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Abstract

System call interposition is a widely used technique to trace and
modify application behavior. Over the years, numerous interposi-
tion mechanisms have been proposed, each with distinct strengths
and trade-offs. Recently, advances in binary rewriting—specifically
targeting x86-64 syscall and sysenter instructions—have led
to new techniques that take important steps forward, with some
claiming to support general-purpose use.

We analyze state-of-the-art interposers in depth and uncover
several fundamental design and implementation flaws—pitfalls that
we collectively term System Call Interposition Pitfalls. For example,
prior work cannot reliably interpose all system calls and may even
corrupt code and data. These flaws undermine the practicality of ex-
isting solutions in real-world scenarios, rendering them unsuitable
as universal interposition mechanisms.

Motivated by our findings, we design and implement a new plug-
and-play system call interposition approach named K23, targeting
x86-64 platforms. K23 addresses the uncovered pitfalls via a hybrid
design that unifies the strengths of prior methods, combining of-
fline and online phases that leverage multiple Linux interfaces and
binary rewriting. Our evaluation shows that K23 overcomes the key
limitations of state-of-the-art solutions while remaining highly effi-
cient. To our knowledge, K23 is the first general-purpose interposer
suitable for a wide range of use cases and environments, from low-
end devices to performance-critical, datacenter-scale workloads.
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1 Introduction

System calls serve as the primary interface between user-space
applications and the OS kernel, enabling operations such as file
I/O, network communication, and process creation. Because nearly
all OS interactions involve system calls, they present a natural
interception point for observing and altering application behavior
through system call interposition.

System call interposition techniques have been applied across a
wide range of use cases, including (i) the construction of sophisti-
cated debugging and tracing tools [9, 15, 23, 29]; (ii) the enhance-
ment of system security [43, 47, 54, 60, 67, 68, 80, 103, 107, 118, 122,
123, 135, 143] and reliability [75, 76, 100, 114, 115]; and (iii) the emu-
lation of alternative OS environments [27, 38, 61]. Beyond these, sys-
tem call interposition can also (iv) support binary compatibility lay-
ers for emerging OS subsystems [86, 94, 105, 108, 117, 119, 130, 131],
(v) transparently redirect network operations to custom user-space
stacks [78, 157], and (vi) support forensic analysis [56, 63, 145, 146].

System call interposition has many flavours, but no sin-
gle mechanism offers a universal solution suitable for all use
cases. Linux provides several interfaces for this purpose, including
ptrace [21], seccomp [24], and Syscall User Dispatch (SUD) [30].
However, each of these mechanisms has notable limitations, such as
performance overhead or constraints on the interposer’s expres-
siveness (i.e., the capability of the interposer to access applica-
tion state and execute actions in response). For example, ptrace
and SUD introduce additional context or mode switches that degrade
efficiency [57, 76, 77, 125, 140, 157], whereas seccomp either incurs
comparable performance overheads or restricts the interposer’s
expressiveness—such as lacking support for deep inspection of
pointer arguments—depending on how it is configured [64, 77, 125].

Alternatively, other approaches leverage binary rewriting by
replacing x86-64 syscall/sysenter instructions that trigger
system calls with jmp/call instructions to the interposer’s
code [31, 45]. This allows system call interposition without addi-
tional context/mode switches, achieving maximum efficiency while
“Clair Obscur refers to the artistic use of strong contrasts between light and shadow.
We use it metaphorically to highlight the antithesis between pitfalls and solutions
in system call interposition. The term also appears in Clair Obscur: Expedition 33, an

acclaimed video game by Sandfall Interactive.
T Corresponding author.
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preserving the interposer’s full expressiveness. However, these tech-
niques rely on precise and correct static binary disassembly and
rewriting—a well-known hard problem, especially for architectures
with variable instruction lengths like x86-64—making it infeasible
to reliably interpose all system calls in real-world scenarios [77, 157].
This limitation is particularly problematic in settings that require
exhaustive interposition (i.e., the ability to reliably interpose
all system calls), including sandboxing [72, 125, 135, 144, 156],
introspection and analysis tools [9, 15, 23, 29], vulnerability discov-
ery [80], incremental development of new OS layers [94], automated
software updates [114], and sanitization mechanisms [153].

To overcome the aforementioned limitations, both industry and
academia frequently turn to intrusive approaches such as OS or
hardware modifications [72, 125, 126, 135]. While often effective,
these solutions are painstaking to maintain, expand the Trusted
Computing Base (TCB), and ultimately hinder broader adoption
and usability. More recently, advances in binary rewriting—namely
zpoline [157] and lazypoline [77]—have claimed to enable flex-
ible (i.e., adaptable to a wide range of use cases) system call
interposition while sidestepping the challenges of traditional bi-
nary rewriting approaches [31, 44, 45, 76, 109, 114].

However, our in-depth investigation of zpoline and
lazypoline uncovers several design and implementation is-
sues that undermine their claims. For example, both techniques
fail to reliably interpose all system calls and can corrupt code
and data. We collectively refer to these shortcomings as System
Call Interposition Pitfalls', as they restrict the applicability of
these approaches in real-world deployments.

Our findings lead us to the conclusion that no existing
system call interposition mechanism serves as a general-
purpose solution.

The main focus of this work is twofold: first, to shed light on
the limitations of existing state-of-the-art system call interposers;
and second, to provide a general-purpose solution that addresses
these limitations for x86-64 platforms. To that end, we analyze
the designs of both zpoline and lazypoline, along with their
corresponding open-source prototypes [11, 40]. Building on these
insights, we develop K232, a new interposer that overcomes the
identified challenges through a combination of offline and online
phases, leveraging multiple Linux interfaces, binary rewriting, and
principled engineering choices.

Our paper makes the following contributions:

o We identify System Call Interposition Pitfalls—fundamental flaws
in state-of-the-art interposition techniques—and develop targeted
Proof-of-Concept (PoC) programs that expose them. We also
demonstrate real-world use cases impacted by these pitfalls.

e We introduce K23, the first plug-and-play interposer for x86-64
that overcomes these pitfalls—ranging from lack of exhaustive-
ness to code and data corruption—while providing flexibility
across a wide range of use cases.

IThroughout this paper, “System Call Interposition Pitfalls” and “pitfalls” are used

interchangeably.

2A reference to the legendary perfume in Tom Robbins’ novel Jitterbug Perfume, which
is pursued for centuries and believed to possess rare and transformative qualities.
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e We conduct a comprehensive evaluation of K23, comparing it
with state-of-the-art interposers [77, 157]. K23 achieves consis-
tently high efficiency while uniquely addressing the pitfalls that
affect these prior approaches.

Our goal is to provide a general-purpose solution that the com-
munity can adopt and extend. To that end, we release our code at
https://gitlab.com/tudelft-ssl/k23, including the K23 prototypea
and our evaluation framework.

2 Background

In this section, we provide background on the Linux interfaces that
K23 relies on (ptrace [21] and Syscall User Dispatch (SUD) [30]),
as well as on state-of-the-art system call interposition techniques—
zpoline [157] and lazypoline [77].

2.1 ptrace and SUD

ptrace is a Linux interface that allows a tracer thread to ob-
serve and control the execution of one or more tracee threads.
It enables exhaustive interposition of system calls, signals, and
even individual instructions, allowing fine-grained control over
each tracee’s execution. Additionally, the tracer can access the
state of tracees using system calls such as process_vm_readv and
process_vm_writev [19]. Due to its exhaustiveness and expres-
siveness, ptrace has been widely used for debugging [9, 15, 23],
security [51, 57, 80, 82, 138, 141], and reliability purposes [75, 100].
While ptrace offers the level of control required for a general-
purpose system call interposer, it suffers from prohibitive per-
formance overhead due to frequent context switches and the need
to issue multiple system calls even for basic operations, such as ac-
cessing a tracee’s memory [57, 76, 77, 125, 140, 157]. Consequently,
it is not a viable all-around solution, particularly in use cases where
performance is critical.

SUD is a relatively recent Linux mechanism that enables system
call interposition by delivering a SIGSYS signal to a user-space
handler when a system call is invoked. SUD operates at the thread
level and can be enabled using the prctl system call [18]. Each
thread can enable or disable interposition via a dedicated selector
byte in user space, which dictates whether system calls made by that
thread should trigger a signal or proceed normally. Optionally, SUD
bypasses interposition entirely for system calls made from within
a designated address range in the application, regardless of the
selector’s current value. This allowlisted address range is typically
reserved for trusted or internal code paths where interposition is
either unnecessary or could interfere with control flow.

In a typical setup, the SIGSYS handler begins by disabling in-
terposition through the selector, executes the interposer logic,
and then re-enables interposition before returning—ensuring that
subsequent system calls made by the application are intercepted as
expected. To prevent recursive triggering of SUD during the return
from the signal handler (via the rt_sigreturn system call [25]),
the return syscall/sysenter instruction is usually placed within
the allowlisted address range that bypasses interposition. Recent
works [77, 157], however, have shown that interposer logic can
also be performed entirely outside the signal handler by modifying
the signal context directly, eliminating the need to exclude specific
syscall/sysenter instructions from interposition.


https://gitlab.com/tudelft-ssl/k23
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Due to its exhaustiveness and expressiveness, SUD has been
adopted in a variety of contexts, including OS compatibility lay-
ers [27, 38] and security mechanisms [156]. However, despite these
advantages, SUD still incurs substantial overhead in user-space
applications due to signal delivery and handling—especially
for system call-heavy workloads typical of datacenter environ-
ments (e.g., high-performance servers and databases) [77, 157]. Even
though SUD outperforms ptrace by avoiding expensive context
switches, its signal-based interposition mechanism still introduces
a significant performance bottleneck in these scenarios.

2.2 System Call Interposition via Binary
Rewriting

To avoid the performance costs associated with kernel
involvement—such as additional context/mode switches—recent
approaches have explored user-space system call interposition
through binary rewriting [31, 45, 76, 114, 115, 130]. Specifically on
x86-64, these techniques work by rewriting syscall/sysenter
instructions that trigger system calls to jmp/call instructions
that redirect execution to the interposer code, allowing system
call interposition entirely within user space. However, this is
widely regarded as an open and challenging problem [44, 45, 109],
particularly on architectures with variable instruction lengths
like x86-64, where precise disassembly and rewriting are both
difficult and error-prone. Among recent efforts, zpoline [157]
and lazypoline [77] take important steps toward addressing
long-standing challenges in binary rewriting. In the following
paragraphs, we take a closer look at these two systems.

2.2.1 A Closer Look at zpoline. Binary rewriting techniques have
traditionally faced a number of challenges, often resulting in incor-
rect transformations or unpredictable execution behavior. These
difficulties are especially pronounced on architectures with variable-
length instructions, such as x86-64 [31, 44, 45, 77, 109, 157]. For
instance, syscall and sysenter instructions are only two bytes
long, whereas the jmp and call instructions typically used for
redirection to arbitrary addresses are significantly larger. This mis-
match in instruction size forces rewriting tools to make optimistic
assumptions about code and memory layout, often requiring them
to relocate and transform multiple instructions [45, 76, 114, 115].

Yasukata et al. proposed zpoline, a binary rewriting approach
for x86-64 that specifically addresses the instruction size mismatch
between two-byte syscall/sysenter instructions and the longer
redirection instructions [157]. zpoline replaces each syscall
(0x0f 0x05 opcode) and sysenter (0x@f @x34 opcode) instruction
with a two-byte callq *%rax instruction (0xff @xd@ opcode). This
transfers control to a virtual address between 0 and N (typically
N < 500), leveraging the fact that x86-64 applications store the
system call number in rax before invoking a system call.

zpoline constructs a trampoline region starting at virtual ad-
dress 0, beginning with a nop sled that leads into a jump to the
interposer’s code. The interposer retrieves the system call number
and arguments from the registers, and obtains the address of the
instruction following the replaced syscall/sysenter instruction-
from the stack. As a result, zpoline naturally enables per-system
call and argument-specific logic—a fundamental requirement for
general-purpose system call interposition.
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2.2.2 A Closer Look at lazypoline. Despite its advantages,
zpoline still depends on precise static binary disassembly [10]
and only operates on code that is present at load time, including
the main executable and any initially loaded shared libraries. Such
disassembly is inherently challenging, particularly on architectures
with variable-length instructions such as x86-64, where the bytes
representing a syscall/sysenter instruction may be embedded
within a larger, unrelated instruction encoding, or may be misidenti-
fied due to alignment issues [44, 45, 109]. In addition, zpoline only
identifies, and consequently rewrites, syscall/sysenter instruc-
tions in this initial set of code, failing to interpose code that is gen-
erated or loaded later at runtime—such as dynamically generated
code or code loaded via mechanisms like d1open and d1lmopen [4]—
which is common in various use cases [32, 33, 35, 36, 154, 160]. To
address these limitations, Jacobs et al. [77] proposed lazypoline,
a system call interposer that combines zpoline-style rewriting
with SUD. Unlike zpoline, lazypoline does not rely on static bi-
nary disassembly. Instead, it uses SUD to interpose the first time
a syscall/sysenter instruction is executed and subsequently
rewrites that instruction in a zpoline-like fashion. This design
sidesteps the challenges of imprecise disassembly and supports
interposition of code that is dynamically generated or loaded later
at runtime.

3 Threat Model

We assume an application running under an in-process system call
interposer such as zpoline or lazypoline. We make no assump-
tions about the application itself. We consider an adversary whose
goal is to exploit vulnerabilities in the target program to subvert or
abuse the interposer. Because the interposer shares the application’s
address space, attackers can do so by manipulating its internal state
(e.g., the selector) or its external state (e.g., environment variables).
Following prior work [77, 157], we assume that an orthogonal iso-
lation mechanism protects the interposer’s internal state. For exam-
ple, Protection Keys for Userspace (PKU) [49, 50, 69, 70, 83, 92, 111—
113, 124, 127, 135, 144, 156] can be used to enforce such protection.
Attacks on the interposer’s internal state are therefore out of scope.
We instead focus on adversaries who manipulate the interposer’s ex-
ternal state. Importantly, all of the System Call Interposition Pitfalls
remain relevant regardless of the isolation mechanism protecting
the internal state, as they explicitly target the external environment
itself. Mitigations like software diversity [88] and CFI [42, 53] raise
the bar against manipulation of the interposer’s external state, but
we do not rely on such defenses.

4 System Call Interposition Pitfalls

Both zpoline and lazypoline claim to provide flexible system call
interposition [77, 157]. We conduct an in-depth analysis of both
solutions and identify several design and implementation flaws.
Although a few of these shortcomings have been previously ac-
knowledged by their authors, we also uncover a range of previously
undocumented issues. We describe these pitfalls (P1-P5) in detail
below. To support our analysis, we developed Proof-of-Concept
(PoC) programs and reference real-world use cases affected by these
issues. While other binary rewriting techniques are also suscep-
tible to these pitfalls, our examination centers on lazypoline
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and zpoline, as they overcome several limitations of alterna-
tive binary rewriting approaches [45, 157].

4.1 Pl1—Interposition Bypass

Both zpoline and lazypoline rely on LD_PRELOAD [13] to inject
their fast interposition libraries into target processes. This simple
yet powerful technique allows to interpose transparently—without
kernel patches or special compiler support—by instructing the dy-
namic linker/loader to load specified libraries before others. Al-
though LD_PRELOAD is most often used to override existing sym-
bols in the standard library, it can also introduce entirely new
functionality even when no symbol collisions occur. As a result,
it provides a convenient mechanism for bootstrapping user-space
system call interposition at process startup. However, the mech-
anism is fragile: LD_PRELOAD can be cleared or modified before
launching a new process, preventing the interposition library from
being loaded and thereby bypassing system call interposition. At-
tackers can exploit this behavior in several ways, such as by calling
unsetenv ("LD_PRELOAD") [34] or by invoking execve with a NULL
or sanitized environment [6, 7]. As a result, the interposer is silently
disabled in the new process. This behavior is illustrated in Listing 1.

pid_t pid = fork();

if (pid == @) {
char *args[] = {"/bin/1s", NULL};
char xenv[] = {NULLZ};
// Empty environment: LD_PRELOAD

// not inherited from parent
execve("/bin/1s", args, env);
perror ("execve failed");
exit (EXIT_FAILURE);

} else {
wait(9);
printf("Child completed.\n");

Listing 1: execve invoked with a NULL environment clears
all environment variables, including LD_PRELOAD, thereby
preventing the interposition library from being loaded.

#define PR_SET_SYSCALL_USER_DISPATCH 59
#define PR_SYS_DISPATCH_OFF
#define PR_SYS_DISPATCH_ON 1

// Disable SUD-based system call interposition
syscall (__NR_prctl, PR_SET_SYSCALL_USER_DISPATCH,
PR_SYS_DISPATCH_OFF, o, 0, 0, 0);

Listing 2: Disabling SUD-based system call interposition.

Crucially, these patterns also occur in benign software. For in-
stance, launching a process with an empty environment disables
all interposition mechanisms that rely on environment variables.
We first encountered this in our own test suite: a utility designed
to verify interposition functionality inadvertently disabled our in-
terposing library by invoking execve with an empty environment.
This demonstrates that even non-malicious or debugging-oriented
code can unintentionally bypass LD_PRELOAD-based mechanisms.
We refer to this class of interposition bypass as P1a. Notably,
this behavior affects not only system call interposition but any
mechanism that specifically depends on LD_PRELOAD. As a re-
sult, any mechanism relying on LD_PRELOAD can be disabled using
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the same technique—unless proper safeguards are in place (see Sec-
tion 5.2). Additionally, 1azypoline enables another avenue for
bypass: even if LD_PRELOAD successfully injects the interposing
library, system call interposition can still be disabled by explicitly
deactivating SUD via the prctl system call. We refer to this bypass
technique as P1b, and illustrate it in Listing 2.

zpoline’s and lazypoline’s system call interposition can
be bypassed either intentionally (e.g., by an attacker) or
unintentionally (e.g., due to common application behavior).

4.2 P2—System Call Overlook

Both zpoline and lazypoline claim to provide exhaustive system
call interposition—a claim that does not hold in practice. First, as
shown in [77], zpoline fails to rewrite syscall/sysenter instruc-
tions generated after its initial disassembly and rewriting routine.
Additionally, it may overlook syscall/sysenter instructions that
are not identified due to well-known limitations in binary disassem-
bly [44, 45, 109]. We refer to system call overlooks caused by these
disassembly limitations as P2a. Moreover, both interposers fail to
intercept any system calls issued before their interposition library
loads. This limitation affects not only zpoline and lazypoline
but any mechanism relying solely on library injection—unless
additional measures are employed (see Section 5.2). In addi-
tion, both lazypoline and zpoline fail to intercept vdso-based
calls [37], which execute entirely in user space without a tradi-
tional syscall/sysenter instruction. We refer to these system
call overlooks—those occurring prior to or during library load-
ing and those while using the vdso interface—as P2b.

While these limitations may not appear critical at first glance,
they introduce blind spots that undermine the exhaustiveness of
interposition. A survey of prior literature reveals several scenar-
ios that typically necessitate interposition of all system calls—
including those issued before and during library loading, as well
as those made via vdso. These scenarios span domains such as
reliability [76, 115] and security [80, 123, 137-139, 141, 143, 153].
For example, Bunshin [153] employs an N-variant execution en-
gine that distributes runtime security checks across multiple pro-
gram variants, ensuring checks never conflict while minimizing
performance penalties through parallel execution. To guarantee con-
sistency across variants, Bunshin requires exhaustive system call
interposition—capturing calls issued both before and during library
loading, as well as vdso-based calls. Traditionally, N-variant execu-
tion engines rely on ptrace for this purpose [51, 75, 100, 138, 141],
incurring prohibitively high overhead. Bunshin instead adopts
OS-level modifications to achieve exhaustive interposition with-
out ptrace’s performance drawbacks. Moreover, the dynamic
linker/loader has been identified as a frequent target for attack-
ers [66, 106], reinforcing the need for interposition mechanisms that
operate reliably from the very start of process execution—especially
in security-critical contexts such as sandboxing [72, 135, 144, 156].

Neither zpoline nor lazypoline reliably interpose all sys-
tem calls, creating critical blind spots. This limitation un-
dermines use cases that demand exhaustive interposition.
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Figure 1: zpoline and lazypoline may misidentify embed-
ded data or partial instructions containing syscall/sysenter
opcodes as legitimate syscall/sysenter instructions.

4.3 P3—Instruction Misidentification

In addition to overlooking system calls from specific
syscall/sysenter instructions (see Section 4.2), we also found that
both interposers are prone to misidentifying syscall/sysenter
instructions—either by confusing them with other instructions or
by mistaking embedded data for syscall/sysenter instructions.
This can result in unintended and potentially harmful rewrites of
memory regions that should remain untouched.

zpoline inherits the well-known limitations of static binary
disassembly [44, 45, 109]. It may incorrectly rewrite partial in-
structions, i.e., byte streams where syscall/sysenter opcodes
appear inside other instructions, or data. On architectures like
x86, where instructions can begin at any byte boundary, such subse-
quences may be executed as genuine syscall/sysenter. Likewise,
zpoline may misidentify data as instructions. Prior work [99, 110]
shows that embedding data in code pages is widespread (e.g., jump
tables), which amplifies the risk of misidentification and corrup-
tion, threatening security, correctness, and stability of the target
application. We refer to these misidentifications as P3a.

lazypoline improves upon this by avoiding reliance on impre-
cise static disassembly. Instead, it uses SUD to dynamically inter-
cept and rewrite syscall/sysenter instructions at runtime. How-
ever, we found that persistent attackers can still exploit this rewrit-
ing mechanism. Because data embedded within executable code
pages [99, 110] may coincidentally match the byte pattern of a
syscall/sysenter instruction, an attacker who hijacks control
flow can redirect execution to such data. The CPU then treats it
as a valid syscall/sysenter instruction, causing lazypoline’s
SUD-based handler to intercept and rewrite it—corrupting legiti-
mate application data. Likewise, an attacker can redirect control
flow to partial instructions with syscall/sysenter instruction
opcodes (partial syscall/sysenter instructions), again resulting
in unintended code rewriting. We refer to these attack-induced
misidentifications as P3b.

Figure 1 illustrates an application containing valid
syscall/sysenter instructions, along with partial instructions
containing syscall/sysenter instruction opcodes (i.e., partial
syscall/sysenter instructions) and embedded data that re-
sembles syscall/sysenter instructions. Unfortunately, both
interposers may misidentify the latter two, which can result in
corruption of code and data.
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Both zpoline and lazypoline are susceptible to
syscall/sysenter instruction misidentification, which
can lead to code or data corruption—due to disassembly
limitations (P3a) and attacker-controlled control-flow
redirection (P3b), respectively.

4.4 P4—NULL Access Termination Pitfalls

In typical Linux applications, the page at virtual address 0 is un-
mapped. Any access to this region—what the zpoline authors call
a NULL memory access [157]—triggers a segmentation fault, ter-
minating the process. Both zpoline and lazypoline, however,
repurpose this page by mapping a trampoline at address 0, so reads,
writes, or instruction fetches no longer reliably fault. To compen-
sate, both interposers mark the trampoline page as eXecute-Only
Memory (XOM) [58, 59, 87, 99, 104, 144] using Protection Keys for
Userspace (PKU) [1], preserving the fault-on-NULL-read/write be-
havior—but not execution. lazypoline implements no guard
against unintended code fetches into the trampoline, a short-
coming we call P4a. Because of P4a, bugs that would ordinarily
raise a segmentation fault now divert control into the trampoline,
turning simple NULL-code-pointer errors into inscrutable debugging
nightmares. Furthermore, many kernel and low-level mechanisms
assume page 0 is off-limits—for example, they rely on NULL faults
to detect or halt exploits—so remapping it without proper runtime
checks risks silently undermining these critical mechanisms.

In contrast, zpoline performs a runtime check at the interposer’s
entry point to verify whether the call originated from a known,
rewritten system call site, terminating the process if the check
fails. This mechanism uses a bitmap that spans the entire virtual
address space, allowing fast validation through bitwise operations.
Although physical memory is only allocated for portions of the
bitmap that are actually used, the reserved virtual memory can
still introduce non-negligible overhead. This memory overhead
becomes more pronounced in multi-process settings, where each
process maintains its own bitmap instance. In particular, it can
pose challenges for low-end devices or scenarios where system call
interposition is applied broadly across many applications. We refer
to this problem as P4b.

lazypoline performs no checks on unintended execution
within the memory page starting at virtual address 0, while
zpoline introduces fast runtime checks—at the cost of
added memory overhead.

4.5 P5—Runtime Rewriting Pitfalls

lazypoline performs code rewriting on the fly, replacing two-
byte syscall/sysenter instructions with two-byte callq *%rax
instructions. To prevent race conditions, it uses synchronization
primitives to ensure that no two threads concurrently rewrite the
same instruction. However, upon analyzing its implementation,
we identified several serious flaws in the rewriting mechanism—
primarily related to inter-thread concurrency—despite the authors’
efforts to mitigate such issues.

First, the two-byte replacement is not guaranteed to be writ-
ten atomically, potentially leading to the execution of partially



Middleware 25, December 15-19, 2025, Nashville, TN, USA

rewritten instructions, as demonstrated in previous work [73, 74].
Second, the rewriting process does not ensure proper instruction
visibility or coherence across cores: the I-cache is not explicitly
flushed, and no instruction stream serialization is enforced (e.g.,
via mfence, cpuid, or similar barriers). As a result, modified in-
structions may not become visible to the CPU pipeline in a timely
or consistent manner—an essential requirement for correctness in
self-modifying code. Finally, memory access permissions of the
pages containing syscall/sysenter instructions targeted for mod-
ification are neither properly saved before rewriting nor reliably
restored afterward—restoration instead relies on error-prone as-
sumptions, exposing potential risks. For instance, the mechanism
does not account for XOM [87, 99, 104, 144].

In contrast, zpoline avoids all of the above issues by performing
binary rewriting once at load time—before any concurrency chal-
lenges arise. It also properly saves existing page permissions before
rewriting and restores them afterward, preserving memory access
permissions. However, this approach comes at the cost of missing
system calls invoked by any syscall/sysenter instructions
generated after this single rewriting step (see Section 4.2).

On-the-fly binary rewriting is fundamentally challenging
in modern multi-threaded and multi-core systems. These
challenges illustrate the complexity and fragility of run-
time rewriting approaches such as lazypoline.

5 K23: Making System Call Interposition
Resilient to Pitfalls

The identified pitfalls challenge several claims made by state-of-the-
art solutions [77, 157]. For instance, as demonstrated in Section 4,
both zpoline and lazypoline can corrupt code and data, and fail
to reliably interpose all system calls. To address these issues, we in-
troduce K23, a new interposer that is resilient to these pitfalls while
maintaining high efficiency. K23 employs a two-phase strategy—
comprising an offline phase and an online phase—and combines
two Linux interfaces, ptrace and SUD, with zpoline-like binary
rewriting. Specifically, K23 includes three interposition components
as shown in Table 1. At a high level, the offline phase executes the
application with representative inputs to identify and log legit-
imate syscall/sysenter instructions. During the online phase,
K23 enforces exhaustive system call interposition and selectively
accelerates handling of system calls invoked via instructions iden-
tified during the offline phase. By restricting binary rewriting
to pre-validated sites, K23 matches the performance of state-
of-the-art schemes® while sidestepping those pitfalls. In the
following sections, we detail each phase of K23 and its correspond-
ing interposition components, demonstrating how they address the
identified pitfalls.

5.1 A Closer Look at K23’s Offline Phase

During K23’s offline phase, we run the target program in a con-
trolled environment with benign inputs. The main steps are shown
in Figure 2 (steps (D—@). When a system call is invoked (1), the
kernel traps it and redirects it to libLogger (2). libLogger first

30ur evaluation verifies our claims (see Section 6.2).
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Interposition When Where How
Component
libLogger Offline Phase | In-Process Sub
ptracer Online Phase | Cross- ptrace
Process
1ibK23 Online Phase | In-Process SUD & Binary
Rewriting

Table 1: K23’s interposition components, showing when they
run, where they operate, and how they achieve system call
interposition.

Trap-then-Emulate (SUD)

@

@ Q 4%
¢ syscall/ . )
" libLogger

sysenter

@

Application code

Figure 2: Main steps of K23’s offline phase. The kernel traps
each system call and forwards it to libLogger, which logs
the exact triggering syscall/sysenter instruction. libLogger
then invokes the original system call and returns its result,
and then returns control to the application.

disables SUD-based interposition via the selector (see Section 2.1)
to avoid recursive traps. It then logs the syscall/sysenter in-
struction that triggered the call (3). Finally, 1ibLogger invokes the
original system call and returns its result, re-enables SUD-based in-
terposition, and returns control to the application (4). This sequence
continues until the program terminates. To improve coverage, we
can repeat the process with different inputs, generating additional
logs.

Any exhaustive system call interposition mechanism may be
used during the offline phase. Since performance is not a concern,
we use LD_PRELOAD to inject an SUD-based interposition library
(alternatives include ptrace or seccomp). With SUD, the kernel
traps each system call and raises a SIGSYS signal in user space, in-
voking libLogger’s preinstalled handler. 1ibLogger then extracts
the virtual address of the triggering syscall/sysenter instruction
from the signal context, determines its containing memory region
(e.g., libc.so0.6) and its offset by parsing /proc/$PID/maps [20],
and records each unique (region, offset) pair. The online phase
can later map these logged pairs back to actual virtual addresses,
since offsets within a given region remain consistent across runs—
even under Address Space Layout Randomization (ASLR) [128].
Furthermore, to avoid issues with code that may not exist during
K23’s single rewriting step (see Section 5.2), e.g., dynamically gen-
erated code, libLogger records only instructions from expected
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/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1153562
/usr/1ib/x86_64-1inux-gnu/libc.so0.6,112
/usr/1ib/x86_64-1linux-gnu/libc.s0.6,117
‘'usr/1ib/x86_64-1inux-gnu/libc.so0.6,1153
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,115
/usr/1ib/x86_64-1linux-gnu/libc.so0.6,1157453
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1157161
/usr/1ib/x86_64-1inux-gnu/libc.so.6,943685

/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1132677
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,961583

Q

Log Entry:
Region: libc.so.6
Offset: 1153129

Figure 3: Log file generated for 1s. Each log entry records
the memory region and the relative offset within that region
of the syscall/sysenter instruction that triggered a system
call.

executable and non-writable regions, e.g., 1ibc.so. 6 and the ap-
plication binary. An example log generated for 1s coreutil [120] is
shown in Figure 3.

Because K23’s offline phase runs in a controlled environment,
we can ensure that all log entries correspond to legitimate
syscall/sysenter instructions. That said, libLogger is simply
an injected SUD-based interposition library. Consequently, it cannot
log instructions executed during or before the program’s library
loading (see Section 4.2). Moreover, libLogger cannot interpose
vdso-based system calls. Importantly, the goal of this phase is not to
capture every possible instruction but rather those most frequently
used. As we show in Section 5.2, the online phase is responsible for
ensuring the reliable interposition of all system calls.

We executed K23’s offline phase on five coreutils [120]—
pwd, touch, 1s, cat, and clear—as well as on four real-world
applications: nginx (branch stable-1.26) [16], lighttpd (tag
lighttpd-1.4.76) [14], sqlite (tag version-3.50.4) [26], and
redis (branch 8.0) [22]. Specifically, for the real-world applica-
tions, we adopted representative workloads proposed by their devel-
opers or from prior work [77, 135, 157]. The results are summarized
in Table 2. For the coreutils, we observed only a small number of
unique syscall/sysenter instructions—ranging from 7 for pwd to
13 for clear—which is expected given their simplicity and short ex-
ecution time. For the real-world applications, we observed between
20 and 92 instructions. This too is expected, as server and data-
base applications typically run tight loops that repeatedly invoking
the same code paths and system calls. Overall, our experiments
demonstrate that a small number of syscall/sysenter in-
structions are responsible for triggering the vast majority of
system calls.

5.2 A Closer Look at K23’s Online Phase

K23’s online phase leverages the logs generated during its offline
phase (see Section 5.1), along with Linux interfaces and binary
rewriting, to enable flexible system call interposition. An overview
of the main steps involved in this phase is illustrated in Figure 4.
During startup, we must interpose every system call—including
those issued before or during library loading (D). To do this, we
employ ptracer, a ptrace-based interposer: to our knowledge,
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Application #Instructions
pwd 7
touch 9
1s 10
cat 11
clear 13
sqlite 20
nginx 43
lighttpd 44
redis 92

Table 2: Number of unique syscall/sysenter instructions
logged during the offline phase for five coreutils and four
real-world applications.

ptrace is the only mechanism that provides this capability with-
out OS or hardware modifications. ptracer can interpose sys-
tem calls from the program’s very first instruction. More-
over, ptracer disables vdso, forcing all vdso-based calls to use
syscall/sysenter instructions®. As a result, K23 can interpose
those calls as well. Thus, K23 fully addresses P2b: it traps sys-
tem calls invoked before or during library loading into the
kernel (O), redirects them to ptracer (2), executes each call’s
handler, and then returns control to the application (3)—even
for calls that zpoline and lazypoline miss (see Section 4.2).

Although ptrace introduces substantial runtime overhead
(see Section 2.1), library loading typically accounts for only a small
fraction of an application’s execution time>. Consequently, we em-
ploy ptracer only at startup (“ptracer: Interposition” in Figure 4).
Once K23’s fast interposition library 1ibK23 is loaded, K23 switches
to it for efficient interposition (“1ibK23: Interposition” in Figure 4)—
thereby rendering ptracer’s impact on overall performance neg-
ligible (see Section 6.2). ptracer also ensures that 1ibK23 is in-
jected into the program via LD_PRELOAD. To achieve this, ptracer
intercepts the execve system call and checks the LD_PRELOAD en-
vironment variable. If LD_PRELOAD does not already include our
library, ptracer overwrites it to force injection. Consequently,
ptracer thwarts any attacker or benign code that attempts to mod-
ify environment variables to silently disable injection of our fast
interposition library—effectively addressing P1a (see Section 4.1).
Such safeguards apply not only to system call interposition
but to any mechanism relying on LD_PRELOAD.

Once 1ibK23 is loaded, its initialization routine notifies ptracer,
and ptracer detaches itself (see Section 5.3). Then, 1ibK23 in-
stalls a trampoline at virtual address 0—similar to zpoline and
lazypoline (see Section 2.2)—and performs a one-time, zpoline-
style rewrite (4) of each valid syscall/sysenter instruction identi-
fied during K23’s offline phase (see Section 5.1). In addition, 1ibK23
saves existing page permissions before rewriting and restores them
afterward, following a strategy similar to zpoline (see Section 4.5).
By restricting rewriting to these pre-validated sites in a single
4This applies throughout the program’s execution. We also used library interposition

and a custom glibc to achieve the same result.
5An exception is programs with extremely short execution times.
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[ ptracer: Interposition ] .

[IibK23: Single Rewriting Step ] '

[ libK23: Interposition ]

Trap-then-Emulate (ptrace)

-

L syscall/ @ E lle23
1§ sysenter . (Rewriter)
@ Q + :
@ ptracer .
syscall/ !
sysenter E
: syscall/

Application code ' sysenter

®

Trap-then-Emulate (SUD)

E \‘ syscall/ @
Logs E 1E sysenter @
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5 calla | 6 1ibK23

: *3rax - (Interposer)
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callg *%rax L
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Figure 4: Main steps of K23’s online phase. First, ptracer interposes every system call before and during library loading (“ptracer:
Interposition”) and then detaches once 1ibK23 is loaded. Next, 1ibK23 installs a trampoline (similar to zpoline/lazypoline),
performs a single, selective rewrite of the instructions logged in the offline phase (“1ibK23: Single Rewriting Step”), and
configures an SUD-based fallback for any syscall/sysenter sites missed during the offline phase. In the example, one system
call is interposed via rewriting and another via the fallback; in both cases, each call is redirected to the same interposition code

(“1ibK23: Interposition”).

step and preserving memory access permissions, K23 simulta-
neously addresses P3a, P3b, and P5 (see Sections 4.3 and 4.5).

As noted in Section 5.1, K23’s offline phase may still miss
some syscall/sysenter instructions. Consequently, immediately
after step (@) (not shown in Figure 4), 1ibK23 installs an SUD-
based interposer as a fallback—similar to lazypoline [77]. Unlike
lazypoline, however, 11bK23 does not use SUD for discovering or
rewriting instructions, since it is prone to attack-induced misiden-
tifications (see Section 4.3). Instead, 1ibK23 employs SUD solely to
interpose any syscall/sysenter instructions missed during the
offline phase. This hybrid catch-all mechanism ensures no sys-
tem call is overlooked and thereby effectively addresses P2a
(see Section 4.2).

Once 1ibK23 completes rewriting and SUD setup, it takes over
all system call interposition (“1ibK23: Interposition” in Figure 4).
If the triggering syscall/sysenter instruction was logged during
the offline phase, it has already been rewritten to call *%rax'5),
so invoking it jumps directly into 1ibK23 (6} Then 1ibK23 dis-
ables SUD-based interposition via the selector (see Section 2.1),
avoiding recursive traps. It then handles the system call, and finally
re-enables SUD-based interposition just before returning control
to the application '7). On the other hand, if a syscall/sysenter
instruction was not encountered during the offline phase (5), the
SUD-based fallback solution redirects execution into 1ibK23 (6). Af-
ter handling the call, 1ibK23 returns control to the application (7).
During (6 and (7), 1ibK23 again uses the selector to disable and
re-enable SUD-based interposition as needed. Regardless of whether
a syscall/sysenter instruction is rewritten, every system call
reaches the same interposition code, thereby guaranteeing exhaus-
tiveness. Moreover, 1ibK23 prevents the SUD-based mechanism
from being silently disabled by interposing the prctl system call
and inspecting its arguments. If 1ibK23 detects any attempt
to disable SUD-based interposition (see Listing 2), it aborts
immediately—effectively addressing P1b (see Section 4.1).
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5.3 Implementation Details

In this section, we describe several key implementation aspects
omitted above but critical to K23’s functionality.

First, K23 protects its trampoline (at virtual address 0) from NULL
read/write accesses using Protection Keys for Userspace (PKU) [1],
just as zpoline and lazypoline do (see Section 4.4). Second, we
leverage d1mopen [5] to load 1ibK23 into its own namespace—again
following the approach used in prior work [77, 157]. This prevents
recursive redirection when the interposer invokes shared libraries
that the application also uses—libraries which may themselves
contain rewritten syscall/sysenter instructions. For more on
namespace isolation, see Yasukata et al. [157].

Regarding the issues described in Section 4.4, 1ibK23 performs a
runtime check at its entry point—verifying that each call originates
from a known, rewritten site—and aborts the process if the check
fails. Unlike zpoline, which maintains a large bitmap covering
the entire address space, 1ibK23 uses a hash set containing only
the instructions logged during the offline phase (see Section 5.1).
Because the set is bounded by the offline logs (see Table 2), its
memory overhead is negligible. Consequently, K23 effectively
addresses both P4a and P4b. We employ tsl::robin_set, an
alternative high-performance hash set, to store valid instruction
addresses and perform these checks [3].

Although not stated earlier, ptracer is a cross-process inter-
poser, whereas 1ibK23 operates in-process (see Table 1). Before
detaching, ptracer hands off any accumulated state—such as the
number of system calls issued during startup, open file descriptors,
and so on—to 1ibK23. To accomplish this, 1ibK23 issues a fake
system call—i.e., a non-existent system call number— that the ker-
nel naturally redirects to ptracer. ptracer then transfers its state
via OS primitives (e.g., the process_vm_writev system call [19]).
Once that completes, 1ibK23 issues a second fake system call to
signal ptracer to detach, after which 1ibK23 actively performs
exhaustive system call interposition.
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Pitfall zpoline [157] | lazypoline [77] | K23

P1 - Interposition Pla X X v
Bypass (Section 4.1) P1b v X v
P2 - System Call P2a X v 4
Overlook (Section 4.2) P2b X X v
P3 - Instruction P3a X v v
Misidentification (Section 4.4) [ p3p 7/ X 7
P4 - NULL Access Termination | P4a v X v
Pitfalls (Section 4.4) P4b X v/ v/
P5 - Runtime Rewriting

Pitfalls (Section 4.5) Ps v X v

Table 3: Comparison of interposers against System Call In-
terposition Pitfalls (see Section 4). /" indicates the pitfall is
either specifically handled or not relevant to the interposer,
while X indicates it is not handled.

This mechanism is highly flexible and easily extensible—fake sys-
tem calls can carry arguments, and ptracer can leverage various
OS abstractions to access 1ibK23’s state (memory, registers, etc.).
For security, ptracer verifies that both fake system calls originate
from 1ibK23 and not from potentially compromised code (e.g., the
dynamic linker/loader). In addition, because K23 relies critically
on the integrity of the offline logs, we mark the log directory im-
mutable once the offline phase completes, and keep it so for the
program’s entire lifetime. Therefore, we close the door to new
attack surfaces. To further harden our solution, 1ibK23 switches
to a dedicated stack upon entry (regardless of whether the trigger-
ing instruction was rewritten). This stack-switching technique has
proven effective in prior security work [72, 113], and we rely on or-
thogonal in-process isolation mechanisms to protect that stack and
other sensitive interposer’s internal state, such as the selector and
the hash set containing legitimate syscall/sysenter instructions
identified during the offline phase (see Section 3).

Moreover, if the application invokes execve again to spawn a
new process, 11bK23 restarts and re-attaches ptracer just before
executing the execve call. This ensures that the entire online phase
can be repeated for the newly spawned process (see Section 5.2).
Similarly, although not previously discussed or shown in Figure 2,
a simple ptracer-like component guarantees that 1ibLogger is
always injected, even if benign code clears or modifies LD_PRELOAD.
This component does not record any instructions; its sole purpose
is to prevent silent disabling of 1ibLogger in newly spawned pro-
cesses (see Section 4.1). Note that this is purely to maximize our
coverage of system calls, not for security enforcement. Finally, to
avoid executable stack issues, we adopt practices proposed in pre-
vious work while building 1ibK23 [158].

6 Evaluation

We evaluate K23 along two dimensions: first, we assess whether
it successfully addresses the System Call Interposition Pitfalls in-
troduced in Section 4; second, we conduct an extensive perfor-
mance evaluation. Throughout our evaluation, we also compare
K23 against zpoline [41] and lazypoline [12].

6.1 Pitfall-Oriented Comparison

To evaluate each pitfall, we (i) analyzed the publications and open-
source prototypes of zpoline and lazypoline, and (ii) developed
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Proof-of-Concept (PoC) programs that trigger these issues. In Ta-
ble 3, we illustrate the comparison of zpoline, lazypoline, and
K23 against pitfalls.

Specifically, P1a affects both zpoline and lazypoline, whereas
P1b only affects lazypoline—it is irrelevant to zpoline because
zpoline does not use SUD (see Sections 2.2 and 4.1). In contrast, K23
effectively addresses both pitfalls (see Section 5.2). Likewise, prior
work [77, 157] highlights zpoline’s shortcomings with respect to
P2a, and neither zpoline nor lazypoline address P2b (see Sec-
tion 4.2); again, K23 successfully handles both (see Section 5.2).
Interestingly, we found that even simple utilities like 1s [120]
issue over 100 system calls during startup before the interpo-
sition library is loaded, demonstrating that any mechanism
delaying interposition until after library load will inevitably
miss these calls (see Section 4.2).

Both zpoline and lazypoline rewrite executable memory
when it resembles syscall/sysenter instructions—due to limi-
tations in disassembly (P3a) or hijacked control flow (P3b), re-
spectively (see Section 4.3). By comparison, K23 performs a sin-
gle selective rewrite of only those syscall/sysenter instructions
pre-validated during the offline phase, eliminating both classes of
misidentification (see Sections 5.1 and 5.2).

Meanwhile, lazypoline fails to handle P4a, though it is not
affected by P4b, as it does not retain a bitmap of valid rewritten
instructions. The zpoline authors acknowledge P4b and propose al-
ternative, slower strategies that reduce memory overhead [157]. K23
resolves both P4a and P4b by rewriting only syscall/sysenter
instructions identified during the offline phase, and maintaining an
optimized hash set of their virtual addresses (see Section 5.3). As Ta-
ble 2 shows, K23 identified only a handful of instructions (between
7 and 44 in our experiments) during its offline phase—keeping the
memory state required for instruction checks extremely low.

Lastly, lazypoline does not address P5. By contrast, zpoline
sidesteps this pitfall by rewriting every detected syscall/sysenter
instruction in one upfront pass (see Section 4.5)—at the cost of miss-
ing any system calls invoked by instructions introduced afterward
(see Section 4.2). K23 addresses P5 through a single rewriting step
and careful design and implementation choices (see Section 5.2).

These limitations constrain the applicability of both zpoline
and lazypoline (see Section 4). K23, on the other hand, addresses
all of these pitfalls while matching the efficiency of zpoline and
lazypoline (see Section 6.2), making it a viable, universal system
call interposition solution. Importantly, the pitfalls we identify are
not exclusive to zpoline and lazypoline; they may also affect
other approaches, even beyond system call interposition. For in-
stance, any mechanism relying on LD_PRELOAD is similarly
affected (see Section 4.1). This broadens the impact of our find-
ings and highlights the generality of our proposed solutions.

6.2 Performance Evaluation

We conducted our experiments on a DELL Precision 7960 work-
station equipped with a 12-core Intel Xeon w5-3425 CPU running
at 3.20 GHz (latest firmware) and 64 GB of RAM. To minimize
measurement noise, we disabled Turbo Boost, Hyper-Threading,
and CPU frequency scaling [48]. The system ran Ubuntu 22.04.5
LTS with the Linux 6.8.0-85 kernel. We evaluated the performance
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Variants Extra Features
zpoline-default -
zpoline-ultra NULL Execution Check
K23-default -
K23-ultra NULL Execution Check
NULL Execution Check

& Stack Switch
Table 4: Variants of zpoline and K23 with their additional
features beyond the respective default configurations. The
“NULL Execution Check” and “Stack Switch” are discussed
in Section 4.4 and Section 5.3, respectively. ~default variants
are best suited for high-performance, low-overhead envi-
ronments, while -ultra and -ultra+ are more suitable for
security- and debugging-critical scenarios.

K23-ultra+

of K23 against zpoline and lazypoline using both microbench-
marks and macrobenchmarks. Each experiment was executed 10
times; we discarded the maximum and minimum values as outliers,
then computed the geometric mean of the overhead relative to a
native execution baseline. To capture variability, we also report the
standard deviation as a percentage of the mean. For K23, we first per-
formed its offline phase by running the relevant microbenchmarks
and macrobenchmarks multiple times. For macrobenchmarks, we
used widely adopted workloads from prior work [77, 135]. Over-
all, the offline phase completed within seconds to a few minutes,
depending on the specific benchmark.

Additionally, we evaluated different configurations of zpoline
and K23. Specifically, we considered two variants of zpoline:
zpoline-default, which omits NULL execution checks, and
zpoline-ultra, which includes them. For K23, we evaluated three
variants: K23-default, which performs neither NULL execution
checks nor stack switching; K23-ultra, which adds NULL execu-
tion checks; and K23-ultra+, which includes both NULL execution
checks and stack switching. Aside from these specific differences,
all variants behave identically to their respective default config-
uration. We evaluate these variants for two reasons: (i) to isolate
and quantify the performance cost of individual features, and (ii) to
demonstrate the flexibility of each interposer in adapting to specific
use cases, e.g., ~ultra and -ultra+ variants are best suited for
security- and debugging-critical scenarios. The variants are sum-
marized in Table 4. We also evaluated SUD in depth, both when it
actively interposes system calls and when interposition is disabled
using the selector. This allows us to demonstrate: (i) that SUD is
unsuitable for use cases where interposition performance is critical,
and (ii) to better understand the additional overhead introduced by
lazypoline and K23 in comparison to zpoline.

Since all interposers offer equivalent fine-grained control over ap-
plications (e.g., deep argument inspection, fast access to application
memory, etc.), we measure overhead using an empty interposition
function that simply invokes the original system call and returns
its result, following the methodology of prior work [77]. This setup
isolates the cost of the interposition mechanism itself, which is the
primary focus of our evaluation.

Finally, we note that all benchmarks are designed to re-
flect high-intensity scenarios—such as system call stress tests
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Overhead

1.1267x (+0.042%)
1.1576% (+0.083%)

Mechanism

zpoline-default
zpoline-ultra

lazypoline 1.3801% (+0.040%)
K23-default 1.2788x (+£0.056%)
K23-ultra 1.3919x (£0.072%)
K23-ultra+ 1.3948x (0.036%)
SUD-no-interposition  1.2269X (+0.045%)
SUD 15.3022x (0.036%)

Table 5: Microbenchmarking overhead relative to native exe-
cution (lower is better). Overhead is shown as a multiplicative
factor; standard deviation is in parentheses.

and data center-like workloads—to evaluate interposers under
extreme operating conditions.

6.2.1 Microbenchmarks. For microbenchmarking, we created a
system call stress test using a non-existent system call (system call
number 500), which we invoked 100M times. We selected this call
because it spends minimal time in the kernel, thereby emphasiz-
ing the overhead introduced by each interposition technique. All
results are presented in Table 5. As shown in Table 5, SUD incurs
the highest overhead at 15.3022x relative to native execution. Both
zpoline-default and zpoline-ultra are the most efficient inter-
posers, with overheads of 1.1267X and 1.1567X, respectively. Next is
K23-default at 1.2788X, followed by lazypoline at 1.3801x. The
K23-ultra(1.3919x) and K23-ultra+ (1.3948X) variants introduce
slightly higher overhead. Nonetheless, all K23 variants—as well as
lazypoline—significantly outperform SUD.

Interestingly, K23-default is faster than lazypoline, due to
optimizations in K23’s trampoline code that save CPU cycles. In
particular, K23 takes advantage of the fact that the kernel clobbers
the rcx and r11 registers during system call execution on x86-64
platforms, allowing it to reuse them without the need for preserva-
tion. Furthermore, the runtime overhead of zpoline-ultrarelative
to zpoline-default is smaller than that of K23-ultra relative to
K23-default. This discrepancy is attributed to our decision to use
a hash set rather than a bitmap, trading slightly higher runtime
cost for reduced memory overhead (see Section 4.4).

Following prior work [77], we also measured the overhead of SUD
when initialized but with interposition disabled via the selector
(“SUD-no-interposition” in Table 5). These results confirm that the
performance degradation observed in both 1azypoline and all K23
variants stems primarily from relying on SUD as a fallback mecha-
nism, even when it does not actively interpose system calls. Specif-
ically, once SUD is initialized, all system calls follow a slower path
upon entering the kernel. Our findings align with those reported
in previous work [77, 157].

6.2.2  Macrobenchmarks. Following the microbenchmarks, we eval-
uated the performance impact of system call interposition tech-
niques on real-world, system call-intensive workloads. Specifi-
cally, for macrobenchmarking, we assessed the performance of
zpoline (in two variants; see Table 4), lazypoline, K23 (in three
variants; see Table 4), and SUD on four real-world applications:
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Application Native zpoline-default | zpoline-ultra lazypoline K23-default K23-ultra K23-ultra+ SuD
(workload) (req/s) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%)
nginx
(1 worker, 0 KB) 184762 (+0.65%) 99.05 (+0.40%) 98.40 (£1.09%) | 97.85 (+0.65%) | 97.94 (£0.68%) | 97.29 (£0.59%) | 96.70 (£0.62%) | 51.29 (+0.45%)
nginx
(1 worker, 4 KB) 139709 (+0.42%) 96.73 (+0.53%) 96.14 (£0.39%) | 96.04 (£0.39%) | 96.24 (£0.35%) | 95.89 (x0.84%) | 95.76 (£0.39%) | 45.95 (£0.99%)
nginx
(10 workers, 0 KB) | 1214421 (£1.84%) |  99.62 (+0.50%) 99.34 (£0.32%) | 98.79 (+0.86%) | 99.52 (£0.40%) | 98.39 (£0.69%) | 97.83 (£0.87%) | 53.93 (+0.29%)
nginx
(10 workers, 4 KB) | 830426 (+0.24%) 98.83 (+0.45%) 98.76 (£0.26%) | 98.14 (£0.38%) | 98.59 (£0.31%) | 98.12(x0.24%) | 98.23 (£0.27%) | 53.97 (+0.10%)
lighttpd
(1 worker, 0 KB) 189729 (+0.59%) 98.76 (+£0.65%) 99.48 (£0.88%) | 98.23 (+0.73%) | 99.15 (£0.64%) | 97.89 (£1.46%) | 97.50 (£0.69%) | 61.25 (+0.13%)
lighttpd
(1 worker, 4 KB) 147927 (+0.42%) 99.28 (+0.86%) 98.37 (£0.58%) | 97.93 (£0.59%) | 98.56 (£0.67%) | 98.01 (x0.47%) | 97.62 (£0.55%) | 61.62 (+0.36%)
lighttpd
(10 workers, 0 KB) | 1444141 (+£0.34%) |  98.77 (£0.69%) 98.60 (£0.63%) | 98.18 (+0.69%) | 98.16 (£0.76%) | 98.36 (£0.39%) | 97.69 (£0.49%) | 59.83 (+0.19%)
lighttpd
(10 workers, 4 KB) | 976989 (+0.19%) 99.17 (+0.26%) 98.98 (+0.24%) | 98.67 (£0.16%) | 99.01 (£0.32%) | 98.65 (£0.34%) | 98.62 (£0.37%) | 65.06 (+0.18%)
redis
(11/0 thread) 174613 (+0.64%) | 100.00 (+0.21%) 99.93 (£0.21%) | 99.98 (£0.50%) | 100.21 (+0.31%) | 100.17 (£0.60%) | 99.90 (+0.46%) | 96.15 (+£0.47%)
redis
(6 1/O threads) 398804 (+0.19%) 99.94 (+0.18%) 99.80 (£0.00%) | 99.80 (£0.00%) | 99.97 (£0.20%) | 99.97 (£0.20%) | 99.95 (£0.19%) | 35.75 (+0.07%)
sqlite
(speedtest1, size 800) N/A 98.12 (£0.19%) 97.80 (£0.19%) | 97.31 (+0.18%) | 97.56 (£0.16%) | 97.13 (£0.12%) | 97.20 (£0.14%) | 55.90 (+0.60%)
geomean N/A 98.93 98.27 [ 98.26 98.62 97.96 97.90 [ 56.70 |

Table 6: Macrobenchmark results for interposers across server and database workloads. Each row reports the native throughput
(requests per second) and the throughput relative to native (% of native; native = 100%) for zpoline, lazypoline, K23, and
SUD. For sqlite, which is not throughput-oriented, we instead report relative runtime performance versus native (computed

native_benchmark_completion_time
under_interposer_benchmark_completion_time

as

X 100). We evaluated multiple variants of zpoline and K23 (see Table 4). Standard

deviations across runs are shown in parentheses. The bottom row reports the geometric mean of the relative metrics for each
interposer across all workloads. N/A indicates values that are not applicable or meaningful to calculate.

nginx (branch stable-1.26), lighttpd (tag lighttpd-1.4.76),
sqlite (tag version-3.50.4), and redis (branch 8.0).

For nginx and lighttpd, we tested four configurations: (i) a
single-worker server serving a static 0 KB file, (ii) a single-worker
server serving a static 4 KB file, (iii) a 10-worker server serving
a static 0 KB file, and (iv) a 10-worker server serving a static 4
KB file. We benchmarked redis in two configurations: the default
single-threaded mode (1 I/O thread) and with 6 I/O threads enabled
for request handling. Finally, we tested a single sqlite configu-
ration: a fresh 4 KiB-page sqlite database in WAL mode with
synchronous=NORMAL and no auto-checkpointing.

These configurations are designed to place interposers under ex-
treme system call-intensive conditions. For nginx, lighttpd, and
redis, we matched the number of benchmarking client threads
to the number of server workers or I/O threads. Specifically, we
used wrk for nginx and lighttpd, configured with 16 connections
per client thread and a 30-second run, and redis-benchmark (dis-
tributed with redis) in the 100% GET workload, similar to previous
work [77, 157]. Following prior work [77], we run both clients and
servers on the same physical machine. This eliminates the variabil-
ity and overhead of the network hardware/software stack, so that
our measurements focus on the overhead of system call interposi-
tion. In this setup, the benchmarking client(s) and server worker(s)
communicate directly over localhost. For sqlite, which is not a
client-server system, the benchmark naturally executes locally on
the same machine. We used the single-threaded speedtest1 bench-
mark provided upstream, with database size parameter ~size=800.
Throughout all experiments, we ensured that the relevant CPU
cores were fully saturated.
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Table 6 presents the results of our macrobenchmark eval-
uation, reporting native throughput (in requests per second)
and relative throughput under each interposition technique.
For sqlite, which is not throughput-oriented, we instead re-

port relative runtime performance versus native (computed

native_benchmark_completion_time .
under_interposer_benchmark_completion_time X 100)' The geometric

mean (bottom row) shows that macrobenchmark trends closely
match the microbenchmark results in Table 5. For comparison,
we also include SUD, again confirming its unsuitability for sys-
tem call-intensive workloads. Overall, our findings show that K23
matches the performance of prior approaches while addressing
their limitations. By offering multiple variants, K23 lets developers
to select configurations that best meet their requirements (Table 4).

as

7 Discussion

System calls are the gateways from user space to kernel space [28].
As a result, numerous systems have been built around the system
call interface. However, as OSs and hardware continue to evolve,
these changes inevitably affect all solutions that rely on system
call interposition. For example, prior work on sandboxing [57, 72,
125, 135, 144, 156] has shown how attackers can exploit the OS
as a confused deputy—e.g., by using the open system call [17]—
to bypass hardware-enforced isolation. Our work is built around
the principle "Every System Call Counts" and aims to provide a
flexible foundation for developers building system call interposition-
based solutions.

While our solution is general in design, the current prototype tar-
gets x86-64 Linux platforms. Below, we outline several extensions
that would enable K23 to support alternative environments. First,
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although our implementation uses PKU to apply XOM, it does not
depend on it. K23 is, in principle, compatible with alternative XOM
approaches [58, 59, 87]. Second, K23 currently leverages ptrace and
SUD, both of which are mature OS abstractions supported across
various architectures. In cases where these mechanisms are un-
available, kernel modifications—similar to those proposed in prior
work [52, 84, 121, 153]—could be used to support equivalent in-
terposition functionality. Similarly, our rewriting technique is cur-
rently specific to x86-64. However, alternative binary disassembly
and rewriting techniques proposed in prior work [45, 129] could
be adopted. In particular, for architectures with fixed instruction
lengths, such as ARM, disassembly-based rewriting is expected to be
less challenging than on variable-length architectures like x86-64.
Porting K23 to such architectures and evaluating its effectiveness
in those environments is an interesting direction for future work.
Likewise, supporting non-Linux operating systems that lack essen-
tial abstractions like SUD and ptrace could be achieved through
kernel or hardware modifications.

Our evaluation focuses on applications, which benefit from
widely available and standardized benchmarking suites such as
wrk [39] and ab [2]. We used these tools during K23’s offline phase
to generate instruction logs. As shown in Section 6.2.2, these logs let
us optimize the handling of most system calls invoked under realis-
tic workloads. However, not all applications have well-structured
or comprehensive benchmark suites. In such cases, a promising fu-
ture direction is to combine dynamic and static analysis to reliably
identify syscall/sysenter instructions during the offline phase,
e.g., via fuzzing and binary/source code analysis.

Finally, as discussed in Section 3, and consistent with prior
work [77, 157], we do not consider attacks targeting the inter-
poser’s internal state. A wealth of lightweight intra-process isola-
tion mechanisms exist with ultra-low runtime overhead. Prior work
has shown that such mechanisms can enforce effective isolation [93,
155], including hardware virtualization support [72, 85,97, 116, 135],
Protection Keys for Userspace (PKU) [49, 50, 69, 70, 83, 92, 111-
113, 124, 127, 135, 144, 156], underused x86 intermediate privilege
levels [89, 90], ARM Memory Domains [133], Intel Total Memory
Encryption Multi-Key (TME-MK) [134], Supervisor Mode Access Pre-
vention (SMAP) [91, 149, 150], Intel Control-flow Enforcement Tech-
nology (CET) [151, 156], ARM Memory Tagging Extension (MTE) and
Pointer Authentication Codes (PAC) [62, 81, 102], ARM Privileged
Access Never (PAN) and load/store unprivileged (LSU) [152], as
well as custom hardware designs [125, 126]. K23 is compatible with
such techniques, and we assume that developers will deploy their
preferred solution as needed.

8 Related Work

In this section, we discuss intrusive and function hooking-based
system call interposition approaches.

Intrusive approaches rely on hardware and OS modifications [8,
46, 52, 65, 72, 84, 98, 121, 125, 126, 135, 136, 142, 147, 153, 161, 162].
These techniques are highly efficient and are typically suited for
use cases where performance is critical. However, they are often
error-prone, difficult to maintain, and consequently lack flexibil-
ity. Moreover, they increase the Trusted Computing Base (TCB),
potentially compromising the security of the entire system.
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Function hooking-based approaches interpose wrapper func-
tions that invoke system calls, rather than intercepting the system
calls themselves [13, 15, 55, 148, 159]. This incurs minimal perfor-
mance overhead but fails to interpose system calls issued outside
these wrapper functions. Additionally, such techniques limit the
interposer’s expressiveness, as it can only access system call argu-
ments and results via the wrapper’s function parameters and return
values. Identifying and mapping all relevant wrapper functions to
their corresponding system calls is also non-trivial, particularly in
large or complex codebases [45, 77, 157].

The Berkeley Packet Filter (BPF) [101] and its extended
version (eBPF) [71] allow custom hooks into kernel code, enabling
system call interposition and fine-grained runtime observability.
However, writing eBPF programs is more complex than writing
user-space code due to eBPF’s restricted execution environment
and its immature ecosystem compared to user-space tooling—such
as debuggers, libraries, and APIs. Moreover, despite the presence
of a verifier intended to ensure the safety of eBPF programs, these
programs still execute with kernel privileges, which exposes the
system to risk [95]. Prior research has shown that attackers have
repeatedly bypassed the verifier, exploiting vulnerabilities in the
eBPF subsystem to gain arbitrary kernel execution [132]. Notably,
eBPF has been used to enhance attackers’ capabilities [96], and to
extend the reach of existing kernel exploits [79].

9 Conclusion

In this work, we identify several fundamental design and implemen-
tation flaws—System Call Interposition Pitfalls—that affect state-
of-the-art system call interposers. For example, prior approaches
cannot reliably interpose all system calls and may even corrupt code
and data. To illustrate their impact, we develop PoC programs that
reliably trigger these issues and reference real-world use cases af-
fected by them. Guided by these findings, we design and implement
K23, a new plug-and-play interposer for x86-64 that overcomes
these pitfalls. Our evaluation demonstrates that K23 delivers per-
formance comparable to state-of-the-art interposers, while fully
addressing all their identified shortcomings.
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