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Towards Evidence-Based Classification in
Wheelchair Sports: A Study on Trunk Kinematics

and Mobility Performance

Abstract—Objective: This study aimed to validate the use of
Inertial Measurement Units (IMUs) for quantifying trunk motion
in wheelchair sports and explore the relationship between trunk
motion, wheelchair mobility performance, and classification level
in elite wheelchair basketball athletes.
Methods: Fourteen participants (seven elite wheelchair ath-
letes and seven non-WC users) completed eight standardized
wheelchair mobility tests. Trunk motion was measured using
IMUs and compared with a 3D motion capture (MOCAP) system.
Trunk kinematics and wheelchair performance metrics were
derived and analysed for correlation in the elite wheelchair group.
Results: IMUs, especially those mounted on the upper back,
showed excellent agreement with 3D motion capture data (ICCs
> 0.90; RMSE < 8%). Mean trunk angle correlated with
wheelchair linear velocity during manoeuvring and sprinting
tasks (r > 0.75), highlighting the role of dynamic trunk use in en-
hancing propulsion. Additionally, trunk kinematics, particularly
range of motion, mean tilt angle, and forward lean time, showed
strong correlations with classification level (r > 0.79), especially
during the straight push test. Performance metrics demonstrated
weaker correlation with classification (r < 0.47), suggesting
that impairment may not directly translate into measurable
differences in mobility performance in this sample.
Conclusion: Trunk rotation angles derived from IMUs provide
a valid and practical tool for measuring trunk motion. Their
integration could support more transparent and impairment-
focussed classification frameworks.

Index Terms—Wheelchair sports, trunk kinematics, wheelchair
mobility performance, inertial measurement units, evidence-
based classification

I. INTRODUCTION

In wheelchair sports, athletes are classified into categories
to ensure fair and equitable competition. Paralympic athletes
present with diverse types and degrees of physical impair-
ments, and classification is used to group them based on the
extent to which their impairment affects sports performance.
This levels the playing field, allowing skill, fitness, endurance,
and mental focus to determine success, instead of the degree
of impairment. For this system to be effective and trusted,
classification must be objective and reliable. An evidence-
based classification process enhances transparency, minimizes
errors in class allocation, and reduces the risk of athletes
deliberately underperforming during classification assessments
[1]–[4].

Current wheelchair classification methods typically follow
a three-step procedure. First, the athlete is assessed against a
list of eligible impairments and minimum impairment criteria
using standard medical tests, such as manual muscle test-
ing or spasticity grading scales. These minimum impairment
criteria are usually a quantitive limit, such as a minimum

leg length difference of 6 cm for wheelchair basketball.
Second, classifiers evaluate how the impairment impacts sport-
specific performance, often through functional tests conducted
in controlled setting. For instance, wheelchair tennis classifiers
observe athletes during pushing, turning, stopping, and ball
strokes. In some sports, trunk control is reviewed during this
step, though it is often assessed subjectively, with limited use
of standardized scoring rubrics or objective measurements.
Finally, athletes are optionally observed during in-field compe-
tition to verify initial classification [5]–[9]. This entire process
remains heavily reliant on expert judgment and lacks the
empirical rigor needed to ensure consistency, which can lead
to misclassification and unfair advantages.

Recognizing these limitations, recent efforts have aimed
to anchor classification decisions in objective performance
data. Notably, Van Der Slikke, Bregman, Berger, et al. [10]
found a significant difference between wheelchair performance
and classification level between low classes and middle-
high classes in wheelchair basketball athletes. Additionally,
Van Der Slikke, Berger, Bregman, et al. [11] showed that
impairment level and sport type affect wheelchair mobility
performance, expressed through metrics such as speed and
acceleration. While these findings highlight that impairment
can influence performance, they also underscore the limitations
of using performance metrics alone for classification, since
performance is affected by many non-impairment factors. This
has motivated the search for objective measures that more
directly reflect impairment, such as trunk motion during match
play.

The ability of a wheelchair athlete to leverage their trunk
plays a significant role in wheelchair propulsion and, conse-
quently, athletic performance [12], [13]. Being able to move
the trunk forward can increase the ability to transfer power
from the trunk to the pushrim of the wheelchair, resulting in
more speed [14]–[17]. In addition, not only the forward lean
of the trunk increases the range of motion and thus duration
of the hands on the handrims of the wheelchair, but also the
backward motion of the trunk towards the neutral position
during the recovery phase results in forward propulsion of
the wheelchair [18]. Trunk movement, particularly the ability
to shift body weight effectively, can also enhance turning
speed, providing a further advantage in manoeuvrability. Fur-
thermore, trunk control enhances agility and postural stability,
which are critical elements in wheelchair sports such as
basketball, rugby, and tennis. Despite its importance, trunk
motion is often under-assessed or evaluated only subjectively
in classification. For example, in elite wheelchair tennis trunk



control accounts for only 14% of the classification level, while
arm control accounts for 86%. This raises the question: could
quantifying trunk motion more objectively improve evidence-
based classification?

In this study, wheelchair sports performance is defined using
velocity-based metrics derived from wheelchair kinematics.
Although velocity performance metrics do not cover the full
range of skills (such as ball handling or recovery from pertur-
bation), they serve as proxies for mobility-related performance.
Trunk motion is characterized using angular metrics, including
range of motion. These metrics are captured across seven
functional wheelchair tests, designed to reflect key movements
seen in competition, such as sprinting, turning, and stopping.
To ensure generalizability across wheelchair sports, no ball
handling is included.

Capturing trunk motion accurately is key. While 3D motion
capture systems are considered the gold standard, they are
impractical for use outside a laboratory setting due to spatial
constraints, occlusion, and high costs. Inertial Measurement
Units (IMUs), on the other hand, offer a portable and cost
effective alternative suitable for in-field data collection, though
they can suffer from drift and accuracy limitations, especially
at high speeds [19].

This study had two primary objectives:
1) To validate the use of inertial measurement units (IMUs)

for measuring trunk motion in functional mobility
wheelchair tests, by comparing them with an optokinetic
motion capture system.

2) To explore the relationship between trunk motion, ath-
letic performance, and classification level among elite
wheelchair basketball athletes.

By examining these questions, this research contributes to
the development of more objective impairment-based tools
that can inform fairer and more transparent classification in
wheelchair sports.

II. METHODS

A. Participants

Fourteen participants were recruited: seven elite youth
wheelchair basketball athletes from the Dutch national team
and seven individuals without prior experience in wheelchair
sports. Non-experienced participants were allowed time to
become comfortable with wheelchair propulsion and agility
before testing. Each test was introduced with verbal instruc-
tions and a demonstration to ensure understanding. Participant
characteristics are presented in Table I.

B. Equipment and Measurement Systems

Non-experienced participants used a standardized sports
wheelchair (Quickie RGK All Court), while elite athletes
used their personal sports wheelchair, including any straps
or support systems. Each wheelchair was equipped with two
Inertial Measurement Units (x-IMU3, x-io Technologies), one
mounted on the right wheel axis and one in the centre of
the backrest of the wheelchair frame. This configuration was

Fig. 1: MOCAP measuring area, with optimal measuring circle
in the middle. Green X = camera; orange arrow = distance
(cm); purple X = cone used during mobility tests 5 and 6.

previously validated for capturing wheelchair kinematics by
Van Dijk, Van Der Slikke, Rupf, et al. [20].

To measure trunk motion, two additional IMUs were placed
at spinal levels T3-T4 (upper back) and T11-T12 (lower back)
to capture representative upper and lower trunk motion. T11-
T12 was selected as the lowest possible location on the back
still visible by the 3D motion capture (MOCAP) system,
avoiding occlusion from the wheelchair backrest. T3-T4 was
chosen to allow stable attachment to the racer-back vest worn
by the participants. Biomechanically, these locations capture
segmental motion dynamics of the upper trunk and pelvis. The
use of two IMUs allowed for the assessment of the effect of
IMU placement on measurement accuracy, providing insight
into optimal sensor location for trunk motion measurement.

Each IMU captured 3D acceleration, angular velocity, and
magnetic orientation at 100 Hz. Orientation data with respect
to the earth’s global frame was fused using the Madgwick filter
on the sensor firmware [21]. Subsequently, the orientation of
the IMU over time was downloaded as quaternions.

Each trunk-mounted IMU was also rigidly connected to
a cluster of three reflective markers. These were tracked by
an eight-camera motion capture system (Primex 13 Optitrack
v2.3, Natural Point) operating at 120 Hz. The cameras were
placed within a 13.5 by 9.35 m rectangular area to ensure
optimal visibility, as shown in Figure 1. A central circle was
designated as the optimal measurement area, where marker
visibility was the highest.

C. Wheelchair Mobility Tests

Eight wheelchair mobility tests, adapted from Van Der
Slikke, Berger, Bregman, et al. [22], were used to simulate
real-world wheelchair sports manoeuvrers. Tests were modi-
fied to suit the measurement environment and are outlined in
Table II and Figure 2. Each test was executed twice by each
participant, once at normal speed and once at maximum effort.



Subjects N Age Sex (m/f) Weight (kg) Height (cm) Class
non WC athlete 7 26.4 (10.5) 2/5 69.0 (10.5) 177.3 (9.9) -
WC athlete 7 18.7 (2.4) 5/2 64.2 (12,9) 171 (10.7) 3.0 (1.4)

TABLE I: Subject characteristics, mean (standard deviation)

Fig. 2: Four wheelchair mobility tests: a. slalom, b. figure 8, c.
u-turn, and d. starmove; figure modified from Van Der Slikke,
Berger, Bregman, et al. [22]

D. Trunk Motion and Validation

IMU and MOCAP orientations were converted to rotation
matrices in Python. The IMU data was resampled to 120
Hz using spherical linear interpolation (SLERP), to match
the MOCAP sampling frequency. Rotation matrices were
then converted to Euler angles using an XYZ decomposition
sequence. Temporal alignment was achieved by computing the
cross-correlation of the Euler angles around the z-axis for the
whole measurement to determine the time lag. This is based
on the assumption that the global z-axis of both the IMU and
3D MOCAP system are oriented vertically.

Test Name Description
1 Trunk movement Perform maximal trunk flexion and ex-

tension in the frontal plane, maximal
flexion in both directions in the sagittal
plane, and maximal trunk exorotation to
both sides

2 Straight push Sprint across the entire measurement
area

3 Intermittent
sprint

Sprint across the measurement area and
come to a complete stop at its centre

4 Pivot Rotate 180 degrees around the z-axis in
both clockwise and counter-clockwise
directions

5 Slalom Ride around the cones as shown in
Figure 2.a

6 Figure 8 Ride around the cones to make a figure
8 as shown in Figure 2.b

7 U-turn Perform a u-turn around the cone as
shown in Figure 2.c

8 Starmove Star wise bi-directional rotation com-
bined with back-and-forth movement as
shown in Figure 2.d

TABLE II: Wheelchair mobility tests with descriptions of the
movement

To account for the spatial misalignment between the IMU
and 3D motion capture local coordinate frames, all rotation
matrices were normalized using Equation 1. For each test,
the orientation at t = 0, denoted R(0), was used as the
reference matrix. This approach removes the influence of the
initial sensor orientation by expressing all subsequent rotations
relative to the starting position, which was consistently upright
across tests. The transformation follows the identity property
of rotation matrices: R ·R−1 = I.

Rrel(t) = R(t) ·R(0)−1 (1)

Trunk orientation was simplified into a single tilt angle (β),
representing the deviation of the trunk from the vertical axis, as
shown in Figure 3. The reason and limitations of this approach
are discussed in Section IV-D. The formulated trunk tilt angle
describes frontal and sagittal flexion and extension, where each
movement results in a positive angle, which is calculated using
Equation 2.

β = cos−1(Rz · ez), where ez =

00
1

 (2)

From the trunk tilt angle, the following trunk motion metrics
were derived for each test and speed combination:

• Range of Motion (ROM) (º)
• Mean Tilt Angle (º)
• Mean Angular Velocity (º/s)
• Time Spent Leaning Forward > 25º (s)



Fig. 3: Trunk tilt angle β

Fig. 4: Diagram of the wheelchair including all mobility
performance measures (orange arrows): ωc, vc, ac, αc. The
global frame of the wheelchair is shown (red, green, blue
arrows) with its decomposed Euler angles: φ, ζ, θ. Additional
terms used to determine the performance metrics, such as the
angular velocity of the wheel ωw and the linear velocity of the
wheel vw, are visualized in purple arrows. The IMU sensors
mounted in the right wheel and backrest are shown in yellow.

The selected trunk motion metrics were included based
on their ability to capture distinct aspects of dynamic trunk
use and movement strategy. The range of motion reflects the
extent to which an athlete is able to utilize the trunk during a
given task, providing an indication of available mobility. The
mean trunk tilt angle represents the athlete’s habitual trunk
posture throughout the movement, not only offering insight
in trunk motion ability but also strategy and overall forward
lean tendency during propulsion. The mean angular velocity
characterizes the speed at which the trunk is actively rotated,
which may relate to the athlete’s ability to generate propulsion
power through dynamic trunk use. Lastly, the time spent
leaning forward beyond 25º captures the duration of sustained
forward engagement, which may reflect temporal endurance
and could be relevant in contexts involving prolonged effort.
The 25º cutoff was determined by calculating approximately
two standard deviations above the mean of all recorded trunk
tilt angles, capturing substantial trunk rotation. Although the
range of motion and mean angle showed a high correlation (r
= 0.81), both were included as they provide complementary
information regarding movement capacity and postural control,
resulting in a complete assessment of trunk function.

To assess the distribution of trunk tilt angles over time,

Fig. 5: a. Top view of the wheelchair showing the calculation
of the linear velocity of the wheelchair frame (vc), taking the
linear velocity of the wheel (vw) and the angular velocity
of the chair frame (ωc) into account. b. Back-view of the
wheelchair showing the geometry of the cambered wheel and
the determination of the distance of the IMU to the centre of
the wheelchair frame (d).

derived from both the trunk-mounted IMUs and the 3D
motion capture system, normality was evaluated using the
Shapiro–Wilk test. A p-value greater than 0.05 was consid-
ered indicative of a normally distributed dataset. In addition,
histograms of the trunk tilt angles were generated to visually
assess their distribution. To investigate the relationship be-
tween the IMU-derived and MOCAP-derived trunk tilt angles,
a correlation plot was constructed. Agreement between the
two measurement systems was further examined using a
Bland–Altman plot, by examining the mean bias and limits
of agreement between the two systems derived angles. The
differences between the IMU- and MOCAP-derived trunk tilt
angles (i.e., the residuals) were also tested for normality using
the Shapiro–Wilk test. Potential outlier behaviour was taken
into consideration throughout this analysis.

Validation of the IMU-derived trunk metrics against the
MOCAP data included computation of the mean bias, root
mean square error (RMSE) and the two-way mixed model
intra-correlation coefficient (ICC[3,1]). The mean bias and
RMSE shows how much the IMU trunk metrics are over
or underestimated in comparison to the 3D MOCAP trunk
metrics, where the RMSE penalizes outliers more. The ICC is
calculated to compare the time series trunk tilt angles of the
IMUs against the MOCAP system. The ICC considers con-
sistency, but not perfect agreement, so this validation metric
indicates how well the IMU trunk tilt angles are consistent
with the 3D MOCAP trunk tilt angles over time relative to
the total variability. ICC scores were interpreted as [23]:

• Excellent (ICC > 0.90)
• Good (0.75 < ICC ≤ 0.90)
• Moderate (0.50 < ICC ≤ 0.75)
• Poor (ICC ≤ 0.50)

E. Performance Metrics

To investigate the relationship between trunk motion and
wheelchair performance, four performance metrics were cal-



culated from the wheel- and frame-mounted IMUs capturing
wheelchair kinematics, as shown in Figure 4:

• Chair linear velocity (vc, m/s)
• Chair angular velocity (ωc, deg/s)
• Chair linear acceleration (ac, m/s2)
• Chair angular acceleration (αc, deg/s2)
The performance metrics were selected because they reflect

fundamental components of wheelchair movement relevant to
sports performance and trunk contribution. Chair linear veloc-
ity represents the forward propulsion speed of the wheelchair
and is closely linked to the athlete’s ability to generate sus-
tained forward motion. The angular velocity of the wheelchair
captures rotational movements, such as those occurring during
turning tasks, and may depend heavily on trunk contribu-
tion to initiate and control directional changes and weight
shifts. Including both linear and angular velocity allows for
a comprehensive assessment of the two primary movement
axes in wheelchair sports: straight propulsion and directional
manoeuvring. Furthermore, the accelerations of both velocity
metrics were included to quantify how rapidly athletes are able
to initiate or change motion. These acceleration metrics reflect
explosive power and responsiveness. These four wheelchair
frame metrics offer a direct measure of the athlete-wheelchair
system’s performance and are sensitive to contribution of trunk
motion during propulsion and directional changes.

The linear and angular velocities and accelerations of the
wheelchair were calculated for each of the eight wheelchair
mobility tests, which were all performed at two speeds. Only
the seven elite wheelchair basketball athletes were consid-
ered in the trunk and performance analysis, because the
performance of non-experienced participants is significantly
different from the elite athletes, creating outliers in the data.
To calculate the four performance metrics, the performance
metric equations were adapted from methodologies described
in Van Der Slikke, Berger, Bregman, et al. [22] and Van Dijk,
Van Der Slikke, Rupf, et al. [20].

Wheelchair motion was determined by decomposing the
orientation data from the IMUs, mounted on the wheel axis
and wheelchair frame, into Euler angles: pivot (φw & φc),
roll (ζw & ζc), and pitch (θw & θc) angles, as shown in
Figure 4. The wheel angular velocity ωw reflects how the
wheel rotates, which is needed to determine the linear velocity
of the wheelchair frame vc. Although the wheel of a sports
wheelchair is typically cambered, i.e. tilted inward at the
top, no correction for camber angle is necessary when using
the IMU orientation with respect to the global frame. This
is because the rotation around the wheel’s roll axis remains
consistent and the angular velocity of the wheelchair frame
ωc does not show up in the roll angles. Therefore, the wheel
angular velocity is determined using: ωw = ∆ζw · f IMU

s .
To determine the linear velocity of the wheelchair frame

centre vc, both the linear velocity of the wheel (vw = ωw ·
r) and the turning motion of the chair must be considered.
When the chair turns, the velocity of the wheel-mounted IMU
deviates from the true centre-of-mass velocity of the chair. To
correct for this, a geometric correction using the wheelchair

frame pivot angle (φc) and the lateral distance (d) between the
IMU and the wheelchair’s centre is applied by using Equation
3. The geometry of the correction term is shown in Figure 5.a.

vc = (ωw · r)± [tan (φc) · d] · f IMU
s (3)

The lateral distance d is a function of the total chair width
Bc, camber angle ϕc, and wheel radius r, as shown in Equation
4. The geometry of the lateral distance is visualized in Figure
5.b.

d =
Bc

2
− sin(ϕc) · r (4)

Furthermore, the chair angular velocity ωc captured the
wheelchair’s rotation about the vertical axis and is obtained
from the frame-mounted IMU pivot angle, as shown in Equa-
tion 5.

ωc = ∆φc · f IMU
s (5)

Finally, linear and angular accelerations are derived from
their respective velocities using Equation 6 and Equation 7.

ac = ∆vc · f IMU
s (6)

αc = ∆ωc · f IMU
s (7)

The speeds and accelerations over time are simplified to the
maximum speed and acceleration of each test performed by
the participants. Each test was performed by participants at a
normal speed and a high speed, which should result in signif-
icantly different mobility performance metrics. It is assumed
that these speed conditions will also yield significantly differ-
ent trunk motion, because trunk will be leveraged more when
higher speeds are realized. To evaluate whether the instructed
speed conditions (high speed vs. normal speed) resulted in
measurable differences in movement behaviour, paired sample
t-tests were conducted for the trunk and performance metrics
across each wheelchair mobility test.

The relationship between the trunk motion metrics and the
wheelchair mobility performance is investigated by computing
Pearson correlation values for each combination of trunk ver-
sus performance metric. Furthermore, the Pearson correlation
between trunk motion, performance and classification level are
investigated. However, based on the validation results (Section
III-A), only range of motion and mean tilt angle were included
in subsequent analyses of the relationship between trunk
motion, performance, and classification level. Mean angular
velocity and time spent leaning forward showed large errors
relative to the 3D MOCAP reference (Table III), and were
therefore excluded to ensure valid interpretation of results.
Additionally, only the trunk tilt angles measured by the IMU
mounted on the upper back are included in the following
analyses, due to higher accuracy results from the validation
study.



TABLE III: Mean bias and RMSE results of the validation of both trunk IMUs when compared to the 3D MOCAP data. Both
validation metrics are also represented as the percentage of mean bias and RMSE relative to the IMU-derived trunk metric.

Lower trunk (T11-T12) IMU Upper trunk IMU (T3-T4)
Speed mean bias (%) RMSE (%) mean bias (%) RMSE (%)

Range of motion (º) Normal 0.52 (1.51) 6.84 (19.70) -0.54 (1.50) 1.49 (4.11)
High -1.02 (2.30) 10.23 (23.14) -0.61 (1.22) 4.35 (8.79)

Mean tilt angle (º) Normal -0.84 (6.37) 6.29 (47.87) -0.04 (0.27) 1.05 (8.18)
High -0.36 (2.10) 7.87 (45.99) -0.05 (0.28) 1.32 (7.54)

Mean angular velocity (º/s) Normal -0.10 (13.43) 1.16 (149.03) -0.02 (1.14) 0.77 (44.64)
High -0.23 (11.12) 2.14 (105.66) 0.16 (6.26) 1.40 (55.40)

Time leaning forward (s) Normal -0.46 (10.82) 2.29 (54.31) 0.06 (1.27) 1.97 (41.37)
High -0.08 (1.52) 1.35 (24.39) -0.09 (1.50) 0.83 (13.18)

Fig. 6: IMU and 3D MOCAP-derived trunk tilt angles (º) of each test of one elite wheelchair athlete at normal speed, measured
using the upper-back mounted IMU

III. RESULTS

A. Validation

Normality test results are summarized in Appendix A.
Although IMU-derived trunk tilt angles showed excellent
agreement with the 3D MOCAP data (Pearson’s r = 0.99 for
the upper back and r = 0.87 for the lower back). Normality
tests revealed that neither the IMU nor MOCAP-derived angles
followed a normal distribution. Shapiro-Wilk tests yielded p-
values below 0.0001, with positive skewness (> 1.4) and mod-

erate kurtosis (< 3), reflecting the inherently positive tilt angle
values. The residuals (MOCAP - IMU) also deviated strongly
from normality, showing extreme skewness (–2.74 for the
upper back, –2.11 for the lower back) and high kurtosis (77.60
and 32.16), indicating the presence of significant outliers,
particularly for the lower back sensor. IMU and 3D MOCAP-
derived trunk tilt angles of one elite wheelchair athlete for all
eight tests are shown in Figure 6, indicating a good visual
match between the trunk tilt angles derived by both systems
over time.



Fig. 7: Trunk range of motion and mean angle of all elite athletes measured during the eight wheelchair mobility tests at two
speed conditions, where hs = high speed, and ns = normal speed

Table III summarizes the overall agreement between the
trunk-mounted IMUs and the 3D MOCAP system across all
tests performed by the fourteen participants. For both the lower
back (T11-T12) and the upper back (T3-T4) IMUs, the mean
bias and RMSE were calculated for the trunk motion metrics.
Additionally, the mean biases and RMSEs are presented as a
percentage of the absolute IMU-derived trunk metrics values.

The validation results demonstrate that both the lower back
and upper back IMUs show that agreement with the 3D
MOCAP reference system varies by trunk metric and IMU
placement. Overall, the upper back IMU consistently showed
lower mean bias and RMSE values compared to the lower
back IMU, indicating higher accuracy, particularly for range
of motion and mean tilt angle (RMSE = 4.11-8.79% for upper
back vs. 19.70-47.87% for lower back). However, trunk mean
angular velocity and time leaning forward showed significantly
higher RMSE values (up to 149%) than the other two trunk
motion metrics for both back-mounted IMUs. Notably, the
validation metrics were not consistently higher for high speed
conditions, as was expected.

In addition, intraclass correlation coefficients (ICCs) were
computed based on the full time series of the trunk tilt angles.
ICCs ranges from the 0.91 to 0.99 across most tasks for the
upper back IMU, indicating excellent consistency with the
MOCAP system. The lower back IMU also showed generally
high ICC values (mostly > 0.90), though lower ICCs were
observed in some tests such as the Slalom and Figure 8 (ICC
= 0.49-0.72).

Full tables with task-specific comparisons, including mean
IMU values, mean MOCAP values, bias, RMSE and ICCs for
each test and speed condition, are provided in Appendix B.

B. Trunk Motion and Performance

Although four trunk motion metrics were initially measured
using the upper-back IMU, only range of motion and mean tilt
angle were included in the analysis of trunk motion and its re-
lationship with performance and classification level. The other
two metrics were excluded based on poor validation results

(see Table III). The mean range of motion and mean angles
of all elite wheelchair athletes during each test are shown in
Figure 7. To capture wheelchair mobility performance, four
maximum speed and acceleration metrics are determined for
each test: the linear velocity of the chair vc, the angular
velocity of the chair ωc, the linear acceleration of the chair
ac, and the angular acceleration of the chair αc.

To investigate the relationship between the trunk metrics and
performance metrics, Pearson correlation for each combination
of metrics is determined. Full results of these correlation anal-
yses are shown in Table VIII in Appendix D. The combinations
of trunk and performance metrics that yielded a Pearson r-
value ≥ 0.75 are shown in Figure 8.

As shown in Figure 8, the mean trunk tilt angle and maximal
linear velocity of the wheelchair show a significant correlation
(r ≥ 0.75) when measured during three different tests: the
figure 8, the u-turn, and the intermittent sprint test.

The paired t-tests results investigating the difference be-
tween the trunk motion and performance metrics, shown in
Appendix C, revealed several noteworthy trends. Wheelchair
performance metrics showed significant differences between
speed conditions for most tests, although this pattern was
not uniform across all metrics and tasks. As expected, the
angular velocity of the wheelchair demonstrated statistically
significant increases in the high-speed conditions for nearly
all test, except the straight push and trunk movement tests.
The absence of significant differences in these two tasks aligns
with their nature: the trunk movement test involves static trunk
motion, and the straight push test involves linear propulsion
without directional changes, reducing the opportunity to gen-
erate angular velocity. Surprisingly, the linear velocity of the
wheelchair did not show significant differences between speed
conditions for the slalom, starmove, and straight push tests.

Regarding trunk motion metrics, the range of motion did
not result in significant differences between speed conditions
for any of the wheelchair mobility tests. The mean angle
demonstrated a significant difference during the figure 8,
intermittent sprint, slalom and u-turn tests.



(a) Trunk metric mean angle and the performance metric max linear
velocity of the chair vc, measured during the figure 8 test.

(b) Trunk metric mean angle and the performance metric max linear
velocity of the chair vc, measured during the u-turn test.

(c) Trunk metric mean angle and the performance metric max linear
velocity of the chair vc, measured during the intermittent sprint test.

Fig. 8: Plots of trunk metrics and performance metrics where
the correlation was ≥ 0.75. Subjects are anonymously indi-
cated in different colours. Speed conditions are indicated with
a filled or hollow marker. Classification level is grouped in
three groups (< 1.5, 1.5-3, > 3) indicated with a triangular,
circular and square marker.

Fig. 9: Correlation between trunk motion metrics and classi-
fication level per test

Fig. 10: Correlation between performance metrics and classi-
fication level per test

C. Classification

To investigate the relationship between trunk motion dur-
ing the wheelchair mobility tests and classification level of
the athletes, the correlation between each trunk metric and
classification level is determined per test, which is shown in
Figure 9. Highest Pearson correlations were found between the
range of motion (r-value = 0.81), and mean trunk tilt angle (r-
value = 0.79) and classification level, both measured during
the straight push test.

To research the effect of classification on wheelchair mo-
bility test performance, Pearson correlation between each
performance metric and classification level was calculated, as
shown in Figure 10. There were no r-values found above 0.47,
indicating poor correlation between all performance metrics
and classification level for each test.

Figure 11 and 12 present the trunk movement and
wheelchair performance metrics, grouped by classification
level into three groups, during the intermittent sprint and
straight push tests. The trunk metrics (Figure 11) of the
medium and high classification groups are almost the same
during the intermittent sprint test, indicating that there is
no distinction possible between these groups based on trunk
motion. However, during the straight push test, distinction
between all three groups is possible.



Fig. 11: Trunk motion metrics for three classification level groups: low represents class 1.0 - 1.5, medium represents class
2.0 - 3.0, and high represents class 3.5 - 4.5, measured during the intermittent sprint and straight push tests. The number of
subjects per group is indicated with n.

Fig. 12: Wheelchair mobility performance metrics for three classification level groups: low represents class 1.0 - 1.5, medium
represents class 2.0 - 3.0, and high represents class 3.5 - 4.5, measured during the intermittent sprint and straight push tests.
Significant (p < 0.05) differences are indicated with a *. The number of subjects per group is indicated with n.



Additionally, the performance metrics measured during the
intermittent sprint and straight push tests (Figure 12) show that
the medium class group outperforms the high and low classifi-
cation groups on multiple performance metrics, even showing
significant differences. A distinction between classification
groups cannot be made based on the performance metrics.
Bar charts and radar charts of trunk metrics and performance
metrics when grouping the athletes in classification groups
from all tests are shown in Figure 14 in Appendix E.

IV. DISCUSSION

This study set out to validate the use of inertial mea-
surement units (IMUs) for quantifying trunk motion during
wheelchair mobility tasks and to examine how trunk motion
correlates with performance and athlete classification in elite
wheelchair basketball. The findings support the use of upper-
back-mounted IMUs as a reliable and practical tool, and
indicate that trunk kinematics are closely linked to both
performance and classification level, with implications for
evidence-based classification.

A. Validation

Trunk tilt angles derived from IMUs showed high agreement
with 3D motion capture data, especially when the IMU was
placed on the upper back (Pearson r = 0.99, ICC > 0.90),
indicating excellent temporal consistency. In contrast, the
lower back sensor produced more variable results, with some
ICC values dropping as low as 0.49, possibly due to sensor
instability. Furthermore, the sensor position on the lower back
was increasingly susceptible to occlusion from the wheelchair
backrest, which may have degraded marker visibility and
introduced noise into the MOCAP signal. As a result, while
the upper back appears to be a promising location for trunk
motion assessment using IMUs, this study does not provide
sufficient evidence to conclusively recommend an optimal
marker placement.

Comparison of trunk motion metrics further confirmed
better performance of the upper back IMU. Mean biases and
RMSE values were consistently lower than those from the
lower back sensor. Interestingly, two of the four initial trunk
motion metrics, the mean angular velocity and the time spent
leaning forward, were excluded from subsequent analysis due
to poor validation results, with RMSEs reaching up to 149%.
The lower validity of the mean angular velocity metric can
be explained by the fact that it is derived by taking the
time derivative of the trunk tilt angles. Differentiation is
inherently sensitive to high-frequency noise and small mis-
alignments, which are often present in IMU-based orientation
estimates due to drift or magnetic disturbances. These errors
are amplified during differentiation, which may explain the
large deviations between the IMU and MOCAP-derived mean
angular velocity.

Similarly, the time leaning forward metric is based on a
binary threshold of 25º, making it particularly vulnerable to
minor angular misestimations. Even small errors in trunk angle
estimation, due to drift, noise or time alignments, can result in

over or underestimation of the time spent above the threshold,
reducing the reliability of the metric. This vulnerability is
also present in the 3D motion capture-derived version of the
metric, where fluctuations around the threshold due to noise
can significantly distort the outcome. These results highlight
the importance of metric-specific validation before IMU data
is used for quantitative assessment or classification decisions.

In contrast, the remaining trunk metrics, range of motion
and mean tilt angle, demonstrated excellent accuracy when
compared to the 3D motion capture system. For these two
metrics, small mean biases and acceptable RMSEs confirm
that IMUs can serve as a viable alternative to laboratory-
based 3D MOCAP systems for measuring trunk tilt angle
and range of motion in field settings. As mentioned before,
the 3D MOCAP system itself was subject to limitations such
as marker occlusion and tracking errors, particularly for the
lower back sensor, which may have affected its accuracy as
a reference standard. These issues are further discussed in
Section IV-D, and should be considered when interpreting the
validation results.

B. Trunk Motion and Performance

A strong relationship was found between trunk motion
and wheelchair mobility performance, particularly between
the mean trunk angle and the maximal linear velocity of
the wheelchair during the figure 8, u-turn, and intermittent
sprint tests (r ≥ 0.75). These findings indicate that dynamic
trunk use plays an important role in facilitating propulsion
and manoeuvrability. In tests requiring both propulsion and
turning, such as the figure 8 and u-turn, effective trunk
engagement appears to aid in power transfer and postural sta-
bility, supporting better performance outcomes. However, no
significant correlation was observed between angular velocity
of the wheelchair and trunk motion in these tests, suggesting
that trunk involvement is more critical for linear propulsion
than for turning speed. In the intermittent sprint test, which
primarily involves forward propulsion and an abrupt stop, the
strong correlation between linear velocity and trunk mean
angle underscores this importance of trunk use during high-
speed propulsion.

It is important to note, however, that the mean trunk angle
does not solely reflect impairment-related limitations. Rather,
it is a composite measure that also captures an athlete’s
propulsion strategy, where higher mean angles may reflect
intentional forward leaning to optimize sprint performance.
This dual nature of the metric highlights the need for careful
interpretation when using it as an indicator of impairment.

Other research support the notion that trunk motion is a
substantial contributor to wheelchair propulsion performance.
Dijk, Slikke, Berger, et al. [18] quantified the role of trunk
movement during the recovery phase of the push cycle, re-
vealing that 25-30% of total forward propulsion was generated
after the hands released the pushrim, solely through trunk-
induced motion. This highlights that trunk movement plays
a critical role in accelerating the wheelchair. Additionally,
they found that mean trunk angle increased significantly with



sprint intensity. These insights closely align with the present
findings, where mean trunk angle was strongly correlated
with maximum linear velocity of the wheelchair, reinforcing
that athletes who utilize more trunk motion achieve higher
performance outputs.

C. Classification

Trunk motion metrics were strongly associated with athlete
classification, especially during the straight push test. Range
of motion and mean angle were both highly correlated with
classification level (r = 0.81, 0.79, respectively). Since this
test isolates linear propulsion, these metrics likely reflect the
athlete’s ability to generate force with their trunk, which is a
key determinant for trunk control capacity and thus impairment
level.

Conversely, mobility performance metrics showed weak
correlations with classification (r < 0.47). This discrepancy
suggests that performance alone is not a suitable proxy for
classification, as athletes may compensate for impairments
with skill, training, or strategy. The data highlights that impair-
ment, not performance, should be the basis of classification,
reinforcing the potention of trunk motion analysis as a more
specific indicator.

The charts shown in Figure 11 and Figure 12 further
illustrate that trunk motion metrics could distinguish between
classification groups, while performance metrics could not. For
example, the medium-classified group outperformed the high-
classified group on several performance metrics, even though
classification level is lower. This shows that high performance
does not necessarily reflect low impairment. However, athletes
were measured in their own sports wheelchair, which might
have different functions. Some wheelchairs are adjusted to
achieve maximum speed, while others might have a higher
seating position to promote reaching for the ball. These
differences might undermine the performance results that were
acquired from the seven elite wheelchair athletes.

In contrast to the findings in this study, Van Der Slikke,
Bregman, Berger, et al. [10] reported a significant relationship
between classification level and wheelchair mobility perfor-
mance during match play in a sample of 29 wheelchair
basketball athletes. Their study aimed to evaluate the neces-
sity of the eight existing classification levels used in elite
wheelchair basketball. They observed significant differences in
IMU-derived mobility performance between low and medium
classified athletes, but not between medium and high classifi-
cations. This indicates that the relationship between wheelchair
mobility performance and classification is not linear, and
athletes might plateau in wheelchair performance from middle
to high classification levels. Any statistical correlation between
classification and performance inherently assumes a linear
relationship that may not accurately reflect these non-uniform
trends. This should be considered when interpreting the weaker
correlations observed in this study between classification and
wheelchair mobility performance metrics. It is worth noting,
however, that Van Der Slikke, Bregman, Berger, et al. [10] also
concluded that mobility performance alone may not serve as a

sufficient basis for classification. This reinforces the potential
value of incorporating additional measures, such as trunk
motion analysis, into performance assessments or classification
frameworks.

D. Limitations

Despite promising results, several limitations must be ac-
knowledged. First, IMU and 3D MOCAP-derived trunk tilt
angle distributions, as well as their differences (residuals),
deviated significantly from normality. This is problematic
because the intraclass correlation coefficient (ICC), used to
validate temporal consistency, assumes normality based on
ANOVA. Therefore, while the ICC values of the upper back
were excellent, these findings should be interpreted cautiously
due to the violation of these statistical assumptions.

Second, errors in the reference system (3D MOCAP) were
present: some datasets showed dubious marker trajectories due
to occlusion or overly sensitive tracking settings. Because of
the large measurement area, the camera settings were set to be
more sensitive to reflections. Visual inspection of the motion
capture data confirmed marker flipping within marker clusters,
especially for the lower back sensor. Although many of these
artifacts were manually corrected through visual observation,
not all were resolved. These limitations in the MOCAP system
affect the interpretation of the validation results. Since the
motion capture system served as the reference, tracking errors
may have contributed to the observed discrepancies between
the IMU and MOCAP-derived trunk motion metrics. This
implies that some of the validation errors may be due to the
inaccuracies in the gold standard itself, potentially underesti-
mating the true performance of the IMUs, especially for the
lower back. Therefore, the reported validation results should
be interpreted with nuance.

When validating the two trunk-mounted IMUs, trunk ori-
entation angles were simplified to a the trunk tilt angle,
representing the deviation from the vertical without distin-
guishing between frontal and sagittal plane movements, nor
between flexion and extension. This simplification, which
results in only positive values regardless of motion direction,
was chosen because accurate 3D spatial alignment between the
IMU and MOCAP coordinate frames could not be achieved,
likely due to the 3D MOCAP marker flipping and IMU
magnetic inaccuracies. The horizontal orientation estimates
from the IMUs are particularly prone to drift and distortion due
to magnetic interference, especially in indoor environments.
Since both the trunk and the wheelchair frame IMUs rely
on magnetometer data for horizontal orientation, many inac-
curacies are compounded when computing the relative trunk
motion. Even small deviations in the horizontal orientation
of either sensor can have large effects on the decomposition
of trunk motion into pitch and roll angles. This is because
frontal flexion can project onto lateral axes, depending on yaw
misalignment. Inspection of raw magnetometer data acquired
by the IMU sensors showed a fluctuating magnetic field
magnitude, indicating that magnetic interference sources were
present in the measurement area.



As a result, the simplification to a single trunk tilt angle
reduces the biomechanical resolution of the measurement.
Movements occurring in different anatomical places, such as
forward flexion for propulsion and sagittal rotation for turning,
are merged into a single value, limiting the interpretability of
the movement strategy. The conflation of frontal and sagittal
trunk movements may be acceptable when examining the
relationship between trunk motion and impairment, as the
ability to move in these directions is likely highly correlated.
However, the inability to distinguish between trunk flexion and
extension may be a more significant limitation. Because the
trunk tilt angle is always positive, trunk motion metrics can be
underestimated, particularly the range of motion. This lack of
directionality limits the ability to identify whether an athlete’s
impairment restricts flexion, extension, or both.

Furthermore, the two-IMU configuration used to mea-
sure wheelchair kinematics in this study was adopted from
Van Dijk, Van Der Slikke, Rupf, et al. [20]. In contrast,
Van Der Slikke, Berger, Bregman, et al. [22] proposed a
three-IMU approach, comprising two IMUs mounted on the
wheel axles and one on the wheelchair frame. This setup
enables the implementation of a wheel skidding correction
algorithm, which identifies discrepancies between the wheel-
derived velocities and the actual motion of the wheelchair
frame. When a wheel skids, it rotates without causing the
wheelchair to move forward. This leads to an overestimation
of the wheelchair’s linear velocity if uncorrected. Since the
two-IMU configuration lacks a second wheel-mounted sensor,
skidding correction cannot be applied. Validation of the two-
IMU approach by Van Dijk, Van Der Slikke, Rupf, et al. [20]
showed increased root mean squared errors (RMSE) in both
linear and angular velocity estimates compared to the three-
IMU configuration. Additionally, visual observations during
the wheelchair mobility tests in the present study, especially
during the starmove test, revealed instances of skidding. As no
correction for skidding was implemented, it is likely that some
wheelchair mobility performance metrics were overestimated.

The study’s small sample size (n = 7 elite athletes) limits
generalizability of the results. The classification distribution
was non uniform, with no athletes in the 1.5 or 2.0 class,
resulting in a signle subject in the middle classification group
(2.0 - 3.0 range). This under-representation reduces statistical
power and complicates group comparisons, especially when
interpreting classification trends. Lastly, when analysing the
effects of the two speed conditions on trunk motion and
performance metrics, no significant differences were found
in several metrics. This may indicate that athletes did not
fully reach their maximum effort in the high-speed trial during
certain tests, which can introduce variability that is not related
to impairment. It is also possible that some trunk metrics are
not sensitive to speed-induced differences, because athlete’s
change their trunk motion strategy, for example by exhibiting
faster but smaller trunk movements.

E. Recommendations for Classification

Strong correlations between trunk motion and performance
in agility-demanding tests (e.g. figure 8, u-turn) suggest that
effective trunk use contributed substantially to wheelchair
manoeuvrability and speed. These tests simulate sport-specific
scenarios that require coordinated trunk motion for optimal
performance. Furthermore, high correlation between trunk
motion and propulsion-focussed tests (e.g. intermittent sprint)
highlights the importance of trunk use for propulsion speed.
However, since performance is influenced by factors beyond
impairment, such as training, skill, and strategy, it should not
solely be used to determine classification.

Instead, results showed that the straight push test of-
fers a more controlled and direct evaluation of impairment.
This test isolates the athlete’s ability to generate forward
propulsion without requiring agility or decision-making. The
high correlation between trunk motion during this test and
classification levels suggests it captures physical limitation
more accurately. However, the straight push test might not
be the most reliable indicator for classification when used in
isolation, because athletes may consciously or unconsciously
manipulate their trunk use when aware that the test will be
used for classification purposes, potentially compromising its
objectivity. Furthermore, this study found that trunk motion
and performance metrics did not always show significant
differences during low and high effort trials, indicating that
athletes may not consistently perform at maximal effort when
intrinsic motivation is lacking. In contrast, competitive match
setting naturally induce high motivations due to the desire to
win, reducing the likelihood of deliberate underperformance.

Therefore, future classification systems could benefit from
incorporating trunk motion assessment during actual match
play. Using an IMU op the upper back to measure trunk kine-
matics, such as the range of motion or mean trunk tilt angle,
during sprint-like movements within competition offers a more
reliable representation of the athlete’s functional trunk motion
ability. These metrics could serve as objective indicators to
support or verify class allocation decisions.

This approach aligns with the broader goal of classifi-
cation: to assess impairment, not performance. Including a
biomechanically meaningful and objective measured task like
forward propulsion would strengthen the evidence base of
classification and reduce the reliance on subjective judgment.

F. Future Research

Future studies should focus on achieving accurate 3D val-
idation of IMU-derived trunk motion. This requires resolving
spatial alignment between IMU and MOCAP systems across
all three rotational axes. In the current study, a trunk tilt
angle was used due to the difficulty of achieving consisted
3D spatial alignment, especially in the presence of magnetic
interference affecting the IMU’s heading estimation. This
could be improved by computing IMU orientation using only 6
degrees of freedom (accelerometer and gyroscope) and exclude
magnetometer data, which is often distorted by environmental
magnetic interference. While using 6 DOF increases the risk



of drift over time due to integration errors in dynamic mea-
surement conditions, it may enable more accurate 3D spatial
alignment with MOCAP in short-duration tests. Mitigating
magnetometer errors can also be achieved by mapping the
magnetic distortions in the test environment. By creating this
distortion field, one could correct magnetometer readings and
improve IMU orientation estimation using the full 9 DOF
sensor data, although this process is time-consuming. Recent
developments in magnetometer calibration algorithms may
offer a more practical solution to this issue by improving
heading accuracy and possibly resolve spatial alignment issues
[24]. Additionally, data-driven improvements to sensor fusion
algorithms, such as modifications to the Madgwick filter [25],
could enhance IMU orientation estimation during high-speed
trunk movements. Finally, data-driven optimization approaches
can be used to minimize the difference between IMU and
MOCAP orientation data [26].

In parallel, further research should also adress the reliability
of the MOCAP system itself, particularly regarding noise and
tracking instability. 3D motion capture systems are widely re-
garded as the gold standard for motion measurement. However,
in the present study marker flipping and dropout of markers
were frequently observed, resulting in noisy and questionable
marker trajectories. Future work could investigate optimized
camera configurations or improved sensitivity settings to mit-
igate these issues. Additionally, advanced algorithms could
detect and correct marker flipping automatically during post-
processing. Enhancing robustness of the reference is critical to
ensure that validation results accurately reflect the performance
of the IMUs, rather than errors in the gold standard.

Improved spatial alignment and orientation accuracy of both
motion measurement systems would enable true 3D validation.
This, in turn, would provide deeper insight into the accuracy of
IMU-based trunk motion measurement by ensuring complete
confidence in the reference system. Additionally, 3D trunk
assessment would allow for differentiation between movement
directions and types, such as flexion versus extensions and
sagittal versus frontal trunk motion. This is particularly rel-
evant in the context of classification, as impairments may
affect specific trunk muscle groups asymmetrically, particu-
larly the back and stomach muscles responsible for flexion
and extension. A more detailed understanding of how athletes
perform distinct trunk movement could contribute to a more
impairment-specific classification decision.

Another promising direction for future research is the devel-
opment of a machine learning model to predict classification
level using a combination of trunk motion data, wheelchair
performance metrics, and athlete specific features, such as
impairment specifics. Such a model could be trained using
supervised learning methods, since current classification la-
bels are available for a large dataset. Temporal IMU signals
and summary metrics could be engineered into a large set
of informative features. Feature reduction techniques such
as principal component analysis (PCA) or clustering could
identify the most relevant predictors. Firstly, a more inter-
pretable model like a single decision tree could help visualize

decision rules and threshold values. More complex models like
random forests could be used to enhance prediction accuracy,
while compromising on interpretability. Developing such a
data-driven, evidence-based system has the potential to make
classification less dependent on subjective observation.

V. CONCLUSION

This study demonstrated the feasibility and validity of using
upper-back-mounted inertial measurement units (IMUs) to
quantify trunk motion during wheelchair sports performance
tasks. Compared to 3D motion capture, IMUs offered excellent
agreement, making them a viable tool for in-field assessment
at high speeds. Furthermore, the relationship between trunk
motion, performance metrics, and athlete classification was
explored. This analysis revealed that trunk motion metrics
were strongly correlated with athlete classification, whereas
wheelchair mobility performance metrics showed only weak
correlations. This contrast highlights that classification should
be driven by impairment rather than performance. These
findings support the integration of objective trunk motion met-
rics into evidence-based classification systems for wheelchair
sports, offering a more consistent and transparent framework
than current subjective practices.
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APPENDIX A
NORMAL DISTRIBUTION

TABLE IV: Summary of distribution characteristics and agreement analysis for trunk tilt angles of the IMUs mounted on the
upper back and lower back. The Shapiro statistic is indicated with the corresponding p-value. Skewness and kurtosis values
are shown. Whether the distribution follows a normal distribution is answered. Finally, Bland-Altman results are indicated.

Sensor Data Type Shapiro Stat. p-value Skewness Kurtosis Normal distribution Bland-Altman (bias/LoA/std)

Upper back
IMU 71880.28 < 0.0001 1.43 1.88 No –
MOCAP 71106.98 < 0.0001 1.42 1.84 No –
Residuals 235029.94 < 0.0001 −2.74 77.60 No −0.081 / ± 4.35 / 2.26

Lower back
IMU 72477.08 < 0.0001 1.50 2.02 No –
MOCAP 84592.99 < 0.0001 1.62 2.84 No –
Residuals 171479.08 < 0.0001 −2.11 32.16 No −0.549 / ± 13.31 / 7.07

(a) Data distribution of the IMU and MOCAP trunk tilt angles and differences for the upper back IMU (T3-T4)

(b) Data distribution of the IMU and MOCAP trunk tilt angles and differences for the lower back IMU (T11-T12)

Fig. 13: Visual comparison of IMU-derived and 3D MOCAP-derived trunk tilt angles for the back sensors. Top row (left to
right): histograms of trunk tilt angles from the IMU and MOCAP, and a scatter plot showing the correlation between the two
modalities. Bottom row (left to right): boxplot of the differences between IMU and MOCAP measurements, histogram of the
residuals, and Bland–Altman plot indicating the bias (gray dashed line) and 95% limits of agreement (red dashed lines).



APPENDIX B
VALIDATION

TABLE V: Comparison of trunk kinematics from the upper back-mounted IMU (T3-T4) and motion capture across wheelchair
mobility tests. The mean IMU and MOCAP-derived values of the trunk metrics are shown. The validation metrics, mean bias
and RMSE, are shown. Finally, the ICC[3,1] of the time series trunk tilt angles of each test is indicated.

Range of motion (º) Mean tilt angle (º)
Speed IMU MOCAP Bias RMSE IMU MOCAP Bias RMSE

Trunk movement High 57.81 57.12 0.69 3.77 14.30 13.54 0.76 2.24
Normal 39.46 39.70 -0.25 1.43 13.52 13.55 -0.03 0.48

Straight push High 50.13 54.14 -4.01 11.70 15.06 15.84 -0.79 2.78
Normal 33.36 34.17 -0.81 2.10 12.41 12.69 -0.28 1.29

Intermittent sprint High 55.02 55.75 -0.73 1.70 18.33 18.61 -0.28 0.65
Normal 39.46 39.70 -0.25 1.43 13.52 13.55 -0.03 0.48

Pivot High 21.90 22.43 -0.53 1.01 7.04 7.11 -0.07 0.42
Normal 18.89 19.08 -0.19 0.73 6.19 6.22 -0.02 0.20

Slalom High 44.95 45.47 -0.53 0.96 17.64 17.74 -0.11 0.31
Normal 34.23 34.75 -0.52 0.84 13.55 13.56 -0.01 0.23

Figure 8 High 52.60 52.22 0.38 1.22 20.65 20.75 -0.10 0.63
Normal 33.36 34.17 -0.81 2.10 12.41 12.69 -0.28 1.29

U-turn High 53.42 53.40 0.02 1.79 21.82 21.56 0.25 0.51
Normal 39.66 39.44 0.22 1.21 14.61 14.68 -0.07 0.47

Starmove High 57.61 58.07 -0.46 1.18 23.70 23.84 -0.14 0.66
Normal 42.74 42.94 -0.20 0.91 15.89 16.11 -0.22 0.51

Mean angular velocity (º/s) Time spent leaning forward (s) ICC
Speed IMU MOCAP Bias RMSE IMU MOCAP Bias RMSE

Trunk movement High -0.22 -0.09 -0.13 0.57 3.61 3.36 0.25 0.53 0.97
Normal 2.59 3.07 -0.48 0.78 6.83 7.98 -1.15 3.08 0.96

Straight push High 4.19 3.50 0.69 2.64 5.56 5.64 -0.07 1.52 0.91
Normal 1.28 0.94 0.34 0.57 3.87 4.03 -0.16 1.33 0.97

Intermittent sprint High 3.25 3.02 0.23 1.29 7.63 8.25 -0.62 1.67 0.99
Normal 2.59 3.07 -0.48 0.78 6.83 7.98 -1.15 3.08 0.98

Pivot High 0.48 0.60 -0.12 0.33 0.65 0.74 -0.09 0.33 0.98
Normal 0.53 0.61 -0.08 0.27 0.62 0.69 -0.07 0.30 0.95

Slalom High 2.80 2.89 -0.09 0.82 7.21 7.39 -0.18 0.31 0.98
Normal 1.96 2.15 -0.18 0.52 6.59 6.63 -0.04 0.19 0.96

Figure 8 High 2.13 2.36 -0.23 0.67 6.75 6.77 -0.01 0.22 0.99
Normal 1.28 0.94 0.34 0.57 3.87 4.03 -0.16 1.33 0.96

U-turn High 4.99 4.21 0.77 2.34 5.61 5.57 0.04 0.15 0.99
Normal 2.34 2.21 0.12 0.41 4.69 4.68 0.01 0.16 0.94

Starmove High 2.41 2.30 0.11 0.38 12.40 12.48 -0.08 0.22 0.99
Normal 1.69 1.78 -0.09 0.27 9.27 9.35 -0.08 0.30 0.97



TABLE VI: Comparison of trunk kinematics from the upper back-mounted IMU (T11-T12) and motion capture across
wheelchair mobility tests. The mean IMU and MOCAP-derived values of the trunk metrics are shown. The validation metrics,
mean bias and RMSE, are shown. Finally, the ICC[3,1] of the time series trunk tilt angles of each test is indicated.

Range of motion (º) Mean tilt angle (º)
Speed IMU MOCAP Bias RMSE IMU MOCAP Bias RMSE

Trunk movement High 55.04 56.33 -1.29 3.27 13.34 13.22 0.12 0.80
Normal 56.06 56.24 -0.18 1.81 16.69 16.54 0.15 1.20

Straight push High 44.99 49.36 -4.37 9.33 15.38 17.29 -1.91 4.00
Normal 34.09 35.02 -0.94 1.65 13.48 14.28 -0.80 0.97

Intermittent sprint High 50.42 56.66 -6.23 16.82 19.10 21.58 -2.48 5.43
Normal 38.49 39.58 -1.08 2.28 14.53 16.15 -1.63 3.18

Pivot High 18.11 19.55 -1.44 2.27 6.85 7.38 -0.53 0.89
Normal 17.42 18.62 -1.20 1.61 6.76 6.96 -0.21 0.79

Slalom High 37.30 34.83 2.47 15.71 17.45 19.74 -2.29 17.78
Normal 29.52 23.72 5.80 11.77 12.83 13.84 -1.01 14.29

Figure 8 High 44.66 40.61 4.05 14.30 20.08 15.01 5.07 11.43
Normal 29.73 23.10 6.64 14.21 12.61 14.55 -1.93 11.60

U-turn High 48.61 49.18 -0.57 2.08 21.53 21.97 -0.45 1.53
Normal 33.43 35.91 -2.47 6.57 12.90 14.02 -1.12 2.90

Starmove High 51.65 52.71 -1.07 1.56 21.59 22.11 -0.52 0.78
Normal 38.74 39.54 -0.80 1.19 15.68 15.93 -0.25 0.48

Mean angular velocity (º/s) Time spent leaning forward (s) ICC
Speed IMU MOCAP Bias RMSE IMU MOCAP Bias RMSE

Trunk movement High 1.03 1.00 0.03 0.64 3.18 3.06 0.12 0.52 0.98
Normal 0.66 0.72 -0.05 0.29 5.49 5.62 -0.13 0.35 0.99

Straight push High 2.61 2.78 -0.17 0.82 5.30 6.12 -0.82 1.42 0.91
Normal 0.56 0.51 0.05 0.43 4.75 6.43 -1.68 4.80 0.96

Intermittent sprint High 3.43 4.78 -1.36 4.59 6.20 7.01 -0.81 1.22 0.93
Normal 1.79 2.20 -0.41 0.93 6.30 7.21 -0.91 1.46 0.93

Pivot High 1.59 1.63 -0.03 0.33 0.61 0.74 -0.13 0.34 0.96
Normal 2.14 2.18 -0.04 0.41 0.45 0.56 -0.10 0.26 0.94

Slalom High 0.14 0.54 -0.40 1.06 5.61 5.60 0.01 1.96 0.72
Normal -0.12 0.35 -0.47 1.15 3.62 3.23 0.39 3.99 0.49

Figure 8 High 1.72 1.49 0.23 3.57 6.07 4.92 1.16 2.62 0.61
Normal -0.89 -0.15 -0.74 2.40 2.98 3.33 -0.34 2.05 0.55

U-turn High 2.96 2.90 0.05 0.57 5.26 5.32 -0.06 0.31 0.99
Normal -0.25 -0.97 0.72 1.50 2.81 3.19 -0.37 0.97 0.86

Starmove High 2.62 2.77 -0.16 0.39 11.34 11.53 -0.19 0.30 0.99
Normal 1.98 2.00 -0.03 0.27 7.38 7.81 -0.43 0.68 0.96



APPENDIX C
SPEED SIGNIFICANT DIFFERENCE

TABLE VII: Paired t-test results comparing high speed (HS) and normal speed (NS) conditions per test for trunk and
performance metrics. Statistically significant differences (p < 0.05) are bold.

Test Metric Mean HS Mean NS Mean Diff t-Statistic p-Value

Figure 8

ROM (º) 55.55 45.00 10.54 2.63 0.0584
Mean angle (º) 23.35 16.84 6.50 4.00 0.0161
Ang vel chair (º/s) 581.15 509.53 71.62 2.85 0.0465
Ang acc chair (º/s2) 1182.52 1193.75 -11.24 -0.07 0.9460
Lin vel chair (m/s) 3.26 2.66 0.60 3.96 0.0166
Lin acc chair (m/s2) 25.71 11.33 14.38 2.42 0.0730

Intermittent sprint

ROM (º) 58.88 47.55 11.33 2.43 0.0510
Mean angle (º) 21.36 15.84 5.52 2.59 0.0413
Ang vel chair (º/s) 587.26 506.11 81.15 2.69 0.0361
Ang acc chair (º/s2) 1753.01 1644.15 108.86 0.52 0.6197
Lin vel chair (m/s) 3.80 3.17 0.62 3.39 0.0146
Lin acc chair (m/s2) 28.05 18.43 9.62 3.55 0.0121

Pivot

ROM (º) 26.78 24.84 1.94 0.34 0.7490
Mean angle (º) 9.47 8.42 1.05 1.87 0.1356
Ang vel chair (º/s) 534.74 384.91 149.83 6.37 0.0031
Ang acc chair (º/s2) 1976.76 1259.93 716.83 1.90 0.1304
Lin vel chair (m/s) 1.71 1.28 0.43 1.60 0.1852
Lin acc chair (m/s2) 12.23 6.80 5.43 1.39 0.2367

Slalom

ROM (º) 51.71 48.05 3.66 1.16 0.3311
Mean angle (º) 20.85 17.12 3.73 3.84 0.0312
Ang vel chair (º/s) 572.35 481.95 90.41 3.86 0.0307
Ang acc chair (º/s2) 1357.27 1085.85 271.42 2.77 0.0698
Lin vel chair (m/s) 3.01 2.56 0.45 1.94 0.1471
Lin acc chair (m/s2) 18.76 8.35 10.41 2.86 0.0647

Starmove

ROM (º) 59.35 54.36 4.99 0.97 0.3700
Mean angle (º) 26.28 23.27 3.01 1.27 0.2526
Ang vel chair (º/s) 468.41 379.81 88.60 4.89 0.0027
Ang acc chair (º/s2) 1869.66 1224.60 645.06 2.59 0.0411
Lin vel chair (m/s) 2.44 2.12 0.32 2.37 0.0557
Lin acc chair (m/s2) 20.17 10.49 9.68 6.84 0.0005

Straight push

ROM (º) 52.77 48.28 4.49 0.59 0.5944
Mean angle (º) 19.86 16.92 2.94 1.65 0.1984
Ang vel chair (º/s) 592.38 523.50 68.88 1.67 0.1940
Ang acc chair (º/s2) 1852.13 1077.57 774.56 2.26 0.1088
Lin vel chair (m/s) 3.69 3.40 0.29 0.96 0.4070
Lin acc chair (m/s2) 26.37 18.73 7.64 1.36 0.2663

Trunk movement

ROM (º) 52.34 51.36 0.98 0.51 0.6293
Mean angle (º) 16.26 17.13 -0.87 -0.53 0.6173
Ang vel chair (º/s) 367.74 350.32 17.42 0.70 0.5169
Ang acc chair (º/s2) 723.10 891.71 -168.61 -0.87 0.4254
Lin vel chair (m/s) 0.97 0.89 0.08 1.02 0.3525
Lin acc chair (m/s2) 5.42 4.86 0.55 0.29 0.7818

U-turn

ROM (º) 56.35 48.17 8.18 1.74 0.1322
Mean angle (º) 24.34 16.95 7.39 4.09 0.0064
Ang vel chair (º/s) 555.27 450.67 104.59 3.55 0.0121
Ang acc chair (º/s2) 1488.11 956.12 531.99 2.85 0.0294
Lin vel chair (m/s) 3.63 2.81 0.82 4.49 0.0041
Lin acc chair (m/s2) 20.20 7.57 12.63 4.67 0.0034



APPENDIX D
TRUNK VS PERFORMANCE CORRELATION

TABLE VIII: Correlation between trunk metrics and performance metrics per test. Values are Pearson’s r with associated
p-values in parentheses. Statistically significant differences (p < 0.05) are bold.

Test Trunk Metric Max ang vel chair Max ang acc chair Max lin vel chair Max lin acc chair

Figure 8 ROM 0.68 (p=0.0149) 0.46 (p=0.1366) 0.75 (p=0.0053) 0.47 (p=0.1225)
Mean angle 0.62 (p=0.0328) 0.41 (p=0.1902) 0.82 (p=0.0012) 0.52 (p=0.0798)

Intermittent sprint ROM 0.02 (p=0.9405) 0.45 (p=0.1089) 0.65 (p=0.0125) 0.65 (p=0.0121)
Mean angle 0.26 (p=0.3686) 0.35 (p=0.2267) 0.75 (p=0.0018) 0.64 (p=0.0136)

Pivot ROM 0.60 (p=0.0389) -0.01 (p=0.9743) 0.88 (p=0.0002) 0.31 (p=0.3323)
Mean angle 0.47 (p=0.1223) 0.06 (p=0.8626) 0.65 (p=0.0225) 0.59 (p=0.0450)

Slalom ROM 0.19 (p=0.5703) 0.03 (p=0.9292) 0.41 (p=0.2102) 0.27 (p=0.4177)
Mean angle 0.49 (p=0.1235) 0.44 (p=0.1805) 0.47 (p=0.1470) 0.61 (p=0.0455)

Starmove ROM 0.61 (p=0.0205) 0.39 (p=0.1633) 0.52 (p=0.0544) 0.57 (p=0.0321)
Mean angle 0.58 (p=0.0282) 0.24 (p=0.4047) 0.18 (p=0.5348) 0.49 (p=0.0727)

Straight push ROM 0.29 (p=0.3802) -0.00 (p=0.9922) 0.51 (p=0.1051) 0.35 (p=0.2904)
Mean angle 0.33 (p=0.3212) 0.06 (p=0.8609) 0.65 (p=0.0300) 0.34 (p=0.3113)

Trunk movement ROM -0.48 (p=0.1133) -0.17 (p=0.6008) -0.39 (p=0.2144) -0.40 (p=0.2002)
Mean angle 0.42 (p=0.1686) 0.69 (p=0.0125) 0.50 (p=0.0981) 0.22 (p=0.4920)

U-turn ROM 0.56 (p=0.0360) -0.08 (p=0.7862) 0.50 (p=0.0714) 0.38 (p=0.1811)
Mean angle 0.51 (p=0.0646) 0.23 (p=0.4213) 0.77 (p=0.0013) 0.54 (p=0.0466)



APPENDIX E
CLASSIFICATION GROUPS

(a) Bar chart with trunk motion metrics: range of motion and mean trunk tilt angle. No trunk movement test data was available for the single
participant of the middle classification group, due to complications with the IMU measurement.

(b) Radar chart with wheelchair mobility performance metrics: wheelchair linear velocity vc, wheelchair angular velocity ωc, wheelchair
linear acceleration ac, and wheelchair angular acceleration αc.

Fig. 14: Trunk motion and wheelchair mobility performance metrics for different classification groups per test: low classification
(< 1.5), medium classification (2.0-3.0), and high classification (> 3.5). The number of participants present in each classification
group is indicated with n.
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