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Note on stresses in a chimney                
due to wind  
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J. Blaauwendraad                    

Emeritus-Professor in Structural Mechanics, Faculty of Civil Engineering and Geosciences, 

Delft University of Technology, the Netherlands 

Donnell published in 1933 an elegant and rather simple differential equation for the stress 

analysis in circular cylindrical shells. The civil engineering structural mechanics group in 

Delft has a long and strong experience in the fifties and sixties of last century in working 

with this shell equation in close cooperation with the then building institute of TNO. 

Shallow roof shells, tanks and chimneys were examined. It is known that the equation has 

restricted reliability for shells in which wavelengths in circumferential direction are 

relatively large. In 1959 Morley replaced Donnell’s equation by a slightly extended equation 

which retained the essential simplicity of the original but the accuracy does not decrease as 

the wave length of circumferential distortion increases. The impact on longitudinal bending 

stresses at the base of chimneys due to wind is not negligible as appears from here 

summarized research. Application of Morley’s theory is easily extended to ring-stiffened and 

elastically supported chimneys. This note demonstrates how subsequent research in time of 

individual persons provides stepping stones in the process of discovering. 

Keywords:  Chimney, circular cylindrical shell, stress due to wind, Donnell, Morley 

 

1 Difference between Donnell and Morley equations 

Consider a circular cylindrical chimney of height l, radius r and wall thickness t as shown 

in Figure 1. Thickness t is supposed to be small with respect to the radius a. We will 

consider the chimney under wind load.  It is convenient to choose an x-axis in longitudinal 

direction of this shell with its origin at the base of the chimney, as shown in Figure 1,  and 



 

 168 

a y-axis in circumferential direction. Alternately we will apply the angle θ = y/a instead of 

y. A z-axis is normal to the shell surface and outward positive. Displacements in the 

direction of x, θ and z are u, v and w respectively. The modulus of elasticity is E and 

Poisson’s ratio ν. 

 

Figure 1. Definition of axes 

Donnell equation 

At the time Donnell published his equation the extensive theory of Love [1] was at disposal 

since the end of the nineteenth century and the rigorous theory of Flügge [2] was 

published in 1934. Donnell [3] succeeded to simplify the theory to the equation for w 
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where p is the wind pressure in z-direction and Δ the Laplace operator 
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Once the displacement w has been solved, the displacements u and v can be found from the 

equations 
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The Donnell equation (1) has a few drawbacks. First, it does not meet the condition that the 

cylinder keeps stress-less for a movement as rigid displacement of the shell in lateral 

direction. Next, the equation produces less reliable answers if wavelengths in 

x

z
y

l

a
t



 

 169 

circumferential direction become larger. This may not be a hindrance for shallow circular 

roof shells, but one has to be careful for chimneys. 

 

Morley equation 

Morley [4] improved the Donnell equation in 1959, replacing it by 
 

4
2 4

4
1

( 1) 4
w

w K p
Dx

∂ΔΔ Δ + + = ΔΔ
∂

   (4) 

The equations (3) for u and v remain unchanged. Main physical backgrounds of the 

improvement are correction of the kinematic relation between the curvature θθκ in 

circumferential direction and the displacement w and adjusting the equilibrium equation 

in z-direction. Morley’s approach considers a term 2w a in the curvature θθκ in addition to 

the second derivative with respect to w, which is the only part in Donnell’s theory. 

Similarly Morley considers an additional term 2m aθθ in the equilibrium equation in z-

direction, which Donnell does not. Even the Morley equation (4) is an approximation 

compared to the rigorous theory of Flügge, but it has sufficient completeness to produce 

far more accurate solutions than the Donnell equation. Moreover, the Morley equation 

now keeps the shell stress-free in case of a rigid body displacement and the equation 

remains valid for long wavelengths in circumferential direction. 

2 Donnell application to chimneys under wind load 

We consider a chimney which is considered to be fully clamped at the base and presume a 

wind load which is uniformly distributed over height and varies in circumferential 

direction, see Figure 2. 

 

Figure 2. Typical distribution of the wind pressure 
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The wind load consists of pressure at the upwind face and heavy suction on the left and 

right sides of the chimney. The distribution of the wind pressure can be developed in a 

series 
 

0 1 2 3 4 5( ) ( cos cos 2 cos 3 cos 4 cos 5 )wp p a a a a a aθ = − + θ + θ + θ + θ + θ    (5) 

 

The value of the constant 0a to 5a depends on national codes and Reynolds number. The 

following values have been adopted, which are in agreement with [5] and [6]. 

 

0a = –0.823, 1a = 0.448, 2a = 1.115, 3a = 0.400, 4a = –0.113, 5a = –0.027    (6) 

 

The axisymmetric term 0a does not raise stresses in longitudinal directions , aside from 

insignificant stresses at the edges with very short influence length in comparison with the 

other terms. The cos θ term with 1a applies a varying pressure which has a maximum value 

at the windward meridian and a minimum value at the leeward meridian. This is the only 

term of the series which applies a horizontal resultant to the chimney due to the horizontal 

loading and therefore a bending moment at the base. Stresses produced by this loading 

conform to beam theory. For this loading term, plane sections remain plane and the 

circular section does not distort. The stress distribution is linear over the circular cross-

section. All higher load terms cause vertical stresses which are self-equilibrating, but 

modify the longitudinal stresses produced by the cos θ term. Particularly the cos 2θ term 

causes “ovalizing” of the cross-section. Because this distortion cannot occur at the base, an 

equilibrating set of vertical stresses is evoked. As a result the maximum total tensile stress 

at the chimney base is larger than beam theory predicts. Figure 3 visualizes the joint effect  
 

 

 

        Figure 3. Distribution of the axial stress at the base 
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of the terms cos 2θ to cos 5θ. It shows the distribution of the total stresses for all terms 

compared to the stress due to beam theory, viz. the term cos θ only. 
 

Van Koten [5] managed to derive an elegant expression for the ratio r between the 

maximum total tensile stress and the beam theory stress, in which two shell parameters l/a 

and t/a occur 
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The dimensionless symbol k is a constant. Van Koten derived the expression (7) for r from 

the Donnell equation, but the same expression will be found applying the Morley equation. 

Just the value of k appears to become different. In working out, Van Koten restricted 

himself to the cos 2θ term in the wind pressure series (constant 2a = 1.115) and used zero 

Poisson’s ratio. So, he obtained in the framework of Donnell k = 4.31. If he had considered 

all six terms of the series of Eq. (5) the value would only grow to 4.87, from which we 

notice that the cos 2θ term in the wind pressure is indeed dominant as anticipated. 

3 FE analysis 

Two years after the publication of expression (7) for the ratio between total stress and beam 

theory stress Turner [6] has published a check through FE analyses. He computed a large 

number of shell configurations with extensively varying values of l/a and t/a as occur in 

practice. The value of l/a varied from 30 to 80 and the value of t/a from 0.004 to 0.012. He 

showed, applying all six terms in the wind pressure development (5) that the formula fits 

all his computations if he set the constant k to 6.05. Then the agreement between the 

formula (7) and the finite element results is within 0.5 percent for the large range of 

chimneys considered. So he confirmed the structure of the formula and the relevant 

parameters, however found a much larger value for the constant k.  

4 Morley application to chimneys under wind load  

Hoefakker [7] has reviewed the theories for cylindrical shells in his doctoral thesis. Among 

other activities, he repeated the computation of Van Koten for the determination of the 

constant on basis of the Donnell equation and achieved at the already mentioned k = 4.87. 

So, using the full series expansion of the wind load does not explain the much higher value 
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6.05 of Turner. Hoefakker furthermore applied the Morley equation to the chimney 

problem [7], confirming Van Koten’s formula (7) for the ratio r and arriving at the general 

expression for k: 
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Herein ν is Poisson’s ratio and the mode number n depicts the respective wind load series 

term. Application of the series of constants of (6) results in the constant k 
 

26.39 1k = − ν   (9) 
 

Upon inquiry we learned that Turner has applied 0.3 for Poisson’s ratio, which makes 

expression (9) resulting in k = 6.10, which is within one percent equal to the computational 

result 6.05 of Turner. The difference between k = 4.87 of Van Koten and Turner’s value k = 

6.05 is fully explained by the inaccuracy of the Donnell theory and use of different values 

of Poisson’s ratio. 

For the range of shell configurations considered by Turner we find r values ranging from   

r = 1.08 to r = 2.68. The lower value r = 1.08 holds for the combination of high parameter 

values t/a = 0.012 and l/a = 80. The higher value r = 2.68 holds for the combination of low 

parameter values t/a = 0.004 and l/a =30. This higher value 2.68 deviates substantially 

from the beam solution. 

5 Discussion 

The difference between the Donnell solution and Morley solution is easily understood 

from the different definitions of the curvature in circumferential direction. Using the 

coordinate y = a θ it holds 
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The minus signs are not essential but just occur because of chosen sign conventions. Let c 

be the wave length along the circumference in y-direction, see Figure 4. Then it holds 
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and we obtain the following maximum curvatures 
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The difference between the two curvatures is negligible if 
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Herein π a is the half circumference. For a wave length of one sixth of the half 

circumference the error in the Donnell curvature is less than 3 percent, for one fourth less 

than 6 percent, one third exactly 10 percent and one half already 20 percent, so rapidly 

increasing for longer wave lengths. If the wave length c approaches the half circumference 

the error is already 50 percent, so equal to the Donnell value itself. 

 

 

 

Figure 4. Definition of wave length c in circumferential direction 

 

 

The highest ratio r for the shells considered by Turner is 2.68 on basis of the Morley 

equation and 2.35 by the Donnell equation, a difference of 14 percent. Not severe, however 

not negligible. The dominant term cos 2θ in the wind pressure expansion has a wave length 

of one half of a half circumference and the next term cos 3θ. Here above we estimated 20 

and 10 percent error respectively. The mentioned 14 percent between Donnell and Morley 

result is nicely in between these values. 
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Characteristic length 

We can handle expression (7) for the ratio r in another way. Introducing the characteristic 

length 24
chl at l= we can also write the expression as 

4

1
ch

ar k
l

 
= +  

     (14) 

The fourth root is a characteristic length in circumferential direction. Instead of two 

parameters we now have one. In Turner’s computational domain for shells in practice this 

characteristic length varies from 1.38 a to 2.96 a, which is 0.88 and 1.89 times the half 

circumference, respectively. For these values the difference between the Donnell equation 

and Morley equation is substantial. Of course, the calculated characteristic lengths will 

result in the same values of r ranging from 1.08 to 2.68. 

6 Effect of ring stiffeners and axial elastic support. 

With reference to Hoefakker [7] and author’s Structural Shell Analysis [8], new design 

formulas, which describe the effect of stiffening rings and elastic supports, have been also 

developed based on the Morley equation. These have been presented such that the 

respective influence is represented by inclusion of an additional factor in the above 

formula (14) for the fixed base case without stiffening rings. 

For distributed stiffening rings the stiffness ratio rλ has been introduced, which is the ratio 

of the bending stiffness of the circular cylindrical shell only to the modified bending 

stiffness of the shell including the “smeared” contribution of the ring flexural stiffness. The 

formula for the case with stiffening rings reads 
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The design formula is applicable for sufficiently closely spaced stiffening rings, see [7]. A 

similar expression can be derived for an axial elastic support with stiffness xk . Then the 

formula reads 
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Herein the normalised ratio xnλ is introduced, which depends on the respective 

factors na in the wind load development of expression (5), mode numbers n, the 

geometrical property a/t and the ratio of the axial elastic support stiffness xk and the 

modulus of elasticity E. For the full description we refer to [7] and [8]. 

7 Summary and conclusion 

The membrane tensile stress in axial direction at the base of a circular cylindrical chimney 

deviates from the stress due to classical beam theory. We considered two theories, from 

Donnell and Morley, respectively, to compute the total stress.  For the ratio between the 

total stress and the beam theory stress the symbol r is used. The difference between the 

equations of Donnell and Morley seems small but can be of substantial meaning for 

stresses at the base of chimneys. For not very thin and long chimneys the difference is 

negligible. Then, beam theory will suffice.  However, for really thin and rather low 

chimneys the difference is not negligible. For the specified wind pressure distribution (5) 

and the adopted combination of low parameter values t/a = 0.004 and l/a = 30, this 

difference is about 2.3 times the beam theory stress according to the Donnell equation and 

2.7 according to the Morley equation. 

Van Koten derived on basis of the Donnell equation an elegant formula for the ratio r 

between the total stress and the beam theory stress, which is confirmed by Hoefakker on 

basis of the Morley equation. The only difference is the value of the dimensionless constant 

k in the formula. 

The results of the Morley equation have been happily confirmed based on finite element 

analyses of Turner. For a big range of shell configurations the difference appears less than 

one percent. 

The explanation of the difference between the Donnell and Morley equation is easily done 

by a wave length consideration in circumferential direction. From this, the difference in the 

chimney results becomes plausible.  

The formula for ratio r is conveniently extended for closely spaced ring stiffeners and an 

axial elastic support at the base. 

 

 



 

 176 

References 

[1] Love A.E.H., The Mathematical Theory of Elasticity, 4th edn, Cambridge University Press, 

Cambridge (1927). 

[2] Flügge, W., Statik und Dynamik der Schalen, Berlin (1934). 

[3] Donnell L.H., Stability of Thin-walled Tubes under Torsion. NACA Report No 479 

(1933). 

[4] Morley L.S.D., An Improvement on Donnell’s approximation for Thin-walled circular 

cylinders, Quarterly of Mechanics and Applied Mathematics, 12 (1959). 

[5] Van Koten, H., The Stress Distribution in Chimneys due to Wind Pressure, CICIND 

Copenhagen Meeting (1994). 

[6] Turner, J.G., Wind Load Stresses in Steel, CICIND, Orlando Meeting (1996). 

[7] Hoefakker J.H., Theory Review for Cylindrical Shells and Parametric Study of Chimneys and 

Tanks, Eburon Academic Publishers, Delft (2010). 

[8] Blaauwendraad J., Hoefakker J.H. (2014), Structural Shell Analysis, Springer. 

 

 


