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Filtered Split-Path Nonlinear Integrator: A Hybrid
Controller for Transient Performance Improvement

B. Sharif , A. van der Maas , N. van de Wouw , Fellow, IEEE,
and W. P. M. H. Heemels , Fellow, IEEE

Abstract— The filtered split-path nonlinear integrator
(F-SPANI) is a generic nonlinear controller designed to improve
the transient performance of linear (motion) systems in terms
of overshoot. The main idea underlying F-SPANI is that the
amplitude and phase of an integrator can be tuned using
independent filters, resulting in more efficient use of the buffer
of the integrator. In this article, a general description of
F-SPANI is presented. In addition, a stability analysis result is
presented that provides sufficient conditions in the form of linear
matrix inequalities (LMIs) for closed-loop stability analysis on
the basis of construction of a common quadratic Lyapunov
function (CQLF). The ease of the design, implementation, and
the potential of the proposed controller are illustrated both in
simulations and in experiments on an industrial pick-and-place
machine.

Index Terms— Hybrid control, motion control, stability analy-
sis, transient performance.

I. INTRODUCTION

CLASSICAL linear control theory suffers from fundamen-
tal limitations, such as the waterbed effect due to the

Bode sensitivity integral and the Bode gain-phase relationship
(see [1], [2]). In linear time-invariant (LTI) feedback con-
trol, this limitation results in a tradeoff between a desirable
transient performance and low-frequency disturbance suppres-
sion [3]. A linear integrator is a typical example in feedback
control, where a tradeoff is made between a zero steady-state
tracking error at the cost of introducing (additional) overshoot
due to the 90◦ phase lag of the integrator, i.e., disturbance
suppression at the cost of transient performance.

Over the years, several nonlinear and hybrid control strate-
gies have been proposed to improve the transient performance
of LTI systems [4], by overcoming this fundamental limitation
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of LTI control techniques. The Clegg integrator [5] is an
example of a reset controller where (a subset of) the internal
controller states are reset according to some decision crite-
rion to reduce the overshoot. This class of reset controllers
has regained interest over the past two decades, both in
research [6]–[8] and industry [9]. Variable-gain integrators
[10], [11], sliding mode controllers with saturated integra-
tors [12] and hybrid integrator-gain systems [13], [14], are
other examples of nonlinear/hybrid controllers designed to
improve the transient performance of a system, specifically
the overshoot, without reducing the disturbance suppression
capability.

In this article, we are interested in a class of nonlinear
controllers with roots in the split-path nonlinear (SPAN) filter,
which was introduced in [15] and facilitates independent
tuning of the phase and the amplitude characteristics. In [16],
the so-called split-path nonlinear integrator (SPANI) is pro-
posed by including an integrator in the SPAN filter. The
main benefit of the SPANI in [16] is the combination of an
increased transient performance compared to a linear integrator
design and the ease of verifying the stability of the switching
closed-loop system. Note in this respect that the SPANI design
aims for an improved integrator design, with all the benefits
of a linear integrator in terms of zero steady-state tracking
error, but without the phase lag introduced by the −90◦ phase
of a linear integrator. The SPANI is easily tunable using
standard tools for controller design based on, for instance,
loop-shaping, thereby enabling straightforward adoption in
industrial practice. In fact, without complex optimizations,
the transient performance can be improved significantly. Verifi-
cation of the stability of the SPANI is based on a linear matrix
inequality (LMI) condition, which can easily be checked in
an automated manner. The SPANI switches the sign of the
integrator depending on the sign of the tracking error of
the feedback loop. Since the system is in equilibrium for
a zero error, it was observed that any slight disturbance
will cause the controller to switch. To avoid the undesirable
switching at the setpoint, the switching rule was adapted
in [16] to include the equilibrium in the interior of the region
corresponding to one of the modes of the switched system.
This adapted switching rule results in additional undesirable
phase lag. As a result, this adapted design of the SPANI does
not reach the full potential for performance improvement since
the phase lag results in delayed switching compared to the
original SPANI, which in turn induces a larger overshoot.
Hence, both SPANI designs in [16] have drawbacks that need
to be overcome.

1063-6536 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Typical closed-loop control system.

The objective of this article is to indeed overcome the con-
servatism in the SPANI in terms of its transient performance by
introducing a filtered split-path nonlinear integrator (F-SPANI)
as a novel hybrid controller. The F-SPANI extends the SPANI
structure by introducing a well-designed filter in the phase
path. It is shown that the addition of a filter providing a phase
lead, such as a lead filter, results in a significant improvement
in closed-loop transient performance. The potential benefits of
the novel F-SPANI design are shown in simulations. In addi-
tion, experiments on an industrial motion system are carried
out in the context of pick-and-place applications, thereby
illustrating next to the performance improvement also the ease
of its design in the scope of an industrial high-tech application.
Note that the experimental results involve a comparative study
between a linear integrator design, the SPANI [16], and the
proposed F-SPANI, which are novel for both the SPANI and
the F-SPANI. Compared to our preliminary work [17] in which
the F-SPANI was mentioned for the first time (only using
a lead filter in the phase path), here we provide a general
description of the system, including a complete stability analy-
sis, of which the full proof is provided. In addition, an intuitive
insight in the linear approximation of the nonlinear SPANI
and F-SPANI is provided in terms of a describing function
analysis next to new insights and experimental validation of
both SPANI and F-SPANI on industrial equipment for pick-
and-place applications.

The remainder of this article is organized as follows.
In Section II, the hybrid control design is introduced.
In Section III, the closed-loop properties of the F-SPANI
are analyzed more thoroughly, starting with the stability
analysis in Section III-B, followed by a describing function
analysis of the controller in Section III-C. In Section III-D,
a numerical example is shown to emphasize the potential
benefits of the F-SPANI over the SPANI and the linear inte-
grator. In Section IV, the experimental validation is provided.
In Section V, the conclusions and recommendations of this
article are presented.

II. HYBRID CONTROL SETUP

In this section, the hybrid controller setup is described in
detail. In particular, this section will start with a problem
statement in Section II-A, followed by the controller design
in Section II-B.

A. Control Problem Statement

An integrator is a good example of a linear control element
subject to a performance tradeoff. Typically, an integrator

Fig. 2. Transient performance with integrator action.

is used to ensure a zero steady-state tracking error in the
presence of (constant) disturbances. However, it results in
overshoot and, therefore, a decreased transient performance.
To understand this phenomenon, let us consider a typical
closed-loop control scheme as shown in Fig. 1, where N
represents a notch filter, L represents a low-pass filter, Cnom

represents the nominal control loop without integrator, notch,
and low pass, ωi/s represents the integrator, and P represents
the plant. The cause for the presence of overshoot in the
system’s response lies in the fact that the integrator builds
up a buffer of the integrated error in the time domain, i.e., it
“sums” error over time and stores it in its state. In particular,
when a step reference is applied to such a system, the integral
buffer builds up throughout the time of rise. At the moment
when the sign of the error changes, the buffer still enforces an
integrator action directed away from the reference as it is not
emptied yet (the integrator still has the summed error stored in
its state [6]). A schematic is given in Fig. 2. The green dashed
surfaces depict areas where the error e = r − y is positive,
whereas the orange dotted surfaces depict areas where the error
is negative. The surface actually represents the buffer of the
integrator, which, as can be seen in the bottom half of the
graph, does not change sign when the error does. The delayed
behavior of the integral buffer is due to the −90◦ phase of the
integrator.

The phase lag between the sign change of the error and
the sign change of the buffer of the integrator can be
explained by the Bode-gain-phase relation by studying the
frequency-domain representation of an integrator. A single
integrator has a slope of −1 in the magnitude, i.e., −20 dB per
decade, and a phase of −90◦ for all frequencies. This phase lag
explains why the integrator is lagging behind on the reference
trajectory. An “ideal integrator” would have the advantage of
the −1 slope in terms of the zero steady-state tracking error,
however, it would not suffer from the phase lag due to the
−90◦ phase.

Due to the phase lag of an integrator, it is impossible for a
linear system with integral action to achieve a step response
without suffering from overshoot. The aim of this article is to
design a hybrid controller with integral action that achieves
the following:
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Fig. 3. Tradeoff between PD and PID control.

1) zero steady-state tracking error, achievable by using an
integrator as indicated in the right of Fig. 3;

2) reduced “phase lag”;
3) and improved transient performance in terms of over-

shoot (and possibly settling time).

These improvements are all relative to the performance of
the linear controller, designed using traditional loop-shaping
techniques [3].

Remark 1: As an alternative to integral control, precom-
pensation can be utilized in order to reduce the steady-state
tracking error. In particular, by taking the precompensator as
the inverse of the closed-loop dc gain, perfect tracking of
constant disturbances can be achieved.

B. F-SPANI: Controller Design

In this section, a hybrid control strategy, called the F-SPANI
and inspired by the SPANI [16], is proposed to improve the
transient performance of a system compared to a correspond-
ing linear controller. To arrive at the description of the novel
F-SPANI controller, we first describe the original SPAN filter
as introduced in [15]. Next, we extend the description to
the SPANI filter in [16] and finally introduce the generic
F-SPANI controller, which includes the SPANI as a special
case. A description of the F-SPANI included in a typical
feedback loop, as shown in Fig. 1, is described in Section III.

1) SPAN—Splitting the Phase and the Amplitude: The
methods discussed in this section are based on the SPAN
filter [15]. The general idea behind the SPAN filter is to inde-
pendently tune the phase and the amplitude of a signal. This
idea is in violation of the Bode gain-phase relationship, which
does not hold for nonlinear or unstable systems. In Fig. 4,
a schematic overview of the SPAN filter is given. In Fig. 4,
H1 and H2 represent the filters for the amplitude and phase
branches, respectively. The output v1 of the amplitude filter
H1 is fed to an absolute value element which retains all
the magnitude information and removes all sign information,
i.e., it outputs |v1|. The output v2 of H2 together with v1 are fed
to a sign element, which removes the amplitude information
and retains all sign information (it outputs ±1 depending on
the sign of v1v2). As a result of this construction, the output
of the SPAN filter is

us =
{
v1, if v1v2 > 0

−v1, if v1v2 < 0.
(1)

Fig. 4. SPAN filter.

Fig. 5. SPANI filter.

As a result, it can be observed that H1 fully shapes the
amplitude of the output signal us , whereas H2 shapes the phase
of the output, i.e., either 0◦ or 180◦.

2) SPANI: The SPANI from [16] is based on the SPAN
filter, where

H1 = CI , H2 = 1 (2)

with CI an integrator (see Fig. 5). In Fig. 5, ε is a nonnegative
parameter, which will be discussed in more detail. In the
following, we first assume that ε = 0 to explain the rationale
underlying the SPANI filter.

By using only the amplitude of the integrator and linking
this to the sign of the error, the buffer of the integrator can
be used to improve the transient performance. In particular,
the sign function in the lower branch of Fig. 5 is defined as

sign(e, xI ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if e > 0

1, if e = 0 and xI > 0

−1, if e = 0 and xI < 0

−1, if e < 0.

(3)

The buffer xI of the integrator builds up, as shown in Fig. 2 by
the green dashed surface in the initial part. At the point where
e = 0, the buffer of the integrator has a positive value (see the
bottom part of Fig. 2), which in turn creates a positive plant
input, increasing the overshoot. By using the integrator part
of the SPANI in the phase branch (see Fig. 5), the sign of the
buffer is made equal to the sign of the error (see (3)), resulting
in an integral action acting toward zero tracking error.

A few comments on the parameter ε are now in order. When
ε > 0, the switching of us in relation to e = 0 occurs slightly
later than for ε = 0. The switching plane can be described by

ϕ = xI (e + xIε) = 0 (4)

and is graphically shown in Fig. 6 for ε = 0 and ε > 0. This
adapted switching results in the output of the SPANI according
to

us =
{

xI , if ϕ > 0

−xI , if ϕ < 0
(5)
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Fig. 6. (e, xI )-plane for tilting parameter ε = 0 (left) and ε > 0 (right).
In mode 1, ϕ > 0; in mode 2, ϕ < 0. (a) ϕ = exI . (b) ϕ = xI (xI ε + e).

which are referred to as modes 1 and 2, respectively, in Fig. 6.
The design choice for ε > 0 is based on the fact that at the
desired state of the system, it holds that e = 0. For ε = 0, this
means that the desired state is on the switching plane, resulting
in a switching integrator action for every perturbation from the
desired state.

Remark 2: As indicated above, the rationale behind includ-
ing a tilting factor ε > 0 in the definition of the switching
plane is to prevent switching as a result of small perturbations
around desired equilibrium points (e�, x�I ), where e� = 0.
Nonetheless, the pair (e, xI ) = (0, 0) still lies on the switching
plane even if ε > 0. It should, however, be noted that e� = 0
is typically achieved, for example, in the presence of constant
disturbances, by means of integral action, and thus, x�I �= 0.
As a result, the pair (e, xI ) = (0, 0) is typically not a desired
equilibrium of the system.

For a more detailed explanation of the rationale behind
introducing this ε parameter, please refer to [16]. A drawback
associated with the use of this tilting parameter ε > 0 is the
potentially decreased transient performance compared to the
case where ε = 0. This is because when ε > 0, the switch in
us occurs later than the case where ε = 0, and thus, the buffer
of the integrator results in larger overshoot.

3) F-SPANI: Let us now introduce the F-SPANI, which
uses the phase branch of the SPAN to anticipate an error sign
switch. In terms of the SPAN filter, the F-SPANI uses

H1 = CI H2 = C f (6)

with C f a filter that provides phase lead. The switching
parameter ε is still used, since for e = 0, we have u f = 0
as well, where u f is the output of C f (see Fig. 7). The
motivation for the F-SPANI is to use the phase branch to
further improve the transient performance compared to the
SPANI. The main performance limitation of a linear integrator
is the phase lag of 90◦. By now adding phase lead in the
phase branch and using only the amplitude of the integrator
in the magnitude branch, the advantages of the integrator can
be used in terms of steady-state tracking performance, without
suffering from a large phase lag that results in overshoot.
Insights of this beneficial property of the F-SPANI will be
provided in Section III-C by means of a describing function
analysis.

Compared with the SPANI, in the F-SPANI, the switching
law has changed from a dependence on the error signal e
to a dependence on the output u f of the filter with phase

Fig. 7. F-SPANI filter.

lead. This results in causal anticipation of the changing sign
of the error and therefore potentially in further reduction of the
overshoot compared to the SPANI. By switching the sign of
the integrator buffer before the switch in the error sign occurs,
the integrator can start counteracting the overshoot in advance,
hence reducing the overshoot.

III. ANALYSIS OF CLOSED-LOOP PROPERTIES

In Section II, an overview of the design and the working
principle of the hybrid controller F-SPANI were given. In this
section, we will study the closed-loop properties induced by
this control strategy. In Section III-A, the closed-loop system is
described in state-space form. In Section III-B, the conditions
for closed-loop stability will be presented. In Section III-C,
a describing function analysis is provided, which gives addi-
tional insights into the working principle of this novel hybrid
controller. In Section III-D, we conclude with a numerical
example, illustrating the full potential of the method.

A. Closed-Loop System Description

In a closed-loop feedback configuration, the SPANI and the
F-SPANI can be introduced as in Fig. 8. Note that the SPANI
is a special case of the F-SPANI when C f = 1.

The feedback controller in Fig. 8 is slightly adjusted com-
pared to the results in [16] and [17]. A low-pass filter (L) and a
notch filter (N ) have been included explicitly, separated from
the nominal controller (Cnom). The motivation for this change
can be found in [17], where it has been shown that resonance
peaks in the plant dynamics P can cause significant limitations
on the achievable performance, which can be avoided with the
use of a notch filter. For the situation where the notch filter
and the low-pass filter are included in Cnom, resonant peaks,
high-frequency oscillations, and measurement noise are only
suppressed in the path of the nominal controller. As a result,
these undesired effects are then passed through the F-SPANI in
an unfiltered fashion, which will result in undesired switches
and reduced performance. With the design choice to place the
notch and low-pass filters in the closed-loop control structure
before the parallel structure with the F-SPANI element, these
effects are filtered in both branches of the loop.

In terms of mathematical modeling, the closed-loop config-
uration in Fig. 8 can be defined by the state-space models of
each of the components. In each of these models, x represents
the state of the component, A represents the system matrix, B
represents the input matrix, C represents the output matrix, and
D represents the direct feedthrough matrix, all real matrices
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with the appropriate subscripts and dimensions, depending on
the considered component. The signals u represent the internal
input signals, which are the outputs of each of the controller
components, as shown in Fig. 8. The plant is defined by

P :
{

ẋ p = A px p + Bp(d + u)

yp = Cpx p
(7)

where the subscript p indicates that it is related to the plant,
x p ∈ R

nx p is the plant state, d ∈ R
nd is the (external) distur-

bance, u = us + uc is the controller output taking values in
R

nu , and yp ∈ R
nyp is the plant output. Similarly, the nominal

linear controller, indicated by subscript c, is defined by

Cnom :
{

ẋc = Acxc + Bcul

uc = Ccxc + Dcul
(8)

where xc ∈ R
nxc is the controller state and ul ∈ R

nul is the
notch- and low-pass filtered error signal. The low-pass filter,
indicated by the subscript l, is given by

L :
{

ẋl = Al xl + Blun

ul = Cl xl + Dl un
(9)

where xl ∈ R
nxl is the low-pass filter state and un ∈ R

nun is the
output of the notch filter. The notch filter, which may contain
multiple resonances and antiresonances, is defined by

N :
{

ẋn = An xn + Bne

un = Cn xn + Dne
(10)

where xn ∈ R
nxn is the notch filter’s state and e = r − yp is the

closed-loop tracking error, with r ∈ R
nyp the reference signal.

The F-SPANI as shown in Fig. 8 is defined by

F-SPANI:

⎧⎪⎨
⎪⎩

ẋ I = ωi ul

us =
{

xI , if xI (εxI + u f ) > 0

−xI , if xI (εxI + u f ) < 0

(11)

where xI ∈ R is the F-SPANI’s state and u f ∈ R is the output
of the filter C f designed for phase lead and defined by

C f :
{

ẋ f = A f x f + B f ul

u f = C f x f + D f ul
(12)

with x f ∈ R
nx f . This filter can be any filter that results in a

phase lead, e.g., a (or multiple) lead filter(s).

Using the individual system components described above,
the closed-loop system in Fig. 8 can be described as follows:

ẋ =
{

A1x + Brr + Bdd, if xI (εxI + u f ) > 0 (13a)

A2x + Brr + Bdd, if xI (εxI + u f ) < 0 (13b)

with inputs r and d , x = [
x�

p x�
c x�

l x�
n x�

I x�
f

]� ∈ R
n, and

where the system matrices in (13) are given by (14) and (15),
as shown at the bottom of the page, and input matrices

Br =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bp Dc Dl Dn

Bc Dl Dn

Bl Dn

Bn

ωi Dl Dn

B f Dl Dn

⎤
⎥⎥⎥⎥⎥⎥⎦, Bd =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bp

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦. (16)

The system matrix A1 defines the dynamics in the first mode
in Fig. 6 and A2 the second mode. Note that the matrices A1

and A2 are almost identical with their only difference being
the sign difference in their (1, 5) block. The output of the
closed-loop system is given by

yp = Cpx p = [
I 0 0 0 0 0

]
x . (17)

Note that when the dynamics according to A1 are active,
the system’s dynamics are assumed to be asymptotically stable
by design, i.e., A1 is Hurwitz (all eigenvalues in the open left
half-plane). In particular, these dynamics can be tuned by the
controller components (Cnom, N , L, C f , and ωi ) designed by
the user. A thorough analysis of the stability of the hybrid
closed-loop dynamics is given in Section III-B.

Solutions to (13) will be considered in Filippov sense (see
[18]). To do so, we extend (13) to the differential inclusion

ẋ ∈

⎧⎪⎨
⎪⎩

{A1x + Brr + Bdd}, if ψ > 0

co(A1x, A2x)+ Brr + Bdd, if ψ = 0

{A2x + Brr + Bdd}, if ψ < 0

(18)

where ψ = xI (εxI +u f ) and co(A1x, A2x) denotes the convex
hull {λA1x + (1 −λ)A2x, λ ∈ [0, 1]}. The formulation in (18)
allows for the convex combination of vector fields in (13) to be
active on the switching plane (where ψ = 0), thereby allowing
possible sliding modes (see [18] for details). Solutions to
the closed-loop system are now defined as locally absolutely
continuous functions, satisfying (18) almost everywhere. This

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A p − Bp Dc Dl DnCp BpCc Bp DcCl Bp Dc Dl Cn Bp 0
−Bc Dl DnCp Ac BcCl Bc Dl Cn 0 0
−Bl DnCp 0 Al BlCn 0 0
−BnCp 0 0 An 0 0

−ωi Dl DnCp 0 ωi Cl ωi Dl Cn 0 0
−B f Dl DnCp 0 B f Cl B f Dl Cn 0 A f

⎤
⎥⎥⎥⎥⎥⎥⎦ (14)

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A p − Bp Dc Dl DnCp BpCc Bp DcCl Bp Dc Dl Cn −Bp 0
−Bc Dl DnCp Ac BcCl Bc Dl Cn 0 0
−Bl DnCp 0 Al BlCn 0 0
−BnCp 0 0 An 0 0

−ωi Dl DnCp 0 ωi Cl ωi Dl Cn 0 0
−B f Dl DnCp 0 B f Cl B f Dl Cn 0 A f

⎤
⎥⎥⎥⎥⎥⎥⎦ (15)
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Fig. 8. F-SPANI filter in a typical control configuration.

indeed corresponds to the notion of Filippov solutions [18] (for
more detailed discussions on generalized solutions to hybrid
dynamical systems and differential inclusions, see [18]–[21]).

B. Stability Analysis

In this section, we present a stability result for the F-SPANI,
which is also applicable to the special case of the SPANI. A
coordinate transformation is proposed, i.e.

x̃ = x − x∗, (19)

where x∗ represents the equilibrium of the system, which is
defined by

ẋ |x=x∗ = A1x∗ + Brrs + Bdds = 0 (20)

for a constant reference rs ∈ R and a constant disturbance
ds ∈ R.

Definition 1: For a fixed disturbance ds ∈ R and a fixed
reference rs ∈ R, the equilibrium x∗ of (18) is said to be
globally exponentially stable (GES) if there exist c ∈ R>0 and
μ ∈ R>0 such that all Filippov solutions x : R≥0 �→ R

n to
(18) satisfy 
x(t)− x∗
 ≤ ce−μt
x(0)− x∗
, for all t ∈ R≥0.

The conditions presented in Theorem 1 will turn out to
be sufficient for verifying GES of the equilibrium x∗ of
the closed-loop system. Before stating the main theorem of
this section, let us first introduce a few definitions. Given
a symmetric positive definite matrix P ∈ R

n×n (which will

be used for building a common quadratic Lyapunov function
(CQLF) [22]), the matrix Q is defined by

Q =
⎡
⎣ A�

2 P + P A2 P Ad A−1
1 Br P Ad A−1

1 Bd

� 0 0
� � 0

⎤
⎦ (21)

where � is used to define the symmetry in the matrix,

i.e.,

[
a b

b� c

]
=

[
a b
� c

]
, and where Ad = A1 − A2. Further-

more, a matrix R is given by (22), as shown at the bottom of
the page, with α := εγr + C f ξr + D f Clδr + D f Dl Cnηr and
β := εγd + C f ξd + D f Clδd + D f Dl Cnηd . The variables γr ,
γd , ξr , ξd , δr , δd , ηr , and ηd define the following equilibrium
states:

x∗
I = γrrs + γdds, x∗

f = ξr rs + ξd ds

x∗
l = δrrs + δdds, x∗

n = ηr rs + ηd ds (23)

which implies that

δr = [01×nx p
01×nxc

− I1×nxl
01×nxn

01×1 01×nx f
]A−1

1 Br

ηr = [01×nx p
01×nxc

01×nxl
− I1×nxn

01×1 01×nx f
]A−1

1 Br

γr = [01×nx p
01×nxc

01×nxl
01×nxn

− I1×1 01×nx f
]A−1

1 Br

ξr = [01×nx p
01×nxc

01×nxl
01×nxn

01×1 − I1×nx f
]A−1

1 Br . (24)

The variables δd , ηd , γd , and ξd can be computed in a similar
manner as in (24) but are postmultiplied by Bd instead of
Br . Note that since A1 is assumed to be Hurwitz by design,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nx p ×nx p
0nx p ×nxc

0nx p ×nxl
0nx p ×nxn

−1

2
C�

p D�
n D�

l D�
f 0nx p ×nx f

−1

2
C�

p D�
n D�

l D�
f γr −1

2
C�

p D�
n D�

l D�
f γd

� 0nxc ×nxc
0nxc ×nxl

0nxc ×nxn
0nxc ×1 0nxc ×nx f

0nxc ×1 0nxc ×1

� � 0nxl ×nxl
0nxl ×nxn

1

2
C�

l D�
f 0nxl ×nx f

1

2
C�

l D�
f γr

1

2
C�

l D�
f γd

� � � 0nxn ×nxn

1

2
C�

n D�
l D�

f 0nxn ×nx f

1

2
C�

n D�
l D�

f γr
1

2
C�

n D�
l D�

f γd

� � � � ε
1

2
C f

1

2
εγr + 1

2
α

1

2
εγd + 1

2
β

� � � � � 0nx f ×nx f

1

2
C�

f γr
1

2
C�

f γd

� � � � � � γrα
1

2
γrβ + 1

2
γdα

�

� � � � � � � γdβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)
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it is invertible, and thus, the equlibrium solution x� to (20) is
unique. Finally, let the matrix M be given by

M =
⎡
⎣ In×n 0n×1

02×n

[
γr

γd

] ⎤
⎦, with

[
γr

γd

]
�= 02×1. (25)

Theorem 1: Consider the differential inclusion (18) for
some positive tilting factor ε > 0 and a Hurwitz matrix A1.
Let rs ∈ R be a constant reference signal and ds ∈ R be a
constant disturbance signal. If there exist a positive definite
matrix P = P� � 0 and a constant θ ≥ 0 satisfying

A�
1 P + P A1 ≺ 0 (26)

M�(Q − θ R)M ≺ 0, (27)

then the equilibrium point x∗ given by (20) for the system
(18), satisfying e∗ = rs − Cpx∗

p = 0, is GES in the sense of
Definition 1.

Proof: The proof of Theorem 1 is based on the use
of the CQLF (see [22]–[27] for detailed discussions on the
application of common Lyapunov functions to the stability
analysis of switched and piecewise smooth systems)

V (x̃) = x̃� Px̃ . (28)

In particular, in order to prove GES of the system, first, let us
make the observation that

λmin(P)
x̃(t)
2 ≤ V (x̃(t)) ≤ λmax(P)
x̃(t)
2 (29)

where λmin(P) and λmax(P) denote the minimum and maxi-
mum eigenvalue of P , respectively. Moreover, we will prove
that the time derivative of the Lyapunov function t �→ V (x̃(t))
along Filippov solutions to (18) satisfies almost everywhere

V̇ (x̃) ≤ −c
x̃
2 (30)

(where we have omitted time dependence for convenience
of notation) for some c > 0 (irrespective of the mode of
operation). The proof consists of three cases.

1) Mode 1 is active, i.e., ẋ = A1x + Brr + Bdd , and hence,
xI (εxI + u f ) > 0.

2) Mode 2 is active, i.e., ẋ = A2x + Brr + Bdd , and hence,
xI (εxI + u f ) < 0.

3) The system is at the switching plane,
i.e., xI (εxI + u f ) = 0 and ẋ = λA1x + (1 − λ)A2x +
Brr + Bdd for some λ ∈ [0, 1].

1) Case 1 (xI (εxI + u f ) > 0): In the transformed coordi-
nates in (19), the dynamics of the system are given by

˙̃x = A1 x̃ (31)

where we have used (20). The time derivative of the Lyapunov
function V , along solutions of (31), satisfies, due to (26)

V̇ (x̃) = x̃�(
A�

1 P + P A1
)
x̃ ≤ −c+
x̃
2 (32)

for some c+ > 0.

2) Case 2 (xI (εxI + u f ) < 0): . In the transformed
coordinates, the dynamics of the system are given by

˙̃x = A2x + Brrs + Bdds︸ ︷︷ ︸
ẋ in (13b)

−A1x∗ − Brrs − Bdds︸ ︷︷ ︸
=0 due to (20)

(33)

= A2x − A1x∗ (34)

= A2 x̃ − (A1 − A2)x
∗ =: A2 x̃ − Ad x∗. (35)

The time derivative of (28) along the solutions of (35) is now
given by

V̇ (x̃) = x̃� A�
2 Px̃ − x∗� A�

d Px̃ + x̃� P A2 x̃ − x̃� P Ad x∗.
(36)

This time derivative of the Lyapunov function can be expressed
in terms of the transformed states x̃ and the external inputs of
the system rs and ds . Using (20), it is deduced that

x∗ = −A−1
1 (Brrs + Bd ds) (37)

where we use that A1 is Hurwitz and thus nonsingular.
By using (37) and reworking (36), we find

V̇ (x̃) = x̃�
a Qx̃a (38)

where x̃a is the augmented state vector defined by x̃a =[
x̃� r�

s d�
s

]�
and Q as defined in (21).

In support of the stability analysis, we now aim to show
that the right-hand side of (38) satisfies for some c− > 0

x̃�
a Qx̃a ≤ −c−
x̃
2 (39)

for all x̃a when ψ = xI (εxI + u f ) ≤ 0 (note that for
case 2, it suffices to show (39) for ψ < 0; however, since
the results below are also useful in showing (30) for case 3,
we consider ψ ≤ 0). Similar to the time derivative of the
Lyapunov function, also the switching rule can be given by
a quadratic relation of the augmented states x̃a. In particular,
by using (23), the switching function ψ = xI (εxI + u f ) can
be written in the quadratic form

ψ = x̃�
a Rx̃a (40)

with R as in (22). Using the above formulations, we now aim
to establish

x̃�
a Qx̃a ≤ −c−
x̃
2 when x̃�

a Rx̃a ≤ 0 (41)

for some c− > 0. To prove this, consider the matrices M as
in (25) and

G =
⎡
⎣ 0n×1

−γd

γr

⎤
⎦. (42)

Using these matrices, the augmented state vector can be
written as

x̃a =
⎡
⎣ x̃

rs

ds

⎤
⎦ = Mm̃ + g (43)

for some m̃ ∈ R
(n+1)×1 and g ∈ im(G) and where it can be

shown using basic algebra that im(G) ⊆ ker(Q), with Q as
in (21), where for a general matrix G ∈ R

ng×mg , we use
im(G) := {Ga | a ∈ R

mg } and ker(G) := {a ∈ R
mg |
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Ga = 0}. Using these properties, the time derivative V̇ (x̃)
in (38) satisfies

x̃�
a Qx̃a = (m̃�M� + g�)Q(Mm̃ + g)

= m̃�M� QMm̃ + m̃�M� Qg︸ ︷︷ ︸
=0

+ g�QMm̃︸ ︷︷ ︸
=0

+ g�Qg︸ ︷︷ ︸
=0

(44)

and thus, V̇ (x̃) satisfies (41) if and only if

x̃�
a Qx̃a = m̃�M� QMm̃ ≤ −c−
x̃
2 when x̃�

a Rx̃a ≤ 0.

(45)

Similarly, it can be shown that im(G) ⊆ ker(R), with R as in
(22), using (45) results in the requirement

m̃�M� QMm̃ ≤ −c−
x̃
2 when m̃�M� RMm̃ ≤ 0 (46)

which is guaranteed when

m̃�M�(Q − θ R)Mm̃ ≤ −cm
m̃
2 (47)

for some θ ≥ 0 and cm > 0. As (47) follows from (27) and
θ ≥ 0, we also have (30) for case 2.

3) Case 3 (xI (εxI + u f ) = 0): In this case, it holds almost
everywhere that

V̇ (x̃) = λx̃�(
A�

1 P + P A1
)
x̃ + (1 − λ)x̃�

a Qx̃a (48)

for some λ ∈ [0, 1]. It can be observed from case 1 that

λx̃�(
A�

1 P + P A1
)
x̃ ≤ −λc+
x̃
2 (49)

which is satisfied as a result of (32), and

(1 − λ)x̃�
a Qx̃a ≤ −(1 − λ)c−
x̃
2 (50)

from (41) and (45) as x̃�
a Rx̃a = 0. Hence, it can be concluded

that (48) is bounded almost everywhere by

V̇ (x̃) ≤ −c
x̃
2, with c = min(c−, c+). (51)

Based on the analysis performed above, we observe that (30)
holds with c = min(c−, c+) and a CQLF V (x̃) = x̃� Px̃ (irre-
spective of the mode of operation). Through straightforward
algebraic manipulations of (29) and (30), it follows that:


x̃(t)
 ≤
√
λmax(P)

λmin(P)
e

−c
2λmax(P)

t
x̃(0)
 (52)

along all Filippov solutions of the differential inclusion (18),
indicating that the equilibrium x∗ is GES. �

Remark 3: Note that the matrix R is a function of the tilting
parameter ε, and therefore, an iterative process can be used to
find the “best” value for ε while guaranteeing that the system
is GES. In this work, a bisection algorithm has been used [28].
The “best” value for ε, in this case, is defined as the smallest
value for which the LMIs are feasible. The value of ε defines
the delay of the switch, compared to switching when e = 0,
which should be as small as possible. Moreover, note that,
since the feasibility of the inequalities (26) and (27) implies
the existence of a CQLF, the value found for ε via the method
described above can be conservative, that is, the smallest
value for ε such that (18) is GES can be lower than the one

found using the bisection algorithm.1 As such, in applications
where one is aiming for maximizing the performance of the
F-SPANI controller, one can try to further reduce ε, using the
value returned by the bisection algorithm as a starting point.
It should, however, be noted that in such scenarios, stability
is not guaranteed by Theorem 1 and care should be taken
(e.g., via extensive simulations/experiments representative of
real-life operational conditions). Moreover, lowering ε is likely
to result in reduction of robustness of the system with respect
to perturbations. As such, when tuning the value of ε, there
exists a tradeoff between transient performance and robustness
that should be addressed given the particular problem at hand.
In any case, it is not recommended to reduce ε down to
ε = 0, as doing so would completely eliminate robustness
properties, leading to unwanted switching as a result of small
perturbations around the desired equilibrium points.

C. Describing Function Analysis

In this section, a describing function analysis [29] of the
hybrid controllers introduced in Section II is given. This
describing function analysis provides further insight into the
benefits of the controllers in the frequency domain.

To obtain the describing function of a nonlinear filter
numerically, a harmonic signal is applied to the filter with
varying frequencies. The amplitude of the harmonic signal
remains constant for all frequencies since the F-SPANI only
influences the phase of the signal, not the amplitude, compared
to the linear integrator. The output of the filter is evaluated, and
the first harmonic of the output response, i.e., the frequency
corresponding to the injected harmonic input, is analyzed in
terms of its amplitude and phase (with respect to the harmonic
input). Note that only the integrator parts of the closed loop are
considered, i.e., the parts shown in Figs. 5 and 7 for the SPANI
and the F-SPANI, respectively, compared to the response of a

linear integrator defined by CI
(6)= (ωi/s).

In Fig. 9, a time-domain visualization of the interpretation
of the describing function is shown for the F-SPANI at 1 Hz.
The blue line indicates the input to the F-SPANI, which results
in the output indicated by the red line. The first harmonic
of this signal corresponds to the yellow line. It can be seen
that the yellow line does not describe the response accurately;
however, it gives some “linear interpretation” of the nonlinear
control element. The F-SPANI is tuned according to

ωi = 5 [rad/s] ε = 0.2 C f (s) = s + 60π

s + 3.3333π
. (53)

The SPANI uses the same parameters as in (53), however, with
C f = 1.

In Fig. 10, the approximated response, numerically obtained
with the describing function approach, for a wide frequency
band is shown in the frequency domain using only the F-
SPANI, i.e., from ul to us in Fig. 8 or from e to us in Fig. 7.
Let us note that since we simulate the F-SPANI in open loop,
no sliding modes occur in this setting. It can be seen that a

1An interesting future research direction is to extend the stability result
in Theorem 1 such that tighter bounds on ε are found by considering more
flexible Lyapunov functions, e.g., piecewise quadratic Lyapunov functions.
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Fig. 9. Time-domain outputs for 1 Hz.

linear filter, as expected, shows a slope of −1, i.e., −20 dB per
decade, and a phase of −90◦ for all frequencies. The SPANI
with ε = 0, which is included for completeness (but should
not be applied in practice due to unwanted oscillations), also
shows a −1 slope, at a slightly lower amplitude, however,
with a phase of 0◦ over all frequencies. This effect can be
attributed to the fact that the switch is made exactly at the
point where the harmonic input switches sign. The addition of
the ε parameter in the SPANI results in a slight phase drop,
mainly for lower frequencies. The F-SPANI shows a clear
effect of the lead filter. The lead filter was designed around
10 Hz with a maximal phase lead of 53◦. At 10 Hz, it can be
observed that the F-SPANI has a significant phase lead, and
also, the amplitude of the first harmonic of the F-SPANI is
almost identical to the linear response.

By analyzing these results, it is concluded that the F-SPANI
is indeed expected to provide the largest improvement in
transient performance from all of these filters.

Remark 4: It can be seen that the first harmonic, as shown
in Fig. 9, does not describe the response us of the filter
accurately; however, it is the main component in the frequency
domain, which gives valuable (though approximate) insights
of what the filter does in the linear sense. It should be noted
that the describing function of the F-SPANI is only used for
gaining such insights and does not play a role in the stability
analysis of the closed-loop system. Using more advanced
identification techniques, a best linear approximation could be
obtained, where all frequencies are excited at the same time,
which can also result in an approximation of the influence of
the nonlinearities on the linear approximation [30].

D. Numerical Example

In this section, we show the potential of the F-SPANI com-
pared to the linear controller and the SPANI on a numerical
example consisting of a second-order plant with the transfer
function

P(s) = 355.30

s2 + 2.639s + 355.3
. (54)

Fig. 10. Describing function without low-pass and notch filter.

Using this model, a simulation has been performed using a
linear controller, the SPANI controller from Section II-B2, and
the F-SPANI controller from Section II-B3. The controllers,
as shown in Fig. 8, are designed as

N (s) = 1 L(s) = 1

0.001989s + 1
(55)

Cnom(s) = 29.02s + 1148

s + 188.5
C f (s) = 0.04775s + 1

0.005305s + 1
(56)

ωi = 67.5442. (57)

The parameter ε has been selected for both the SPANI and
F-SPANI individually using a bisection algorithm, as discussed
in Remark 3. The obtained value for ε is the lowest value
that guarantees global exponential stability using the results
obtained in Theorem 1. For this simulation study, the values
for ε obtained by the bisection algorithm were 0.2285 and
0.2854 for the SPANI and the F-SPANI, respectively. However,
as discussed in Remark 3, since Theorem 1 provides stability
guarantees based on the construction of a common Lyapunov
function, the values found for ε can be conservative. Thus,
some fine-tuning is possible to further lower ε (without losing
stability based on simulations), resulting in slightly better
transient performance without introducing undesired switches,
as is the case for ε = 0.

In Fig. 11, the simulation results for this system are shown.
In the top figure, the step response is shown using the three
different controllers, where a significant reduction in overshoot
for both the SPANI and the F-SPANI is observed when
compared to the linear controller. Although the main objective
of the filters is to reduce the overshoot, the settling time can
be of interest as well. In Table I, the settling times are listed,
where we take the settling time as the moment when the
response no longer leaves a 10% bound around the reference
trajectory. The middle graph in Fig. 11 shows the control
effort of the (nonlinear) integrator us , in which the SPANI
and F-SPANI show switching behavior. It can be seen that the
SPANI switches slightly after the step response crosses y = 1,
whereas the F-SPANI switches before y = 1. This shows
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Fig. 11. Simulation results.

that the F-SPANI indeed anticipates the moment at which the
error crosses zero, therewith starts to empty the integral buffer
sooner, and decreases overshoot. The bottom graph shows the
normalized cumulative error over time, i.e.

ecum(t) =
∫ t

0
|e(τ )|dτ. (58)

It is observed that the F-SPANI has 27% overshoot, which
is a 40% reduction compared to the 45% overshoot of the
linear controller. Similarly, the SPANI, with 39% overshoot,
has a 13.3% reduction compared to the linear controller.
The total cumulative error reduction of the F-SPANI is 30%,
compared to a cumulative error reduction of the SPANI of
10.9%, both relative to the performance of the linear controller.
In the simulation, of which the results are shown in Fig. 11,
the values for ε have been reduced to 0.1600 and 0.1998
by fine-tuning. As can be seen in this figure, the reduction
of ε by 15% has not resulted in oscillations in steady state.
In Table I, a comparison is made between the performance
of these three controllers, also in terms of the cumulative
errors and the settling time. It can be seen that we do not
only improve the transient performance in terms of overshoot
using the F-SPANI but also decrease the settling time by 17%
compared to the linear controller. This improvement in the
settling time can be attributed to the fact that due to the
reduced overshoot, the system’s response can lie within the
10% bound of the reference trajectory earlier. Nonetheless, it is
important to note that the rationale behind the design of the
F-SPANI is motivated by improving the transient performance
in terms of overshoot and, in general, it is not possible to
provide guarantees on performance enhancements regarding
settling time.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on an
industrial pick-and-place machine shown in Fig. 12, called

TABLE I

PERFORMANCE OVERVIEW OF THE SIMULATION IN TERMS OF
OVERSHOOT, SETTLING TIME, AND CUMULATIVE ABSOLUTE ERROR

Fig. 12. K&S “Hybrid” with three pick-and-place units.

the “Hybrid2” [31], to validate the different methods in terms
of the transient performance improvement. In Section IV-A,
a description of the industrial system is provided, followed by
a description of the controller selection and design components
as well as the measurement results in Section IV-B. Due to
company confidentiality, all axes in the figures, and values in
the tables, have been scaled.

A. System Description and Industrial Context

The experiments for this article have been performed on
the “Hybrid” of Kulicke & Soffa (K&S), as shown in Fig. 12.
The machine is used for highly accurate and high-speed pick-
and-place operations in chip-manufacturing applications. The
“Hybrid” can place up to 33 components per second with
an accuracy of up to 7 μm. These components are placed
by several parallel pick-and-place units to place multiple
components at the same time.

Each unit within the “Hybrid” performs a single pick, single
place operation, enabling full control of the process. Multiple
units are used in parallel, while the carrier for the components
moves between the units. Using this setup, only two degrees of
freedom are required for each unit, i.e., the y and z motions as
indicated in the schematic representation of a pick-and-place
unit in Fig. 13, where the component is picked up in step 1,
moved up in z-direction in step 2, moved in y-direction in
step 3, and placed in z-direction in step 4.

To achieve the high-accuracy and high-speed placement of
components, according to the specifications mentioned above,
the transient performance is subject to a switch requirement.

2Hybrid is the name of the machine on which experiments are performed
and should not be confused with the terminology “hybrid systems”.
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Fig. 13. Schematic of a single pick-and-place unit.

Namely, a component can only be placed (with sufficient
accuracy) after the positioning error in the y-direction in step 3
has entered a specified error band. In that sense, transient
performance is directly related to the achievable machine
throughput capacity.

B. Controller Design and Measurement Results

In the experiments, the y movement of a single pick-and-
place unit is used, resulting in a single-input–single-output
motion system.

Remark 5: Due to company confidentiality, all values have
been scaled, e.g., the overshoot in Table II is scaled to be 50%
for the linear controller, and the F-SPANI and SPANI have
been scaled accordingly. Also, the time axis in the figures has
been scaled. Moreover, the exact values for control settings are
company confidential and thus are not specified in this article.

The first step in the design and implementation of the
controllers is to construct a model of the system dynamics
through basic frequency response function (FRF) measure-
ments (see [30]). Using the measured nonparametric model of
the system, a simplified parametric model of a fourth-order
system has been fitted to the data, resulting in the Bode
diagram in Fig. 14. Such a parametric model is required
for carrying out simulations as well as performing stability
analysis using Theorem 1 leading to the value for ε, which
guarantees closed-loop stability.

The plant is currently controlled in a closed-loop con-
figuration similar to the one shown Fig. 1. In the case of
linear control, a proportional–integral–derivative (PID)-type
controller is used where Cnom consists of a PD controller and
is interconnected in parallel with an integrator with parameter
ωi . In addition, L and N are second-order low-pass and notch
filters, respectively, utilized for attaining sufficient noise rejec-
tion as well as suppression of lightly damped resonance peaks.
Moreover, as common in industrial motion controllers, acceler-
ation feedforward with gain m representing the estimated plant
mass is used to compensate for the low-frequent rigid-body
behavior of the plant dynamics. This describes the current
linear control setup as used in the industry. A schematic of
the closed-loop system where the linear integrator has been
replaced by the F-SPANI is shown in Fig. 15. Note that
in Fig. 15, the integrator parameter ωi is selected to have the
same value as used in the linear design. In addition, C f is a
first-order lead filter, designed to provide phase lead around
the closed-loop bandwidth of the system. The addition of C f

enables F-SPANI to improve transient performance beyond
improvements obtained by the SPANI, as we will show in
the remainder of this section.

Fig. 14. Bode diagram of the K&S Hybrid. Blue line: measured FRF. Red
line: simple parametric model.

Fig. 15. Schematic of the closed-loop system including the F-SPANI.

Using the parametric model of the plant together with
the stability result in Theorem 1, the smallest value for ε
that would guarantee closed-loop stability has been found to
be 0.2075 for the SPANI and 0.2157 for the F-SPANI. As
explained in Remark 3, these bounds on ε are conservative
and can be lowered using manual tuning so that further
improvements in transient performance can be obtained. As
such, the values ε = 0.12 and ε = 0.15 have been selected
for the SPANI and F-SPANI, respectively, while maintaining a
stable response and without introducing undesired oscillations
in steady state, under normal operating conditions. Lowering
ε further all the way to ε = 0 results in the closed-loop
system tracking the reference trajectory as well; however,
the unobservable internal signal us will switch rapidly. These
fast oscillations are typically undesired in a control system.
As such, the parameter ε is set at ε = 0.12 and ε = 0.15.
Note that in this particular application, since the stability
analysis is slightly conservative, fine-tuning is possible to
decrease the parameter ε. However, in other industries such
as ones involving safety-critical or uncertain systems where
robustness and stability guarantees are required (and possibly
guaranteed), one should use ε-values that satisfy the conditions
in Theorem 1 (or use other methods) such that GES of the
closed-loop system is guaranteed.

In Fig. 16, the measurement results are shown for five
repetitions of the movement to a constant reference position,
which is not visible, proving excellent reproducibility. It can
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Fig. 16. Measurement results.

TABLE II

MEASUREMENT RESULTS

be observed that the SPANI and the F-SPANI indeed have
significantly less overshoot than the linear controller. Some
oscillations are present in the responses of the nonlinear
filters, which can be attributed to the fact that the switches
in the control action excite some higher order dynamics in
the system, which are either not modeled or not captured by
the default feedback controller. In this article, the choice is
made not to retune the original controller; however, using a
redesign of the linear controller, better performance might be
obtained for all three controllers. In terms of settling time,
the SPANI and the F-SPANI have approximately the same
performance, which is 10% better than the linear controller.
However, in terms of overshoot, the F-SPANI shows signifi-
cantly better results than the SPANI. The dashed–dotted lines
in the top figure indicate the performance error band used
to define settling time. The SPANI and the F-SPANI have
approximately the same cumulative absolute error. In Table II,
the performance characteristics are summarized for each of
the controllers.

V. CONCLUSION AND RECOMMENDATIONS

In this article, a new hybrid integral controller called
F-SPANI is introduced to reduce overshoot and thereby
improve the transient performance of motion systems while
rejecting (low-frequency) disturbances using integral control.
The controller is inspired by the SPAN and the SPANI
filters; however, it is capable of achieving significantly better
transient performance than these existing filters. We presented
an LMI-based stability result, which guarantees the stability of
the closed-loop system on the basis of a CQLF. In addition,
an intuitive describing function analysis is provided to give

insight into the rationale and working principle of the F-
SPANI. A numerical example has been presented, which
shows the potential of the F-SPANI (and existing special
cases). The method has been tested on an industrial bench-
mark system, being a pick-and-place machine, which shows
the effectiveness and potential of the proposed approach in
an industrial high-tech context. Future work includes the
extension of the stability result in Theorem 1 such that less
conservative criteria are obtained by, e.g., considering more
flexible Lyapunov functions such as piecewise quadratic ones.
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