or Speedy Q-Learning
could be used. In this subsection, the algorithms mentioned will be briefly discussed so that
if needed in future work we could use the algorithm that will be proposed to combine the
accelerated versions of Q-Learning with Value Iteration as well.

Master of Science Thesis Pol Mur i Uribe

14 Model-Based and Model-Free Algorithms

Double Q-Learning

Double Q-Learning aims to implement a double estimation method resulting in fewer itera-
tions to converge in situations where the Q-Learning algorithm overestimates the maximum
expected cost due to the minimization computed in Q-Learning. The idea of the algorithm
will be to have two different Q functions and one of them will be updated at every itera-
tion using crossed information between the two Q functions. This method was introduced in
[29] when the Reinforcement Learning community was trying to speed up the convergence of
model-free RL algorithms. This algorithm has been extensively used in Deep Learning appli-
cations where the results have proven the Double Q-Learning to be faster than the original
Q-Learning. However, this algorithm has the problem that the values needed to store are
twice as large as in Q-Learning. Thus in large state-action spaces, it can be difficult to store
and update the two cost functions to ensure that the algorithm converges to Q∗.

Speedy Q-Learning

Speedy Q-Learning is based on the Q-Learning updates but in the Speedy version, the al-
gorithm keeps track of the two last updates of the function Q(x, u). The paper proposed
states that in the cases where γ is closer to 1 Speedy Q-Learning outperforms standard
Q-Learning as the convergence bounds derived do not depend as much as in the standard
Q-Learning on the 1

1−γ factor. The idea of the newly proposed updates is that despite
requiring 2nm the amount of memory for the updates the algorithm will be more sample-
efficient and will converge to the optimal state-action cost function. To describe the Speedy
Q-Learning algorithm the approximate Bellman Operator introduced in previous sections
T̂ Q(x, u, x+) = c(x, u) + γ minu+∈U Q(x+, u+) will be used. Then, the updates of the Q
function will be done as follows,

Qk+1(x, u) = Qk(x, u)+αk(T̂ Qk−1(x, u, x+)−Qk(x, u))+αk(T̂ Qk(x, u, x+)−T̂ Qk−1(x, u, x+)).
(3-26)

The algorithm performs well in generative models if exploration is not considered. Also, it is
guaranteed to converge and the convergence bounds in [30] show that the algorithm performs
better than standard Q-Learning.

Pol Mur i Uribe Master of Science Thesis

Chapter 4

Alternatives in the Literature

In Chapter 4, different alternatives to solve the problem of uncertainty in the transition
probability matrix will be discussed. The approaches proposed in Literature are based on
Robust Optimization, Transfer Learning and System Identification.

4-1 Robust Reinforcement Learning

Robust Reinforcement Learning provides an alternative to estimations of the transition prob-
ability matrix. As the transition probability matrix is often not fully available or estimated
through biased experiments under certain conditions, the learned policy might not be suitable
for all possible environments as these can vary from the training environments [31].

Figure 4-1: Derivation of Robust RL solving the uncertainty when the transition probability
matrix is not known [2]

The formulation of the problem will aim to reduce the sensitivity to uncertainty of the optimal
policy. The robust RL problem will learn a robust optimal policy with unknown transition
dynamics [32]. To do so, we have to define a set of transition probability matrices, P. Then,
the cost function of Robust Reinforcement Learning will be

Master of Science Thesis Pol Mur i Uribe

16 Alternatives in the Literature

Jπ(x) = sup
P∈P

EP

[∞∑
k=0

γkc (Xk, π (Xk)) | X0 = x

]
. ∀x ∈ X (4-1)

The controller will choose a policy that will minimize the cost of the worst-case scenario with
the robust Bellman equation [2],

Jk+1 (x) = inf
u∈π

sup
P∈P

EP
[
c (x, π(x)) + γJk

(
x+
)]

(4-2)

The uncertain sets of transition probabilities P can be described using likelihood models,
entropy models or KL-divergence models among others [33],[34]. The robust approach is a
reliable alternative in finite-state, finite-action scenarios. However, in a continuous state-
action space, the uncertain sets of transition probability matrices cannot be described as
above. Another drawback of the alternative that Robust Reinforcement Learning offers is that
the policy that will be obtained will be much more conservative than the policy that could
be obtained using alternative methods as it will account for the uncertainty in the transitions
when minimizing the expected costs [35]. The policy obtained using robust RL may have a
poor performance even in cases where no uncertainty is involved due to its nature. It is for
these two reasons, the scalability of the state-action space and the robustness-performance
trade-off, that robust RL may be considered as an extension to make the proposed algorithm
robust to perturbations. Nevertheless, no further research will be performed trying to derive
the algorithm from robust control theory directly.

4-2 Transfer Learning

In 1976 the idea of Transfer Learning was introduced by Stevo Bozinovski and Ante Fulgosi
[36] in neural networks training. The main goal of Transfer Learning is storing prior knowledge
about a problem and applying it to similar applications. In 2016 during the NIPS conference,
Andrew Ng pointed out that Transfer Learning could be the next driver of Machine Learning
success.
Transfer Learning has a significant practical value as it helps to reduce significantly the
sample-complexity, making data collection less expensive. In 2009 a survey was written by
M. Taylor [37] collecting the knowledge about Transfer Learning published until then in the
field of Reinforcement Learning. Transfer Learning work has been focused on transferring
policies, control parameters or dynamics.
This method is widely used in Deep Neural Networks that have been already trained. By
reusing learned feature vectors for a new application, they can be adapted making the training
of the new neural network more efficient. It is also very useful when various agents are involved
in the same control process [38] and transferring information between them help obtain the
optimal policy faster than if every agent would not have access to the information.

4-3 System Identification

The last approach that is explored in Literature is System Identification. In the case where
prior information about the environment is known, we can include the information in an offline

Pol Mur i Uribe Master of Science Thesis

4-3 System Identification 17

System Identification process to obtain estimates of the system transitions and then perform
model-based methods with the parameters learned. However, a more interesting approach,
Online System Identification (OSI), was discussed in 2017 by W. Yu [3] in combination with
model-free algorithms. The algorithm will be trained to predict the unknown parameters and
then they will be incorporated into the policy along with the current state.

Figure 4-2: The Online System Identification provides a policy π to the controller that provides
the action to the environment [3]

The Online System Identification block will be implemented as a supervised learning problem
[39] that will be trained online. ϕ : (xt−h:t, ut−h:t−1) 7→ µ will predict the dynamic parameters
µ given the current state and the history of past state-action pairs. OSI will be implemented
using a standard linear neural network. However, the results in Literature for fairly simple
environments show that to train an accurate model a lot of samples are required. As one of
the goals of the thesis will be to implement a sample-efficient algorithm this alternative will
be discarded.

Master of Science Thesis Pol Mur i Uribe

Chapter 5

Mixed Iterations

The algorithm that will be discussed as a solution to the problem posed will be called Mixed
Iterations (MI). The aim of the algorithm will be to fill the gap in the literature for the cases
where partial information is known about the system dynamics improving the convergence
against the model-free algorithms. The improvement will lead to a better convergence with
fewer samples. The algorithm will be impactful in applications where every iteration has an
associated cost. The algorithm will be aimed to solve MDPs with a transition probability
tensor P.

Figure 5-1: Transition Probability Tensor P of MDP with full information

The idea behind the algorithm will be to check the amount of previously known transitions
for a certain state and perform a weighted average of model-based and mode-free iterations to
update the cost function. In the figure above it can be observed that every transition between
a state x and a future state x+ given an action u is determined by a probability pu

x,x+ that
can be known or not. The algorithm will update the cost function Q(x, u) considering the
known transitions assigning them their corresponding probability and assigning the rest of
the unknown probability to an update similar to the one in Q-Learning where a future state
will be sampled from the environment.

Pol Mur i Uribe Master of Science Thesis

19

To this end, consider a discrete random variable Y ∈ {yi}i∈J, with a partially known prob-
ability mass function pi = P(Y = yi) for i ∈ I ⊂ J. We will use the following approximate
expectation

E(y) ≈
∑
i∈I

piyi +

1−
∑
i∈I

pi

 ŷ (5-1)

where ŷ is the sample from the system. The approximation of the expectation of the variable
Y , assumes that pi > 0 for all i ∈ I and

∑
i∈I pi ≤ 1. We now use the approximation above

to describe a single mixed iteration. For each (x, u) ∈ X× U, let Yx,u ⊂ X be the set of next
states x+ for which P(x+|x, u) > 0 is known. Now, for a sample x̂+ of x+ ∼ P(·|x, u), define

T̃ Q(x, u, x̂+) =
∑

x+∈Yx,u

P(x+|x, u)T̂ Q(x, u, x+) +

1−
∑

x+∈Yx,u

P(x+|x, u)

 T̂ Q(x, u, x̂+)

(5-2)
where the sampled Bellman operator is defined as

T̂ Q(x, u, y) = c(x, u) + γ min
u∈U

Q(y, u). (5-3)

The new value in Qk+1(x, u) will be computed using the two-step update it was used in
Q-Learning to help reduce the influence of sampling choosing an appropriate step size αk,

Qk+1(x, u) = Qk(x, u) + αk

(
T̃ Qk(x, u, x̂+)−Qk(x, u)

)
. (5-4)

Observe that T̃ , similar to T̂ , is a consistent estimator of the true Bellman operator T and
the mixed iteration (5-2) also converges to the optimal Q-function as longs as all the state-
action pairs with partially unknown transition probabilities (i.e., with

∑
x+∈Yx,u

P(x+|x, u) <
1) are visited infinitely often. Also, notice that the newly proposed update rule (5-4) will
have a higher computational cost per iteration compared to Q-Learning, since it needs extra
computations corresponding to the known transitions. To be precise, if the size of Yx,y is
upper-bounded by ℓ for all (x, u) ∈ X×Y, then the per-iteration complexity of Mixed Iteration
algorithm is of O(nm2(ℓ)) which in the worst case can be O(n2m2). As the per-iteration
complexity will increase with the number of states and actions, it can be predicted that
despite the algorithm will potentially reduce the number of iterations needed for convergence
in large state-action spaces the computational time required will be higher than Q-Learning.
However, it also needs to be pointed out that despite the per-iteration complexity being worse
than Q-Learning, in the case of a bigger state space, the actual number of iterations can be
cut down as not all the states are reachable from a certain position as most of the entries of the
probability tensor will be zero. Actually, the number of future states in the cases studied is
proportional to the number of actions in the environment so the real per-iteration complexity
will be closer to O(nm3) rather than O(n2m2). In the benchmark environments where the
algorithm will be tested, this makes a huge difference as the number of actions is significantly
less than the number of states. Notice that the per-iteration complexity refers to the number
of mathematical operations needed to complete one iteration, while the iteration complexity
will be the number of iterations required to converge. The total computational complexity will
be the combination of both and the success in the performance of the designed algorithm will
be evaluated in terms of the computational complexity of the designed algorithm compared
to Q-Learning.

Master of Science Thesis Pol Mur i Uribe

20 Mixed Iterations

5-1 The Mixed Iterations Algorithm

The algorithm shown next reflects how the implementation of the algorithm will look in the
case where a generative model can be used and how we define the convergence of the algorithm
within the threshold ϵ. The inputs required for the algorithm will be explained as follows. The
first variable ϵ will be the convergence threshold that will determine when the error between
two consecutive iterations is close enough, X and U will be the possible set of states and
actions that comprise the state-action space, then Yx,u the set of next states x+ for which
P(x+|x, u) > 0 is known, c(x, u) determines the stage cost of choosing a particular action
being at a particular state, P is the transition probability tensor that defines the dynamics
of the MDP, γ is the discount factor between 0 and 1, and finally, kmax will be the maximum
number of iterations the algorithm will be allowed to run due to the potential high number
of iterations required to converge.

Algorithm 3 Mixed Iterations
Input: ϵ, X, U, Yx,u, c(x, u), γ, kmax

Output: π, the ϵ-optimal policy
Q0(x, u)← 0n×m

while max(x,u) |Qk(x, u)−Qk+1(x, u)| > ϵ and k < kmax do
for x ∈ X, u ∈ U do

x̂+ ∼ P(· | x, u)
T̃ Q(x, u, x̂+) =

∑
x+∈Yx,u

P(x+|x, u)T̂ Q(x, u, x+) +(
1−

∑
x+∈Yx,u

P(x+|x, u)
)
T̂ Q(x, u, x̂+)

Qk+1(x, u) = Qk(x, u) + αk

(
T̃ Qk(x, u, x̂+)−Qk(x, u)

)
end for

end while
π(x) = arg minu∈U Q(x, u)

Pol Mur i Uribe Master of Science Thesis

Chapter 6

Design of the Experiments and
Simulation Results

In order to test the algorithm a number of experiments were designed in increasing order
of complexity. The experiments will analyze the performance of the algorithm with various
amounts of previous knowledge depending on the percentage of known transitions: 0% (Q-
Learning), 20%, 40%, 60%, 80% and 100% (Value Iteration). The percentage of known
transitions determines the sum of known transitions; for example, by 20% knowledge, we mean
that the known probabilities P(x+|x, u) add up to 20% of all possible transitions (x, u)→ x+.
If we recall the definition of Yx,u as the set of next states x+ for which P(x+|x, u) > 0 is
known, then the 20% knowledge is defined as

∑
(x,u)∈X×U

∑
x+∈Yx,u

P(x+|x, u) = 20
100 × |X|| · |U|. (6-1)

The percentage of previously known transitions will remain the same during the different
runs, however, the unknown transitions will be randomized so the known transitions are
different between runs. The results will be averaged between runs so there will be different
combinations of known transitions. In the MDPs that will be used as benchmarks, there will
be key transitions between states that if unknown can badly influence the behaviour of the
proposed algorithm. The same can happen the other way around leading to overoptimistic
results. So along the iterations that will comprise one run the known transitions will remain
constant, but between runs, they will change to obtain results that are fair and representative
of the performance of the algorithm.

There will be different environments where the algorithm will be tested. These environments
will be the RiverSwim MDP, a varying size GridWorld and two standard problems used as a
benchmark in RL algorithms, the MountainCar and the Inverted Pendulum.

• RiverSwim MDP: six states, structured rewards and transitions, two actions per state.

Master of Science Thesis Pol Mur i Uribe

22 Design of the Experiments and Simulation Results

• GridWorld: varying size grid world 7x7 and 11x11 with obstacles and walls. Structured
rewards and five actions per state.

• The Mountain Car: a discretized problem where the car wants to reach the top of a
mountain with three possible actions.

• Inverted Pendulum: a discretized problem where the pendulum needs to be stabilized
in the unstable upwards equilibrium point with three possible actions to be taken by
the controller.

In the last three scenarios, without noise, the outcome of the future states would be deter-
ministic, and for this reason, it was decided that noise in the actions would be included to
make the outcome of an action stochastic. The same kind of noise will be included across
the three scenarios. With an 80% probability the chosen action will be the one that will be
performed, then there will be a 10% chance where there will not be any action performed
and finally, there will be a 10% where the action performed will be any other action chosen
randomly with uniform distribution.
There is a last point that needs to be discussed, the metrics that will be used to determine
the success of the algorithm. The idea of an RL algorithm is to provide the optimal policy
to follow at every time step. For this reason, the metric that will be used to evaluate the
performance of the algorithm will be the difference between greedy policy πk at each iteration
and the optimal policy π∗ computed as the number of states x ∈ X for which πk(x) is not
the optimal decision, that is, πk(x) ̸= π∗(x). We use δ(πk − π∗) to denote this difference.
When tracking the evolution of Qk(x, u) to Q∗(x, u) in larger state-action spaces it was soon
realized that the number of iterations required for a clear convergence was way more than in
the case of just obtaining the optimal policy. For this reason the evolution of Qk(x, u) will be
computed in the first two scenarios but in the case of more complex state spaces, the results
will be limited to comparing the optimal policy to the one obtained with the greedy policy
obtained applying the Mixed Iteration algorithm. When using Q-Learning, the controller will
learn the optimal cost of every state-action pair through sampling assuming that we have a
generative model that can generate the future state x+ ∼ P(·|x, u).

6-1 Riverswim MDP

The first case where the algorithm will be implemented will be the simplest out of all of
them and it will be the Riverswim MDP. In this MDP that was already introduced before in
Figure 3-1 there are six states and the goal is to get to the terminal state and remain there
to maximize the reward. There will be two possible actions, left or right and the outcome of
choosing these actions will be determined by the probabilities determined by the model of the
RiverSwim MDP. The rewards are structured assigning a low negative value to every state
apart from the terminal one, and then a positive reward for reaching the terminal state.
In order to evaluate the performance of the algorithm the two metrics discussed at the begin-
ning of the section will be obtained, the error of Qk with respect to the optimal action-value
function Q∗ and the error of the corresponding greedy policy δ(πk − π∗). As in this example
the number of states is not significant the norm of the error of Qk(x, u) can be obtained and
the convergence is obtained after a few iterations.

Pol Mur i Uribe Master of Science Thesis

6-2 GridWorld 23

The probability kernel will be different in every run taking into account 50 different combi-
nations of known probability tensors. For every run, the probability kernel will remain the
same and across all runs the sum of the known transitions will be equal to the percentage
of known transitions that we are trying to study, 20%, 40%, 60% or 80% as it was shown in
Equation 6-1.

(a) Evolution of the average error of Qk respect Q∗ over
50 runs.

(b) Evolution of the average number of states x with for
which πk(x) ̸= π∗(x) over 50 runs.

Figure 6-1: Performance of Mixed Iteration (MI) Algorithm with varying percentage of known
transitions in comparison with Q-leaning (QL) and Value Iteration (VI) algorithms for the River-
Swim MDP.

The first results obtained after applying the algorithm to a simple MDP show that the algo-
rithm behaves as intended. The limit imposed by the convergence of Q-Learning is constantly
respected and depending on the percentage of known transitions the performance of the algo-
rithm is closer to Value Iteration. However, in this case, the gap between Value Iteration and
the Mixed Iteration algorithm is still significant due to the structure of the MDP and having
just a few probabilities that describe the evolution of the process. When some of these few
probabilities are unknown the Mixed Algorithm resembles more the Q-Learning behaviour
than the Value Iteration algorithm because the algorithm needs to sample more of these un-
known transitions. The improvement with respect to the optimal Q∗ is not very significant
compared to Q-Learning because of the reasons we just presented. If instead the policy ob-
tained at every time step is evaluated, it can be observed that the convergence is quicker in
all the scenarios where partial information is known; this is because the policy just needs to
know which action reward is higher and pick the optimal action without having to wait until
Qk converges. From now on, the metric that will be used to evaluate the performance of
the algorithm will be the latter one as it offers interesting insights into the behaviour of the
algorithm without having to compute large amounts of iterations.

6-2 GridWorld

The second scenario where the algorithm has been tested is in different sizes of GridWorlds.
Testing the algorithm in this kind of scenarios allows us to increase the size of the state-action
space significantly and evaluate the possible scalability of the algorithm.

Master of Science Thesis Pol Mur i Uribe

24 Design of the Experiments and Simulation Results

In the GridWorld the rewards are structured so that every step is penalized with a small and
a big negative reward when the terminal state is reached. For every state, 5 possible actions
can be performed (north, south, east, west, stay). To add some stochasticity to the process
at every time step there will be a 10% chance of taking a random action instead of the chosen
one and a 10% chance of the agent not moving. The initial position will be randomized
so every run is different and the optimal policy is achieved for every state. In the images
below the mazes used are shown, the darkest shade orange represent lava states that will be
heavily penalized, the terminal state is the bottom-right corner represented in brown. The
environments have been obtained with a random maze generator.

Figure 6-2: Shape of the different size mazes used to test the algorithm

For the two mazes, we will use the same metrics used in the previous MDP. However, due to
a larger state space, the number of different runs will be reduced due to computational time
restrictions.

Figure 6-3: Average evolution of the error of Qk and the number of elements in the policy
πk(x) ̸= π∗(x) using Q-Learning (QL), Value Iteration (VI) and Mixed Iterations (MI) over 25
runs

Pol Mur i Uribe Master of Science Thesis

6-3 The Mountain Car Problem 25

The results obtained after applying the Mixed Iteration algorithm compared to Q-Learning
and Value Iteration are satisfactory. The algorithm behaves as was expected and the iterations
needed for convergence towards the optimal policy are significantly less than in Q-Learning.
However, a trend can be observed comparing the results obtained in this example and in the
previous environment. The smaller the state-space is, the bigger the improvement is compared
to Q-Learning. The behaviour of Q-Learning and the Mixed Iterations algorithm partially
depends on sampling the states, thus if the state-space is larger, more sampling needs to be
performed to obtain an accurate cost function. It can also be seen that the cost functions Qk

slowly converge to the optimal Q∗ while the policy converges way faster even in larger state
spaces.

6-3 The Mountain Car Problem

In this application of the algorithm proposed in this section, we will consider the challenge
of driving an underpowered car until the top of a steep mountain road. The main problem is
that gravity will be stronger than the power of the car’s engine, so even if we fully accelerate,
the car cannot reach the top of the hill. The solution to this problem relays on moving in the
opposite direction from the goal to build inertia up so the car can reach the top of the hill.
This example serves as a toy example of a control environment where the controller has to
learn the counterintuitive dynamics of the system to achieve the completion of the task.

The stage reward will be defined as -1 for every state that is not the goal. When the goal is
reached, a reward of +1 will be given. In this problem set-up three possible actions uk are
considered, full throttle forward, full throttle backwards and zero throttle. In the deterministic
case of the Mountain Car problem, two observable states of the system xt and vt will evolve
according to the simplified dynamics,

vt+1 = vt + 0.001ut − 0.0025 cos (3xt)
xt+1 = xt + vt+1

(6-2)

where bounds on both states will be placed ensuring that −1.2 ≤ xt ≤ 0.5 and − 0.07 ≤
vt+1 ≤ 0.07. It will be assumed that the left wall produces an inelastic bound, so in the case
of xt+1 being -1.2 then ẋt+1 will be reset to 0. The initial position of the car will be a random
position x0 ∈ [−0.6,−0.4] and v0 = 0.

In the studied case, the dynamics will be considered as described before, however, the choice
of action will not be deterministic. It will be considered that in the case of choosing a
particular action, there is an 80% chance of ending up in the desired state, a 10% chance
of not performing any action and a 10% chance of performing the opposite action. These
probabilities will be implemented in a transition probability kernel P that will be later used
to describe the amount of knowledge of the system dynamics.

The goal of the problem is to find an optimal policy for every state so the final position is
achieved and collect the reward. To solve the problem we will use the same two algorithms
used before, Value Iteration and Q-Learning. When using the Value Iteration algorithm the
controller will know the dynamics of the system and the probability of ending up in a state
that was not the desired one chosen by the policy. The two algorithms mentioned before
will be used as benchmark and the Mixed Iteration algorithm will be tested with previous

Master of Science Thesis Pol Mur i Uribe

26 Design of the Experiments and Simulation Results

knowledge of 25%, 50% and 75% of the transitions between states. Our algorithm will be
applied to a discretized version of a continuous state environment. We will first obtain the
optimal value function as well as the optimal policy using Value Iteration, the results obtained
are shown in Figure 6-7. Once they were obtained we can compare the algorithm’s evolution
along the iterations until it converges.

(a) Optimal cost function J∗ (b) Optimal policy π∗

Figure 6-4: Optimal cost and optimal policy obtained using model-based methods for Mountain
Car

The results obtained are expected to be noisier than in the previous cases as, due to the large
size of the state space, it was not possible to run a large number of runs and then average
them out and obtain statistical results about the evolution of the policy. We compared the
evolution of the policy along the iterations using the Mixed Iterations algorithm to see if an
improvement with respect to Q-Learning can be obtained, in this case with a much bigger
state-action space. Figure 6-5 shows the evolution of the elements of the policy πk with respect
to the optimal policy π∗. As shown, we can see an improvement with respect to Q-Learning,
however, the improvement was not as significant as in previous examples. Due to the size of
the state-action space, the number of different runs was just three, and the plot shows the
average between these three runs.

Figure 6-5: Average of the evolution of the error of π(x) along iterations with Value Iteration
(VI), Q-Learning (QL) and Mixed Iterations (MI) algorithms over three runs

Pol Mur i Uribe Master of Science Thesis

6-4 The Inverted Pendulum Problem 27

After obtaining the policies for every case, we selected the one with 75% prior knowledge and
tested them simulating the dynamics of the Mountain Car problem. To do so, the policy was
used to generate the actions and it can be easily observed that the goal of reaching the final
state x = 0.5 was reached after a couple of swings in the bottom part of the mountain to get
enough inertia so it could get to the top. The sequence of actions was also plotted to show
the noise in the actions showing the non-optimal actions taken during the control sequence.
What one could expect is that in Figure 6-6a the optimal action sequence will be first 1 then
-1 and finally 1 again until the goal is reached. However, Figure 6-6a shows the amount of
non-optimal actions chosen. Also, a series of control sequences were performed with different
initial conditions to show that the obtained policy is able to control the car across the interval
of possible initial conditions. In a thicker line, we can see the average of the trajectories with
varying initial conditions proving that the obtained policy can successfully control and solve
the problem.

(a) States and Actions during a control sequence (b) Evolution of the position xk over a control sequence

Figure 6-6: Evolution of the states during a sequence of control actions over different initial
conditions

We can conclude that the learning was completed successfully and the controller can drive
the car to the top of the mountain. It is an important step as these results open the door
for possible implementations of the algorithm to classical control problems with discretized
dynamics.

6-4 The Inverted Pendulum Problem

The next example where the algorithm will be tested is the inverted pendulum problem. The
goal of the algorithm will be to obtain a policy to keep a pendulum in the upright position,
as the upright position is an unstable equilibrium point the controller needs to continuously
provide control actions to remain in the upright position. The discrete-time dynamics of the
pendulum are defined as shown in the equations below,

ϕ = 1
M + m

(6-3)

αt+1 =
g sin(θt)− ϕmω2

t
sin(2θt)

2 − ϕ cos(θt)ut

4
3 l − ϕ cos2(θt)

(6-4)

Master of Science Thesis Pol Mur i Uribe

28 Design of the Experiments and Simulation Results

ωt+1 = ωt + αt+1 (6-5)

θt+1 = θt + ωt+1. (6-6)

The upright position will be set as the reference with θ = 0 rad, the states will be bounded
ensuring that −π

2 ≤ θt ≤ π
2 and −6 ≤ ωt ≤ 6 and also the initial conditions will be set to

θ0 ∈ [−0.7 , 0.7]rad and ω0 = 0 rad/s. The controller can perform one of three actions ut and
apply a +50N, 0N or -50N force to the base of the pendulum. The stage reward is designed
to penalize the two observable states, the angular position θ and the angular velocity ω. For
this reason, the value function will be designed as follows and the variables k1, k2 and k3 will
be tuned to optimize the performance of the algorithm using the least amount of energy used
will also be considered,

c((θ, ω), u) = k1 cos(θ)− k2ω2 − k3u2 (6-7)

The goal of the problem will be to obtain the optimal policy to control the pendulum. How-
ever, the choice of action will not be deterministic as there will be a stochasticity added to the
control process. As done in previous experiments, there will be an 80% chance to follow the
chosen action, a 10% chance of not doing anything and a 10% chance of following an action
other than the chosen one. This stochasticity will be implemented in the probability transi-
tion tensor P that will describe the dynamics of the MDP. The percentage of probabilities
known will vary depending on the different runs ranging from 0% in the case of Q-Learning
to 100% in the case of Value Iteration. All the percentages in between will be solved using
the Mixed Iterations algorithm and the improvement will be compared to the Q-Learning
algorithm.

Before testing the algorithms, the optimal value function, as well as the optimal policy,
will be computed offline to see the complexity of these two. These are computed via the
Value Iteration algorithm with full knowledge of the dynamics of the system and the added
stochasticity. The obtained optimal value function and policy are shown in Figure 6-7 and
in particular, we can see a simple structure in the optimal policy. It is expected that as
opposed to the Mountain Car problem where the optimal policy was quite complex, in this
problem the algorithm will achieve better results in terms of the number of iterations needed
for convergence.

(a) Optimal cost function J∗ (b) Optimal policy π∗

Figure 6-7: Optimal cost and optimal policy obtained using model-based methods for the Inverted
Pendulum

Pol Mur i Uribe Master of Science Thesis

6-4 The Inverted Pendulum Problem 29

After the policy and value function are obtained, the main goal of the experiment is to
implement the Mixed Iteration algorithm with various amounts of prior knowledge. As the
state-action space is significantly large, the amount of partial previous knowledge will be
considered to be 25%, 50% and 75%. Figure 6-8 shows the performance of Mixed Iteration,
averaged over five runs, in comparison with Q-Learning and Value Iteration.

Figure 6-8: Evolution of the error of πk(x) along iterations with Value Iteration , Q-Learning
and Mixed Iteration algorithms

As it was predicted, the Mixed Iteration algorithm improves the performance with respect
to Q-Learning proportionally depending on the amount of prior knowledge. After the 70
iterations, a policy was obtained for each algorithm. Figure 6-9b compares the performance
of these policies in keeping the pendulum in upward position for an interval of different initial
conditions. To show the performance of these policies obtained we will plot the evolution of
the states and a sequence of control actions in Figure 6-9a with the obtained policy obtained
with the Mixed Iteration algorithm with 75% previous knowledge. The two states remain
within the expected values and try to keep the pendulum close to the equilibrium point and
with angular velocity close to 0 rad/s. In the right figure the evolution of the angular position
is shown under different policies.

(a) States and Actions during a control sequence (b) Evolution of the position θk over a control sequence

Figure 6-9: Evolution of the states during a sequence of control actions over different initial
conditions

It can be therefore concluded that the algorithm implemented is working successfully as

Master of Science Thesis Pol Mur i Uribe

30 Design of the Experiments and Simulation Results

it meets the expected performance improving the number of iterations with respect to Q-
Learning and performing as expected despite the different kinds of randomizations in the
probability transition tensor.

6-5 Summary of the Results

In this section, we will compile and compare the data collected from the various sub-sections
of the study. The comparison will focus on evaluating the performance of the algorithm in
relation to its requirements. A table will be provided that displays the number of iterations
required to achieve a 90% accuracy in the policy, as well as the improvement percentage in the
iteration complexity with respect to Q-Learning. To calculate the improvement percentage
with respect to Q-Learning, Value Iteration was used as a reference point. A 100% improve-
ment indicates that the algorithm performs similarly to Value Iteration before reaching 90%
accuracy in the policy. Therefore, we will not present any improvement percentages for Value
Iteration and Q-Learning, as we will be testing the Mixed Iteration algorithm with various
levels of prior knowledge in comparison to these well-established algorithms.

RiverSwim MDP GridWorld 7x7 GridWorld 11x11

Iterations Percentage of
Improvement Iterations Percentage of

Improvement Iterations Percentage of
Improvement

Q-Learning 5 - 42 - 126 -
Mixed Iterations 20% 4 25% 31 30.56% 101 21.62%
Mixed Iterations 40% 3 50% 20 61.11% 72 50.45%
Mixed Iterations 60% 2 75% 13 80.56% 48 70.27%
Mixed Iterations 80% 1 100% 10 88.89% 26 91.89%
Value Iteration 1 - 6 - 15 -

Mountain Car Inverted Pendulum

Iterations Percentage of
Improvement Iterations Percentage of

Improvement
Q-Learning 298 - 53 -
Mixed Iterations 25% 282 8.12% 33 53.85%
Mixed Iterations 50% 271 18.78% 24 76.92%
Mixed Iterations 75% 235 31.98% 18 92.31%
Value Iteration 101 - 15 -

Table 6-1: Summary of the results obtained after applying the Mixed Iterations algorithm to
the different environments proposed, the number of iterations to achieve a 90% accuracy and the
improvement respect Q-Learning are shown

In the table above, the improvement that was already observed with the plots obtained across
this section can be quantified. If we look at the requirements defined when the algorithm was
designed, the algorithm is able to converge within the same conditions as Q-Learning and
Value Iteration. Also, the algorithm converges under any percentage of known transitions.
It can also be derived from the results obtained that the algorithm is not suitable when
we have little information about the transitions defining the dynamics of the MDP. As the
algorithm derived has a higher per-iteration complexity than Q-Learning, we can conclude

Pol Mur i Uribe Master of Science Thesis

6-5 Summary of the Results 31

that when more than 50% of the transitions are known this could be a good alternative as
the improvement is significant. For fewer amounts of prior knowledge, we would discourage
using this algorithm and look for other possible approaches.

Master of Science Thesis Pol Mur i Uribe

Chapter 7

Final Remarks

In the following Section 7-1, we will evaluate the performance of the proposed Mixed Iterations
algorithm in comparison to the base algorithm that should have been used in a model-free
scenario, Q-Learning. Through this comparison, we will gain a deeper understanding of the
strengths and weaknesses of the algorithm proposed. Then, we will examine the proposed
algorithm and its limitations in Section 7-2. Additionally, we will explore potential directions
for future work in Section 7-3, to improve upon the algorithm and address the identified
limitations. Furthermore, the analysis performed will provide insight into the field of rein-
forcement learning and model-free alternatives as well as the challenges that researchers in
this will field continue to face.

7-1 Performance of the algorithm in comparison to Q-Learning

The main question posed in the thesis was whether it is possible to improve the iteration
complexity of an MDP with partial knowledge about the transitions compared to using model-
free algorithms like Q-Learning. To do so, the results obtained for the number of iterations
required to achieve a 90% accuracy in the policy will be used in combination with the per-
iteration complexity derived for both algorithms in Chapters 4 and 5. After obtaining a clear
conclusion about when it is better to use the proposed algorithm, we can recommend its use
in certain scenarios and discard this approach in others, finding better alternatives than the
Mixed Iteration algorithm.

A distinction needs to be made between the per-iteration complexity and the iteration com-
plexity. The per-iteration complexity refers to the number of mathematical operations needed
to complete one iteration, while the iteration complexity will be the number of iterations re-
quired to achieve the 90% accuracy mentioned. The total computational complexity will be
the product of these two complexities and will allow us to assess the performance of the algo-
rithm and to conclude if it saves computational time compared to Q-Learning. The iteration
complexities of Q-Learning and Mixed Iterations are O(m2n) and O(m3n), respectively. In

Pol Mur i Uribe Master of Science Thesis

7-1 Performance of the algorithm in comparison to Q-Learning 33

Table 7-1, the number of states and actions for each test environment and the corresponding
iteration complexities are provided.

States (n) Actions (m) Per-Iteration Complexity
O(nm2) O(nm3)

RiverSwim MDP 5 2 20 40
GridWorld 7x7 49 5 1225 6125
GridWorld 11x11 121 5 3025 15125
Mountain Car 19600 3 176400 529200
Inverted Pendulum 5625 3 50625 151875

Table 7-1: State-Action spaces dimensions and Iteration Complexities across test environments

Once we have the number of iterations required for a 90% accuracy, the size of the state-
action space and the per-iteration complexity for both Q-Learning and Mixed Iteration, a
fair comparison can be made across all different test environments with varying amounts of
prior knowledge. To make this comparison, we will evaluate the percentage of improvement
or decrease in performance of the Mixed Iteration algorithm with the Q-Learning algorithm.
To do so, the obtained per-iteration complexity will be multiplied by the number of iterations
obtained in Section 6 and based on these results we can compute the percentage of improve-
ment with respect to Q-Learning. In the case of resulting in negative percentages, we can
conclude that the algorithm performs worse than Q-Learning in terms of computational com-
plexity, the same logic applies otherwise. In Figure 7-1, we can see the improvements achieved
for all different percentages of known transitions in all five environments. The idea behind
plotting the computational complexity improvement in these bar plots is that conclusions can
be obtained at first sight.

(a) Improvement of MI20%, MI40%, MI60% and
MI80% in RiverSwim MDP and Grid World

(b) Improvement of MI25%, MI50% and MI75 in
Mountain Car and Inverted Pendulum

Figure 7-1: Percentage of Improvement of Mixed Iterations respect to Q-Learning in all environ-
ments

In the obtained results, we can see that the computational complexity is not always improved
compared to Q-Learning. Despite the plots that show the evolution of the correct number
of elements in the policy pointing towards promising results, the Mixed Iteration algorithm
has a higher per-iteration complexity. As a result, the use of the Mixed Iterations algorithm

Master of Science Thesis Pol Mur i Uribe

34 Final Remarks

can only be recommended when the previous amount of known transitions is large enough
to compensate for the per-iteration complexity. It should also be noted that in the case of
the Mountain Car problem, the results are more disappointing than in the other scenarios.
This could be due to the complex shape of the policy and the algorithm’s inability to explore
the state space efficiently enough with the given number of iterations. However, despite the
Mountain Car being an outlier among the test environments chosen, the results show that
the use of the proposed algorithm would be suitable only when the amount of previously
known transitions is above 75%. When this condition is met, the improvement with respect
to Q-Learning is significant in 4 out of the 5 environments. For other percentages of known
transitions between 60%-40%, an in advance examination of the complexity of the policy
would be recommended and, if possible, a simulation test to see how it would perform. In
cases where less than 40% of the transitions are known, we would discourage using this
algorithm and proceed with Q-Learning.

7-2 Limitations of the algorithm

In this section, the limitations of the proposed algorithm will be discussed. We also identify
areas where it may not perform better than Q-Learning based on the results obtained. As
it was concluded in the previous section, the algorithm is not suitable across all scenarios.
We would like to discuss the scenarios where the algorithm does not perform better than
Q-Learning, provide reasons why it does not work and lately establish clear limitations on
the success of the algorithm.

Three main limitations were found related to the performance of the algorithm: the first
is sensitivity to the size of the action space, the second is difficulty in obtaining policies in
unlikely states, and the third is the assumption that a generative model can generate future
states with the correct probabilities. This third limitation is due to the assumption that an
available generative model is present, which in some real-world cases may be impossible to
know.

Dimension of the Action Space The goal of the proposed algorithm is to reduce the
number of iterations and computational operations needed for convergence compared to Q-
Learning, making the process more sample efficient. However, there is one clear limitation
that needs to be addressed. The Mixed Iteration algorithm has a larger per-iteration com-
plexity, O(nm3), compared to Q-Learning, O(nm2). For this reason, depending on the size
of the action space, the algorithm will need to have a higher percentage of improvement to
compensate for the larger amount of operations needed to complete one iteration. In most RL
problems, this is not a problem as large state-action spaces are a general weakness of model-
free RL algorithms and the number of actions that the agent can take is usually reduced to
five or less. However, if the algorithm is to be implemented in a physical device, the number of
possible actions required to make the algorithm optimal and the control sequence as efficient
as those obtained with classical control approaches would need to be significantly larger than
those in the RL problems used for benchmarking. This would result in a significantly larger
state-action space, making the training of the algorithm problematic and less efficient than
Q-Learning as the algorithm would need to be m times quicker than Q-Learning. It is obvious
that if m is large enough our algorithm will not be able to outperform Q-Learning. Until now
the examples where the algorithm was implemented have two states and a limited number of

Pol Mur i Uribe Master of Science Thesis

7-3 Future Work 35

possible actions. If the algorithm was to be applied to control problems where there are more
states or actions other solutions should be implemented. One of these solutions would be to
identify the dominant states that are more influential to the performance of the algorithm so
the control problem could be reduced to a two-state problem. Another alternative would be
to identify the areas of the state space where the agent will be more likely present and focus
the learning of the policy around these areas.

Efficiency of Training The second limitation the algorithm has to face is obtaining the
correct policies in state-action pairs that are unlikely or impossible to happen because of the
dynamics of the system. This limitation leads to a percentage of actions not being correctly
captured in the optimal policy. This happens because the algorithm runs over all possible
state-actions pairs despite some of them being unfeasible due to the dynamics. For this
reason, when we look at the corners of the policies obtained we can see noise in the optimal
actions that could be removed if some changes were to be applied. As the initial conditions are
limited to a range of possible initial states some previous simulations could be run to obtain
what are the state-action pairs that are more likely to be visited and then use the algorithm
within the reachable state-action pairs to optimize the training time and get rid of the noise
of wrong actions in the policy. This fact also leads usually to a residual percentage of actions
that are not correctly determined. One clear example of this is in the Mountain Car problem,
when the car is in a very steep position, with a velocity that points to the bottom, it does
not matter which action is going to be chosen as it will always end up further down the hill.
For this reason, we would recommend paying attention to this in future implementations as
despite it might look like the policy is not obtained correctly, probably the controller will be
able to control the agent successfully.

Assuming a Generative Model The assumption of having a generative model has been
present across all experiments with Q-Learning and the Mixed Iteration algorithm. This
assumption was made as all models of the environments we used were available and then we
would not have to focus on determining the optimal trade-off between exploration-exploitation
thus reducing the factors that could contribute to the success of the algorithm. Having the
ability to sample a future state x+ according to the probabilities that describe the dynamics of
the system allows us to implement the algorithms in an easier way and focus on the behaviour
and properties of the algorithm themselves. However, in most real-world applications this
would not be possible and on top of implementing the algorithm, we would have to consider
exploration in order to obtain the optimal policy. This remark in itself is not a limitation of
the algorithm on its own but more of a reminder that in future possible applications where the
algorithm is going to be applied, an ϵ-greedy update will be required instead of the updates
proposed along this thesis.

7-3 Future Work

During the last section of the thesis, possible directions for future research will be appointed
related to the topic discussed, and possible improvements to make the algorithm more un-
derstandable for other researchers. As the results achieved were promising according to the
described metrics of success, it opens the door to other possible implementations that could
be used in RL algorithms where partial information is known about the transitions between
states. The four main directions where research should focus are the following ones:

Master of Science Thesis Pol Mur i Uribe

36 Final Remarks

• The first line of research that could be followed is using the same algorithm but instead
of updating the Q-function using Q-Learning, we could use the accelerated versions of
Q-Learning as Double Q-Learning or Speedy Q-Learning. If we would use the Double
Q-Learning update of the Q instead of the standard Q-Learning update, the value of
Q used for the update would be the one selected at that iteration at random between
Qa(x, u) and Qb(x, u). By choosing this method the variance between the runs would
be expected to decrease as well as the number of iterations needed for convergence. A
similar better-expected performance also applies to Speedy Q-Learning. Implementing
this, given the documentation and code provided, should not be challenging and despite
no success being guaranteed, given the results obtained so far, there is a chance that
combining Mixed Iteration with any of the two algorithms proposed would lead to
improvements with respect to the basic model-free algorithms in the case of having
partial information. However, notice that in both cases the per-iteration complexity
would increase making the limitations stated for the Mixed Iterations algorithm more
present than in the case proposed.

Model Free Partial Information Model Based
Q-Learning Mixed Iterations Value Iteration

Double Q-Learning Double Mixed Iterations (?) Value Iteration
Speedy Q-Learning Speedy Mixed Iterations (?) Value Iteration

Table 7-2: Possibilities for implementations in accelerated versions of Q-Learning

• The second proposed point that could lead to promising results is the combination of
second-order algorithms with Mixed Iterations. Q-Learning is a first-order algorithm
that relies on a similar behaviour to gradient descent, tracking the difference between
the previous predicted value and the current one. Second-order model-free algorithms
could be used, like the recently proposed Zap Q-Learning [40] in combination with its
equivalent model-based algorithm, Policy Iteration. Combining these two algorithms
in a similar way to the Mixed Iterations algorithm in the case of partial information
could produce promising results. However, some of these second-order methods involve
inverting the Hessian matrix and it largely increases the computational complexity,
despite having methods to approximate it and not having to compute it analytically.

• Despite having tested the algorithm in a number of simulated environments, none of
the environments were real physical devices. Implementing RL algorithms in physi-
cal devices arise challenges that were not faced in simulation environments. The first
challenge is obtaining a reliable model to train the model offline. To do so, we will
have to discretize the state space and be aware of the sampling time of the sensors to
achieve success in control sequences. When we deal with a physical device the size of
the discretization of actions and states will be usually larger than that of the RL prob-
lems where the algorithm was tested. However, testing the environment with a limited
amount of actions and a smart discretization of the state space should be possible with-
out major difficulties in the future.

• The last possible improvement that could be implemented is providing an open-source
user interface. In the designed interface apart from sharing the open-source code used

Pol Mur i Uribe Master of Science Thesis

7-3 Future Work 37

in the thesis, a more user-friendly environment could be developed where the user could
specify the states, actions, transition probability matrix and other necessary parameters
for the algorithm. After entering the parameters specified and the number of iterations
the user requires, the algorithm computes the ϵ-optimal policy and returns the evolution
of the Q-cost function and the policy compared to Q-Learning and the difference in
computational time between the two algorithms. By developing this interface, the user
could easily evaluate if it is useful to use the algorithm or if it is better to use classical
RL algorithms.

Master of Science Thesis Pol Mur i Uribe

Appendix A

Proof of unique solution for the
Bellman Equation

Theorem 1. For a Markov Decision Process with a finite state-action space:

1. The Bellman equation has a unique solution.

2. The cost values obtained after the convergence of value iteration are the solution of the
Bellman equation.

The above theorem can be proved using the Banach Fixed Point theorem [20]. A fixed point
equation is such that the solution of it is invariant after some given transformation. In the
case of starting with any Jk and we apply the next iteration,

Jk+1(x) := min
u∈U

{
c(x, u) + γEx+∼P(·|x,u)

[
Jk

(
x+
)]}

∀x ∈ X (A-1)

and we obtain a new Jk+1. Then we can define the Bellman Operator, T as the right-hand
side of equation A-1. This iteration will be done repeatedly until,

J∗ = T (J∗). (A-2)

The value of J∗ is called a fixed point of the Bellman Operator as applying the operator
recursively will fix the value of J∗. However, if we need to prove that T has the contraction
property ensuring that the fixed point solution will be reached after applying a sufficient
number of iterations. For an operator to be a contractor it needs to satisfy for any two cost
functions J1 and J2 with J1 ̸= J2 that after applying the Bellman Operator it will bring both
them closer to the optimal J∗. The contraction property then,

||T (J1)− T (J2)||∞ ≤ γ||J1 − J2||∞. (A-3)

The value of γ ∈ [0, 1), will be the discount factor and as it is strictly lower than 1, the
norm between the two costs necessarily decreases. The Contraction Mapping Theorem states

Pol Mur i Uribe Master of Science Thesis

39

that the Bellman Operator has a limit, the fixed point solution. Also notice that when the
operator has the contraction property the solution has to be a unique fixed-point solution.
The proof will be done by contradiction.

Proof. The contraction property states that there is some γ ∈ [0, 1) such that: ||f(x)−f(y)|| ≤
γ ||x− y|| ∀x ̸= y. In the case of having two solutions x∗ and y∗ then,

||f(x∗)− f(y∗)|| = ||x∗ − y∗||. (A-4)

The equality derived contradicts the contraction property. However, if we assume there is a
single x∗, then the equation holds for any x ̸= x∗ proving that x∗ is the unique fixed point
solution

||f(x)− x∗|| = ||f(x)− f(x∗)|| < ||x− x∗||. (A-5)

Master of Science Thesis Pol Mur i Uribe

40 Proof of unique solution for the Bellman Equation

Pol Mur i Uribe Master of Science Thesis

Bibliography

[1] S. R. Chowdhury and X. Zhou, “Differentially private regret minimization in episodic
Markov decision processes,” vol. 36, pp. 6375–6383, Jun. 2022.

[2] S. Chen and Y. Li, “An overview of robust Reinforcement Learning,” 2020 IEEE Inter-
national Conference on Networking, Sensing and Control (ICNSC), pp. 1–6, 2020.

[3] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning a universal
policy with online system identification,” in Robotics: Science and Systems XIII, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, July 12-16, 2017
(N. M. Amato, S. S. Srinivasa, N. Ayanian, and S. Kuindersma, eds.), 2017.

[4] J. L. Doob, “Stochastic Processes and Statistics,” Proceedings of the National Academy
of Sciences, vol. 20, no. 6, pp. 376–379, 1934.

[5] A. Markov, “Extension of the law of large numbers to quantities, depending on each other
(1906). reprint.,” Journal Électronique d’Histoire des Probabilités et de la Statistique
[electronic only], vol. 2, no. 1b, pp. Article 10, 12 p., electronic only–Article 10, 12 p.,
electronic only, 1906.

[6] D. R. Miller, Markov processes, pp. 486–490. New York, NY: Springer US, 2001.

[7] R. E. Bellman, The Theory of Dynamic Programming. Santa Monica, CA: RAND Cor-
poration, 1954.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, second ed., 2018.

[9] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-Based Reinforcement Learning:
A survey,” CoRR, vol. abs/2006.16712, 2020.

[10] P. Swazinna, S. Udluft, D. Hein, and T. A. Runkler, “Comparing Model-Free and Model-
Based Algorithms for Offline Reinforcement Learning,” CoRR, vol. abs/2201.05433, 2022.

Master of Science Thesis Pol Mur i Uribe

42 Bibliography

[11] R. S. Sutton, Temporal credit assignment in Reinforcement Learning. University of
Massachusetts Amherst, 1984.

[12] D. J. White, “Further Real Applications of Markov Decision Processes,” Interfaces,
vol. 18, no. 5, pp. 55–61, 1988.

[13] G. Tesauro, “Temporal Difference Learning and TD-Gammon,” J. Int. Comput. Games
Assoc., vol. 18, p. 88, 1995.

[14] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis, “Mas-
tering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,”
CoRR, vol. abs/1712.01815, 2017.

[15] O. Vinyals, I. Babuschkin, W. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang,
L. Sifre, T. Cai, J. Agapiou, M. Jaderberg, and D. Silver, “Grandmaster level in StarCraft
ii using multi-agent Reinforcement Learning,” Nature, vol. 575, 11 2019.

[16] T. Kamihigashi, “Existence and Uniqueness of a Fixed Point for the Bellman Operator
in Deterministic Dynamic Programming,” Discussion Paper Series DP2012-05, Research
Institute for Economics & Business Administration, Kobe University, Feb. 2012.

[17] E. Pashenkova, I. Rish, and R. Dechter, “Value Iteration and Policy Iteration algorithms
for Markov Decision problem,” 1997.

[18] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A Com-
prehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–133667,
2019.

[19] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University Press,
1 ed., 1957.

[20] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équa-
tions intégrales,” Fundamenta Mathematicae, vol. 3, no. 1, pp. 133–181, 1922.

[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,
3 ed., 2010.

[22] C. J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College, Oxford,
1989.

[23] T. Jaakkola, M. I. Jordan, and S. P. Singh, “Convergence of stochastic iterative dynamic
programming algorithms,” in Proceedings of the 6th International Conference on Neu-
ral Information Processing Systems, NIPS’93, (San Francisco, CA, USA), p. 703–710,
Morgan Kaufmann Publishers Inc., 1993.

[24] M. J. Wainwright, “Stochastic approximation with cone-contractive operators: Sharper
l∞-bounds for q-Learning,” CoRR, vol. abs/1905.06265, 2019.

[25] E. Even-dar and Y. Mansour, “Learning rates for Q-Learning,” in Journal of Machine
Learning Research, pp. 1–25, 2001.

Pol Mur i Uribe Master of Science Thesis

43

[26] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-Learning,” Machine
Learning, vol. 16, no. 3, pp. 185–202, 1994.

[27] C. Szepesvári, “The asymptotic convergence-rate of Q-Learning,” in Proceedings of
the 10th International Conference on Neural Information Processing Systems, NIPS’97,
(Cambridge, MA, USA), p. 1064–1070, MIT Press, 1997.

[28] I. Osband, D. Russo, and B. Van Roy, “(more) efficient Reinforcement Learning via
posterior sampling,” in Advances in Neural Information Processing Systems (C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds.), vol. 26, Curran Asso-
ciates, Inc., 2013.

[29] H. Hasselt, “Double Q-Learning,” in Advances in Neural Information Processing Systems
(J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds.), vol. 23,
Curran Associates, Inc., 2010.

[30] M. Ghavamzadeh, H. Kappen, M. Azar, and R. Munos, “Speedy Q-Learning,” in Ad-
vances in Neural Information Processing Systems (J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Weinberger, eds.), vol. 24, Curran Associates, Inc., 2011.

[31] T. Osogami, “Robustness and risk-sensitivity in Markov decision processes,” in Ad-
vances in Neural Information Processing Systems (F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[32] S. H. Lim, H. Xu, and S. Mannor, “Reinforcement Learning in robust Markov decision
processes,” in Advances in Neural Information Processing Systems (C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, eds.), vol. 26, Curran Associates, Inc.,
2013.

[33] A. Nilim and L. Ghaoui, “Robust control of Markov decision processes with uncertain
transition matrices,” Operations Research, vol. 53, pp. 780–798, 10 2005.

[34] A. Nilim and L. Ghaoui, “Robustness in Markov decision problems with uncertain transi-
tion matrices,” in Advances in Neural Information Processing Systems (S. Thrun, L. Saul,
and B. Schölkopf, eds.), vol. 16, MIT Press, 2003.

[35] H. Xu and S. Mannor, “The robustness-performance tradeoff in Markov decision pro-
cesses,” in Advances in Neural Information Processing Systems (B. Schölkopf, J. Platt,
and T. Hoffman, eds.), vol. 19, MIT Press, 2006.

[36] S. Bozinovski, “Reminder of the first paper on transfer Learning in neural networks,
1976,” Informatica, vol. 44, 09 2020.

[37] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning domains: A
survey,” Journal of Machine Learning Research, vol. 10, no. 56, pp. 1633–1685, 2009.

[38] M. K. Helwa and A. P. Schoellig, “Multi-robot transfer Learning: A dynamical system
perspective,” CoRR, vol. abs/1707.08689, 2017.

[39] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with recurrent
neural networks,” 2015.

Master of Science Thesis Pol Mur i Uribe

44 Bibliography

[40] A. M. Devraj and S. Meyn, “Zap Q-Learning,” in Advances in Neural Information Pro-
cessing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

Pol Mur i Uribe Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Markov Decision Processes
	Markov Processes
	Markov Decision Processes
	Solving a Markov Decision Process

	Model-Based and Model-Free Algorithms
	Model-Based Value Iteration
	The Value Iteration Algorithm
	Convergence Guarantee of Value Iteration

	Model-Free Q-Learning
	The Q-Learning Algorithm
	Convergence Guarantee of Q-Learning

	The gap between Value Iteration and Q-Learning
	Accelerated Versions of Q-Learning

	Alternatives in the Literature
	Robust Reinforcement Learning
	Transfer Learning
	System Identification

	Mixed Iterations
	The Mixed Iterations Algorithm

	Design of the Experiments and Simulation Results
	Riverswim MDP
	GridWorld
	The Mountain Car Problem
	The Inverted Pendulum Problem
	Summary of the Results

	Final Remarks
	Performance of the algorithm in comparison to Q-Learning
	Limitations of the algorithm
	Future Work

	Appendices
	Proof of unique solution for the Bellman Equation

	Back Matter
	Bibliography

