<]
TUDelft

Delft University of Technology

Clair Obscur
The Light and Shadow of System Call Interposition - From Pitfalls to Solutions with K23

Gomez Moreno, Jesus Maria; Moutafis, Vissarion; Dionysiou, Antreas; Kuipers, Fernando; Smaragdakis,
Georgios; Coppens, Bart; Voulimeneas, Alexios

DOI
10.1145/3721462.3770772

Licence
CCBY

Publication date
2025

Document Version
Final published version

Published in
Middleware 2025 - Proceedings of the 26th ACM International Middleware Conference

Citation (APA)

Gomez Moreno, J. M., Moutafis, V., Dionysiou, A., Kuipers, F., Smaragdakis, G., Coppens, B., &
Voulimeneas, A. (2025). Clair Obscur: The Light and Shadow of System Call Interposition - From Pitfalls to
Solutions with K23. In Middleware 2025 - Proceedings of the 26th ACM International Middleware
Conference (pp. 241-255). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3721462.3770772

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3721462.3770772
https://doi.org/10.1145/3721462.3770772

Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
{5 Latest updates: https://dl.acm.org/doi/10.1145/3721462.3770772

RESEARCH-ARTICLE
Clair Obscur: The Light and Shadow of System Call Interposition -
From Pitfalls to Solutions with K23

JESUS MARIA GOMEZ MORENO, Delft University of Technology, Delft, Zuid-Holland,
Netherlands

Currently working in security tools leveraging systems knowledge.

VISSARION MOUTAFIS, Delft University of Technology, Delft, Zuid-Holland, Netherlands
ANTREAS DIONYSIOU, Delft University of Technology, Delft, Zuid-Holland, Netherlands
FERNANDO A KUIPERS, Delft University of Technology, Delft, Zuid-Holland, Netherlands

GEORGIOS SMARAGDAKIS, Delft University of Technology, Delft, Zuid-Holland,
Netherlands

BART COPPENS, Ghent University, Ghent, VOV, Belgium

View all

Open Access Support provided by:
Delft University of Technology
Ghent University

I PDF Download
j;b 3721462.3770772.pdf
< 14 January 2026
Total Citations: 0
Total Downloads: 164

Published: 15 December 2025
Citation in BibTeX format
Middleware '25: 26th International
Middleware Conference

December 15 - 19, 2025
TN, Nashville, USA

MIDDLEWARE '25: Proceedings of the 26th International Middleware Conference (December 2025)

https://doi.org/10.1145/3721462.3770772
ISBN: 9798400715549

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3721462.3770772
https://dl.acm.org/doi/10.1145/3721462.3770772
https://dl.acm.org/doi/10.1145/contrib-99661769559
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/contrib-99661769661
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/contrib-99659730375
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/contrib-81100656645
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/contrib-81339529264
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/contrib-81442615336
https://dl.acm.org/doi/10.1145/institution-60033316
https://dl.acm.org/doi/10.1145/3721462.3770772
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60006288
https://dl.acm.org/doi/10.1145/institution-60033316
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3721462.3770772&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/middleware
https://dl.acm.org/conference/middleware
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721462.3770772&domain=pdf&date_stamp=2025-12-14

Clair Obscur : The Light and Shadow of System Call Interposition
— From Pitfalls to Solutions with K23

Jesus Maria Gomez Vissarion Moutafis

Moreno TU Delft
TU Delft Delft, The Netherlands
Delft, The Netherlands V.Moutafis@tudelft.nl

j.m.gomezmoreno@tudelft.nl

Antreas Dionysiou Fernando Kuipers

TU Delft & Frederick TU Delft
University Delft, The Netherlands
Delft & Nicosia, The F.A Kuipers@tudelft.nl

Netherlands & Cyprus

A Dionysiou@tudelft.nl
Georgios Smaragdakis Bart Coppens Alexios Voulimeneas "
TU Delft Ghent University TU Delft
Delft, The Netherlands Ghent, Belgium Delft, The Netherlands
g.smaragdakis@tudelft.nl bart.coppens@ugent.be A.Voulimeneas@tudelft.nl

Abstract

System call interposition is a widely used technique to trace and
modify application behavior. Over the years, numerous interposi-
tion mechanisms have been proposed, each with distinct strengths
and trade-offs. Recently, advances in binary rewriting—specifically
targeting x86-64 syscall and sysenter instructions—have led
to new techniques that take important steps forward, with some
claiming to support general-purpose use.

We analyze state-of-the-art interposers in depth and uncover
several fundamental design and implementation flaws—pitfalls that
we collectively term System Call Interposition Pitfalls. For example,
prior work cannot reliably interpose all system calls and may even
corrupt code and data. These flaws undermine the practicality of ex-
isting solutions in real-world scenarios, rendering them unsuitable
as universal interposition mechanisms.

Motivated by our findings, we design and implement a new plug-
and-play system call interposition approach named K23, targeting
x86-64 platforms. K23 addresses the uncovered pitfalls via a hybrid
design that unifies the strengths of prior methods, combining of-
fline and online phases that leverage multiple Linux interfaces and
binary rewriting. Our evaluation shows that K23 overcomes the key
limitations of state-of-the-art solutions while remaining highly effi-
cient. To our knowledge, K23 is the first general-purpose interposer
suitable for a wide range of use cases and environments, from low-
end devices to performance-critical, datacenter-scale workloads.

ACM Reference Format:

Jestus Maria Gémez Moreno et al.. 2025. Clair Obscur : The Light and
Shadow of System Call Interposition — From Pitfalls to Solutions with
K23. In 26th ACM Middleware Conference (Middleware °25), December 15—
19, 2025, Nashville, TN, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3721462.3770772

This work is licensed under a Creative Commons Attribution 4.0 International License.
Middleware 25, Nashville, TN, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1554-9/25/12

https://doi.org/10.1145/3721462.3770772

241

1 Introduction

System calls serve as the primary interface between user-space
applications and the OS kernel, enabling operations such as file
I/O, network communication, and process creation. Because nearly
all OS interactions involve system calls, they present a natural
interception point for observing and altering application behavior
through system call interposition.

System call interposition techniques have been applied across a
wide range of use cases, including (i) the construction of sophisti-
cated debugging and tracing tools [9, 15, 23, 29]; (ii) the enhance-
ment of system security [43, 47, 54, 60, 67, 68, 80, 103, 107, 118, 122,
123, 135, 143] and reliability [75, 76, 100, 114, 115]; and (iii) the emu-
lation of alternative OS environments [27, 38, 61]. Beyond these, sys-
tem call interposition can also (iv) support binary compatibility lay-
ers for emerging OS subsystems [86, 94, 105, 108, 117, 119, 130, 131],
(v) transparently redirect network operations to custom user-space
stacks [78, 157], and (vi) support forensic analysis [56, 63, 145, 146].

System call interposition has many flavours, but no sin-
gle mechanism offers a universal solution suitable for all use
cases. Linux provides several interfaces for this purpose, including
ptrace [21], seccomp [24], and Syscall User Dispatch (SUD) [30].
However, each of these mechanisms has notable limitations, such as
performance overhead or constraints on the interposer’s expres-
siveness (i.e., the capability of the interposer to access applica-
tion state and execute actions in response). For example, ptrace
and SUD introduce additional context or mode switches that degrade
efficiency [57, 76, 77, 125, 140, 157], whereas seccomp either incurs
comparable performance overheads or restricts the interposer’s
expressiveness—such as lacking support for deep inspection of
pointer arguments—depending on how it is configured [64, 77, 125].

Alternatively, other approaches leverage binary rewriting by
replacing x86-64 syscall/sysenter instructions that trigger
system calls with jmp/call instructions to the interposer’s
code [31, 45]. This allows system call interposition without addi-
tional context/mode switches, achieving maximum efficiency while
“Clair Obscur refers to the artistic use of strong contrasts between light and shadow.
We use it metaphorically to highlight the antithesis between pitfalls and solutions
in system call interposition. The term also appears in Clair Obscur: Expedition 33, an

acclaimed video game by Sandfall Interactive.
T Corresponding author.

https://doi.org/10.1145/3721462.3770772
https://doi.org/10.1145/3721462.3770772
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721462.3770772

Middleware 25, December 15-19, 2025, Nashville, TN, USA

preserving the interposer’s full expressiveness. However, these tech-
niques rely on precise and correct static binary disassembly and
rewriting—a well-known hard problem, especially for architectures
with variable instruction lengths like x86-64—making it infeasible
to reliably interpose all system calls in real-world scenarios [77, 157].
This limitation is particularly problematic in settings that require
exhaustive interposition (i.e., the ability to reliably interpose
all system calls), including sandboxing [72, 125, 135, 144, 156],
introspection and analysis tools [9, 15, 23, 29], vulnerability discov-
ery [80], incremental development of new OS layers [94], automated
software updates [114], and sanitization mechanisms [153].

To overcome the aforementioned limitations, both industry and
academia frequently turn to intrusive approaches such as OS or
hardware modifications [72, 125, 126, 135]. While often effective,
these solutions are painstaking to maintain, expand the Trusted
Computing Base (TCB), and ultimately hinder broader adoption
and usability. More recently, advances in binary rewriting—namely
zpoline [157] and lazypoline [77]—have claimed to enable flex-
ible (i.e., adaptable to a wide range of use cases) system call
interposition while sidestepping the challenges of traditional bi-
nary rewriting approaches [31, 44, 45, 76, 109, 114].

However, our in-depth investigation of zpoline and
lazypoline uncovers several design and implementation is-
sues that undermine their claims. For example, both techniques
fail to reliably interpose all system calls and can corrupt code
and data. We collectively refer to these shortcomings as System
Call Interposition Pitfalls', as they restrict the applicability of
these approaches in real-world deployments.

Our findings lead us to the conclusion that no existing
system call interposition mechanism serves as a general-
purpose solution.

The main focus of this work is twofold: first, to shed light on
the limitations of existing state-of-the-art system call interposers;
and second, to provide a general-purpose solution that addresses
these limitations for x86-64 platforms. To that end, we analyze
the designs of both zpoline and lazypoline, along with their
corresponding open-source prototypes [11, 40]. Building on these
insights, we develop K232, a new interposer that overcomes the
identified challenges through a combination of offline and online
phases, leveraging multiple Linux interfaces, binary rewriting, and
principled engineering choices.

Our paper makes the following contributions:

o We identify System Call Interposition Pitfalls—fundamental flaws
in state-of-the-art interposition techniques—and develop targeted
Proof-of-Concept (PoC) programs that expose them. We also
demonstrate real-world use cases impacted by these pitfalls.

e We introduce K23, the first plug-and-play interposer for x86-64
that overcomes these pitfalls—ranging from lack of exhaustive-
ness to code and data corruption—while providing flexibility
across a wide range of use cases.

IThroughout this paper, “System Call Interposition Pitfalls” and “pitfalls” are used

interchangeably.

2A reference to the legendary perfume in Tom Robbins’ novel Jitterbug Perfume, which
is pursued for centuries and believed to possess rare and transformative qualities.

242

Jests Maria Gomez Moreno et al.

e We conduct a comprehensive evaluation of K23, comparing it
with state-of-the-art interposers [77, 157]. K23 achieves consis-
tently high efficiency while uniquely addressing the pitfalls that
affect these prior approaches.

Our goal is to provide a general-purpose solution that the com-
munity can adopt and extend. To that end, we release our code at
https://gitlab.com/tudelft-ssl/k23, including the K23 prototypea
and our evaluation framework.

2 Background

In this section, we provide background on the Linux interfaces that
K23 relies on (ptrace [21] and Syscall User Dispatch (SUD) [30]),
as well as on state-of-the-art system call interposition techniques—
zpoline [157] and lazypoline [77].

2.1 ptrace and SUD

ptrace is a Linux interface that allows a tracer thread to ob-
serve and control the execution of one or more tracee threads.
It enables exhaustive interposition of system calls, signals, and
even individual instructions, allowing fine-grained control over
each tracee’s execution. Additionally, the tracer can access the
state of tracees using system calls such as process_vm_readv and
process_vm_writev [19]. Due to its exhaustiveness and expres-
siveness, ptrace has been widely used for debugging [9, 15, 23],
security [51, 57, 80, 82, 138, 141], and reliability purposes [75, 100].
While ptrace offers the level of control required for a general-
purpose system call interposer, it suffers from prohibitive per-
formance overhead due to frequent context switches and the need
to issue multiple system calls even for basic operations, such as ac-
cessing a tracee’s memory [57, 76, 77, 125, 140, 157]. Consequently,
it is not a viable all-around solution, particularly in use cases where
performance is critical.

SUD is a relatively recent Linux mechanism that enables system
call interposition by delivering a SIGSYS signal to a user-space
handler when a system call is invoked. SUD operates at the thread
level and can be enabled using the prctl system call [18]. Each
thread can enable or disable interposition via a dedicated selector
byte in user space, which dictates whether system calls made by that
thread should trigger a signal or proceed normally. Optionally, SUD
bypasses interposition entirely for system calls made from within
a designated address range in the application, regardless of the
selector’s current value. This allowlisted address range is typically
reserved for trusted or internal code paths where interposition is
either unnecessary or could interfere with control flow.

In a typical setup, the SIGSYS handler begins by disabling in-
terposition through the selector, executes the interposer logic,
and then re-enables interposition before returning—ensuring that
subsequent system calls made by the application are intercepted as
expected. To prevent recursive triggering of SUD during the return
from the signal handler (via the rt_sigreturn system call [25]),
the return syscall/sysenter instruction is usually placed within
the allowlisted address range that bypasses interposition. Recent
works [77, 157], however, have shown that interposer logic can
also be performed entirely outside the signal handler by modifying
the signal context directly, eliminating the need to exclude specific
syscall/sysenter instructions from interposition.

https://gitlab.com/tudelft-ssl/k23

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

Due to its exhaustiveness and expressiveness, SUD has been
adopted in a variety of contexts, including OS compatibility lay-
ers [27, 38] and security mechanisms [156]. However, despite these
advantages, SUD still incurs substantial overhead in user-space
applications due to signal delivery and handling—especially
for system call-heavy workloads typical of datacenter environ-
ments (e.g., high-performance servers and databases) [77, 157]. Even
though SUD outperforms ptrace by avoiding expensive context
switches, its signal-based interposition mechanism still introduces
a significant performance bottleneck in these scenarios.

2.2 System Call Interposition via Binary
Rewriting

To avoid the performance costs associated with kernel
involvement—such as additional context/mode switches—recent
approaches have explored user-space system call interposition
through binary rewriting [31, 45, 76, 114, 115, 130]. Specifically on
x86-64, these techniques work by rewriting syscall/sysenter
instructions that trigger system calls to jmp/call instructions
that redirect execution to the interposer code, allowing system
call interposition entirely within user space. However, this is
widely regarded as an open and challenging problem [44, 45, 109],
particularly on architectures with variable instruction lengths
like x86-64, where precise disassembly and rewriting are both
difficult and error-prone. Among recent efforts, zpoline [157]
and lazypoline [77] take important steps toward addressing
long-standing challenges in binary rewriting. In the following
paragraphs, we take a closer look at these two systems.

2.2.1 A Closer Look at zpoline. Binary rewriting techniques have
traditionally faced a number of challenges, often resulting in incor-
rect transformations or unpredictable execution behavior. These
difficulties are especially pronounced on architectures with variable-
length instructions, such as x86-64 [31, 44, 45, 77, 109, 157]. For
instance, syscall and sysenter instructions are only two bytes
long, whereas the jmp and call instructions typically used for
redirection to arbitrary addresses are significantly larger. This mis-
match in instruction size forces rewriting tools to make optimistic
assumptions about code and memory layout, often requiring them
to relocate and transform multiple instructions [45, 76, 114, 115].

Yasukata et al. proposed zpoline, a binary rewriting approach
for x86-64 that specifically addresses the instruction size mismatch
between two-byte syscall/sysenter instructions and the longer
redirection instructions [157]. zpoline replaces each syscall
(0x0f 0x05 opcode) and sysenter (0x@f @x34 opcode) instruction
with a two-byte callq *%rax instruction (0xff @xd@ opcode). This
transfers control to a virtual address between 0 and N (typically
N < 500), leveraging the fact that x86-64 applications store the
system call number in rax before invoking a system call.

zpoline constructs a trampoline region starting at virtual ad-
dress 0, beginning with a nop sled that leads into a jump to the
interposer’s code. The interposer retrieves the system call number
and arguments from the registers, and obtains the address of the
instruction following the replaced syscall/sysenter instruction-
from the stack. As a result, zpoline naturally enables per-system
call and argument-specific logic—a fundamental requirement for
general-purpose system call interposition.

243

Middleware 25, December 15-19, 2025, Nashville, TN, USA

2.2.2 A Closer Look at lazypoline. Despite its advantages,
zpoline still depends on precise static binary disassembly [10]
and only operates on code that is present at load time, including
the main executable and any initially loaded shared libraries. Such
disassembly is inherently challenging, particularly on architectures
with variable-length instructions such as x86-64, where the bytes
representing a syscall/sysenter instruction may be embedded
within a larger, unrelated instruction encoding, or may be misidenti-
fied due to alignment issues [44, 45, 109]. In addition, zpoline only
identifies, and consequently rewrites, syscall/sysenter instruc-
tions in this initial set of code, failing to interpose code that is gen-
erated or loaded later at runtime—such as dynamically generated
code or code loaded via mechanisms like d1open and d1lmopen [4]—
which is common in various use cases [32, 33, 35, 36, 154, 160]. To
address these limitations, Jacobs et al. [77] proposed lazypoline,
a system call interposer that combines zpoline-style rewriting
with SUD. Unlike zpoline, lazypoline does not rely on static bi-
nary disassembly. Instead, it uses SUD to interpose the first time
a syscall/sysenter instruction is executed and subsequently
rewrites that instruction in a zpoline-like fashion. This design
sidesteps the challenges of imprecise disassembly and supports
interposition of code that is dynamically generated or loaded later
at runtime.

3 Threat Model

We assume an application running under an in-process system call
interposer such as zpoline or lazypoline. We make no assump-
tions about the application itself. We consider an adversary whose
goal is to exploit vulnerabilities in the target program to subvert or
abuse the interposer. Because the interposer shares the application’s
address space, attackers can do so by manipulating its internal state
(e.g., the selector) or its external state (e.g., environment variables).
Following prior work [77, 157], we assume that an orthogonal iso-
lation mechanism protects the interposer’s internal state. For exam-
ple, Protection Keys for Userspace (PKU) [49, 50, 69, 70, 83, 92, 111—
113, 124, 127, 135, 144, 156] can be used to enforce such protection.
Attacks on the interposer’s internal state are therefore out of scope.
We instead focus on adversaries who manipulate the interposer’s ex-
ternal state. Importantly, all of the System Call Interposition Pitfalls
remain relevant regardless of the isolation mechanism protecting
the internal state, as they explicitly target the external environment
itself. Mitigations like software diversity [88] and CFI [42, 53] raise
the bar against manipulation of the interposer’s external state, but
we do not rely on such defenses.

4 System Call Interposition Pitfalls

Both zpoline and lazypoline claim to provide flexible system call
interposition [77, 157]. We conduct an in-depth analysis of both
solutions and identify several design and implementation flaws.
Although a few of these shortcomings have been previously ac-
knowledged by their authors, we also uncover a range of previously
undocumented issues. We describe these pitfalls (P1-P5) in detail
below. To support our analysis, we developed Proof-of-Concept
(PoC) programs and reference real-world use cases affected by these
issues. While other binary rewriting techniques are also suscep-
tible to these pitfalls, our examination centers on lazypoline

Middleware 25, December 15-19, 2025, Nashville, TN, USA

and zpoline, as they overcome several limitations of alterna-
tive binary rewriting approaches [45, 157].

4.1 Pl1—Interposition Bypass

Both zpoline and lazypoline rely on LD_PRELOAD [13] to inject
their fast interposition libraries into target processes. This simple
yet powerful technique allows to interpose transparently—without
kernel patches or special compiler support—by instructing the dy-
namic linker/loader to load specified libraries before others. Al-
though LD_PRELOAD is most often used to override existing sym-
bols in the standard library, it can also introduce entirely new
functionality even when no symbol collisions occur. As a result,
it provides a convenient mechanism for bootstrapping user-space
system call interposition at process startup. However, the mech-
anism is fragile: LD_PRELOAD can be cleared or modified before
launching a new process, preventing the interposition library from
being loaded and thereby bypassing system call interposition. At-
tackers can exploit this behavior in several ways, such as by calling
unsetenv ("LD_PRELOAD") [34] or by invoking execve with a NULL
or sanitized environment [6, 7]. As a result, the interposer is silently
disabled in the new process. This behavior is illustrated in Listing 1.

pid_t pid = fork();

if (pid == @) {
char *args[] = {"/bin/1s", NULL};
char xenv[] = {NULLZ};
// Empty environment: LD_PRELOAD

// not inherited from parent
execve("/bin/1s", args, env);
perror ("execve failed");
exit (EXIT_FAILURE);

} else {
wait(9);
printf("Child completed.\n");

Listing 1: execve invoked with a NULL environment clears
all environment variables, including LD_PRELOAD, thereby
preventing the interposition library from being loaded.

#define PR_SET_SYSCALL_USER_DISPATCH 59
#define PR_SYS_DISPATCH_OFF
#define PR_SYS_DISPATCH_ON 1

// Disable SUD-based system call interposition
syscall (__NR_prctl, PR_SET_SYSCALL_USER_DISPATCH,
PR_SYS_DISPATCH_OFF, o, 0, 0, 0);

Listing 2: Disabling SUD-based system call interposition.

Crucially, these patterns also occur in benign software. For in-
stance, launching a process with an empty environment disables
all interposition mechanisms that rely on environment variables.
We first encountered this in our own test suite: a utility designed
to verify interposition functionality inadvertently disabled our in-
terposing library by invoking execve with an empty environment.
This demonstrates that even non-malicious or debugging-oriented
code can unintentionally bypass LD_PRELOAD-based mechanisms.
We refer to this class of interposition bypass as P1a. Notably,
this behavior affects not only system call interposition but any
mechanism that specifically depends on LD_PRELOAD. As a re-
sult, any mechanism relying on LD_PRELOAD can be disabled using

244

Jests Maria Gomez Moreno et al.

the same technique—unless proper safeguards are in place (see Sec-
tion 5.2). Additionally, 1azypoline enables another avenue for
bypass: even if LD_PRELOAD successfully injects the interposing
library, system call interposition can still be disabled by explicitly
deactivating SUD via the prctl system call. We refer to this bypass
technique as P1b, and illustrate it in Listing 2.

zpoline’s and lazypoline’s system call interposition can
be bypassed either intentionally (e.g., by an attacker) or
unintentionally (e.g., due to common application behavior).

4.2 P2—System Call Overlook

Both zpoline and lazypoline claim to provide exhaustive system
call interposition—a claim that does not hold in practice. First, as
shown in [77], zpoline fails to rewrite syscall/sysenter instruc-
tions generated after its initial disassembly and rewriting routine.
Additionally, it may overlook syscall/sysenter instructions that
are not identified due to well-known limitations in binary disassem-
bly [44, 45, 109]. We refer to system call overlooks caused by these
disassembly limitations as P2a. Moreover, both interposers fail to
intercept any system calls issued before their interposition library
loads. This limitation affects not only zpoline and lazypoline
but any mechanism relying solely on library injection—unless
additional measures are employed (see Section 5.2). In addi-
tion, both lazypoline and zpoline fail to intercept vdso-based
calls [37], which execute entirely in user space without a tradi-
tional syscall/sysenter instruction. We refer to these system
call overlooks—those occurring prior to or during library load-
ing and those while using the vdso interface—as P2b.

While these limitations may not appear critical at first glance,
they introduce blind spots that undermine the exhaustiveness of
interposition. A survey of prior literature reveals several scenar-
ios that typically necessitate interposition of all system calls—
including those issued before and during library loading, as well
as those made via vdso. These scenarios span domains such as
reliability [76, 115] and security [80, 123, 137-139, 141, 143, 153].
For example, Bunshin [153] employs an N-variant execution en-
gine that distributes runtime security checks across multiple pro-
gram variants, ensuring checks never conflict while minimizing
performance penalties through parallel execution. To guarantee con-
sistency across variants, Bunshin requires exhaustive system call
interposition—capturing calls issued both before and during library
loading, as well as vdso-based calls. Traditionally, N-variant execu-
tion engines rely on ptrace for this purpose [51, 75, 100, 138, 141],
incurring prohibitively high overhead. Bunshin instead adopts
OS-level modifications to achieve exhaustive interposition with-
out ptrace’s performance drawbacks. Moreover, the dynamic
linker/loader has been identified as a frequent target for attack-
ers [66, 106], reinforcing the need for interposition mechanisms that
operate reliably from the very start of process execution—especially
in security-critical contexts such as sandboxing [72, 135, 144, 156].

Neither zpoline nor lazypoline reliably interpose all sys-
tem calls, creating critical blind spots. This limitation un-
dermines use cases that demand exhaustive interposition.

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

Rewrite if it looks
like a

instruction|

Valid syscall/
sysenter instruction

i

Rewrites Code
(Corruption)

< -

Partial syscall/

sysenter instruction

+4.
7

Rewriter

Emdedded data
resembling
call/

Rewrites Data
(Corruption)

D

Application
executable
memory

Figure 1: zpoline and lazypoline may misidentify embed-
ded data or partial instructions containing syscall/sysenter
opcodes as legitimate syscall/sysenter instructions.

4.3 P3—Instruction Misidentification

In addition to overlooking system calls from specific
syscall/sysenter instructions (see Section 4.2), we also found that
both interposers are prone to misidentifying syscall/sysenter
instructions—either by confusing them with other instructions or
by mistaking embedded data for syscall/sysenter instructions.
This can result in unintended and potentially harmful rewrites of
memory regions that should remain untouched.

zpoline inherits the well-known limitations of static binary
disassembly [44, 45, 109]. It may incorrectly rewrite partial in-
structions, i.e., byte streams where syscall/sysenter opcodes
appear inside other instructions, or data. On architectures like
x86, where instructions can begin at any byte boundary, such subse-
quences may be executed as genuine syscall/sysenter. Likewise,
zpoline may misidentify data as instructions. Prior work [99, 110]
shows that embedding data in code pages is widespread (e.g., jump
tables), which amplifies the risk of misidentification and corrup-
tion, threatening security, correctness, and stability of the target
application. We refer to these misidentifications as P3a.

lazypoline improves upon this by avoiding reliance on impre-
cise static disassembly. Instead, it uses SUD to dynamically inter-
cept and rewrite syscall/sysenter instructions at runtime. How-
ever, we found that persistent attackers can still exploit this rewrit-
ing mechanism. Because data embedded within executable code
pages [99, 110] may coincidentally match the byte pattern of a
syscall/sysenter instruction, an attacker who hijacks control
flow can redirect execution to such data. The CPU then treats it
as a valid syscall/sysenter instruction, causing lazypoline’s
SUD-based handler to intercept and rewrite it—corrupting legiti-
mate application data. Likewise, an attacker can redirect control
flow to partial instructions with syscall/sysenter instruction
opcodes (partial syscall/sysenter instructions), again resulting
in unintended code rewriting. We refer to these attack-induced
misidentifications as P3b.

Figure 1 illustrates an application containing valid
syscall/sysenter instructions, along with partial instructions
containing syscall/sysenter instruction opcodes (i.e., partial
syscall/sysenter instructions) and embedded data that re-
sembles syscall/sysenter instructions. Unfortunately, both
interposers may misidentify the latter two, which can result in
corruption of code and data.

245

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Both zpoline and lazypoline are susceptible to
syscall/sysenter instruction misidentification, which
can lead to code or data corruption—due to disassembly
limitations (P3a) and attacker-controlled control-flow
redirection (P3b), respectively.

4.4 P4—NULL Access Termination Pitfalls

In typical Linux applications, the page at virtual address 0 is un-
mapped. Any access to this region—what the zpoline authors call
a NULL memory access [157]—triggers a segmentation fault, ter-
minating the process. Both zpoline and lazypoline, however,
repurpose this page by mapping a trampoline at address 0, so reads,
writes, or instruction fetches no longer reliably fault. To compen-
sate, both interposers mark the trampoline page as eXecute-Only
Memory (XOM) [58, 59, 87, 99, 104, 144] using Protection Keys for
Userspace (PKU) [1], preserving the fault-on-NULL-read/write be-
havior—but not execution. lazypoline implements no guard
against unintended code fetches into the trampoline, a short-
coming we call P4a. Because of P4a, bugs that would ordinarily
raise a segmentation fault now divert control into the trampoline,
turning simple NULL-code-pointer errors into inscrutable debugging
nightmares. Furthermore, many kernel and low-level mechanisms
assume page 0 is off-limits—for example, they rely on NULL faults
to detect or halt exploits—so remapping it without proper runtime
checks risks silently undermining these critical mechanisms.

In contrast, zpoline performs a runtime check at the interposer’s
entry point to verify whether the call originated from a known,
rewritten system call site, terminating the process if the check
fails. This mechanism uses a bitmap that spans the entire virtual
address space, allowing fast validation through bitwise operations.
Although physical memory is only allocated for portions of the
bitmap that are actually used, the reserved virtual memory can
still introduce non-negligible overhead. This memory overhead
becomes more pronounced in multi-process settings, where each
process maintains its own bitmap instance. In particular, it can
pose challenges for low-end devices or scenarios where system call
interposition is applied broadly across many applications. We refer
to this problem as P4b.

lazypoline performs no checks on unintended execution
within the memory page starting at virtual address 0, while
zpoline introduces fast runtime checks—at the cost of
added memory overhead.

4.5 P5—Runtime Rewriting Pitfalls

lazypoline performs code rewriting on the fly, replacing two-
byte syscall/sysenter instructions with two-byte callq *%rax
instructions. To prevent race conditions, it uses synchronization
primitives to ensure that no two threads concurrently rewrite the
same instruction. However, upon analyzing its implementation,
we identified several serious flaws in the rewriting mechanism—
primarily related to inter-thread concurrency—despite the authors’
efforts to mitigate such issues.

First, the two-byte replacement is not guaranteed to be writ-
ten atomically, potentially leading to the execution of partially

Middleware 25, December 15-19, 2025, Nashville, TN, USA

rewritten instructions, as demonstrated in previous work [73, 74].
Second, the rewriting process does not ensure proper instruction
visibility or coherence across cores: the I-cache is not explicitly
flushed, and no instruction stream serialization is enforced (e.g.,
via mfence, cpuid, or similar barriers). As a result, modified in-
structions may not become visible to the CPU pipeline in a timely
or consistent manner—an essential requirement for correctness in
self-modifying code. Finally, memory access permissions of the
pages containing syscall/sysenter instructions targeted for mod-
ification are neither properly saved before rewriting nor reliably
restored afterward—restoration instead relies on error-prone as-
sumptions, exposing potential risks. For instance, the mechanism
does not account for XOM [87, 99, 104, 144].

In contrast, zpoline avoids all of the above issues by performing
binary rewriting once at load time—before any concurrency chal-
lenges arise. It also properly saves existing page permissions before
rewriting and restores them afterward, preserving memory access
permissions. However, this approach comes at the cost of missing
system calls invoked by any syscall/sysenter instructions
generated after this single rewriting step (see Section 4.2).

On-the-fly binary rewriting is fundamentally challenging
in modern multi-threaded and multi-core systems. These
challenges illustrate the complexity and fragility of run-
time rewriting approaches such as lazypoline.

5 K23: Making System Call Interposition
Resilient to Pitfalls

The identified pitfalls challenge several claims made by state-of-the-
art solutions [77, 157]. For instance, as demonstrated in Section 4,
both zpoline and lazypoline can corrupt code and data, and fail
to reliably interpose all system calls. To address these issues, we in-
troduce K23, a new interposer that is resilient to these pitfalls while
maintaining high efficiency. K23 employs a two-phase strategy—
comprising an offline phase and an online phase—and combines
two Linux interfaces, ptrace and SUD, with zpoline-like binary
rewriting. Specifically, K23 includes three interposition components
as shown in Table 1. At a high level, the offline phase executes the
application with representative inputs to identify and log legit-
imate syscall/sysenter instructions. During the online phase,
K23 enforces exhaustive system call interposition and selectively
accelerates handling of system calls invoked via instructions iden-
tified during the offline phase. By restricting binary rewriting
to pre-validated sites, K23 matches the performance of state-
of-the-art schemes® while sidestepping those pitfalls. In the
following sections, we detail each phase of K23 and its correspond-
ing interposition components, demonstrating how they address the
identified pitfalls.

5.1 A Closer Look at K23’s Offline Phase

During K23’s offline phase, we run the target program in a con-
trolled environment with benign inputs. The main steps are shown
in Figure 2 (steps (D—@). When a system call is invoked (1), the
kernel traps it and redirects it to libLogger (2). libLogger first

30ur evaluation verifies our claims (see Section 6.2).

246

Jests Maria Gomez Moreno et al.

Interposition When Where How
Component
libLogger Offline Phase | In-Process Sub
ptracer Online Phase | Cross- ptrace
Process
1ibK23 Online Phase | In-Process SUD & Binary
Rewriting

Table 1: K23’s interposition components, showing when they
run, where they operate, and how they achieve system call
interposition.

Trap-then-Emulate (SUD)

@

@ Q 4%
¢ syscall/ .)
" libLogger

sysenter

@

Application code

Figure 2: Main steps of K23’s offline phase. The kernel traps
each system call and forwards it to libLogger, which logs
the exact triggering syscall/sysenter instruction. libLogger
then invokes the original system call and returns its result,
and then returns control to the application.

disables SUD-based interposition via the selector (see Section 2.1)
to avoid recursive traps. It then logs the syscall/sysenter in-
struction that triggered the call (3). Finally, 1ibLogger invokes the
original system call and returns its result, re-enables SUD-based in-
terposition, and returns control to the application (4). This sequence
continues until the program terminates. To improve coverage, we
can repeat the process with different inputs, generating additional
logs.

Any exhaustive system call interposition mechanism may be
used during the offline phase. Since performance is not a concern,
we use LD_PRELOAD to inject an SUD-based interposition library
(alternatives include ptrace or seccomp). With SUD, the kernel
traps each system call and raises a SIGSYS signal in user space, in-
voking libLogger’s preinstalled handler. 1ibLogger then extracts
the virtual address of the triggering syscall/sysenter instruction
from the signal context, determines its containing memory region
(e.g., libc.so0.6) and its offset by parsing /proc/$PID/maps [20],
and records each unique (region, offset) pair. The online phase
can later map these logged pairs back to actual virtual addresses,
since offsets within a given region remain consistent across runs—
even under Address Space Layout Randomization (ASLR) [128].
Furthermore, to avoid issues with code that may not exist during
K23’s single rewriting step (see Section 5.2), e.g., dynamically gen-
erated code, libLogger records only instructions from expected

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1153562
/usr/1ib/x86_64-1inux-gnu/libc.so0.6,112
/usr/1ib/x86_64-1linux-gnu/libc.s0.6,117
‘'usr/1ib/x86_64-1inux-gnu/libc.so0.6,1153
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,115
/usr/1ib/x86_64-1linux-gnu/libc.so0.6,1157453
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1157161
/usr/1ib/x86_64-1inux-gnu/libc.so.6,943685

/usr/1ib/x86_64-1inux-gnu/libc.s0.6,1132677
/usr/1ib/x86_64-1inux-gnu/libc.s0.6,961583

Q

Log Entry:
Region: libc.so.6
Offset: 1153129

Figure 3: Log file generated for 1s. Each log entry records
the memory region and the relative offset within that region
of the syscall/sysenter instruction that triggered a system
call.

executable and non-writable regions, e.g., 1ibc.so. 6 and the ap-
plication binary. An example log generated for 1s coreutil [120] is
shown in Figure 3.

Because K23’s offline phase runs in a controlled environment,
we can ensure that all log entries correspond to legitimate
syscall/sysenter instructions. That said, libLogger is simply
an injected SUD-based interposition library. Consequently, it cannot
log instructions executed during or before the program’s library
loading (see Section 4.2). Moreover, libLogger cannot interpose
vdso-based system calls. Importantly, the goal of this phase is not to
capture every possible instruction but rather those most frequently
used. As we show in Section 5.2, the online phase is responsible for
ensuring the reliable interposition of all system calls.

We executed K23’s offline phase on five coreutils [120]—
pwd, touch, 1s, cat, and clear—as well as on four real-world
applications: nginx (branch stable-1.26) [16], lighttpd (tag
lighttpd-1.4.76) [14], sqlite (tag version-3.50.4) [26], and
redis (branch 8.0) [22]. Specifically, for the real-world applica-
tions, we adopted representative workloads proposed by their devel-
opers or from prior work [77, 135, 157]. The results are summarized
in Table 2. For the coreutils, we observed only a small number of
unique syscall/sysenter instructions—ranging from 7 for pwd to
13 for clear—which is expected given their simplicity and short ex-
ecution time. For the real-world applications, we observed between
20 and 92 instructions. This too is expected, as server and data-
base applications typically run tight loops that repeatedly invoking
the same code paths and system calls. Overall, our experiments
demonstrate that a small number of syscall/sysenter in-
structions are responsible for triggering the vast majority of
system calls.

5.2 A Closer Look at K23’s Online Phase

K23’s online phase leverages the logs generated during its offline
phase (see Section 5.1), along with Linux interfaces and binary
rewriting, to enable flexible system call interposition. An overview
of the main steps involved in this phase is illustrated in Figure 4.
During startup, we must interpose every system call—including
those issued before or during library loading (D). To do this, we
employ ptracer, a ptrace-based interposer: to our knowledge,

247

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Application #Instructions
pwd 7
touch 9
1s 10
cat 11
clear 13
sqlite 20
nginx 43
lighttpd 44
redis 92

Table 2: Number of unique syscall/sysenter instructions
logged during the offline phase for five coreutils and four
real-world applications.

ptrace is the only mechanism that provides this capability with-
out OS or hardware modifications. ptracer can interpose sys-
tem calls from the program’s very first instruction. More-
over, ptracer disables vdso, forcing all vdso-based calls to use
syscall/sysenter instructions®. As a result, K23 can interpose
those calls as well. Thus, K23 fully addresses P2b: it traps sys-
tem calls invoked before or during library loading into the
kernel (O), redirects them to ptracer (2), executes each call’s
handler, and then returns control to the application (3)—even
for calls that zpoline and lazypoline miss (see Section 4.2).

Although ptrace introduces substantial runtime overhead
(see Section 2.1), library loading typically accounts for only a small
fraction of an application’s execution time>. Consequently, we em-
ploy ptracer only at startup (“ptracer: Interposition” in Figure 4).
Once K23’s fast interposition library 1ibK23 is loaded, K23 switches
to it for efficient interposition (“1ibK23: Interposition” in Figure 4)—
thereby rendering ptracer’s impact on overall performance neg-
ligible (see Section 6.2). ptracer also ensures that 1ibK23 is in-
jected into the program via LD_PRELOAD. To achieve this, ptracer
intercepts the execve system call and checks the LD_PRELOAD en-
vironment variable. If LD_PRELOAD does not already include our
library, ptracer overwrites it to force injection. Consequently,
ptracer thwarts any attacker or benign code that attempts to mod-
ify environment variables to silently disable injection of our fast
interposition library—effectively addressing P1a (see Section 4.1).
Such safeguards apply not only to system call interposition
but to any mechanism relying on LD_PRELOAD.

Once 1ibK23 is loaded, its initialization routine notifies ptracer,
and ptracer detaches itself (see Section 5.3). Then, 1ibK23 in-
stalls a trampoline at virtual address 0—similar to zpoline and
lazypoline (see Section 2.2)—and performs a one-time, zpoline-
style rewrite (4) of each valid syscall/sysenter instruction identi-
fied during K23’s offline phase (see Section 5.1). In addition, 1ibK23
saves existing page permissions before rewriting and restores them
afterward, following a strategy similar to zpoline (see Section 4.5).
By restricting rewriting to these pre-validated sites in a single
4This applies throughout the program’s execution. We also used library interposition

and a custom glibc to achieve the same result.
5An exception is programs with extremely short execution times.

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Jests Maria Gomez Moreno et al.

[ptracer: Interposition] .

[IibK23: Single Rewriting Step] '

[libK23: Interposition]

Trap-then-Emulate (ptrace)

-

L syscall/ @ E lle23
1§ sysenter . (Rewriter)
@ Q + :
@ ptracer .
syscall/ !
sysenter E
: syscall/

Application code ' sysenter

®

Trap-then-Emulate (SUD)

E \‘ syscall/ @
Logs E 1E sysenter @

; ® Q + ¥

5 calla | 6 1ibK23

: *3rax - (Interposer)

: 5 A

callg *%rax L
' Application code

Figure 4: Main steps of K23’s online phase. First, ptracer interposes every system call before and during library loading (“ptracer:
Interposition”) and then detaches once 1ibK23 is loaded. Next, 1ibK23 installs a trampoline (similar to zpoline/lazypoline),
performs a single, selective rewrite of the instructions logged in the offline phase (“1ibK23: Single Rewriting Step”), and
configures an SUD-based fallback for any syscall/sysenter sites missed during the offline phase. In the example, one system
call is interposed via rewriting and another via the fallback; in both cases, each call is redirected to the same interposition code

(“1ibK23: Interposition”).

step and preserving memory access permissions, K23 simulta-
neously addresses P3a, P3b, and P5 (see Sections 4.3 and 4.5).

As noted in Section 5.1, K23’s offline phase may still miss
some syscall/sysenter instructions. Consequently, immediately
after step (@) (not shown in Figure 4), 1ibK23 installs an SUD-
based interposer as a fallback—similar to lazypoline [77]. Unlike
lazypoline, however, 11bK23 does not use SUD for discovering or
rewriting instructions, since it is prone to attack-induced misiden-
tifications (see Section 4.3). Instead, 1ibK23 employs SUD solely to
interpose any syscall/sysenter instructions missed during the
offline phase. This hybrid catch-all mechanism ensures no sys-
tem call is overlooked and thereby effectively addresses P2a
(see Section 4.2).

Once 1ibK23 completes rewriting and SUD setup, it takes over
all system call interposition (“1ibK23: Interposition” in Figure 4).
If the triggering syscall/sysenter instruction was logged during
the offline phase, it has already been rewritten to call *%rax'5),
so invoking it jumps directly into 1ibK23 (6} Then 1ibK23 dis-
ables SUD-based interposition via the selector (see Section 2.1),
avoiding recursive traps. It then handles the system call, and finally
re-enables SUD-based interposition just before returning control
to the application '7). On the other hand, if a syscall/sysenter
instruction was not encountered during the offline phase (5), the
SUD-based fallback solution redirects execution into 1ibK23 (6). Af-
ter handling the call, 1ibK23 returns control to the application (7).
During (6 and (7), 1ibK23 again uses the selector to disable and
re-enable SUD-based interposition as needed. Regardless of whether
a syscall/sysenter instruction is rewritten, every system call
reaches the same interposition code, thereby guaranteeing exhaus-
tiveness. Moreover, 1ibK23 prevents the SUD-based mechanism
from being silently disabled by interposing the prctl system call
and inspecting its arguments. If 1ibK23 detects any attempt
to disable SUD-based interposition (see Listing 2), it aborts
immediately—effectively addressing P1b (see Section 4.1).

248

5.3 Implementation Details

In this section, we describe several key implementation aspects
omitted above but critical to K23’s functionality.

First, K23 protects its trampoline (at virtual address 0) from NULL
read/write accesses using Protection Keys for Userspace (PKU) [1],
just as zpoline and lazypoline do (see Section 4.4). Second, we
leverage d1mopen [5] to load 1ibK23 into its own namespace—again
following the approach used in prior work [77, 157]. This prevents
recursive redirection when the interposer invokes shared libraries
that the application also uses—libraries which may themselves
contain rewritten syscall/sysenter instructions. For more on
namespace isolation, see Yasukata et al. [157].

Regarding the issues described in Section 4.4, 1ibK23 performs a
runtime check at its entry point—verifying that each call originates
from a known, rewritten site—and aborts the process if the check
fails. Unlike zpoline, which maintains a large bitmap covering
the entire address space, 1ibK23 uses a hash set containing only
the instructions logged during the offline phase (see Section 5.1).
Because the set is bounded by the offline logs (see Table 2), its
memory overhead is negligible. Consequently, K23 effectively
addresses both P4a and P4b. We employ tsl::robin_set, an
alternative high-performance hash set, to store valid instruction
addresses and perform these checks [3].

Although not stated earlier, ptracer is a cross-process inter-
poser, whereas 1ibK23 operates in-process (see Table 1). Before
detaching, ptracer hands off any accumulated state—such as the
number of system calls issued during startup, open file descriptors,
and so on—to 1ibK23. To accomplish this, 1ibK23 issues a fake
system call—i.e., a non-existent system call number— that the ker-
nel naturally redirects to ptracer. ptracer then transfers its state
via OS primitives (e.g., the process_vm_writev system call [19]).
Once that completes, 1ibK23 issues a second fake system call to
signal ptracer to detach, after which 1ibK23 actively performs
exhaustive system call interposition.

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

Pitfall zpoline [157] | lazypoline [77] | K23

P1 - Interposition Pla X X v
Bypass (Section 4.1) P1b v X v
P2 - System Call P2a X v 4
Overlook (Section 4.2) P2b X X v
P3 - Instruction P3a X v v
Misidentification (Section 4.4) [p3p 7/ X 7
P4 - NULL Access Termination | P4a v X v
Pitfalls (Section 4.4) P4b X v/ v/
P5 - Runtime Rewriting

Pitfalls (Section 4.5) Ps v X v

Table 3: Comparison of interposers against System Call In-
terposition Pitfalls (see Section 4). /" indicates the pitfall is
either specifically handled or not relevant to the interposer,
while X indicates it is not handled.

This mechanism is highly flexible and easily extensible—fake sys-
tem calls can carry arguments, and ptracer can leverage various
OS abstractions to access 1ibK23’s state (memory, registers, etc.).
For security, ptracer verifies that both fake system calls originate
from 1ibK23 and not from potentially compromised code (e.g., the
dynamic linker/loader). In addition, because K23 relies critically
on the integrity of the offline logs, we mark the log directory im-
mutable once the offline phase completes, and keep it so for the
program’s entire lifetime. Therefore, we close the door to new
attack surfaces. To further harden our solution, 1ibK23 switches
to a dedicated stack upon entry (regardless of whether the trigger-
ing instruction was rewritten). This stack-switching technique has
proven effective in prior security work [72, 113], and we rely on or-
thogonal in-process isolation mechanisms to protect that stack and
other sensitive interposer’s internal state, such as the selector and
the hash set containing legitimate syscall/sysenter instructions
identified during the offline phase (see Section 3).

Moreover, if the application invokes execve again to spawn a
new process, 11bK23 restarts and re-attaches ptracer just before
executing the execve call. This ensures that the entire online phase
can be repeated for the newly spawned process (see Section 5.2).
Similarly, although not previously discussed or shown in Figure 2,
a simple ptracer-like component guarantees that 1ibLogger is
always injected, even if benign code clears or modifies LD_PRELOAD.
This component does not record any instructions; its sole purpose
is to prevent silent disabling of 1ibLogger in newly spawned pro-
cesses (see Section 4.1). Note that this is purely to maximize our
coverage of system calls, not for security enforcement. Finally, to
avoid executable stack issues, we adopt practices proposed in pre-
vious work while building 1ibK23 [158].

6 Evaluation

We evaluate K23 along two dimensions: first, we assess whether
it successfully addresses the System Call Interposition Pitfalls in-
troduced in Section 4; second, we conduct an extensive perfor-
mance evaluation. Throughout our evaluation, we also compare
K23 against zpoline [41] and lazypoline [12].

6.1 Pitfall-Oriented Comparison

To evaluate each pitfall, we (i) analyzed the publications and open-
source prototypes of zpoline and lazypoline, and (ii) developed

249

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Proof-of-Concept (PoC) programs that trigger these issues. In Ta-
ble 3, we illustrate the comparison of zpoline, lazypoline, and
K23 against pitfalls.

Specifically, P1a affects both zpoline and lazypoline, whereas
P1b only affects lazypoline—it is irrelevant to zpoline because
zpoline does not use SUD (see Sections 2.2 and 4.1). In contrast, K23
effectively addresses both pitfalls (see Section 5.2). Likewise, prior
work [77, 157] highlights zpoline’s shortcomings with respect to
P2a, and neither zpoline nor lazypoline address P2b (see Sec-
tion 4.2); again, K23 successfully handles both (see Section 5.2).
Interestingly, we found that even simple utilities like 1s [120]
issue over 100 system calls during startup before the interpo-
sition library is loaded, demonstrating that any mechanism
delaying interposition until after library load will inevitably
miss these calls (see Section 4.2).

Both zpoline and lazypoline rewrite executable memory
when it resembles syscall/sysenter instructions—due to limi-
tations in disassembly (P3a) or hijacked control flow (P3b), re-
spectively (see Section 4.3). By comparison, K23 performs a sin-
gle selective rewrite of only those syscall/sysenter instructions
pre-validated during the offline phase, eliminating both classes of
misidentification (see Sections 5.1 and 5.2).

Meanwhile, lazypoline fails to handle P4a, though it is not
affected by P4b, as it does not retain a bitmap of valid rewritten
instructions. The zpoline authors acknowledge P4b and propose al-
ternative, slower strategies that reduce memory overhead [157]. K23
resolves both P4a and P4b by rewriting only syscall/sysenter
instructions identified during the offline phase, and maintaining an
optimized hash set of their virtual addresses (see Section 5.3). As Ta-
ble 2 shows, K23 identified only a handful of instructions (between
7 and 44 in our experiments) during its offline phase—keeping the
memory state required for instruction checks extremely low.

Lastly, lazypoline does not address P5. By contrast, zpoline
sidesteps this pitfall by rewriting every detected syscall/sysenter
instruction in one upfront pass (see Section 4.5)—at the cost of miss-
ing any system calls invoked by instructions introduced afterward
(see Section 4.2). K23 addresses P5 through a single rewriting step
and careful design and implementation choices (see Section 5.2).

These limitations constrain the applicability of both zpoline
and lazypoline (see Section 4). K23, on the other hand, addresses
all of these pitfalls while matching the efficiency of zpoline and
lazypoline (see Section 6.2), making it a viable, universal system
call interposition solution. Importantly, the pitfalls we identify are
not exclusive to zpoline and lazypoline; they may also affect
other approaches, even beyond system call interposition. For in-
stance, any mechanism relying on LD_PRELOAD is similarly
affected (see Section 4.1). This broadens the impact of our find-
ings and highlights the generality of our proposed solutions.

6.2 Performance Evaluation

We conducted our experiments on a DELL Precision 7960 work-
station equipped with a 12-core Intel Xeon w5-3425 CPU running
at 3.20 GHz (latest firmware) and 64 GB of RAM. To minimize
measurement noise, we disabled Turbo Boost, Hyper-Threading,
and CPU frequency scaling [48]. The system ran Ubuntu 22.04.5
LTS with the Linux 6.8.0-85 kernel. We evaluated the performance

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Variants Extra Features
zpoline-default -
zpoline-ultra NULL Execution Check
K23-default -
K23-ultra NULL Execution Check
NULL Execution Check

& Stack Switch
Table 4: Variants of zpoline and K23 with their additional
features beyond the respective default configurations. The
“NULL Execution Check” and “Stack Switch” are discussed
in Section 4.4 and Section 5.3, respectively. ~default variants
are best suited for high-performance, low-overhead envi-
ronments, while -ultra and -ultra+ are more suitable for
security- and debugging-critical scenarios.

K23-ultra+

of K23 against zpoline and lazypoline using both microbench-
marks and macrobenchmarks. Each experiment was executed 10
times; we discarded the maximum and minimum values as outliers,
then computed the geometric mean of the overhead relative to a
native execution baseline. To capture variability, we also report the
standard deviation as a percentage of the mean. For K23, we first per-
formed its offline phase by running the relevant microbenchmarks
and macrobenchmarks multiple times. For macrobenchmarks, we
used widely adopted workloads from prior work [77, 135]. Over-
all, the offline phase completed within seconds to a few minutes,
depending on the specific benchmark.

Additionally, we evaluated different configurations of zpoline
and K23. Specifically, we considered two variants of zpoline:
zpoline-default, which omits NULL execution checks, and
zpoline-ultra, which includes them. For K23, we evaluated three
variants: K23-default, which performs neither NULL execution
checks nor stack switching; K23-ultra, which adds NULL execu-
tion checks; and K23-ultra+, which includes both NULL execution
checks and stack switching. Aside from these specific differences,
all variants behave identically to their respective default config-
uration. We evaluate these variants for two reasons: (i) to isolate
and quantify the performance cost of individual features, and (ii) to
demonstrate the flexibility of each interposer in adapting to specific
use cases, e.g., ~ultra and -ultra+ variants are best suited for
security- and debugging-critical scenarios. The variants are sum-
marized in Table 4. We also evaluated SUD in depth, both when it
actively interposes system calls and when interposition is disabled
using the selector. This allows us to demonstrate: (i) that SUD is
unsuitable for use cases where interposition performance is critical,
and (ii) to better understand the additional overhead introduced by
lazypoline and K23 in comparison to zpoline.

Since all interposers offer equivalent fine-grained control over ap-
plications (e.g., deep argument inspection, fast access to application
memory, etc.), we measure overhead using an empty interposition
function that simply invokes the original system call and returns
its result, following the methodology of prior work [77]. This setup
isolates the cost of the interposition mechanism itself, which is the
primary focus of our evaluation.

Finally, we note that all benchmarks are designed to re-
flect high-intensity scenarios—such as system call stress tests

250

Jests Maria Gomez Moreno et al.

Overhead

1.1267x (+0.042%)
1.1576% (+0.083%)

Mechanism

zpoline-default
zpoline-ultra

lazypoline 1.3801% (+0.040%)
K23-default 1.2788x (+£0.056%)
K23-ultra 1.3919x (£0.072%)
K23-ultra+ 1.3948x (0.036%)
SUD-no-interposition 1.2269X (+0.045%)
SUD 15.3022x (0.036%)

Table 5: Microbenchmarking overhead relative to native exe-
cution (lower is better). Overhead is shown as a multiplicative
factor; standard deviation is in parentheses.

and data center-like workloads—to evaluate interposers under
extreme operating conditions.

6.2.1 Microbenchmarks. For microbenchmarking, we created a
system call stress test using a non-existent system call (system call
number 500), which we invoked 100M times. We selected this call
because it spends minimal time in the kernel, thereby emphasiz-
ing the overhead introduced by each interposition technique. All
results are presented in Table 5. As shown in Table 5, SUD incurs
the highest overhead at 15.3022x relative to native execution. Both
zpoline-default and zpoline-ultra are the most efficient inter-
posers, with overheads of 1.1267X and 1.1567X, respectively. Next is
K23-default at 1.2788X, followed by lazypoline at 1.3801x. The
K23-ultra(1.3919x) and K23-ultra+ (1.3948X) variants introduce
slightly higher overhead. Nonetheless, all K23 variants—as well as
lazypoline—significantly outperform SUD.

Interestingly, K23-default is faster than lazypoline, due to
optimizations in K23’s trampoline code that save CPU cycles. In
particular, K23 takes advantage of the fact that the kernel clobbers
the rcx and r11 registers during system call execution on x86-64
platforms, allowing it to reuse them without the need for preserva-
tion. Furthermore, the runtime overhead of zpoline-ultrarelative
to zpoline-default is smaller than that of K23-ultra relative to
K23-default. This discrepancy is attributed to our decision to use
a hash set rather than a bitmap, trading slightly higher runtime
cost for reduced memory overhead (see Section 4.4).

Following prior work [77], we also measured the overhead of SUD
when initialized but with interposition disabled via the selector
(“SUD-no-interposition” in Table 5). These results confirm that the
performance degradation observed in both 1azypoline and all K23
variants stems primarily from relying on SUD as a fallback mecha-
nism, even when it does not actively interpose system calls. Specif-
ically, once SUD is initialized, all system calls follow a slower path
upon entering the kernel. Our findings align with those reported
in previous work [77, 157].

6.2.2 Macrobenchmarks. Following the microbenchmarks, we eval-
uated the performance impact of system call interposition tech-
niques on real-world, system call-intensive workloads. Specifi-
cally, for macrobenchmarking, we assessed the performance of
zpoline (in two variants; see Table 4), lazypoline, K23 (in three
variants; see Table 4), and SUD on four real-world applications:

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

Middleware ’25, December 15-19

, 2025, Nashville, TN, USA

Application Native zpoline-default | zpoline-ultra lazypoline K23-default K23-ultra K23-ultra+ SuD
(workload) (req/s) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%) rel. (%)
nginx
(1 worker, 0 KB) 184762 (+0.65%) 99.05 (+0.40%) 98.40 (£1.09%) | 97.85 (+0.65%) | 97.94 (£0.68%) | 97.29 (£0.59%) | 96.70 (£0.62%) | 51.29 (+0.45%)
nginx
(1 worker, 4 KB) 139709 (+0.42%) 96.73 (+0.53%) 96.14 (£0.39%) | 96.04 (£0.39%) | 96.24 (£0.35%) | 95.89 (x0.84%) | 95.76 (£0.39%) | 45.95 (£0.99%)
nginx
(10 workers, 0 KB) | 1214421 (£1.84%) | 99.62 (+0.50%) 99.34 (£0.32%) | 98.79 (+0.86%) | 99.52 (£0.40%) | 98.39 (£0.69%) | 97.83 (£0.87%) | 53.93 (+0.29%)
nginx
(10 workers, 4 KB) | 830426 (+0.24%) 98.83 (+0.45%) 98.76 (£0.26%) | 98.14 (£0.38%) | 98.59 (£0.31%) | 98.12(x0.24%) | 98.23 (£0.27%) | 53.97 (+0.10%)
lighttpd
(1 worker, 0 KB) 189729 (+0.59%) 98.76 (+£0.65%) 99.48 (£0.88%) | 98.23 (+0.73%) | 99.15 (£0.64%) | 97.89 (£1.46%) | 97.50 (£0.69%) | 61.25 (+0.13%)
lighttpd
(1 worker, 4 KB) 147927 (+0.42%) 99.28 (+0.86%) 98.37 (£0.58%) | 97.93 (£0.59%) | 98.56 (£0.67%) | 98.01 (x0.47%) | 97.62 (£0.55%) | 61.62 (+0.36%)
lighttpd
(10 workers, 0 KB) | 1444141 (+£0.34%) | 98.77 (£0.69%) 98.60 (£0.63%) | 98.18 (+0.69%) | 98.16 (£0.76%) | 98.36 (£0.39%) | 97.69 (£0.49%) | 59.83 (+0.19%)
lighttpd
(10 workers, 4 KB) | 976989 (+0.19%) 99.17 (+0.26%) 98.98 (+0.24%) | 98.67 (£0.16%) | 99.01 (£0.32%) | 98.65 (£0.34%) | 98.62 (£0.37%) | 65.06 (+0.18%)
redis
(11/0 thread) 174613 (+0.64%) | 100.00 (+0.21%) 99.93 (£0.21%) | 99.98 (£0.50%) | 100.21 (+0.31%) | 100.17 (£0.60%) | 99.90 (+0.46%) | 96.15 (+£0.47%)
redis
(6 1/O threads) 398804 (+0.19%) 99.94 (+0.18%) 99.80 (£0.00%) | 99.80 (£0.00%) | 99.97 (£0.20%) | 99.97 (£0.20%) | 99.95 (£0.19%) | 35.75 (+0.07%)
sqlite
(speedtest1, size 800) N/A 98.12 (£0.19%) 97.80 (£0.19%) | 97.31 (+0.18%) | 97.56 (£0.16%) | 97.13 (£0.12%) | 97.20 (£0.14%) | 55.90 (+0.60%)
geomean N/A 98.93 98.27 [98.26 98.62 97.96 97.90 [56.70 |

Table 6: Macrobenchmark results for interposers across server and database workloads. Each row reports the native throughput
(requests per second) and the throughput relative to native (% of native; native = 100%) for zpoline, lazypoline, K23, and
SUD. For sqlite, which is not throughput-oriented, we instead report relative runtime performance versus native (computed

native_benchmark_completion_time
under_interposer_benchmark_completion_time

as

X 100). We evaluated multiple variants of zpoline and K23 (see Table 4). Standard

deviations across runs are shown in parentheses. The bottom row reports the geometric mean of the relative metrics for each
interposer across all workloads. N/A indicates values that are not applicable or meaningful to calculate.

nginx (branch stable-1.26), lighttpd (tag lighttpd-1.4.76),
sqlite (tag version-3.50.4), and redis (branch 8.0).

For nginx and lighttpd, we tested four configurations: (i) a
single-worker server serving a static 0 KB file, (ii) a single-worker
server serving a static 4 KB file, (iii) a 10-worker server serving
a static 0 KB file, and (iv) a 10-worker server serving a static 4
KB file. We benchmarked redis in two configurations: the default
single-threaded mode (1 I/O thread) and with 6 I/O threads enabled
for request handling. Finally, we tested a single sqlite configu-
ration: a fresh 4 KiB-page sqlite database in WAL mode with
synchronous=NORMAL and no auto-checkpointing.

These configurations are designed to place interposers under ex-
treme system call-intensive conditions. For nginx, lighttpd, and
redis, we matched the number of benchmarking client threads
to the number of server workers or I/O threads. Specifically, we
used wrk for nginx and lighttpd, configured with 16 connections
per client thread and a 30-second run, and redis-benchmark (dis-
tributed with redis) in the 100% GET workload, similar to previous
work [77, 157]. Following prior work [77], we run both clients and
servers on the same physical machine. This eliminates the variabil-
ity and overhead of the network hardware/software stack, so that
our measurements focus on the overhead of system call interposi-
tion. In this setup, the benchmarking client(s) and server worker(s)
communicate directly over localhost. For sqlite, which is not a
client-server system, the benchmark naturally executes locally on
the same machine. We used the single-threaded speedtest1 bench-
mark provided upstream, with database size parameter ~size=800.
Throughout all experiments, we ensured that the relevant CPU
cores were fully saturated.

251

Table 6 presents the results of our macrobenchmark eval-
uation, reporting native throughput (in requests per second)
and relative throughput under each interposition technique.
For sqlite, which is not throughput-oriented, we instead re-

port relative runtime performance versus native (computed

native_benchmark_completion_time .
under_interposer_benchmark_completion_time X 100)' The geometric

mean (bottom row) shows that macrobenchmark trends closely
match the microbenchmark results in Table 5. For comparison,
we also include SUD, again confirming its unsuitability for sys-
tem call-intensive workloads. Overall, our findings show that K23
matches the performance of prior approaches while addressing
their limitations. By offering multiple variants, K23 lets developers
to select configurations that best meet their requirements (Table 4).

as

7 Discussion

System calls are the gateways from user space to kernel space [28].
As a result, numerous systems have been built around the system
call interface. However, as OSs and hardware continue to evolve,
these changes inevitably affect all solutions that rely on system
call interposition. For example, prior work on sandboxing [57, 72,
125, 135, 144, 156] has shown how attackers can exploit the OS
as a confused deputy—e.g., by using the open system call [17]—
to bypass hardware-enforced isolation. Our work is built around
the principle "Every System Call Counts" and aims to provide a
flexible foundation for developers building system call interposition-
based solutions.

While our solution is general in design, the current prototype tar-
gets x86-64 Linux platforms. Below, we outline several extensions
that would enable K23 to support alternative environments. First,

Middleware 25, December 15-19, 2025, Nashville, TN, USA

although our implementation uses PKU to apply XOM, it does not
depend on it. K23 is, in principle, compatible with alternative XOM
approaches [58, 59, 87]. Second, K23 currently leverages ptrace and
SUD, both of which are mature OS abstractions supported across
various architectures. In cases where these mechanisms are un-
available, kernel modifications—similar to those proposed in prior
work [52, 84, 121, 153]—could be used to support equivalent in-
terposition functionality. Similarly, our rewriting technique is cur-
rently specific to x86-64. However, alternative binary disassembly
and rewriting techniques proposed in prior work [45, 129] could
be adopted. In particular, for architectures with fixed instruction
lengths, such as ARM, disassembly-based rewriting is expected to be
less challenging than on variable-length architectures like x86-64.
Porting K23 to such architectures and evaluating its effectiveness
in those environments is an interesting direction for future work.
Likewise, supporting non-Linux operating systems that lack essen-
tial abstractions like SUD and ptrace could be achieved through
kernel or hardware modifications.

Our evaluation focuses on applications, which benefit from
widely available and standardized benchmarking suites such as
wrk [39] and ab [2]. We used these tools during K23’s offline phase
to generate instruction logs. As shown in Section 6.2.2, these logs let
us optimize the handling of most system calls invoked under realis-
tic workloads. However, not all applications have well-structured
or comprehensive benchmark suites. In such cases, a promising fu-
ture direction is to combine dynamic and static analysis to reliably
identify syscall/sysenter instructions during the offline phase,
e.g., via fuzzing and binary/source code analysis.

Finally, as discussed in Section 3, and consistent with prior
work [77, 157], we do not consider attacks targeting the inter-
poser’s internal state. A wealth of lightweight intra-process isola-
tion mechanisms exist with ultra-low runtime overhead. Prior work
has shown that such mechanisms can enforce effective isolation [93,
155], including hardware virtualization support [72, 85,97, 116, 135],
Protection Keys for Userspace (PKU) [49, 50, 69, 70, 83, 92, 111-
113, 124, 127, 135, 144, 156], underused x86 intermediate privilege
levels [89, 90], ARM Memory Domains [133], Intel Total Memory
Encryption Multi-Key (TME-MK) [134], Supervisor Mode Access Pre-
vention (SMAP) [91, 149, 150], Intel Control-flow Enforcement Tech-
nology (CET) [151, 156], ARM Memory Tagging Extension (MTE) and
Pointer Authentication Codes (PAC) [62, 81, 102], ARM Privileged
Access Never (PAN) and load/store unprivileged (LSU) [152], as
well as custom hardware designs [125, 126]. K23 is compatible with
such techniques, and we assume that developers will deploy their
preferred solution as needed.

8 Related Work

In this section, we discuss intrusive and function hooking-based
system call interposition approaches.

Intrusive approaches rely on hardware and OS modifications [8,
46, 52, 65, 72, 84, 98, 121, 125, 126, 135, 136, 142, 147, 153, 161, 162].
These techniques are highly efficient and are typically suited for
use cases where performance is critical. However, they are often
error-prone, difficult to maintain, and consequently lack flexibil-
ity. Moreover, they increase the Trusted Computing Base (TCB),
potentially compromising the security of the entire system.

252

Jests Maria Gomez Moreno et al.

Function hooking-based approaches interpose wrapper func-
tions that invoke system calls, rather than intercepting the system
calls themselves [13, 15, 55, 148, 159]. This incurs minimal perfor-
mance overhead but fails to interpose system calls issued outside
these wrapper functions. Additionally, such techniques limit the
interposer’s expressiveness, as it can only access system call argu-
ments and results via the wrapper’s function parameters and return
values. Identifying and mapping all relevant wrapper functions to
their corresponding system calls is also non-trivial, particularly in
large or complex codebases [45, 77, 157].

The Berkeley Packet Filter (BPF) [101] and its extended
version (eBPF) [71] allow custom hooks into kernel code, enabling
system call interposition and fine-grained runtime observability.
However, writing eBPF programs is more complex than writing
user-space code due to eBPF’s restricted execution environment
and its immature ecosystem compared to user-space tooling—such
as debuggers, libraries, and APIs. Moreover, despite the presence
of a verifier intended to ensure the safety of eBPF programs, these
programs still execute with kernel privileges, which exposes the
system to risk [95]. Prior research has shown that attackers have
repeatedly bypassed the verifier, exploiting vulnerabilities in the
eBPF subsystem to gain arbitrary kernel execution [132]. Notably,
eBPF has been used to enhance attackers’ capabilities [96], and to
extend the reach of existing kernel exploits [79].

9 Conclusion

In this work, we identify several fundamental design and implemen-
tation flaws—System Call Interposition Pitfalls—that affect state-
of-the-art system call interposers. For example, prior approaches
cannot reliably interpose all system calls and may even corrupt code
and data. To illustrate their impact, we develop PoC programs that
reliably trigger these issues and reference real-world use cases af-
fected by them. Guided by these findings, we design and implement
K23, a new plug-and-play interposer for x86-64 that overcomes
these pitfalls. Our evaluation demonstrates that K23 delivers per-
formance comparable to state-of-the-art interposers, while fully
addressing all their identified shortcomings.

Acknowledgments

We thank our reviewers, and especially our shepherd, Antonio Bar-
balace, for their valuable comments and suggestions, which substan-
tially improved this paper. We are also grateful to Vasileios Kemerlis,
Marios Kogias, Georgios Portokalidis, Anjo Vahldiek-Oberwagner,
and the authors of zpoline for many helpful discussions on this
and related topics, as well as for their feedback on earlier drafts
of this paper. This research was supported by the Netherlands’
National Growth Fund through the Dutch 6G flagship project “Fu-
ture Network Services”. This research has received funding from
the European Union’s Horizon Europe research and innovation
programme under the Marie Sklodowska-Curie grant agreement
No. 101206668, and under projects SafeHorizon (Grant Agreement
#101168562) and RECITALS (Grant Agreement #101168490). This
project was also funded by the Cybersecurity Research Program
Flanders.

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23 Middleware *25, December 15-19, 2025, Nashville, TN, USA

References [45] Paul-Antoine Arras, Anastasios Andronidis, Luis Pina, Karolis Mituzas, Qianyi
[1] 2025. Intel. Intel 64 and IA-32 Architectures Software Developer Manuals. Shu, Daniel 9‘“mbefgx an.d Cristian Cadar. 2022. SaBRe: Load-time Selective
[2] Last accessed 2025. ab - Apache HTTP server benchmarking tool. https: Binary Rewriting. International Journal on Software Tools for Technology Transfer

//httpd.apache.org/docs/current/programs/ab.html (2022).

[3] Last accessed 2025. A C++ implementation of a fast hash map and hash set [46] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maziéres,
using robin hood hashing. https://github.com/Tessil/robin-map and Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU
[4] Last accessed 2025. diclose, dlopen, dlmopen - open and close a shared object. Features. In USENIX Symposium on Operating Systems Design and Implementation
https://man7.org/linux/man-pages/man3/dlopen.3.html (OSDI). L. . e
[5] Last accessed 2025. dlmopen. https://man7.org/linux/man-pages/man3/ [47] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: probabilistic memory
dlmopen.3.htmll safety for unsafe languages. In ACM SIGPLAN Conference on Programming
[6] Lastaccessed 2025. environ, execl, execv, execle, execve, execlp, execvp - execute anguage Design and»Implementa'tiPn (PLDI). . .
afile. https:/linux.die.net/man/3/execve [48] Dirk Beyer, Stefan Léwe, and Philipp Wendler. 2019. Reliable benchmarking:
[7] Last accessed 2025. execve - execute program. https://man7.org/linux/man- requirements and solutions. Int. J. Softw. Tools Technol. Transf. 21, 1 (Feb. 2019),
pages/man2/execve.2.html 1-29. doi:10.1007/5s10009-017-0469-y
[8] Last accessed 2025. falco. htps://falco.org/ [49] William Blair, William Robertson, and Manuel Egele. 2022. MPKAlloc: Efficient
[9] Last accessed 2025. gdb - The GNU Debugger. https://man7.org/linux/man- Heap Meta-data Int_egrlty Thro_ugh Hardware Memory Prote_c_tlon Keys. In
pages/man1/gdb.1html Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
10] Last accessed 2025. GNU Binutils. https://www.gnu.org/software/binutils/ (D?MVA)' . . .
P gl 8
[11] Last accessed 2025. lazypoline. https://github.com/lazypoline/lazypoline (50] W}lhgm Blair, Wllham Robertson, and Manugl Egele. 2023. ThreadlLock: Native
[12] Last accessed 2025. lazypoline - commit bb@98e8ca. https://github.com/ Principal Isolation Through Mgmory Prgtectlon Keys. In ACM Asia Conference
lazypoline/lazypoline on Computer and Communications Security (ASIA CCS).
[13] Last accessed 2025. 1d.so, 1d-linux.so - dynamic linker/loader. https://man7.org/ (511 Dan'llo Bruschi, Lqrenzo Cavallaro, and An}irea Lanzi. 2007. Diversified process
linux/man-pages/mans/1d.so.8.html replicee for defeating memory error exploits. In IEEE Performance, Computing,
[14] Last accessed 2025. lighttpd. https://www.lighttpd.net/ am? Communications Conference (IPCCC).
[15] Last accessed 2025. Itrace - A library call tracer. https://man7.org/linux/man- (52] Quinn Burke, Ryan Sheatsley, Yohan Beugin, Eric Pauley, Owen Hines, Michael

Swift, and Patrick McDaniel. 2025. Efficient Storage Integrity in Adversarial
Settings. IEEE Symposium on Security and Privacy (S&P) (2025).

[53] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16.

pages/man1/ltrace.1.html
[16] Last accessed 2025. nginx. https://nginx.org/
17] Last accessed 2025. open, openat, creat - open and possibly create a file. https:
//man7.org/linux/man-pages/man2/open.2.html
[18] Last accessed 2025. prctl - operations on a process or thread. https://man7.org/

linux/man- pages/man2/prctl.2. html [54] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. 2021. Au-
[19] Last accessed 2025. process_vm_readv, process_vm_writev - transfer data toma?ing seccomp filter generation for linux applications. In Cloud Computing

between process address spaces. https://man7.org/linux/man-pages/man2/ Securzty Worksh(l)p (CCSW).

process_vm_readv.2.html [55] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R. Newton.
[20] Last accessed 2025. /proc/pid/maps - mapped memory regions. https://man?. 2017. Instruction Punning: nghtwe.lght Instrumentat_lon for X86-64. In AC_‘M

org/linux/man-pages/man5/proc_pid_maps.5.html SIGPLAN Conference on Programming Language Design and Implementation
[21] Last accessed 2025. ptrace - process trace. http://man7.org/linux/man-pages/ (EIfDI)' L. . .

man2/ptrace.2.html [56] Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas
[22] Last accesse(;l é025_ redis. https://redis.io/ Pasquier, and Xueyuan Han. 2024. Kairos: Practical intrusion detection and
[23] Last accessed 2025. rr. https://github.com/rr-debugger/rr investigation using whole-system provenance. In IEEE Symposium on Security
[24] Last accessed 2025. seccomp - operate on Secure Computing state of the process. and Privacy (S&P).))

https://man7.org/linux/man-pages/man2/seccomp.2.html [57] Emma Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. 2020. PKU

Pitfalls: Attacks on PKU-based Memory Isolation Systems. In USENIX Security
Symposium.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readac-
tor: Practical Code Randomization Resilient to Memory Disclosure. In IEEE
Symposium on Security and Privacy (S&P).

[25] Last accessed 2025. sigreturn, rt_sigreturn - return from signal handler and
cleanup stack frame. https://man7.org/linux/man-pages/man2/sigreturn.2.html
[26] Last accessed 2025. sqlite. https://sqlite.org/ (58
[27] Last accessed 2025. Steam. https://store.steampowered.com/
[28] Last accessed 2025. Steven M. Bellovin’s retirement talk. https://www.cs.
columbia.edu/~smb/talks/farewell. mp4

[29] Last accessed 2025. strace - trace system calls and signals. https://man7.org/ [59] Stephen J. Crane, 'Stijn Volckaert, Felix 'Schuster, Christop'her Liebchen, Per
linux/man- pages/man1/strace.1.html Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and
[30] Last accessed 2025. Syscall User Dispatch. https://www.kernel.org/doc/html/ MlChéd Franz. 2015. It’s a TRaP: Table Randomization and Protection 'figa{nst
latest/admin- guide/syscall-user-dispatch.html Function-Reuse Attacks. In ACM Conference on Computer and Communications
[31] Last accessed 2025. syscall_intercept. https://github.com/pmem/syscall Sécurlty (CCS). . . . o .
intercept [60] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and
[32] Last accessed 2025. Tigress JitDynamic. https://tigress.wtf/jitDynamic.html Vasﬂglos P. Kemerlis. 2020. sysﬁlter: Autqmated System CE"H Filtering for Cf]m'
[33] Last accessed 2025. Tigress Jitter. https://tigress.wtf/jitterhtml modity Software. In International Symposium on Research in Attacks, Intrusions
[34] Last accessed 2025. unsetenv — remove an environment variable. https: and Defenses (RAID). . .
//man7.org/linux/man-pages/man3/unsetenv.3p.html [61] Jeff Dike. 2001. User-Mode Linux. In Annual Linux Showcase & Conference (ALS).
[35] Last accessed 2025. UPX - the Ultimate Packer for eXecutables. https://upx. [62] Kha Dinh Dl'ly’ Kyuwon Cho, Tachyun Noh, and Hojoon Lee. 2023. Capa(::lty:
github.io/ Cryptographically-Enforced In-Process Capabilities for Modern ARM Architec-
[36] Last accessed 2025. V8 JavaScript engine. https://v8.dev/ tures. In ACM (?onference on Cqmputer and Communications Securify (CCS).
[37] Last accessed 2025. vdso - overview of the virtual ELF dynamic shared object. [63] Asbat El Khairi, Marco CAasAelh, Andreas Peter, and {\ndArea Cont}nel!a. 202%’
https://man7.org/linux/man- pages/man7/vdso.7.html REPLICAWATCHER: Training-less Anomaly Detection in Containerized Mi-
[38] Last accessed 2025. Wine. https://www.winehq.org/ croservices. In Symposium on Network and Distributed System Security (NDSS).
[39] Last accessed 2025. wrk - a HTTP benchmarking tool. https:/github.com/wg/ [64] Alexander J. Gaidis, Vaggelis Atlidakis, and Vasileios P. Kemerlis. 2023. SysX-
wrk CHG: Refining Privilege with Adaptive System Call Filters. In ACM Conference
[40] Last accessed 2025. zpoline. https://github.com/yasukata/zpoline on Computer and Communicatior}s Security (CCS)‘ . .
[41] Last accessed 2025. zpoline - commit 56aec8797. https://github.com/yasukata/ [65] Tal Garfinkel. 2003. Traps and pitfalls: Practical problems in system call inter-

zpoline position based security tools. In Symposium on Network and Distributed System
[42] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow Security (NDSS).

Integrity. In ACM Conference on Computer and Communications Security (CCS). (6] Xinyang Ge, Mathias Payer, ar{d Trent Jaeger. 2017. 'An' Evil Copy: How the
[43] Bert Abrath, Bart Coppens, and Bjorn De Sutter. 2025. MVX-based mitigation Loader Betrays You.. In Symposium on Network and Distributed System Security
of position-independent code reuse. Comput. Secur. 159 (2025), 104655. doi:10. (NDSS). . R R . .
1016/J.COSE.2025.104655 [67] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
[44] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert chronakis. 2020. Conﬁpe: Automated system call pol‘icy generation for‘ container
Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries. attack‘ surface reduction. In International Symposium on Research in Attacks,
In USENIX Security Symposium. Intrusions and Defenses (RAID).

253

https://httpd.apache.org/docs/current/programs/ab.html
https://httpd.apache.org/docs/current/programs/ab.html
https://github.com/Tessil/robin-map
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://man7.org/linux/man-pages/man3/dlmopen.3.htmll
https://man7.org/linux/man-pages/man3/dlmopen.3.htmll
https://linux.die.net/man/3/execve
https://man7.org/linux/man-pages/man2/execve.2.html
https://man7.org/linux/man-pages/man2/execve.2.html
https://falco.org/
https://man7.org/linux/man-pages/man1/gdb.1.html
https://man7.org/linux/man-pages/man1/gdb.1.html
https://www.gnu.org/software/binutils/
https://github.com/lazypoline/lazypoline
https://github.com/lazypoline/lazypoline
https://github.com/lazypoline/lazypoline
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://www.lighttpd.net/
https://man7.org/linux/man-pages/man1/ltrace.1.html
https://man7.org/linux/man-pages/man1/ltrace.1.html
https://nginx.org/
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/prctl.2.html
https://man7.org/linux/man-pages/man2/prctl.2.html
https://man7.org/linux/man-pages/man2/process_vm_readv.2.html
https://man7.org/linux/man-pages/man2/process_vm_readv.2.html
https://man7.org/linux/man-pages/man5/proc_pid_maps.5.html
https://man7.org/linux/man-pages/man5/proc_pid_maps.5.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://redis.io/
https://github.com/rr-debugger/rr
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/sigreturn.2.html
https://sqlite.org/
https://store.steampowered.com/
https://www.cs.columbia.edu/~smb/talks/farewell.mp4
https://www.cs.columbia.edu/~smb/talks/farewell.mp4
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://github.com/pmem/syscall_intercept
https://github.com/pmem/syscall_intercept
https://tigress.wtf/jitDynamic.html
https://tigress.wtf/jitter.html
https://man7.org/linux/man-pages/man3/unsetenv.3p.html
https://man7.org/linux/man-pages/man3/unsetenv.3p.html
https://upx.github.io/
https://upx.github.io/
https://v8.dev/
https://man7.org/linux/man-pages/man7/vdso.7.html
https://www.winehq.org/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/yasukata/zpoline
https://github.com/yasukata/zpoline
https://github.com/yasukata/zpoline
https://doi.org/10.1016/J.COSE.2025.104655
https://doi.org/10.1016/J.COSE.2025.104655
https://doi.org/10.1007/s10009-017-0469-y

Middleware 25, December 15-19, 2025, Nashville, TN, USA

[68]

[69

[70

~
—

[72]

[73

(78

[79

(80

=)
=

[82

(83

(84]

oo
S

(86

(87

(88

[89

[90

[91

Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis. 2022. C2C:
Fine-grained configuration-driven system call filtering. In ACM Conference on
Computer and Communications Security (CCS).

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Libraries.
In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L. Scott.
2021. IskiOS: Intra-kernel Isolation and Security using Memory Protection
Keys. In International Symposium on Research in Attacks, Intrusions and Defenses
(RAID).

Brendan Gregg. Last accessed 2025. Linux Extended BPF (eBPF) Tracing Tools.
https://www.brendangregg.com/ebpf html

Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isola-
tion for High-Throughput Data Plane Libraries. In USENIX Annual Technical
Conference.

Quan Hong, Jiaqi Li, Wen Zhang, and Lidong Zhai. 2024. NanoHook: An Effi-
cient System Call Hooking Technique with One-Byte Invasive. In International
Symposium on Dependable Software Engineering: Theories, Tools, and Applications.
Springer, 363-381.

Quan Hong, Jiaqi Li, Wen Zhang, and Lidong Zhai. 2025. DataHook: An Efficient
and Lightweight System Call Hooking Technique without Instruction Modifica-
tion. Proc. ACM Softw. Eng. 2, ISSTA (June 2025), 21 pages. doi:10.1145/3728874
Petr Hosek and Cristian Cadar. 2013. Safe software updates via multi-version
execution. In International Conference on Software Engineering (ICSE).

Petr Hosek and Cristian Cadar. 2015. Varan the unbelievable: An efficient
n-version execution framework. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
Adriaan Jacobs, Merve Giilmez, Alicia Andries, Stijn Volckaert, and Alexios
Voulimeneas. 2024. System Call Interposition Without Compromise. In [EEE/IFIP
Conference on Dependable Systems and Networks (DSN).

Rob Jansen, Jim Newsome, and Ryan Wails. 2022. Co-opting Linux Processes
for High-Performance Network Simulation. In USENIX Annual Technical Con-
ference.

Di Jin, Vaggelis Atlidakis, and Vasileios P. Kemerlis. 2023. EPF: Evil Packet Filter.
In USENIX Annual Technical Conference.

Joonkyo Jung, Jisoo Jang, Yongwan Jo, Jonas Vinck, Alexios Voulimeneas, Stijn
Volckaert, and Dokyung Song. 2025. Moneta: Ex-Vivo GPU Driver Fuzzing by
Recalling In-Vivo Execution States. In Symposium on Network and Distributed
System Security (NDSS).

Juhee Kim, Jinbum Park, Yoochan Lee, Chengyu Song, Taesoo Kim, and Byoungy-
oung Lee. 2024. PeTAL: Ensuring Access Control Integrity against Data-only
Attacks on Linux. In ACM Conference on Computer and Communications Security
(CCS).

Taesoo Kim and Nickolai Zeldovich. 2013. Practical and effective sandboxing
for non-root users. In USENIX Annual Technical Conference.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
European Conference on Computer Systems (EuroSys).

Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and effi-
cient multi-variant execution using hardware-assisted process virtualization. In
IEEE/IFIP Conference on Dependable Systems and Networks (DSN).

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.
In European Conference on Computer Systems (EuroSys).

Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux
in Unikernel Clothing. In European Conference on Computer Systems (EuroSys).
Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee, Yeongpil Cho,
and Yunheung Paek. 2019. uXOM: Efficient eXecute-Only Memory on ARM
Cortex-M. In USENIX Security Symposium.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In IEEE Symposium on Security and Privacy
(S&P).

Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the x86
Rings: A Portable User Mode Privilege Separation Architecture on x86. In ACM
Conference on Computer and Communications Security (CCS).

Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2023. Harnessing
the x86 Intermediate Rings for Intra-Process Isolation. IEEE Transactions on
Dependable and Secure Computing 20, 4 (2023), 3251-3268. doi:10.1109/TDSC.
2022.3192524

Seongman Lee, Seoye Kim, Chihyun Song, Byeongsu Woo, Eunyeong Ahn,
Junsu Lee, Yeongjin Jang, Jinsoo Jang, Hojoon Lee, and Brent Byunghoon Kang.
2024. GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege
Separation. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied Com-

puting.

Jests Maria Gomez Moreno et al.

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Teodorescu, Sebas-
tian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. 2022. FlexOS: Towards
Flexible OS Isolation. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall, and Pierre Olivier. 2025.
SoK: Software Compartmentalization. In IEEE Symposium on Security and Privacy
(S&P).

Hugo Lefeuvre, Gaulthier Gain, Vlad-Andrei Badoiu, Daniel Dinca, Vlad-Radu
Schiller, Costin Raiciu, Felipe Huici, and Pierre Olivier. 2024. Loupe: Driv-
ing the Development of OS Compatibility Layers. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Matan Liber. Last accessed 2025. The good, bad and compromisable aspects of
linux ebpf. https://pentera.io/wp-content/uploads/2022/07/penteralabs-the-
good-bad-and-compromisable-aspects-of-linux-ebpf.pd

Qirui Liu, Wenbo Shen, Jinmeng Zhou, Zhuoruo Zhang, Jiayi Hu, Shukai Ni,
Kangjie Lu, and Rui Chang. 2024. Interp-flow Hijacking: Launching Non-control
Data Attack via Hijacking eBPF Interpretation Flow. In European Symposium on
Research in Computer Security (ESORICS).

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwart-
ing Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isola-
tion. In ACM Conference on Computer and Communications Security (CCS).
Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2018. Stop-
ping Memory Disclosures via Diversification and Replicated Execution. IEEE
Transactions on Dependable and Secure Computing (TDSC) (2018).

Chenke Luo, Jiang Ming, Mengfei Xie, Guojun Peng, and Jianming Fu. 2025.
Retrofitting XoM for Stripped Binaries without Embedded Data Relocation. In
Symposium on Network and Distributed System Security (NDSS).

Matthew Maurer and David Brumley. 2012. TACHYON: tandem execution for
efficient live patch testing. In USENIX Security Symposium.

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In Usenix Winter Conference.

Derrick Paul McKee, Yianni Giannaris, Carolina Ortega, Howard E Shrobe,
Mathias Payer, Hamed Okhravi, and Nathan Burow. 2022. Preventing Kernel
Hacks with HAKCs.. In Symposium on Network and Distributed System Security
(NDSS).

A. Melvin, G. Jaspher Kathrine, Andrew Jeyabose, and Cenitta David. 2025.
A Deep Learning Model Leveraging Time-Series System Call Data to Detect
Malware Attacks in Virtual Machines. International Journal of Computational
Intelligence Systems 18 (03 2025). doi:10.1007/s44196-025-00781-z

Daiping liu Mingwei Zhang, Ravi Sahita. 2018. eXecutable-Only-Memory-
Switch (XOM-Switch). In Black Hat Asia Briefings (Black Hat Asia).

Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating System
with Kernel Virtualization. In ACM Symposium on Operating Systems Principles
(SOSP).

Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. 2021.
Lost in the Loader:The Many Faces of the Windows PE File Format. In Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID).

Gene Novark and Emery Berger. 2010. DieHarder: Securing the Heap. In ACM
Conference on Computer and Communications Security (CCS).

Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. 2019. A Binary-Compatible Unikernel. In Conference on Virtual Execution
Environments (VEE).

Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. 2021. SoK: All You Ever Wanted to Know About x86/x64
Binary Disassembly But Were Afraid to Ask. In IEEE Symposium on Security
and Privacy (S&P).

Chengbin Pang, Tiantai Zhang, Ruotong Yu, Bing Mao, and Jun Xu. 2022. Ground
truth for binary disassembly is not easy. In USENIX Security Symposium.
Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
Libmpk: software abstraction for intel memory protection keys (intel MPK). In
USENIX Annual Technical Conference.

Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and Michael
Franz. 2020. Nojitsu: Locking down javascript engines. In Symposium on Network
and Distributed System Security (NDSS).

Dinglan Peng, Congyu Liu, Tapti Palit, Tapti Fonseca, Anjo Vahldiek-
Oberwagner, and Mona Vij. 2023. uSwitch: Fast Kernel Context Isolation with
Implicit Context Switches. In IEEE Symposium on Security and Privacy (S&P).
Luis Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019.
MVEDSUa: Higher Availability Dynamic Software Updates via Multi-Version
Execution. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Luis Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian Cadar. 2017. A
DSL approach to reconcile equivalent divergent program executions. In USENIX
Annual Technical Conference.

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In IEEE Symposium on Security and Privacy (S&P).

https://www.brendangregg.com/ ebpf.html
https://doi.org/10.1145/3728874
https://doi.org/10.1109/TDSC.2022.3192524
https://doi.org/10.1109/TDSC.2022.3192524
https://pentera.io/wp-content/uploads/2022/07/penteralabs-the-good-bad-and-compromisable-aspects-of-linux-ebpf.pd
https://pentera.io/wp-content/uploads/2022/07/penteralabs-the-good-bad-and-compromisable-aspects-of-linux-ebpf.pd
https://doi.org/10.1007/s44196-025-00781-z

Clair Obscur : The Light and Shadow of System Call Interposition — From Pitfalls to Solutions with K23

[117

[118]

[119

[120

[121

[122]

[123

[124

[125

[126

[127

[128

[129]

[130

[131

[132

[133

[134

[135

[136

[137]

[138

[139

[140

Kailun Qin and Dawu Gu. 2024. One System Call Hook to Rule All TEE OSes in
the Cloud. In IEEE International Conference on Cloud Computing (CLOUD).
Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Goktas, Jun Xu,
and Georgios Portokalidis. 2023. SYSPART: Automated Temporal System Call
Filtering for Binaries. In ACM Conference on Computer and Communications
Security (CCS).

Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal, Ulrich
Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry Woodman, Renato
Mancuso, Jonathan Appavoo, and Orran Krieger. 2023. Unikernel Linux (UKL).
In European Conference on Computer Systems (EuroSys).

Branden Robinson, David MacKenzie, and Jim Meyering. Last accessed 2025.
GNU Coreutils: File, Shell and Text Manipulation Utilities. Free Software Founda-
tion. https://www.gnu.org/software/coreutils/

André Rosti, Stijn Volckaert, Michael Franz, and Alexios Voulimeneas. 2024. T'll
Be There for You! Perpetual Availability in the A 8 MVX System. In Annual
Computer Security Applications Conference (ACSAC). IEEE.

André Rosti, Alexios Voulimeneas, and Michael Franz. 2024. The Astonishing
Evolution of Probabilistic Memory Safety: From Basic Heap-Data Attack Detec-
tion Toward Fully Survivable Multivariant Execution. IEEE Security and Privacy
22, 4 (July 2024), 66-75. doi:10.1109/MSEC.2024.3407648

Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In European Conference on Computer Systems (EuroSys).

Vasily A. Sartakov, Lluis Vilanova, and Peter Pietzuch. 2021. CubicleOS: A
Library OS with Software Componentisation for Practical Isolation. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys —
Efficient In-Process Isolation for RISC-V and x86. In USENIX Security Symposium.
Leon Schuermann, Jack Toubes, Tyler Potyondy, Pat Pannuto, Mae Milano, and
Amit Levy. 2025. Building bridges: safe interactions with foreign languages
through Omniglot. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization. In
ACM Conference on Computer and Communications Security (CCS).

Yang Shen, Min Xie, Wenzhe Zhang, and Tao Wu. 2024. ASC-Hook: fast and
transparent system call hook for Arm. arXiv preprint arXiv:2412.05784 (2024).
Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-containers:
Breaking down barriers to improve performance and isolation of cloud-native
containers. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Livio Soares and Michael Stumm. 2010. {FlexSC}: Flexible system call schedul-
ing with {Exception-Less} system calls. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024.
Finding correctness bugs in ebpf verifier with structured and sanitized program.
In European Conference on Computer Systems (EuroSys).

Zahra Tarkhani and Anil Madhavapeddy. 2020. pTiles: Efficient Intra-Process
Privilege Enforcement of Memory Regions. arXiv preprint arXiv:2108.03705
(2020).

Martin Unterguggenberger, Lukas Lamster, David Schrammel, Martin Schwarzl,
and Stefan Mangard. 2024. TME-Box: Scalable In-Process Isolation through
Intel TME-MK Memory Encryption. arXiv preprint arXiv:2407.10740v2.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Peter Druschel, and
Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isolation with Memory
Protection Keys. In USENIX Security Symposium.

Jonas Vinck, Bert Abrath, Bart Coppens, Alexios Voulimeneas, Bjorn De Sutter,
and Stijn Volckaert. 2022. Sharing is Caring: Secure and Efficient Shared Memory
Support for MVEEs. In European Conference on Computer Systems (EuroSys).
Jonas Vinck, Adriaan Jacobs, Alexios Voulimeneas, and Stijn Volckaert. 2025. Di-
vide and Conquer: Introducing Partial Multi-Variant Execution. In IEEE European
Symposium on Security and Privacy (EuroS&P).

Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions
on Dependable and Secure Computing (TDSC) (2016).

Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. 2017. Taming parallelism in a multi-variant execution
environment. In European Conference on Computer Systems (EuroSys).

Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per
Larsen, Bjorn De Sutter, and Michael Franz. 2016. Secure and Efficient Ap-
plication Monitoring and Replication. In USENIX Annual Technical Conference.

255

[141]

[142

[143]

[144

[145

[146

[147

[148

[149

[150

[151]

[152

[153]

[154

[155

[156

[157]

[158

[159

[160

[161

[162

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere. 2012.
GHUMUVEE: efficient, effective, and flexible replication. In International Sympo-
sium on Foundations and Practice of Security (FPS).

Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn
Volckaert. 2021. dMVX: Secure and Efficient Multi-Variant Execution in a
Distributed Setting. In European Workshop on System Security (EuroSec).
Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. 2020. Distributed heterogeneous N-variant
execution. In Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA).

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You shall not (by) pass! practical, secure, and fast PKU-based sandboxing. In
European Conference on Computer Systems (EuroSys).

Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou,
Junghwan Rhee, Zhengzhang Chen, Wei Cheng, Carl A Gunter, et al. 2020. You
are what you do: Hunting stealthy malware via data provenance analysis.. In
Symposium on Network and Distributed System Security (NDSS).

Ruihua Wang, Yihao Peng, Yilun Sun, Xuancheng Zhang, Hai Wan, and Xibin
Zhao. 2023. Tesec: Accurate server-side attack investigation for web applications.
In IEEE Symposium on Security and Privacy (S&P).

Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon
Kim, and Binoy Ravindran. 2020. A Framework for Software Diversification
with ISA Heterogeneity. In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID).

Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and Efficient In-Process Monitor (and Library) Protection with Intel MPK.
In European Workshop on System Security (EuroSec).

Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. SEIMI: Efficient and
Secure SMAP-Enabled Intra-process Memory Isolation. In IEEE Symposium on
Security and Privacy (S&P).

Chenggang Wu, Mengyao Xie, Zhe Wang, Yingian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, Min Yang, and Tao Li. 2023. Dancing With
Wolves: An Intra-Process Isolation Technique With Privileged Hardware. IEEE
Trans. Dependable Secur. Comput. 20, 3 (May 2023), 1959-1978. d0i:10.1109/
TDSC.2022.3168089

Mengyao Xie, Chenggang Wu, Yingian Zhang, Jiali Xu, Yuanming Lai, Yan Kang,
Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting Intel CET for Generic and
Efficient Intra-process Memory Isolation. In ACM Conference on Computer and
Communications Security (CCS).

Jiali Xu, Mengyao Xie, Chenggang Wu, Yingian Zhang, Qijing Li, Xuan Huang,
Yuanming Lai, Yan Kang, Wei Wang, Qiang Wei, and Zhe Wang. 2023. PANIC:
PAN-assisted Intra-process Memory Isolation on ARM. In ACM Conference on
Computer and Communications Security (CCS).

Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. 2017. Bunshin: composit-
ing security mechanisms through diversification. In USENIX Annual Technical
Conference.

Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W Hamlen, and
Zhiqiang Lin. 2019. CONFIRM: Evaluating compatibility and relevance of
control-flow integrity protections for modern software. In USENIX Security
Symposium.

Nikita Yadav, Franziska Vollmer, Ahmad-Reza Sadeghi, Georgios Smaragdakis,
and Alexios Voulimeneas. 2024. Orbital Shield: Rethinking Satellite Security in
the Commercial Off-the-Shelf Era. In IEEE Security for Space Systems (3S).
Fangfei Yang, Bumjin Im, Weijie Huang, Kelly Kaoudis, Anjo Vahldiek-
Oberwagner, Chia che Tsai, and Nathan Dautenhahn. 2024. Endokernel: A
Thread Safe Monitor for Lightweight Subprocess Isolation. In USENIX Security
Symposium.

Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. 2023.
zpoline: a system call hook mechanism based on binary rewriting. In USENIX
Annual Technical Conference.

Hengkai Ye and Hong Hu. 2025. Too Subtle to Notice: Investigating Executable
Stack Issues in Linux Systems. In Symposium on Network and Distributed System
Security (NDSS).

Sengming Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran. 2024.
sMVX: Multi-Variant Execution on Selected Code Paths. In ACM/IFIP Interna-
tional Middleware Conference (Middleware).

Jianyi Zhang, Zhenkui Li, Yudong Liu, Zezheng Sun, and Zhigiang Wang. 2023.
SAFTE: A self-injection based anti-fuzzing technique. Computers and Electrical
Engineering 111 (2023), 108980.

Qihang Zhou, Wenzhuo Cao, Xiaoqi Jia, Peng Liu, Shengzhi Zhang, Jiayun
Chen, Shaowen Xu, and Zhenyu Song. 2025. RContainer: A Secure Container
Architecture through Extending ARM CCA Hardware Primitives. In Symposium
on Network and Distributed System Security (NDSS).

Sebastian Osterlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert
Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting Kernel Information Leaks
with Multi-variant Execution. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).

https://www.gnu.org/software/coreutils/
https://doi.org/10.1109/MSEC.2024.3407648
https://doi.org/10.1109/TDSC.2022.3168089
https://doi.org/10.1109/TDSC.2022.3168089

	Abstract
	1 Introduction
	2 Background
	2.1 ptrace and SUD
	2.2 System Call Interposition via Binary Rewriting

	3 Threat Model
	4 System Call Interposition Pitfalls
	4.1 P1—Interposition Bypass
	4.2 P2—System Call Overlook
	4.3 P3—Instruction Misidentification
	4.4 P4—NULL Access Termination Pitfalls
	4.5 P5—Runtime Rewriting Pitfalls

	5 K23: Making System Call Interposition Resilient to Pitfalls
	5.1 A Closer Look at K23's Offline Phase
	5.2 A Closer Look at K23's Online Phase
	5.3 Implementation Details

	6 Evaluation
	6.1 Pitfall-Oriented Comparison
	6.2 Performance Evaluation

	7 Discussion
	8 Related Work
	9 Conclusion
	References

