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Correspondence

The Separability of Standard Cyclic N-ary Gray Codes  We call this implication theeparability propertyf the standard binary
Gray code.

A. J. van Zanten and | Nengah Suparta Next we will derive a more general separability property which holds
for the standardV-ary Gray code whetV is even. Although an index
system for this code is known (cf. [4]), it will appear that such a system
is not needed to prove the result. Throughout this correspondence, the
terms list and Gray code (which is represented by that list) are inter-

Abstract—A Sharp lower bound is derived for the cyclic list distance
between two codewords, having Hamming distancen, in the standard
N-ary Gray code of lengthmn, for 1 < m < n and for even values

of N. The bound generalizes a similar result in the binary case. changeable. The columns of this list are numbered from right to left by
Index Terms—Cyclic code, Gray code, separability. 1,2,...,n
I. INTRODUCTION Il. PRELIMINARIES AND DEFINITIONS
A binary Gray code of length is an ordered sequendist) of all 2" As is well known, anN-ary Gray codeN > 0 of lengthn is an
n-bit strings €odeword}¥ such that successive codewords differ in exordered list of allV” codewords of lengtih over the set of integers
actly one bit position. The best known example of such an ordered cale= {0, 1, ..., N — 1}, such that each codeword differs from the

is thebinary reflected Gray codgf., e.g., [8], [10] and also Section 1), previous one in exactly one position. The natural nuniBeis called
sometimes callestandard binary Gray codé question of theoretical theradix of the code (cf. [3]). The notion olV-ary Gray code is, of

as well as of practical relevance is the following. If two codewords ipourse, a generalization of a binary Gray code whose radix is equal to
a Gray code, or in any ordered code, differrin positions, how far two. If also the last codeword of the list differs in one position from the
are they separated from each other in the list of codewords? The larifst codeword, one speaks ofcgclic NV-ary Gray code. In this case,
this list distance of the code, the smaller the number of bit errors wile Hamming distance of any codeword to its two immediate neighbors
be when transmitting codewords by means of analog signals (cf. [10f).the list is equal to one, where the list is considered to be a cyclic
Stated more precisely, when we index the codewords in the list@ronlist. More specifically, one can require thatgf is theith codeword

until 2" — 1, and if two codewordg; andg ; have Hamming distance in the list with coordinateg;;, € S, 1 < k < n, and if g;1 differs
dr(g:, g;) = m, can we find a bounding functidnsuch that the list from g, only in the jth position, one either hag1; = g¢;; + 1 or
distance satisfiedr,(g;, g;) > b(m), for 1 < m < n? Of course, gi+1; = gi; — 1, mod N, for all values ofi with0 < i < N" — 1.

the most interesting bounding function is a function giving sharp low&uch a code can be defined asninimal-changeV-ary Gray code.
bounds for all values of, i.e., such that for every:-value there ex- Here, we identify the codeword with indéX™ with the codeword with

ists at least one pair of codewords with list distahte ). The ques- index0. One could also say that codewords which are neighbors in this
tion of finding this uniquely determined function is called #epara- list are atLee distancé from each other, with respect to the ridgy

bility problem(cf. [9], [10]). We shall use the terseparability function (cf. [6, p. 1750]). In this correspondence, the telrary Gray code

for a functionb—occasionally denoted aém )—yielding sharp lower applies to this type of cyclic codes. If the above property only holds for
bounds forl < m < n.In[9], Yuen solves the separability problem0 < i < N™ — 1, and not foi = N — 1, the code will be called a

for the binary standard Gray code. The separability function in this casencyclic N -ary Gray code.

appears to bé?}. The derivation of this expression is accomplished A well-known N -ary Gray code is theeflectedN -ary Gray codeof

by making use of thindex systerof the standard Gray code, i.e., thelengthn, n € Z*, denoted byG(n, V), and recursively defined as
relationship between a codewardand its index, 0 < i < 2™ —1 (cf.

e.g. [8]). Along similar lines, Cavior in [1] derives a sharp upper bound 0 G(n—1, N)

for the list distance in this code, beirg — [4-1,1 < m < n.n ’ R

both papers, the list of codewords is interpreted as a linear (noncyclic) L G(n—1, N)
list, which implies thatlz. (g;, g ;) is defined agi — j|. Now, it is well G(n, N) = 2 G(n—1, N)
known that the standard Gray code isyelic Gray code, i.e., also the ’
last codeword differs from the first one in precisely one bit position.

Therefore, it is natural to introduce tlegclic list distancedefined as No1 Gn—1, Ny

D (gi, g5) = min{li — j|. 2" — |i — j[} ) 0
(cf. also [7]). With respect to this notion the results of Yuen and Cavior 1
can be combined in the following implication G(1, N) = 2 (3)
2777,
dir (gis 93) =m = D (gir 95) 2 [?] : @ No1
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I1l. EQUIVALENCE OF ORDERED CODES

Let V.., v denote the set of all cyclic minimal-changé-ary Gray
codes of length:. Let G be some code iW,,, . We shall introduce
a number of transformations mappigto some other (possibly the
same) element df, n':

i) if p is a permutation of the integets 2, ..., n, thenpG is
the code of lengt obtained by permuting the columns Gf
according top;

ii) if a is the cyclic permutation0, 1, 2, ..., N — 1), thena;G
is the code of length obtained by permuting the integers in the
ith column according ta, for somei € {1, 2, ..., n};

if bis the permutatiot0, N — 1)(1, N —2) --- (3 -1, &),
then b,G is the code of lengthn obtained by permuting
the integers in theith column according tob, for some
ie€{l,2,...,n} (cf.[5] and also [2, Ch. 2]).

ii)

It will be clear that all these transformations define mappings.ofv
onto itself, and also that these transformations generate a group of order
n!(2N)". (Observe that the permutatiomandb generate the dihedral
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contractionG(n — 1, N; a',i'),witha = aras -+ ar— and

i/ = iyis -+ ix_1. By the induction assumption, this last code

is equivalentta(n — 1 —k+ 1, N) = G(n — k, N). Inthe
second case, we proceed similarly, making use of the equivalence
of G(n — k, N) andG(n — k, N)™ (ct. the remark prior to
Definition 3.1). Ifi;, # n, the contraction process yields a code
of type

0 G(n—1,N;a,i)
G(n—1,N;a i)
G(n—1,N;a,i)

—

Gn Nia,i)=| 2

N-1 G(n-=1,N;a, g')R
Again, by the induction assumpti@(n — 1, N; a, i) is equiv-
alent to the standard cod&n — 1 — &k, V). Applying Definition
3.1 shows tha(n, N; a, ¢) is equivalent ta7(n — &k, N). O

V. SEPARABILITY OF THE STANDARD N -ARY GRAY CODE

groupD .y of order2NV.) We remark that the subgroup generated by the \ye gre ready now to prove our main result.

transformations ii) is isomorphic to the translation gr@kip- G +a,
a € 5™. Furthermore, applying transformation iii) to columrin case
of G(n, N), yields the reversed codg(n, N)*.

Definition 3.1: Codes which can be transformed into each other
applying one or more of the transformations i)—iii) are called equivaIeB
codes.

Theorem 5.1:Let G(n, N) be the standarav-ary Gray code of
lengthn, and letN be even. If the Hamming distance between two
codewordsy and . satisfiesdy (g, h) =
etweery andh satisfiesD(g, L) > f%] Moreover, this lower
Bund is sharp for allu-values withl < m < n.

Proof: We prove the theorem in two steps.

m, then the list distance

The relevance of this definition will become clear from the following  A) First we takem = n. In addition to the statement of the the-

proposition.

Proposition 3.2: Equivalent codes satisfy the same separability
property.

The proof is immediate by observing that Hamming distances and
list distances are not affected by the transformations i)—iii).

IV. CONTRACTIONS OFORDERED CODES
Let G be some code ii,,, . Take twok-strings

k . .. .
a:=ajaz ---ap €85 and i:=ijiz - ik

with 1 <y <ia < -+ < iy <n, for some fixedk-value,1 < k < n.

The stringe will be called abit patternandi a position vectonVe now
consider the sublist off consisting of all codewords which have

on positioni;, for 1 < j < k. Leaving out the common bit pattetn
from these codewords provides us with an ordered code of codeword
lengthn — k. We call this code theontractionof G with respect to

the pair(a, i), and we writeG(a, i). In particular, we can contract the
standardV-ary Gray codeZ(n, N) with respect to some pair, ).

The resulting code will be denoted 6% n, N; a, 7).

Proposition 4.1: Let G(n, N) be the standard -ary Gray code,
n > 1, and letN be even. Then for any paje, i), the contraction
G(n, N; a, i) is a cyclic Gray code equivalent to the standard Gray
codeG(n — k, N).
Proof: SinceN is even,G(n, N) is cyclic. We shall prove the
proposition by applying mathematical inductiorito

a) The statement is true for= 2, as can be verified by inspection.

b) Assume the statement holds for all codeword lengths less than
n. Consider the sublist of all codewords@{n, N') containing
patterna on positioni. If iz = =, this sublist is either part of a
sublista, G(n — 1, N) or of a sublisiz,, G(n — 1, N)E. Inthe
first case, the cod€'(n — k, N; a, i) can be considered as the

B) If m < n, theng andh are equal ink :=

orem, we shall also prove that there is a pair of codewords at
minimum distance, such that the shortest path connecting them
in the listG(n, N) contains the first codeword as well as the
last codeword of the list (3). For = 1 andn = 2, all above
statements are trivial. Assume all these statements are true for
all values less than > 2. Let g andh be two codewords with
du(g, h) = n. lfwewriteg = g gn_1v andh = h, h, 1w,

it follows thatg, # hun, gnjl % hp—1 anddy (v, w) = n—2.
From (3), it follows thatv andw can be considered as code-
words of G(n — 2, N) or of G(n — 2, N)". It also follows
thaty and” are separated from each other by at least a number
p(> 1) of complete blocks?(n — 2, N) or G(n — 2, N)™ of
sizeN"2.So0D(g, h) is equal topN" ™2 plus a term due to
the positions of andw in their respective block&'(n — 2, N)
orG(n — 2, N)R. It will be obvious thatD(g, k) is minimal

if both contributions can be minimized simultaneously. This is
indeed possible by taking = 1 and by selecting codewords
andw, which are both in a bloc&'(n —2, N') or both in a block
G(n — 2, N)* for oddp-values, as described in the beginning
of this proof. Due to the induction assumptiaBs$g, &) is min-

imal for this choice ofv andw and its value is ec?ual to

] jvn—? N
rn—2 _
N [Nﬁ—l—‘ - [Nz—l—"

Therefore, the theorem also holds for In particular, we can
takeg =0andh =c1lc1lc ---,withe = N —1, showing that
also the additional induction requirement is satisfied again. By
the principle of mathematical induction, the theorem has been
proved now for the case. = n.

n — m POSi-
tions, indicated by some position vector= i, is, ..., iz.
The corresponding values of the coordinates will be given
by a = ai, as, ..., ar. Now, we consider the contraction
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G(n, N; a,i). Let v and w be the codewords in this con- I. INTRODUCTION
traction which correspond tg and &, respectively. So, we
haveds (v, w) = m. SinceG(n, N; a. i) is equivalent to ~ We consider binary code§; Q F_n whereF' = {0 1}, a_md de-
G(m. N), it follows, by Proposition 3.2 and part A of this Note such a code of length cardinality/, and covering radiu& by
proof, thatD (v, w) > w\;_":l] in the contracted code. Hence,("w M)R. leenn_ andR,'we denote the IeastjntegM such that an
we havea fortiori the same inequality foD(g, 1), since (_n, M) R code exists by{ (n, R),and call(n, K (_n,, R))R codesop-
in G(n, N) the codewords corresponding to codewords dfmal. A complete survey of all aspects of covering codes can be found
G(n. N: a. i) will, in general, be interlaced by codewordsn [2]- ) _ _
which have no counterpart i@(n, N; a. i). Finally, one can The cor?cept_ obalancedcodes was |r_1troduced in [3]- A binary code
easily prove that this bound is sharp by applying mathematica size M is sal_d to be t_)alanced in a given coordlnate_ if the numb_er of
induction ton > m, and using part A for the case= m. [J 0’s and1’s in this coordinate are at least//2]. A code is balanced if

- it is balanced in all coordinates. The following conjecture is stated in

Corollary 5.2 (Yuen, Cavior): The separability function of the stan-[3]; see also [2, p. 149].

dard binary Gray code is equal f8-—].
y y qual Fo5-1 Conjecture Among all optimal covering codes with given parame-

ters, at least one is balanced.
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Disproof of a Conjecture on the Existence of Balanced

Optimal Covering Codes Il THE DISPROOE

Patric R. J. Ostergay&enior Member, IEEE The computational method used in this work is from [7], which, in

turn, was developed from ideas in [1], [5], [11]. The basic idea of the
Abstract—The minimum number of codewords in a binary code methodisto constructa_mx M matr|XW|'th the cod_ewords_zfls columns,
with length m and covering radius R is denoted by K(n, R), and row by row. The search is pruned by using linear inequalities that follow
corresponding codes are called optimal. A code witt words is said to  from the sphere-covering bound, by carrying out equivalence tests on
oo ot N sobe - b 1 g g SUbcodes,and by assuming that o coeword occurs e han once i
coordinates. It has been conjectured that among optimal covering codes the final code. We do not go into details here but refe.r .the reade't o [7].
with given parameters there is at least one balanced code. By using a In the search for balanced codes, we have the additional requirement
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is no balanced code attainingk (9, 1) = 62. | M/2]. This is easily implemented in the existing algorithm from [7].
Index Terms—Balanced code, code equivalence, covering code. Even if a classification of balanced codes is orders of magnitude
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